WorldWideScience

Sample records for time step size

  1. Solving point reactor kinetic equations by time step-size adaptable numerical methods

    International Nuclear Information System (INIS)

    Liao Chaqing

    2007-01-01

    Based on the analysis of effects of time step-size on numerical solutions, this paper showed the necessity of step-size adaptation. Based on the relationship between error and step-size, two-step adaptation methods for solving initial value problems (IVPs) were introduced. They are Two-Step Method and Embedded Runge-Kutta Method. PRKEs were solved by implicit Euler method with step-sizes optimized by using Two-Step Method. It was observed that the control error has important influence on the step-size and the accuracy of solutions. With suitable control errors, the solutions of PRKEs computed by the above mentioned method are accurate reasonably. The accuracy and usage of MATLAB built-in ODE solvers ode23 and ode45, both of which adopt Runge-Kutta-Fehlberg method, were also studied and discussed. (authors)

  2. Time step size selection for radiation diffusion calculations

    International Nuclear Information System (INIS)

    Rider, W.J.; Knoll, D.A.

    1999-01-01

    The purpose of this note is to describe a time step control technique as applied to radiation diffusion. Standard practice only provides a heuristic criteria related to the relative change in the dependent variables. The authors propose an alternative based on relatively simple physical principles. This time step control applies to methods of solution that are unconditionally stable and converges nonlinearities within a time step in the governing equations. Commonly, nonlinearities in the governing equations are evaluated using existing (old time) data. The authors refer to this as the semi-implicit (SI) method. When a method converges nonlinearities within a time step, the entire governing equation including all nonlinearities is self-consistently evaluated using advance time data (with appropriate time centering for accuracy)

  3. Time step size limitation introduced by the BSSN Gamma Driver

    Energy Technology Data Exchange (ETDEWEB)

    Schnetter, Erik, E-mail: schnetter@cct.lsu.ed [Department of Physics and Astronomy, Louisiana State University, LA (United States)

    2010-08-21

    Many mesh refinement simulations currently performed in numerical relativity counteract instabilities near the outer boundary of the simulation domain either by changes to the mesh refinement scheme or by changes to the gauge condition. We point out that the BSSN Gamma Driver gauge condition introduces a time step size limitation in a similar manner as a Courant-Friedrichs-Lewy condition, but which is independent of the spatial resolution. We give a didactic explanation of this issue, show why, especially, mesh refinement simulations suffer from it, and point to a simple remedy. (note)

  4. Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size

    KAUST Repository

    Hadjimichael, Yiannis

    2016-09-08

    Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order two and three) with variable step size, and prove their optimality, stability, and convergence. The choice of step size for multistep SSP methods is an interesting problem because the allowable step size depends on the SSP coefficient, which in turn depends on the chosen step sizes. The description of the methods includes an optimal step-size strategy. We prove sharp upper bounds on the allowable step size for explicit SSP linear multistep methods and show the existence of methods with arbitrarily high order of accuracy. The effectiveness of the methods is demonstrated through numerical examples.

  5. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  6. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers

    Science.gov (United States)

    Wang, Zhan-zhi; Xiong, Ying

    2013-04-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.

  7. Revisionist integral deferred correction with adaptive step-size control

    KAUST Repository

    Christlieb, Andrew

    2015-03-27

    © 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step-size control can be incorporated within a family of parallel time integrators known as revisionist integral deferred correction (RIDC) methods. The RIDC framework allows for various strategies to implement stepsize control, and we report results from exploring a few of them.

  8. Newmark local time stepping on high-performance computing architectures

    KAUST Repository

    Rietmann, Max

    2016-11-25

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strong element-size contrasts (more than 100×). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.

  9. Newmark local time stepping on high-performance computing architectures

    KAUST Repository

    Rietmann, Max; Grote, Marcus; Peter, Daniel; Schenk, Olaf

    2016-01-01

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strong element-size contrasts (more than 100×). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.

  10. Newmark local time stepping on high-performance computing architectures

    Energy Technology Data Exchange (ETDEWEB)

    Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch [Institute for Computational Science, Università della Svizzera italiana, Lugano (Switzerland); Institute of Geophysics, ETH Zurich (Switzerland); Grote, Marcus, E-mail: marcus.grote@unibas.ch [Department of Mathematics and Computer Science, University of Basel (Switzerland); Peter, Daniel, E-mail: daniel.peter@kaust.edu.sa [Institute for Computational Science, Università della Svizzera italiana, Lugano (Switzerland); Institute of Geophysics, ETH Zurich (Switzerland); Schenk, Olaf, E-mail: olaf.schenk@usi.ch [Institute for Computational Science, Università della Svizzera italiana, Lugano (Switzerland)

    2017-04-01

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strong element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.

  11. Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size

    KAUST Repository

    Hadjimichael, Yiannis; Ketcheson, David I.; Loczi, Lajos; Né meth, Adriá n

    2016-01-01

    Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order

  12. Modified random hinge transport mechanics and multiple scattering step-size selection in EGS5

    International Nuclear Information System (INIS)

    Wilderman, S.J.; Bielajew, A.F.

    2005-01-01

    The new transport mechanics in EGS5 allows for significantly longer electron transport step sizes and hence shorter computation times than required for identical problems in EGS4. But as with all Monte Carlo electron transport algorithms, certain classes of problems exhibit step-size dependencies even when operating within recommended ranges, sometimes making selection of step-sizes a daunting task for novice users. Further contributing to this problem, because of the decoupling of multiple scattering and continuous energy loss in the dual random hinge transport mechanics of EGS5, there are two independent step sizes in EGS5, one for multiple scattering and one for continuous energy loss, each of which influences speed and accuracy in a different manner. Further, whereas EGS4 used a single value of fractional energy loss (ESTEPE) to determine step sizes at all energies, to increase performance by decreasing the amount of effort expended simulating lower energy particles, EGS5 permits the fractional energy loss values which are used to determine both the multiple scattering and continuous energy loss step sizes to vary with energy. This results in requiring the user to specify four fractional energy loss values when optimizing computations for speed. Thus, in order to simplify step-size selection and to mitigate step-size dependencies, a method has been devised to automatically optimize step-size selection based on a single material dependent input related to the size of problem tally region. In this paper we discuss the new transport mechanics in EGS5 and describe the automatic step-size optimization algorithm. (author)

  13. Effect of beamlet step-size on IMRT plan quality

    International Nuclear Information System (INIS)

    Zhang Guowei; Jiang Ziping; Shepard, David; Earl, Matt; Yu, Cedric

    2005-01-01

    We have studied the degree to which beamlet step-size impacts the quality of intensity modulated radiation therapy (IMRT) treatment plans. Treatment planning for IMRT begins with the application of a grid that divides each beam's-eye-view of the target into a number of smaller beamlets (pencil beams) of radiation. The total dose is computed as a weighted sum of the dose delivered by the individual beamlets. The width of each beamlet is set to match the width of the corresponding leaf of the multileaf collimator (MLC). The length of each beamlet (beamlet step-size) is parallel to the direction of leaf travel. The beamlet step-size represents the minimum stepping distance of the leaves of the MLC and is typically predetermined by the treatment planning system. This selection imposes an artificial constraint because the leaves of the MLC and the jaws can both move continuously. Removing the constraint can potentially improve the IMRT plan quality. In this study, the optimized results were achieved using an aperture-based inverse planning technique called direct aperture optimization (DAO). We have tested the relationship between pencil beam step-size and plan quality using the American College of Radiology's IMRT test case. For this case, a series of IMRT treatment plans were produced using beamlet step-sizes of 1, 2, 5, and 10 mm. Continuous improvements were seen with each reduction in beamlet step size. The maximum dose to the planning target volume (PTV) was reduced from 134.7% to 121.5% and the mean dose to the organ at risk (OAR) was reduced from 38.5% to 28.2% as the beamlet step-size was reduced from 10 to 1 mm. The smaller pencil beam sizes also led to steeper dose gradients at the junction between the target and the critical structure with gradients of 6.0, 7.6, 8.7, and 9.1 dose%/mm achieved for beamlet step sizes of 10, 5, 2, and 1 mm, respectively

  14. Adaptive Step Size Gradient Ascent ICA Algorithm for Wireless MIMO Systems

    Directory of Open Access Journals (Sweden)

    Zahoor Uddin

    2018-01-01

    Full Text Available Independent component analysis (ICA is a technique of blind source separation (BSS used for separation of the mixed received signals. ICA algorithms are classified into adaptive and batch algorithms. Adaptive algorithms perform well in time-varying scenario with high-computational complexity, while batch algorithms have better separation performance in quasistatic channels with low-computational complexity. Amongst batch algorithms, the gradient-based ICA algorithms perform well, but step size selection is critical in these algorithms. In this paper, an adaptive step size gradient ascent ICA (ASS-GAICA algorithm is presented. The proposed algorithm is free from selection of the step size parameter with improved convergence and separation performance. Different performance evaluation criteria are used to verify the effectiveness of the proposed algorithm. Performance of the proposed algorithm is compared with the FastICA and optimum block adaptive ICA (OBAICA algorithms for quasistatic and time-varying wireless channels. Simulation is performed over quadrature amplitude modulation (QAM and binary phase shift keying (BPSK signals. Results show that the proposed algorithm outperforms the FastICA and OBAICA algorithms for a wide range of signal-to-noise ratio (SNR and input data block lengths.

  15. Qualitative and quantitative assessment of step size adaptation rules

    DEFF Research Database (Denmark)

    Krause, Oswin; Glasmachers, Tobias; Igel, Christian

    2017-01-01

    We present a comparison of step size adaptation methods for evolution strategies, covering recent developments in the field. Following recent work by Hansen et al. we formulate a concise list of performance criteria: a) fast convergence of the mean, b) near-optimal fixed point of the normalized s...... that cumulative step size adaptation (CSA) and twopoint adaptation (TPA) provide reliable estimates of the optimal step size. We further find that removing the evolution path of CSA still leads to a reliable algorithm without the computational requirements of CSA.......We present a comparison of step size adaptation methods for evolution strategies, covering recent developments in the field. Following recent work by Hansen et al. we formulate a concise list of performance criteria: a) fast convergence of the mean, b) near-optimal fixed point of the normalized...

