Multi-time-step domain coupling method with energy control
DEFF Research Database (Denmark)
Mahjoubi, N.; Krenk, Steen
2010-01-01
the individual time step. It is demonstrated that displacement continuity between the subdomains leads to cancelation of the interface contributions to the energy balance equation, and thus stability and algorithmic damping properties of the original algorithms are retained. The various subdomains can...... by a numerical example using a refined mesh around concentrated forces. Copyright © 2010 John Wiley & Sons, Ltd....
Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation
Directory of Open Access Journals (Sweden)
Xiaokun Wang
2017-01-01
Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.
A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis
Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann
2017-04-01
The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for
Directory of Open Access Journals (Sweden)
Emily Lyle
2012-03-01
Full Text Available Indo-European mythology is known only through written records but it needs to be understood in terms of the preliterate oral-cultural context in which it was rooted. It is proposed that this world was conceptually organized through a memory-capsule consisting of the current generation and the three before it, and that there was a system of alternate generations with each generation taking a step into the future under the leadership of a white or red king.
Time step MOTA thermostat simulation
International Nuclear Information System (INIS)
Guthrie, G.L.
1978-09-01
The report details the logic, program layout, and operating procedures for the time-step MOTA (Materials Open Test Assembly) thermostat simulation program known as GYRD. It will enable prospective users to understand the operation of the program, run it, and interpret the results. The time-step simulation analysis was the approach chosen to determine the maximum value gain that could be used to minimize steady temperature offset without risking undamped thermal oscillations. The advantage of the GYRD program is that it directly shows hunting, ringing phenomenon, and similar events. Programs BITT and CYLB are faster, but do not directly show ringing time
Time step length versus efficiency of Monte Carlo burnup calculations
International Nuclear Information System (INIS)
Dufek, Jan; Valtavirta, Ville
2014-01-01
Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy
Grief: Difficult Times, Simple Steps.
Waszak, Emily Lane
This guide presents techniques to assist others in coping with the loss of a loved one. Using the language of 9 layperson, the book contains more than 100 tips for caregivers or loved ones. A simple step is presented on each page, followed by reasons and instructions for each step. Chapters include: "What to Say"; "Helpful Things to Do"; "Dealing…
Flow-based market coupling. Stepping stone towards nodal pricing?
International Nuclear Information System (INIS)
Van der Welle, A.J.
2012-07-01
For achieving one internal energy market for electricity by 2014, market coupling is deployed to integrate national markets into regional markets and ultimately one European electricity market. The extent to which markets can be coupled depends on the available transmission capacities between countries. Since interconnections are congested from time to time, congestion management methods are deployed to divide the scarce available transmission capacities over market participants. For further optimization of the use of available transmission capacities while maintaining current security of supply levels, flow-based market coupling (FBMC) will be implemented in the CWE region by 2013. Although this is an important step forward, important hurdles for efficient congestion management remain. Hence, flow based market coupling is compared to nodal pricing, which is often considered as the most optimal solution from theoretical perspective. In the context of decarbonised power systems it is concluded that advantages of nodal pricing are likely to exceed its disadvantages, warranting further development of FBMC in the direction of nodal pricing.
The gradual development steps of the external coupled RELAP5 - DYN3D code
International Nuclear Information System (INIS)
Strmensky, C.
2001-01-01
This paper describes the on-going and finished parts of project: 'The external coupled RELAP5-DYN3D code'. The development progress was divided into four steps. In present time, second and third steps are performed and four step is started. The two parameters of coolant was selected and are exchanged between codes RELAP5 and DYN3D. (authors)
Symplectic integrators with adaptive time steps
Richardson, A. S.; Finn, J. M.
2012-01-01
In recent decades, there have been many attempts to construct symplectic integrators with variable time steps, with rather disappointing results. In this paper, we identify the causes for this lack of performance, and find that they fall into two categories. In the first, the time step is considered a function of time alone, Δ = Δ(t). In this case, backward error analysis shows that while the algorithms remain symplectic, parametric instabilities may arise because of resonance between oscillations of Δ(t) and the orbital motion. In the second category the time step is a function of phase space variables Δ = Δ(q, p). In this case, the system of equations to be solved is analyzed by introducing a new time variable τ with dt = Δ(q, p) dτ. The transformed equations are no longer in Hamiltonian form, and thus do not benefit from integration methods which would be symplectic for Hamiltonian systems. We analyze two methods for integrating the transformed equations which do, however, preserve the structure of the original equations. The first is an extended phase space method, which has been successfully used in previous studies of adaptive time step symplectic integrators. The second, novel, method is based on a non-canonical mixed-variable generating function. Numerical trials for both of these methods show good results, without parametric instabilities or spurious growth or damping. It is then shown how to adapt the time step to an error estimate found by backward error analysis, in order to optimize the time-stepping scheme. Numerical results are obtained using this formulation and compared with other time-stepping schemes for the extended phase space symplectic method.
Sub-step methodology for coupled Monte Carlo depletion and thermal hydraulic codes
International Nuclear Information System (INIS)
Kotlyar, D.; Shwageraus, E.
2016-01-01
Highlights: • Discretization of time in coupled MC codes determines the results’ accuracy. • The error is due to lack of information regarding the time-dependent reaction rates. • The proposed sub-step method considerably reduces the time discretization error. • No additional MC transport solutions are required within the time step. • The reaction rates are varied as functions of nuclide densities and TH conditions. - Abstract: The governing procedure in coupled Monte Carlo (MC) codes relies on discretization of the simulation time into time steps. Typically, the MC transport solution at discrete points will generate reaction rates, which in most codes are assumed to be constant within the time step. This assumption can trigger numerical instabilities or result in a loss of accuracy, which, in turn, would require reducing the time steps size. This paper focuses on reducing the time discretization error without requiring additional MC transport solutions and hence with no major computational overhead. The sub-step method presented here accounts for the reaction rate variation due to the variation in nuclide densities and thermal hydraulic (TH) conditions. This is achieved by performing additional depletion and TH calculations within the analyzed time step. The method was implemented in BGCore code and subsequently used to analyze a series of test cases. The results indicate that computational speedup of up to a factor of 10 may be achieved over the existing coupling schemes.
Bancroft, Matthew J.; Day, Brian L.
2016-01-01
Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body’s momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait. PMID:28066208
Bancroft, Matthew J; Day, Brian L
2016-01-01
Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body's momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait.
Linear coupling dependence on intensity and a next step towards a feedback (MD1850)
Persson, Tobias Hakan Bjorn; Coello De Portugal - Martinez Vazquez, Jaime Maria; Gasior, Marek; Giovannozzi, Massimo; Olexa, Jakub; Tomas Garcia, Rogelio; Garcia-Tabares Valdivieso, Ana; Valuch, Daniel
2017-01-01
Transverse coupling has proven to be an important variable to control beam dynamics and performance in the LHC. In this report, we present the first measurement of transverse coupling vs beam intensity. The analysis shows no dependency within the experimental uncertainties. This study was made possible with the new implementation of an AC-dipole-like excitation using the ADT. It provides the functionality to excite a single bunch in a train. The demonstration of this functionality is also an important step towards creating an automatic coupling correction tool for the LHC. Transverse coupling has been observed to vary with time at injection. In this report, a quantitative measurement of the coupling as a function of time after ramp-down is presented. Turn-by-turn data was also acquired to compare the performance of the new DOROS system to the standard BPMs.
Time to pause before the next step
International Nuclear Information System (INIS)
Siemon, R.E.
1998-01-01
Many scientists, who have staunchly supported ITER for years, are coming to realize it is time to further rethink fusion energy's development strategy. Specifically, as was suggested by Grant Logan and Dale Meade, and in keeping with the restructuring of 1996, a theme of better, cheaper, faster fusion would serve the program more effectively than ''demonstrating controlled ignition...and integrated testing of the high-heat-flux and nuclear components required to utilize fusion energy...'' which are the important ingredients of ITER's objectives. The author has personally shifted his view for a mixture of technical and political reasons. On the technical side, he senses that through advanced tokamak research, spherical tokamak research, and advanced stellarator work, scientists are coming to a new understanding that might make a burning-plasma device significantly smaller and less expensive. Thus waiting for a few years, even ten years, seems prudent. Scientifically, there is fascinating physics to be learned through studies of burning plasma on a tokamak. And clearly if one wishes to study burning plasma physics in a sustained plasma, there is no other configuration with an adequate database on which to proceed. But what is the urgency of moving towards an ITER-like step focused on burning plasma? Some of the arguments put forward and the counter arguments are discussed here
High-resolution seismic wave propagation using local time stepping
Peter, Daniel
2017-03-13
High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.
Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu
2015-08-01
In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.
Diffeomorphic image registration with automatic time-step adjustment
DEFF Research Database (Denmark)
Pai, Akshay Sadananda Uppinakudru; Klein, S.; Sommer, Stefan Horst
2015-01-01
In this paper, we propose an automated Euler's time-step adjustment scheme for diffeomorphic image registration using stationary velocity fields (SVFs). The proposed variational problem aims at bounding the inverse consistency error by adaptively adjusting the number of Euler's step required to r...... accuracy as a fixed time-step scheme however at a much less computational cost....
An explicit multi-time-stepping algorithm for aerodynamic flows
Niemann-Tuitman, B.E.; Veldman, A.E.P.
1997-01-01
An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for aerodynamic turbulent flows. For two-dimensional flows speedups in the order of five with respect to single time stepping are obtained.
Coupled oscillators with parity-time symmetry
Energy Technology Data Exchange (ETDEWEB)
Tsoy, Eduard N., E-mail: etsoy@uzsci.net
2017-02-05
Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.
Timed intercourse for couples trying to conceive
Manders, M.; McLindon, L.; Schulze, B.; Beckmann, M.M.; Kremer, J.A.M.; Farquhar, C.
2015-01-01
BACKGROUND: Fertility problems are very common, as subfertility affects about 10% to 15% of couples trying to conceive. There are many factors that may impact a couple's ability to conceive and one of these may be incorrect timing of intercourse. Conception is only possible from approximately five
Combating cancer one step at a time
Directory of Open Access Journals (Sweden)
R.N Sugitha Nadarajah
2016-10-01
widespread consequences, not only in a medical sense but also socially and economically,” says Dr. Abdel-Rahman. “We need to put in every effort to combat this fatal disease,” he adds.Tackling the spread of cancer and the increase in the number of cases reported every year is not without its challenges, he asserts. “I see the key challenges as the unequal availability of cancer treatments worldwide, the increasing cost of cancer treatment, and the increased median age of the population in many parts of the world, which carries with it a consequent increase in the risk of certain cancers,” he says. “We need to reassess the current pace and orientation of cancer research because, with time, cancer research is becoming industry-oriented rather than academia-oriented — which, in my view, could be very dangerous to the future of cancer research,” adds Dr. Abdel-Rahman. “Governments need to provide more research funding to improve the outcome of cancer patients,” he explains.His efforts and hard work have led to him receiving a number of distinguished awards, namely the UICC International Cancer Technology Transfer (ICRETT fellowship in 2014 at the Investigational New Drugs Unit in the European Institute of Oncology, Milan, Italy; EACR travel fellowship in 2015 at The Christie NHS Foundation Trust, Manchester, UK; and also several travel grants to Ireland, Switzerland, Belgium, Spain, and many other countries where he attended medical conferences. Dr. Abdel-Rahman is currently engaged in a project to establish a clinical/translational cancer research center at his institute, which seeks to incorporate various cancer-related disciplines in order to produce a real bench-to-bedside practice, hoping that it would “change research that may help shape the future of cancer therapy”.Dr. Abdel-Rahman is also an active founding member of the clinical research unit at his institute and is a representative to the prestigious European Organization for Research and
International Nuclear Information System (INIS)
Wang Bo; Ma Zhongshui; Zhang, C
2012-01-01
We demonstrate that the trigonal warping observed in bilayer graphene is doubled in the presence of Rashba spin-orbit (RSO) coupling, i.e. the Dirac points along the three-fold symmetry axis are doubled. There are now seven Dirac points. Furthermore, the RSO interaction breaks the electron-hole symmetry of the magnetic band structure. The most intriguing feature is that the step of the quantum Hall plateau at zero energy is four times that at finite energy. The number of Dirac points and the zero energy Hall step are only determined by the existence of RSO coupling, but are independent of the strength of the coupling. The robustness of these phenomena suggests equivalence between the RSO coupling and the topological effect in bilayer coupling.
An explicit multi-time-stepping algorithm for aerodynamic flows
Niemann-Tuitman, B.E.; Veldman, A.E.P.
1997-01-01
An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for
High-resolution seismic wave propagation using local time stepping
Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul
2017-01-01
High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step
Two-step approach to the dynamics of coupled anharmonic oscillators
International Nuclear Information System (INIS)
Chung, N. N.; Chew, L. Y.
2009-01-01
We have further extended the two-step approach developed by Chung and Chew [N. N. Chung and L. Y. Chew, Phys. Rev. A 76, 032113 (2007)] to the solution of the quantum dynamics of general systems of N-coupled anharmonic oscillators. The idea is to employ an optimized basis set to represent the dynamical quantum states of these oscillator systems. The set is generated via the action of the optimized Bogoliubov transformed bosonic operators on the optimal squeezed vacuum product state. The procedure requires (i) applying the two-step approach to the eigendecomposition of the time evolution operator and (ii) transforming the representation of the initial state from the original to the optimal bases. We have applied the formalism to examine the dynamics of squeezing and entanglement of several anharmonic oscillator systems.
Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator
DEFF Research Database (Denmark)
Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper
1991-01-01
An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...
Time step size selection for radiation diffusion calculations
International Nuclear Information System (INIS)
Rider, W.J.; Knoll, D.A.
1999-01-01
The purpose of this note is to describe a time step control technique as applied to radiation diffusion. Standard practice only provides a heuristic criteria related to the relative change in the dependent variables. The authors propose an alternative based on relatively simple physical principles. This time step control applies to methods of solution that are unconditionally stable and converges nonlinearities within a time step in the governing equations. Commonly, nonlinearities in the governing equations are evaluated using existing (old time) data. The authors refer to this as the semi-implicit (SI) method. When a method converges nonlinearities within a time step, the entire governing equation including all nonlinearities is self-consistently evaluated using advance time data (with appropriate time centering for accuracy)
Longitudinal coupling impedance of a double-step cross section change in the vacuum chamber
International Nuclear Information System (INIS)
Guidee, P.; Hahn, H.; Mizumachi, Y.
1978-03-01
The coupling impedance of a double-step cross section change in the vacuum chamber of an accelerator or storage ring is computed in first approximation. The character of the coupling impedance in the various frequency domains, that is low-frequency, above cut-off frequency of the vacuum chamber, and at resonances is discussed
Molecular dynamics based enhanced sampling of collective variables with very large time steps
Chen, Pei-Yang; Tuckerman, Mark E.
2018-01-01
Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.
Newmark local time stepping on high-performance computing architectures
Rietmann, Max
2016-11-25
In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strong element-size contrasts (more than 100×). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.
Newmark local time stepping on high-performance computing architectures
Energy Technology Data Exchange (ETDEWEB)
Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch [Institute for Computational Science, Università della Svizzera italiana, Lugano (Switzerland); Institute of Geophysics, ETH Zurich (Switzerland); Grote, Marcus, E-mail: marcus.grote@unibas.ch [Department of Mathematics and Computer Science, University of Basel (Switzerland); Peter, Daniel, E-mail: daniel.peter@kaust.edu.sa [Institute for Computational Science, Università della Svizzera italiana, Lugano (Switzerland); Institute of Geophysics, ETH Zurich (Switzerland); Schenk, Olaf, E-mail: olaf.schenk@usi.ch [Institute for Computational Science, Università della Svizzera italiana, Lugano (Switzerland)
2017-04-01
In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strong element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.
Newmark local time stepping on high-performance computing architectures
Rietmann, Max; Grote, Marcus; Peter, Daniel; Schenk, Olaf
2016-01-01
In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strong element-size contrasts (more than 100×). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.
Sharing Steps in the Workplace: Changing Privacy Concerns Over Time
DEFF Research Database (Denmark)
Jensen, Nanna Gorm; Shklovski, Irina
2016-01-01
study of a Danish workplace participating in a step counting campaign. We find that concerns of employees who choose to participate and those who choose not to differ. Moreover, privacy concerns of participants develop and change over time. Our findings challenge the assumption that consumers...
Studies on steps affecting tritium residence time in solid blanket
International Nuclear Information System (INIS)
Tanaka, Satoru
1987-01-01
For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)
TIME EVOLUTION OF WOUTHUYSEN-FIELD COUPLING
International Nuclear Information System (INIS)
Roy, Ishani; Shu Chiwang; Xu Wen; Fang Lizhi; Qiu Jingmei
2009-01-01
We study the Wouthuysen-Field (W-F) coupling at early universe with numerical solutions of the integrodifferential equation describing the kinetics of photons undergoing resonant scattering. The numerical solver is developed based on the weighted essentially nonoscillatory (WENO) scheme for the Boltzmann-like integrodifferential equation. This method has perfectly passed the tests of the analytic solution and conservation property of the resonant scattering equation. We focus on the time evolution of the Wouthuysen-Field (W-F) coupling in relation to the 21 cm emission and absorption at the epoch of reionization. We especially pay attention to the formation of the local Boltzmann distribution, e -(ν-ν 0 )/kT , of photon frequency spectrum around resonant frequency ν 0 within width ν l , i.e., |ν - ν 0 | ≤ ν l . We show that a local Boltzmann distribution will be formed if photons with frequency ∼ν 0 have undergone a 10,000 or more times of scattering, which corresponds to the order of 10 3 yr for neutral hydrogen density of the concordance ΛCDM model. The time evolution of the shape and width of the local Boltzmann distribution actually do not depend on the details of atomic recoil, photon sources, or initial conditions very much. However, the intensity of photon flux at the local Boltzmann distribution is substantially time dependent. The timescale of approaching the saturated intensity can be as long as 10 5 -10 6 yr for typical parameters of the ΛCDM model. The intensity of the local Boltzmann distribution at time less than 10 5 yr is significantly lower than that of the saturation state. Therefore, it may not be always reasonable to assume that the deviation of the spin temperature of 21 cm energy states from cosmic background temperature is mainly due to the W-F coupling if first stars or their emission/absorption regions evolved with a timescale equal to or less than Myr.
Plante, Ianik; Devroye, Luc
2017-10-01
Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.
A parallel nearly implicit time-stepping scheme
Botchev, Mike A.; van der Vorst, Henk A.
2001-01-01
Across-the-space parallelism still remains the most mature, convenient and natural way to parallelize large scale problems. One of the major problems here is that implicit time stepping is often difficult to parallelize due to the structure of the system. Approximate implicit schemes have been suggested to circumvent the problem. These schemes have attractive stability properties and they are also very well parallelizable. The purpose of this article is to give an overall assessment of the pa...
Adaptive time-stepping Monte Carlo integration of Coulomb collisions
Särkimäki, K.; Hirvijoki, E.; Terävä, J.
2018-01-01
We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.
Multiple time step integrators in ab initio molecular dynamics
International Nuclear Information System (INIS)
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-01-01
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy
Turpin, Jason B.
2004-01-01
One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.
Ultra-Step-Up DC-DC Converter with Integrated Autotransformer and Coupled Inductor
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang
2016-01-01
This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage transfer ratio and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core to achieve a high step-up voltage gain without extreme...... duty cycle. Further, an integrated passive regenerative circuit recycles the leakage energy of the coupled magnetics and transfer the leakage energy to the load, which helps to avoid high voltage spikes across the switch. This feature along with low stress on the switching device enables the designer...
[Collaborative application of BEPS at different time steps.
Lu, Wei; Fan, Wen Yi; Tian, Tian
2016-09-01
BEPSHourly is committed to simulate the ecological and physiological process of vegetation at hourly time steps, and is often applied to analyze the diurnal change of gross primary productivity (GPP), net primary productivity (NPP) at site scale because of its more complex model structure and time-consuming solving process. However, daily photosynthetic rate calculation in BEPSDaily model is simpler and less time-consuming, not involving many iterative processes. It is suitable for simulating the regional primary productivity and analyzing the spatial distribution of regional carbon sources and sinks. According to the characteristics and applicability of BEPSDaily and BEPSHourly models, this paper proposed a method of collaborative application of BEPS at daily and hourly time steps. Firstly, BEPSHourly was used to optimize the main photosynthetic parameters: the maximum rate of carboxylation (V c max ) and the maximum rate of photosynthetic electron transport (J max ) at site scale, and then the two optimized parameters were introduced into BEPSDaily model to estimate regional NPP at regional scale. The results showed that optimization of the main photosynthesis parameters based on the flux data could improve the simulate ability of the model. The primary productivity of different forest types in descending order was deciduous broad-leaved forest, mixed forest, coniferous forest in 2011. The collaborative application of carbon cycle models at different steps proposed in this study could effectively optimize the main photosynthesis parameters V c max and J max , simulate the monthly averaged diurnal GPP, NPP, calculate the regional NPP, and analyze the spatial distribution of regional carbon sources and sinks.
R.f.-induced steps in mutually coupled, two-dimensional distributed Josephson tunnel junctions
International Nuclear Information System (INIS)
Klein, U.; Dammschneider, P.
1991-01-01
This paper reports on the amplitudes of the current steps in the I-V characteristics of mutually coupled two-dimensional distributed Josephson tunnel junctions driven by microwaves. For this purpose we use a numerical computation algorithm based on a planar resonator model for the individual Josephson tunnel junctions to calculate the d.c. current density distribution. In addition to the fundamental microwave frequency, harmonic contents of the tunneling current are also considered. The lateral dimensions of the individual junctions are small compared to the microwave wavelength and the Josephson penetration depth, giving an almost constant current density distribution. Therefore, the coupled junctions can give much greater step amplitudes than a single junction with an equal tunneling area, because of their nonuniform current density distribution
Time step size limitation introduced by the BSSN Gamma Driver
Energy Technology Data Exchange (ETDEWEB)
Schnetter, Erik, E-mail: schnetter@cct.lsu.ed [Department of Physics and Astronomy, Louisiana State University, LA (United States)
2010-08-21
Many mesh refinement simulations currently performed in numerical relativity counteract instabilities near the outer boundary of the simulation domain either by changes to the mesh refinement scheme or by changes to the gauge condition. We point out that the BSSN Gamma Driver gauge condition introduces a time step size limitation in a similar manner as a Courant-Friedrichs-Lewy condition, but which is independent of the spatial resolution. We give a didactic explanation of this issue, show why, especially, mesh refinement simulations suffer from it, and point to a simple remedy. (note)
Comparison of single-entry and double-entry two-step couple screening for cystic fibrosis carriers
tenKate, LP; Verheij, JBGM; Wildhagen, MF; Hilderink, HBM; Kooij, L; Verzijl, JG; Habbema, JDF
1996-01-01
Both single-entry two-step (SETS) couple screening and double-entry two-step (DETS) couple screening have been recommended as methods to screen for cystic fibrosis gene carriers. In this paper we compare the expected results from both types of screening. In general, DETS results in a higher
Positivity-preserving dual time stepping schemes for gas dynamics
Parent, Bernard
2018-05-01
A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.
The importance of time-stepping errors in ocean models
Williams, P. D.
2011-12-01
Many ocean models use leapfrog time stepping. The Robert-Asselin (RA) filter is usually applied after each leapfrog step, to control the computational mode. However, it will be shown in this presentation that the RA filter generates very large amounts of numerical diapycnal mixing. In some ocean models, the numerical diapycnal mixing from the RA filter is as large as the physical diapycnal mixing. This lowers our confidence in the fidelity of the simulations. In addition to the above problem, the RA filter also damps the physical solution and degrades the numerical accuracy. These two concomitant problems occur because the RA filter does not conserve the mean state, averaged over the three time slices on which it operates. The presenter has recently proposed a simple modification to the RA filter, which does conserve the three-time-level mean state. The modified filter has become known as the Robert-Asselin-Williams (RAW) filter. When used in conjunction with the leapfrog scheme, the RAW filter eliminates the numerical damping of the physical solution and increases the amplitude accuracy by two orders, yielding third-order accuracy. The phase accuracy is unaffected and remains second-order. The RAW filter can easily be incorporated into existing models of the ocean, typically via the insertion of just a single line of code. Better simulations are obtained, at almost no additional computational expense. Results will be shown from recent implementations of the RAW filter in various ocean models. For example, in the UK Met Office Hadley Centre ocean model, sea-surface temperature and sea-ice biases in the North Atlantic Ocean are found to be reduced. These improvements are encouraging for the use of the RAW filter in other ocean models.
International Nuclear Information System (INIS)
Pittner, Jiri; Lischka, Hans; Barbatti, Mario
2009-01-01
The usage of time-derivative non-adiabatic coupling terms and partially coupled time-dependent equations are investigated to accelerate non-adiabatic dynamics simulations at multireference configuration interaction (MRCI) level. The quality of the results and computational costs are compared against non-adiabatic benchmark dynamics calculations using non-adiabatic coupling vectors. In the comparison between the time-derivative couplings and coupling vectors, deviations in the adiabatic population of individual trajectories were observed in regions of rapid variation of the coupling terms. They, however, affected the average adiabatic population to only about 5%. For small multiconfiguration spaces, dynamics with time-derivative couplings are significantly faster than those with coupling vectors. This relation inverts for larger configuration spaces. The use of the partially coupled equations approach speeds up the simulations significantly while keeping the deviations in the population below few percent. Imidazole and the methaniminium cation are used as test examples
Energy Technology Data Exchange (ETDEWEB)
Geffray, Clotaire Clement
2017-03-20
The work presented here constitutes an important step towards the validation of the use of coupled system thermal-hydraulics and computational fluid dynamics codes for the simulation of complex flows in liquid metal cooled pool-type facilities. First, a set of methods suited for uncertainty and sensitivity analysis and validation activities with regards to the specific constraints of the work with coupled and expensive-to-run codes is proposed. Then, these methods are applied to the ATHLET - ANSYS CFX model of the TALL-3D facility. Several transients performed at this latter facility are investigated. The results are presented, discussed and compared to the experimental data. Finally, assessments of the validity of the selected methods and of the quality of the model are offered.
Longitudinal coupling impedance of step discontinuities in a circular beam tube
International Nuclear Information System (INIS)
Hahn, H.; Zatz, S.
1979-01-01
The longitudinal coupling impedance presented by a single wall discontinuity to the circulating beam in a circular accelerator or storage ring is usually analyzed by considering a developed periodic structure. However, the typical parameters are often such that it becomes adequate to treat the discontinuity as a nonperiodic problem. Using modal field matching methods, solutions were derived for the cases of a single as well as a double-step discontinuity in a circular beam tube. Numerical results are presented in this paper and the typical behavior at low frequency, at reasonance, and above cut-off is discussed
Multiple-time-stepping generalized hybrid Monte Carlo methods
Energy Technology Data Exchange (ETDEWEB)
Escribano, Bruno, E-mail: bescribano@bcamath.org [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); Akhmatskaya, Elena [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Reich, Sebastian [Universität Potsdam, Institut für Mathematik, D-14469 Potsdam (Germany); Azpiroz, Jon M. [Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, Donostia (Spain)
2015-01-01
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.
Couple Leisure Time: Building Bonds Early in Marriage Through Leisure
Chavez, Joy Lynne
2015-01-01
Participation in couple leisure is related to marital satisfaction as well as lower divorce rates; however, Americans seem to have less time available to participate in couple leisure and may have a harder time attaining role balance. There is currently limited research about how role balance may affect leisure as well as how couples manage to balance their leisure time with their other responsibilities, ensuring they have time to spend together in high interaction leisure. We also know very ...
Aggressive time step selection for the time asymptotic velocity diffusion problem
International Nuclear Information System (INIS)
Hewett, D.W.; Krapchev, V.B.; Hizanidis, K.; Bers, A.
1984-12-01
An aggressive time step selector for an ADI algorithm is preseneted that is applied to the linearized 2-D Fokker-Planck equation including an externally imposed quasilinear diffusion term. This method provides a reduction in CPU requirements by factors of two or three compared to standard ADI. More important, the robustness of the procedure greatly reduces the work load of the user. The procedure selects a nearly optimal Δt with a minimum of intervention by the user thus relieving the need to supervise the algorithm. In effect, the algorithm does its own supervision by discarding time steps made with Δt too large
Multipurpose discriminator with accurate time coupling
International Nuclear Information System (INIS)
Baldin, B.Yu.; Krumshtejn, Z.V.; Ronzhin, A.I.
1977-01-01
The principle diagram of a multipurpose discriminator is described, designed on the basis of a wide-band differential amplifier. The discriminator has three independent channels: the timing channel, the lower level discriminator and the control channel. The timing channel and the lower level discriminator are connected to a coincidence circuit. Three methods of timing are used: a single threshold, a double threshold with timing on the pulse front, and a constant fraction timing. The lower level discriminator is a wide-band amplifier with an adjustable threshold. The investigation of compensation characteristics of the discriminator has shown that the time shift of the discriminator output in the constant fraction timing regime does not exceed +-75 ns for the input signal range of 1:85. The time resolution was found to be 20 ns in the 20% energy range near the photo-peak maximum of 60 Co γ source
Aubry, R.; Oñate, E.; Idelsohn, S. R.
2006-09-01
The method presented in Aubry et al. (Comput Struc 83:1459-1475, 2005) for the solution of an incompressible viscous fluid flow with heat transfer using a fully Lagrangian description of motion is extended to three dimensions (3D) with particular emphasis on mass conservation. A modified fractional step (FS) based on the pressure Schur complement (Turek 1999), and related to the class of algebraic splittings Quarteroni et al. (Comput Methods Appl Mech Eng 188:505-526, 2000), is used and a new advantage of the splittings of the equations compared with the classical FS is highlighted for free surface problems. The temperature is semi-coupled with the displacement, which is the main variable in a Lagrangian description. Comparisons for various mesh Reynolds numbers are performed with the classical FS, an algebraic splitting and a monolithic solution, in order to illustrate the behaviour of the Uzawa operator and the mass conservation. As the classical fractional step is equivalent to one iteration of the Uzawa algorithm performed with a standard Laplacian as a preconditioner, it will behave well only in a Reynold mesh number domain where the preconditioner is efficient. Numerical results are provided to assess the superiority of the modified algebraic splitting to the classical FS.
Reconstruction of ensembles of coupled time-delay systems from time series.
Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P
2014-06-01
We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.
Flexible Working and Couples' Coordination of Time Schedules
Bryan, Mark L.; Sevilla Sanz, Almudena
2014-01-01
Using previously unexploited data on time scheduling in the employment and household contexts, we investigate the effect of flexible working on couples' coordination of their daily work time schedules in the UK. We consider three distinct dimensions of flexible working: flexibility of daily start and finish times (flexitime), flexibility of work times over the year (annualised hours), and generalised control of working hours. We find that in couples with flexitime there is greater spouse sync...
Time-Domain Analysis of Coupled Carbon Nano tube Interconnects
International Nuclear Information System (INIS)
Fathi, D.
2014-01-01
This paper describes a new method for the analysis of coupling effects including the crosstalk effects between two driven coupled single-walled carbon nano tubes (SWCNTs) and the intertalk effects between two neighboring shells in a multi walled carbon nano tube (MWCNT), based on transmission line circuit modeling. Using rigorous calculations, a new parametric transfer function has been obtained for the analysis of the impact of aggressor line on the victim line, which depends on the various coupling parameters such as the mutual inductance, the coupling capacitance, and the tunneling resistance. The influences of various parameters such as the contact resistance and the switching factor on the time behavior of coupling effects between the two coupled CNTs and an important effect named “crosstalk-induced delay” are studied and analyzed
Coherent states for the time dependent harmonic oscillator: the step function
International Nuclear Information System (INIS)
Moya-Cessa, Hector; Fernandez Guasti, Manuel
2003-01-01
We study the time evolution for the quantum harmonic oscillator subjected to a sudden change of frequency. It is based on an approximate analytic solution to the time dependent Ermakov equation for a step function. This approach allows for a continuous treatment that differs from former studies that involve the matching of two time independent solutions at the time when the step occurs
Time variation of fundamental couplings and dynamical dark energy
International Nuclear Information System (INIS)
Dent, Thomas; Stern, Steffen; Wetterich, Christof
2009-01-01
Scalar field dynamics may give rise to a nonzero cosmological variation of fundamental constants. Within different scenarios based on the unification of gauge couplings, the various claimed observations and bounds may be combined in order to trace or restrict the time history of the couplings and masses. If the scalar field is responsible for a dynamical dark energy or quintessence, cosmological information becomes available for its time evolution. Combining this information with the time variation of couplings, one can determine the interaction strength between the scalar and atoms, which may be observed by tests of the Weak Equivalence Principle. We compute bounds on the present rate of coupling variation from experiments testing the differential accelerations for bodies with equal mass and different composition and compare the sensitivity of various methods. In particular, we discuss two specific models of scalar evolution: crossover quintessence and growing neutrino models
Bouzat, Sebastián
2016-01-01
One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.
Perturbed Strong Stability Preserving Time-Stepping Methods For Hyperbolic PDEs
Hadjimichael, Yiannis
2017-09-30
A plethora of physical phenomena are modelled by hyperbolic partial differential equations, for which the exact solution is usually not known. Numerical methods are employed to approximate the solution to hyperbolic problems; however, in many cases it is difficult to satisfy certain physical properties while maintaining high order of accuracy. In this thesis, we develop high-order time-stepping methods that are capable of maintaining stability constraints of the solution, when coupled with suitable spatial discretizations. Such methods are called strong stability preserving (SSP) time integrators, and we mainly focus on perturbed methods that use both upwind- and downwind-biased spatial discretizations. Firstly, we introduce a new family of third-order implicit Runge–Kuttas methods with arbitrarily large SSP coefficient. We investigate the stability and accuracy of these methods and we show that they perform well on hyperbolic problems with large CFL numbers. Moreover, we extend the analysis of SSP linear multistep methods to semi-discretized problems for which different terms on the right-hand side of the initial value problem satisfy different forward Euler (or circle) conditions. Optimal perturbed and additive monotonicity-preserving linear multistep methods are studied in the context of such problems. Optimal perturbed methods attain augmented monotonicity-preserving step sizes when the different forward Euler conditions are taken into account. On the other hand, we show that optimal SSP additive methods achieve a monotonicity-preserving step-size restriction no better than that of the corresponding non-additive SSP linear multistep methods. Furthermore, we develop the first SSP linear multistep methods of order two and three with variable step size, and study their optimality. We describe an optimal step-size strategy and demonstrate the effectiveness of these methods on various one- and multi-dimensional problems. Finally, we establish necessary conditions
A new soft-switched high step-up DC-DC converter with dual coupled inductors
DEFF Research Database (Denmark)
Forouzesh, Mojtaba; Shen, Yanfeng; Yari, Keyvan
2017-01-01
This paper introduces a new efficient high step-up dc-dc converter with a shared input path and dual series coupled inductors at the output. This converter is suitable for high power applications due to its shared input current that puts low current stresses on the low voltage side switches...
Chao, W. C.
1982-01-01
With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.
Achieving Synchronization in Arrays of Coupled Differential Systems with Time-Varying Couplings
Directory of Open Access Journals (Sweden)
Xinlei Yi
2013-01-01
Full Text Available We study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation systems (LCODEs. Here, the coupling is timevarying in both network structure and reaction dynamics. Inspired by our previous paper (Lu et al. (2007-2008, the extended Hajnal diameter is introduced and used to measure the synchronization in a general differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with identity inner coupling matrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach consensus. Example with numerical simulation is provided to show the effectiveness of the theoretical results.
Coupled continuous time-random walks in quenched random environment
Magdziarz, M.; Szczotka, W.
2018-02-01
We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.
Solving point reactor kinetic equations by time step-size adaptable numerical methods
International Nuclear Information System (INIS)
Liao Chaqing
2007-01-01
Based on the analysis of effects of time step-size on numerical solutions, this paper showed the necessity of step-size adaptation. Based on the relationship between error and step-size, two-step adaptation methods for solving initial value problems (IVPs) were introduced. They are Two-Step Method and Embedded Runge-Kutta Method. PRKEs were solved by implicit Euler method with step-sizes optimized by using Two-Step Method. It was observed that the control error has important influence on the step-size and the accuracy of solutions. With suitable control errors, the solutions of PRKEs computed by the above mentioned method are accurate reasonably. The accuracy and usage of MATLAB built-in ODE solvers ode23 and ode45, both of which adopt Runge-Kutta-Fehlberg method, were also studied and discussed. (authors)
Space and time evolution of two nonlinearly coupled variables
International Nuclear Information System (INIS)
Obayashi, H.; Totsuji, H.; Wilhelmsson, H.
1976-12-01
The system of two coupled linear differential equations are studied assuming that the coupling terms are proportional to the product of the dependent variables, representing e.g. intensities or populations. It is furthermore assumed that these variables experience different linear dissipation or growth. The derivations account for space as well as time dependence of the variables. It is found that certain particular solutions can be obtained to this system, whereas a full solution in space and time as an initial value problem is outside the scope of the present paper. The system has a nonlinear equilibrium solution for which the nonlinear coupling terms balance the terms of linear dissipation. The case of space and time evolution of a small perturbation of the nonlinear equilibrium state, given the initial one-dimensional spatial distribution of the perturbation, is also considered in some detail. (auth.)
Simulation of the first step of the coupling of the PARCS/RELAP5 codes to ANGRA 2 facility
International Nuclear Information System (INIS)
Del Pozzo, Andrea Sanchez; Andrade, Delvonei A. de; Sabundjian, Gaiane
2015-01-01
Since the Three Mile Island (1979) and Chernobyl (1986) accidents, the International Agency of Energy Atomic (IAEA) has worked with the authorities of other countries that use nuclear power plants in order to guarantee the safe of those facilities. The utilities have simulated design basic accidents to verify the integrity of the nuclear power plant to these events. However, after Fukushima accident in Japan (2011), the people have felt insecure and been afraid in relation to nuclear power plants. Today, the international and national organizations, such as the International Agency of Energy Atomic (IAEA) and Comissao Nacional de Energia Nuclear (CNEN), respectively, have worked very hard to prevent some accidents and transients in nuclear power plants in order to ensure the security of the general population. In case of accidents, as the Rod Ejection Accident (REA), it is very important to do the coupling between neutronic and thermal hydraulic areas of nuclear reactors. To solve this type of problem there is the coupling between PARCS/RELAP5 codes. However, to perform this analysis it is necessary to simulate three steps. The first step is simulating the steady state of one nuclear power plant by using RELAP5 code. The second step is to run the steady state of this reactor using the coupling PARCS/RELAP5, and the final step is simulating the REA of this facility with PARCS/RELAP5 coupling. The aim of this work is to show the results of the first step of this analysis, i.e., by means of simulation the steady state of Angra 2 nuclear power plant using RELAP5 version 3.3. In this case, the modeling from the core was more detailed than in the original version developed some years ago for Angra 2. The results obtained in this work were satisfactory. (author)
Simulation of the first step of the coupling of the PARCS/RELAP5 codes to ANGRA 2 facility
Energy Technology Data Exchange (ETDEWEB)
Del Pozzo, Andrea Sanchez; Andrade, Delvonei A. de; Sabundjian, Gaiane, E-mail: delvonei@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
Since the Three Mile Island (1979) and Chernobyl (1986) accidents, the International Agency of Energy Atomic (IAEA) has worked with the authorities of other countries that use nuclear power plants in order to guarantee the safe of those facilities. The utilities have simulated design basic accidents to verify the integrity of the nuclear power plant to these events. However, after Fukushima accident in Japan (2011), the people have felt insecure and been afraid in relation to nuclear power plants. Today, the international and national organizations, such as the International Agency of Energy Atomic (IAEA) and Comissao Nacional de Energia Nuclear (CNEN), respectively, have worked very hard to prevent some accidents and transients in nuclear power plants in order to ensure the security of the general population. In case of accidents, as the Rod Ejection Accident (REA), it is very important to do the coupling between neutronic and thermal hydraulic areas of nuclear reactors. To solve this type of problem there is the coupling between PARCS/RELAP5 codes. However, to perform this analysis it is necessary to simulate three steps. The first step is simulating the steady state of one nuclear power plant by using RELAP5 code. The second step is to run the steady state of this reactor using the coupling PARCS/RELAP5, and the final step is simulating the REA of this facility with PARCS/RELAP5 coupling. The aim of this work is to show the results of the first step of this analysis, i.e., by means of simulation the steady state of Angra 2 nuclear power plant using RELAP5 version 3.3. In this case, the modeling from the core was more detailed than in the original version developed some years ago for Angra 2. The results obtained in this work were satisfactory. (author)
On an efficient multiple time step Monte Carlo simulation of the SABR model
Leitao Rodriguez, A.; Grzelak, L.A.; Oosterlee, C.W.
2017-01-01
In this paper, we will present a multiple time step Monte Carlo simulation technique for pricing options under the Stochastic Alpha Beta Rho model. The proposed method is an extension of the one time step Monte Carlo method that we proposed in an accompanying paper Leitao et al. [Appl. Math.
Time for Each Other: Work and Family Constraints Among Couples.
Flood, Sarah M; Genadek, Katie R
2016-02-01
Little is known about couples' shared time and how actual time spent together is associated with well-being. In this study, the authors investigated how work and family demands are related to couples' shared time (total and exclusive) and individual well-being (happiness, meaningfulness, and stress) when with one's spouse. They used individual-level data from the 2003-2010 American Time Use Survey (N = 46,883), including the 2010 Well-Being Module. The results indicated that individuals in full-time working dual-earner couples spend similar amounts of time together as individuals in traditional breadwinner-homemaker arrangements on weekdays after accounting for daily work demands. The findings also show that parents share significantly less total and exclusive spousal time together than nonparents, though there is considerable variation among parents by age of the youngest child. Of significance is that individuals experience greater happiness and meaning and less stress during time spent with a spouse opposed to time spent apart.
An adaptive time-stepping strategy for solving the phase field crystal model
International Nuclear Information System (INIS)
Zhang, Zhengru; Ma, Yuan; Qiao, Zhonghua
2013-01-01
In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. The numerical experiments demonstrate that the CPU time is significantly saved for long time simulations
Partial synchronization in diffusively time-delay coupled oscillator networks
Steur, E.; Oguchi, T.; Leeuwen, van C.; Nijmeijer, H.
2012-01-01
We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks
Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems
Majumdar, Alok K.; Ravindran, S. S.
2017-01-01
Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.
GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling
Miki, Yohei; Umemura, Masayuki
2017-04-01
The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.
Some Comments on the Behavior of the RELAP5 Numerical Scheme at Very Small Time Steps
International Nuclear Information System (INIS)
Tiselj, Iztok; Cerne, Gregor
2000-01-01
The behavior of the RELAP5 code at very short time steps is described, i.e., δt [approximately equal to] 0.01 δx/c. First, the property of the RELAP5 code to trace acoustic waves with 'almost' second-order accuracy is demonstrated. Quasi-second-order accuracy is usually achieved for acoustic waves at very short time steps but can never be achieved for the propagation of nonacoustic temperature and void fraction waves. While this feature may be beneficial for the simulations of fast transients describing pressure waves, it also has an adverse effect: The lack of numerical diffusion at very short time steps can cause typical second-order numerical oscillations near steep pressure jumps. This behavior explains why an automatic halving of the time step, which is used in RELAP5 when numerical difficulties are encountered, in some cases leads to the failure of the simulation.Second, the integration of the stiff interphase exchange terms in RELAP5 is studied. For transients with flashing and/or rapid condensation as the main phenomena, results strongly depend on the time step used. Poor accuracy is achieved with 'normal' time steps (δt [approximately equal to] δx/v) because of the very short characteristic timescale of the interphase mass and heat transfer sources. In such cases significantly different results are predicted with very short time steps because of the more accurate integration of the stiff interphase exchange terms
Nutt, John G.; Horak, Fay B.
2011-01-01
Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431
Time-dependent coupled harmonic oscillators: classical and quantum solutions
International Nuclear Information System (INIS)
Macedo, D.X.; Guedes, I.
2014-01-01
In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne–Pinney (MP) equation for each system. We obtain the solutions for the system with m 1 = m 2 = m 0 e γt , ω 1 = ω 01 e -γt/2 , ω 2 = ω 02 e -γt/2 and k = k 0 . (author)
Radtke, H.; Burchard, H.
2015-01-01
In this paper, an unconditionally positive and multi-element conserving time stepping scheme for systems of non-linearly coupled ODE's is presented. These systems of ODE's are used to describe biogeochemical transformation processes in marine ecosystem models. The numerical scheme is a positive-definite modification of the Runge-Kutta method, it can have arbitrarily high order of accuracy and does not require time step adaption. If the scheme is combined with a modified Patankar-Runge-Kutta method from Burchard et al. (2003), it also gets the ability to solve a certain class of stiff numerical problems, but the accuracy is restricted to second-order then. The performance of the new scheme on two test case problems is shown.
International Nuclear Information System (INIS)
Min, Shixiong; Hou, Jianhua; Lei, Yonggang; Ma, Xiaohua; Lu, Gongxuan
2017-01-01
Highlights: • TiO 2 /GQDs composites were prepared by a facile one-step hydrothermal method. • GQDs were strongly coupled onto the surface of TiO 2 nanoparticles by this method. • The TiO 2 /GQDs showed enhanced light absorption and charge separation efficiency. • The TiO 2 /GQDs exhibited higher photocatalytic H 2 evolution activity than pure TiO 2 . • GQDs play synergistic roles by acting as both photosensitizer and electron acceptor. - Abstract: The coupling of semiconductor photocatalysts with graphene quantum dots (GQDs) has been proven to be an effective strategy to enhance the photocatalytic and photoelectrical conversion performances of the resulted composites; however, the preparation of semiconductor/GQDs composites usually involves several time-inefficient and tedious post-treatment steps. Herein, we present a facile one-step hydrothermal route for the preparation of GQDs coupled TiO 2 (TiO 2 /GQDs) photocatalysts using 1,3,6-trinitropyrene (TNP) as the sole precursor of GQDs. During the hydrothermal process, TNP molecules undergo an intramolecular fusion to form GQDs, which simultaneously decorate on the surface of TiO 2 nanoparticles, leading to a strong surface interaction between the two components. The effective coupling of GQDs on TiO 2 can effectively extend the light absorption of the TiO 2 to visible region and enhance the charge separation efficiency of TiO 2 /GQDs composites as a result of GQDs acting as a photosensitizer and an excellent electron acceptor. These key advances make the TiO 2 /GQDs photocatalyst highly active towards the H 2 evolution reaction, resulting in 7 and 3 times higher H 2 evolution rate and photocurrent response at optimal GQDs content than TiO 2 alone, respectively. This study provides a new methodology for the development of high-performance GQDs modified semiconductor photocatalysts for energy conversion applications.
Time-reversal invariance in multiple collisions between coupled masses
International Nuclear Information System (INIS)
Crawford, F.S.
1989-01-01
The time evolution of two mechanical oscillators coupled by a spring can (but need not) exhibit an instant t = 2t' when the initial conditions at t = 0 have been exactly restored. When that is the case, then at t = t' energy and momentum have been exchanged exactly as in an elastic collision between two free particles, and the evolution of the system from t = t' to 2t' is related to that from 0 to t' by time-reversal invariance. A similar ''simulation of elastic scattering'' at t = t' can occur for two free particles coupled via collisions with an intermediary mass that bounces back and forth between the two particles provided the intermediary is left at rest at t = t'. Examined here is the time evolution of the exchange of momentum and energy for these two examples, determining the values of the coupling spring constant (or mass value) of the intermediating spring (or mass) needed to simulate single elastic scattering between free particles, and looking at the manifestation of time-reversal invariance
Heterogeneity of time delays determines synchronization of coupled oscillators.
Petkoski, Spase; Spiegler, Andreas; Proix, Timothée; Aram, Parham; Temprado, Jean-Jacques; Jirsa, Viktor K
2016-07-01
Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations.
Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.
2013-12-26
Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.
One-step electrodeposition process of CuInSe2: Deposition time effect
Indian Academy of Sciences (India)
Administrator
CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified two- electrodes system. ... homojunctions or heterojunctions (Rincon et al 1983). Efficiency of ... deposition times onto indium thin oxide (ITO)-covered.
Stability analysis and time-step limits for a Monte Carlo Compton-scattering method
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.
2010-01-01
A Monte Carlo method for simulating Compton scattering in high energy density applications has been presented that models the photon-electron collision kinematics exactly [E. Canfield, W.M. Howard, E.P. Liang, Inverse Comptonization by one-dimensional relativistic electrons, Astrophys. J. 323 (1987) 565]. However, implementing this technique typically requires an explicit evaluation of the material temperature, which can lead to unstable and oscillatory solutions. In this paper, we perform a stability analysis of this Monte Carlo method and develop two time-step limits that avoid undesirable behavior. The first time-step limit prevents instabilities, while the second, more restrictive time-step limit avoids both instabilities and nonphysical oscillations. With a set of numerical examples, we demonstrate the efficacy of these time-step limits.
Tunable and stable in time ferroelectric imprint through polarization coupling
Ghosh, Anirban; Koster, Gertjan; Rijnders, Augustinus J.H.M.
2016-01-01
Here we demonstrate a method to tune a ferroelectric imprint, which is stable in time, based on the coupling between the non-switchable polarization of ZnO and switchable polarization of PbZrxTi(1−x)O3. SrRuO3/PbZrxTi(1−x)O3/ZnO/SrRuO3 heterostructures were grown with different ZnO thicknesses. It
DEFF Research Database (Denmark)
Pang, Kar Mun; Ivarsson, Anders; Haider, Sajjad
2013-01-01
In the current work, a local time stepping (LTS) solver for the modeling of combustion, radiative heat transfer and soot formation is developed and validated. This is achieved using an open source computational fluid dynamics code, OpenFOAM. Akin to the solver provided in default assembly i...... library in the edcSimpleFoam solver which was introduced during the 6th OpenFOAM workshop is modified and coupled with the current solver. One of the main amendments made is the integration of soot radiation submodel since this is significant in rich flames where soot particles are formed. The new solver...
Guermond, J.-L.; Salgado, Abner J.
2011-01-01
In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established. © 2011 Society for Industrial and Applied Mathematics.
Unterweger, K.
2015-01-01
© Springer International Publishing Switzerland 2015. We propose to couple our adaptive mesh refinement software PeanoClaw with existing solvers for complex overland flows that are tailored to regular Cartesian meshes. This allows us to augment them with spatial adaptivity and local time-stepping without altering the computational kernels. FullSWOF2D—Full Shallow Water Overland Flows—here is our software of choice though all paradigms hold for other solvers as well.We validate our hybrid simulation software in an artificial test scenario before we provide results for a large-scale flooding scenario of the Mecca region. The latter demonstrates that our coupling approach enables the simulation of complex “real-world” scenarios.
Stehle, Robert; Tesi, Chiara
2017-08-01
A basic goal in muscle research is to understand how the cyclic ATPase activity of cross-bridges is converted into mechanical force. A direct approach to study the chemo-mechanical coupling between P i release and the force-generating step is provided by the kinetics of force response induced by a rapid change in [P i ]. Classical studies on fibres using caged-P i discovered that rapid increases in [P i ] induce fast force decays dependent on final [P i ] whose kinetics were interpreted to probe a fast force-generating step prior to P i release. However, this hypothesis was called into question by studies on skeletal and cardiac myofibrils subjected to P i jumps in both directions (increases and decreases in [P i ]) which revealed that rapid decreases in [P i ] trigger force rises with slow kinetics, similar to those of calcium-induced force development and mechanically-induced force redevelopment at the same [P i ]. A possible explanation for this discrepancy came from imaging of individual sarcomeres in cardiac myofibrils, showing that the fast force decay upon increase in [P i ] results from so-called sarcomere 'give'. The slow force rise upon decrease in [P i ] was found to better reflect overall sarcomeres cross-bridge kinetics and its [P i ] dependence, suggesting that the force generation coupled to P i release cannot be separated from the rate-limiting transition. The reasons for the different conclusions achieved in fibre and myofibril studies are re-examined as the recent findings on cardiac myofibrils have fundamental consequences for the coupling between P i release, rate-limiting steps and force generation. The implications from P i -induced force kinetics of myofibrils are discussed in combination with historical and recent models of the cross-bridge cycle.
Assessing Coupling Dynamics from an Ensemble of Time Series
Directory of Open Access Journals (Sweden)
Germán Gómez-Herrero
2015-04-01
Full Text Available Finding interdependency relations between time series provides valuable knowledge about the processes that generated the signals. Information theory sets a natural framework for important classes of statistical dependencies. However, a reliable estimation from information-theoretic functionals is hampered when the dependency to be assessed is brief or evolves in time. Here, we show that these limitations can be partly alleviated when we have access to an ensemble of independent repetitions of the time series. In particular, we gear a data-efficient estimator of probability densities to make use of the full structure of trial-based measures. By doing so, we can obtain time-resolved estimates for a family of entropy combinations (including mutual information, transfer entropy and their conditional counterparts, which are more accurate than the simple average of individual estimates over trials. We show with simulated and real data generated by coupled electronic circuits that the proposed approach allows one to recover the time-resolved dynamics of the coupling between different subsystems.
de Koning, S.; Kaal, E.; Janssen, H.-G.; van Platerink, C.; Brinkman, U.A.Th.
2008-01-01
The feasibility of a versatile system for multi-step direct thermal desorption (DTD) coupled to comprehensive gas chromatography (GC × GC) with time-of-flight mass spectrometric (TOF-MS) detection is studied. As an application the system is used for the characterization of fresh versus aged olive
International Nuclear Information System (INIS)
Na, Byung Hoon; Ju, Gun Wu; Cho, Yong Chul; Lee, Yong Tak; Choi, Hee Ju; Jeon, Jin Myeong; Lee, Soo Kyung; Park, Yong Hwa; Park, Chang Young
2015-01-01
In this paper, we propose a transmission type electro-absorption modulator (EAM) operating at 850 nm having low operating voltage and high absorption change with low insertion loss using a novel three step asymmetric coupled quantum well (3 ACQW) structure which can be used as an optical image shutter for high-definition (HD) three dimensional (3D) imaging. Theoretical calculations show that the exciton red shift of 3 ACQW structure is more than two times larger than that of rectangular quantum well (RQW) structure while maintaining high absorption change. The EAM having coupled cavities with 3 ACQW structure shows a wide spectral bandwidth and high amplitude modulation at a bias voltage of only -8V, which is 41% lower in operating voltage than that of RQW, making the proposed EAM highly attractive as an optical image shutter for HD 3D imaging applications
Infinite-time and finite-time synchronization of coupled harmonic oscillators
International Nuclear Information System (INIS)
Cheng, S; Ji, J C; Zhou, J
2011-01-01
This paper studies the infinite-time and finite-time synchronization of coupled harmonic oscillators with distributed protocol in the scenarios with and without a leader. In the absence of a leader, the convergence conditions and the final trajectories that each harmonic oscillator follows are developed. In the presence of a leader, it is shown that all harmonic oscillators can achieve the trajectory of the leader in finite time. Numerical simulations of six coupled harmonic oscillators are given to show the effects of the interaction function parameter, algebraic connectivity and initial conditions on the convergence time.
Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul
2013-07-21
Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.
Sivak, David A; Chodera, John D; Crooks, Gavin E
2014-06-19
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
International Nuclear Information System (INIS)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-01
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s 2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful
Time dependent theory of two-step absorption of two pulses
Energy Technology Data Exchange (ETDEWEB)
Rebane, Inna, E-mail: inna.rebane@ut.ee
2015-09-25
The time dependent theory of two step-absorption of two different light pulses with arbitrary duration in the electronic three-level model is proposed. The probability that the third level is excited at the moment t is found in depending on the time delay between pulses, the spectral widths of the pulses and the energy relaxation constants of the excited electronic levels. The time dependent perturbation theory is applied without using “doorway–window” approach. The time and spectral behavior of the spectrum using in calculations as simple as possible model is analyzed. - Highlights: • Time dependent theory of two-step absorption in the three-level model is proposed. • Two different light pulses with arbitrary duration is observed. • The time dependent perturbation theory is applied without “door–window” approach. • The time and spectral behavior of the spectra is analyzed for several cases.
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-15
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.
Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping
Bonito, Andrea
2014-10-31
© Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.
Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping
Bonito, Andrea; Guermond, Jean-Luc; Lee, Sanghyun
2014-01-01
© Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.
Interband Stark effects in InxGa1-xAs/InyAl1-yAs coupled step quantum wells
International Nuclear Information System (INIS)
Kim, J.H.; Kim, T.W.; Yoo, K.H.
2005-01-01
The effects of an electric field on the interband transitions in In x Ga 1-x As/In y Al 1-y As coupled step quantum wells have been investigated both experimentally and theoretically. A In x Ga 1-x As/In y Al 1-y As coupled step quantum well sample consisted of the two sets of a 50 Aa In 0.53 Ga 0.47 As shallow quantum well and a 50 Aa In 0.65 Ga 0.35 As deep step quantum well bounded by two thick In 0.52 Al 0.48 As barriers separated by a 30 Aa In 0.52 Al 0.48 As embedded potential barrier. The Stark shift of the interband transition energy in the In x Ga 1-x As/In y Al 1-y As coupled step quantum well is larger than that of the single quantum well, and the oscillator strength in the In x Ga 1-x As/In y Al 1-y As coupled step quantum well is larger than that in a coupled rectangular quantum well. These results indicate that In x Ga 1-x As/In y Al 1-y As coupled step quantum wells hold promise for potential applications in optoelectron devices, such as tunable lasers
Optimal order and time-step criterion for Aarseth-type N-body integrators
International Nuclear Information System (INIS)
Makino, Junichiro
1991-01-01
How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed. 18 refs
The large discretization step method for time-dependent partial differential equations
Haras, Zigo; Taasan, Shlomo
1995-01-01
A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.
Energy Technology Data Exchange (ETDEWEB)
Min, Shixiong, E-mail: sxmin@nun.edu.cn [School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan, 750021, Ningxia Province (China); Hou, Jianhua; Lei, Yonggang; Ma, Xiaohua [School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan, 750021, Ningxia Province (China); Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)
2017-02-28
Highlights: • TiO{sub 2}/GQDs composites were prepared by a facile one-step hydrothermal method. • GQDs were strongly coupled onto the surface of TiO{sub 2} nanoparticles by this method. • The TiO{sub 2}/GQDs showed enhanced light absorption and charge separation efficiency. • The TiO{sub 2}/GQDs exhibited higher photocatalytic H{sub 2} evolution activity than pure TiO{sub 2}. • GQDs play synergistic roles by acting as both photosensitizer and electron acceptor. - Abstract: The coupling of semiconductor photocatalysts with graphene quantum dots (GQDs) has been proven to be an effective strategy to enhance the photocatalytic and photoelectrical conversion performances of the resulted composites; however, the preparation of semiconductor/GQDs composites usually involves several time-inefficient and tedious post-treatment steps. Herein, we present a facile one-step hydrothermal route for the preparation of GQDs coupled TiO{sub 2} (TiO{sub 2}/GQDs) photocatalysts using 1,3,6-trinitropyrene (TNP) as the sole precursor of GQDs. During the hydrothermal process, TNP molecules undergo an intramolecular fusion to form GQDs, which simultaneously decorate on the surface of TiO{sub 2} nanoparticles, leading to a strong surface interaction between the two components. The effective coupling of GQDs on TiO{sub 2} can effectively extend the light absorption of the TiO{sub 2} to visible region and enhance the charge separation efficiency of TiO{sub 2}/GQDs composites as a result of GQDs acting as a photosensitizer and an excellent electron acceptor. These key advances make the TiO{sub 2}/GQDs photocatalyst highly active towards the H{sub 2} evolution reaction, resulting in 7 and 3 times higher H{sub 2} evolution rate and photocurrent response at optimal GQDs content than TiO{sub 2} alone, respectively. This study provides a new methodology for the development of high-performance GQDs modified semiconductor photocatalysts for energy conversion applications.
Dynamics of nonlinear oscillators with time-varying conjugate coupling
Indian Academy of Sciences (India)
oscillators. We analyze the behavior of coupled systems with respect to the coupling switching frequency using ..... are of potential utility in appropriate design strategies and/or understanding of complex systems with dynamic interaction ...
Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)
Pestana, Reynam C.; Stoffa, Paul L.
2009-01-01
an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second
Displacement in the parameter space versus spurious solution of discretization with large time step
International Nuclear Information System (INIS)
Mendes, Eduardo; Letellier, Christophe
2004-01-01
In order to investigate a possible correspondence between differential and difference equations, it is important to possess discretization of ordinary differential equations. It is well known that when differential equations are discretized, the solution thus obtained depends on the time step used. In the majority of cases, such a solution is considered spurious when it does not resemble the expected solution of the differential equation. This often happens when the time step taken into consideration is too large. In this work, we show that, even for quite large time steps, some solutions which do not correspond to the expected ones are still topologically equivalent to solutions of the original continuous system if a displacement in the parameter space is considered. To reduce such a displacement, a judicious choice of the discretization scheme should be made. To this end, a recent discretization scheme, based on the Lie expansion of the original differential equations, proposed by Monaco and Normand-Cyrot will be analysed. Such a scheme will be shown to be sufficient for providing an adequate discretization for quite large time steps compared to the pseudo-period of the underlying dynamics
Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.
2018-04-01
An optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubic "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a constraint on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.
A possible step to surfaces at vanishing bare coupling in quantumchromodynamics
International Nuclear Information System (INIS)
Schlereth, H.
1983-05-01
Starting from a kind of half-dualized nonabelian action it is shown that for gsub(bare) → 0 it reduces to QCD. Integrating out the variables in the reversed order leads to a dual form of QCD. This form contains a constraint which can be solved in terms of surfaces with quark boundaries. Due to the nonabelian structure these surfaces cannot be moved in space-time by singular gauge transformations as the Dirac surface. It is conjectured that they become fully dynamical by quantum effects. The nontrivial structure of the dual theory at gsub(bare) → 0 is entirely due to it being nonabelian. The presence of the surfaces breaks self-duality at gsub(bare) → 0. A lattice version of the half-dualized action is briefly discussed. (Auth.)
Directory of Open Access Journals (Sweden)
Romain Tisserand
2016-11-01
Full Text Available In the case of disequilibrium, the capacity to step quickly is critical to avoid falling for elderly. This capacity can be simply assessed through the choice stepping reaction time test (CSRT, where elderly fallers (F take longer to step than elderly non-fallers (NF. However, reasons why elderly F elongate their stepping time remain unclear. The purpose of this study is to assess the characteristics of anticipated postural adjustments (APA that elderly F develop in a stepping context and their consequences on the dynamic stability. 44 community-dwelling elderly subjects (20 F and 22 NF performed a CSRT where kinematics and ground reaction forces were collected. Variables were analyzed using two-way repeated measures ANOVAs. Results for F compared to NF showed that stepping time is elongated, due to a longer APA phase. During APA, they seem to use two distinct balance strategies, depending on the axis: in the anteroposterior direction, we measured a smaller backward movement and slower peak velocity of the center of pressure (CoP; in the mediolateral direction, the CoP movement was similar in amplitude and peak velocity between groups but lasted longer. The biomechanical consequence of both strategies was an increased margin of stability (MoS at foot-off, in the respective direction. By elongating their APA, elderly F use a safer balance strategy that prioritizes dynamic stability conditions instead of the objective of the task. Such a choice in balance strategy probably comes from muscular limitations and/or a higher fear of falling and paradoxically indicates an increased risk of fall.
Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.
Ouyang, Yicun; Yin, Hujun
2018-05-01
Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.
2012-06-01
The purpose of these step-by-step guidelines is to assist in planning, designing, and deploying a system that uses radio frequency identification (RFID) technology to measure the time needed for commercial vehicles to complete the northbound border c...
Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
International Nuclear Information System (INIS)
Ma Qianli; Zheng Qilun; Peng Hong; Qin Jiangwei; Zhong Tanwei
2008-01-01
This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by co-evolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series
Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids
International Nuclear Information System (INIS)
Chen, Bo; Chen, Chen; Wang, Jianhui; Butler-Purry, Karen L.
2017-01-01
Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determined to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.
Development of a real time activity monitoring Android application utilizing SmartStep.
Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward
2016-08-01
Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.
Two-Step Time of Arrival Estimation for Pulse-Based Ultra-Wideband Systems
Directory of Open Access Journals (Sweden)
H. Vincent Poor
2008-05-01
Full Text Available In cooperative localization systems, wireless nodes need to exchange accurate position-related information such as time-of-arrival (TOA and angle-of-arrival (AOA, in order to obtain accurate location information. One alternative for providing accurate position-related information is to use ultra-wideband (UWB signals. The high time resolution of UWB signals presents a potential for very accurate positioning based on TOA estimation. However, it is challenging to realize very accurate positioning systems in practical scenarios, due to both complexity/cost constraints and adverse channel conditions such as multipath propagation. In this paper, a two-step TOA estimation algorithm is proposed for UWB systems in order to provide accurate TOA estimation under practical constraints. In order to speed up the estimation process, the first step estimates a coarse TOA of the received signal based on received signal energy. Then, in the second step, the arrival time of the first signal path is estimated by considering a hypothesis testing approach. The proposed scheme uses low-rate correlation outputs and is able to perform accurate TOA estimation in reasonable time intervals. The simulation results are presented to analyze the performance of the estimator.
PHISICS/RELAP5-3D Adaptive Time-Step Method Demonstrated for the HTTR LOFC#1 Simulation
Energy Technology Data Exchange (ETDEWEB)
Baker, Robin Ivey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Balestra, Paolo [Univ. of Rome (Italy); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-05-01
A collaborative effort between Japan Atomic Energy Agency (JAEA) and Idaho National Laboratory (INL) as part of the Civil Nuclear Energy Working Group is underway to model the high temperature engineering test reactor (HTTR) loss of forced cooling (LOFC) transient that was performed in December 2010. The coupled version of RELAP5-3D, a thermal fluids code, and PHISICS, a neutronics code, were used to model the transient. The focus of this report is to summarize the changes made to the PHISICS-RELAP5-3D code for implementing an adaptive time step methodology into the code for the first time, and to test it using the full HTTR PHISICS/RELAP5-3D model developed by JAEA and INL and the LOFC simulation. Various adaptive schemes are available based on flux or power convergence criteria that allow significantly larger time steps to be taken by the neutronics module. The report includes a description of the HTTR and the associated PHISICS/RELAP5-3D model test results as well as the University of Rome sub-contractor report documenting the adaptive time step theory and methodology implemented in PHISICS/RELAP5-3D. Two versions of the HTTR model were tested using 8 and 26 energy groups. It was found that most of the new adaptive methods lead to significant improvements in the LOFC simulation time required without significant accuracy penalties in the prediction of the fission power and the fuel temperature. In the best performing 8 group model scenarios, a LOFC simulation of 20 hours could be completed in real-time, or even less than real-time, compared with the previous version of the code that completed the same transient 3-8 times slower than real-time. A few of the user choice combinations between the methodologies available and the tolerance settings did however result in unacceptably high errors or insignificant gains in simulation time. The study is concluded with recommendations on which methods to use for this HTTR model. An important caveat is that these findings
Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger.
Rogers, Mark W; Mille, Marie-Laure
2016-08-15
Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation-induced steps that are triggered as fast as or faster than for younger adults. While age-associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step-triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event-triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times
Sovová, H. (Helena)
2012-01-01
Kinetics of supercritical fluid extraction (SFE) from plants is variable due to different micro-structure of plants and their parts, different properties of extracted substances and solvents, and different flow patterns in the extractor. Variety of published mathematical models for SFE of natural products corresponds to this diversification. This study presents simplified equations of extraction curves in terms of characteristic times of four single extraction steps: internal diffusion, exter...
Chen, Yunjie; Kale, Seyit; Weare, Jonathan; Dinner, Aaron R; Roux, Benoît
2016-04-12
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.
Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters
Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.
2012-01-01
Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.
Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng
2014-04-01
A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
A time-dependent neutron transport model and its coupling to thermal-hydraulics
International Nuclear Information System (INIS)
Pautz, A.
2001-01-01
A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)
Combined Effects of Numerical Method Type and Time Step on Water Stressed Actual Crop ET
Directory of Open Access Journals (Sweden)
B. Ghahraman
2016-02-01
Full Text Available Introduction: Actual crop evapotranspiration (Eta is important in hydrologic modeling and irrigation water management issues. Actual ET depends on an estimation of a water stress index and average soil water at crop root zone, and so depends on a chosen numerical method and adapted time step. During periods with no rainfall and/or irrigation, actual ET can be computed analytically or by using different numerical methods. Overal, there are many factors that influence actual evapotranspiration. These factors are crop potential evapotranspiration, available root zone water content, time step, crop sensitivity, and soil. In this paper different numerical methods are compared for different soil textures and different crops sensitivities. Materials and Methods: During a specific time step with no rainfall or irrigation, change in soil water content would be equal to evapotranspiration, ET. In this approach, however, deep percolation is generally ignored due to deep water table and negligible unsaturated hydraulic conductivity below rooting depth. This differential equation may be solved analytically or numerically considering different algorithms. We adapted four different numerical methods, as explicit, implicit, and modified Euler, midpoint method, and 3-rd order Heun method to approximate the differential equation. Three general soil types of sand, silt, and clay, and three different crop types of sensitive, moderate, and resistant under Nishaboor plain were used. Standard soil fraction depletion (corresponding to ETc=5 mm.d-1, pstd, below which crop faces water stress is adopted for crop sensitivity. Three values for pstd were considered in this study to cover the common crops in the area, including winter wheat and barley, cotton, alfalfa, sugar beet, saffron, among the others. Based on this parameter, three classes for crop sensitivity was considered, sensitive crops with pstd=0.2, moderate crops with pstd=0.5, and resistive crops with pstd=0
Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca
2017-12-01
An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.
Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)
Pestana, Reynam C.
2009-01-01
We show that the wave equation solution using a conventional finite‐difference scheme, derived commonly by the Taylor series approach, can be derived directly from the rapid expansion method (REM). After some mathematical manipulation we consider an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second order time finite‐difference scheme that is frequently used in more conventional finite‐difference implementations. We then show that if we use more terms from the REM we can obtain a more accurate time integration of the wave field. Consequently, we have demonstrated that the REM is more accurate than the usual finite‐difference schemes and it provides a wave equation solution which allows us to march in large time steps without numerical dispersion and is numerically stable. We illustrate the method with post and pre stack migration results.
Intake flow and time step analysis in the modeling of a direct injection Diesel engine
Energy Technology Data Exchange (ETDEWEB)
Zancanaro Junior, Flavio V.; Vielmo, Horacio A. [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Mechanical Engineering Dept.], E-mails: zancanaro@mecanica.ufrgs.br, vielmoh@mecanica.ufrgs.br
2010-07-01
This paper discusses the effects of the time step on turbulence flow structure in the intake and in-cylinder systems of a Diesel engine during the intake process, under the motored condition. The three-dimensional modeling of a reciprocating engine geometry comprising a bowl-in-piston combustion chamber, intake port of shallow ramp helical type and exhaust port of conventional type. The equations are numerically solved, including a transient analysis, valves and piston movements, for engine speed of 1500 rpm, using a commercial Finite Volumes CFD code. A parallel computation is employed. For the purpose of examining the in-cylinder turbulence characteristics two parameters are observed: the discharge coefficient and swirl ratio. This two parameters quantify the fluid flow characteristics inside cylinder in the intake stroke, therefore, it is very important their study and understanding. Additionally, the evolution of the discharge coefficient and swirl ratio, along crank angle, are correlated and compared, with the objective of clarifying the physical mechanisms. Regarding the turbulence, computations are performed with the Eddy Viscosity Model k-u SST, in its Low-Reynolds approaches, with standard near wall treatment. The system of partial differential equations to be solved consists of the Reynolds-averaged compressible Navier-Stokes equations with the constitutive relations for an ideal gas, and using a segregated solution algorithm. The enthalpy equation is also solved. A moving hexahedral trimmed mesh independence study is presented. In the same way many convergence tests are performed, and a secure criterion established. The results of the pressure fields are shown in relation to vertical plane that passes through the valves. Areas of low pressure can be seen in the valve curtain region, due to strong jet flows. Also, it is possible to note divergences between the time steps, mainly for the smaller time step. (author)
Smart Wireless Power Transfer Operated by Time-Modulated Arrays via a Two-Step Procedure
Directory of Open Access Journals (Sweden)
Diego Masotti
2015-01-01
Full Text Available The paper introduces a novel method for agile and precise wireless power transmission operated by a time-modulated array. The unique, almost real-time reconfiguration capability of these arrays is fully exploited by a two-step procedure: first, a two-element time-modulated subarray is used for localization of tagged sensors to be energized; the entire 16-element TMA then provides the power to the detected tags, by exploiting the fundamental and first-sideband harmonic radiation. An investigation on the best array architecture is carried out, showing the importance of the adopted nonlinear/full-wave computer-aided-design platform. Very promising simulated energy transfer performance of the entire nonlinear radiating system is demonstrated.
Coenen, Pieter; Healy, Genevieve N; Winkler, Elisabeth A H; Dunstan, David W; Owen, Neville; Moodie, Marj; LaMontagne, Anthony D; Eakin, Elizabeth A; O'Sullivan, Peter B; Straker, Leon M
2018-04-22
We examined the association of musculoskeletal symptoms (MSS) with workplace sitting, standing and stepping time, as well as sitting and standing time accumulation (i.e. usual bout duration of these activities), measured objectively with the activPAL3 monitor. Using baseline data from the Stand Up Victoria trial (216 office workers, 14 workplaces), cross-sectional associations of occupational activities with self-reported MSS (low-back, upper and lower extremity symptoms in the last three months) were examined using probit regression, correcting for clustering and adjusting for confounders. Sitting bout duration was significantly (p < 0.05) associated, non-linearly, with MSS, such that those in the middle tertile displayed the highest prevalence of upper extremity symptoms. Other associations were non-significant but sometimes involved large differences in symptom prevalence (e.g. 38%) by activity. Though causation is unclear, these non-linear associations suggest that sitting and its alternatives (i.e. standing and stepping) interact with MSS and this should be considered when designing safe work systems. Practitioner summary: We studied associations of objectively assessed occupational activities with musculoskeletal symptoms in office workers. Workers who accumulated longer sitting bouts reported fewer upper extremity symptoms. Total activity duration was not significantly associated with musculoskeletal symptoms. We underline the importance of considering total volumes and patterns of activity time in musculoskeletal research.
Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain
2017-10-01
We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.
A one-step, real-time PCR assay for rapid detection of rhinovirus.
Do, Duc H; Laus, Stella; Leber, Amy; Marcon, Mario J; Jordan, Jeanne A; Martin, Judith M; Wadowsky, Robert M
2010-01-01
One-step, real-time PCR assays for rhinovirus have been developed for a limited number of PCR amplification platforms and chemistries, and some exhibit cross-reactivity with genetically similar enteroviruses. We developed a one-step, real-time PCR assay for rhinovirus by using a sequence detection system (Applied Biosystems; Foster City, CA). The primers were designed to amplify a 120-base target in the noncoding region of picornavirus RNA, and a TaqMan (Applied Biosystems) degenerate probe was designed for the specific detection of rhinovirus amplicons. The PCR assay had no cross-reactivity with a panel of 76 nontarget nucleic acids, which included RNAs from 43 enterovirus strains. Excellent lower limits of detection relative to viral culture were observed for the PCR assay by using 38 of 40 rhinovirus reference strains representing different serotypes, which could reproducibly detect rhinovirus serotype 2 in viral transport medium containing 10 to 10,000 TCID(50) (50% tissue culture infectious dose endpoint) units/ml of the virus. However, for rhinovirus serotypes 59 and 69, the PCR assay was less sensitive than culture. Testing of 48 clinical specimens from children with cold-like illnesses for rhinovirus by the PCR and culture assays yielded detection rates of 16.7% and 6.3%, respectively. For a batch of 10 specimens, the entire assay was completed in 4.5 hours. This real-time PCR assay enables detection of many rhinovirus serotypes with the Applied Biosystems reagent-instrument platform.
Imaginary Time Step Method to Solve the Dirac Equation with Nonlocal Potential
International Nuclear Information System (INIS)
Zhang Ying; Liang Haozhao; Meng Jie
2009-01-01
The imaginary time step (ITS) method is applied to solve the Dirac equation with nonlocal potentials in coordinate space. Taking the nucleus 12 C as an example, even with nonlocal potentials, the direct ITS evolution for the Dirac equation still meets the disaster of the Dirac sea. However, following the recipe in our former investigation, the disaster can be avoided by the ITS evolution for the corresponding Schroedinger-like equation without localization, which gives the convergent results exactly the same with those obtained iteratively by the shooting method with localized effective potentials.
The enhancement of time-stepping procedures in SYVAC A/C
International Nuclear Information System (INIS)
Broyd, T.W.
1986-01-01
This report summarises the work carried out an SYVAC A/C between February and May 1985 aimed at improving the way in which time-stepping procedures are handled. The majority of the work was concerned with three types of problem, viz: i) Long vault release, short geosphere response ii) Short vault release, long geosphere response iii) Short vault release, short geosphere response The report contains details of changes to the logic and structure of SYVAC A/C, as well as the results of code implementation tests. It has been written primarily for members of the UK SYVAC development team, and should not be used or referred to in isolation. (author)
Time ordering of two-step processes in energetic ion-atom collisions: Basic formalism
International Nuclear Information System (INIS)
Stolterfoht, N.
1993-01-01
The semiclassical approximation is applied in second order to describe time ordering of two-step processes in energetic ion-atom collisions. Emphasis is given to the conditions for interferences between first- and second-order terms. In systems with two active electrons, time ordering gives rise to a pair of associated paths involving a second-order process and its time-inverted process. Combining these paths within the independent-particle frozen orbital model, time ordering is lost. It is shown that the loss of time ordering modifies the second-order amplitude so that its ability to interfere with the first-order amplitude is essentially reduced. Time ordering and the capability for interference is regained, as one path is blocked by means of the Pauli exclusion principle. The time-ordering formalism is prepared for papers dealing with collision experiments of single excitation [Stolterfoht et al., following paper, Phys. Rev. A 48, 2986 (1993)] and double excitation [Stolterfoht et al. (unpublished)
Choosing between his time and her time? Paid and unpaid work of Danish couples
Mette Deding; Mette Lausten
2006-01-01
In terms of paid and unpaid work, Danish men and women work the same number of hours per week. But while men do most paid work, women do most unpaid work. We investigate the interaction between paid work and unpaid work for Danish working couples, using the 2001 Danish Time Use Survey. We test several competing theories regarding the intra-individual and intra-household allocation of paid and unpaid work: comparative advantage, bargaining, assortative mating and ‘doing gender’. In addition, w...
De Basabe, Joná s D.; Sen, Mrinal K.
2010-01-01
popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM
Geevers, Sjoerd; van der Vegt, J.J.W.
2017-01-01
We present sharp and sucient bounds for the interior penalty term and time step size to ensure stability of the symmetric interior penalty discontinuous Galerkin (SIPDG) method combined with an explicit time-stepping scheme. These conditions hold for generic meshes, including unstructured
International Nuclear Information System (INIS)
Pontaza, J.P.; Reddy, J.N.