  16. Step Sizes for Strong Stability Preservation with Downwind-Biased Operators

    KAUST Repository

    Ketcheson, David I.

    2011-01-01

    order accuracy. It is possible to achieve more relaxed step size restrictions in the discretization of hyperbolic PDEs through the use of both upwind- and downwind-biased semidiscretizations. We investigate bounds on the maximum SSP step size for methods

  17. Revisionist integral deferred correction with adaptive step-size control

    KAUST Repository

    Christlieb, Andrew; Macdonald, Colin; Ong, Benjamin; Spiteri, Raymond

    2015-01-01

    © 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step

  18. N-terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size

    Science.gov (United States)

    Wang, Yihua; Ajtai, Katalin; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Burghardt, Thomas P.

    2016-01-01

    Muscle myosin cyclically hydrolyzes ATP to translate actin. Ventricular cardiac myosin (βmys) moves actin with three distinct unitary step-sizes resulting from its lever-arm rotation and with step-frequencies that are modulated in a myosin regulation mechanism. The lever-arm associated essential light chain (vELC) binds actin by its 43 residue N-terminal extension. Unitary steps were proposed to involve the vELC N-terminal extension with the 8 nm step engaging the vELC/actin bond facilitating an extra ~19 degrees of lever-arm rotation while the predominant 5 nm step forgoes vELC/actin binding. A minor 3 nm step is the unlikely conversion of the completed 5 to the 8 nm step. This hypothesis was tested using a 17 residue N-terminal truncated vELC in porcine βmys (Δ17βmys) and a 43 residue N-terminal truncated human vELC expressed in transgenic mouse heart (Δ43αmys). Step-size and step-frequency were measured using the Qdot motility assay. Both Δ17βmys and Δ43αmys had significantly increased 5 nm step-frequency and coincident loss in the 8 nm step-frequency compared to native proteins suggesting the vELC/actin interaction drives step-size preference. Step-size and step-frequency probability densities depend on the relative fraction of truncated vELC and relate linearly to pure myosin species concentrations in a mixture containing native vELC homodimer, two truncated vELCs in the modified homodimer, and one native and one truncated vELC in the heterodimer. Step-size and step-frequency, measured for native homodimer and at two or more known relative fractions of truncated vELC, are surmised for each pure species by using a new analytical method. PMID:26671638

  19. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift.

    Directory of Open Access Journals (Sweden)

    Thomas P Burghardt

    Full Text Available Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N

  20. Improving Genetic Evaluation of Litter Size Using a Single-step Model

    DEFF Research Database (Denmark)

    Guo, Xiangyu; Christensen, Ole Fredslund; Ostersen, Tage

    A recently developed single-step method allows genetic evaluation based on information from phenotypes, pedigree and markers simultaneously. This paper compared reliabilities of predicted breeding values obtained from single-step method and the traditional pedigree-based method for two litter size...... traits, total number of piglets born (TNB), and litter size at five days after birth (Ls 5) in Danish Landrace and Yorkshire pigs. The results showed that the single-step method combining phenotypic and genotypic information provided more accurate predictions than the pedigree-based method, not only...

  1. Step Sizes for Strong Stability Preservation with Downwind-Biased Operators

    KAUST Repository

    Ketcheson, David I.

    2011-08-04

    Strong stability preserving (SSP) integrators for initial value ODEs preserve temporal monotonicity solution properties in arbitrary norms. All existing SSP methods, including implicit methods, either require small step sizes or achieve only first order accuracy. It is possible to achieve more relaxed step size restrictions in the discretization of hyperbolic PDEs through the use of both upwind- and downwind-biased semidiscretizations. We investigate bounds on the maximum SSP step size for methods that include negative coefficients and downwind-biased semi-discretizations. We prove that the downwind SSP coefficient for linear multistep methods of order greater than one is at most equal to two, while the downwind SSP coefficient for explicit Runge–Kutta methods is at most equal to the number of stages of the method. In contrast, the maximal downwind SSP coefficient for second order Runge–Kutta methods is shown to be unbounded. We present a class of such methods with arbitrarily large SSP coefficient and demonstrate that they achieve second order accuracy for large CFL number.

  2. Perturbed Strong Stability Preserving Time-Stepping Methods For Hyperbolic PDEs

    KAUST Repository

    Hadjimichael, Yiannis

    2017-09-30

    A plethora of physical phenomena are modelled by hyperbolic partial differential equations, for which the exact solution is usually not known. Numerical methods are employed to approximate the solution to hyperbolic problems; however, in many cases it is difficult to satisfy certain physical properties while maintaining high order of accuracy. In this thesis, we develop high-order time-stepping methods that are capable of maintaining stability constraints of the solution, when coupled with suitable spatial discretizations. Such methods are called strong stability preserving (SSP) time integrators, and we mainly focus on perturbed methods that use both upwind- and downwind-biased spatial discretizations. Firstly, we introduce a new family of third-order implicit Runge–Kuttas methods with arbitrarily large SSP coefficient. We investigate the stability and accuracy of these methods and we show that they perform well on hyperbolic problems with large CFL numbers. Moreover, we extend the analysis of SSP linear multistep methods to semi-discretized problems for which different terms on the right-hand side of the initial value problem satisfy different forward Euler (or circle) conditions. Optimal perturbed and additive monotonicity-preserving linear multistep methods are studied in the context of such problems. Optimal perturbed methods attain augmented monotonicity-preserving step sizes when the different forward Euler conditions are taken into account. On the other hand, we show that optimal SSP additive methods achieve a monotonicity-preserving step-size restriction no better than that of the corresponding non-additive SSP linear multistep methods. Furthermore, we develop the first SSP linear multistep methods of order two and three with variable step size, and study their optimality. We describe an optimal step-size strategy and demonstrate the effectiveness of these methods on various one- and multi-dimensional problems. Finally, we establish necessary conditions

  3. Micro-computed tomography characterization of tissue engineering scaffolds: effects of pixel size and rotation step.

    Science.gov (United States)

    Cengiz, Ibrahim Fatih; Oliveira, Joaquim Miguel; Reis, Rui L

    2017-08-01

    Quantitative assessment of micro-structure of materials is of key importance in many fields including tissue engineering, biology, and dentistry. Micro-computed tomography (µ-CT) is an intensively used non-destructive technique. However, the acquisition parameters such as pixel size and rotation step may have significant effects on the obtained results. In this study, a set of tissue engineering scaffolds including examples of natural and synthetic polymers, and ceramics were analyzed. We comprehensively compared the quantitative results of µ-CT characterization using 15 acquisition scenarios that differ in the combination of the pixel size and rotation step. The results showed that the acquisition parameters could statistically significantly affect the quantified mean porosity, mean pore size, and mean wall thickness of the scaffolds. The effects are also practically important since the differences can be as high as 24% regarding the mean porosity in average, and 19.5 h and 166 GB regarding the characterization time and data storage per sample with a relatively small volume. This study showed in a quantitative manner the effects of such a wide range of acquisition scenarios on the final data, as well as the characterization time and data storage per sample. Herein, a clear picture of the effects of the pixel size and rotation step on the results is provided which can notably be useful to refine the practice of µ-CT characterization of scaffolds and economize the related resources.

  4. Variable Step Size Maximum Correntropy Criteria Based Adaptive Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    S. Radhika

    2016-04-01

    Full Text Available Maximum correntropy criterion (MCC based adaptive filters are found to be robust against impulsive interference. This paper proposes a novel MCC based adaptive filter with variable step size in order to obtain improved performance in terms of both convergence rate and steady state error with robustness against impulsive interference. The optimal variable step size is obtained by minimizing the Mean Square Deviation (MSD error from one iteration to the other. Simulation results in the context of a highly impulsive system identification scenario show that the proposed algorithm has faster convergence and lesser steady state error than the conventional MCC based adaptive filters.

  5. Symplectic integrators with adaptive time steps

    Science.gov (United States)

    Richardson, A. S.; Finn, J. M.

    2012-01-01

    In recent decades, there have been many attempts to construct symplectic integrators with variable time steps, with rather disappointing results. In this paper, we identify the causes for this lack of performance, and find that they fall into two categories. In the first, the time step is considered a function of time alone, Δ = Δ(t). In this case, backward error analysis shows that while the algorithms remain symplectic, parametric instabilities may arise because of resonance between oscillations of Δ(t) and the orbital motion. In the second category the time step is a function of phase space variables Δ = Δ(q, p). In this case, the system of equations to be solved is analyzed by introducing a new time variable τ with dt = Δ(q, p) dτ. The transformed equations are no longer in Hamiltonian form, and thus do not benefit from integration methods which would be symplectic for Hamiltonian systems. We analyze two methods for integrating the transformed equations which do, however, preserve the structure of the original equations. The first is an extended phase space method, which has been successfully used in previous studies of adaptive time step symplectic integrators. The second, novel, method is based on a non-canonical mixed-variable generating function. Numerical trials for both of these methods show good results, without parametric instabilities or spurious growth or damping. It is then shown how to adapt the time step to an error estimate found by backward error analysis, in order to optimize the time-stepping scheme. Numerical results are obtained using this formulation and compared with other time-stepping schemes for the extended phase space symplectic method.

  6. A Method of MPPT Control Based on Power Variable Step-size in Photovoltaic Converter System

    Directory of Open Access Journals (Sweden)

    Xu Hui-xiang

    2016-01-01

    Full Text Available Since the disadvantage of traditional MPPT algorithms of variable step-size, proposed power tracking based on variable step-size with the advantage method of the constant-voltage and the perturb-observe (P&O[1-3]. The control strategy modify the problem of voltage fluctuation caused by perturb-observe method, at the same time, introducing the advantage of constant-voltage method and simplify the circuit topology. With the theoretical derivation, control the output power of photovoltaic modules to change the duty cycle of main switch. Achieve the maximum power stabilization output, reduce the volatility of energy loss effectively, and improve the inversion efficiency[3,4]. Given the result of experimental test based theoretical derivation and the curve of MPPT when the prototype work.