2004-01-01
We consider least-squares finite element models for the numerical solution of the non-stationary Navier-Stokes equations governing viscous incompressible fluid flows. The paper presents a formulation where the effects of space and time are coupled, resulting in a true space-time least-squares minimization procedure, as opposed to a space-time decoupled formulation where a least-squares minimization procedure is performed in space at each time step. The formulation is first presented for the linear advection-diffusion equation and then extended to the Navier-Stokes equations. The formulation has no time step stability restrictions and is spectrally accurate in both space and time. To allow the use of practical C 0 element expansions in the resulting finite element model, the Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity as an additional independent variable and the least-squares method is used to develop the finite element model of the governing equations. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method in matrix-free form. Spectral convergence of the L 2 least-squares functional and L 2 error norms in space-time is verified using a smooth solution to the two-dimensional non-stationary incompressible Navier-Stokes equations. Numerical results are presented for impulsively started lid-driven cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-facing step, and flow around a circular cylinder; the results demonstrate the predictive capability and robustness of the proposed formulation. Even though the space-time coupled formulation is emphasized, we also present the formulation and numerical results for least
International Nuclear Information System (INIS)
Csom, Gyula; Feher, Sandor; Szieberthj, Mate
2002-01-01
Nowadays the molten salt reactor (MSR) concept seems to revive as one of the most promising systems for the realization of transmutation. In the molten salt reactors and subcritical systems the fuel and material to be transmuted circulate dissolved in some molten salt. The main advantage of this reactor type is the possibility of the continuous feed and reprocessing of the fuel. In the present paper a novel molten salt reactor concept is introduced and its transmutation capabilities are studied. The goal is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures and thus results in radioactive waste whose load on the environment is reduced both in magnitude and time length. The procedure is the multi-step time-scheduled transmutation, in which transformation is done in several consecutive steps of different neutron flux and spectrum. In the new MSR concept, named 'multi-region' MSR (MRMSR), the primary circuit is made up of a few separate loops, in which salt-fuel mixtures of different compositions are circulated. The loop sections constituting the core region are only neutronically and thermally coupled. This new concept makes possible the utilization of the spatial dependence of spectrum as well as the advantageous features of liquid fuel such as the possibility of continuous chemical processing etc. In order to compare a 'conventional' MSR and a proposed MRMSR in terms of efficiency, preliminary calculational results are shown. Further calculations in order to find the optimal implementation of this new concept and to emphasize its other advantageous features are going on. (authors)
The effect of finite response–time in coupled dynamical systems
Indian Academy of Sciences (India)
The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the inﬂuence of drive on response is cumulative: coupling signals are integrated over a time interval . A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs at higher ...
How To Dance through Time. Volume V: Victorian Era Couple Dances. [Videotape].
Teten, Carol
This 55-minute VHS videotape is the fifth in a series of "How To Dance Through Time" videos. It continues the tradition of the romance of the mid-19th century couple dances, focusing on Victorian era couple dances. The videotape offers 35 variations of the renowned 19th century couple dances, including the waltz, the polka, the galop,…
The effect of finite response–time in coupled dynamical systems
Indian Academy of Sciences (India)
Abstract. The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the influence of drive on response is cumulative: coupling signals are integrated over a time interval τ. A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs ...
Discrete maximal regularity of time-stepping schemes for fractional evolution equations.
Jin, Bangti; Li, Buyang; Zhou, Zhi
2018-01-01
In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.
Bunce, David; Haynes, Becky I; Lord, Stephen R; Gschwind, Yves J; Kochan, Nicole A; Reppermund, Simone; Brodaty, Henry; Sachdev, Perminder S; Delbaere, Kim
2017-06-01
Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70-90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Abdellaoui, Mohammed; l'Haridon, Olivier; Paraschiv, Corina
2010-01-01
Author's abstract. This paper study decision-making under risk and decision-making over time made by couples. We performed a joint experimental elicitation of risk and time preferences both for couples and for their individual members. We used general behavioral models of decision under risk and over time and measured utility, probability weighting, and discounting. Under risk, our main result is that probabilistic risk attitude for couples lay within the boundaries of individual attitudes: c...
Reconstruction of coupling architecture of neural field networks from vector time series
Sysoev, Ilya V.; Ponomarenko, Vladimir I.; Pikovsky, Arkady
2018-04-01
We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.
Development of real time diagnostics and feedback algorithms for JET in view of the next step
International Nuclear Information System (INIS)
Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Murari, A.; Barana, O.; Albanese, R.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.
2004-01-01
Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with internal transport barriers. Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)
Development of real time diagnostics and feedback algorithms for JET in view of the next step
International Nuclear Information System (INIS)
Murari, A.; Barana, O.; Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Albanese, R.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.
2004-01-01
Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)
Development of real time diagnostics and feedback algorithms for JET in view of the next step
Energy Technology Data Exchange (ETDEWEB)
Murari, A.; Barana, O. [Consorzio RFX Associazione EURATOM ENEA per la Fusione, Corso Stati Uniti 4, Padua (Italy); Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon (United Kingdom); Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D. [Association EURATOM-CEA, CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Albanese, R. [Assoc. Euratom-ENEA-CREATE, Univ. Mediterranea RC (Italy); Arena, P.; Bruno, M. [Assoc. Euratom-ENEA-CREATE, Univ.di Catania (Italy); Ambrosino, G.; Ariola, M. [Assoc. Euratom-ENEA-CREATE, Univ. Napoli Federico Napoli (Italy); Crisanti, F. [Associazone EURATOM ENEA sulla Fusione, C.R. Frascati (Italy); Luna, E. de la; Sanchez, J. [Associacion EURATOM CIEMAT para Fusion, Madrid (Spain)
2004-07-01
Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)
Hoepfer, Matthias
co-simulation approach to modeling and simulation. It lays out the general approach to dynamic system co-simulation, and gives a comprehensive overview of what co-simulation is and what it is not. It creates a taxonomy of the requirements and limits of co-simulation, and the issues arising with co-simulating sub-models. Possible solutions towards resolving the stated problems are investigated to a certain depth. A particular focus is given to the issue of time stepping. It will be shown that for dynamic models, the selection of the simulation time step is a crucial issue with respect to computational expense, simulation accuracy, and error control. The reasons for this are discussed in depth, and a time stepping algorithm for co-simulation with unknown dynamic sub-models is proposed. Motivations and suggestions for the further treatment of selected issues are presented.
Energy Technology Data Exchange (ETDEWEB)
Rosas-Castor, J.M. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico); Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Portugal, L.; Ferrer, L. [Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Guzmán-Mar, J.L.; Hernández-Ramírez, A. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico); Cerdà, V. [Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Hinojosa-Reyes, L., E-mail: laura.hinojosary@uanl.edu.mx [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico)
2015-05-18
Highlights: • A fully automated flow-based modified-BCR extraction method was developed to evaluate the extractable As of soil. • The MSFIA–HG-AFS system included an UV photo-oxidation step for organic species degradation. • The accuracy and precision of the proposed method were found satisfactory. • The time analysis can be reduced up to eight times by using the proposed flow-based BCR method. • The labile As (F1 + F2) was <50% of total As in soil samples from As-contaminated-mining zones. - Abstract: A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 μg L{sup −1} for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013–0.800, 0.011–0.900 and 0.079–1.400 mg L{sup −1} for F1, F2, and F3, respectively. The precision of the automated MSFIA–HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 μg L{sup −1} As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural
Nikzad, Nasim; Sahari, Mohammad A; Vanak, Zahra Piravi; Safafar, Hamed; Boland-nazar, Seyed A
2013-08-01
Weight, oil, fatty acids, tocopherol, polyphenol, and sterol properties of 5 olive cultivars (Zard, Fishomi, Ascolana, Amigdalolia, and Conservalia) during crude, lye treatment, washing, fermentation, and pasteurization steps were studied. Results showed: oil percent was higher and lower in Ascolana (crude step) and in Fishomi (pasteurization step), respectively; during processing steps, in all cultivars, oleic, palmitic, linoleic, and stearic acids were higher; the highest changes in saturated and unsaturated fatty acids were in fermentation step; the highest and the lowest ratios of ω3 / ω6 were in Ascolana (washing step) and in Zard (pasteurization step), respectively; the highest and the lowest tocopherol were in Amigdalolia and Fishomi, respectively, and major damage occurred in lye step; the highest and the lowest polyphenols were in Ascolana (crude step) and in Zard and Ascolana (pasteurization step), respectively; the major damage among cultivars occurred during lye step, in which the polyphenol reduced to 1/10 of first content; sterol did not undergo changes during steps. Reviewing of olive patents shows that many compositions of fruits such as oil quality, fatty acids, quantity and its fraction can be changed by alteration in cultivar and process.
Sleep, John; Irving, Malcolm; Burton, Kevin
2005-03-15
The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two
Avoid the tsunami of the Dirac sea in the imaginary time step method
International Nuclear Information System (INIS)
Zhang, Ying; Liang, Haozhao; Meng, Jie
2010-01-01
The discrete single-particle spectra in both the Fermi and Dirac sea have been calculated by the imaginary time step (ITS) method for the Schroedinger-like equation after avoiding the "tsunami" of the Dirac sea, i.e. the diving behavior of the single-particle level into the Dirac sea in the direct application of the ITS method for the Dirac equation. It is found that by the transform from the Dirac equation to the Schroedinger-like equation, the single-particle spectra, which extend from the positive to the negative infinity, can be separately obtained by the ITS evolution in either the Fermi sea or the Dirac sea. Identical results with those in the conventional shooting method have been obtained via the ITS evolution for the equivalent Schroedinger-like equation, which demonstrates the feasibility, practicality and reliability of the present algorithm and dispels the doubts on the ITS method in the relativistic system. (author)
Computer experiments of the time-sequence of individual steps in multiple Coulomb-excitation
International Nuclear Information System (INIS)
Boer, J. de; Dannhaueser, G.
1982-01-01
The way in which the multiple E2 steps in the Coulomb-excitation of a rotational band of a nucleus follow one another is elucidated for selected examples using semiclassical computer experiments. The role a given transition plays for the excitation of a given final state is measured by a quantity named ''importance function''. It is found that these functions, calculated for the highest rotational state, peak at times forming a sequence for the successive E2 transitions starting from the ground state. This sequential behaviour is used to approximately account for the effects on the projectile orbit of the sequential transfer of excitation energy and angular momentum from projectile to target. These orbits lead to similar deflection functions and cross sections as those obtained from a symmetrization procedure approximately accounting for the transfer of angular momentum and energy. (Auth.)
Detection and Correction of Step Discontinuities in Kepler Flux Time Series
Kolodziejczak, J. J.; Morris, R. L.
2011-01-01
PDC 8.0 includes an implementation of a new algorithm to detect and correct step discontinuities appearing in roughly one of every 20 stellar light curves during a given quarter. The majority of such discontinuities are believed to result from high-energy particles (either cosmic or solar in origin) striking the photometer and causing permanent local changes (typically -0.5%) in quantum efficiency, though a partial exponential recovery is often observed [1]. Since these features, dubbed sudden pixel sensitivity dropouts (SPSDs), are uncorrelated across targets they cannot be properly accounted for by the current detrending algorithm. PDC detrending is based on the assumption that features in flux time series are due either to intrinsic stellar phenomena or to systematic errors and that systematics will exhibit measurable correlations across targets. SPSD events violate these assumptions and their successful removal not only rectifies the flux values of affected targets, but demonstrably improves the overall performance of PDC detrending [1].
Hsu, Ming-Chen
2010-02-01
The objective of this paper is to show that use of the element-vector-based definition of stabilization parameters, introduced in [T.E. Tezduyar, Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids 43 (2003) 555-575; T.E. Tezduyar, Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg. 190 (2000) 411-430], circumvents the well-known instability associated with conventional stabilized formulations at small time steps. We describe formulations for linear advection-diffusion and incompressible Navier-Stokes equations and test them on three benchmark problems: advection of an L-shaped discontinuity, laminar flow in a square domain at low Reynolds number, and turbulent channel flow at friction-velocity Reynolds number of 395. © 2009 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Raslan, K. R.; Ali, Khalid K.; EL-Danaf, Talaat S.
2017-01-01
In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation (CEWE) and the space-time fractional coupled modified equal width wave equation (CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels. (paper)
Integration of control and building performance simulation software by run-time coupling
Yahiaoui, A.; Hensen, J.L.M.; Soethout, L.L.
2003-01-01
This paper presents the background, approach and initial results of a project, which aims to achieve better integrated building and systems control modeling in building performance simulation by runtime coupling of distributed computer programs. This paper focuses on one of the essential steps
On quantization of systems with couplings depending on time
International Nuclear Information System (INIS)
Gadzhiev, S.A.; Dzhafarov, R.K.
1990-01-01
Two main moments, on which the Gitman T yutin quantization is based: formal introduction of pulse, conjugated time and postulate of special nonunitary time dependence of the Schroeinger operators, have been interpreted. 4 refs
International Nuclear Information System (INIS)
Schneeberger, B.; Breuleux, R.
1977-01-01
Assuming that earthquake ground motion is a stationary time function, the seismic analysis of a linear structure can be done by probailistic methods using the 'power spectral density function' (PSD), instead of applying the more traditional time-step-integration using earthquake time histories (TH). A given structure was analysed both by PSD and TH methods computing and comparing 'floor response spectra'. The analysis using TH was performed for two different TH and different frequency intervals for the 'floor-response-spectra'. The analysis using PSD first produced PSD functions of the responses of the floors and these were then converted into 'foor-response-spectra'. Plots of the resulting 'floor-response-spectra' show: (1) The agreement of TH and PSD results is quite close. (2) The curves produced by PSD are much smoother than those produced by TH and mostly form an enelope of the latter. (3) The curves produced by TH are quite jagged with the location and magnitude of the peaks depending on the choice of frequencies at which the 'floor-response-spectra' were evaluated and on the choice of TH. (Auth.)
Detection of Tomato black ring virus by real-time one-step RT-PCR.
Harper, Scott J; Delmiglio, Catia; Ward, Lisa I; Clover, Gerard R G
2011-01-01
A TaqMan-based real-time one-step RT-PCR assay was developed for the rapid detection of Tomato black ring virus (TBRV), a significant plant pathogen which infects a wide range of economically important crops. Primers and a probe were designed against existing genomic sequences to amplify a 72 bp fragment from RNA-2. The assay amplified all isolates of TBRV tested, but no amplification was observed from the RNA of other nepovirus species or healthy host plants. The detection limit of the assay was estimated to be around nine copies of the TBRV target region in total RNA. A comparison with conventional RT-PCR and ELISA, indicated that ELISA, the current standard test method, lacked specificity and reacted to all nepovirus species tested, while conventional RT-PCR was approximately ten-fold less sensitive than the real-time RT-PCR assay. Finally, the real-time RT-PCR assay was tested using five different RT-PCR reagent kits and was found to be robust and reliable, with no significant differences in sensitivity being found. The development of this rapid assay should aid in quarantine and post-border surveys for regulatory agencies. Copyright © 2010 Elsevier B.V. All rights reserved.
Coupling of Bone Resorption and Formation in Real Time
DEFF Research Database (Denmark)
Lassen, Nicolai Ernlund; Andersen, Thomas Levin; Pløen, Gro Grunnet
2017-01-01
measurements show that the latter contribute the most to overall resorption. Of note, the density of osteoprogenitors continuously grew along the "reversal/resorption" surface, reaching at least 39 cells/mm on initiation of bone formation. This value was independent of the length of the reversal......It is well known that bone remodeling starts with a resorption event and ends with bone formation. However, what happens in between and how resorption and formation are coupled remains mostly unknown. Remodeling is achieved by so-called basic multicellular units (BMUs), which are local teams...... of osteoclasts, osteoblasts, and reversal cells recently proven identical with osteoprogenitors. Their organization within a BMU cannot be appropriately analyzed in common histology. The originality of the present study is to capture the events ranging from initiation of resorption to onset of formation...
Gellynck, Karolien; Kodeck, Valérie; Van De Walle, Elke; Kersemans, Ken; De Vos, Filip; Declercq, Heidi; Dubruel, Peter; Vlaminck, Lieven
2015-01-01
Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) – enabling glucose monitoring in the near-infrared (NIR) spectrum – were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions independent of the implantation site. No significant inflammation reaction was observed. Tissue integration and vascularization correlated, to some extent, with the biomaterial composition. A modification strategy, in which a vascular endothelial-cadherin antibody was coupled to the biomaterials surface through a dopamine layer, showed significantly enhanced vascularization 3 months after subcutaneous implantation. Our results suggest that the developed strategy enables the creation of tissue interactive NIR transparent packaging materials, opening the possibility of continuous glucose monitoring. PMID:25304314
Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons
Gu, Huaguang; Zhao, Zhiguo
2015-01-01
The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224
Bifurcation and synchronization of synaptically coupled FHN models with time delay
International Nuclear Information System (INIS)
Wang Qingyun; Lu Qishao; Chen Guanrong; Feng Zhaosheng; Duan Lixia
2009-01-01
This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.
Chidori, Kazuhiro; Yamamoto, Yuji
2017-01-01
The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.
Directory of Open Access Journals (Sweden)
Po Hu
2016-01-01
Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.
Caetano, Maria Joana D; Lord, Stephen R; Allen, Natalie E; Brodie, Matthew A; Song, Jooeun; Paul, Serene S; Canning, Colleen G; Menant, Jasmine C
2018-02-01
Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hu, Cheng; Yu, Juan; Chen, Zhanheng; Jiang, Haijun; Huang, Tingwen
2017-05-01
In this paper, the fixed-time stability of dynamical systems and the fixed-time synchronization of coupled discontinuous neural networks are investigated under the framework of Filippov solution. Firstly, by means of reduction to absurdity, a theorem of fixed-time stability is established and a high-precision estimation of the settling-time is given. It is shown by theoretic proof that the estimation bound of the settling time given in this paper is less conservative and more accurate compared with the classical results. Besides, as an important application, the fixed-time synchronization of coupled neural networks with discontinuous activation functions is proposed. By designing a discontinuous control law and using the theory of differential inclusions, some new criteria are derived to ensure the fixed-time synchronization of the addressed coupled networks. Finally, two numerical examples are provided to show the effectiveness and validity of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anderson, David F; Yuan, Chaojie
2018-04-18
A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.
On an adaptive time stepping strategy for solving nonlinear diffusion equations
International Nuclear Information System (INIS)
Chen, K.; Baines, M.J.; Sweby, P.K.
1993-01-01
A new time step selection procedure is proposed for solving non- linear diffusion equations. It has been implemented in the ASWR finite element code of Lorenz and Svoboda [10] for 2D semiconductor process modelling diffusion equations. The strategy is based on equi-distributing the local truncation errors of the numerical scheme. The use of B-splines for interpolation (as well as for the trial space) results in a banded and diagonally dominant matrix. The approximate inverse of such a matrix can be provided to a high degree of accuracy by another banded matrix, which in turn can be used to work out the approximate finite difference scheme corresponding to the ASWR finite element method, and further to calculate estimates of the local truncation errors of the numerical scheme. Numerical experiments on six full simulation problems arising in semiconductor process modelling have been carried out. Results show that our proposed strategy is more efficient and better conserves the total mass. 18 refs., 6 figs., 2 tabs
International Nuclear Information System (INIS)
Kimura, Y.; Tokuyama, M.
2016-01-01
The full numerical solutions of the time-convolutionless modecoupling theory (TMCT) equation recently proposed by Tokuyama are compared with those of the ideal mode-coupling theory (MCT) equation based on the Percus- Yevick static structure factor for hard spheres qualitatively and quantitatively. The ergodic to non-ergodic transition at the critical volume fraction φ_c predicted by MCT is also shown to occur even for TMCT. Thus, φ_c of TMCT is shown to be much higher than that of MCT. The dynamics of coherent-intermediate scattering functions and their two-step relaxation process in a β stage are also discussed.
Stability of The Synchronization Manifold in An All-To-All Time LAG- Diffusively Coupled Oscillators
Directory of Open Access Journals (Sweden)
Adu A.M. Wasike
2009-06-01
Full Text Available we consider a lattice system of identical oscillators that are all coupled to one another with a diffusive coupling that has a time lag. We use the natural splitting of the system into synchronized manifold and transversal manifold to estimate the value of the time lag for which the stability of the system follows from that without a time lag. Each oscillator has a unique periodic solution that is attracting.
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Blaabjerg, Frede
2017-01-01
This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage gain and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core in order to achieve a very high voltage gain without using extreme...... duty cycle. Furthermore, a passive lossless clamp circuit recycles the leakage energy of the coupled magnetics and alleviates the voltage spikes across the main switch. This feature along with low stress on the switching device enables the designer to use a low voltage and low RDS-on MOSFET, which...
Comparing internal and external run-time coupling of CFD and building energy simulation software
Djunaedy, E.; Hensen, J.L.M.; Loomans, M.G.L.C.
2004-01-01
This paper describes a comparison between internal and external run-time coupling of CFD and building energy simulation software. Internal coupling can be seen as the "traditional" way of developing software, i.e. the capabilities of existing software are expanded by merging codes. With external
Stošić, Dušan; Auroux, Aline
Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.
Reports of relationship timing: Missing data and couple agreement
Directory of Open Access Journals (Sweden)
Anna Reimondos
2011-07-01
Full Text Available In studying changes in family formation over time, social researchers and demographers have primarily relied on retrospective and prospective marital and cohabitation histories collected from surveys. With the increasing use of these types of retrospective questions in surveys, social researchers have now begun to pay more attention to the quality of the data and the degree of accuracy with which respondents are able to remember past events. The purpose of this paper is to explore the incidence and demographic and socio-economic correlates of recall error and inaccuracy of reporting of marriage and cohabitation dates. In the first part we investigate the degree of precision with which dates are remembered using both descriptive and multivariate analysis. We then compare married and cohabiting partner's reports about when their relationship started in order to check the consistency of with which both partners date the same event.
Timing of the steps in transformation of C3H 10T1/2 cells by X-irradiation
International Nuclear Information System (INIS)
Kennedy, A.R.; Cairns, J.; Little, J.B.
1984-01-01
Transformation of cells in culture by chemical carcinogens or X-rays seems to require at least two steps. The initial step is a frequent event; for example, after transient exposure to either methylcholanthrene or X-rays. It has been hypothesized that the second step behaves like a spontaneous mutation in having a constant but small probability of occurring each time an initiated cell divides. We show here that the clone size distribution of transformed cells in growing cultures initiated by X-rays, is, indeed, exactly what would be expected on that hypothesis. (author)
De Basabe, Jonás D.
2010-04-01
We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively. © 2010 The Authors Journal compilation © 2010 RAS.
Lee, Eun Seok
2000-10-01
An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with
DEFF Research Database (Denmark)
Forouzesh, Mojtaba; Shen, Yanfeng; Siwakoti, Yam Prasad
2018-01-01
with a common ground connection of the input and output make the proposed topology a proper candidate for a transformer-less grid connected photovoltaic systems. The operating performance, analysis and mathematical derivations of the proposed dc-dc converter have been demonstrated in the paper. Moreover......This paper introduces a non-isolated high step-up dc-dc converter with dual coupled inductors suitable for distributed generation applications. By implementing an input parallel connection, the proposed dc-dc structure inherits shared input current with low ripple, which also requires small...... capacitive filter at its input. Moreover, this topology can reach high voltage gain by using dual coupled inductors in series connection at the output stage. The proposed converter uses active clamp circuits with a shared clamp capacitor for the main switches. In addition to the active clamp circuit...
BIOMAP A Daily Time Step, Mechanistic Model for the Study of Ecosystem Dynamics
Wells, J. R.; Neilson, R. P.; Drapek, R. J.; Pitts, B. S.
2010-12-01
of both climate and ecosystems must be done at coarse grid resolutions; smaller domains require higher resolution for the simulation of natural resource processes at the landscape scale and that of on-the-ground management practices. Via a combined multi-agency and private conservation effort we have implemented a Nested Scale Experiment (NeScE) that ranges from 1/2 degree resolution (global, ca. 50 km) to ca. 8km (North America) and 800 m (conterminous U.S.). Our first DGVM, MC1, has been implemented at all 3 scales. We are just beginning to implement BIOMAP into NeScE, with its unique features, and daily time step, as a counterpoint to MC1. We believe it will be more accurate at all resolutions providing better simulations of vegetation distribution, carbon balance, runoff, fire regimes and drought impacts.
Space-time dependent couplings In N = 1 SUSY gauge theories: Anomalies and central functions
International Nuclear Information System (INIS)
Babington, J.; Erdmenger, J.
2005-01-01
We consider N = 1 supersymmetric gauge theories in which the couplings are allowed to be space-time dependent functions. Both the gauge and the superpotential couplings become chiral superfields. As has recently been shown, a new topological anomaly appears in models with space-time dependent gauge coupling. Here we show how this anomaly may be used to derive the NSVZ β-function in a particular, well-determined renormalisation scheme, both without and with chiral matter. Moreover we extend the topological anomaly analysis to theories coupled to a classical curved superspace background, and use it to derive an all-order expression for the central charge c, the coefficient of the Weyl tensor squared contribution to the conformal anomaly. We also comment on the implications of our results for the central charge a expected to be of relevance for a four-dimensional C-theorem. (author)
Time-delay-induced phase-transition to synchrony in coupled bursting neurons
Adhikari, Bhim Mani; Prasad, Awadhesh; Dhamala, Mukeshwar
2011-06-01
Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.
Coupling gravity, electromagnetism and space-time for space propulsion breakthroughs
Millis, Marc G.
1994-01-01
spaceflight would be revolutionized if it were possible to propel a spacecraft without rockets using the coupling between gravity, electromagnetism, and space-time (hence called 'space coupling propulsion'). New theories and observations about the properties of space are emerging which offer new approaches to consider this breakthrough possibility. To guide the search, evaluation, and application of these emerging possibilities, a variety of hypothetical space coupling propulsion mechanisms are presented to highlight the issues that would have to be satisfied to enable such breakthroughs. A brief introduction of the emerging opportunities is also presented.
Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D
2017-08-01
We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.
The effect of time-dependent coupling on non-equilibrium steady states
DEFF Research Database (Denmark)
Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin
Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...
The effect of time-dependent coupling on non-equilibrium steady states
DEFF Research Database (Denmark)
Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.
2009-01-01
Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...
Directory of Open Access Journals (Sweden)
Tandale Babasaheb V
2008-12-01
Full Text Available Abstract Background Chandipura virus (CHPV, a member of family Rhabdoviridae was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR using TaqMan technology was developed for rapid diagnosis. Methods Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [in vivo (mice in ovo (eggs, in vitro (Vero E6, PS, RD and Sand fly cell line] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard. Results Real-time one step RT-PCR was optimized using in vitro transcribed (IVT RNA. Standard curve showed linear relationship for wide range of 102-1010 (r2 = 0.99 with maximum Coefficient of variation (CV = 5.91% for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 100 PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 102 PFU/ml. Vero and PS cell-lines (1.2 × 103 PFU/ml were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy
Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling
International Nuclear Information System (INIS)
Jian-Rui, Chen; Li-Cheng, Jiao; Jian-She, Wu; Xiao-Hua, Wang
2009-01-01
A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication. (general)
Comparing an Annual and a Daily Time-Step Model for Predicting Field-Scale Phosphorus Loss.
Bolster, Carl H; Forsberg, Adam; Mittelstet, Aaron; Radcliffe, David E; Storm, Daniel; Ramirez-Avila, John; Sharpley, Andrew N; Osmond, Deanna
2017-11-01
A wide range of mathematical models are available for predicting phosphorus (P) losses from agricultural fields, ranging from simple, empirically based annual time-step models to more complex, process-based daily time-step models. In this study, we compare field-scale P-loss predictions between the Annual P Loss Estimator (APLE), an empirically based annual time-step model, and the Texas Best Management Practice Evaluation Tool (TBET), a process-based daily time-step model based on the Soil and Water Assessment Tool. We first compared predictions of field-scale P loss from both models using field and land management data collected from 11 research sites throughout the southern United States. We then compared predictions of P loss from both models with measured P-loss data from these sites. We observed a strong and statistically significant ( loss between the two models; however, APLE predicted, on average, 44% greater dissolved P loss, whereas TBET predicted, on average, 105% greater particulate P loss for the conditions simulated in our study. When we compared model predictions with measured P-loss data, neither model consistently outperformed the other, indicating that more complex models do not necessarily produce better predictions of field-scale P loss. Our results also highlight limitations with both models and the need for continued efforts to improve their accuracy. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Pijnappels, M.A.G.M.; Delbaere, K.; Sturnieks, D.L.; Lord, S.R.
2010-01-01
Background: choice stepping reaction time (CSRT) is a functional measure that has been shown to significantly discriminate older fallers from non-fallers. Objective: to investigate how physiological and cognitive factors mediate the association between CSRT performance and multiple falls by use of
Chu, Chunlei; Stoffa, Paul L.; Seif, Roustam
2009-01-01
We present two Lax‐Wendroff type high‐order time stepping schemes and apply them to solving the 3D elastic wave equation. The proposed schemes have the same format as the Taylor series expansion based schemes, only with modified temporal extrapolation coefficients. We demonstrate by both theoretical analysis and numerical examples that the modified schemes significantly improve the stability conditions.
Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling
International Nuclear Information System (INIS)
Lin, Shi-Rong; Zhang, Ruo-Yang; Ma, Yi-Rong; Jia, Wei; Zhao, Qing
2016-01-01
Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.
Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling
Energy Technology Data Exchange (ETDEWEB)
Lin, Shi-Rong [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Ruo-Yang [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Ma, Yi-Rong; Jia, Wei [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)
2016-07-29
Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.
Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators
Yao, Chenggui; Yi, Ming; Shuai, Jianwei
2013-09-01
Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.
Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise
Stankovski, Tomislav; Duggento, Andrea; McClintock, Peter V. E.; Stefanovska, Aneta
2012-07-01
A new method is introduced for analysis of interactions between time-dependent coupled oscillators, based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase slips and enables the evolution of the coupling functions and other parameters to be followed. It is based on phase dynamics, with Bayesian inference of the time-evolving parameters achieved by shaping the prior densities to incorporate knowledge of previous samples. The method is tested numerically and applied to reveal and quantify the time-varying nature of cardiorespiratory interactions.
Flexible Working in the UK and its Impact on Couples' Time Coordination
Bryan, M.L.; Sevilla, A.
2017-01-01
The ability to combine work with quality time together as a family is at the heart of the\\ud concept of work-life balance. Using previously unexploited data on couples work\\ud schedules we investigate the effect of flexible working on couples coordination of their\\ud daily work schedules in the UK. We consider three distinct dimensions of flexible\\ud working: flexibility of daily start and finish times (flexitime), flexibility of work times\\ud over the year (annualized hours), and generalized...
Iteratively improving Hi-C experiments one step at a time.
Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton
2018-04-30
The 3D organization of eukaryotic chromosomes affects key processes such as gene expression, DNA replication, cell division, and response to DNA damage. The genome-wide chromosome conformation capture (Hi-C) approach can characterize the landscape of 3D genome organization by measuring interaction frequencies between all genomic regions. Hi-C protocol improvements and rapid advances in DNA sequencing power have made Hi-C useful to study diverse biological systems, not only to elucidate the role of 3D genome structure in proper cellular function, but also to characterize genomic rearrangements, assemble new genomes, and consider chromatin interactions as potential biomarkers for diseases. Yet, the Hi-C protocol is still complex and subject to variations at numerous steps that can affect the resulting data. Thus, there is still a need for better understanding and control of factors that contribute to Hi-C experiment success and data quality. Here, we evaluate recently proposed Hi-C protocol modifications as well as often overlooked variables in sample preparation and examine their effects on Hi-C data quality. We examine artifacts that can occur during Hi-C library preparation, including microhomology-based artificial template copying and chimera formation that can add noise to the downstream data. Exploring the mechanisms underlying Hi-C artifacts pinpoints steps that should be further optimized in the future. To improve the utility of Hi-C in characterizing the 3D genome of specialized populations of cells or small samples of primary tissue, we identify steps prone to DNA loss which should be considered to adapt Hi-C to lower cell numbers. Copyright © 2018 Elsevier Inc. All rights reserved.
Seven steps to raise world security. Op-Ed, published in the Finanical Times
International Nuclear Information System (INIS)
ElBaradei, M.
2005-01-01
In recent years, three phenomena have radically altered the security landscape. They are the emergence of a nuclear black market, the determined efforts by more countries to acquire technology to produce the fissile material usable in nuclear weapons and the clear desire of terrorists to acquire weapons of mass destruction. The IAEA has been trying to solve these new problems with existing tools. But for every step forward, we have exposed vulnerabilities in the system. The system itself - the regime that implements non-proliferation treaty needs reinforcement. Some of the necessary remedies can be taken in New York at the Meeting to be held in May, but only if governments are ready to act. With seven straightforward steps, and without amending the treaty, this conference could reach a milestone in strengthening world security. The first step: put a five-year hold on additional facilities for uranium enrichment and plutonium separation. Second, speed up existing efforts, led by the US global threat reduction initiative and others, to modify the research reactors worldwide operating with highly enriched uranium - particularly those with metal fuel that could be readily employed as bomb material. Third, raise the bar for inspection standards by establishing the 'additional protocol' as the norm for verifying compliance with the NPT. Fourth, call on the United Nations Security Council to act swiftly and decisively in the case of any country that withdraws from the NPT, in terms of the threat the withdrawal poses to international peace and security. Fifth, urge states to act on the Security Council's recent resolution 1540, to pursue and prosecute any illicit trading in nuclear material and technology. Sixth, call on the five nuclear weapon states party to the NPT to accelerate implementation of their 'unequivocal commitment' to nuclear disarmament, building on efforts such as the 2002 Moscow treaty between Russia and the US. Last, acknowledge the volatility of
Directory of Open Access Journals (Sweden)
Y. Zhao
2017-11-01
Full Text Available Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.
Linford, Neil; Linford, Paul; Payne, Andy
2016-04-01
The recent availability of multi-channel GPR instrumentation has allowed high-speed acquisition of densely sampled data sets over unprecedented areas of coverage. Such instrumentation has been of particular interest for the mapping of near-surface archaeological remains where the ability to collect GPR data at very close sample spacings (<0.1m) can provide a unique insight to both image and assess the survival of historic assets at a landscape scale. This paper reviews initial results obtained with a 3d-Radar GeoScope MkIV continuous wave stepped frequency (CWSF) GPR system utilising both initial prototypes and production versions of a newly introduced ground coupled antenna array. Whilst this system originally utilised an air-coupled antenna array there remained some debate over the suitability of an air-coupled antenna for all site conditions, particularly where a conductive surface layer, typical of many archaeological sites in the UK, may impede the transfer of energy into the ground. Encouraging results obtained from an initial prototype ground-coupled antenna array led to the introduction of a full width 22 channel G1922 version in March 2014 for use with the MkIV GeoScope console, offering faster acquisition across a wider frequency bandwidth (60MHz to 3GHz) with a cross-line 0.075m spacing between the individual elements in the array. Field tests over the Roman remains at Silchester corroborated the results from the earlier prototype, demonstrating an increased depth of penetration at the site compared to the previous air-coupled array. Further field tests were conducted with the G1922 over a range of sites, including Roman villa sites, formal post-medieval garden remains and a medieval farmstead to assess the response of the ground-coupled antenna to more challenging site conditions, particularly through water saturated soils. A full production DXG1820 version of the antenna became available for field work in 2015 offering optimisation of the individual
Three-step management of pneumothorax: time for a re-think on initial management†
Kaneda, Hiroyuki; Nakano, Takahito; Taniguchi, Yohei; Saito, Tomohito; Konobu, Toshifumi; Saito, Yukihito
2013-01-01
Pneumothorax is a common disease worldwide, but surprisingly, its initial management remains controversial. There are some published guidelines for the management of spontaneous pneumothorax. However, they differ in some respects, particularly in initial management. In published trials, the objective of treatment has not been clarified and it is not possible to compare the treatment strategies between different trials because of inappropriate evaluations of the air leak. Therefore, there is a need to outline the optimal management strategy for pneumothorax. In this report, we systematically review published randomized controlled trials of the different treatments of primary spontaneous pneumothorax, point out controversial issues and finally propose a three-step strategy for the management of pneumothorax. There are three important characteristics of pneumothorax: potentially lethal respiratory dysfunction; air leak, which is the obvious cause of the disease; frequent recurrence. These three characteristics correspond to the three steps. The central idea of the strategy is that the lung should not be expanded rapidly, unless absolutely necessary. The primary objective of both simple aspiration and chest drainage should be the recovery of acute respiratory dysfunction or the avoidance of respiratory dysfunction and subsequent complications. We believe that this management strategy is simple and clinically relevant and not dependent on the classification of pneumothorax. PMID:23117233
Tian, Meng; Xu, Jian; Lei, Gang; Lombroso, Paul J.; Jackson, Michael F.; MacDonald, John F.
2016-01-01
N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation. PMID:27857196
FDTD based transition time dependent crosstalk analysis for coupled RLC interconnects
International Nuclear Information System (INIS)
Sharma, Devendra Kumar; Kaushik, Brajesh Kumar; Sharma, R. K.
2014-01-01
The performance of high density chips operating in the GHz range is mostly affected by on-chip interconnects. The interconnect delay depends on many factors, a few of them are inputs toggling patterns, line and coupling parasitics, input rise/fall time and source/load characteristics. The transition time of the input is of prime importance in high speed circuits. This paper addresses the FDTD based analysis of transition time effects on functional and dynamic crosstalk. The analysis is carried out for equal and unequal transition times of coupled inputs. The analysis of the effects of unequal rise time is equally important because practically, it is quite common to have mismatching in the rise time of the signals transmitting through different length wires. To demonstrate the effects, two distributed RLC lines coupled inductively and capacitively are taken into consideration. The FDTD technique is used because it gives accurate results and carries time domain analysis of coupled lines. The number of lumps in SPICE simulations is considered the same as those of spatial segments. To validate the FDTD computed results, SPICE simulations are run and results are compared. A good agreement of the computed results has been observed with respect to SPICE simulated results. An average error of less than 3.2% is observed in the computation of the performance parameters using the proposed method. (semiconductor integrated circuits)
Modeling Stepped Leaders Using a Time Dependent Multi-dipole Model and High-speed Video Data
Karunarathne, S.; Marshall, T.; Stolzenburg, M.; Warner, T. A.; Orville, R. E.
2012-12-01
In summer of 2011, we collected lightning data with 10 stations of electric field change meters (bandwidth of 0.16 Hz - 2.6 MHz) on and around NASA/Kennedy Space Center (KSC) covering nearly 70 km × 100 km area. We also had a high-speed video (HSV) camera recording 50,000 images per second collocated with one of the electric field change meters. In this presentation we describe our use of these data to model the electric field change caused by stepped leaders. Stepped leaders of a cloud to ground lightning flash typically create the initial path for the first return stroke (RS). Most of the time, stepped leaders have multiple complex branches, and one of these branches will create the ground connection for the RS to start. HSV data acquired with a short focal length lens at ranges of 5-25 km from the flash are useful for obtaining the 2-D location of these multiple branches developing at the same time. Using HSV data along with data from the KSC Lightning Detection and Ranging (LDAR2) system and the Cloud to Ground Lightning Surveillance System (CGLSS), the 3D path of a leader may be estimated. Once the path of a stepped leader is obtained, the time dependent multi-dipole model [ Lu, Winn,and Sonnenfeld, JGR 2011] can be used to match the electric field change at various sensor locations. Based on this model, we will present the time-dependent charge distribution along a leader channel and the total charge transfer during the stepped leader phase.
International Nuclear Information System (INIS)
Kim, Tae Gyoum; Jang, Jin-Tak; Ryu, Hyukhyun; Lee, Won-Jae
2013-01-01
Highlights: •We grew vertical ZnO nanorods on ITO substrate using a two-step continuous potential process. •The nucleation for the ZnO nanorods growth was changed by first-step potential and duration. •The vertical ZnO nanorods were well grown when first-step potential was −1.2 V and 10 s. -- Abstract: In this study, we analyzed the growth of ZnO nanorods on an ITO (indium doped tin oxide) substrate by electrochemical deposition using a two-step, continuous potential process. We examined the effect of changing the first-step potential as well as the first-step duration on the morphological, structural and optical properties of ZnO nanorods, measured via using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photoluminescence (PL), respectively. As a result, vertical ZnO nanorods were grown on ITO substrate without the need for a template when the first-step potential was set to −1.2 V for a duration of 10 s, and the second-step potential was set to −0.7 V for a duration of 1190 s. The ZnO nanorods on this sample showed the highest XRD (0 0 2)/(1 0 0) peak intensity ratio and the highest PL near band edge emission to deep level emission peak intensity ratio (NBE/DLE). In this study, the nucleation for vertical ZnO nanorod growth on an ITO substrate was found to be affected by changes in the first-step potential and first-step duration
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
International Nuclear Information System (INIS)
Mei, Sun; Chang-Yan, Zeng; Li-Xin, Tian
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand–supply of energy resource in some regions of China
International Nuclear Information System (INIS)
Zhang Qun-Jiao; Zhao Jun-Chan
2012-01-01
This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis. (general)
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.
Directory of Open Access Journals (Sweden)
Francisco F De-Miguel
Full Text Available Transmitter exocytosis from the neuronal soma is evoked by brief trains of high frequency electrical activity and continues for several minutes. Here we studied how active vesicle transport towards the plasma membrane contributes to this slow phenomenon in serotonergic leech Retzius neurons, by combining electron microscopy, the kinetics of exocytosis obtained from FM1-43 dye fluorescence as vesicles fuse with the plasma membrane, and a diffusion equation incorporating the forces of local confinement and molecular motors. Electron micrographs of neurons at rest or after stimulation with 1 Hz trains showed cytoplasmic clusters of dense core vesicles at 1.5±0.2 and 3.7±0.3 µm distances from the plasma membrane, to which they were bound through microtubule bundles. By contrast, after 20 Hz stimulation vesicle clusters were apposed to the plasma membrane, suggesting that transport was induced by electrical stimulation. Consistently, 20 Hz stimulation of cultured neurons induced spotted FM1-43 fluorescence increases with one or two slow sigmoidal kinetics, suggesting exocytosis from an equal number of vesicle clusters. These fluorescence increases were prevented by colchicine, which suggested microtubule-dependent vesicle transport. Model fitting to the fluorescence kinetics predicted that 52-951 vesicles/cluster were transported along 0.60-6.18 µm distances at average 11-95 nms(-1 velocities. The ATP cost per vesicle fused (0.4-72.0, calculated from the ratio of the ΔG(process/ΔG(ATP, depended on the ratio of the traveling velocity and the number of vesicles in the cluster. Interestingly, the distance-dependence of the ATP cost per vesicle was bistable, with low energy values at 1.4 and 3.3 µm, similar to the average resting distances of the vesicle clusters, and a high energy barrier at 1.6-2.0 µm. Our study confirms that active vesicle transport is an intermediate step for somatic serotonin exocytosis by Retzius neurons and provides a
Using Variable Dwell Time to Accelerate Gaze-based Web Browsing with Two-step Selection
Chen, Zhaokang; Shi, Bertram E.
2017-01-01
In order to avoid the "Midas Touch" problem, gaze-based interfaces for selection often introduce a dwell time: a fixed amount of time the user must fixate upon an object before it is selected. Past interfaces have used a uniform dwell time across all objects. Here, we propose an algorithm for adjusting the dwell times of different objects based on the inferred probability that the user intends to select them. In particular, we introduce a probabilistic model of natural gaze behavior while sur...
Exactly solvable quantum state reduction models with time-dependent coupling
International Nuclear Information System (INIS)
Brody, Dorje C; Constantinou, Irene C; Dear, James D C; Hughston, Lane P
2006-01-01
A closed-form solution to the energy-based stochastic Schroedinger equation with a time-dependent coupling is obtained. The solution is algebraic in character, and is expressed directly in terms of independent random data. The data consist of (i) a random variable H which has the distribution P(H=E i ) = π i , where π i is the transition probability vertical bar (ψ 0 vertical bar Φ i ) vertical bar 2 from the initial state vertical bar ψ 0 ) to the Lueders state vertical bar Φ i ) with energy E i , and (ii) an independent P-Brownian motion, where P is the physical probability measure associated with the dynamics of the reduction process. When the coupling is time independent, it is known that state reduction occurs asymptotically-that is to say, over an infinite time horizon. In the case of a time-dependent coupling, we show that if the magnitude of the coupling decreases sufficiently rapidly, then the energy variance will be reduced under the dynamics, but the state need not reach an energy eigenstate. This situation corresponds to the case of a 'partial' or 'incomplete' measurement of the energy. We also construct an example of a model where the opposite situation prevails, in which complete state reduction is achieved after the passage of a finite period of time
Biomechanical influences on balance recovery by stepping.
Hsiao, E T; Robinovitch, S N
1999-10-01
Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.
Continuous-Time Random Walk with multi-step memory: an application to market dynamics
Gubiec, Tomasz; Kutner, Ryszard
2017-11-01
An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Bunce, D; Haynes, BI; Lord, SR; Gschwind, YJ; Kochan, NA; Reppermund, S; Brodaty, H; Sachdev, PS; Delbaere, K
2017-01-01
Background: Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI)...
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru
2018-01-01
This paper addresses the coupled nonlinear Schrödinger equation (CNLSE) in monomode step-index in optical fibers which describes the nonlinear modulations of two monochromatic waves, whose group velocities are almost equal. A class of dark, bright, dark-bright and dark-singular optical solitary wave solutions of the model are constructed using the complex envelope function ansatz. Singular solitary waves are also retrieved as bye products of the in integration scheme. This naturally lead to some constraint conditions placed on the solitary wave parameters which must hold for the solitary waves to exist. The modulation instability (MI) analysis of the model is studied based on the standard linear-stability analysis. Numerical simulation and physical interpretations of the obtained results are demonstrated. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviors of the CNLSE.
Mamanee, Teerapong; Takahashi, Masahiro; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji
2015-01-01
This study evaluated the effect of adding silane coupling agent on initial and long-term bond strengths of one-step self-etch adhesives to enamel-dentin-composite in combined situation. Cervical cavities were prepared on extracted molars and filled with Clearfil AP-X. After water-storage for one-week, the filled teeth were sectioned in halves to expose enamel, dentin and composite surfaces and then enamel-dentin-composite surface was totally applied with one of adhesive treatments (Clearfil SE One, Clearfil SE One with Clearfil Porcelain Bond Activator, Beautibond Multi, Beautibond Multi with Beautibond Multi PR Plus and Scotchbond Universal). After designed period, micro-shear bond strengths (µSBSs) to each substrate were determined. For each period of water-storage, additive silane treatments significantly increased µSBS to composite (penamel (p>0.05). Moreover, the stability of µSBS was depended on materials and substrates used.
Energy Technology Data Exchange (ETDEWEB)
Bejeh Mir, Arash Poorsattar [Dentistry Student Research Committee (DSRC), Dental Materials Research Center, Dentistry School, Babol University of Medical Sciences, Babol (Iran, Islamic Republic of); Bejeh Mir, Morvarid Poorsattar [Private Practice of Orthodontics, Montreal, Quebec (Canada)
2012-09-15
ANSI/ADA has established standards for adequate radiopacity. This study was aimed to assess the changes in radiopacity of composite resins according to various tube-target distances and exposure times. Five 1-mm thick samples of Filtek P60 and Clearfil composite resins were prepared and exposed with six tube-target distance/exposure time setups (i.e., 40 cm, 0.2 seconds; 30 cm, 0.2 seconds; 30 cm, 0.16 seconds, 30 cm, 0.12 seconds; 15 cm, 0.2 seconds; 15 cm, 0.12 seconds) performing at 70 kVp and 7 mA along with a 12-step aluminum stepwedge (1 mm incremental steps) using a PSP digital sensor. Thereafter, the radiopacities measured with Digora for Windows software 2.5 were converted to absorbencies (i.e., A=-log (1-G/255)), where A is the absorbency and G is the measured gray scale). Furthermore, the linear regression model of aluminum thickness and absorbency was developed and used to convert the radiopacity of dental materials to the equivalent aluminum thickness. In addition, all calculations were compared with those obtained from a modified 3-step stepwedge (i.e., using data for the 2nd, 5th, and 8th steps). The radiopacities of the composite resins differed significantly with various setups (p<0.001) and between the materials (p<0.001). The best predicted model was obtained for the 30 cm 0.2 seconds setup (R2=0.999). Data from the reduced modified stepwedge was remarkable and comparable with the 12-step stepwedge. Within the limits of the present study, our findings support that various setups might influence the radiopacity of dental materials on digital radiographs.
Kandel, D. D.; Western, A. W.; Grayson, R. B.
2004-12-01
Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and
Wormholes and time-machines in nonminimally coupled matter-curvature theories of gravity
DEFF Research Database (Denmark)
Bertolami, O.; Ferreira, R. Z.
2013-01-01
In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies...
Wormholes and Time-Machines in Nonminimally Coupled Matter-Curvature Theories of Gravity
Directory of Open Access Journals (Sweden)
Bertolami Orfeu
2013-09-01
Full Text Available In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies the dominant energy condition.
Inverse chaos synchronization in linearly and nonlinearly coupled systems with multiple time-delays
International Nuclear Information System (INIS)
Shahverdiev, E.M.; Hashimov, R.H.; Nuriev, R.A.; Hashimova, L.H.; Huseynova, E.M.; Shore, K.A.
2005-04-01
We report on inverse chaos synchronization between two unidirectionally linearly and nonlinearly coupled chaotic systems with multiple time-delays and find the existence and stability conditions for different synchronization regimes. We also study the effect of parameter mismatches on synchonization regimes. The method is tested on the famous Ikeda model. Numerical simulations fully support the analytical approach. (author)
An empirical analysis of the time allocation of Italian couples: Are they responsive?
Bloemen, H.G.; Pasqua, S.; Stancanelli, E.G.F.
2010-01-01
The literature suggests that in Italy husbands contribute less to unpaid household work than in any other European country, while women have the lowest market employment rates. Here we examine the time allocation of Italian couples on which there are surprisingly few studies to date. We analyze
Wang, Zhan-zhi; Xiong, Ying
2013-04-01
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.
International Nuclear Information System (INIS)
Ixaru, G.L.
1978-03-01
The method developed in the previous paper (preprint, C.I.Ph. (Bucharest), MC-2-78, 1978) is here investigated from computational point of view. Special emphasis is paid to the two basic descriptors of the efficiency: the volume of memory required and the computational effort (timing). Next, two experimental cases are reported. They (i) confirm the theoretical estimates for the rate cf convergence of each version of the present method and (ii) show that the present method is substantially faster than the others. Specifically, it is found that for typical physical problems it is faster by a factor of ten up to twenty than the methods commonly used, viz. Numerov and de Vogelaere. The data reported also allow an inUirect comparison with the method of Gordon. I l/ allow an indirect comparison with the method of Gordon. It is shown that, while this exhibits the same rate as our basic, lowest order version, the computational effort for the latter is, in case of systems with nine equations, only half than for the method of Gordon. At the end of the paper some types of physical problems are suggested which should be the most benefitting if solved numerically with the present method. (author)
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics
Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.
2018-02-01
Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.
Wright, John; Parry, Jayne; Scully, Edward
2005-06-01
European Union (EU) Member States are interested in using health impact assessment (HIA) as a means of safeguarding their obligations to protect human health under the 1997 Treaty of Amsterdam. However, several have encountered difficulties institutionalizing HIA with the policy-making process. As a consequence, the World Health Organization (WHO) Regional Office for Europe has suggested coupling HIA with strategic environmental assessment (SEA). Traditionally, the incorporation of HIA into other forms of impact assessment has been resisted, for fear of losing its focus on health issues to environmental concerns, and compromising its social model of health with the introduction of biophysical indicators. But can these fears be substantiated? In this paper, we investigate the grounds for such concerns by reviewing the relevant policy documents and departmental guidelines of four non-European countries that have considered the use of integrated assessment. We found that the case for associating HIA with SEA in Europe is strong, and offers potential solutions to problems of screening, theoretical framework, causal pathways and ready entry to the policy process. Coupling HIA with SEA may thus be the next step forward in a longer journey towards institutionalizing HIA as an independent policy-linked device.
Seven Steps to Heaven: Time and Tide in 21st Century Contemporary Music Higher Education
Mitchell, Annie K.
2018-01-01
Throughout the time of my teaching career, the tide has exposed changes in the nature of music, students and music education. This paper discusses teaching and learning in contemporary music at seven critical stages of 21st century music education: i) diverse types of undergraduate learners; ii) teaching traditional classical repertoire and skills…
Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.
2013-01-01
The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.
Minisini, S.; Zhebel, E.; Kononov, A.; Mulder, W.A.
2013-01-01
Modeling and imaging techniques for geophysics are extremely demanding in terms of computational resources. Seismic data attempt to resolve smaller scales and deeper targets in increasingly more complex geologic settings. Finite elements enable accurate simulation of time-dependent wave propagation
Wen, Yingying; Li, Jinhua; Liu, Junshen; Lu, Wenhui; Ma, Jiping; Chen, Lingxin
2013-07-01
A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic-electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE-two-step injection-MEKC conditions, detection limits of 7.9-8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R(2) ≥ 0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108% were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n = 6) of 1.3-3.1%. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples.
Liu, Yue; Zhang, Ying; Zhang, Jing; Fan, Gang; Tu, Ya; Sun, Suqin; Shen, Xudong; Li, Qingzhu; Zhang, Yi
2018-03-01
As an important ethnic medicine, sea buckthorn was widely used to prevent and treat various diseases due to its nutritional and medicinal properties. According to the Chinese Pharmacopoeia, sea buckthorn was originated from H. rhamnoides, which includes five subspecies distributed in China. Confusion and misidentification usually occurred due to their similar morphology, especially in dried and powdered forms. Additionally, these five subspecies have vital differences in quality and physiological efficacy. This paper focused on the quick classification and identification method of sea buckthorn berry powders from five H. rhamnoides subspecies using multi-step IR spectroscopy coupled with multivariate data analysis. The holistic chemical compositions revealed by the FT-IR spectra demonstrated that flavonoids, fatty acids and sugars were the main chemical components. Further, the differences in FT-IR spectra regarding their peaks, positions and intensities were used to identify H. rhamnoides subspecies samples. The discrimination was achieved using principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). The results showed that the combination of multi-step IR spectroscopy and chemometric analysis offered a simple, fast and reliable method for the classification and identification of the sea buckthorn berry powders from different H. rhamnoides subspecies.
Energy Technology Data Exchange (ETDEWEB)
Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)
2016-05-15
Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.
Fonoff, Erich Talamoni; Azevedo, Angelo; Angelos, Jairo Silva Dos; Martinez, Raquel Chacon Ruiz; Navarro, Jessie; Reis, Paul Rodrigo; Sepulveda, Miguel Ernesto San Martin; Cury, Rubens Gisbert; Ghilardi, Maria Gabriela Dos Santos; Teixeira, Manoel Jacobsen; Lopez, William Omar Contreras
2016-07-01
OBJECT Currently, bilateral procedures involve 2 sequential implants in each of the hemispheres. The present report demonstrates the feasibility of simultaneous bilateral procedures during the implantation of deep brain stimulation (DBS) leads. METHODS Fifty-seven patients with movement disorders underwent bilateral DBS implantation in the same study period. The authors compared the time required for the surgical implantation of deep brain electrodes in 2 randomly assigned groups. One group of 28 patients underwent traditional sequential electrode implantation, and the other 29 patients underwent simultaneous bilateral implantation. Clinical outcomes of the patients with Parkinson's disease (PD) who had undergone DBS implantation of the subthalamic nucleus using either of the 2 techniques were compared. RESULTS Overall, a reduction of 38.51% in total operating time for the simultaneous bilateral group (136.4 ± 20.93 minutes) as compared with that for the traditional consecutive approach (220.3 ± 27.58 minutes) was observed. Regarding clinical outcomes in the PD patients who underwent subthalamic nucleus DBS implantation, comparing the preoperative off-medication condition with the off-medication/on-stimulation condition 1 year after the surgery in both procedure groups, there was a mean 47.8% ± 9.5% improvement in the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) score in the simultaneous group, while the sequential group experienced 47.5% ± 15.8% improvement (p = 0.96). Moreover, a marked reduction in the levodopa-equivalent dose from preoperatively to postoperatively was similar in these 2 groups. The simultaneous bilateral procedure presented major advantages over the traditional sequential approach, with a shorter total operating time. CONCLUSIONS A simultaneous stereotactic approach significantly reduces the operation time in bilateral DBS procedures, resulting in decreased microrecording time, contributing to the optimization of functional
Time Alignment as a Necessary Step in the Analysis of Sleep Probabilistic Curves
Rošt'áková, Zuzana; Rosipal, Roman
2018-02-01
Sleep can be characterised as a dynamic process that has a finite set of sleep stages during the night. The standard Rechtschaffen and Kales sleep model produces discrete representation of sleep and does not take into account its dynamic structure. In contrast, the continuous sleep representation provided by the probabilistic sleep model accounts for the dynamics of the sleep process. However, analysis of the sleep probabilistic curves is problematic when time misalignment is present. In this study, we highlight the necessity of curve synchronisation before further analysis. Original and in time aligned sleep probabilistic curves were transformed into a finite dimensional vector space, and their ability to predict subjects' age or daily measures is evaluated. We conclude that curve alignment significantly improves the prediction of the daily measures, especially in the case of the S2-related sleep states or slow wave sleep.
The impact of weight classification on safety: timing steps to adapt to external constraints
Gill, S.V.
2015-01-01
Objectives: The purpose of the current study was to evaluate how weight classification influences safety by examining adults’ ability to meet a timing constraint: walking to the pace of an audio metronome. Methods: With a cross-sectional design, walking parameters were collected as 55 adults with normal (n=30) and overweight (n=25) body mass index scores walked to slow, normal, and fast audio metronome paces. Results: Between group comparisons showed that at the fast pace, those with overweight body mass index (BMI) had longer double limb support and stance times and slower cadences than the normal weight group (all psmetronome paces revealed that participants who were overweight had higher cadences at the slow and fast paces (all ps<0.05). Conclusions: Findings suggest that those with overweight BMI alter their gait to maintain biomechanical stability. Understanding how excess weight influences gait adaptation can inform interventions to improve safety for individuals with obesity. PMID:25730658
Off-line real-time FTIR analysis of a process step in imipenem production
Boaz, Jhansi R.; Thomas, Scott M.; Meyerhoffer, Steven M.; Staskiewicz, Steven J.; Lynch, Joseph E.; Egan, Richard S.; Ellison, Dean K.
1992-08-01
We have developed an FT-IR method, using a Spectra-Tech Monit-IR 400 systems, to monitor off-line the completion of a reaction in real-time. The reaction is moisture-sensitive and analysis by more conventional methods (normal-phase HPLC) is difficult to reproduce. The FT-IR method is based on the shift of a diazo band when a conjugated beta-diketone is transformed into a silyl enol ether during the reaction. The reaction mixture is examined directly by IR and does not require sample workup. Data acquisition time is less than one minute. The method has been validated for specificity, precision and accuracy. The results obtained by the FT-IR method for known mixtures and in-process samples compare favorably with those from a normal-phase HPLC method.
Real-time dynamic coupling of GPC-enhanced diffraction-limited focal spots
Villangca, Mark; Bañas, Andrew; Kopylov, Oleksii; Palima, Darwin; Glückstad, Jesper
2015-03-01
We have previously demonstrated on-demand dynamic coupling of an optically manipulated wave-guided optical waveguide (WOW) using diffractive techniques on a "point and shoot" approach. In this work, the generation of the coupling focal spots is done in real-time following the position of the WOW. Object-tracking routine has been added in the trapping program to get the position of the WOW. This approach allows continuous coupling of light through the WOWs which may be useful in some application. In addition, we include a GPC light shaper module in the holography setup to efficiently illuminate the spatial light modulator (SLM). The ability to switch from on-demand to continuous addressing with efficient illumination leverages our WOWs for potential applications in stimulation and nonlinear optics.
Real-time Dynamic Coupling of GPC-enhanced Diffraction-limited Focal Spots
DEFF Research Database (Denmark)
Villangca, Mark Jayson; Bañas, Andrew Rafael; Kopylov, Oleksii
2015-01-01
We have previously demonstrated on-demand dynamic coupling of an optically manipulated wave-guided optical waveguide (WOW) using diffractive techniques on a “point and shoot” approach. In this work, the generation of the coupling focal spots is done in real-time following the position of the WOW....... Object-tracking routine has been added in the trapping program to get the position of the WOW. This approach allows continuous coupling of light through the WOWs which may be useful in some application. In addition, we include a GPC light shaper module in the holography setup to efficiently illuminate...... the spatial light modulator (SLM). The ability to switch from on-demand to continuous addressing with efficient illumination leverages our WOWs for potential applications in stimulation and nonlinear optics....
Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system
Directory of Open Access Journals (Sweden)
Yoon Lee
2012-08-01
Full Text Available Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05. Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.
Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.
2017-12-01
During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the
International Nuclear Information System (INIS)
Finn, John M.
2015-01-01
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012
First steps towards real-time radiography at the NECTAR facility
Bücherl, T.; Wagner, F. M.; v. Gostomski, Ch. Lierse
2009-06-01
The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm -2 s -1 (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.
First steps towards real-time radiography at the NECTAR facility
International Nuclear Information System (INIS)
Buecherl, T.; Wagner, F.M.; Lierse von Gostomski, Ch.
2009-01-01
The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm -2 s -1 (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.
First steps towards real-time radiography at the NECTAR facility
Energy Technology Data Exchange (ETDEWEB)
Buecherl, T. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM) (Germany)], E-mail: thomas.buecherl@radiochemie.de; Wagner, F.M. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen (Germany); Lierse von Gostomski, Ch. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM) (Germany)
2009-06-21
The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm{sup -2} s{sup -1} (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.
A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions
Directory of Open Access Journals (Sweden)
Abdul Rahman Hafiz
2011-01-01
Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.
Time-step selection considerations in the analysis of reactor transients with DIF3D-K
International Nuclear Information System (INIS)
Taiwo, T.A.; Khalil, H.S.; Cahalan, J.E.; Morris, E.E.
1993-01-01
The DIF3D-K code solves the three-dimensional, time-dependent multigroup neutron diffusion equations by using a nodal approach for spatial discretization and either the theta method or one of three space-time factorization approaches for temporal integration of the nodal equations. The three space-time factorization options (namely, improved quasistatic, adiabatic, and conventional point kinetics) were implemented because of their potential efficiency advantage for the analysis of transients in which the flux shape changes more slowly than its amplitude. In this paper, we describe the implementation of DIF3D-K as the neutronics module within the SAS-HWR accident analysis code. We also describe the neuronic-related time-step selection algorithms and their influence on the accuracy and efficiency of the various solution options
Time-step selection considerations in the analysis of reactor transients with DIF3D-K
International Nuclear Information System (INIS)
Taiwo, T.A.; Khalil, H.S.; Cahalan, J.E.; Morris, E.E.
1993-01-01
The DIF3D-K code solves the three-dimensional, time-dependent multigroup neutron diffusion equations by using a nodal approach for spatial discretization and either the theta method or one of three space-time factorization approaches for temporal integration of the nodal equations. The three space-time factorization options (namely, improved quasistatic, adiabatic and conventional point kinetics) were implemented because of their potential efficiency advantage for the analysis of transients in which the flux shape changes more slowly than its amplitude. Here we describe the implementation of DIF3D-K as the neutronics module within the SAS-HWR accident analysis code. We also describe the neutronics-related time step selection algorithms and their influence on the accuracy and efficiency of the various solution options
Non-linear auto-regressive models for cross-frequency coupling in neural time series
Tallot, Lucille; Grabot, Laetitia; Doyère, Valérie; Grenier, Yves; Gramfort, Alexandre
2017-01-01
We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model “goodness of fit” via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling. PMID:29227989
Altunsoy, Mustafa; Botsali, Murat Selim; Tosun, Gonca; Yasar, Ahmet
2015-10-16
The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.
In the time of significant generational diversity - surgical leadership must step up!
Money, Samuel R; O'Donnell, Mark E; Gray, Richard J
2014-02-01
The diverse attitudes and motivations of surgeons and surgical trainees within different age groups present an important challenge for surgical leaders and educators. These challenges to surgical leadership are not unique, and other industries have likewise needed to grapple with how best to manage these various age groups. The authors will herein explore management and leadership for surgeons in a time of age diversity, define generational variations within "Baby-Boomer", "Generation X" and "Generation Y" populations, and identify work ethos concepts amongst these three groups. The surgical community must understand and embrace these concepts in order to continue to attract a stellar pool of applicants from medical school. By not accepting the changing attitudes and motivations of young trainees and medical students, we may disenfranchise a high percentage of potential future surgeons. Surgical training programs will fill, but will they contain the highest quality trainees? Copyright © 2013 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Analysing home-ownership of couples: the effect of selecting couples at the time of the survey.
Mulder, C H
1996-09-01
"The analysis of events encountered by couple and family households may suffer from sample selection bias when data are restricted to couples existing at the moment of interview. The paper discusses the effect of sample selection bias on event history analyses of buying a home [in the Netherlands] by comparing analyses performed on a sample of existing couples with analyses of a more complete sample including past as well as current partner relationships. The results show that, although home-buying in relationships that have ended differs clearly from behaviour in existing relationships, sample selection bias is not alarmingly large." (SUMMARY IN FRE) excerpt
Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach
Comolli, Alessandro; Dentz, Marco
2017-09-01
We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in
The interplay of couple's shared time, women's intimacy, and intradyadic stress.
Milek, Anne; Butler, Emily A; Bodenmann, Guy
2015-12-01
Theoretically, spending time together should be central for couples to build intimacy and should be associated with less relationship stress; however, few empirical studies have examined these links. The present study used 14 days of diary data from 92 women to investigate the interplay between the amount of time they spent with their partner (shared time), intimacy, and daily stress originating inside the relationship (intradyadic stress) on a within- and between-personal level. Multilevel analyses revealed moderation patterns: For example, when women spent more time with their partners than usual on a weekday with low levels of intradyadic stress, they reported higher intimacy. These associations varied substantially between women and were weaker on the weekend or on days with high levels of intradyadic stress. At the between-person level, higher average shared time appeared to buffer the negative association between intradyadic stress and intimacy. Our results suggest that daily fluctuations in intradyadic stress, intimacy, and shared time may have different implications compared with aggregated amounts of those variables. Spending more time together on a weekday with low intimacy might be linked to more intradyadic stress, but aggregated over the long run, spending more time together may provide opportunities for stress resolution and help couples to maintain their intimacy. (c) 2015 APA, all rights reserved).
Kurz, Ilan; Gimmon, Yoav; Shapiro, Amir; Debi, Ronen; Snir, Yoram; Melzer, Itshak
2016-03-04
Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allocated to an intervention group (n = 27) or a control group (n = 26). The intervention group received 24 training sessions over 3 months that included unexpected perturbation of balance exercises during treadmill walking. The control group performed treadmill walking with no perturbations. The primary outcome measures were the voluntary step execution times, traditional postural sway parameters and Stabilogram-Diffusion Analysis. The secondary outcome measures were the fall efficacy Scale (FES), self-reported late life function (LLFDI), and Performance-Oriented Mobility Assessment (POMA). Compared to control, participation in intervention program that includes unexpected loss of balance during walking led to faster Voluntary Step Execution Times under single (p = 0.002; effect size [ES] =0.75) and dual task (p = 0.003; [ES] = 0.89) conditions; intervention group subjects showed improvement in Short-term Effective diffusion coefficients in the mediolateral direction of the Stabilogram-Diffusion Analysis under eyes closed conditions (p = 0.012, [ES] = 0.92). Compared to control there were no significant changes in FES, LLFDI, and POMA. An intervention program that includes unexpected loss of balance during walking can improve voluntary stepping times and balance control, both previously reported as risk factors for falls. This however, did not transferred to a change self-reported function and FES. ClinicalTrials.gov NCT01439451 .
Pochop, Jaroslav; Kačániová, Miroslava; Hleba, Lukáš; Lopasovský, L'ubomír; Bobková, Alica; Zeleňáková, Lucia; Stričík, Michal
2012-01-01
The aim of this study was to follow contamination of ready-to-eat food with Listeria monocytogenes by using the Step One real time polymerase chain reaction (PCR). We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and MicroSEQ® Listeria monocytogenes Detection Kit for the real-time PCR performance. In 30 samples of ready-to-eat milk and meat products without incubation we detected strains of Listeria monocytogenes in five samples (swabs). Internal positive control (IPC) was positive in all samples. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in ready-to-eat food without incubation.
Directory of Open Access Journals (Sweden)
Athanasios G. Lazaropoulos
2013-01-01
Full Text Available This paper considers the potential of replacing step-down power transformers of the entire power grid as well as part of their transmission line branches with wireless power transfer (WPT technology components. Exploiting the state-of-the-art evolutions in the fields of WPT technology, coupled resonators in domino arrangements—domino coupled resonator (DCR configurations—are proposed as suitable technological substitute for step-down power transformers and are investigated in terms of performance metrics such as power transfer efficiency (PTE and transformation ratio (TR. The contribution of this paper is fivefold. First, an analytical theoretical analysis appropriate to the study of practical DCR configurations is demonstrated. In order to support the DCR configuration replacement venture, a detailed set of assumptions regarding efficient mid- and long-range high-power WPTs as well as related technical issues is first presented. The validity of the theoretical analysis is verified through experimental measurements. Second, applying the proposed theoretical analysis, a wealth of system parameters that mainly influences the PTE and TR of DCR configurations is identified. Their quantitative effect as well as corresponding DCR configuration adjustments are first presented. Third, an approximate method, denoted as approximate chain scattering matrix (CSM method, is first introduced. Based on the scattering matrix theory formalism, the approximate CSM method is suitable for mid- and long-range DCR configurations when the theoretical analysis becomes computationally slow. The numerical results of approximate CSM method are compared with the respective ones of theoretical analysis validating the extent and the accuracy of approximate CSM method. Fourth, the potential of power transformer replacement with practical DCR configurations is thoroughly investigated in terms of their TRs. A plethora of high-voltage/medium-voltage (HV/MV, MV
Uwate, Y; Nishio, Y; Stoop, R
2009-01-01
We explore the synchronization and switching behavior of a system of two identical van der Pol oscillators coupled by a stochastically timevarying resistor. Triggered by the time-varying resistor, the system of oscillators switches between synchronized and anti-synchronized behavior. We find that the preference of the synchronized/antisynchronized state is determined by the ratio of the probabilities of the two resistor states. The length of the phases of maintained resistor states, however, ...
Fixed-Time Outer Synchronization of Complex Networks with Noise Coupling
Shi, Hong-Jun; Miao, Lian-Ying; Sun, Yong-Zheng; Liu, Mao-Xing
2018-03-01
In this paper, the fixed-time outer synchronization of complex networks with noise coupling is investigated. Based on the theory of fixed-time stability and matrix inequalities, sufficient conditions for fixed-time outer synchronization are established and the estimation of the upper bound of the setting time is obtained. The result shows that the setting time can be adjusted to a desired value regardless of the initial states. Numerical simulations are performed to verify the effectiveness of the theoretical results. The effects of control parameters and the density of controlled nodes on the converging time are studied. Supported by the National Natural Science Foundation of China under Grant Nos. 11711530203 and 11771443, and the Fundamental Research Funds for the Central Universities under Grant No. 2015XKMS076
International Nuclear Information System (INIS)
Misono, S.; Imanishi, B.
1997-02-01
We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs
Mondal, Bhaskar; Neese, Frank; Ye, Shengfa
2015-08-03
The development of efficient catalysts with base metals for CO2 hydrogenation has always been a major thrust of interest. A series of experimental and theoretical work has revealed that the catalytic cycle typically involves two key steps, namely, base-promoted heterolytic H2 splitting and hydride transfer to CO2, either of which can be the rate-determining step (RDS) of the entire reaction. To explore the determining factor for the nature of RDS, we present herein a comparative mechanistic investigation on CO2 hydrogenation mediated by [M(H)(η(2)-H2)(PP3(Ph))](n+) (M = Fe(II), Ru(II), and Co(III); PP3(Ph) = tris(2-(diphenylphosphino)phenyl)phosphine) type complexes. In order to construct reliable free energy profiles, we used highly correlated wave function based ab initio methods of the coupled cluster type alongside the standard density functional theory. Our calculations demonstrate that the hydricity of the metal-hydride intermediate generated by H2 splitting dictates the nature of the RDS for the Fe(II) and Co(III) systems, while the RDS for the Ru(II) catalyst appears to be ambiguous. CO2 hydrogenation catalyzed by the Fe(II) complex that possesses moderate hydricity traverses an H2-splitting RDS, whereas the RDS for the high-hydricity Co(III) species is found to be the hydride transfer. Thus, our findings suggest that hydricity can be used as a practical guide in future catalyst design. Enhancing the electron-accepting ability of low-hydricity catalysts is likely to improve their catalytic performance, while increasing the electron-donating ability of high-hydricity complexes may speed up CO2 conversion. Moreover, we also established the active roles of base NEt3 in directing the heterolytic H2 splitting and assisting product release through the formation of an acid-base complex.
International Nuclear Information System (INIS)
Godinez, V.; Shu, F.; Finlayson, R.; O'Donnell, B.; Anastasopoulos, A.; Tsimogiannis, A.
2004-01-01
Early detection of mechanical failure in helicopter drive train components is a key safety and economical issue with both military and civil sectors of aviation. Of these components, couplings are particularly critical. The objective of this work is to demonstrate the feasibility of designing and developing a reliable, real time monitoring methodology based on Supervised Pattern Recognition (SPR) for early detection of cracks in couplings used in helicopter and engine drive systems. Within this framework, a portable Acoustic Emission (AE) system was used, equipped with a semi-real time SPR software package. Results from AE tests performed in a gearbox-testing bench at different speeds and different torque values are presented. These results indicate that the energy content of different frequency bands in the AE signals power spectra is strongly correlated with the introduction of EDM notches in the main gear. Further tests indicate that a strong shift in the frequency of the AE signals is observed after spalling occurred in the pinion gear. The variation of displacement and velocity between signal classes are discussed as a potential feature in characterizing crack severity. Finally, a scope of the work for optimizing the methodology in detecting and evaluating coupling cracking in real time will be presented. (author)
Time evolution of coupled-bunch modes from beta function variation in storage rings
Directory of Open Access Journals (Sweden)
Kai Meng Hock
2007-08-01
Full Text Available We present an analytical and numerical study of the equations of motion for bunches coupled by transverse wakefields. We base our study on a recent lattice design for the damping rings in the baseline configuration of the International Linear Collider. Using the macroparticle model, and assuming resistive wall wakefield coupling, we present numerical results on the time evolution of the multibunch modes. Decay modes display growth after initial decay, and mode amplitudes exhibit high-frequency oscillations. These phenomena are not expected if the beta function is assumed to have a constant, averaged value. We show analytically that they can come from coupling between modes caused by variation of the beta function in a real lattice. The effect is shown to be comparable to the effect of a nonuniform fill pattern and significantly larger than that of the higher-order mode wakefield localized in the rf cavities. Turning to the case of constant beta function, we develop a more complete treatment of the equations of motion. We derive general formulas for the bunch trajectories, and show that such formulas can only be valid in the limit of small wakefield coupling.
Energy Technology Data Exchange (ETDEWEB)
Mather, Barry
2017-08-24
The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce the required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.
Tijsma, Mylou; Vister, Eva; Hoang, Phu; Lord, Stephen R
2017-03-01
Purpose To determine (a) the discriminant validity for established fall risk factors and (b) the predictive validity for falls of a simple test of choice stepping reaction time (CSRT) in people with multiple sclerosis (MS). Method People with MS (n = 210, 21-74y) performed the CSRT, sensorimotor, balance and neuropsychological tests in a single session. They were then followed up for falls using monthly fall diaries for 6 months. Results The CSRT test had excellent discriminant validity with respect to established fall risk factors. Frequent fallers (≥3 falls) performed significantly worse in the CSRT test than non-frequent fallers (0-2 falls). With the odds of suffering frequent falls increasing 69% with each SD increase in CSRT (OR = 1.69, 95% CI: 1.27-2.26, p = falls in people with MS. This test may prove useful in documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions. Implications for rehabilitation Good choice stepping reaction time (CSRT) is required for maintaining balance. A simple low-tech CSRT test has excellent discriminative and predictive validity in relation to falls in people with MS. This test may prove useful documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions.
Directory of Open Access Journals (Sweden)
Hamid Reza Fooladmand
2017-06-01
2006 to 2008 were used for calibrating fourteen estimated models of solar radiation in seasonally and annual time steps and the measured data of years 2009 and 2010 were used for evaluating the obtained results. The equations were used in this study divided into three groups contains: 1 The equations based on only sunshine hours. 2 The equations based on only air temperature. 3 The equations based on sunshine hours and air temperature together. On the other hand, statistical comparison must be done to select the best equation for estimating solar radiation in seasonally and annual time steps. For this purpose, in validation stage the combination of statistical equations and linear correlation was used, and then the value of mean square deviation (MSD was calculated to evaluate the different models for estimating solar radiation in mentioned time steps. Results and Discussion: The mean values of mean square deviation (MSD of fourteen models for estimating solar radiation were equal to 24.16, 20.42, 4.08 and 16.19 for spring to winter respectively, and 15.40 in annual time step. Therefore, the results showed that using the equations for autumn enjoyed high accuracy, however for other seasons had low accuracy. So, using the equations for annual time step were appropriate more than the equations for seasonally time steps. Also, the mean values of mean square deviation (MSD of the equations based on only sunshine hours, the equations based on only air temperature, and the equations based on the combination of sunshine hours and air temperature for estimating solar radiation were equal to 14.82, 17.40 and 14.88, respectively. Therefore, the results indicated that the models based on only air temperature were the worst conditions for estimating solar radiation in Shiraz region, and therefore, using the sunshine hours for estimating solar radiation is necessary. Conclusions: In this study for estimating solar radiation in seasonally and annual time steps in Shiraz region
Effect of different air-drying time on the microleakage of single-step self-etch adhesives
Directory of Open Access Journals (Sweden)
Horieh Moosavi
2013-05-01
Full Text Available Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO, Clearfil S3 Bond (CSB, Bond Force (BF. Each main group divided into three subgroups regarding the air-drying time: without application of air stream, following the manufacturer's instruction, for 10 sec more than manufacturer's instruction. After completion of restorations, specimens were thermocycled and then connected to a fluid filtration system to evaluate microleakage. The data were statistically analyzed using two-way ANOVA and Tukey-test (α = 0.05. Results The microleakage of all adhesives decreased when the air-drying time increased from 0 sec to manufacturer's instruction (p < 0.001. The microleakage of BF reached its lowest values after increasing the drying time to 10 sec more than the manufacturer's instruction (p < 0.001. Microleakage of OBAO and CSB was significantly lower compared to BF in all three drying time (p < 0.001. Conclusions Increasing in air-drying time of adhesive layer in one-step self-etch adhesives caused reduction of microleakage, but the amount of this reduction may be dependent on the adhesive components of self-etch adhesives.
Ertsen, M. W.; Murphy, J. T.; Purdue, L. E.; Zhu, T.