  7. Sharp Penalty Term and Time Step Bounds for the Interior Penalty Discontinuous Galerkin Method for Linear Hyperbolic Problems

    NARCIS (Netherlands)

    Geevers, Sjoerd; van der Vegt, J.J.W.

    2017-01-01

    We present sharp and sucient bounds for the interior penalty term and time step size to ensure stability of the symmetric interior penalty discontinuous Galerkin (SIPDG) method combined with an explicit time-stepping scheme. These conditions hold for generic meshes, including unstructured

  8. Performance analysis and kernel size study of the Lynx real-time operating system

    Science.gov (United States)

    Liu, Yuan-Kwei; Gibson, James S.; Fernquist, Alan R.

    1993-01-01

    This paper analyzes the Lynx real-time operating system (LynxOS), which has been selected as the operating system for the Space Station Freedom Data Management System (DMS). The features of LynxOS are compared to other Unix-based operating system (OS). The tools for measuring the performance of LynxOS, which include a high-speed digital timer/counter board, a device driver program, and an application program, are analyzed. The timings for interrupt response, process creation and deletion, threads, semaphores, shared memory, and signals are measured. The memory size of the DMS Embedded Data Processor (EDP) is limited. Besides, virtual memory is not suitable for real-time applications because page swap timing may not be deterministic. Therefore, the DMS software, including LynxOS, has to fit in the main memory of an EDP. To reduce the LynxOS kernel size, the following steps are taken: analyzing the factors that influence the kernel size; identifying the modules of LynxOS that may not be needed in an EDP; adjusting the system parameters of LynxOS; reconfiguring the device drivers used in the LynxOS; and analyzing the symbol table. The reductions in kernel disk size, kernel memory size and total kernel size reduction from each step mentioned above are listed and analyzed.

  9. Response Surface Methodology's Steepest Ascent and Step Size Revisited

    NARCIS (Netherlands)

    Kleijnen, J.P.C.; den Hertog, D.; Angun, M.E.

    2002-01-01

    Response Surface Methodology (RSM) searches for the input combination maximizing the output of a real system or its simulation.RSM is a heuristic that locally fits first-order polynomials, and estimates the corresponding steepest ascent (SA) paths.However, SA is scale-dependent; and its step size is

  10. Time step MOTA thermostat simulation

    International Nuclear Information System (INIS)

    Guthrie, G.L.

    1978-09-01

    The report details the logic, program layout, and operating procedures for the time-step MOTA (Materials Open Test Assembly) thermostat simulation program known as GYRD. It will enable prospective users to understand the operation of the program, run it, and interpret the results. The time-step simulation analysis was the approach chosen to determine the maximum value gain that could be used to minimize steady temperature offset without risking undamped thermal oscillations. The advantage of the GYRD program is that it directly shows hunting, ringing phenomenon, and similar events. Programs BITT and CYLB are faster, but do not directly show ringing time

  11. A simple, compact, and rigid piezoelectric step motor with large step size

    Science.gov (United States)

    Wang, Qi; Lu, Qingyou

    2009-08-01

    We present a novel piezoelectric stepper motor featuring high compactness, rigidity, simplicity, and any direction operability. Although tested in room temperature, it is believed to work in low temperatures, owing to its loose operation conditions and large step size. The motor is implemented with a piezoelectric scanner tube that is axially cut into almost two halves and clamp holds a hollow shaft inside at both ends via the spring parts of the shaft. Two driving voltages that singly deform the two halves of the piezotube in one direction and recover simultaneously will move the shaft in the opposite direction, and vice versa.

  12. Time step length versus efficiency of Monte Carlo burnup calculations

    International Nuclear Information System (INIS)

    Dufek, Jan; Valtavirta, Ville

    2014-01-01

    Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy

  13. Diffeomorphic image registration with automatic time-step adjustment

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Klein, S.; Sommer, Stefan Horst

    2015-01-01

    In this paper, we propose an automated Euler's time-step adjustment scheme for diffeomorphic image registration using stationary velocity fields (SVFs). The proposed variational problem aims at bounding the inverse consistency error by adaptively adjusting the number of Euler's step required to r...... accuracy as a fixed time-step scheme however at a much less computational cost....

  14. ACCURACY RESEARCH OF THE DIAMETRICAL SIZES FORMING AT GEAR SHAPING BY STEPPED CUTTER

    Directory of Open Access Journals (Sweden)

    N. M. Rasulov

    2015-09-01

    Full Text Available The paper presents research results of forming accuracy for diametrical sizes at gear shaping with stepped cutter and the traditional method. Analysis of static technological dimensional pitch size chain of wheels being cut is performed. It was revealed that the most of transmission errors of the wheels, formed by the traditional gear-shaped cutter are caused by manufacturing and installation error of the cutter and result from the formation of each tooth of the wheel with a certain tool. This is not the case with gear shaping by step cutter since at that, the profiles of all gear teeth are formed by means of tooth profile mostly remote from the tool rotation axis. Analysis of occurrence of setting-up errors typical for the above gear shaping methods has been performed. At gear shaping with stepped cutter there are no setting-up error components. It was revealed that this fact causes the absence of errors in the tool position before its each double motion. The accuracy of diametrical sizes increases. Formation mechanism of tool installation errors and workpiece are also given and their analysis is presented. Findings in the field of gear shaping with stepped cutter comply with results of research carried out by the other authors in the field of traditional gear shaping.

  15. Implementation of a variable-step integration technique for nonlinear structural dynamic analysis

    International Nuclear Information System (INIS)

    Underwood, P.; Park, K.C.

    1977-01-01

    The paper presents the implementation of a recently developed unconditionally stable implicit time integration method into a production computer code for the transient response analysis of nonlinear structural dynamic systems. The time integrator is packaged with two significant features; a variable step size that is automatically determined and this is accomplished without additional matrix refactorizations. The equations of motion solved by the time integrator must be cast in the pseudo-force form, and this provides the mechanism for controlling the step size. Step size control is accomplished by extrapolating the pseudo-force to the next time (the predicted pseudo-force), then performing the integration step and then recomputing the pseudo-force based on the current solution (the correct pseudo-force); from this data an error norm is constructed, the value of which determines the step size for the next step. To avoid refactoring the required matrix with each step size change a matrix scaling technique is employed, which allows step sizes to change by a factor of 100 without refactoring. If during a computer run the integrator determines it can run with a step size larger than 100 times the original minimum step size, the matrix is refactored to take advantage of the larger step size. The strategy for effecting these features are discussed in detail. (Auth.)

  16. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Science.gov (United States)

    Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun

    2017-10-01

    To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  17. Autoregressive Prediction with Rolling Mechanism for Time Series Forecasting with Small Sample Size

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2014-01-01

    Full Text Available Reasonable prediction makes significant practical sense to stochastic and unstable time series analysis with small or limited sample size. Motivated by the rolling idea in grey theory and the practical relevance of very short-term forecasting or 1-step-ahead prediction, a novel autoregressive (AR prediction approach with rolling mechanism is proposed. In the modeling procedure, a new developed AR equation, which can be used to model nonstationary time series, is constructed in each prediction step. Meanwhile, the data window, for the next step ahead forecasting, rolls on by adding the most recent derived prediction result while deleting the first value of the former used sample data set. This rolling mechanism is an efficient technique for its advantages of improved forecasting accuracy, applicability in the case of limited and unstable data situations, and requirement of little computational effort. The general performance, influence of sample size, nonlinearity dynamic mechanism, and significance of the observed trends, as well as innovation variance, are illustrated and verified with Monte Carlo simulations. The proposed methodology is then applied to several practical data sets, including multiple building settlement sequences and two economic series.

  18. An explicit multi-time-stepping algorithm for aerodynamic flows

    OpenAIRE

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for aerodynamic turbulent flows. For two-dimensional flows speedups in the order of five with respect to single time stepping are obtained.

  19. Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Baijun Liu

    2016-02-01

    Full Text Available Particle coagulation is a facile approach to produce large-scale polymer latex particles. This approach has been widely used in academic and industrial research owing to its higher polymerization rate and one-step polymerization process. Our work was motivated to control the extent (or time of particle coagulation. Depending on reaction parameters, particle coagulation is also able to produce narrowly dispersed latex particles. In this study, a series of experiments were performed to investigate the role of the initiator system in determining particle coagulation and particle size distribution. Under the optimal initiation conditions, such as cationic initiator systems or higher reaction temperature, the time of particle coagulation would be advanced to particle nucleation period, leading to the narrowly dispersed polymer latex particles. By using a combination of the Smoluchowski equation and the electrostatic stability theory, the relationship between the particle size distribution and particle coagulation was established: the earlier the particle coagulation, the narrower the particle size distribution, while the larger the extent of particle coagulation, the larger the average particle size. Combined with the results of previous studies, a systematic method controlling the particle size distribution in the presence of particle coagulation was developed.

  20. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Directory of Open Access Journals (Sweden)

    Yong Zhu

    2017-10-01

    Full Text Available To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as “winner-take-all” and the update mechanism as “survival of the fittest” were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  1. Timing of the steps in transformation of C3H 10T1/2 cells by X-irradiation

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Cairns, J.; Little, J.B.