2014-04-01
When simulating social action in modeling efforts, as in socio-hydrology, an issue of obvious importance is how to ensure that social action by human agents is well-represented in the analysis and the model. Generally, human decision-making is either modeled on a yearly basis or lumped together as collective social structures. Both responses are problematic, as human decision-making is more complex and organizations are the result of human agency and cannot be used as explanatory forces. A way out of the dilemma of how to include human agency is to go to the largest societal and environmental clustering possible: society itself and climate, with time steps of years or decades. In the paper, another way out is developed: to face human agency squarely, and direct the modeling approach to the agency of individuals and couple this with the lowest appropriate hydrological level and time step. This approach is supported theoretically by the work of Bruno Latour, the French sociologist and philosopher. We discuss irrigation archaeology, as it is in this discipline that the issues of scale and explanatory force are well discussed. The issue is not just what scale to use: it is what scale matters. We argue that understanding the arrangements that permitted the management of irrigation over centuries requires modeling and understanding the small-scale, day-to-day operations and personal interactions upon which they were built. This effort, however, must be informed by the longer-term dynamics, as these provide the context within which human agency is acted out.
Aragon, Alvaro; Legradi, Jessica; Ballesteros-Gómez, Ana; Legler, Juliette; van Velzen, Martin; de Boer, Jacob; Leonards, Pim
2017-04-01
A sensitive analytical method for the determination of monoamine neurotransmitters (MNTs) in zebrafish larvae was developed using gas chromatography coupled to mass spectrometry. Six MNTs were selected as target compounds for neurotoxicity testing. MNTs underwent a two-step derivatization with hexamethyldisilazane (HDMS) for O-silylation followed by N-methyl-bis-heptafluorobutyramide (MBHFBA) for N-perfluoroacylation. Derivatization conditions were optimized by an experimental design approach. Method validation showed linear calibration curves (r 2 > 0.9976) in the range of 1-100 ng for all the compounds. The recovery rates were between 92 and 119%. The method was repeatable and reproducible with relative standard deviations (RSD) in the range of 2.5-9.3% for intra-day and 4.8-12% for inter-day variation. The limits of detection and the limits of quantitation were 0.4-0.8 and 1.2-2.7 ng/mL, respectively. The method was successfully applied to detect and quantify trace levels of MNTs in 5-day-old zebrafish larvae that were exposed to low concentrations of neurotoxic chemicals such as pesticides and methylmercury. Although visual malformations were not detected, the MNT levels varied significantly during early zebrafish development. These results show that exposure to neurotoxic chemicals can alter neurotransmitter levels and thereby may influence early brain development. Graphical abstract ᅟ.
Liang, Pei; Kang, Caiyan; Mo, Yajun
2016-01-01
A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
Marriage work in older couples: Disclosure of marital problems to spouses and friends over time.
Jensen, Jakob F; Rauer, Amy J
2015-10-01
This study examined the frequency and impact of "marriage work" (MW), or the act of discussing marital problems with spouses and friends, among a sample of older married couples (N = 64). Using actor-partner interdependence models, we examined how turning to one's spouse and one's friend was linked to changes in both spouses' marital satisfaction and conflict 1 year later. We also investigated whether satisfaction and conflict predicted change in MW for older spouses. Both wives and husbands engaged in more MW with spouses than with friends, and only husbands' MW with spouses decreased over time. Wives' MW with spouses was associated with decreased marital satisfaction for husbands, whereas husbands' MW with spouses was linked with increased satisfaction for husbands. Furthermore, wives' MW with spouses predicted increases in wives' marital conflict over time. When examining effects in the opposite direction, wives' marital satisfaction predicted decreases in wives' MW with spouse. Husbands' satisfaction was linked with increases in wives' MW with spouses, increases in wives' MW with friends, and decreases in husbands' MW with friends. Finally, husbands' conflict predicted increases in husbands' MW with friends. Findings suggest that openly engaging in discussions of marital problems may not be as uniformly helpful for aging couples as it is for their younger counterparts. Given that many older adults tend to actively avoid conflictual interactions in an attempt to maximize emotional rewards, researchers and clinicians should note that traditional approaches to working through romantic conflict may not be ideal for aging couples. (c) 2015 APA, all rights reserved).
Transfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series
Directory of Open Access Journals (Sweden)
Lee Joon
2012-04-01
Full Text Available Abstract Background The detection of change in magnitude of directional coupling between two non-linear time series is a common subject of interest in the biomedical domain, including studies involving the respiratory chemoreflex system. Although transfer entropy is a useful tool in this avenue, no study to date has investigated how different transfer entropy estimation methods perform in typical biomedical applications featuring small sample size and presence of outliers. Methods With respect to detection of increased coupling strength, we compared three transfer entropy estimation techniques using both simulated time series and respiratory recordings from lambs. The following estimation methods were analyzed: fixed-binning with ranking, kernel density estimation (KDE, and the Darbellay-Vajda (D-V adaptive partitioning algorithm extended to three dimensions. In the simulated experiment, sample size was varied from 50 to 200, while coupling strength was increased. In order to introduce outliers, the heavy-tailed Laplace distribution was utilized. In the lamb experiment, the objective was to detect increased respiratory-related chemosensitivity to O2 and CO2 induced by a drug, domperidone. Specifically, the separate influence of end-tidal PO2 and PCO2 on minute ventilation (V˙E before and after administration of domperidone was analyzed. Results In the simulation, KDE detected increased coupling strength at the lowest SNR among the three methods. In the lamb experiment, D-V partitioning resulted in the statistically strongest increase in transfer entropy post-domperidone for PO2→V˙E. In addition, D-V partitioning was the only method that could detect an increase in transfer entropy for PCO2→V˙E, in agreement with experimental findings. Conclusions Transfer entropy is capable of detecting directional coupling changes in non-linear biomedical time series analysis featuring a small number of observations and presence of outliers. The results
Carichino, Lucia; Guidoboni, Giovanna; Szopos, Marcela
2018-07-01
The goal of this work is to develop a novel splitting approach for the numerical solution of multiscale problems involving the coupling between Stokes equations and ODE systems, as often encountered in blood flow modeling applications. The proposed algorithm is based on a semi-discretization in time based on operator splitting, whose design is guided by the rationale of ensuring that the physical energy balance is maintained at the discrete level. As a result, unconditional stability with respect to the time step choice is ensured by the implicit treatment of interface conditions within the Stokes substeps, whereas the coupling between Stokes and ODE substeps is enforced via appropriate initial conditions for each substep. Notably, unconditional stability is attained without the need of subiterating between Stokes and ODE substeps. Stability and convergence properties of the proposed algorithm are tested on three specific examples for which analytical solutions are derived.
Equal-Time and Equal-Space Poisson Brackets of the N -Component Coupled NLS Equation
International Nuclear Information System (INIS)
Zhou Ru-Guang; Li Pei-Yao; Gao Yuan
2017-01-01
Two Poisson brackets for the N-component coupled nonlinear Schrödinger (NLS) equation are derived by using the variantional principle. The first one is called the equal-time Poisson bracket which does not depend on time but only on the space variable. Actually it is just the usual one describing the time evolution of system in the traditional theory of integrable Hamiltonian systems. The second one is equal-space and new. It is shown that the spatial part of Lax pair with respect to the equal-time Poisson bracket and temporal part of Lax pair with respect to the equal-space Poisson bracket share the same r-matrix formulation. These properties are similar to that of the NLS equation. (paper)
Lewis, L K; Rowlands, A V; Gardiner, P A; Standage, M; English, C; Olds, T
2016-03-01
This study aimed to evaluate the preliminary effectiveness and feasibility of a theory-informed program to reduce sitting time in older adults. Pre-experimental (pre-post) study. Thirty non-working adult (≥ 60 years) participants attended a one hour face-to-face intervention session and were guided through: a review of their sitting time; normative feedback on sitting time; and setting goals to reduce total sitting time and bouts of prolonged sitting. Participants chose six goals and integrated one per week incrementally for six weeks. Participants received weekly phone calls. Sitting time and bouts of prolonged sitting (≥ 30 min) were measured objectively for seven days (activPAL3c inclinometer) pre- and post-intervention. During these periods, a 24-h time recall instrument was administered by computer-assisted telephone interview. Participants completed a post-intervention project evaluation questionnaire. Paired t tests with sequential Bonferroni corrections and Cohen's d effect sizes were calculated for all outcomes. Twenty-seven participants completed the assessments (71.7 ± 6.5 years). Post-intervention, objectively-measured total sitting time was significantly reduced by 51.5 min per day (p=0.006; d=-0.58) and number of bouts of prolonged sitting by 0.8 per day (p=0.002; d=-0.70). Objectively-measured standing increased by 39 min per day (p=0.006; d=0.58). Participants self-reported spending 96 min less per day sitting (p<0.001; d=-0.77) and 32 min less per day watching television (p=0.005; d=-0.59). Participants were highly satisfied with the program. The 'Small Steps' program is a feasible and promising avenue for behavioral modification to reduce sitting time in older adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman
2015-03-28
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.
Bit-level plane image encryption based on coupled map lattice with time-varying delay
Lv, Xiupin; Liao, Xiaofeng; Yang, Bo
2018-04-01
Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.
Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen
2016-03-16
Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.
Synchronization of Coupled FitzHugh-Nagumo Neurons Using Self-Feedback Time Delay
Fan, Denggui; Song, Xinle; Liao, Fucheng
Many neurological diseases are characterized by abnormally synchronous oscillations of neuronal populations. However, how the neurons can synchronize with each other is still not fully understood, which may have potentially hampered the understanding and diagnosis for these dynamical diseases. In this paper, the self-feedback time delay (SFTD) and adaptive control theory are employed to control the onset of synchronization in the coupled FitzHugh-Nagumo (FHN) neurons. It is found that the larger SFTD can induce the complete synchronization of coupled neuronal system. Further investigation reveals that the reinforcing SFTD can significantly postpone the synchronization onsets. In addition, for the case that synchronization cannot be achieved by adjusting SFTD, the parameter estimation update laws and adaptive controller with respect to SFTD of coupled system are investigated to deduce the sufficient condition for complete synchronization. Simulations are also provided to illustrate the effectiveness of the proposed methods. In particular, we observed the fascinating dynamical synchronization transitions, such as chaotic synchronization and bursting synchronization transitions, as well as the transition from anti-synchronization to complete synchronization.
Jiancheng, Shi; Min, Luo; Chusheng, Huang
2017-08-01
The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.
Energy Technology Data Exchange (ETDEWEB)
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
Moors, Amy C
2017-01-01
Finding romance, love, and sexual intimacy is a central part of our life experience. Although people engage in romance in a variety of ways, alternatives to "the couple" are largely overlooked in relationship research. Scholars and the media have recently argued that the rules of romance are changing, suggesting that interest in consensual departures from monogamy may become popular as people navigate their long-term coupling. This study utilizes Google Trends to assess Americans' interest in seeking out information related to consensual nonmonogamous relationships across a 10-year period (2006-2015). Using anonymous Web queries from hundreds of thousands of Google search engine users, results show that searches for words related to polyamory and open relationships (but not swinging) have significantly increased over time. Moreover, the magnitude of the correlation between consensual nonmonogamy Web queries and time was significantly higher than popular Web queries over the same time period, indicating this pattern of increased interest in polyamory and open relationships is unique. Future research avenues for incorporating consensual nonmonogamous relationships into relationship science are discussed.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Diaz, Diego, E-mail: D.Gonzalez-Diaz@gsi.de [GSI Helmholtzcenter for Heavy Ion Research, Darmstadt (Germany); Technical University, Darmstadt (Germany); Department of Engineering Physics, Tsinghua University, Beijing (China); Chen Huangshan; Wang Yi [Technical University, Darmstadt (Germany)
2011-08-21
We have systematically studied the transmission of electrical signals along several 2-strip Resistive Plate Chambers (RPCs) in the frequency range f=0.1-3.5GHz. Such a range was chosen to fully cover the bandwidth associated to the very short rise-times of signals originated in RPCs used for sub-100 ps timing applications. This work conveys experimental evidence of the dominant role of modal dispersion in counters built at the 1 m scale, a fact that results in large cross-talk levels and strong signal shaping. It is shown that modal dispersion appears in RPCs due to their inherent unbalance between capacitive and inductive coupling. A practical way to restore this symmetry has been introduced (hereafter 'electrostatic compensation'), allowing for a cross-talk suppression factor up to x12 and a rise-time reduction by 200 ps. Under conditions of compensation the signal transmission is only limited by dielectric losses, yielding a length-dependent cutoff frequency of around 1 GHz for propagation along 2 m in typical float glass-based RPCs. It is further shown that 'electrostatic compensation' can be achieved for an arbitrary number of strips as long as the nature of the coupling is 'short-range', that is an almost exact assumption for typical strip-line RPCs. This work extends the bandwidth of previous studies by a factor ofx20.
Time-dependent resonant tunnelling for parallel-coupled double quantum dots
International Nuclear Information System (INIS)
Dong Bing; Djuric, Ivana; Cui, H L; Lei, X L
2004-01-01
We derive the quantum rate equations for an Aharonov-Bohm interferometer with two vertically coupled quantum dots embedded in each of two arms by means of the nonequilibrium Green function in the sequential tunnelling regime. Based on these equations, we investigate time-dependent resonant tunnelling under a small amplitude irradiation and find that the resonant photon-assisted tunnelling peaks in photocurrent demonstrate a combination behaviour of Fano and Lorentzian resonances due to the interference effect between the two pathways in this parallel configuration, which is controllable by threading the magnetic flux inside this device
Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields
Hadasz, Leszek; Lindström, Ulf; Roček, Martin; von Unge, Rikard
2004-05-01
We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space.
Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields
International Nuclear Information System (INIS)
Hadasz, Leszek; Lindstroem, Ulf; Rocek, Martin; Unge, Rikard von
2004-01-01
We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space
Parameter Estimation of a Closed Loop Coupled Tank Time Varying System using Recursive Methods
International Nuclear Information System (INIS)
Basir, Siti Nora; Yussof, Hanafiah; Shamsuddin, Syamimi; Selamat, Hazlina; Zahari, Nur Ismarrubie
2013-01-01
This project investigates the direct identification of closed loop plant using discrete-time approach. The uses of Recursive Least Squares (RLS), Recursive Instrumental Variable (RIV) and Recursive Instrumental Variable with Centre-Of-Triangle (RIV + COT) in the parameter estimation of closed loop time varying system have been considered. The algorithms were applied in a coupled tank system that employs covariance resetting technique where the time of parameter changes occur is unknown. The performances of all the parameter estimation methods, RLS, RIV and RIV + COT were compared. The estimation of the system whose output was corrupted with white and coloured noises were investigated. Covariance resetting technique successfully executed when the parameters change. RIV + COT gives better estimates than RLS and RIV in terms of convergence and maximum overshoot
Coupling DCS and MARTe: two real-time control frameworks in collaboration
International Nuclear Information System (INIS)
Rapson, Christopher J.; Carvalho, Pedro; Lüddecke, Klaus; Neto, André C.; Santos, Bruno; Treutterer, Wolfgang; Winter, Axel; Zehetbauer, Thomas
2014-01-01
Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework
Coupling DCS and MARTe: two real-time control frameworks in collaboration
Energy Technology Data Exchange (ETDEWEB)
Rapson, Christopher J., E-mail: chris.rapson@ipp.mpg.de [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Carvalho, Pedro [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Lüddecke, Klaus; Neto, André C. [Unlimited Computer Systems GmbH, Seeshaupterstr. 15, 82393 Iffeldorf (Germany); Santos, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Treutterer, Wolfgang [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Winter, Axel [ITER Organization, Route de Vinon-sur-Verdon, 13115 St.-Paul-Lès-Durance (France); Zehetbauer, Thomas [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany)
2014-12-15
Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework.
International Nuclear Information System (INIS)
Stadel, J.M.; Rebar, R.; Crooke, S.T.
1987-01-01
Preincubation of turkey erythrocytes with isoproterenol is associated with (1) 50-60% attenuation of agonist-stimulated adenylate cyclase activity, (2) altered mobility of the β-adrenergic receptor on sodium dodecyl sulfate-polyacrylamide gels, and (3) increased phosphorylation of the β-adrenergic receptor. Using a low-cross-linked polyacrylamide gel, the β-adrenergic receptor protein from isoproterenol-desensitized cells, labeled with 32 P or with the photoaffinity label 125 I-(p-azidobenzyl)carazolol, can be resolved into a doublet (M/sub r/ similarly ordered 37,000 and M/sub r/ similarly ordered 41,000) as compared to a single M/sub r/ similarly ordered 37,000 β-adrenergic receptor protein from control erythrocytes. The appearance of the doublet was dependent on the concentration of agonist used to desensitize the cells. Incubation of erythrocytes with dibutyryl-cAMP did not promote formation of the doublet but decreased agonist-stimulated adenylate cyclase activity 40-50%. Limited-digestion peptide maps of 32 P-labeled β-adrenergic receptors using papain revealed a unique phosphopeptide in the larger molecular weight band (M/sub r/ similarly ordered 41,000) of the doublet from the agonist-desensitized preparation that was absent in the peptide maps of the smaller band (M/sub r/ similarly ordered 37,000), as well as control or dibutyryl-cAMP-desensitized receptor. These data provide evidence that maximal agonist-induced desensitization of adenylate cyclase coupled β-adrenergic receptors in turkey erythrocytes occurs by a two-step mechanism
Herrendoerfer, R.; van Dinther, Y.; Gerya, T.
2015-12-01
To explore the relationships between subduction dynamics and the megathrust earthquake potential, we have recently developed a numerical model that bridges the gap between processes on geodynamic and earthquake cycle time scales. In a self-consistent, continuum-based framework including a visco-elasto-plastic constitutive relationship, cycles of megathrust earthquake-like ruptures were simulated through a purely slip rate-dependent friction, albeit with very low slip rates (van Dinther et al., JGR, 2013). In addition to much faster earthquakes, a range of aseismic slip processes operate at different time scales in nature. These aseismic processes likely accommodate a considerable amount of the plate convergence and are thus relevant in order to estimate the long-term seismic coupling and related hazard in subduction zones. To simulate and resolve this wide spectrum of slip processes, we innovatively implemented rate-and state dependent friction (RSF) and an adaptive time-stepping into our continuum framework. The RSF formulation, in contrast to our previous friction formulation, takes the dependency of frictional strength on a state variable into account. It thereby allows for continuous plastic yielding inside rate-weakening regions, which leads to aseismic slip. In contrast to the conventional RSF formulation, we relate slip velocities to strain rates and use an invariant formulation. Thus we do not require the a priori definition of infinitely thin, planar faults in a homogeneous elastic medium. With this new implementation of RSF, we succeed to produce consistent cycles of frictional instabilities. By changing the frictional parameter a, b, and the characteristic slip distance, we observe a transition from stable sliding to stick-slip behaviour. This transition is in general agreement with predictions from theoretical estimates of the nucleation size, thereby to first order validating our implementation. By incorporating adaptive time-stepping based on a
Trading speed and accuracy by coding time: a coupled-circuit cortical model.
Directory of Open Access Journals (Sweden)
Dominic Standage
2013-04-01
Full Text Available Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by 'climbing' activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification.
Shortt, Joann Wu; Capaldi, Deborah M; Kim, Hyoun K; Tiberio, Stacey S
2013-04-01
The substantial number of young people in romantic relationships that involve intimate partner violence, a situation deleterious to physical and mental health, has resulted in increased attention to understanding the links between risk factors and course of violence. The current study examined couples' interpersonal stress related to not liking partners' friends and not getting along with parents as contextual factors associated with couples' psychological partner violence and determined whether and when couples' friend and parent stress increased the likelihood of couples' psychological partner violence. A linear latent growth curve modeling approach was used with multiwave measures of psychological partner violence, friend stress, parent stress, and relationship satisfaction obtained from 196 men at risk for delinquency and their women partners over a 12-year period. At the initial assessment, on average, the men were age 21.5 years and the women were age 21 years. Findings indicated that couples experiencing high levels of friend and parent stress were more likely to engage in high levels of psychological partner violence and that increases in couples' friend stress predicted increases in couples' partner violence over time, even when accounting for the couples' relationship satisfaction, marital status, children in the home, and financial strain. Interactive effects were at play when the couples were in their early 20s, with couples being most at risk for increases in psychological partner violence if they experienced both high friend stress and low relationship satisfaction. Couples' friend stress had the greatest effect on psychological partner violence when the couples were in their early to mid 20s when levels of friend stress were high. As the couples reached their 30s, low relationship satisfaction became the leading predictor of couples' psychological partner violence.
Adjoint-Based a Posteriori Error Estimation for Coupled Time-Dependent Systems
Asner, Liya; Tavener, Simon; Kay, David
2012-01-01
We consider time-dependent parabolic problem s coupled across a common interface which we formulate using a Lagrange multiplier construction and solve by applying a monolithic solution technique. We derive an adjoint-based a posteriori error representation for a quantity of interest given by a linear functional of the solution. We establish the accuracy of our error representation formula through numerical experimentation and investigate the effect of error in the adjoint solution. Crucially, the error representation affords a distinction between temporal and spatial errors and can be used as a basis for a blockwise time-space refinement strategy. Numerical tests illustrate the efficacy of the refinement strategy by capturing the distinctive behavior of a localized traveling wave solution. The saddle point systems considered here are equivalent to those arising in the mortar finite element technique for parabolic problems. © 2012 Society for Industrial and Applied Mathematics.
Real-time control of electron density in a capacitively coupled plasma
International Nuclear Information System (INIS)
Keville, Bernard; Gaman, Cezar; Turner, Miles M.; Zhang Yang; Daniels, Stephen; Holohan, Anthony M.
2013-01-01
Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.
Directory of Open Access Journals (Sweden)
Eun Seok Lee
2003-01-01
Full Text Available An axial turbine rotor cascade-shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using an unsteady flow, Reynolds-averaged Navier-Stokes equations solver that was based on explicit, finite difference; Runge-Kutta multistage time marching; and the diagonalized alternating direction implicit scheme. The code utilized Baldwin-Lomax algebraic and k-ε turbulence modeling. The full approximation storage multigrid method and preconditioning were implemented as iterative convergence-acceleration techniques. An implicit dual-time stepping method was incorporated in order to simulate the unsteady flow fields. The objective function was defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed during the optimization. The design variables were several geometric parameters characterizing airfoil leading edge, camber, stagger angle, and inter-row spacing. The genetic algorithm was used as an optimizer, and the penalty method was introduced for combining the constraints with the objective function. Each individual's objective function was computed simultaneously by using a 32-processor distributedmemory computer. The optimization results indicated that only minor improvements are possible in unsteady rotor/stator aerodynamics by varying these geometric parameters.
This presentation, Environmental Exposures and Health Risks in California Child Care Facilities: First Steps to Improve Environmental Health where Children Spend Time, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Exposome.
Stability and oscillation of two coupled Duffing equations with time delay state feedback
International Nuclear Information System (INIS)
El-Bassiouny, A F
2006-01-01
This paper presents an analytical study of the simultaneous principal parametric resonances of two coupled Duffing equations with time delay state feedback. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. The method of multiple scales is used to determine a set of ordinary differential equations governing the modulation of the amplitudes and phases of the two modes. The first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the frequency-response curves. We analyse the effect of time delay and the other different parameters on these oscillations. The stability of the fixed points is examined by using the variational method. Numerical solutions are carried out and graphical representations of the results are presented and discussed. Increasing in the time delay τ given decreasing and increasing in the regions of definition and stability respectively and the first mode has decreased magnitudes. The multivalued solutions disappear when decreasing the coefficients of cubic nonlinearities of the second mode α 3 and the detuning parameter σ 2 respectively. Both modes shift to the left for increasing linear feedback gain v 1 and the coefficient of parametric excitation f 1 respectively
Lu, Wen-Ting; Zhao, Hong-Kang; Wang, Jian
2018-03-01
Photon heat current tunneling through a series coupled two mesoscopic Josephson junction (MJJ) system biased by dc voltages has been investigated by employing the nonequilibrium Green’s function approach. The time-oscillating photon heat current is contributed by the superposition of different current branches associated with the frequencies of MJJs ω j (j = 1, 2). Nonlinear behaviors are exhibited to be induced by the self-inductance, Coulomb interaction, and interference effect relating to the coherent transport of Cooper pairs in the MJJs. Time-oscillating pumping photon heat current is generated in the absence of temperature difference, while it becomes zero after time-average. The combination of ω j and Coulomb interactions in the MJJs determines the concrete heat current configuration. As the external and intrinsic frequencies ω j and ω 0 of MJJs match some specific combinations, resonant photon heat current exhibits sinusoidal behaviors with large amplitudes. Symmetric and asymmetric evolutions versus time t with respect to ω 1 t and ω 2 t are controlled by the applied dc voltages of V 1 and V 2. The dc photon heat current formula is a special case of the general time-dependent heat current formula when the bias voltages are settled to zero. The Aharonov-Bohm effect has been investigated, and versatile oscillation structures of photon heat current can be achieved by tuning the magnetic fluxes threading through separating MJJs.
International Nuclear Information System (INIS)
Omelyan, Igor; Kovalenko, Andriy
2013-01-01
We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics
On the Coupling Time of the Heat-Bath Process for the Fortuin-Kasteleyn Random-Cluster Model
Collevecchio, Andrea; Elçi, Eren Metin; Garoni, Timothy M.; Weigel, Martin
2018-01-01
We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at least one. We make a number of conjectures regarding the asymptotic behaviour of the coupling time, motivated by rigorous results in one dimension and Monte Carlo simulations in dimensions two and three. Amongst our findings, we observe that, for generic parameter values, the distribution of the appropriately standardized coupling time converges to a Gumbel distribution, and that the standard deviation of the coupling time is asymptotic to an explicit universal constant multiple of the relaxation time. Perhaps surprisingly, we observe these results to hold both off criticality, where the coupling time closely mimics the coupon collector's problem, and also at the critical point, provided the cluster fugacity is below the value at which the transition becomes discontinuous. Finally, we consider analogous questions for the single-spin Ising heat-bath process.
Landau, Arie
2013-07-07
This paper presents a new method for calculating spectroscopic properties in the framework of response theory utilizing a sequence of similarity transformations (STs). The STs are preformed using the coupled cluster (CC) and Fock-space coupled cluster operators. The linear and quadratic response functions of the new similarity transformed CC response (ST-CCR) method are derived. The poles of the linear response yield excitation-energy (EE) expressions identical to the ones in the similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach. ST-CCR and STEOM-CC complement each other, in analogy to the complementarity of CC response (CCR) and equation-of-motion coupled cluster (EOM-CC). ST-CCR/STEOM-CC and CCR/EOM-CC yield size-extensive and size-intensive EEs, respectively. Other electronic-properties, e.g., transition dipole strengths, are also size-extensive within ST-CCR, in contrast to STEOM-CC. Moreover, analysis suggests that in comparison with CCR, the ST-CCR expressions may be confined to a smaller subspace, however, the precise scope of the truncation can only be determined numerically. In addition, reformulation of the time-independent STEOM-CC using the same parameterization as in ST-CCR, as well as an efficient truncation scheme, is presented. The shown convergence of the time-dependent and time-independent expressions displays the completeness of the presented formalism.
Church, Timothy S
2016-11-01
The analysis plan and article in this issue of the Journal by Evenson et al. (Am J Epidemiol 2016;184(9):621-632) is well-conceived, thoughtfully conducted, and tightly written. The authors utilized the National Health and Nutrition Examination Survey data set to examine the association between accelerometer-measured physical activity level and mortality and found that meeting the 2013 federal Physical Activity Guidelines resulted in a 35% reduction in risk of mortality. The timing of these findings could not be better, given the ubiquitous nature of personal accelerometer devices. The masses are already equipped to routinely quantify their activity, and now we have the opportunity and responsibility to provide evidenced-based, tailored physical activity goals. We have evidenced-based physical activity guidelines, mass distribution of devices to track activity, and now scientific support indicating that meeting the physical activity goal, as assessed by these devices, has substantial health benefits. All of the pieces are in place to make physical inactivity a national priority, and we now have the opportunity to positively affect the health of millions of Americans. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Reformulation of time-convolutionless mode-coupling theory near the glass transition
Tokuyama, Michio
2017-10-01
The time-convolutionless mode-coupling theory (TMCT) recently proposed is reformulated under the condition that one of two approximations, which have been used to formulate the original TMCT in addition to the MCT approximations done on a derivation of nonlinear memory function in terms of the intermediate-scattering function, is not employed because it causes unphysical results for intermediate times. The improved TMCT equation is then derived consistently under another approximation. It is first checked that the ergodic to non-ergodic transition obtained by a new equation is exactly the same as that obtained by an old one because the long-time dynamics of both equations coincides with each other. However, it is emphasized that a difference between them appears in the intermediate-time dynamics of physical quantities. Such a difference is explored numerically in the dynamics of a non-Gaussian parameter by employing the Percus-Yevick static structure factor to calculate the nonlinear memory function.
Time-Dependent Close-Coupling Methods for Electron-Atom/Molecule Scattering
International Nuclear Information System (INIS)
Colgan, James
2014-01-01
The time-dependent close-coupling (TDCC) method centers on an accurate representation of the interaction between two outgoing electrons moving in the presence of a Coulomb field. It has been extensively applied to many problems of electrons, photons, and ions scattering from light atomic targets. Theoretical Description: The TDCC method centers on a solution of the time-dependent Schrödinger equation for two interacting electrons. The advantages of a time-dependent approach are two-fold; one treats the electron-electron interaction essentially in an exact manner (within numerical accuracy) and a time-dependent approach avoids the difficult boundary condition encountered when two free electrons move in a Coulomb field (the classic three-body Coulomb problem). The TDCC method has been applied to many fundamental atomic collision processes, including photon-, electron- and ion-impact ionization of light atoms. For application to electron-impact ionization of atomic systems, one decomposes the two-electron wavefunction in a partial wave expansion and represents the subsequent two-electron radial wavefunctions on a numerical lattice. The number of partial waves required to converge the ionization process depends on the energy of the incoming electron wavepacket and on the ionization threshold of the target atom or ion.
Identification of Dobrava, Hantaan, Seoul, and Puumala viruses by one-step real-time RT-PCR.
Aitichou, Mohamed; Saleh, Sharron S; McElroy, Anita K; Schmaljohn, C; Ibrahim, M Sofi
2005-03-01
We developed four assays for specifically identifying Dobrava (DOB), Hantaan (HTN), Puumala (PUU), and Seoul (SEO) viruses. The assays are based on the real-time one-step reverse transcriptase polymerase chain reaction (RT-PCR) with the small segment used as the target sequence. The detection limits of DOB, HTN, PUU, and SEO assays were 25, 25, 25, and 12.5 plaque-forming units, respectively. The assays were evaluated in blinded experiments, each with 100 samples that contained Andes, Black Creek Canal, Crimean-Congo hemorrhagic fever, Rift Valley fever and Sin Nombre viruses in addition to DOB, HTN, PUU and SEO viruses. The sensitivity levels of the DOB, HTN, PUU, and SEO assays were 98%, 96%, 92% and 94%, respectively. The specificity of DOB, HTN and SEO assays was 100% and the specificity of the PUU assay was 98%. Because of the high levels of sensitivity, specificity, and reproducibility, we believe that these assays can be useful for diagnosing and differentiating these four Old-World hantaviruses.
A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.
Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M
2014-01-01
Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Daniel Junker
2012-01-01
Full Text Available Objectives. To evaluate prostate cancer (PCa detection rates of real-time elastography (RTE in dependence of tumor size, tumor volume, localization and histological type. Materials and Methods. Thirdy-nine patients with biopsy proven PCa underwent RTE before radical prostatectomy (RPE to assess prostate tissue elasticity, and hard lesions were considered suspicious for PCa. After RPE, the prostates were prepared as whole-mount step sections and were compared with imaging findings for analyzing PCa detection rates. Results. RTE detected 6/62 cancer lesions with a maximum diameter of 0–5 mm (9.7%, 10/37 with a maximum diameter of 6–10 mm (27%, 24/34 with a maximum diameter of 11–20 20 mm (70.6%, 14/14 with a maximum diameter of >20 mm (100% and 40/48 with a volume ≥0.2 cm3 (83.3%. Regarding cancer lesions with a volume ≥ 0.2 cm³ there was a significant difference in PCa detection rates between Gleason scores with predominant Gleason pattern 3 compared to those with predominant Gleason pattern 4 or 5 (75% versus 100%; P=0.028. Conclusions. RTE is able to detect PCa of significant tumor volume and of predominant Gleason pattern 4 or 5 with high confidence, but is of limited value in the detection of small cancer lesions.
Electron-impact ionization of oriented molecules using the time-dependent close-coupling approach
Energy Technology Data Exchange (ETDEWEB)
Colgan, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Pindzola, M S, E-mail: jcolgan@lanl.gov [Department of Physics, Auburn University, Auburn, AL 36849 (United States)
2011-04-01
An overview is given on recent progress on computing triple differential cross sections for electron-impact ionization of the hydrogen molecule using a time-dependent close-coupling approach. Our calculations, when averaged over all molecular orientations, are generally in very good agreement with (e,2e) measurements made on H{sub 2}, where the molecular orientation is unknown, for a range of incident energies and outgoing electron angles and energies. In this paper, we present TDCS for ionization of H{sub 2} at specific molecular orientations. It is hoped that this study will help stimulate future measurements of TDCS from oriented H{sub 2} at medium impact energies.
Transition among synchronous schemes in coupled nonidentical multiple time delay systems
International Nuclear Information System (INIS)
Thang Manh Hoang
2009-01-01
We present the transition among possible synchronous schemes in coupled nonidentical multiple time delay systems, i.e., lag, projective-lag, complete, anticipating and projective-anticipating synchronization. The number of nonlinear transforms in the master's equation can be different from that in slave's, and nonlinear transforms can be in various forms. The driving signal is the sum of nonlinearly transformed components of delayed state variable. Moreover, the equation representing for driving signal is constructed exactly so that the difference between the master's and slave's structures is complemented. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed models.
Gillet, P; Rapaille, A; Benoît, A; Ceinos, M; Bertrand, O; de Bouyalsky, I; Govaerts, B; Lambermont, M
2015-01-01
Whole blood donation is generally safe although vasovagal reactions can occur (approximately 1%). Risk factors are well known and prevention measures are shown as efficient. This study evaluates the impact of the donor's retention in relation to the occurrence of vasovagal reaction for the first three blood donations. Our study of data collected over three years evaluated the impact of classical risk factors and provided a model including the best combination of covariates predicting VVR. The impact of a reaction at first donation on return rate and complication until the third donation was evaluated. Our data (523,471 donations) confirmed the classical risk factors (gender, age, donor status and relative blood volume). After stepwise variable selection, donor status, relative blood volume and their interaction were the only remaining covariates in the model. Of 33,279 first-time donors monitored over a period of at least 15 months, the first three donations were followed. Data emphasised the impact of complication at first donation. The return rate for a second donation was reduced and the risk of vasovagal reaction was increased at least until the third donation. First-time donation is a crucial step in the donors' career. Donors who experienced a reaction at their first donation have a lower return rate for a second donation and a higher risk of vasovagal reaction at least until the third donation. Prevention measures have to be processed to improve donor retention and provide blood banks with adequate blood supply. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Okubo, Yoshiro; Schoene, Daniel; Lord, Stephen R
2017-04-01
To examine the effects of stepping interventions on fall risk factors and fall incidence in older people. Electronic databases (PubMed, EMBASE, CINAHL, Cochrane, CENTRAL) and reference lists of included articles from inception to March 2015. Randomised (RCT) or clinical controlled trials (CCT) of volitional and reactive stepping interventions that included older (minimum age 60) people providing data on falls or fall risk factors. Meta-analyses of seven RCTs (n=660) showed that the stepping interventions significantly reduced the rate of falls (rate ratio=0.48, 95% CI 0.36 to 0.65, prisk ratio=0.51, 95% CI 0.38 to 0.68, pfalls and proportion of fallers. A meta-analysis of two RCTs (n=62) showed that stepping interventions significantly reduced laboratory-induced falls, and meta-analysis findings of up to five RCTs and CCTs (n=36-416) revealed that stepping interventions significantly improved simple and choice stepping reaction time, single leg stance, timed up and go performance (pfalls among older adults by approximately 50%. This clinically significant reduction may be due to improvements in reaction time, gait, balance and balance recovery but not in strength. Further high-quality studies aimed at maximising the effectiveness and feasibility of stepping interventions are required. CRD42015017357. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Dumeige, Yannick; Féron, Patrice
2011-10-01
Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.
International Nuclear Information System (INIS)
Dumeige, Yannick; Feron, Patrice
2011-01-01
Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.
Not just a time-out: change dynamics of prayer for religious couples in conflict situations.
Butler, M H; Gardner, B C; Bird, M H
1998-01-01
For religious couples, the spiritual domain stands alongside biological, psychological, and systemic domains as an influence upon interaction and mechanism for change. A qualitative methodology consisting of structured interviews of religious spouses was used to investigate effects of prayer on couple interaction during conflict. A reliable description of the dynamics of prayer across spouse interviews was extracted by four analysts using a group interpretive procedure. Findings suggest that prayer invokes a couple-God system, which significantly influences couple interaction during conflict. Overall, prayer appears to be a significant "softening" event for religious couples, facilitating reconciliation and problem solving. Prayer 1) invokes an experience of relationship with Deity; 2) deescalates hostile emotions and reduces emotional reactivity; 3) enhances relationship and partner orientation and behavior; 4) facilitates empathy and unbiased perspective; 5) increases self-change focus; and 6) encourages couple responsibility for reconciliation and problem solving. Therapists' support of religious couples' use of prayer as a change mechanism is considered.
Energy Technology Data Exchange (ETDEWEB)
Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France); McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Glazyrin, K. [Photon Science, DESY, D-22607 Hamburg (Germany); Vasiukov, D.; Aprilis, G. [Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, D-95440 Bayreuth (Germany); Chumakov, A. I.; Rüffer, R. [ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France)
2015-11-15
Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.
Serum phthalate levels and time to pregnancy in couples from Greenland, Poland and Ukraine.
Directory of Open Access Journals (Sweden)
Ina Olmer Specht
Full Text Available Phthalates are ubiquitous industrial chemicals that have been associated with altered reproductive function in rodents. Several human studies have reported an inverse association between male testosterone and phthalate levels. Our aim was to investigate time to pregnancy (TTP according to serum levels of diethylhexyl phthalate (DEHP and diisononyl phthalate (DiNP metabolites in both partners. In 2002-2004 we enrolled 938 pregnant women and 401 male spouses from Greenland, Poland and Ukraine. Six oxidized metabolites of DEHP and DiNP were summarized for each of the two parent compounds to provide proxies of the internal exposure. We used Cox discrete-time models to estimate fecundability ratios (FR and 95% confidence intervals (95% CIs for men and women according to their proxy-DEHP or -DiNP serum levels adjusted for a fixed set of covariates. The FR was slightly elevated among women with high levels of DEHP (FR=1.14, 95% CI 1.00;1.30 suggesting a shorter TTP in these women. The FR was unrelated to DiNP in women, whereas the results for men were inconsistent pointing in opposite directions. First-time pregnant women from Greenland with high serum DiNP levels had a longer TTP. This study spanning large contrast in environmental exposure does not indicate adverse effects of phthalates on couple fecundity. The shorter TTP in women with high levels of DEHP metabolites is unexplained and needs further investigation.
Coupled kinetic equations for fermions and bosons in the relaxation-time approximation
Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw
2018-02-01
Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.
Unterweger, K.; Wittmann, R.; Neumann, P.; Weinzierl, T.; Bungartz, H.-J.
2015-01-01
© Springer International Publishing Switzerland 2015. We propose to couple our adaptive mesh refinement software PeanoClaw with existing solvers for complex overland flows that are tailored to regular Cartesian meshes. This allows us to augment them
International Nuclear Information System (INIS)
Aboanber, A.E.; Hamada, Y.M.
2008-01-01
An extensive knowledge of the spatial power distribution is required for the design and analysis of different types of current-generation reactors, and that requires the development of more sophisticated theoretical methods. Therefore, the need to develop new methods for multidimensional transient reactor analysis still exists. The objective of this paper is to develop a computationally efficient numerical method for solving the multigroup, multidimensional, static and transient neutron diffusion kinetics equations. A generalized Runge-Kutta method has been developed for the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic time step control. In addition, the A(α)-stability properties of the method are investigated. The analyses of two- and three-dimensional benchmark problems as well as static and transient problems, demonstrate that very accurate solutions can be obtained with assembly-sized spatial meshes. Preliminary numerical evaluations using two- and three-dimensional finite difference codes showed that the presented generalized Runge-Kutta method is highly accurate and efficient when compared with other optimized iterative numerical and conventional finite difference methods
Astefanoaei, Corina; Daye, Pierre M.; FitzGibbon, Edmond J.; Creanga, Dorina-Emilia; Rufa, Alessandra; Optican, Lance M.
2015-01-01
We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. Unexpectedly, in the perceptual task, subjects misperceived lights overlapping by less than ∼100 ms as separated in time (overlap seen as gap). We present an attention-perception model with a map of prominence in the superior colliculus that modulates the stimulus signal's effectiveness in the action and perception pathways. This common source of modulation determines how competition between stimuli is resolved, causes the TA dependence of action and perception to be the same, and causes the misperception. PMID:25632126
Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G
2010-12-01
This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.
Coupling mammalian demography to climate through satellite time series of plant phenology
Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.
2016-12-01
The seasonality of plant productivity governs the demography of primary and secondary consumers, and in arid ecosystems primary production is constrained by water availability. We relate the behavior, demography, and spatial distribution of large mammalian herbivores and their principal predator to remotely sensed indices of climate and vegetation across the western United States from 2000-2014. Terrain and plant community composition moderate the effects of climatological drought on primary productivity, resulting in spatial variation in ecosystem susceptibility to water stress. Herbivores track these patterns through habitat selection during key periods such as birthing and migration. Across a broad climatological gradient, timing of the start of growing season explains 75% of the variation in herbivore birth timing and 56% of the variation in neonatal survival rates. Initiation of autumn migration corresponds with the end of the growing season. Although indirectly coupled to primary production, carnivore home range size and population density are strongly correlated with plant productivity and growing-season length. Satellite measures of green reflectance during the peak of the growing season explain over 84% of the variation in carnivore home range size and 59% of the variation in density. Climate projections for the western United States predict warming temperatures and shifts in the timing and form of precipitation. Our analyses suggest that increased climatological variability will contribute to fluctuations in the composition and phenology of plant communities. These changes will propagate through consumer trophic levels, manifesting as increased home range area, shifts in the timing of migration, and greater volatility in large mammal populations. Combined with expansion and amplification of human land uses, these changes will likely have economic implications stemming from increased human-wildlife conflict and loss of ecosystem services.
Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony?
Directory of Open Access Journals (Sweden)
Andreas eKnoblauch
2012-08-01
Full Text Available Spike synchronization is thought to have a constructive role for feature integration, attention, associativelearning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoreticalstudies on spike-timing-dependent plasticity (STDP report an inherently decoupling influence of spikesynchronization on synaptic connections of coactivated neurons. For example, bidirectional synapticconnections as found in cortical areas could be reproduced only by assuming realistic models of STDP andrate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realisticSTDP models that provide a more complete characterization of conditions when STDP leads to eithercoupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistentlycouples synchronized neurons if key model parameters are matched to physiological data: First, synapticpotentiation must be significantly stronger than synaptic depression for small (positive or negative timelags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficientlyimprecise, for example, within a time window of 5-10msec instead of 1msec. Third, axonal propagationdelays should not be much larger than dendritic delays. Under these assumptions synchronized neuronswill be strongly coupled leading to a dominance of bidirectional synaptic connections even for simpleSTDP models and low mean firing rates at the level of spontaneous activity.
Directory of Open Access Journals (Sweden)
Craig Cora L
2011-06-01
Full Text Available Abstract Background This study examines associations between pedometer-determined steps/day and parent-reported child's Body Mass Index (BMI and time typically spent watching television between school and dinner. Methods Young people (aged 5-19 years were recruited through their parents by random digit dialling and mailed a data collection package. Information on height and weight and time spent watching television between school and dinner on a typical school day was collected from parents. In total, 5949 boys and 5709 girls reported daily steps. BMI was categorized as overweight or obese using Cole's cut points. Participants wore pedometers for 7 days and logged daily steps. The odds of being overweight and obese by steps/day and parent-reported time spent television watching were estimated using logistic regression for complex samples. Results Girls had a lower median steps/day (10682 versus 11059 for boys and also a narrower variation in steps/day (interquartile range, 4410 versus 5309 for boys. 11% of children aged 5-19 years were classified as obese; 17% of boys and girls were overweight. Both boys and girls watched, on average, Discussion Television viewing is the more prominent factor in terms of predicting overweight, and it contributes to obesity, but steps/day attenuates the association between television viewing and obesity, and therefore can be considered protective against obesity. In addition to replacing opportunities for active alternative behaviours, exposure to television might also impact body weight by promoting excess energy intake. Conclusions In this large nationally representative sample, pedometer-determined steps/day was associated with reduced odds of being obese (but not overweight whereas each parent-reported hour spent watching television between school and dinner increased the odds of both overweight and obesity.
Detection of bifurcations in noisy coupled systems from multiple time series
Williamson, Mark S.; Lenton, Timothy M.
2015-03-01
We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.
Detection of bifurcations in noisy coupled systems from multiple time series
International Nuclear Information System (INIS)
Williamson, Mark S.; Lenton, Timothy M.
2015-01-01
We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system
Detection of bifurcations in noisy coupled systems from multiple time series
Energy Technology Data Exchange (ETDEWEB)
Williamson, Mark S., E-mail: m.s.williamson@exeter.ac.uk; Lenton, Timothy M. [Earth System Science Group, College of Life and Environmental Sciences, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE (United Kingdom)
2015-03-15
We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.
Focal cryotherapy: step by step technique description
Directory of Open Access Journals (Sweden)
Cristina Redondo
Full Text Available ABSTRACT Introduction and objective: Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa. The purpose of this video is to describe the procedure step by step. Materials and methods: We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. Results: The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipment utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40°C to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1–5. Conclusions: Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment.
Sadygov, Rovshan G; Maroto, Fernando Martin; Hühmer, Andreas F R
2006-12-15
We present an algorithmic approach to align three-dimensional chromatographic surfaces of LC-MS data of complex mixture samples. The approach consists of two steps. In the first step, we prealign chromatographic profiles: two-dimensional projections of chromatographic surfaces. This is accomplished by correlation analysis using fast Fourier transforms. In this step, a temporal offset that maximizes the overlap and dot product between two chromatographic profiles is determined. In the second step, the algorithm generates correlation matrix elements between full mass scans of the reference and sample chromatographic surfaces. The temporal offset from the first step indicates a range of the mass scans that are possibly correlated, then the correlation matrix is calculated only for these mass scans. The correlation matrix carries information on highly correlated scans, but it does not itself determine the scan or time alignment. Alignment is determined as a path in the correlation matrix that maximizes the sum of the correlation matrix elements. The computational complexity of the optimal path generation problem is reduced by the use of dynamic programming. The program produces time-aligned surfaces. The use of the temporal offset from the first step in the second step reduces the computation time for generating the correlation matrix and speeds up the process. The algorithm has been implemented in a program, ChromAlign, developed in C++ language for the .NET2 environment in WINDOWS XP. In this work, we demonstrate the applications of ChromAlign to alignment of LC-MS surfaces of several datasets: a mixture of known proteins, samples from digests of surface proteins of T-cells, and samples prepared from digests of cerebrospinal fluid. ChromAlign accurately aligns the LC-MS surfaces we studied. In these examples, we discuss various aspects of the alignment by ChromAlign, such as constant time axis shifts and warping of chromatographic surfaces.
International Nuclear Information System (INIS)
Li Jin; Jin Long-Xu; Zhang Ran-Feng
2013-01-01
Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low-complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in multispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian—Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band
Drug-target residence time--a case for G protein-coupled receptors.
Guo, Dong; Hillger, Julia M; IJzerman, Adriaan P; Heitman, Laura H
2014-07-01
A vast number of marketed drugs act on G protein-coupled receptors (GPCRs), the most successful category of drug targets to date. These drugs usually possess high target affinity and selectivity, and such combined features have been the driving force in the early phases of drug discovery. However, attrition has also been high. Many investigational new drugs eventually fail in clinical trials due to a demonstrated lack of efficacy. A retrospective assessment of successfully launched drugs revealed that their beneficial effects in patients may be attributed to their long drug-target residence times (RTs). Likewise, for some other GPCR drugs short RT could be beneficial to reduce the potential for on-target side effects. Hence, the compounds' kinetics behavior might in fact be the guiding principle to obtain a desired and durable effect in vivo. We therefore propose that drug-target RT should be taken into account as an additional parameter in the lead selection and optimization process. This should ultimately lead to an increased number of candidate drugs moving to the preclinical development phase and on to the market. This review contains examples of the kinetics behavior of GPCR ligands with improved in vivo efficacy and summarizes methods for assessing drug-target RT. © 2014 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Jin Wang
2017-03-01
Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.
Fortage, Jérôme; Boixel, Julien; Blart, Errol; Hammarström, Leif; Becker, Hans Christian; Odobel, Fabrice
2008-01-01
The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical
Directory of Open Access Journals (Sweden)
Wenju Du
2016-01-01
Full Text Available In order to study the dynamic characteristics of urban public traffic network, this paper establishes the conventional bus traffic network and the urban rail traffic network based on the space R modeling method. Then regarding these two networks as the subnetwork, the paper presents a new bilayer coupled public traffic network through the transfer relationship between subway and bus, and this model well reflects the connection between the passengers and bus operating vehicles. Based on the synchronization theory of coupling network with time-varying delay and taking “Lorenz system” as the network node, the paper studies the synchronization of bilayer coupled public traffic network. Finally, numerical results are given to show the impact of public traffic dispatching, delayed departure, the number of public bus stops between bus lines, and the number of transfer stations between two traffic modes on the bilayer coupled public traffic network balance through Matlab simulation.
Energy Technology Data Exchange (ETDEWEB)
Wu Hao; Jiang Huijun [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2011-10-15
Highlights: > We compare neuronal dynamics in dependence on two types of delayed coupling. > Distinct results induced by different delayed coupling can be achieved. > Time delays in type 1 coupling can induce a most spatiotemporal ordered state. > For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {l_brace}x{sub j}(t - {tau}) - x{sub i}(t){r_brace} and {l_brace}x{sub j}(t - {tau}) - x{sub i}(t - {tau}){r_brace}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time {tau} is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.
International Nuclear Information System (INIS)
Wu Hao; Jiang Huijun; Hou Zhonghuai
2011-01-01
Highlights: → We compare neuronal dynamics in dependence on two types of delayed coupling. → Distinct results induced by different delayed coupling can be achieved. → Time delays in type 1 coupling can induce a most spatiotemporal ordered state. → For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {x j (t - τ) - x i (t)} and {x j (t - τ) - x i (t - τ)}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time τ is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.
Wang, Jong-Yi; Liang, Yia-Wen; Yeh, Chun-Chen; Liu, Chiu-Shong; Wang, Chen-Yu
2018-02-21
Spousal clustering of cancer warrants attention. Whether the common environment or high-age vulnerability determines cancer clustering is unclear. The risk of clustering in couples versus non-couples is undetermined. The time to cancer clustering after the first cancer diagnosis is yet to be reported. This study investigated cancer clustering over time among couples by using nationwide data. A cohort of 5643 married couples in the 2002-2013 Taiwan National Health Insurance Research Database was identified and randomly matched with 5643 non-couple pairs through dual propensity score matching. Factors associated with clustering (both spouses with tumours) were analysed by using the Cox proportional hazard model. Propensity-matched analysis revealed that the risk of clustering of all tumours among couples (13.70%) was significantly higher than that among non-couples (11.84%) (OR=1.182, 95% CI 1.058 to 1.321, P=0.0031). The median time to clustering of all tumours and of malignant tumours was 2.92 and 2.32 years, respectively. Risk characteristics associated with clustering included high age and comorbidity. Shared environmental factors among spouses might be linked to a high incidence of cancer clustering. Cancer incidence in one spouse may signal cancer vulnerability in the other spouse. Promoting family-oriented cancer care in vulnerable families and preventing shared lifestyle risk factors for cancer are suggested. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
International Nuclear Information System (INIS)
Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang
2008-01-01
In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micro-emulsion (ME) (BZ-AOT system), which consists of many small segments. 'Anti-phase spiral wave synchronization' can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.
International Nuclear Information System (INIS)
Song, Mi-Young; Jung, Young-Dae
2003-01-01
Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4
Wright, John; Parry, Jayne; Scully, Edward
2005-01-01
European Union (EU) Member States are interested in using health impact assessment (HIA) as a means of safeguarding their obligations to protect human health under the 1997 Treaty of Amsterdam. However, several have encountered difficulties institutionalizing HIA with the policy-making process. As a consequence, the World Health Organization (WHO) Regional Office for Europe has suggested coupling HIA with strategic environmental assessment (SEA). Traditionally, the incorporation of HIA into o...
Evans, Ryan W.; Zbieg, Jason R.; Zhu, Shaolin; Li, Wei; MacMillan, David W. C.
2013-01-01
The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst...
Kvelde, T.; Pijnappels, M.A.G.M.; Delbaere, K.; Close, J.C.; Lord, S.R.
2010-01-01
Background. The aim of the study was to use path analysis to test a theoretical model proposing that the relationship between self-reported depressed mood and choice stepping reaction time (CSRT) is mediated by psychoactive medication use, physiological performance, and cognitive ability.A total of
Du, Yuanqi; Xia, Ling; Xiao, Xiaohua; Li, Gongke; Chen, Xiaoguang
2018-06-15
Nowadays, the safety of cosmetics is a widespread concern. Amines are common cosmetic additives. Some of them such as amino acids are beneficial. Another kind of amines, however, ε-aminocaproic acid (EACA) is prohibited to add into cosmetics for its adverse reactions. In this study, a simple, rapid, sensitive and eco-friendly one-step ultrasonic-assisted extraction and derivatization (UAE-D) method was developed for determination of EACA and amino acids in cosmetics by coupling with high-performance liquid chromatography (HPLC). By using this sample preparation method, extraction and derivatization of EACA and amino acids were finished in one step in ultrasound field. During this procedure, 4-fluoro-7-nitrobenzofurazan (NBD-F)was applied as derivatization reagent. The extraction conditions including the amount of NBD-F, extraction and derivatization temperature, the ultrasonic vibration time and pH value of the aqueous phase were evaluated. Meanwhile, the extraction mechanism was investigated. Under optimized conditions, the method detection limits were 0.086-0.15 μg/L, and method quantitation limits were 0.29-0.47 μg/L with RSDs less than 3.7% (n = 3). The recoveries of EACA and amino acids obtained from cosmetic samples were in range from 76.9% to 122.3%. Amino acids were found in all selected samples and quantified in range from 1.9 ± 0.9 to 677.2 ± 17.9 μg/kg. And EACA was found and quantified with the contents of 1284.3 ± 22.1 μg/kg in a toner sample. This UAE-D-HPLC method shortened and simplified the sample pretreatment as well as enhanced the sensitivity of analytical method. In our record, only 10 min was needed for the total sample preparation process. And the method detection limits were two orders of magnitude less than literature reports. Furthermore, we reduced the consumption of solvent and minimized the usage of organic solvents, which made our method moving towards green analytical chemistry. In brief, our UAE
Energy Technology Data Exchange (ETDEWEB)
Oh, Suhk Kun [Chungbuk National University, Chungbuk (Korea, Republic of)
2006-01-15
As an extension of our previous work on the relationship between time in Monte Carlo simulation and time in the continuous master equation in the infinit-range Glauber kinetic Ising model in the absence of any magnetic field, we explored the same model in the presence of a static magnetic field. Monte Carlo steps per spin as time in the MC simulations again turns out to be proportional to time in the master equation for the model in relatively larger static magnetic fields at any temperature. At and near the critical point in a relatively smaller magnetic field, the model exhibits a significant finite-size dependence, and the solution to the Suzuki-Kubo differential equation stemming from the master equation needs to be re-scaled to fit the Monte Carlo steps per spin for the system with different numbers of spins.
International Nuclear Information System (INIS)
Zhang, Xing; Herbert, John M.
2014-01-01
We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state
Catapano, Ilaria; Soldovieri, Francesco
2015-04-01
In the research field of art and archaeology, scientific observation and analysis are hugely demanded to gather as more information as possible on the materials and techniques used to create artworks as well as in previous restoration actions. In this frame, diagnostic tools exploiting electromagnetic waves deserve massive interest tanks to their ability to provide non-invasive and possibly contactless characterization of the investigated objects. Among the electromagnetic diagnostic technologies, those working at frequencies belonging to the 0.1-10 THz range are currently deserving an increased attention since THz waves are capable of penetrating into optically opaque materials (up to the preparation layers), without direct contact and by involving sufficiently low energy to be considered as perfectly non-invasive in practice [1,2]. Moreover, being THz non-ionizing radiations, a moderate exposure to them implies minor long term risks to the molecular stability of the historical artifact and humans. Finally, recent developments of THz technology have allowed the commercialization of compact, flexible and portable systems. One of them is the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega, acquired by the Institute of Electromagnetic Sensing of the Environment (IREA) in 2013. This system works in the range from 60GHz to 3THz with a waveform acquisition speed up to 500Hz, it is equipped with fiber optic coupled transmitting and receiving probes and, few months ago, has been potentiated by means of an automatic positioning system enabling to scan a 150mm x 150mm area. In the frame of the IREA research activities regarding cultural heritage, the FICO system is currently adopted to perform both spectroscopy and imaging, which are the two kind of analysis wherein THz technology can be profitably explored [3]. In particular, THz spectroscopy is used to distinguish different artists materials by exploiting their peculiar fingerprint in the absorption
DEFF Research Database (Denmark)
Lange, Simon Lehnskov; Iwaszczuk, Krzysztof; Hoffmann, Matthias
2016-01-01
We present here a novel design for a coupled split ring resonator antenna optimized for time-domain electric field enhancement in the 0.1 to 1 terahertz (THz) range. The antenna is designed to be sensitive to the incident field polarization and seeks to avoid metal damage due to electron bombardm...
Tudor-Locke, Catrine; Craig, Cora L; Cameron, Christine; Griffiths, Joseph M
2011-01-01
Abstract Background This study examines associations between pedometer-determined steps/day and parent-reported child's Body Mass Index (BMI) and time typically spent watching television between school and dinner. Methods Young people (aged 5-19 years) were recruited through their parents by random digit dialling and mailed a data collection package. Information on height and weight and time spent watching television between school and dinner on a typical school day was collected from parents...
Energy Technology Data Exchange (ETDEWEB)
Yip, Cho Tung; Zhou, Limin [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (China); Huang, Haitao; Xie, Keyu; Wang, Yu. [Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University, Hung Hom, Kowloon (China); Feng, Tianhua; Li, Jensen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (China); Tam, Wing Yim [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (China)
2011-12-15
A TiO{sub 2} nanotube layer with a periodic structure is used as a photonic crystal to greatly enhance light harvesting in TiO{sub 2} nanotube-based dye-sensitized solar cells. Such a tube-on-tube structure fabricated by a single-step approach facilitates good physical contact, easy electrolyte infiltration, and efficient charge transport. An increase of over 50% in power conversion efficiency is obtained in comparison to reference cells without a photonic crystal layer (under similar total thickness and dye loading). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Directory of Open Access Journals (Sweden)
John McCamley
2017-01-01
Full Text Available The aim of this investigation was to compare and contrast the use of cross sample entropy (xSE and cross recurrence quantification analysis (cRQA measures for the assessment of coupling of rhythmical patterns. Measures were assessed using simulated signals with regular, chaotic, and random fluctuations in frequency, amplitude, and a combination of both. Biological data were studied as models of normal and abnormal locomotor-respiratory coupling. Nine signal types were generated for seven frequency ratios. Fifteen patients with COPD (abnormal coupling and twenty-one healthy controls (normal coupling walked on a treadmill at three speeds while breathing and walking were recorded. xSE and the cRQA measures of percent determinism, maximum line, mean line, and entropy were quantified for both the simulated and experimental data. In the simulated data, xSE, percent determinism, and entropy were influenced by the frequency manipulation. The 1 : 1 frequency ratio was different than other frequency ratios for almost all measures and/or manipulations. The patients with COPD used a 2 : 3 ratio more often and xSE, percent determinism, maximum line, mean line, and cRQA entropy were able to discriminate between the groups. Analysis of the effects of walking speed indicated that all measures were able to discriminate between speeds.
Statistical properties of multiphoton time-dependent three-boson coupled oscillators
Czech Academy of Sciences Publication Activity Database
Abdalla, M. S.; Peřina, Jan; Křepelka, Jaromír
2006-01-01
Roč. 23, č. 6 (2006), s. 1146-1160 ISSN 0740-3224 R&D Projects: GA MŠk(CZ) OC P11.003 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum statistic * coupled oscillators * multiphoton Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.002, year: 2006
Full-time working couples in the Netherlands: Causus and consequences
Gils, W.S. van
2007-01-01
The past decades have shown a dramatic increase in women's labour force participation in the Netherlands. Not only did this change the traditional division of labour within Dutch families, it also instigated the emergence of dual-earner couples. Households with two working spouses raised significant
Full-time working couples in the Netherlands : causes and consequences
Gils, Wouter Sebastiaan van
2007-01-01
The past decades have shown a dramatic increase in women's labour force participation in the Netherlands. Not only did this change the traditional division of labour within Dutch families, it also instigated the emergence of dual-earner couples. Households with two working spouses raised significant
DEFF Research Database (Denmark)
Nielsen, A. C. Y.; Bottiger, B.; Midgley, S. E.
2013-01-01
As the number of new enteroviruses and human parechoviruses seems ever growing, the necessity for updated diagnostics is relevant. We have updated an enterovirus assay and combined it with a previously published assay for human parechovirus resulting in a multiplex one-step RT-PCR assay....... The multiplex assay was validated by analysing the sensitivity and specificity of the assay compared to the respective monoplex assays, and a good concordance was found. Furthermore, the enterovirus assay was able to detect 42 reference strains from all 4 species, and an additional 9 genotypes during panel...... testing and routine usage. During 15 months of routine use, from October 2008 to December 2009, we received and analysed 2187 samples (stool samples, cerebrospinal fluids, blood samples, respiratory samples and autopsy samples) were tested, from 1546 patients and detected enteroviruses and parechoviruses...
Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance
Mirza, Imran M.; Begzjav, Tuguldur
2016-04-01
Recently a new class of single-photon timed Dicke (TD) subradiant states has been introduced with possible applications in single-photon-based quantum information storage and on demand ultrafast retrieval (Scully M. O., Phys. Rev. Lett., 115 (2015) 243602). However, the influence of any kind of virtual processes on the decay of these new kind of subradiant states has been left as an open question. In the present paper, we focus on this problem in detail. In particular, we investigate how pure Fano-Agarwal couplings and other virtual processes arising from non-rotating wave approximation impact the decay of otherwise sub- and superradiant states. In addition to the overall virtual couplings among all TD states, we also focus on the dominant role played by the couplings between specific TD states.
Jing, Ze; Yong, Huadong; Zhou, Youhe
2018-05-01
In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.
Ni, Limeng; Huynh, Uyen; Cheminal, Alexandre; Thomas, Tudor H; Shivanna, Ravichandran; Hinrichsen, Ture F; Ahmad, Shahab; Sadhanala, Aditya; Rao, Akshay
2017-11-28
Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH 3 (CH 2 ) 3 NH 3 ) 2 PbI 4 and hexylammonium lead iodide (CH 3 (CH 2 ) 5 NH 3 ) 2 PbI 4 , both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm -1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm -1 . Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.
The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.
Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.
2009-04-01
Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D
STeP: A Tool for the Development of Provably Correct Reactive and Real-Time Systems
National Research Council Canada - National Science Library
Manna, Zohar
1999-01-01
This research is directed towards the implementation of a comprehensive toolkit for the development and verification of high assurance reactive systems, especially concurrent, real time, and hybrid systems...
Energy Technology Data Exchange (ETDEWEB)
Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk [Mathematics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Berrada, K. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh (Saudi Arabia); Eleuch, H. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Department of Physics, Université de Montréal, 2900 boul. douard-Montpetit, Montreal, QC, H3T 1J4 (Canada)
2015-10-15
The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount of SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.
International Nuclear Information System (INIS)
Li Wenjun; China Academy of Engineering Physics, Mianyang; Xu Zhou; Li Ming; Yang Xingfan; Chen Yanan; Liu Jie; Jin Xiao; Lin Yuzheng
2008-01-01
In this paper, a time-domain equivalent circuit method is applied to solve dispersion of coupled-cavity travelling-wave tube (CCTWT). First, the time-domain circuit equations of CCTWT coupled-cavity chain are deduced from the equivalent circuit model. Then, the equations are solved numerically by fourth-order Runge-Kutta method and a program CTTDCP is developed using MATLAB. Last, a L-band CCTWT is calculated using CTTDCP and the cavity pass-band of this tube is computed to be 1.08-1.48 GHz, which is consistent with the experimental results and the simulation results of electromagnetic code and demonstrates the validity of the time-domain equivalent circuit method. In addition, a new design method which uses the equivalent circuit method and electromagnetic simulation together to optimize the cold cavity characteristics of CCTWT is proposed. (authors)
Directory of Open Access Journals (Sweden)
Xujian Shu
2018-03-01
Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.
Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Newrock, Richard S.; Cahay, Marc; Herbert, Stephen T.
2013-03-01
Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta-Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin-orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin-orbit coupling and a strong e-e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. Keynote talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.
International Nuclear Information System (INIS)
Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Cahay, Marc; Newrock, Richard S; Herbert, Stephen T
2013-01-01
Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta–Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin–orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin–orbit coupling and a strong e–e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. (review)
Purcaro, Giorgia; Picardo, Massimo; Barp, Laura; Moret, Sabrina; Conte, Lanfranco S
2013-09-13
The aim of the present work was to optimize a preparation step for polycyclic aromatic hydrocarbons in a fatty extract. Solid-phase microextraction is an easy preparation technique, which allows to minimize solvent consumption and reduce sample manipulation. A Carbopack Z/polydimethylsiloxane fiber, particularly suitable for extraction of planar compounds, was employed to extract polycyclic aromatic hydrocarbons from a hexane solution obtained after a previous extraction with acetonitrile from oil, followed by a liquid-liquid partition between acetonitrile and hexane. The proposed method was a rapid and sensitive solution to reduce the interference of triglycerides saving the column life and avoiding frequent cleaning of the mass spectrometer ion source. Despite the non-quantitative extraction of polycyclic aromatic hydrocarbons from oil using acetonitrile, the signal-to-noise ratio was significantly improved obtaining a limit of detection largely below the performance criteria required by the European Union legislation. Copyright © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Vinke, R.; Loehner, H.; Schaart, D.R.; Dam, H.T. van; Seifert, S.; Beekman, F.J.; Dendooven, P.
2010-01-01
When optimizing the timing performance of a time-of-flight positron emission tomography (TOF-PET) detector based on a monolithic scintillation crystal coupled to a photosensor array, time walk as a function of annihilation photon interaction location inside the crystal needs to be considered. In order to determine the 3D spatial coordinates of the annihilation photon interaction location, a maximum likelihood estimation algorithm was developed, based on a detector characterization by a scan of a 511 keV photon beam across the front and one of the side surfaces of the crystal. The time walk effect was investigated using a 20 mmx20 mmx12 mm LYSO crystal coupled to a fast 4x4 multi-anode photomultiplier tube (MAPMT). In the plane parallel to the photosensor array, a spatial resolution of 2.4 mm FWHM is obtained. In the direction perpendicular to the MAPMT (depth-of-interaction, DOI), the resolution ranges from 2.3 mm FWHM near the MAPMT to 4 mm FWHM at a distance of 10 mm. These resolutions are uncorrected for the ∼1mm beam diameter. A coincidence timing resolution of 358 ps FWHM is obtained in coincidence with a BaF 2 detector. A time walk depending on the 3D annihilation photon interaction location is observed. Throughout the crystal, the time walk spans a range of 100 ps. Calibration of the time walk vs. interaction location allows an event-by-event correction of the time walk.
Initial time singularities and admissible initial states for a system of coupled scalar fields
Energy Technology Data Exchange (ETDEWEB)
Baacke, Juergen [Technische Univ. Dortmund (Germany). Fakultaet Physik; Kevlishvili, Nina [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); GAS, Tbilisi (Georgia). Andronikashvili Inst. of Physics
2009-10-15
We discuss the problem of initial states for a system of coupled scalar fields out of equilibrium in the one-loop approximation. The fields consist of classical background fields, taken constant in space, and quantum fluctuations. If the initial state is the adiabatic vacuum, i.e., the ground state of a Fock space of particle excitations that diagonalize the mass matrix, the energy-momentum tensor is infinite at t=0, its most singular part behaves as 1/t. When the system is coupled to gravity this presents a problem that we solve by a Bogoliubov transformation of the naive initial state. As a side result we also discuss the canonical formalism and the adiabatic particle number for such a system. Most of the formalism is presented for Minkowksi space. Embedding the system and its dynamics into a flat FRW universe is straightforward and we briefly address the essential modifications. (orig.)
Initial time singularities and admissible initial states for a system of coupled scalar fields
International Nuclear Information System (INIS)
Baacke, Juergen; Kevlishvili, Nina; GAS, Tbilisi
2009-10-01
We discuss the problem of initial states for a system of coupled scalar fields out of equilibrium in the one-loop approximation. The fields consist of classical background fields, taken constant in space, and quantum fluctuations. If the initial state is the adiabatic vacuum, i.e., the ground state of a Fock space of particle excitations that diagonalize the mass matrix, the energy-momentum tensor is infinite at t=0, its most singular part behaves as 1/t. When the system is coupled to gravity this presents a problem that we solve by a Bogoliubov transformation of the naive initial state. As a side result we also discuss the canonical formalism and the adiabatic particle number for such a system. Most of the formalism is presented for Minkowksi space. Embedding the system and its dynamics into a flat FRW universe is straightforward and we briefly address the essential modifications. (orig.)
Stability analysis and synchronization in discrete-time complex networks with delayed coupling
Cheng, Ranran; Peng, Mingshu; Yu, Weibin; Sun, Bo; Yu, Jinchen
2013-12-01
A new network of coupled maps is proposed in which the connections between units involve no delays but the intra-neural communication does, whereas in the work of Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], the focus is on information processing delayed by the inter-neural communication. We show that the synchronization of the network depends on not only the intrinsic dynamical features and inter-connection topology (characterized by the spectrum of the graph Laplacian) but also the delays and the coupling strength. There are two main findings: (i) the more neighbours, the easier to be synchronized; (ii) odd delays are easier to be synchronized than even ones. In addition, compared with those discussed by Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], our model has a better synchronizability for regular networks and small-world variants.
International Nuclear Information System (INIS)
Tiwari, Abhinav; Igoshin, Oleg A
2012-01-01
Biochemical regulatory networks governing diverse cellular processes such as stress-response, differentiation and cell cycle often contain coupled feedback loops. We aim at understanding how features of feedback architecture, such as the number of loops, the sign of the loops and the type of their coupling, affect network dynamical performance. Specifically, we investigate how bistability range, maximum open-loop gain and switching times of a network with transcriptional positive feedback are affected by additive or multiplicative coupling with another positive- or negative-feedback loop. We show that a network's bistability range is positively correlated with its maximum open-loop gain and that both quantities depend on the sign of the feedback loops and the type of feedback coupling. Moreover, we find that the addition of positive feedback could decrease the bistability range if we control the basal level in the signal-response curves of the two systems. Furthermore, the addition of negative feedback has the capacity to increase the bistability range if its dissociation constant is much lower than that of the positive feedback. We also find that the addition of a positive feedback to a bistable network increases the robustness of its bistability range, whereas the addition of a negative feedback decreases it. Finally, we show that the switching time for a transition from a high to a low steady state increases with the effective fold change in gene regulation. In summary, we show that the effect of coupled feedback loops on the bistability range and switching times depends on the underlying mechanistic details. (paper)
Hopf bifurcation in love dynamical models with nonlinear couples and time delays
International Nuclear Information System (INIS)
Liao Xiaofeng; Ran Jiouhong
2007-01-01
A love dynamical models with nonlinear couples and two delays is considered. Local stability of this model is studied by analyzing the associated characteristic transcendental equation. We find that the Hopf bifurcation occurs when the sum of the two delays varies and passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. Numerical example is given to illustrate our results
Nielsen, Alex Christian Yde; Böttiger, Blenda; Midgley, Sofie Elisabeth; Nielsen, Lars Peter
2013-11-01
As the number of new enteroviruses and human parechoviruses seems ever growing, the necessity for updated diagnostics is relevant. We have updated an enterovirus assay and combined it with a previously published assay for human parechovirus resulting in a multiplex one-step RT-PCR assay. The multiplex assay was validated by analysing the sensitivity and specificity of the assay compared to the respective monoplex assays, and a good concordance was found. Furthermore, the enterovirus assay was able to detect 42 reference strains from all 4 species, and an additional 9 genotypes during panel testing and routine usage. During 15 months of routine use, from October 2008 to December 2009, we received and analysed 2187 samples (stool samples, cerebrospinal fluids, blood samples, respiratory samples and autopsy samples) were tested, from 1546 patients and detected enteroviruses and parechoviruses in 171 (8%) and 66 (3%) of the samples, respectively. 180 of the positive samples could be genotyped by PCR and sequencing and the most common genotypes found were human parechovirus type 3, echovirus 9, enterovirus 71, Coxsackievirus A16, and echovirus 25. During 2009 in Denmark, both enterovirus and human parechovirus type 3 had a similar seasonal pattern with a peak during the summer and autumn. Human parechovirus type 3 was almost invariably found in children less than 4 months of age. In conclusion, a multiplex assay was developed allowing simultaneous detection of 2 viruses, which can cause similar clinical symptoms. Copyright © 2013 Elsevier B.V. All rights reserved.
Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics
Directory of Open Access Journals (Sweden)
María S. Aymerich
2011-01-01
Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.
Progress toward coupled flux qubits with high connectivity and long coherence times
Weber, Steven; Hover, David; Rosenberg, Danna; Samach, Gabriel; Yoder, Jonilyn; Kerman, Andrew; Oliver, William
The ability to engineer interactions between qubits is essential to all areas of quantum information science. The capability to tune qubit-qubit couplings in situ is desirable for gate-based quantum computing and analog quantum simulation and necessary for quantum annealing. Consequently, tunable coupling has been the subject of several experimental efforts using both transmon qubits and flux qubits. Recently, our group has demonstrated robust and long-lived capacitively shunted (C-shunt) flux qubits. Here, we discuss our efforts to develop architectures for tunably coupling these qubits. In particular, we focus on optimizing the RF SQUID coupler to achieve high connectivity. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Effect of different air-drying time on the microleakage of single-step self-etch adhesives
Moosavi, Horieh; Forghani, Maryam; Managhebi, Esmatsadat
2013-01-01
Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO), Clearfil S3 Bond (CSB), Bond Force (BF). Each main group divided into three subgroups regarding the air-drying time: without application of air stream...
Time Spent in Home Production Activities by Married Couples and Single Adults with Children.
Douthitt, Robin A.
1988-01-01
A study found that, over time, married women employed full time have not decreased the time spent working in the home. Married men with young children have increased the time spent on home work. Single parents' time most closely resembled that of married women. (JOW)
Nakonieczna, Anna; Yeom, Dong-han
2016-05-01
Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.
Directory of Open Access Journals (Sweden)
Paula M Frew
2010-09-01
Full Text Available Paula M Frew1,2,3,4, Mark J Mulligan1,2,3, Su-I Hou5, Kayshin Chan3, Carlos del Rio1,2,3,61Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; 2Emory Center for AIDS Research, Atlanta, Georgia, USA; 3The Hope Clinic of the Emory Vaccine Center, Decatur, Georgia, USA; 4Department of Behavioral Sciences and Health Education, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA; 5Department of Health Promotion and Behavior, College of Public Health, University of Georgia, Athens, Georgia, USA; 6Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USAObjective: This study examines whether men-who-have-sex-with-men (MSM and transgender (TG persons’ attitudes, beliefs, and risk perceptions toward human immunodeficiency virus (HIV vaccine research have been altered as a result of the negative findings from a phase 2B HIV vaccine study.Design: We conducted a cross-sectional survey among MSM and TG persons (N = 176 recruited from community settings in Atlanta from 2007 to 2008. The first group was recruited during an active phase 2B HIV vaccine trial in which a candidate vaccine was being evaluated (the “Step Study”, and the second group was recruited after product futility was widely reported in the media.Methods: Descriptive statistics, t tests, and chi-square tests were conducted to ascertain differences between the groups, and ordinal logistic regressions examined the influences of the above-mentioned factors on a critical outcome, future HIV vaccine study participation. The ordinal regression outcomes evaluated the influences on disinclination, neutrality, and inclination to study participation.Results: Behavioral outcomes such as future recruitment, event attendance, study promotion, and community mobilization did not reveal any differences in participants’ intentions between the groups. However, we observed
Elliott, Mark A; du Bois, Naomi
2017-01-01
From the point of view of the cognitive dynamicist the organization of brain circuitry into assemblies defined by their synchrony at particular (and precise) oscillation frequencies is important for the correct correlation of all independent cortical responses to the different aspects of a given complex thought or object. From the point of view of anyone operating complex mechanical systems, i.e., those comprising independent components that are required to interact precisely in time, it follows that the precise timing of such a system is essential - not only essential but measurable, and scalable. It must also be reliable over observations to bring about consistent behavior, whatever that behavior is. The catastrophic consequence of an absence of such precision, for instance that required to govern the interference engine in many automobiles, is indicative of how important timing is for the function of dynamical systems at all levels of operation. The dynamics and temporal considerations combined indicate that it is necessary to consider the operating characteristic of any dynamical, cognitive brain system in terms, superficially at least, of oscillation frequencies. These may, themselves, be forensic of an underlying time-related taxonomy. Currently there are only two sets of relevant and necessarily systematic observations in this field: one of these reports the precise dynamical structure of the perceptual systems engaged in dynamical binding across form and time; the second, derived both empirically from perceptual performance data, as well as obtained from theoretical models, demonstrates a timing taxonomy related to a fundamental operator referred to as the time quantum. In this contribution both sets of theory and observations are reviewed and compared for their predictive consistency. Conclusions about direct comparability are discussed for both theories of cognitive dynamics and time quantum models. Finally, a brief review of some experimental data
International Nuclear Information System (INIS)
Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.
2004-01-01
Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment
Directory of Open Access Journals (Sweden)
Gaëlle Aeby
2014-06-01
Full Text Available Divorce and remarriage usually imply a redefinition of family boundaries, with consequences for the production and availability of social capital. This research shows that bonding and bridging social capitals are differentially made available by families. It first hypothesizes that bridging social capital is more likely to be developed in stepfamilies, and bonding social capital in first-time families. Second, the boundaries of family configurations are expected to vary within stepfamilies and within first-time families creating a diversity of family configurations within both structures. Third, in both cases, social capital is expected to depend on the ways in which their family boundaries are set up by individuals by including or excluding ex-partners, new partner's children, siblings, and other family ties. The study is based on a sample of 300 female respondents who have at least one child of their own between 5 and 13 years, 150 from a stepfamily structure and 150 from a first-time family structure. Social capital is empirically operationalized as perceived emotional support in family networks. The results show that individuals in first-time families more often develop bonding social capital and individuals in stepfamilies bridging social capital. In both cases, however, individuals in family configurations based on close blood and conjugal ties more frequently develop bonding social capital, whereas individuals in family configurations based on in-law, stepfamily or friendship ties are more likely to develop bridging social capital.