    1984-01-01

    Transformation of cells in culture by chemical carcinogens or X-rays seems to require at least two steps. The initial step is a frequent event; for example, after transient exposure to either methylcholanthrene or X-rays. It has been hypothesized that the second step behaves like a spontaneous mutation in having a constant but small probability of occurring each time an initiated cell divides. We show here that the clone size distribution of transformed cells in growing cultures initiated by X-rays, is, indeed, exactly what would be expected on that hypothesis. (author)

  2. To Classify Spontaneous Motion Intention of Step Size by Using Cerebral Hemoglobin Information

    Directory of Open Access Journals (Sweden)

    Zhu Kai

    2017-01-01

    Full Text Available To improve the effect of walking-assistive devices, there is a need for it to develop devices controlled by spontaneous intention of patients. In recent study, we identified spontaneous motion intention of walking step based on cerebral hemoglobin information. Twenty healthy subjects performed walking tasks in three levels of step size (small, normal and large. According to distribution features of signals’ power spectral-density, six frequency bands (0-0.18Hz with an interval of 0.03Hz for each band width divided by applying wavelet packets decomposition were mainly analyzed. Feature vectors were extracted from the difference between oxygenated hemoglobin (oxyHb and deoxygenated hemoglobin (dexoyHb in different measuring channels in the six frequency bands. Support vector machine (SVM method was utilized to classify the three levels of step sizes. Mean recognition accuracy achieved up to 83.3%. The result indicated that it is possible to identify spontaneous walking by using cerebral hemoglobin information. This is helpful for enhancing the intelligence of walking-assistive devices and motivating the active control of patients, which further is profitable for enhancing self-confidence of patients.

  3. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width.

    Science.gov (United States)

    Learn, R; Feigenbaum, E

    2016-06-01

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  4. An explicit multi-time-stepping algorithm for aerodynamic flows

    NARCIS (Netherlands)

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for

  5. Aggressive time step selection for the time asymptotic velocity diffusion problem

    International Nuclear Information System (INIS)

    Hewett, D.W.; Krapchev, V.B.; Hizanidis, K.; Bers, A.

    1984-12-01

    An aggressive time step selector for an ADI algorithm is preseneted that is applied to the linearized 2-D Fokker-Planck equation including an externally imposed quasilinear diffusion term. This method provides a reduction in CPU requirements by factors of two or three compared to standard ADI. More important, the robustness of the procedure greatly reduces the work load of the user. The procedure selects a nearly optimal Δt with a minimum of intervention by the user thus relieving the need to supervise the algorithm. In effect, the algorithm does its own supervision by discarding time steps made with Δt too large

  6. GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling

    Science.gov (United States)

    Miki, Yohei; Umemura, Masayuki

    2017-04-01

    The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.

  7. Unequal cluster sizes in stepped-wedge cluster randomised trials: a systematic review.

    Science.gov (United States)

    Kristunas, Caroline; Morris, Tom; Gray, Laura

    2017-11-15

    To investigate the extent to which cluster sizes vary in stepped-wedge cluster randomised trials (SW-CRT) and whether any variability is accounted for during the sample size calculation and analysis of these trials. Any, not limited to healthcare settings. Any taking part in an SW-CRT published up to March 2016. The primary outcome is the variability in cluster sizes, measured by the coefficient of variation (CV) in cluster size. Secondary outcomes include the difference between the cluster sizes assumed during the sample size calculation and those observed during the trial, any reported variability in cluster sizes and whether the methods of sample size calculation and methods of analysis accounted for any variability in cluster sizes. Of the 101 included SW-CRTs, 48% mentioned that the included clusters were known to vary in size, yet only 13% of these accounted for this during the calculation of the sample size. However, 69% of the trials did use a method of analysis appropriate for when clusters vary in size. Full trial reports were available for 53 trials. The CV was calculated for 23 of these: the median CV was 0.41 (IQR: 0.22-0.52). Actual cluster sizes could be compared with those assumed during the sample size calculation for 14 (26%) of the trial reports; the cluster sizes were between 29% and 480% of that which had been assumed. Cluster sizes often vary in SW-CRTs. Reporting of SW-CRTs also remains suboptimal. The effect of unequal cluster sizes on the statistical power of SW-CRTs needs further exploration and methods appropriate to studies with unequal cluster sizes need to be employed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. An adaptive time-stepping strategy for solving the phase field crystal model

    International Nuclear Information System (INIS)

    Zhang, Zhengru; Ma, Yuan; Qiao, Zhonghua

    2013-01-01

    In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. The numerical experiments demonstrate that the CPU time is significantly saved for long time simulations

  9. Coherent states for the time dependent harmonic oscillator: the step function

    International Nuclear Information System (INIS)

    Moya-Cessa, Hector; Fernandez Guasti, Manuel

    2003-01-01

    We study the time evolution for the quantum harmonic oscillator subjected to a sudden change of frequency. It is based on an approximate analytic solution to the time dependent Ermakov equation for a step function. This approach allows for a continuous treatment that differs from former studies that involve the matching of two time independent solutions at the time when the step occurs

  10. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Science.gov (United States)

    2010-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... WATER REGULATIONS Control of Lead and Copper § 141.81 Applicability of corrosion control treatment steps...). (ii) A report explaining the test methods used by the water system to evaluate the corrosion control...

  11. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    Science.gov (United States)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  12. Multiple-time-stepping generalized hybrid Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, Bruno, E-mail: bescribano@bcamath.org [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); Akhmatskaya, Elena [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Reich, Sebastian [Universität Potsdam, Institut für Mathematik, D-14469 Potsdam (Germany); Azpiroz, Jon M. [Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, Donostia (Spain)

    2015-01-01

    Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.

  13. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  14. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    Science.gov (United States)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  15. Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles.

    Science.gov (United States)

    Foppa, Lucas; Copéret, Christophe; Comas-Vives, Aleix

    2016-12-28

    Carbon monoxide is a ubiquitous molecule, a key feedstock and intermediate in chemical processes. Its adsorption and activation, typically carried out on metallic nanoparticles (NPs), are strongly dependent on the particle size. In particular, small NPs, which in principle contain more corner and step-edge atoms, are surprisingly less reactive than larger ones. Hereby, first-principles calculations on explicit Ru NP models (1-2 nm) show that both small and large NPs can present step-edge sites (e.g., B 5 and B 6 sites). However, such sites display strong particle-size-dependent reactivity because of very subtle differences in local chemical bonding. State-of-the-art crystal orbital Hamilton population analysis allows a detailed molecular orbital picture of adsorbed CO on step-edges, which can be classified as flat (η 1 coordination) and concave (η 2 coordination) sites. Our analysis shows that the CO π-metal d π hybrid band responsible for the electron back-donation is better represented by an oxygen lone pair on flat sites, whereas it is delocalized on both C and O atoms on concave sites, increasing the back-bonding on these sites compared to flat step-edges or low-index surface sites. The bonding analysis also rationalizes why CO cleavage is easier on step-edge sites of large NPs compared to small ones irrespective of the site geometry. The lower reactivity of small NPs is due to the smaller extent of the Ru-O interaction in the η 2 adsorption mode, which destabilizes the η 2 transition-state structure for CO direct cleavage. Our findings provide a molecular understanding of the reactivity of CO on NPs, which is consistent with the observed particle size effect.

  16. [Collaborative application of BEPS at different time steps.

    Science.gov (United States)

    Lu, Wei; Fan, Wen Yi; Tian, Tian

    2016-09-01

    BEPSHourly is committed to simulate the ecological and physiological process of vegetation at hourly time steps, and is often applied to analyze the diurnal change of gross primary productivity (GPP), net primary productivity (NPP) at site scale because of its more complex model structure and time-consuming solving process. However, daily photosynthetic rate calculation in BEPSDaily model is simpler and less time-consuming, not involving many iterative processes. It is suitable for simulating the regional primary productivity and analyzing the spatial distribution of regional carbon sources and sinks. According to the characteristics and applicability of BEPSDaily and BEPSHourly models, this paper proposed a method of collaborative application of BEPS at daily and hourly time steps. Firstly, BEPSHourly was used to optimize the main photosynthetic parameters: the maximum rate of carboxylation (V c max ) and the maximum rate of photosynthetic electron transport (J max ) at site scale, and then the two optimized parameters were introduced into BEPSDaily model to estimate regional NPP at regional scale. The results showed that optimization of the main photosynthesis parameters based on the flux data could improve the simulate ability of the model. The primary productivity of different forest types in descending order was deciduous broad-leaved forest, mixed forest, coniferous forest in 2011. The collaborative application of carbon cycle models at different steps proposed in this study could effectively optimize the main photosynthesis parameters V c max and J max , simulate the monthly averaged diurnal GPP, NPP, calculate the regional NPP, and analyze the spatial distribution of regional carbon sources and sinks.

  17. Studies on steps affecting tritium residence time in solid blanket

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    1987-01-01

    For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)

  18. Optimal order and time-step criterion for Aarseth-type N-body integrators

    International Nuclear Information System (INIS)

    Makino, Junichiro

    1991-01-01

    How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed. 18 refs

  19. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    Science.gov (United States)

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  20. Time dependent theory of two-step absorption of two pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rebane, Inna, E-mail: inna.rebane@ut.ee

    2015-09-25

    The time dependent theory of two step-absorption of two different light pulses with arbitrary duration in the electronic three-level model is proposed. The probability that the third level is excited at the moment t is found in depending on the time delay between pulses, the spectral widths of the pulses and the energy relaxation constants of the excited electronic levels. The time dependent perturbation theory is applied without using “doorway–window” approach. The time and spectral behavior of the spectrum using in calculations as simple as possible model is analyzed. - Highlights: • Time dependent theory of two-step absorption in the three-level model is proposed. • Two different light pulses with arbitrary duration is observed. • The time dependent perturbation theory is applied without “door–window” approach. • The time and spectral behavior of the spectra is analyzed for several cases.