DEFF Research Database (Denmark)
Datta Gupta, Nabanita; Stratton, Leslie S.
2010-01-01
We exploit time diary data for couple households in Denmark and the United States to examine the impact alternative measures of intrahousehold bargaining power have upon different measures of individual time use. Power measures have traditionally been based on current earnings, but earnings are d...... and significantly associated with `power' than housework time and that education share performs quite well as a measure of power. These results are particularly strong on non-work days and in the United States....... are determined by past/present time use decisions and hence potentially endogenous. More powerful individuals have been hypothesized to spend less time on housework, however, housework time also depends upon relative preferences for home produced goods and relative productivity in home production. Gendered...
Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A
2017-01-01
Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.
International Nuclear Information System (INIS)
Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.
2011-01-01
Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.
Microsoft Office professional 2010 step by step
Cox, Joyce; Frye, Curtis
2011-01-01
Teach yourself exactly what you need to know about using Office Professional 2010-one step at a time! With STEP BY STEP, you build and practice new skills hands-on, at your own pace. Covering Microsoft Word, PowerPoint, Outlook, Excel, Access, Publisher, and OneNote, this book will help you learn the core features and capabilities needed to: Create attractive documents, publications, and spreadsheetsManage your e-mail, calendar, meetings, and communicationsPut your business data to workDevelop and deliver great presentationsOrganize your ideas and notes in one placeConnect, share, and accom
Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen
2017-03-01
Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.
Rouwet, Dmitri
2016-04-01
Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in
Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.
2013-01-01
Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.
International Nuclear Information System (INIS)
Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.
2004-01-01
We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed
International Nuclear Information System (INIS)
Busolo, F.; Conventi, L.; Grigolon, M.; Palu, G.
1991-01-01
Kinetics of [3H]-uridine uptake by murine peritoneal macrophages (pM phi) is early altered after exposure to a variety of stimuli. Alterations caused by Candida albicans, lipopolysaccharide (LPS) and recombinant interferon-gamma (rIFN-gamma) were similar in SAVO, C57BL/6, C3H/HeN and C3H/HeJ mice, and were not correlated with an activation process as shown by the amount of tumor necrosis factor-alpha (TNF-alpha) being released. Short-time exposure to all stimuli resulted in an increased nucleoside uptake by SAVO pM phi, suggesting that the tumoricidal function of this cell either depends from the type of stimulus or the time when the specific interaction with the cell receptor is taking place. Experiments with priming and triggering signals confirmed the above findings, indicating that the increase or the decrease of nucleoside uptake into the cell depends essentially on the chemical nature of the priming stimulus. The triggering stimulus, on the other hand, is only able to amplify the primary response
SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy
Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.
2016-08-01
SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.
International Nuclear Information System (INIS)
Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M
2014-01-01
The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)
International Nuclear Information System (INIS)
Imam-Dahroni; Dwi-Herwidhi; NS, Kasilani
2000-01-01
The research of the synthesis of matrix graphite on the step of bakingprocess was conducted, by focusing on the influence of time and velocityvariables of the inert gas. The investigation on baking times ranging from 5minutes to 55 minutes and by varying the velocity of inert gas from 0.30l/minute to 3.60 l/minute, resulted the product of different matrix.Optimizing at the time of operation and the flow rate of argon gas indicatedthat the baking time for 30 minutes and by the flow rate of argon gas of 2.60l/minute resulted best matrix graphite that has a hardness value of 11kg/mm 2 of hardness and the ductility of 1800 Newton. (author)
Ficanha, Evandro M; Ribeiro, Guilherme A; Knop, Lauren; Rastgaar, Mo
2017-07-01
This paper describes the methods and experiment protocols for estimation of the human ankle impedance during turning and straight line walking. The ankle impedance of two human subjects during the stance phase of walking in both dorsiflexion plantarflexion (DP) and inversion eversion (IE) were estimated. The impedance was estimated about 8 axes of rotations of the human ankle combining different amounts of DP and IE rotations, and differentiating among positive and negative rotations at 5 instants of the stance length (SL). Specifically, the impedance was estimated at 10%, 30%, 50%, 70% and 90% of the SL. The ankle impedance showed great variability across time, and across the axes of rotation, with consistent larger stiffness and damping in DP than IE. When comparing straight walking and turning, the main differences were in damping at 50%, 70%, and 90% of the SL with an increase in damping at all axes of rotation during turning.
Narumi, Takayuki; Tokuyama, Michio
2017-03-01
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.
Wierenga, Debbie; Engbers, Luuk H; van Empelen, Pepijn; Hildebrandt, Vincent H; van Mechelen, Willem
2012-08-07
Worksite health promotion programs (WHPPs) offer an attractive opportunity to improve the lifestyle of employees. Nevertheless, broad scale and successful implementation of WHPPs in daily practice often fails. In the present study, called BRAVO@Work, a 7-step implementation strategy was used to develop, implement and embed a WHPP in two different worksites with a focus on multiple lifestyle interventions.This article describes the design and framework for the formative evaluation of this 7-step strategy under real-time conditions by an embedded scientist with the purpose to gain insight into whether this this 7-step strategy is a useful and effective implementation strategy. Furthermore, we aim to gain insight into factors that either facilitate or hamper the implementation process, the quality of the implemented lifestyle interventions and the degree of adoption, implementation and continuation of these interventions. This study is a formative evaluation within two different worksites with an embedded scientist on site to continuously monitor the implementation process. Each worksite (i.e. a University of Applied Sciences and an Academic Hospital) will assign a participating faculty or a department, to implement a WHPP focusing on lifestyle interventions using the 7-step strategy. The primary focus will be to describe the natural course of development, implementation and maintenance of a WHPP by studying [a] the use and adherence to the 7-step strategy, [b] barriers and facilitators that influence the natural course of adoption, implementation and maintenance, and [c] the implementation process of the lifestyle interventions. All data will be collected using qualitative (i.e. real-time monitoring and semi-structured interviews) and quantitative methods (i.e. process evaluation questionnaires) applying data triangulation. Except for the real-time monitoring, the data collection will take place at baseline and after 6, 12 and 18 months. This is one of the few
Directory of Open Access Journals (Sweden)
Wierenga Debbie
2012-08-01
Full Text Available Abstract Background Worksite health promotion programs (WHPPs offer an attractive opportunity to improve the lifestyle of employees. Nevertheless, broad scale and successful implementation of WHPPs in daily practice often fails. In the present study, called BRAVO@Work, a 7-step implementation strategy was used to develop, implement and embed a WHPP in two different worksites with a focus on multiple lifestyle interventions. This article describes the design and framework for the formative evaluation of this 7-step strategy under real-time conditions by an embedded scientist with the purpose to gain insight into whether this this 7-step strategy is a useful and effective implementation strategy. Furthermore, we aim to gain insight into factors that either facilitate or hamper the implementation process, the quality of the implemented lifestyle interventions and the degree of adoption, implementation and continuation of these interventions. Methods and design This study is a formative evaluation within two different worksites with an embedded scientist on site to continuously monitor the implementation process. Each worksite (i.e. a University of Applied Sciences and an Academic Hospital will assign a participating faculty or a department, to implement a WHPP focusing on lifestyle interventions using the 7-step strategy. The primary focus will be to describe the natural course of development, implementation and maintenance of a WHPP by studying [a] the use and adherence to the 7-step strategy, [b] barriers and facilitators that influence the natural course of adoption, implementation and maintenance, and [c] the implementation process of the lifestyle interventions. All data will be collected using qualitative (i.e. real-time monitoring and semi-structured interviews and quantitative methods (i.e. process evaluation questionnaires applying data triangulation. Except for the real-time monitoring, the data collection will take place at baseline and
Cantera, Sara; Lebrero Fernández, Raquel; Rodríguez, Elisa; García Encina, Pedro A.; Muñoz Torre, Raúl
2017-01-01
Producción Científica This study demonstrates for the first time the feasibility of producing ectoine (a high added value osmoprotectant intensively used in the cosmetic industry) during the continuous abatement of diluted emissions of methane by Methylomicrobium alcaliphilum 20Z in stirred tank reactors under non-sterile conditions. An increase in NaCl concentration in the cultivation broth from 3 to 6% increased the intra-cellular ectoine yield by a factor of 2 (from 16.5 to 37.4 mg ecto...
Directory of Open Access Journals (Sweden)
Katia Begall
2013-10-01
Full Text Available Background: Fertility research often uses data from women only. This can bias the results if the effects of education and occupation on fertility are dependent upon the characteristics of the male partner. Using retrospective life-course information from both partners, this study examines the effects of educational and occupational characteristics on the transition to a first childbirth. Objective: The objective is to examine how the respective earning potential and career dynamics of the male and the female partners in couples influenced the timing of their entry into parenthood from 1960 to 2009 in the Netherlands, as well as the extent to which the characteristics of the two partners were interdependent in terms of their influence on the transition to a first birth. Methods: Using couple-period data from four pooled cross-sectional waves (1998-2009 of the Family Survey of the Dutch Population, discrete time event history models accounting for unobserved heterogeneity at the couple level are estimated to predict the birth of the first child, starting from the moment couples started living together. Results: The results show that a high earning potential of the female partner (based on her educational attainment, the status of her first job, and whether she is in full-time work or has supervisory responsibilities has delaying effects on her transition to a first childbirth. With regard to the male partner, the only significant predictors of the entry into parenthood are educational attainment and working hours, and there is no evidence of an interdependence of the partners. The comparison of effects over time indicates that the female partner's higher earning potential has become a stronger predictor of delayed parenthood over time, while a positive effect for the male partner's higher earning potential is seen only up to 1990. Conclusions: The results suggest that the educational and occupational characteristics and the labor market
Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta
2012-12-01
Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.
Bijttebier, Sebastiaan; Van der Auwera, Anastasia; Voorspoels, Stefan; Noten, Bart; Hermans, Nina; Pieters, Luc; Apers, Sandra
2016-04-01
Filipendula ulmaria (meadowsweet) is traditionally used for the treatment of inflammatory diseases and as a diuretic and antirheumatic. Extracts of Filipendulae herba are on the market in the European Union as food supplements. Nevertheless, its active constituents remain to be revealed. During this study, the phytochemical composition of Filipendulae Ulmariae Herba was comprehensively characterised for the first time with two complementary generic ultrahigh-performance liquid chromatography-photodiode array-accurate mass mass spectrometry methods. Selective ion fragmentation experiments with a hybrid quadrupole-orbital trap mass spectrometer significantly contributed to compound identification: a total of 119 compounds were tentatively identified, 69 new to F. ulmaria. A rich diversity of phenolic constituents was detected and only a few non-phenolic phytochemicals were observed. Metabolisation and pharmacological studies should be conducted to investigate which of these constituents or metabolites there of contribute to the activity of F. ulmaria after oral intake. Georg Thieme Verlag KG Stuttgart · New York.
Directory of Open Access Journals (Sweden)
Vanessa Suin
2014-01-01
Full Text Available A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR, based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.
Suin, Vanessa; Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael; Van Gucht, Steven
2014-01-01
A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤ 1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.
Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.
Fernández-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergő A; Maurer, Andrew P; Berényi, Antal; Buzsáki, György
2017-03-08
Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation. Copyright © 2017 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Hao Yu
2018-01-01
Full Text Available This study introduces a data-driven modeling strategy for smart grid power quality (PQ coupling assessment based on time series pattern matching to quantify the influence of single and integrated disturbance among nodes in different pollution patterns. Periodic and random PQ patterns are constructed by using multidimensional frequency-domain decomposition for all disturbances. A multidimensional piecewise linear representation based on local extreme points is proposed to extract the patterns features of single and integrated disturbance in consideration of disturbance variation trend and severity. A feature distance of pattern (FDP is developed to implement pattern matching on univariate PQ time series (UPQTS and multivariate PQ time series (MPQTS to quantify the influence of single and integrated disturbance among nodes in the pollution patterns. Case studies on a 14-bus distribution system are performed and analyzed; the accuracy and applicability of the FDP in the smart grid PQ coupling assessment are verified by comparing with other time series pattern matching methods.
Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M
2016-04-01
Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.
Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M
2016-01-01
The purpose of this study was to evaluate the effect of phosphoric acid pre-etching times on shear bond strength (SBS) and surface free energy (SFE) with single-step self-etch adhesives. The three single-step self-etch adhesives used were: 1) Scotchbond Universal Adhesive (3M ESPE), 2) Clearfil tri-S Bond (Kuraray Noritake Dental), and 3) G-Bond Plus (GC). Two no pre-etching groups, 1) untreated enamel and 2) enamel surfaces after ultrasonic cleaning with distilled water for 30 seconds to remove the smear layer, were prepared. There were four pre-etching groups: 1) enamel surfaces were pre-etched with phosphoric acid (Etchant, 3M ESPE) for 3 seconds, 2) enamel surfaces were pre-etched for 5 seconds, 3) enamel surfaces were pre-etched for 10 seconds, and 4) enamel surfaces were pre-etched for 15 seconds. Resin composite was bonded to the treated enamel surface to determine SBS. The SFEs of treated enamel surfaces were determined by measuring the contact angles of three test liquids. Scanning electron microscopy was used to examine the enamel surfaces and enamel-adhesive interface. The specimens with phosphoric acid pre-etching showed significantly higher SBS and SFEs than the specimens without phosphoric acid pre-etching regardless of the adhesive system used. SBS and SFEs did not increase for phosphoric acid pre-etching times over 3 seconds. There were no significant differences in SBS and SFEs between the specimens with and without a smear layer. The data suggest that phosphoric acid pre-etching of ground enamel improves the bonding performance of single-step self-etch adhesives, but these bonding properties do not increase for phosphoric acid pre-etching times over 3 seconds.
Spin-charge coupled dynamics driven by a time-dependent magnetization
Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo
2017-03-01
The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.
Energy-flux characterization of conical and space-time coupled wave packets
International Nuclear Information System (INIS)
Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di
2010-01-01
We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.
Kelvin wave coupling from TIMED and GOCE: Inter/intra-annual variability and solar activity effects
Gasperini, Federico; Forbes, Jeffrey M.; Doornbos, Eelco N.; Bruinsma, Sean L.
2018-06-01
The primary mechanism through which energy and momentum are transferred from the lower atmosphere to the thermosphere is through the generation and propagation of atmospheric waves. It is becoming increasingly evident that a few waves from the tropical wave spectrum preferentially propagate into the thermosphere and contribute to modify satellite drag. Two of the more prominent and well-established tropical waves are Kelvin waves: the eastward-propagating 3-day ultra-fast Kelvin wave (UFKW) and the eastward-propagating diurnal tide with zonal wave number 3 (DE3). In this work, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures at 110 km and Gravity field and steady-state Ocean Circulation Explorer (GOCE) neutral densities and cross-track winds near 260 km are used to demonstrate vertical coupling in this height regime due to the UFKW and DE3. Significant inter- and intra-annual variability is found in DE3 and the UFKW, with evidence of latitudinal broadening and filtering of the latitude structures with height due to the effect of dissipation and mean winds. Additionally, anti-correlation between the vertical penetration of these waves to the middle thermosphere and solar activity level is established and explained through the effect of molecular dissipation.
Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy
Energy Technology Data Exchange (ETDEWEB)
Fay, Stéphane, E-mail: steph.fay@gmail.com [Palais de la Découverte, Astronomy Department, Avenue Franklin Roosevelt, 75008 Paris (France)
2013-09-01
We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.
Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy
International Nuclear Information System (INIS)
Fay, Stéphane
2013-01-01
We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion
Jothiprakash, V.; Magar, R. B.
2012-07-01
SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.
Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng
2017-06-01
A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Dodonov, V.V.; Valverde, C.; Souza, L.S.; Baseia, B.
2011-01-01
The exact Wigner function of a parametrically excited quantum oscillator in a phase-sensitive amplifying/attenuating reservoir is found for initial even/odd coherent states. Studying the evolution of negativity of the Wigner function we show the difference between the 'initial positivization time' (IPT), which is inversely proportional to the square of the initial size of the superposition, and the 'final positivization time' (FPT), which does not depend on this size. Both these times can be made arbitrarily long in maximally squeezed high-temperature reservoirs. Besides, we find the conditions when some (small) squeezing can exist even after the Wigner function becomes totally positive. -- Highlights: → We study parametric excitation of a quantum oscillator in phase-sensitive baths. → Exact time-dependent Wigner function for initial even/odd coherent states is found. → The evolution of negativity of Wigner function is compared with the squeezing dynamics. → The difference between initial and final 'classicalization times' is emphasized. → Both these times can be arbitrarily long for rigged reservoirs at infinite temperature.
International Nuclear Information System (INIS)
Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol
2010-01-01
The dynamics of the time-dependent coupled oscillator model for the motion of a charged particle subjected to a time-dependent external magnetic field is investigated. We use the canonical transformation approach for the classical treatment of the system, whereas the unitary transformation approach is used in managing the system in the framework of quantum mechanics. For both approaches, the original system is transformed into a much more simple system that is the sum of two independent harmonic oscillators with time-dependent frequencies. We therefore easily identify the wavefunctions in the transformed system with the help of an invariant operator of the system. The full wavefunctions in the original system are derived from the inverse unitary transformation of the wavefunctions associated with the transformed system.
International Nuclear Information System (INIS)
Lee, T.V.; Rothstein, D.; Madey, R.
1986-01-01
The time-dependent concentration of a radioactive gas at the outlet of an adsorber bed for a step change in the input concentration is analyzed by the method of moments. This moment analysis yields analytical expressions for calculating the kinetic parameters of a gas adsorbed on a porous solid in terms of observables from a time-dependent transmission curve. Transmission is the ratio of the adsorbate outlet concentration to that at the inlet. The three nonequilibrium parameters are the longitudinal diffusion coefficient, the solid-phase diffusion coefficient, and the interfacial mass-transfer coefficient. Three quantities that can be extracted in principle from an experimental transmission curve are the equilibrium transmission, the average residence (or propagation) time, and the first-moment relative to the propagation time. The propagation time for a radioactive gas is given by the time integral of one minus the transmission (expressed as a fraction of the steady-state transmission). The steady-state transmission, the propagation time, and the first-order moment are functions of the three kinetic parameters and the equilibrium adsorption capacity. The equilibrium adsorption capacity is extracted from an experimental transmission curve for a stable gaseous isotope. The three kinetic parameters can be obtained by solving the three analytical expressions simultaneously. No empirical correlations are required
Directory of Open Access Journals (Sweden)
Rathinasamy Sakthivel
2018-01-01
Full Text Available The problem of robust nonfragile synchronization is investigated in this paper for a class of complex dynamical networks subject to semi-Markov jumping outer coupling, time-varying coupling delay, randomly occurring gain variation, and stochastic noise over a desired finite-time interval. In particular, the network topology is assumed to follow a semi-Markov process such that it may switch from one to another at different instants. In this paper, the random gain variation is represented by a stochastic variable that is assumed to satisfy the Bernoulli distribution with white sequences. Based on these hypotheses and the Lyapunov-Krasovskii stability theory, a new finite-time stochastic synchronization criterion is established for the considered network in terms of linear matrix inequalities. Moreover, the control design parameters that guarantee the required criterion are computed by solving a set of linear matrix inequality constraints. An illustrative example is finally given to show the effectiveness and advantages of the developed analytical results.
Wang, Pengfei; Jin, Wei; Su, Huan
2018-04-01
This paper deals with the synchronization problem of a class of coupled stochastic complex-valued drive-response networks with time-varying delays via aperiodically intermittent adaptive control. Different from the previous works, the intermittent control is aperiodic and adaptive, and the restrictions on the control width and time delay are removed, which lead to a larger application scope for this control strategy. Then, based on the Lyapunov method and Kirchhoff's Matrix Tree Theorem as well as differential inequality techniques, several novel synchronization conditions are derived for the considered model. Specially, impulsive control is also considered, which can be seen as a special case of the aperiodically intermittent control when the control width tends to zero. And the corresponding synchronization criteria are given as well. As an application of the theoretical results, a class of stochastic complex-valued coupled oscillators with time-varying delays is studied, and the numerical simulations are also given to demonstrate the effectiveness of the control strategies.
International Nuclear Information System (INIS)
Ren, Mingmin; Dressel, Bernd
2009-01-01
The ability of the RCCA (Rod Control Cluster Assemblies) in a pressurized water reactor (PWR) to be fully inserted into the core and to reach the dashpot within a required time limit is one of the important safety requirements for quick shutdown. This kind of quick shutdown in a PWR is initiated by allowing the control rod with the drive rod together to fall into the core by gravity. During normal operation, the RCCA drop time is mainly influenced by the weight of control assembly, hydraulic resistance in the CRDM (Control Rod Drive Mechanism), control rod guide assembly and guide thimbles and by the mechanical friction forces between the RCCA and its surroundings. In the case of an accident, e.g. earthquake, an additional influence of horizontal vibrations of the RCCA and its surroundings has to be considered [1]. A coupled hydraulic and structure-dynamic model is presented in this paper for prediction of RCCA drop time down to dashpot under hypothetical fuel assembly (FA) deformations. This coupled model was verified by RCCA static and dynamic drop tests with a deformed FA and by RCCA drop tests under operational conditions. (orig.)
Directory of Open Access Journals (Sweden)
Sunday O. Edeki
2018-03-01
Full Text Available In this study, approximate solutions of a system of time-fractional coupled Burger equations were obtained by means of a local fractional operator (LFO in the sense of the Caputo derivative. The LFO technique was built on the basis of the standard differential transform method (DTM. Illustrative examples used in demonstrating the effectiveness and robustness of the proposed method show that the solution method is very efficient and reliable as – unlike the variational iteration method – it does not depend on any process of identifying Lagrange multipliers, even while still maintaining accuracy.
Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa
2012-01-01
RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.
Perfluoroalkyl substances and time to pregnancy in couples from Greenland, Poland and Ukraine
Jørgensen, Kristian T; Specht, Ina O; Lenters, Virissa; Bach, Cathrine C; Rylander, Lars; Jönsson, Bo; Lindh, Christian H; Giwercman, Aleksander; Heederik, Dick; Toft, Gunnar; Bonde, Jens Peter
2014-01-01
BACKGROUND: Perfluoroalkyl substances (PFAS) are suggested to affect human fecundity through longer time to pregnancy (TTP). We studied the relationship between four abundant PFAS and TTP in pregnant women from Greenland, Poland and Ukraine representing varying PFAS exposures and pregnancy planning
Wan, Hui; Zhang, Kai; Rasch, Philip J.; Singh, Balwinder; Chen, Xingyuan; Edwards, Jim
2017-02-01
A test procedure is proposed for identifying numerically significant solution changes in evolution equations used in atmospheric models. The test issues a fail signal when any code modifications or computing environment changes lead to solution differences that exceed the known time step sensitivity of the reference model. Initial evidence is provided using the Community Atmosphere Model (CAM) version 5.3 that the proposed procedure can be used to distinguish rounding-level solution changes from impacts of compiler optimization or parameter perturbation, which are known to cause substantial differences in the simulated climate. The test is not exhaustive since it does not detect issues associated with diagnostic calculations that do not feedback to the model state variables. Nevertheless, it provides a practical and objective way to assess the significance of solution changes. The short simulation length implies low computational cost. The independence between ensemble members allows for parallel execution of all simulations, thus facilitating fast turnaround. The new method is simple to implement since it does not require any code modifications. We expect that the same methodology can be used for any geophysical model to which the concept of time step convergence is applicable.
Boix, Clara; Ibáñez, María; Bijlsma, Lubertus; Sancho, Juan V; Hernández, Félix
2014-03-01
11-Nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) is commonly selected as biomarker for the investigation of cannabis consumption through wastewater analysis. The removal efficiency of THC-COOH in wastewater treatment plants (WWTPs) has been reported to vary between 31% and 98%. Accordingly, possible transformation products (TPs) of this metabolite might be formed during treatment processes or in receiving surface water under environmental conditions. In this work, surface water was spiked with THC-COOH and subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet and simulated sunlight) experiments under laboratory-controlled conditions. One hydrolysis, eight chlorination, three ultraviolet photo-degradation and seven sunlight photo-degradation TPs were tentatively identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometer (LC-QTOF MS). In a subsequent step, THC-COOH and the identified TPs were searched in wastewater samples using LC coupled to tandem mass spectrometry (LC-MS/MS) with triple quadrupole. THC-COOH was found in all influent and effluent wastewater samples analyzed, although at significant lower concentrations in the effluent samples. The removal efficiency of WWTP under study was approximately 86%. Furthermore, THC-COOH was also investigated in several surface waters, and it was detected in 50% of the samples analyzed. Regarding TPs, none were found in influent wastewater, while one hydrolysis and five photo-degradation (simulated sunlight) TPs were detected in effluent and surface waters. The most detected compound, resulting from sunlight photo-degradation, was found in 60% of surface waters analyzed. This fact illustrates the importance of investigating these TPs in the aquatic environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Mirzaee, Hossein
2009-01-01
The Levenberg-Marquardt learning algorithm is applied for training a multilayer perception with three hidden layer each with ten neurons in order to carefully map the structure of chaotic time series such as Mackey-Glass time series. First the MLP network is trained with 1000 data, and then it is tested with next 500 data. After that the trained and tested network is applied for long-term prediction of next 120 data which come after test data. The prediction is such a way that, the first inputs to network for prediction are the four last data of test data, then the predicted value is shifted to the regression vector which is the input to the network, then after first four-step of prediction, the input regression vector to network is fully predicted values and in continue, each predicted data is shifted to input vector for subsequent prediction.
Directory of Open Access Journals (Sweden)
Shanming Wang
2015-01-01
Full Text Available Now electric machines integrate with power electronics to form inseparable systems in lots of applications for high performance. For such systems, two kinds of nonlinearities, the magnetic nonlinearity of iron core and the circuit nonlinearity caused by power electronics devices, coexist at the same time, which makes simulation time-consuming. In this paper, the multiloop model combined with FE model of AC-DC synchronous generators, as one example of electric machine with power electronics system, is set up. FE method is applied for magnetic nonlinearity and variable-step variable-topology simulation method is applied for circuit nonlinearity. In order to improve the simulation speed, the incomplete Cholesky conjugate gradient (ICCG method is used to solve the state equation. However, when power electronics device switches off, the convergence difficulty occurs. So a straightforward approach to achieve convergence of simulation is proposed. At last, the simulation results are compared with the experiments.
Perfluoroalkyl substances and time to pregnancy in couples from Greenland, Poland and Ukraine
DEFF Research Database (Denmark)
Jørgensen, Kristian T; Specht, Ina O; Lenters, Virissa
2014-01-01
BACKGROUND: Perfluoroalkyl substances (PFAS) are suggested to affect human fecundity through longer time to pregnancy (TTP). We studied the relationship between four abundant PFAS and TTP in pregnant women from Greenland, Poland and Ukraine representing varying PFAS exposures and pregnancy planning...... behaviors. METHODS: We measured serum levels of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) in 938 women from Greenland (448 women), Poland (203 women) and Ukraine (287 women). PFAS exposure was assessed...... weaker for women from Poland and Ukraine. PFOS, PFOA and PFHxS were not consistently associated with TTP. CONCLUSIONS: Findings do not provide consistent evidence that environmental exposure to PFAS is impairing female fecundity by delaying time taken to conceive....
Directory of Open Access Journals (Sweden)
Yi-qi Yan
2009-12-01
Full Text Available This study evaluated the application of the European flood forecasting operational real time system (EFFORTS to the Yellow River. An automatic data pre-processing program was developed to provide real-time hydrometeorological data. Various GIS layers were collected and developed to meet the demands of the distributed hydrological model in the EFFORTS. The model parameters were calibrated and validated based on more than ten years of historical hydrometeorological data from the study area. The San-Hua Basin (from the Sanmenxia Reservoir to the Huayuankou Hydrological Station, the most geographically important area of the Yellow River, was chosen as the study area. The analysis indicates that the EFFORTS enhances the work efficiency, extends the flood forecasting lead time, and attains an acceptable level of forecasting accuracy in the San-Hua Basin, with a mean deterministic coefficient at Huayuankou Station, the basin outlet, of 0.90 in calibration and 0.96 in validation. The analysis also shows that the simulation accuracy is better for the southern part than for the northern part of the San-Hua Basin. This implies that, along with the characteristics of the basin and the mechanisms of runoff generation of the hydrological model, the hydrometeorological data play an important role in simulation of hydrological behavior.
On coupling fluid plasma and kinetic neutral physics models
Directory of Open Access Journals (Sweden)
I. Joseph
2017-08-01
Full Text Available The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.
Perfluoroalkyl substances and time to pregnancy in couples from Greenland, Poland and Ukraine.
Jørgensen, Kristian T; Specht, Ina O; Lenters, Virissa; Bach, Cathrine C; Rylander, Lars; Jönsson, Bo A G; Lindh, Christian H; Giwercman, Aleksander; Heederik, Dick; Toft, Gunnar; Bonde, Jens Peter
2014-12-22
Perfluoroalkyl substances (PFAS) are suggested to affect human fecundity through longer time to pregnancy (TTP). We studied the relationship between four abundant PFAS and TTP in pregnant women from Greenland, Poland and Ukraine representing varying PFAS exposures and pregnancy planning behaviors. We measured serum levels of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) in 938 women from Greenland (448 women), Poland (203 women) and Ukraine (287 women). PFAS exposure was assessed on a continuous logarithm transformed scale and in country-specific tertiles. We used Cox discrete-time models and logistic regression to estimate fecundability ratios (FRs) and infertility (TTP >13 months) odds ratios (ORs), respectively, and 95% confidence intervals (CI) according to PFAS levels. Adjusted analyses of the association between PFAS and TTP were done for each study population and in a pooled sample. Higher PFNA levels were associated with longer TTP in the pooled sample (log-scale FR = 0.80; 95% CI 0.69-0.94) and specifically in women from Greenland (log-scale FR = 0.72; 95% CI 0.58-0.89). ORs for infertility were also increased in the pooled sample (log-scale OR = 1.53; 95% CI 1.08-2.15) and in women from Greenland (log-scale OR = 1.97; 95% CI 1.22-3.19). However, in a sensitivity analysis of primiparous women these associations could not be replicated. Associations with PFNA were weaker for women from Poland and Ukraine. PFOS, PFOA and PFHxS were not consistently associated with TTP. Findings do not provide consistent evidence that environmental exposure to PFAS is impairing female fecundity by delaying time taken to conceive.
International Nuclear Information System (INIS)
Cullen, D.E
2000-01-01
TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files
Cullen, D
2000-01-01
TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files.
Monna, F.; Loizeau, J.-L.; Thomas, B. A.; Guéguen, C.; Favarger, P.-Y.
1998-08-01
One of the factors limiting the precision of inductively coupled plasma mass spectrometry is the counting statistics, which depend upon acquisition time and ion fluxes. In the present study, the precision of the isotopic measurements of Pb and Sr is examined. The time of measurement is optimally shared for each isotope, using a mathematical simulation, to provide the lowest theoretical analytical error. Different algorithms of mass bias correction are also taken into account and evaluated in term of improvement of overall precision. Several experiments allow a comparison of real conditions with theory. The present method significantly improves the precision, regardless of the instrument used. However, this benefit is more important for equipment which originally yields a precision close to that predicted by counting statistics. Additionally, the procedure is flexible enough to be easily adapted to other problems, such as isotopic dilution.
International Nuclear Information System (INIS)
Ortelli, Didier; Edder, Patrick; Cognard, Emmanuelle; Jan, Philippe
2008-01-01
Cyanobacteria, commonly called 'blue-green algae', may accumulate in surface water supplies as 'blooms' and may concentrate on the surface as blue-green 'scums'. Some species of cyanobacteria produce toxins and are of relevance to water supplies and to microalgae dietary supplements. To ensure the safety of drinking water and blue-green algae products, analyses are the only way to determine the presence or absence of toxins. This paper shows the use of ultra performance liquid chromatography (UPLC) coupled to orthogonal acceleration time of flight (TOF) mass spectrometry for the detection and quantitation of microcystins. The method presented is very sensitive, simple, fast, robust and did not require fastidious clean-up step. Limits of detection of 0.1 μg L -1 in water and 0.1-0.2 μg g -1 in microalgae samples were achieved. Method performances were satisfactory and appropriate for monitoring of water and dietary supplements. The method was applied in routine to samples taken from Swiss market or buy on internet website. Among 19 samples, six showed the presence of microcystins LR and LA at harmful levels
Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun
2017-09-19
In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.
International Nuclear Information System (INIS)
Kimura, Fumiko; Umezawa, Tatsuo; Asano, Tomonari; Chihara, Ruri; Nishi, Naoko; Nishimura, Shigeyoshi; Sakai, Fumikazu
2010-01-01
We compared stair-step artifacts and radiation dose between prospective electrocardiography (ECG)-gated coronary computed tomography angiography (prospective CCTA) and retrospective CCTA using 64-detector CT and determined the optimal padding time (PT) for prospective CCTA. We retrospectively evaluated 183 patients [mean heart rate (HR) <65 beats/min, maximum HR instability <5 beats/min] who had undergone CCTA. We scored stair-step artifacts from 1 (severe) to 5 (none) and evaluated the effective dose in 53 patients with retrospective CCTA and 130 with prospective CCTA (PT 200 ms, n=32; PT 50 ms, n=98). Mean artifact scores were 4.3 in both retrospective and prospective CCTAs. However, statistically more arteries scored <3 (nonassessable) on prospective CCTA (P<0.001). Mean scores for prospective CCTA with 200- and 50-ms PT were 4.1 and 4.3, respectively (no significant difference). The radiation dose of prospective CCTA was reduced by 59.1% to 80.7%. Prospective CCTA reduces the radiation dose and allows diagnostic imaging in most cases but shows more nonevaluable artifacts than retrospective CCTA. Use of 50-ms instead of 200-ms PT appears to maintain image quality in patients with a mean HR <65 beats/min and HR instability of <5 beats/min. (author)
Senf, Cornelius; Pflugmacher, Dirk; Hostert, Patrick; Seidl, Rupert
2017-08-01
Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr -1 to 0.95% yr -1 , and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in
Bassett-Gunter, Rebecca L; Levy-Milne, Ryna; Naylor, Patti Jean; Symons Downs, Danielle; Benoit, Cecilia; Warburton, Darren E R; Blanchard, Chris M; Rhodes, Ryan E
2015-01-01
To examine the relationship between Theory of Planned Behavior (TPB) beliefs and eating behavior, explore which beliefs have the greatest association with eating behavior, and explore differences between adults without children and first-time parents. Longitudinal evaluation via questionnaires and food records at baseline and 6 and 12 months. Couples without children (n = 72) and first-time parents (n = 100). fruit and vegetable consumption and fat consumption. TPB beliefs. Pearson correlations between TPB beliefs and eating behavior; exploratory data reduction via linear regression. Control beliefs were associated with eating behavior (r = .26-.46; P controlling for past behavior, control beliefs were associated with eating behavior for first-time parents only. Control beliefs regarding preparation and time had the strongest associations with fruit and vegetable consumption for mothers (β = .26; P control beliefs suggests room for improvement via intervention. Interventions guided by TPB should target control beliefs to enhance healthy eating among new parents. Strategies (eg, individual, environmental, policy) to enhance control beliefs regarding healthy eating despite limited time and opportunity for preparation may be particularly valuable. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Study of the solar wind coupling to the time difference horizontal geomagnetic field
Directory of Open Access Journals (Sweden)
P. Wintoft
2005-07-01
Full Text Available The local ground geomagnetic field fluctuations (Δ B are dominated by high frequencies and 83% of the power is located at periods of 32 min or less. By forming 10-min root-mean-square (RMS of Δ B a major part of this variation is captured. Using measured geomagnetic induced currents (GIC, from a power grid transformer in Southern Sweden, it is shown that the 10-min standard deviation GIC may be computed from a linear model using the RMS Δ X and Δ Y at Brorfelde (BFE: 11.67° E, 55.63° N, Denmark, and Uppsala (UPS: 17.35° E, 59.90° N, Sweden, with a correlation of 0.926±0.015. From recurrent neural network models, that are driven by solar wind data, it is shown that the log RMS Δ X and Δ Y at the two locations may be predicted up to 30 min in advance with a correlation close to 0.8: 0.78±0.02 for both directions at BFE; 0.81±0.02 and 0.80±0.02 in the X- and Y-directions, respectively, at UPS. The most important inputs to the models are the 10-min averages of the solar wind magnetic field component B_{z} and velocity V, and the 10-min standard deviation of the proton number density σ_{n}. The average proton number density n has no influence.
Keywords. Magnetospheric physics (Solar wind - magnetosphere interactions – Geomagnetism and paleomagnetism (Rapid time variations
International Nuclear Information System (INIS)
Carrander, Claes; Mousavi, Seyed Ali; Engdahl, Göran
2017-01-01
In many transformer applications, it is necessary to have a core magnetization model that takes into account both magnetic and electrical effects. This becomes particularly important in three-phase transformers, where the zero-sequence impedance is generally high, and therefore affects the magnetization very strongly. In this paper, we demonstrate a time-step topological simulation method that uses a lumped-element approach to accurately model both the electrical and magnetic circuits. The simulation method is independent of the used hysteresis model. In this paper, a hysteresis model based on the first-order reversal-curve has been used. - Highlights: • A lumped-element method for modelling transformers i demonstrated. • The method can include hysteresis and arbitrarily complex geometries. • Simulation results for one power transformer are compared to measurements. • An analytical curve-fitting expression for static hysteresis loops is shown.
Navon, I. M.; Yu, Jian
A FORTRAN computer program is presented and documented applying the Turkel-Zwas explicit large time-step scheme to a hemispheric barotropic model with constraint restoration of integral invariants of the shallow-water equations. We then proceed to detail the algorithms embodied in the code EXSHALL in this paper, particularly algorithms related to the efficiency and stability of T-Z scheme and the quadratic constraint restoration method which is based on a variational approach. In particular we provide details about the high-latitude filtering, Shapiro filtering, and Robert filtering algorithms used in the code. We explain in detail the various subroutines in the EXSHALL code with emphasis on algorithms implemented in the code and present the flowcharts of some major subroutines. Finally, we provide a visual example illustrating a 4-day run using real initial data, along with a sample printout and graphic isoline contours of the height field and velocity fields.