  1. Step size of the rotary proton motor in single FoF1-ATP synthase from a thermoalkaliphilic bacterium by DCO-ALEX FRET

    Science.gov (United States)

    Hammann, Eva; Zappe, Andrea; Keis, Stefanie; Ernst, Stefan; Matthies, Doreen; Meier, Thomas; Cook, Gregory M.; Börsch, Michael

    2012-02-01

    Thermophilic enzymes operate at high temperatures but show reduced activities at room temperature. They are in general more stable during preparation and, accordingly, are considered to be more rigid in structure. Crystallization is often easier compared to proteins from bacteria growing at ambient temperatures, especially for membrane proteins. The ATP-producing enzyme FoF1-ATP synthase from thermoalkaliphilic Caldalkalibacillus thermarum strain TA2.A1 is driven by a Fo motor consisting of a ring of 13 c-subunits. We applied a single-molecule Förster resonance energy transfer (FRET) approach using duty cycle-optimized alternating laser excitation (DCO-ALEX) to monitor the expected 13-stepped rotary Fo motor at work. New FRET transition histograms were developed to identify the smaller step sizes compared to the 10-stepped Fo motor of the Escherichia coli enzyme. Dwell time analysis revealed the temperature and the LDAO dependence of the Fo motor activity on the single molecule level. Back-and-forth stepping of the Fo motor occurs fast indicating a high flexibility in the membrane part of this thermophilic enzyme.

  2. Multiple time step integrators in ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-01-01

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy

  3. Stability analysis and time-step limits for a Monte Carlo Compton-scattering method

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.

    2010-01-01

    A Monte Carlo method for simulating Compton scattering in high energy density applications has been presented that models the photon-electron collision kinematics exactly [E. Canfield, W.M. Howard, E.P. Liang, Inverse Comptonization by one-dimensional relativistic electrons, Astrophys. J. 323 (1987) 565]. However, implementing this technique typically requires an explicit evaluation of the material temperature, which can lead to unstable and oscillatory solutions. In this paper, we perform a stability analysis of this Monte Carlo method and develop two time-step limits that avoid undesirable behavior. The first time-step limit prevents instabilities, while the second, more restrictive time-step limit avoids both instabilities and nonphysical oscillations. With a set of numerical examples, we demonstrate the efficacy of these time-step limits.

  4. Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids

    International Nuclear Information System (INIS)

    Chen, Bo; Chen, Chen; Wang, Jianhui; Butler-Purry, Karen L.

    2017-01-01

    Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determined to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.

  5. Grief: Difficult Times, Simple Steps.

    Science.gov (United States)

    Waszak, Emily Lane

    This guide presents techniques to assist others in coping with the loss of a loved one. Using the language of 9 layperson, the book contains more than 100 tips for caregivers or loved ones. A simple step is presented on each page, followed by reasons and instructions for each step. Chapters include: "What to Say"; "Helpful Things to Do"; "Dealing…

  6. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    Science.gov (United States)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  7. A parallel nearly implicit time-stepping scheme

    OpenAIRE

    Botchev, Mike A.; van der Vorst, Henk A.

    2001-01-01

    Across-the-space parallelism still remains the most mature, convenient and natural way to parallelize large scale problems. One of the major problems here is that implicit time stepping is often difficult to parallelize due to the structure of the system. Approximate implicit schemes have been suggested to circumvent the problem. These schemes have attractive stability properties and they are also very well parallelizable. The purpose of this article is to give an overall assessment of the pa...

  8. Is the size of the useful field of view affected by postural demands associated with standing and stepping?

    Science.gov (United States)

    Reed-Jones, James G; Reed-Jones, Rebecca J; Hollands, Mark A

    2014-04-30

    The useful field of view (UFOV) is the visual area from which information is obtained at a brief glance. While studies have examined the effects of increased cognitive load on the visual field, no one has specifically looked at the effects of postural control or locomotor activity on the UFOV. The current study aimed to examine the effects of postural demand and locomotor activity on UFOV performance in healthy young adults. Eleven participants were tested on three modified UFOV tasks (central processing, peripheral processing, and divided-attention) while seated, standing, and stepping in place. Across all postural conditions, participants showed no difference in their central or peripheral processing. However, in the divided-attention task (reporting the letter in central vision and target location in peripheral vision amongst distracter items) a main effect of posture condition on peripheral target accuracy was found for targets at 57° of eccentricity (p=.037). The mean accuracy reduced from 80.5% (standing) to 74% (seated) to 56.3% (stepping). These findings show that postural demands do affect UFOV divided-attention performance. In particular, the size of the useful field of view significantly decreases when stepping. This finding has important implications for how the results of a UFOV test are used to evaluate the general size of the UFOV during varying activities, as the traditional seated test procedure may overestimate the size of the UFOV during locomotor activities. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. A 10-step safety management framework for construction small and medium-sized enterprises.

    Science.gov (United States)

    Gunduz, Murat; Laitinen, Heikki

    2017-09-01

    It is of great importance to develop an occupational health and safety management system (OHS MS) to form a systemized approach to improve health and safety. It is a known fact that thousands of accidents and injuries occur in the construction industry. Most of these accidents occur in small and medium-sized enterprises (SMEs). This article provides a 10-step user-friendly OHS MS for the construction industry. A quantitative OHS MS indexing method is also introduced in the article. The practical application of the system to real SMEs and its promising results are also presented.

  10. Influence of the incremental step size in work rate on exercise response and gas exchange in patients with pulmonary hypertension.

    Science.gov (United States)

    Gläser, Sven; Lodziewski, Sven; Koch, Beate; Opitz, Christian F; Völzke, Henry; Ewert, Ralf

    2008-02-23

    Cardiopulmonary exercise testing (CPET) has become increasingly important as a routine procedure in daily clinical work. So far, it is generally accepted that an individualized exercise protocol with exercise duration of 6 to 12 minutes is preferable to assess maximal exercise performance. The aim of this study was to compare an individualized NYHA adapted exercise protocol with a fixed standard protocol in patients with severe pulmonary arterial hypertension. Twenty-two patients (17 female, 5 male; mean age 49 +/- 14 yrs) underwent symptom limited CPET on a bicycle. On two consecutive days each subject performed a stepwise CPET according to a modified Jones protocol (16 Watt per minute stages) as well as an individualized NYHA adapted protocol with 5 or 10 Watt/min stages in a randomized order. Oxygen uptake at peak exercise (peakVO2) and anaerobic threshold (VO2AT), maximal ventilation (VE), breathing reserve (VE/MVV), ventilatory efficiency (VE vs. VCO2 slope), exercise time, maximal power and work rate were assessed and compared between both protocols. Comparing both, adapted NYHA protocol and standardized Jones protocol, we found significant differences in maximal power (56.7 +/- 19 W vs. 74 +/- 18 W; p rate, VE, VE/MVV, peakVO2, VO2AT and VE vs. VCO2 slope. Variations of incremental step size during CPET significantly affect exercise time and maximal power, whereas relevant parameters for clinical judgement and prognosis such as oxygen uptake, ventilation and ventilatory efficiency remain unchanged. These findings have practical implications for the exercise evaluation of patients with pulmonary hypertension. To reach maximal results for ventilation, oxygen uptake and gas exchange an individualization of incremental step size appears not to be mandatory.

  11. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations

    Science.gov (United States)

    Plante, Ianik; Devroye, Luc

    2017-10-01

    Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.

  12. On an efficient multiple time step Monte Carlo simulation of the SABR model

    NARCIS (Netherlands)

    Leitao Rodriguez, A.; Grzelak, L.A.; Oosterlee, C.W.

    2017-01-01

    In this paper, we will present a multiple time step Monte Carlo simulation technique for pricing options under the Stochastic Alpha Beta Rho model. The proposed method is an extension of the one time step Monte Carlo method that we proposed in an accompanying paper Leitao et al. [Appl. Math.

  13. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-15

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.

  14. Enforcing the Courant-Friedrichs-Lewy condition in explicitly conservative local time stepping schemes

    Science.gov (United States)

    Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.

    2018-04-01

    An optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubic "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a constraint on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.

  15. Errors in Postural Preparation Lead to Increased Choice Reaction Times for Step Initiation in Older Adults

    Science.gov (United States)

    Nutt, John G.; Horak, Fay B.

    2011-01-01

    Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431

  16. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    Science.gov (United States)

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  17. Generalized Runge-Kutta method for two- and three-dimensional space-time diffusion equations with a variable time step

    International Nuclear Information System (INIS)

    Aboanber, A.E.; Hamada, Y.M.

    2008-01-01

    An extensive knowledge of the spatial power distribution is required for the design and analysis of different types of current-generation reactors, and that requires the development of more sophisticated theoretical methods. Therefore, the need to develop new methods for multidimensional transient reactor analysis still exists. The objective of this paper is to develop a computationally efficient numerical method for solving the multigroup, multidimensional, static and transient neutron diffusion kinetics equations. A generalized Runge-Kutta method has been developed for the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic time step control. In addition, the A(α)-stability properties of the method are investigated. The analyses of two- and three-dimensional benchmark problems as well as static and transient problems, demonstrate that very accurate solutions can be obtained with assembly-sized spatial meshes. Preliminary numerical evaluations using two- and three-dimensional finite difference codes showed that the presented generalized Runge-Kutta method is highly accurate and efficient when compared with other optimized iterative numerical and conventional finite difference methods

  18. The large discretization step method for time-dependent partial differential equations

    Science.gov (United States)

    Haras, Zigo; Taasan, Shlomo

    1995-01-01

    A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.

  19. Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.

    Science.gov (United States)

    Ouyang, Yicun; Yin, Hujun

    2018-05-01

    Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.

  20. Continuous versus step-by-step scanning mode of a novel 3D scanner for CyberKnife measurements

    International Nuclear Information System (INIS)

    Al Kafi, M Abdullah; Mwidu, Umar; Moftah, Belal

    2015-01-01

    The purpose of the study is to investigate the continuous versus step-by-step scanning mode of a commercial circular 3D scanner for commissioning measurements of a robotic stereotactic radiosurgery system. The 3D scanner was used for profile measurements in step-by-step and continuous modes with the intent of comparing the two scanning modes for consistency. The profile measurements of in-plane, cross-plane, 15 degree, and 105 degree were performed for both fixed cones and Iris collimators at depth of maximum dose and at 10 cm depth. For CyberKnife field size, penumbra, flatness and symmetry analysis, it was observed that the measurements with continuous mode, which can be up to 6 times faster than step-by-step mode, are comparable and produce scans nearly identical to step-by-step mode. When compared with centered step-by-step mode data, a fully processed continuous mode data gives rise to maximum of 0.50% and 0.60% symmetry and flatness difference respectfully for all the fixed cones and Iris collimators studied. - Highlights: • D scanner for CyberKnife beam data measurements. • Beam data analysis for continuous and step-by-step scan modes. • Faster continuous scanning data are comparable to step-by-step mode scan data.

  1. Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping

    KAUST Repository

    Bonito, Andrea

    2014-10-31

    © Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.

  2. Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping

    KAUST Repository

    Bonito, Andrea; Guermond, Jean-Luc; Lee, Sanghyun

    2014-01-01

    © Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.

  3. Two-Step Time of Arrival Estimation for Pulse-Based Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    H. Vincent Poor

    2008-05-01

    Full Text Available In cooperative localization systems, wireless nodes need to exchange accurate position-related information such as time-of-arrival (TOA and angle-of-arrival (AOA, in order to obtain accurate location information. One alternative for providing accurate position-related information is to use ultra-wideband (UWB signals. The high time resolution of UWB signals presents a potential for very accurate positioning based on TOA estimation. However, it is challenging to realize very accurate positioning systems in practical scenarios, due to both complexity/cost constraints and adverse channel conditions such as multipath propagation. In this paper, a two-step TOA estimation algorithm is proposed for UWB systems in order to provide accurate TOA estimation under practical constraints. In order to speed up the estimation process, the first step estimates a coarse TOA of the received signal based on received signal energy. Then, in the second step, the arrival time of the first signal path is estimated by considering a hypothesis testing approach. The proposed scheme uses low-rate correlation outputs and is able to perform accurate TOA estimation in reasonable time intervals. The simulation results are presented to analyze the performance of the estimator.

  4. Reconstructing relative genome size of vascular plants through geological time.

    Science.gov (United States)

    Lomax, Barry H; Hilton, Jason; Bateman, Richard M; Upchurch, Garland R; Lake, Janice A; Leitch, Ilia J; Cromwell, Avery; Knight, Charles A

    2014-01-01

    The strong positive relationship evident between cell and genome size in both animals and plants forms the basis of using the size of stomatal guard cells as a proxy to track changes in plant genome size through geological time. We report for the first time a taxonomic fine-scale investigation into changes in stomatal guard-cell length and use these data to infer changes in genome size through the evolutionary history of land plants. Our data suggest that many of the earliest land plants had exceptionally large genome sizes and that a predicted overall trend of increasing genome size within individual lineages through geological time is not supported. However, maximum genome size steadily increases from the Mississippian (c. 360 million yr ago (Ma)) to the present. We hypothesise that the functional relationship between stomatal size, genome size and atmospheric CO2 may contribute to the dichotomy reported between preferential extinction of neopolyploids and the prevalence of palaeopolyploidy observed in DNA sequence data of extant vascular plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathan; Radwan, Hany; Dalcí n, Lisandro D.; Calo, Victor M.

    2013-01-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  6. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathan

    2013-05-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  7. Some Comments on the Behavior of the RELAP5 Numerical Scheme at Very Small Time Steps

    International Nuclear Information System (INIS)

    Tiselj, Iztok; Cerne, Gregor

    2000-01-01

    The behavior of the RELAP5 code at very short time steps is described, i.e., δt [approximately equal to] 0.01 δx/c. First, the property of the RELAP5 code to trace acoustic waves with 'almost' second-order accuracy is demonstrated. Quasi-second-order accuracy is usually achieved for acoustic waves at very short time steps but can never be achieved for the propagation of nonacoustic temperature and void fraction waves. While this feature may be beneficial for the simulations of fast transients describing pressure waves, it also has an adverse effect: The lack of numerical diffusion at very short time steps can cause typical second-order numerical oscillations near steep pressure jumps. This behavior explains why an automatic halving of the time step, which is used in RELAP5 when numerical difficulties are encountered, in some cases leads to the failure of the simulation.Second, the integration of the stiff interphase exchange terms in RELAP5 is studied. For transients with flashing and/or rapid condensation as the main phenomena, results strongly depend on the time step used. Poor accuracy is achieved with 'normal' time steps (δt [approximately equal to] δx/v) because of the very short characteristic timescale of the interphase mass and heat transfer sources. In such cases significantly different results are predicted with very short time steps because of the more accurate integration of the stiff interphase exchange terms

  8. Monte Carlo steps per spin vs. time in the master equation II: Glauber kinetics for the infinite-range ising model in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suhk Kun [Chungbuk National University, Chungbuk (Korea, Republic of)

    2006-01-15

    As an extension of our previous work on the relationship between time in Monte Carlo simulation and time in the continuous master equation in the infinit-range Glauber kinetic Ising model in the absence of any magnetic field, we explored the same model in the presence of a static magnetic field. Monte Carlo steps per spin as time in the MC simulations again turns out to be proportional to time in the master equation for the model in relatively larger static magnetic fields at any temperature. At and near the critical point in a relatively smaller magnetic field, the model exhibits a significant finite-size dependence, and the solution to the Suzuki-Kubo differential equation stemming from the master equation needs to be re-scaled to fit the Monte Carlo steps per spin for the system with different numbers of spins.

  9. Multi-time-step domain coupling method with energy control

    DEFF Research Database (Denmark)

    Mahjoubi, N.; Krenk, Steen

    2010-01-01

    the individual time step. It is demonstrated that displacement continuity between the subdomains leads to cancelation of the interface contributions to the energy balance equation, and thus stability and algorithmic damping properties of the original algorithms are retained. The various subdomains can...... by a numerical example using a refined mesh around concentrated forces. Copyright © 2010 John Wiley & Sons, Ltd....

  10. Sharing Steps in the Workplace: Changing Privacy Concerns Over Time

    DEFF Research Database (Denmark)

    Jensen, Nanna Gorm; Shklovski, Irina

    2016-01-01

    study of a Danish workplace participating in a step counting campaign. We find that concerns of employees who choose to participate and those who choose not to differ. Moreover, privacy concerns of participants develop and change over time. Our findings challenge the assumption that consumers...

  11. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    Science.gov (United States)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  12. Development of a real time activity monitoring Android application utilizing SmartStep.

    Science.gov (United States)

    Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward

    2016-08-01

    Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.

  13. Measuring border delay and crossing times at the US-Mexico border : part II. Step-by-step guidelines for implementing a radio frequency identification (RFID) system to measure border crossing and wait times.

    Science.gov (United States)

    2012-06-01

    The purpose of these step-by-step guidelines is to assist in planning, designing, and deploying a system that uses radio frequency identification (RFID) technology to measure the time needed for commercial vehicles to complete the northbound border c...

  14. Displacement in the parameter space versus spurious solution of discretization with large time step

    International Nuclear Information System (INIS)

    Mendes, Eduardo; Letellier, Christophe

    2004-01-01

    In order to investigate a possible correspondence between differential and difference equations, it is important to possess discretization of ordinary differential equations. It is well known that when differential equations are discretized, the solution thus obtained depends on the time step used. In the majority of cases, such a solution is considered spurious when it does not resemble the expected solution of the differential equation. This often happens when the time step taken into consideration is too large. In this work, we show that, even for quite large time steps, some solutions which do not correspond to the expected ones are still topologically equivalent to solutions of the original continuous system if a displacement in the parameter space is considered. To reduce such a displacement, a judicious choice of the discretization scheme should be made. To this end, a recent discretization scheme, based on the Lie expansion of the original differential equations, proposed by Monaco and Normand-Cyrot will be analysed. Such a scheme will be shown to be sufficient for providing an adequate discretization for quite large time steps compared to the pseudo-period of the underlying dynamics

  15. Research on test of product based on spatial sampling criteria and variable step sampling mechanism

    Science.gov (United States)

    Li, Ruihong; Han, Yueping

    2014-09-01

    This paper presents an effective approach for online testing the assembly structures inside products using multiple views technique and X-ray digital radiography system based on spatial sampling criteria and variable step sampling mechanism. Although there are some objects inside one product to be tested, there must be a maximal rotary step for an object within which the least structural size to be tested is predictable. In offline learning process, Rotating the object by the step and imaging it and so on until a complete cycle is completed, an image sequence is obtained that includes the full structural information for recognition. The maximal rotary step is restricted by the least structural size and the inherent resolution of the imaging system. During online inspection process, the program firstly finds the optimum solutions to all different target parts in the standard sequence, i.e., finds their exact angles in one cycle. Aiming at the issue of most sizes of other targets in product are larger than that of the least structure, the paper adopts variable step-size sampling mechanism to rotate the product specific angles with different steps according to different objects inside the product and match. Experimental results show that the variable step-size method can greatly save time compared with the traditional fixed-step inspection method while the recognition accuracy is guaranteed.

  16. Quickest single-step one pot mechanosynthesis and characterization of ZnTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Patra, S. [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India)

    2011-05-05

    Research highlights: > First time quickest mechanosynthesis of ZnTe QDs starting from Zn and Te powders. > Cubic ZnTe are formed in a single pot at RT in a single step within 1 h of milling. > The existence of stacking faults and twin faults are evident from HRTEM images. > Distinct blue shift has been observed in UV-vis absorption spectra. > First time report that ZnTe QDs with faults can also show the quantum size effect. - Abstract: ZnTe quantum dots (QDs) are synthesized at room temperature in a single step by mechanical alloying the stoichiometric equimolar mixture (1:1 mol) of Zn and Te powders under Ar within 1 h of milling. Both XRD and HRTEM characterizations reveal that these QDs having size {approx}5 nm contain stacking faults of different kinds. A distinct blue-shift in absorption spectra with decreasing particle size of QDs confirms the quantum size confinement effect (QSCE). It is observed for first time that the QDs with considerable amount of faults can also show the QSCE. Optical band gaps of these QDs increase with increasing milling time and their band gaps can be fine-tuned easily by varying milling time of QDs.