Fisher, Abi; Ucci, Marcella; Smith, Lee; Sawyer, Alexia; Spinney, Richard; Konstantatou, Marina; Marmot, Alexi
2018-06-01
Office-based workers spend a large proportion of the day sitting and tend to have low overall activity levels. Despite some evidence that features of the external physical environment are associated with physical activity, little is known about the influence of the spatial layout of the internal environment on movement, and the majority of data use self-report. This study investigated associations between objectively-measured sitting time and activity levels and the spatial layout of office floors in a sample of UK office-based workers. Participants wore activPAL accelerometers for at least three consecutive workdays. Primary outcomes were steps and proportion of sitting time per working hour. Primary exposures were office spatial layout, which was objectively-measured by deriving key spatial variables: 'distance from each workstation to key office destinations', 'distance from participant's workstation to all other workstations', 'visibility of co-workers', and workstation 'closeness'. 131 participants from 10 organisations were included. Fifty-four per cent were female, 81% were white, and the majority had a managerial or professional role (72%) in their organisation. The average proportion of the working hour spent sitting was 0.7 (SD 0.15); participants took on average 444 (SD 210) steps per working hour. Models adjusted for confounders revealed significant negative associations between step count and distance from each workstation to all other office destinations (e.g., B = -4.66, 95% CI: -8.12, -1.12, p office destinations (e.g., B = -6.45, 95% CI: -11.88, -0.41, p office destinations the less they walked, suggesting that changing the relative distance between workstations and other destinations on the same floor may not be the most fruitful target for promoting walking and reducing sitting in the workplace. However, reported effect sizes were very small and based on cross-sectional analyses. The approaches developed in this study could be applied to other
Meliga, Philippe
2017-07-01
We provide in-depth scrutiny of two methods making use of adjoint-based gradients to compute the sensitivity of drag in the two-dimensional, periodic flow past a circular cylinder (Re≲189 ): first, the time-stepping analysis used in Meliga et al. [Phys. Fluids 26, 104101 (2014), 10.1063/1.4896941] that relies on classical Navier-Stokes modeling and determines the sensitivity to any generic control force from time-dependent adjoint equations marched backwards in time; and, second, a self-consistent approach building on the model of Mantič-Lugo et al. [Phys. Rev. Lett. 113, 084501 (2014), 10.1103/PhysRevLett.113.084501] to compute semilinear approximations of the sensitivity to the mean and fluctuating components of the force. Both approaches are applied to open-loop control by a small secondary cylinder and allow identifying the sensitive regions without knowledge of the controlled states. The theoretical predictions obtained by time-stepping analysis reproduce well the results obtained by direct numerical simulation of the two-cylinder system. So do the predictions obtained by self-consistent analysis, which corroborates the relevance of the approach as a guideline for efficient and systematic control design in the attempt to reduce drag, even though the Reynolds number is not close to the instability threshold and the oscillation amplitude is not small. This is because, unlike simpler approaches relying on linear stability analysis to predict the main features of the flow unsteadiness, the semilinear framework encompasses rigorously the effect of the control on the mean flow, as well as on the finite-amplitude fluctuation that feeds back nonlinearly onto the mean flow via the formation of Reynolds stresses. Such results are especially promising as the self-consistent approach determines the sensitivity from time-independent equations that can be solved iteratively, which makes it generally less computationally demanding. We ultimately discuss the extent to
Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent
2015-10-01
Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.
Kossieris, Panagiotis; Makropoulos, Christos; Onof, Christian; Koutsoyiannis, Demetris
2018-01-01
Many hydrological applications, such as flood studies, require the use of long rainfall data at fine time scales varying from daily down to 1 min time step. However, in the real world there is limited availability of data at sub-hourly scales. To cope with this issue, stochastic disaggregation techniques are typically employed to produce possible, statistically consistent, rainfall events that aggregate up to the field data collected at coarser scales. A methodology for the stochastic disaggregation of rainfall at fine time scales was recently introduced, combining the Bartlett-Lewis process to generate rainfall events along with adjusting procedures to modify the lower-level variables (i.e., hourly) so as to be consistent with the higher-level one (i.e., daily). In the present paper, we extend the aforementioned scheme, initially designed and tested for the disaggregation of daily rainfall into hourly depths, for any sub-hourly time scale. In addition, we take advantage of the recent developments in Poisson-cluster processes incorporating in the methodology a Bartlett-Lewis model variant that introduces dependence between cell intensity and duration in order to capture the variability of rainfall at sub-hourly time scales. The disaggregation scheme is implemented in an R package, named HyetosMinute, to support disaggregation from daily down to 1-min time scale. The applicability of the methodology was assessed on a 5-min rainfall records collected in Bochum, Germany, comparing the performance of the above mentioned model variant against the original Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the disaggregation process reproduces adequately the most important statistical characteristics of rainfall at wide range of time scales, while the introduction of the model with dependent intensity-duration results in a better performance in terms of skewness, rainfall extremes and dry proportions.
Miyamoto, Yasuhisa; Washida, Kazuto; Uyama, Atsuo; Mochizuki, Naoki
2014-01-01
The contaminants in a beverage product that had been reported to have a strange taste were identified. By comparative analysis with the normal product using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), six unknown compounds were detected in the total ion current chromatograms of the product in question. Detailed analysis of the mass spectra and product ion spectra of these compounds strongly suggested that the compounds were capric acid diethanolamide, lauric acid diethanolamide, myristic acid diethanolamide, lauryl dimethylaminoacetic acid, lauryl sulfate, and lauric acid, all of which are surfactants commonly used as ingredients of household detergents and shampoos. We searched commercially available detergent products to check for the presence of these six surfactants, and identified products that might have been intentionally or unintentionally mixed into the beverage product after opening.
Fredman, Steffany J; Le, Yunying; Marshall, Amy D; Brick, Timothy R; Feinberg, Mark E
2017-06-01
Posttraumatic stress disorder (PTSD) symptoms are associated with disruptions in both couple functioning and parenting, and limited research suggests that, among military couples, perceptions of couple functioning and parenting stress are a function of both one's own and one's partner's mental health symptoms. However, this work has not been generalized to civilian couples, and little is known about the associations between PTSD symptoms and family adjustment in specific family developmental contexts. We examined PTSD symptoms' associations with perceived couple functioning and parenting stress within a dyadic context in civilian couples who had participated in a randomized controlled trial of a universal, couple-based transition to parenthood program and at least one member of the couple reported having experienced a Criterion A1 traumatic event. Results of actor-partner interdependence models revealed that parents' own and partners' PTSD symptoms were negatively associated with perceived couple functioning; contrary to expectation, the association of partners' PTSD symptoms with perceived couple functioning was strongest among men who received the intervention. A parent's own PTSD symptoms were positively associated with parenting stress for both men and women and were unexpectedly strongest for men who received the intervention. Partner PTSD symptoms were also positively associated with increased parenting stress for both men and women. Findings support a dyadic conceptualization of the associations between spouses' PTSD symptoms and family outcomes during the transition to parenthood and suggest that participating in a couple-based, psychoeducational program during this phase in the family life cycle may be particularly salient for men.
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José; Liu, Qinya; Zhou, Bing
2017-05-01
We carry out full waveform inversion (FWI) in time domain based on an alternative frequency-band selection strategy that allows us to implement the method with success. This strategy aims at decomposing the seismic data within partially overlapped frequency intervals by carrying out a concatenated treatment of the wavelet to largely avoid redundant frequency information to adapt to wavelength or wavenumber coverage. A pertinent numerical test proves the effectiveness of this strategy. Based on this strategy, we comparatively analyze the effects of update parameters for the nonlinear conjugate gradient (CG) method and step-length formulas on the multiscale FWI through several numerical tests. The investigations of up to eight versions of the nonlinear CG method with and without Gaussian white noise make clear that the HS (Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409-436, 1952), CD (Fletcher in Practical methods of optimization vol. 1: unconstrained optimization, Wiley, New York, 1987), and PRP (Polak and Ribière in Revue Francaise Informat Recherche Opertionelle, 3e Année 16:35-43, 1969; Polyak in USSR Comput Math Math Phys 9:94-112, 1969) versions are more efficient among the eight versions, while the DY (Dai and Yuan in SIAM J Optim 10:177-182, 1999) version always yields inaccurate result, because it overestimates the deeper parts of the model. The application of FWI algorithms using distinct step-length formulas, such as the direct method ( Direct), the parabolic search method ( Search), and the two-point quadratic interpolation method ( Interp), proves that the Interp is more efficient for noise-free data, while the Direct is more efficient for Gaussian white noise data. In contrast, the Search is less efficient because of its slow convergence. In general, the three step-length formulas are robust or partly insensitive to Gaussian white noise and the complexity of the model. When the initial velocity model deviates far from the real model or the
Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D
2009-08-15
A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions ( 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.
Korir, Peter C.; Dejene, Francis B.
2018-04-01
In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.
Cakar, N; Tuŏrul, M; Demirarslan, A; Nahum, A; Adams, A; Akýncý, O; Esen, F; Telci, L
2001-04-01
To determine the time required for the partial pressure of arterial oxygen (PaO2) to reach equilibrium after a 0.20 increment or decrement in fractional inspired oxygen concentration (FIO2) during mechanical ventilation. A multi-disciplinary ICU in a university hospital. Twenty-five adult, non-COPD patients with stable blood gas values (PaO2/FIO2 > or = 180 on the day of the study) on pressure-controlled ventilation (PCV). Following a baseline PaO2 (PaO2b) measurement at FIO2 = 0.35, the FIO2 was increased to 0.55 for 30 min and then decreased to 0.35 without any other change in ventilatory parameters. Sequential blood gas measurements were performed at 3, 5, 7, 9, 11, 15, 20, 25 and 30 min in both periods. The PaO2 values measured at the 30th min after a step change in FIO2 (FIO2 = 0.55, PaO2[55] and FIO2 = 0.35, PaO2[35]) were accepted as representative of the equilibrium values for PaO2. Each patient's rise and fall in PaO2 over time, PaO2(t), were fitted to the following respective exponential equations: PaO2b + (PaO2[55]-PaO2b)(1-e-kt) and PaO2[55] + (PaO2[35]-PaO2[55])(e-kt) where "t" refers to time, PaO2[55] and PaO2[35] are the final PaO2 values obtained at a new FIO2 of 0.55 and 0.35, after a 0.20 increment and decrement in FIO2, respectively. Time constant "k" was determined by a non-linear fitting curve and 90% oxygenation times were defined as the time required to reach 90% of the final equilibrated PaO2 calculated by using the non-linear fitting curves. Time constant values for the rise and fall periods were 1.01 +/- 0.71 min-1, 0.69 +/- 0.42 min-1, respectively, and 90% oxygenation times for rises and falls in PaO2 periods were 4.2 +/- 4.1 min-1 and 5.5 +/- 4.8 min-1, respectively. There was no significant difference between the rise and fall periods for the two parameters (p > 0.05). We conclude that in stable patients ventilated with PCV, after a step change in FIO2 of 0.20, 5-10 min will be adequate for obtaining a blood gas sample to measure a Pa
Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.
2014-12-01
A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.
DEFF Research Database (Denmark)
Podeur, Gaetan; Dalgaard, Paw; Leroi, Francoise
2015-01-01
Histamine fish poisoning is common and due to toxic concentrations of histamine often produced by Gram-negative bacteria in fin-fish products with a high content of the free amino acid histidine. The genus Morganella includes two species previously reported to cause incidents of histamine fish po...
Night-time radial plasma drifts and coupling fluxes at L = 2.3 from whistler mode measurements
International Nuclear Information System (INIS)
Andrews, M.K.
1980-01-01
A method recently reported for measuring radial drifts in the equatorial plane, and ionosphere-magnetosphere coupling fluxes from the Doppler shifts and group delays on whistler mode signals is applied to VLF transmissions from station NLK on 18.6kHz. Data from 22 nights, primarily during the months November to February, are analysed. When averaged over a time of about 90 min, drifts found are accurate to +-20ms -1 , corresponding to an equatorial electric field accuracy of +-0.05mVm -1 , and fluxes, to +-1.5 x 10 12 el m -2 s -1 (two hemisphere total). Given currently accepted values of coupling fluxes, the flux accuracy is of marginal value on individual nights, but useful information on average behaviour may be obtained. It is found that fluxes generally contribute less than 20% to the measured Doppler shift, most of which is therefore produced by cross-L drifts. To an accuracy of about 20% then, Doppler data alone may give information on these drifts. Doppler shift data previously accumulated over a number of years and relating to signals in ducts near L = 2.3 are re-examined. Dominating the nightly behaviour is an inward drift which reaches a maximum of approximately 100m s -1 as the duct ends cross the dusk terminator, and an outward drift at dawn of the same magnitude which is intitiated when the duct end crosses the terminator in the E or lower F-region. In some months, separate effects can be seen corresponding to sunrise at each end of the duct. (author)
International Nuclear Information System (INIS)
Fowler, Jack F.; Limbergen, Erik F.M. van
1997-01-01
Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR) for local tissue dose rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. Increased effect is more likely for tissues with short half-times of repair of the order of a few minutes, similar to pulse durations. Methods and Materials: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to exponential repair. The situation with two components of T (1(2)) is addressed. A constant overall time of 140 h and a constant total dose of 70 Gy were assumed throughout, the continuous low dose rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, covering the gap in an earlier publication. Four schedules were examined: doses per pulse of 0.5, 1, 1.5, and 2 Gy given at repetition frequencies of 1, 2, 3, and 4 h, respectively, each with a range of assumed half-times of repair of 4 min to 1.5 h. Results are presented for late-responding tissues, the differences from CLDR being two or three times greater than for early-responding tissues and most tumors. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (2 Gy) if the half-time of repair in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in tissue, and--when T (1(2)) is short--the instantaneous dose rate. Maximum ratios of PDR/CLDR occur when the dose rate is such that pulse duration is approximately equal to T (1(2)) . As dose rate in the pulse is increased, a plateau of effect is reached, for most T (1(2)) s, above 10 to 20 Gy/h, which is
Short-time scale coupling between thermohaline and meteorological forcing in the Ría de Pontevedra
Directory of Open Access Journals (Sweden)
Paula C. Pardo
2001-07-01
Full Text Available Two cruises were performed in May-June and October-November 1997 in the Ría de Pontevedra under strong downwelling conditions. Temperature and salinity data were recorded in short sampling periods to describe the changes in thermohaline property distribution in a short time scale. In order to obtain the residual fluxes in the Ría, a bi-dimensional non-stationary salt and thermal-energy weight averaged box-model was applied. Outputs from this kinematic model were compared with Upwelling Index, river flow and density gradient, resulting in a good multiple correlation, which proves the strong coupling between thermohaline properties and meteorological variability. Ekman forcing affects the whole area but mainly controls the dynamics of outer zones. The intensity of its effect on the circulation pattern within the Ría depends on the grade of stratification of the water bodies. River flow is more relevant in inner parts. According to estimated spatially averaged velocities, water residence time is lower than two weeks in outer parts of the Ría, and decreases toward the inner zones.
Chaplin, Vernon H.; Bellan, Paul M.
2015-12-01
A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.
Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu
2013-06-01
A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.
International Nuclear Information System (INIS)
Zhao, Zhiguo; Gu, Huaguang
2015-01-01
Highlights: • Time delay-induced multiple synchronous behaviors was simulated in neuronal networks. • Multiple behaviors appear at time delays shorter than a bursting period of neurons. • The more spikes per burst of bursting, the more synchronous regions of time delay. • From regular to random via small-world networks, synchronous degree becomes weak. • An interpretation of the multiple behaviors and the influence of network are provided. - Abstract: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of
Energy Technology Data Exchange (ETDEWEB)
Laitinen, T.
2013-11-01
This thesis is based on the construction of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer (laser AMS), which is capable of measuring 10 to 50 nm aerosol particles collected from urban and rural air at-site and in near real time. The operation and applicability of the instrument was tested with various laboratory measurements, including parallel measurements with filter collection/chromatographic analysis, and then in field experiments in urban environment and boreal forest. Ambient ultrafine aerosol particles are collected on a metal surface by electrostatic precipitation and introduced to the time-of-flight mass spectrometer (TOF-MS) with a sampling valve. Before MS analysis particles are desorbed from the sampling surface with an infrared laser and ionized with a UV laser. The formed ions are guided to the TOF-MS by ion transfer optics, separated according to their m/z ratios, and detected with a micro channel plate detector. The laser AMS was used in urban air studies to quantify the carbon cluster content in 50 nm aerosol particles. Standards for the study were produced from 50 nm graphite particles, suspended in toluene, with 72 hours of high power sonication. The results showed the average amount of carbon clusters (winter 2012, Helsinki, Finland) in 50 nm particles to be 7.2% per sample. Several fullerenes/fullerene fragments were detected during the measurements. In boreal forest measurements, the laser AMS was capable of detecting several different organic species in 10 to 50 nm particles. These included nitrogen-containing compounds, carbon clusters, aromatics, aliphatic hydrocarbons, and oxygenated hydrocarbons. A most interesting event occurred during the boreal forest measurements in spring 2011 when the chemistry of the atmosphere clearly changed during snow melt. On that time concentrations of laser AMS ions m/z 143 and 185 (10 nm particles) increased dramatically. Exactly at the same time, quinoline concentrations
Cavaglieri, Daniele; Bewley, Thomas; Mashayek, Ali
2015-11-01
We present a new code, Diablo 2.0, for the simulation of the incompressible NSE in channel and duct flows with strong grid stretching near walls. The code leverages the fractional step approach with a few twists. New low-storage IMEX (implicit-explicit) Runge-Kutta time-marching schemes are tested which are superior to the traditional and widely-used CN/RKW3 (Crank-Nicolson/Runge-Kutta-Wray) approach; the new schemes tested are L-stable in their implicit component, and offer improved overall order of accuracy and stability with, remarkably, similar computational cost and storage requirements. For duct flow simulations, our new code also introduces a new smoother for the multigrid solver for the pressure Poisson equation. The classic approach, involving alternating-direction zebra relaxation, is replaced by a new scheme, dubbed tweed relaxation, which achieves the same convergence rate with roughly half the computational cost. The code is then tested on the simulation of a shear flow instability in a duct, a classic problem in fluid mechanics which has been the object of extensive numerical modelling for its role as a canonical pathway to energetic turbulence in several fields of science and engineering.
Kaald, Rune; Eggen, Trym; Ytterdal, Trond
2017-02-01
Fully digitized 2D ultrasound transducer arrays require one ADC per channel with a beamforming architecture consuming low power. We give design considerations for per-channel digitization and beamforming, and present the design and measurements of a continuous time delta-sigma modulator (CTDSM) for cardiac ultrasound applications. By integrating a mixer into the modulator frontend, the phase and frequency of the input signal can be shifted, thereby enabling both improved conversion efficiency and narrowband beamforming. To minimize the power consumption, we propose an optimization methodology using a simulated annealing framework combined with a C++ simulator solving linear electrical networks. The 3rd order single-bit feedback type modulator, implemented in a 65 nm CMOS process, achieves an SNR/SNDR of 67.8/67.4 dB across 1 MHz bandwidth consuming 131 [Formula: see text] of power. The achieved figure of merit of 34.2 fJ/step is comparable with state-of-the-art feedforward type multi-bit designs. We further demonstrate the influence to the dynamic range when performing dynamic receive beamforming on recorded delta-sigma modulated bit-stream sequences.
Ouyang, X.; Leonards, P.E.G.; Legler, J.; van der Oost, R.; de Boer, J.; Lamoree, M.H.
2015-01-01
For the first time a comprehensive two-dimensional liquid chromatography (LC. ×. LC) system coupled with a high resolution time-of-flight mass spectrometer (HR-ToF MS) was developed and applied for analysis of emerging toxicants in wastewater effluent. The system was optimized and validated using
International Nuclear Information System (INIS)
Nozari, Kourosh; Sadatian, S.D.
2008-01-01
We consider two alternative dark-energy models: a Lorentz-invariance preserving model with a non-minimally coupled scalar field and a Lorentz-invariance violating model with a minimally coupled scalar field. We study accelerated expansion and the dynamics of the equation of state parameter in these scenarios. While a minimally coupled scalar field does not have the capability to be a successful dark-energy candidate with line crossing of the cosmological constant, a non-minimally coupled scalar field in the presence of Lorentz invariance or a minimally coupled scalar field with Lorentz-invariance violation have this capability. In the latter case, accelerated expansion and phantom divide line crossing are the results of the interactive nature of this Lorentz-violating scenario. (orig.)
International Nuclear Information System (INIS)
1980-10-01
This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.
Directory of Open Access Journals (Sweden)
Xu-Dong Cheng
2014-11-01
Full Text Available Astragaloside IV is a compound isolated from the Traditional Chinese Medicine Astragalus membranaceus, that has been reported to have bioactivities against cardiovascular disease and kidney disease. There is limited information on the metabolism of astragaloside IV, which impedes comprehension of its biological actions and pharmacology. In the present study, an ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS-based approach was developed to profile the metabolites of astragaloside IV in rat plasma, bile, urine and feces samples. Twenty-two major metabolites were detected. The major components found in plasma, bile, urine and feces included the parent chemical and phases I and II metabolites. The major metabolic reactions of astragaloside IV were hydrolysis, glucuronidation, sulfation and dehydrogenation. These results will help to improve understanding the metabolism and reveal the biotransformation profiling of astragaloside IV in vivo. The metabolic information obtained from our study will guide studies into the pharmacological activity and clinical safety of astragaloside IV.
International Nuclear Information System (INIS)
Chang, C.-H.; Leou, K.-C.; Lin Chaung; Lin, T.-L.; Tseng, C.-W.; Tsai, C.-H.
2003-01-01
In this study, we have experimentally demonstrated the real-time closed-loop control of both ion density and ion energy in a chlorine inductively coupled plasma etcher. To measure positive ion density, the trace rare gases-optical emission spectroscopy is used to measure the chlorine positive ion density. An rf voltage probe is adopted to measure the root-mean-square rf voltage on the electrostatic chuck which is linearly dependent on sheath voltage. One actuator is a 13.56 MHz rf generator to drive the inductive coil seated on a ceramic window. The second actuator is also a 13.56 MHz rf generator to power the electrostatic chuck. The closed-loop controller is designed to compensate for process drift, process disturbance, and pilot wafer effect and to minimize steady-state error of plasma parameters. This controller has been used to control the etch process of unpatterned polysilicon. The experimental results showed that the closed-loop control had a better repeatability of plasma parameters compared with open-loop control. The closed-loop control can eliminate the process disturbance resulting from reflected power. In addition, experimental results also demonstrated that closed-loop control has a better reproducibility in etch rate as compared with open-loop control
Energy Technology Data Exchange (ETDEWEB)
Seng, Chien-Yeah [Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Vries, Jordy de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Mereghetti, Emanuele [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Patel, Hiren H. [Particle and Astro-Particle Physics Division, Max-Planck Institute for Nuclear Physics (MPIK), Saupfercheckweg 1, 69117 Heidelberg (Germany); Ramsey-Musolf, Michael [Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Kellogg Radiation Laboratory, California Institute of Technology Pasadena, CA 91125 (United States)
2014-09-07
The isovector time-reversal- and parity-violating pion–nucleon coupling g{sup ¯}{sub π}{sup (1)} is uniquely sensitive to dimension-six interactions between right-handed light quarks and the Standard Model Higgs doublet that naturally arises in left-right symmetric models. Recent work has used the g{sup ¯}{sub π}{sup (1)}-induced one-loop contribution to the neutron electric dipole moment d{sub n}, together with the present experimental d{sub n} bound, to constrain the CP-violating parameters of the left-right symmetric model. We show that this and related analyses are based on an earlier meson theory d{sub n} computation that is not consistent with the power-counting appropriate for an effective field theory. We repeat the one-loop calculation using heavy baryon chiral perturbation theory and find that the resulting d{sub n} sensitivity to g{sup ¯}{sub π}{sup (1)} is suppressed, implying more relaxed constraints on the parameter space of the left-right symmetric model. Assuming no cancellations between this loop contribution and other contributions, such as the leading order EDM low-energy constant, the present limit on d{sub n} implies |g{sup ¯}{sub π}{sup (1)}|≲1.1×10{sup −10}.
Directory of Open Access Journals (Sweden)
Chien-Yeah Seng
2014-09-01
Full Text Available The isovector time-reversal- and parity-violating pion–nucleon coupling g¯π(1 is uniquely sensitive to dimension-six interactions between right-handed light quarks and the Standard Model Higgs doublet that naturally arises in left-right symmetric models. Recent work has used the g¯π(1-induced one-loop contribution to the neutron electric dipole moment dn, together with the present experimental dn bound, to constrain the CP-violating parameters of the left-right symmetric model. We show that this and related analyses are based on an earlier meson theory dn computation that is not consistent with the power-counting appropriate for an effective field theory. We repeat the one-loop calculation using heavy baryon chiral perturbation theory and find that the resulting dn sensitivity to g¯π(1 is suppressed, implying more relaxed constraints on the parameter space of the left-right symmetric model. Assuming no cancellations between this loop contribution and other contributions, such as the leading order EDM low-energy constant, the present limit on dn implies |g¯π(1|≲1.1×10−10.
Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R
2015-06-01
There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P power imaging coupled with a durable microbubble contrast agent. Copyright © 2015 American Society of Echocardiography. All rights reserved.
Directory of Open Access Journals (Sweden)
Delogu Mauro
2006-05-01
Full Text Available Abstract Background Avian influenza viruses (AIVs are endemic in wild birds and their introduction and conversion to highly pathogenic avian influenza virus in domestic poultry is a cause of serious economic losses as well as a risk for potential transmission to humans. The ability to rapidly recognise AIVs in biological specimens is critical for limiting further spread of the disease in poultry. The advent of molecular methods such as real time polymerase chain reaction has allowed improvement of detection methods currently used in laboratories, although not all of these methods include an Internal Positive Control (IPC to monitor for false negative results. Therefore we developed a one-step reverse transcription real time PCR (RRT-PCR with a Minor Groove Binder (MGB probe for the detection of different subtypes of AIVs. This technique also includes an IPC. Methods RRT-PCR was developed using an improved TaqMan technology with a MGB probe to detect AI from reference viruses. Primers and probe were designed based on the matrix gene sequences from most animal and human A influenza virus subtypes. The specificity of RRT-PCR was assessed by detecting influenza A virus isolates belonging to subtypes from H1–H13 isolated in avian, human, swine and equine hosts. The analytical sensitivity of the RRT-PCR assay was determined using serial dilutions of in vitro transcribed matrix gene RNA. The use of a rodent RNA as an IPC in order not to reduce the efficiency of the assay was adopted. Results The RRT-PCR assay is capable to detect all tested influenza A viruses. The detection limit of the assay was shown to be between 5 and 50 RNA copies per reaction and the standard curve demonstrated a linear range from 5 to 5 × 108 copies as well as excellent reproducibility. The analytical sensitivity of the assay is 10–100 times higher than conventional RT-PCR. Conclusion The high sensitivity, rapidity, reproducibility and specificity of the AIV RRT-PCR with
Sorger, Bettina; Kamp, Tabea; Weiskopf, Nikolaus; Peters, Judith Caroline; Goebel, Rainer
2018-05-15
Brain-computer interfaces (BCIs) based on real-time functional magnetic resonance imaging (rtfMRI) are currently explored in the context of developing alternative (motor-independent) communication and control means for the severely disabled. In such BCI systems, the user encodes a particular intention (e.g., an answer to a question or an intended action) by evoking specific mental activity resulting in a distinct brain state that can be decoded from fMRI activation. One goal in this context is to increase the degrees of freedom in encoding different intentions, i.e., to allow the BCI user to choose from as many options as possible. Recently, the ability to voluntarily modulate spatial and/or temporal blood oxygenation level-dependent (BOLD)-signal features has been explored implementing different mental tasks and/or different encoding time intervals, respectively. Our two-session fMRI feasibility study systematically investigated for the first time the possibility of using magnitudinal BOLD-signal features for intention encoding. Particularly, in our novel paradigm, participants (n=10) were asked to alternately self-regulate their regional brain-activation level to 30%, 60% or 90% of their maximal capacity by applying a selected activation strategy (i.e., performing a mental task, e.g., inner speech) and modulation strategies (e.g., using different speech rates) suggested by the experimenters. In a second step, we tested the hypothesis that the additional availability of feedback information on the current BOLD-signal level within a region of interest improves the gradual-self regulation performance. Therefore, participants were provided with neurofeedback in one of the two fMRI sessions. Our results show that the majority of the participants were able to gradually self-regulate regional brain activation to at least two different target levels even in the absence of neurofeedback. When provided with continuous feedback on their current BOLD-signal level, most
International Nuclear Information System (INIS)
Chai Zheng; Hu Mao-Jin; Wang Rui-Qiang; Hu Liang-Bin
2014-01-01
We study the theoretical effect of k-cubic (i.e. cubic-in-momentum) Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin—orbit coupling, and after taking the effect of k-cubic Dresselhaus spin—orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
National Oceanic and Atmospheric Administration, Department of Commerce — To estimate the carbon chemistry conditions experienced by free-living organisms, we will conduct coupled biological/carbon chemistry sampling for key zooplankton...
Grimalt, Susana; Pozo, Oscar J; Sancho, Juan V; Hernández, Félix
2007-04-01
In this paper, the potential of coupling liquid chromatography with hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF) for the determination of pesticides in a variety of fruit samples (orange peel and flesh, banana skin and flesh, strawberry and pear) has been explored. The quantitative application at residue levels has been proven for two insecticides (buprofezin and hexythiazox), which were satisfactorily determined at three concentration levels, 0.1, 1, and 5 mg/kg, obtaining a suitable linearity range (correlation coefficient>0.99) of more than 2 orders of magnitude. Satisfactory recoveries have been obtained for both compounds at the three levels tested in all sample matrices, with lowest calibration levels (LCL) of 0.075 and 0.01 mg/kg. The excellent potential of QTOF for identification purposes is illustrated by the high number of identification points (IPs) earned, up to 21, at the highest concentration of 5 mg/kg, or between 11 and 21 at the 0.1 and 1 mg/kg levels. The application of LC-QTOF MS to real samples revealed the presence of several positives at concentrations close to the LCL, all of which were confirmed with more than 11 IPs. The potential of QTOF for elucidation of nontarget analytes has also been demonstrated by the finding of one transformation product (TP) of buprofezin in a banana skin sample. This TP was identified by obtaining the full scan product ion spectra at different collision energies with acceptable accurate mass deviation. The work performed in this paper illustrates the suitability and excellent confirmatory potential of LC-QTOF MS for pesticides residues analysis in food samples.
Step out - Step in Sequencing Games
Musegaas, M.; Borm, P.E.M.; Quant, M.
2014-01-01
In this paper a new class of relaxed sequencing games is introduced: the class of Step out - Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order.
Step out-step in sequencing games
Musegaas, Marieke; Borm, Peter; Quant, Marieke
2015-01-01
In this paper a new class of relaxed sequencing games is introduced: the class of Step out–Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order. First,
International Nuclear Information System (INIS)
Hamdi, Adel
2009-01-01
This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD–OD coupled model are presented
Rashed-Ul Islam, S M; Jahan, Munira; Tabassum, Shahina
2015-01-01
Virological monitoring is the best predictor for the management of chronic hepatitis B virus (HBV) infections. Consequently, it is important to use the most efficient, rapid and cost-effective testing systems for HBV DNA quantification. The present study compared the performance characteristics of a one-step HBV polymerase chain reaction (PCR) vs the two-step HBV PCR method for quantification of HBV DNA from clinical samples. A total of 100 samples consisting of 85 randomly selected samples from patients with chronic hepatitis B (CHB) and 15 samples from apparently healthy individuals were enrolled in this study. Of the 85 CHB clinical samples tested, HBV DNA was detected from 81% samples by one-step PCR method with median HBV DNA viral load (VL) of 7.50 × 10 3 lU/ml. In contrast, 72% samples were detected by the two-step PCR system with median HBV DNA of 3.71 × 10 3 lU/ml. The one-step method showed strong linear correlation with two-step PCR method (r = 0.89; p Tabassum S. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting. Euroasian J Hepato-Gastroenterol 2015;5(1):11-15.
Directory of Open Access Journals (Sweden)
Durandt, Casper
2016-08-01
Full Text Available Conservative engineering design rules for large serial coupled production processes result in machines having locked-in free time (also called ‘critical downtime’ or ‘maintenance opportunity windows’, which cause idle time if not used. Operators are not able to assess a large production process holistically, and so may not be aware that they form the current bottleneck – or that they have free time available due to interruptions elsewhere. A real-time method is developed to accurately calculate and display free time in location and magnitude, and efficiency improvements are demonstrated in large-scale production runs.
Kallio, M.; Jussila, M.; Rissanen, T.; Anttila, P.; Hartonen, K.; Reissell, A.; Vreuls, R.J.J.; Adahchour, M.; Hyotylainen, T.
2006-01-01
Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOF-MS) was applied in the identification of organic compounds in atmospheric aerosols from coniferous forest. The samples were collected at Hyytiälä, Finland, as part of the QUEST campaign, in
DEFF Research Database (Denmark)
Kertzscher, Gustavo; Andersen, Claus Erik; Siebert, Frank-André
2011-01-01
treatment errors, including interchanged pairs of afterloader guide tubes and 2–20mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al2O3:C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated...
McAuliffe, Tomomi; Cordier, Reinie; Vaz, Sharmila; Thomas, Yvonne; Falkmer, Torbjorn
2017-01-01
This study aimed to examine the influence of differences in household status on the parental stress, coping, time use and quality of life (QoL) among mothers of children with autism spectrum disorders. Forty-three single and 164 coupled mothers completed the survey. Data were analysed using multivariate logistic regression. We found that single…
N = 1 super-Chern-Simons coupled to parity-preserving matter from Atiyah-Ward space-time
International Nuclear Information System (INIS)
Andrade, M.A. de; Cima, O.M. Del; Colatto, L.P.
1995-06-01
In this letter, we present the Parkes-Siegel formulation for the massive Abelian N=1 super-QED 2+2 coupled to a self-dual supermultiplet, by introducing a chiral multiplier superfield. We show that after carrying out a suitable dimensional reduction from (2+2) to (1+2) dimensions, and performing some necessary truncations, the simple supersymmetric extension of the π3 QED 1+2 coupled to a Chern-Simons term naturally comes out. (author). 15 refs
MCNP4C2, Coupled Neutron, Electron Gamma 3-D Time-Dependent Monte Carlo Transport Calculations
International Nuclear Information System (INIS)
2002-01-01
1 - Description of program or function: MCNP is a general-purpose, continuous-energy, generalized geometry, time-dependent, coupled neutron-photon-electron Monte Carlo transport code system. MCNP4C2 is an interim release of MCNP4C with distribution restricted to the Criticality Safety community and attendees of the LANL MCNP workshops. The major new features of MCNP4C2 include: - Photonuclear physics; - Interactive plotting; - Plot superimposed weight window mesh; - Implement remaining macro-body surfaces; - Upgrade macro-bodies to surface sources and other capabilities; - Revised summary tables; - Weight window improvements. See the MCNP home page more information http://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP with a link to the MCNP Forum. See the Electronic Notebook at http://www-rsicc.ornl.gov/rsic.html for information on user experiences with MCNP. 2 - Methods:MCNP treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces. Pointwise continuous-energy cross section data are used, although multigroup data may also be used. Fixed-source adjoint calculations may be made with the multigroup data option. For neutrons, all reactions in a particular cross-section evaluation are accounted for. Both free gas and S(alpha, beta) thermal treatments are used. Criticality sources as well as fixed and surface sources are available. For photons, the code takes account of incoherent and coherent scattering with and without electron binding effects, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. A very general source and tally structure is available. The tallies have extensive statistical analysis of convergence. Rapid convergence is enabled by a wide variety of variance reduction methods. Energy ranges are 0-60 MeV for neutrons (data generally only available up to
Cross, E. S.; Onasch, T. B.; Canagaratna, M.; Jayne, J. T.; Kimmel, J.; Yu, X.-Y.; Alexander, M. L.; Worsnop, D. R.; Davidovits, P.
2008-12-01
We present the first single particle results obtained using an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area (MCMA) as part of the MILAGRO field study in March of 2006. The instrument was operated as a standard AMS from 12-30 March, acquiring average chemical composition and size distributions for the ambient aerosol, and in single particle mode from 27-30 March. Over a 75-h sampling period, 12 853 single particle mass spectra were optically triggered, saved, and analyzed. The correlated optical and chemical detection allowed detailed examination of single particle collection and quantification within the LS-ToF-AMS. The single particle data enabled the mixing states of the ambient aerosol to be characterized within the context of the size-resolved ensemble chemical information. The particulate mixing states were examined as a function of sampling time and most of the particles were found to be internal mixtures containing many of the organic and inorganic species identified in the ensemble analysis. The single particle mass spectra were deconvolved, using techniques developed for ensemble AMS data analysis, into HOA, OOA, NH4NO3, (NH4)2SO4, and NH4Cl fractions. Average single particle mass and chemistry measurements are shown to be in agreement with ensemble MS and PTOF measurements. While a significant fraction of ambient particles were internal mixtures of varying degrees, single particle measurements of chemical composition allowed the identification of time periods during which the ambient ensemble was externally mixed. In some cases the chemical composition of the particles suggested a likely source. Throughout the full sampling period, the ambient ensemble was an external mixture of combustion-generated HOA particles from local sources (e.g. traffic), with number concentrations peaking
Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan
2017-11-15
A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.
Shortt, Joann Wu; Capaldi, Deborah M.; Kim, Hyoun K.; Tiberio, Stacey S.
2013-01-01
The substantial number of young people in romantic relationships that involve intimate partner violence, a situation deleterious to physical and mental health, has resulted in increased attention to understanding the links between risk factors and course of violence. The current study examined couples' interpersonal stress related to not liking…
Traa, M.J.; Braeken, J.; de Vries, J.; Roukema, J.A.; Slooter, G.D.; Crolla, R.M.P.H.; Borremans, M.P.M.; den Oudsten, B.L.
2015-01-01
Objectives This study evaluated the following: (a) levels of sexual, marital, and general life functioning for both patients and partners; (b) interdependence between both members of the couple; and (c) longitudinal change in sexual, marital, and general life functioning and longitudinal
Dagan, Meirav; Sanderman, Robbert; Schokker, Marike C; Wiggers, Theo; Baas, Peter C; van Haastert, Michiel; Hagedoorn, Mariët
This longitudinal study has examined the associations between perceived supportive and unsupportive spousal behavior and changes in distress in couples coping with cancer. We tested whether people relatively low in their sense of personal control were more responsive to spousal supportive and
Coester, Annemieke M.; Smit, Watske; Struijk, Dirk G.; Krediet, Raymond T.
2009-01-01
Ultrafiltration in peritoneal dialysis occurs through endothelial water channels (free water transport) and together with solutes across small pores: solute coupled water transport. A review is given of cross-sectional studies and on the results of longitudinal follow-up
On the Convexity of Step out - Step in Sequencing Games
Musegaas, Marieke; Borm, Peter; Quant, Marieke
2016-01-01
The main result of this paper is the convexity of Step out - Step in (SoSi) sequencing games, a class of relaxed sequencing games first analyzed by Musegaas, Borm, and Quant (2015). The proof makes use of a polynomial time algorithm determining the value and an optimal processing order for an
Miao, Y J; Xiong, G T; Bai, M Y; Ge, Y; Wu, Z F
2018-05-01
Fresh-cut produce is at greater risk of Salmonella contamination. Detection and early warning systems play an important role in reducing the dissemination of contaminated products. One-step Reverse Transcription Polymerase Chain Reaction (RT-qPCR) targeting Salmonella tmRNA with or without a 6-h enrichment was evaluated for the detection of Salmonella in fresh-cut vegetables after 6-h storage. LOD of one-step RT-qPCR was 1·0 CFU per ml (about 100 copies tmRNA per ml) by assessed 10-fold serially diluted RNA from 10 6 CFU per ml bacteria culture. Then, one-step RT-qPCR assay was applied to detect viable Salmonella cells in 14 fresh-cut vegetables after 6-h storage. Without enrichment, this assay could detect 10 CFU per g for fresh-cut lettuce, cilantro, spinach, cabbage, Chinese cabbage and bell pepper, and 10 2 CFU per g for other vegetables. With a 6-h enrichment, this assay could detect 10 CFU per g for all fresh-cut vegetables used in this study. Moreover, this assay was able to discriminate viable cells from dead cells. This rapid detection assay may provide potential processing control and early warning method in fresh-cut vegetable processing to strengthen food safety assurance. Significance and Impact of the Study: Fresh-cut produce is at greater risk of Salmonella contamination. Rapid detection methods play an important role in reducing the dissemination of contaminated products. One-step RT-qPCR assay used in this study could detect 10 CFU per g Salmonella for 14 fresh-cut vegetables with a 6-h short enrichment. Moreover, this assay was able to discriminate viable cells from dead cells. This rapid detection assay may provide potential processing control and early warning method in fresh-cut vegetable processing to strengthen food safety assurance. © 2018 The Society for Applied Microbiology.