  17. Stepping Stones through Time

    Directory of Open Access Journals (Sweden)

    Emily Lyle

    2012-03-01

    Full Text Available Indo-European mythology is known only through written records but it needs to be understood in terms of the preliterate oral-cultural context in which it was rooted. It is proposed that this world was conceptually organized through a memory-capsule consisting of the current generation and the three before it, and that there was a system of alternate generations with each generation taking a step into the future under the leadership of a white or red king.

  18. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  19. Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density

    KAUST Repository

    Guermond, J.-L.; Salgado, Abner J.

    2011-01-01

    In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established. © 2011 Society for Industrial and Applied Mathematics.

  20. Unexpected perturbations training improves balance control and voluntary stepping times in older adults - a double blind randomized control trial.

    Science.gov (United States)

    Kurz, Ilan; Gimmon, Yoav; Shapiro, Amir; Debi, Ronen; Snir, Yoram; Melzer, Itshak

    2016-03-04

    Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allocated to an intervention group (n = 27) or a control group (n = 26). The intervention group received 24 training sessions over 3 months that included unexpected perturbation of balance exercises during treadmill walking. The control group performed treadmill walking with no perturbations. The primary outcome measures were the voluntary step execution times, traditional postural sway parameters and Stabilogram-Diffusion Analysis. The secondary outcome measures were the fall efficacy Scale (FES), self-reported late life function (LLFDI), and Performance-Oriented Mobility Assessment (POMA). Compared to control, participation in intervention program that includes unexpected loss of balance during walking led to faster Voluntary Step Execution Times under single (p = 0.002; effect size [ES] =0.75) and dual task (p = 0.003; [ES] = 0.89) conditions; intervention group subjects showed improvement in Short-term Effective diffusion coefficients in the mediolateral direction of the Stabilogram-Diffusion Analysis under eyes closed conditions (p = 0.012, [ES] = 0.92). Compared to control there were no significant changes in FES, LLFDI, and POMA. An intervention program that includes unexpected loss of balance during walking can improve voluntary stepping times and balance control, both previously reported as risk factors for falls. This however, did not transferred to a change self-reported function and FES. ClinicalTrials.gov NCT01439451 .

  1. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz; Kalachyova, Y. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Solovyev, A. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Vytykacova, S. [Institute of Chemical Technology, Department of Glass and Ceramics (Czech Republic); Svanda, J.; Siegel, J. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [Institute of Chemical Technology, Department of Biochemistry and Microbiology (Czech Republic); Svorcik, V. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic)

    2015-03-15

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  2. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    International Nuclear Information System (INIS)

    Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.

    2015-01-01

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications

  3. Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)

    KAUST Repository

    Pestana, Reynam C.

    2009-01-01

    We show that the wave equation solution using a conventional finite‐difference scheme, derived commonly by the Taylor series approach, can be derived directly from the rapid expansion method (REM). After some mathematical manipulation we consider an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second order time finite‐difference scheme that is frequently used in more conventional finite‐difference implementations. We then show that if we use more terms from the REM we can obtain a more accurate time integration of the wave field. Consequently, we have demonstrated that the REM is more accurate than the usual finite‐difference schemes and it provides a wave equation solution which allows us to march in large time steps without numerical dispersion and is numerically stable. We illustrate the method with post and pre stack migration results.

  4. A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations

    International Nuclear Information System (INIS)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-01

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s 2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful

  5. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics - Monte Carlo Canonical Propagation Algorithm.

    Science.gov (United States)

    Chen, Yunjie; Kale, Seyit; Weare, Jonathan; Dinner, Aaron R; Roux, Benoît

    2016-04-12

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.

  6. Positivity-preserving dual time stepping schemes for gas dynamics

    Science.gov (United States)

    Parent, Bernard

    2018-05-01

    A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.

  7. Faceting of stepped silicon (1 1 3) surfaces: Self assembly of nanoscale gratings

    Science.gov (United States)

    Mochrie, S. G. J.; Song, S.; Yoon, Mirang; Abernathy, D. L.; Stephenson, G. B.

    1996-02-01

    Synchrotron X-ray scattering studies of the phase behavior and phase transformations of stepped Si(113) surfaces tilted towards [001] are reviewed for temperatures between 300 and 1500 K. At the highest temperatures, these surfaces are uniformly stepped, and the intensity of near-specularly scattered X-rays increases with decreasing temperature. This is two-dimensional critical opalescence, which foreshadows a faceting transformation. At temperatures below the faceting transformation, (113) facets appear in coexistence with a stepped phase, leading to a mesoscopically grooved morphology. Both the misorientation angle at the phase boundary separating one- and two-phase regions and the intensity of the near-specular diffuse scattering may be described as power laws versus reduced temperature. This can be understood qualitatively on the basis of a mean-field theory, which incorporates an attractive interaction between steps. At lower temperatures, the surfaces are completely faceted, comprising (114) and (113) facets. The kinetics of faceting is also described. Following a quench from a one-phase region of the phase diagram into a two-phase region, the grooved superstructure forms and subsequently coarsens in time. For times between one and several hundred seconds, the surface morphology is self-similar at different times, with a characteristic groove size that evolves as a power law versus time. At later times, the groove size approaches a limiting value, as a result of elastic effects.

  8. Sub-step methodology for coupled Monte Carlo depletion and thermal hydraulic codes

    International Nuclear Information System (INIS)

    Kotlyar, D.; Shwageraus, E.

    2016-01-01

    Highlights: • Discretization of time in coupled MC codes determines the results’ accuracy. • The error is due to lack of information regarding the time-dependent reaction rates. • The proposed sub-step method considerably reduces the time discretization error. • No additional MC transport solutions are required within the time step. • The reaction rates are varied as functions of nuclide densities and TH conditions. - Abstract: The governing procedure in coupled Monte Carlo (MC) codes relies on discretization of the simulation time into time steps. Typically, the MC transport solution at discrete points will generate reaction rates, which in most codes are assumed to be constant within the time step. This assumption can trigger numerical instabilities or result in a loss of accuracy, which, in turn, would require reducing the time steps size. This paper focuses on reducing the time discretization error without requiring additional MC transport solutions and hence with no major computational overhead. The sub-step method presented here accounts for the reaction rate variation due to the variation in nuclide densities and thermal hydraulic (TH) conditions. This is achieved by performing additional depletion and TH calculations within the analyzed time step. The method was implemented in BGCore code and subsequently used to analyze a series of test cases. The results indicate that computational speedup of up to a factor of 10 may be achieved over the existing coupling schemes.

  9. On the limitations of fixed-step-size adaptive methods with response confidence.

    Science.gov (United States)

    Hsu, Yung-Fong; Chin, Ching-Lan

    2014-05-01

    The family of (non-parametric, fixed-step-size) adaptive methods, also known as 'up-down' or 'staircase' methods, has been used extensively in psychophysical studies for threshold estimation. Extensions of adaptive methods to non-binary responses have also been proposed. An example is the three-category weighted up-down (WUD) method (Kaernbach, 2001) and its four-category extension (Klein, 2001). Such an extension, however, is somewhat restricted, and in this paper we discuss its limitations. To facilitate the discussion, we characterize the extension of WUD by an algorithm that incorporates response confidence into a family of adaptive methods. This algorithm can also be applied to two other adaptive methods, namely Derman's up-down method and the biased-coin design, which are suitable for estimating any threshold quantiles. We then discuss via simulations of the above three methods the limitations of the algorithm. To illustrate, we conduct a small scale of experiment using the extended WUD under different response confidence formats to evaluate the consistency of threshold estimation. © 2013 The British Psychological Society.

  10. One-step electrodeposition process of CuInSe2: Deposition time effect

    Indian Academy of Sciences (India)

    Administrator

    CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified two- electrodes system. ... homojunctions or heterojunctions (Rincon et al 1983). Efficiency of ... deposition times onto indium thin oxide (ITO)-covered.

  11. Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping.

    Science.gov (United States)

    Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G

    2010-12-01

    This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping

    KAUST Repository

    De Basabe, Jonás D.

    2010-04-01

    We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively. © 2010 The Authors Journal compilation © 2010 RAS.

  13. Fast Determination of Distribution-Connected PV Impacts Using a Variable Time-Step Quasi-Static Time-Series Approach: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mather, Barry

    2017-08-24

    The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce the required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.

  14. The importance of time-stepping errors in ocean models

    Science.gov (United States)

    Williams, P. D.

    2011-12-01

    Many ocean models use leapfrog time stepping. The Robert-Asselin (RA) filter is usually applied after each leapfrog step, to control the computational mode. However, it will be shown in this presentation that the RA filter generates very large amounts of numerical diapycnal mixing. In some ocean models, the numerical diapycnal mixing from the RA filter is as large as the physical diapycnal mixing. This lowers our confidence in the fidelity of the simulations. In addition to the above problem, the RA filter also damps the physical solution and degrades the numerical accuracy. These two concomitant problems occur because the RA filter does not conserve the mean state, averaged over the three time slices on which it operates. The presenter has recently proposed a simple modification to the RA filter, which does conserve the three-time-level mean state. The modified filter has become known as the Robert-Asselin-Williams (RAW) filter. When used in conjunction with the leapfrog scheme, the RAW filter eliminates the numerical damping of the physical solution and increases the amplitude accuracy by two orders, yielding third-order accuracy. The phase accuracy is unaffected and remains second-order. The RAW filter can easily be incorporated into existing models of the ocean, typically via the insertion of just a single line of code. Better simulations are obtained, at almost no additional computational expense. Results will be shown from recent implementations of the RAW filter in various ocean models. For example, in the UK Met Office Hadley Centre ocean model, sea-surface temperature and sea-ice biases in the North Atlantic Ocean are found to be reduced. These improvements are encouraging for the use of the RAW filter in other ocean models.

  15. Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range.

    Science.gov (United States)

    Safari, Hanieh; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola

    2018-05-15

    Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Elderly fallers enhance dynamic stability through anticipatory postural adjustments during a choice stepping reaction time

    Directory of Open Access Journals (Sweden)

    Romain Tisserand

    2016-11-01

    Full Text Available In the case of disequilibrium, the capacity to step quickly is critical to avoid falling for elderly. This capacity can be simply assessed through the choice stepping reaction time test (CSRT, where elderly fallers (F take longer to step than elderly non-fallers (NF. However, reasons why elderly F elongate their stepping time remain unclear. The purpose of this study is to assess the characteristics of anticipated postural adjustments (APA that elderly F develop in a stepping context and their consequences on the dynamic stability. 44 community-dwelling elderly subjects (20 F and 22 NF performed a CSRT where kinematics and ground reaction forces were collected. Variables were analyzed using two-way repeated measures ANOVAs. Results for F compared to NF showed that stepping time is elongated, due to a longer APA phase. During APA, they seem to use two distinct balance strategies, depending on the axis: in the anteroposterior direction, we measured a smaller backward movement and slower peak velocity of the center of pressure (CoP; in the mediolateral direction, the CoP movement was similar in amplitude and peak velocity between groups but lasted longer. The biomechanical consequence of both strategies was an increased margin of stability (MoS at foot-off, in the respective direction. By elongating their APA, elderly F use a safer balance strategy that prioritizes dynamic stability conditions instead of the objective of the task. Such a choice in balance strategy probably comes from muscular limitations and/or a higher fear of falling and paradoxically indicates an increased risk of fall.

  17. Modeling Stepped Leaders Using a Time Dependent Multi-dipole Model and High-speed Video Data

    Science.gov (United States)

    Karunarathne, S.; Marshall, T.; Stolzenburg, M.; Warner, T. A.; Orville, R. E.

    2012-12-01

    In summer of 2011, we collected lightning data with 10 stations of electric field change meters (bandwidth of 0.16 Hz - 2.6 MHz) on and around NASA/Kennedy Space Center (KSC) covering nearly 70 km × 100 km area. We also had a high-speed video (HSV) camera recording 50,000 images per second collocated with one of the electric field change meters. In this presentation we describe our use of these data to model the electric field change caused by stepped leaders. Stepped leaders of a cloud to ground lightning flash typically create the initial path for the first return stroke (RS). Most of the time, stepped leaders have multiple complex branches, and one of these branches will create the ground connection for the RS to start. HSV data acquired with a short focal length lens at ranges of 5-25 km from the flash are useful for obtaining the 2-D location of these multiple branches developing at the same time. Using HSV data along with data from the KSC Lightning Detection and Ranging (LDAR2) system and the Cloud to Ground Lightning Surveillance System (CGLSS), the 3D path of a leader may be estimated. Once the path of a stepped leader is obtained, the time dependent multi-dipole model [ Lu, Winn,and Sonnenfeld, JGR 2011] can be used to match the electric field change at various sensor locations. Based on this model, we will present the time-dependent charge distribution along a leader channel and the total charge transfer during the stepped leader phase.

  18. Control Software for Piezo Stepping Actuators

    Science.gov (United States)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  19. Multiple stage miniature stepping motor

    International Nuclear Information System (INIS)

    Niven, W.A.; Shikany, S.D.; Shira, M.L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed

  20. A proposed adaptive step size perturbation and observation maximum power point tracking algorithm based on photovoltaic system modeling

    Science.gov (United States)

    Huang, Yu

    Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.

  1. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    Science.gov (United States)

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  3. Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)

    KAUST Repository

    Pestana, Reynam C.; Stoffa, Paul L.

    2009-01-01

    an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second

  4. Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network

    International Nuclear Information System (INIS)

    Ma Qianli; Zheng Qilun; Peng Hong; Qin Jiangwei; Zhong Tanwei

    2008-01-01

    This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by co-evolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series

  5. Optimization of the size and yield of graphene oxide sheets in the exfoliation step

    OpenAIRE

    Botas, Cristina; Pérez, A.M. (Ana); Álvarez, Patricia; Santamaría, Ricardo; Granda, Marcos; Blanco, Clara; Menéndez, Rosa

    2017-01-01

    In this paper we demonstrate that the yield and size of the graphene oxide sheets (GO) obtained by sonication of graphite oxide (GrO) can be optimized not only by selecting the appropriate exfoliation conditions but also as a function of the crystalline structure of the parent graphite. A larger crystal size in the parent graphite favors GrO exfoliation and yields larger sheets in shorter sonication times, independently of the oxygen content of the GrO. A maximum yield of GO is obtained in al...

  6. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    International Nuclear Information System (INIS)

    Pham, Van Binh; Pham, Xuan ThanhTung; Phan, Thanh Nhat Khoa; Le, Thi Thanh Tuyen; Dang, Mau Chien

    2015-01-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL"−"1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis. (paper)

  7. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    Science.gov (United States)

    Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.

  8. Size-controlled magnetic nanoparticles with lecithin for biomedical applications

    Science.gov (United States)

    Park, S. I.; Kim, J. H.; Kim, C. G.; Kim, C. O.

    2007-05-01

    Lecithin-adsorbed magnetic nanoparticles were prepared by three-step process that the thermal decomposition was combined with ultrasonication. Experimental parameters were three items—molar ratio between Fe(CO) 5 and oleic acid, keeping time at decomposition temperature and lecithin concentration. As the molar ratio between Fe(CO) 5 and oleic acid, and keeping time at decomposition temperature increased, the particle size increased. However, the change of lecithin concentration did not show the remarkable particle size variation.

  9. Size-controlled magnetic nanoparticles with lecithin for biomedical applications

    International Nuclear Information System (INIS)

    Park, S.I.; Kim, J.H.; Kim, C.G.; Kim, C.O.

    2007-01-01

    Lecithin-adsorbed magnetic nanoparticles were prepared by three-step process that the thermal decomposition was combined with ultrasonication. Experimental parameters were three items-molar ratio between Fe(CO) 5 and oleic acid, keeping time at decomposition temperature and lecithin concentration. As the molar ratio between Fe(CO) 5 and oleic acid, and keeping time at decomposition temperature increased, the particle size increased. However, the change of lecithin concentration did not show the remarkable particle size variation

  10. Performance enhancement of a heterojunction bipolar transistor (HBT) by two-step passivation

    International Nuclear Information System (INIS)

    Fu, S.-I.; Lai, P.-H.; Tsai, Y.-Y.; Hung, C.-W.; Yen, C.-H.; Cheng, S.-Y.; Liu, W.-C.

    2006-01-01

    An interesting two-step passivation (with ledge structure and sulphide based chemical treatment) on base surface, for the first time, is demonstrated to study the temperature-dependent DC characteristics and noise performance of an InGaP/GaAs heterojunction bipolar transistor (HBT). Improved transistor behaviors on maximum current gain β max , offset voltage ΔV CE , and emitter size effect are obtained by using the two-step passivation. Moreover, the device with the two-step passivation exhibits relatively temperature-independent and improved thermal stable performances as the temperature is increased. Therefore, the two-step passivationed device can be used for high-temperature and low-power electronics applications

  11. Comparing an Annual and a Daily Time-Step Model for Predicting Field-Scale Phosphorus Loss.

    Science.gov (United States)

    Bolster, Carl H; Forsberg, Adam; Mittelstet, Aaron; Radcliffe, David E; Storm, Daniel; Ramirez-Avila, John; Sharpley, Andrew N; Osmond, Deanna

    2017-11-01

    A wide range of mathematical models are available for predicting phosphorus (P) losses from agricultural fields, ranging from simple, empirically based annual time-step models to more complex, process-based daily time-step models. In this study, we compare field-scale P-loss predictions between the Annual P Loss Estimator (APLE), an empirically based annual time-step model, and the Texas Best Management Practice Evaluation Tool (TBET), a process-based daily time-step model based on the Soil and Water Assessment Tool. We first compared predictions of field-scale P loss from both models using field and land management data collected from 11 research sites throughout the southern United States. We then compared predictions of P loss from both models with measured P-loss data from these sites. We observed a strong and statistically significant ( loss between the two models; however, APLE predicted, on average, 44% greater dissolved P loss, whereas TBET predicted, on average, 105% greater particulate P loss for the conditions simulated in our study. When we compared model predictions with measured P-loss data, neither model consistently outperformed the other, indicating that more complex models do not necessarily produce better predictions of field-scale P loss. Our results also highlight limitations with both models and the need for continued efforts to improve their accuracy. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping

    KAUST Repository

    De Basabe, Joná s D.; Sen, Mrinal K.

    2010-01-01

    popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM

  13. A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis

    Science.gov (United States)

    Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann

    2017-04-01

    The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for

  14. Linear micromechanical stepping drive for pinhole array positioning

    International Nuclear Information System (INIS)

    Endrödy, Csaba; Mehner, Hannes; Hoffmann, Martin; Grewe, Adrian

    2015-01-01

    A compact linear micromechanical stepping drive for positioning a 7 × 5.5 mm 2 optical pinhole array is presented. The system features a step size of 13.2 µm and a full displacement range of 200 µm. The electrostatic inch-worm stepping mechanism shows a compact design capable of positioning a payload 50% of its own weight. The stepping drive movement, step sizes and position accuracy are characterized. The actuated pinhole array is integrated in a confocal chromatic hyperspectral imaging system, where coverage of the object plane, and therefore the useful picture data, can be multiplied by 14 in contrast to a non-actuated array. (paper)

  15. Step-to-step reproducibility and asymmetry to study gait auto-optimization in healthy and cerebral palsied subjects.

    Science.gov (United States)

    Descatoire, A; Femery, V; Potdevin, F; Moretto, P

    2009-05-01

    The purpose of our study was to compare plantar pressure asymmetry and step-to-step reproducibility in both able-bodied persons and two groups of hemiplegics. The relevance of the research was to determine the efficiency of asymmetry and reproducibility as indexes for diagnosis and rehabilitation processes. This study comprised 31 healthy young subjects and 20 young subjects suffering from cerebral palsy hemiplegia assigned to two groups of 10 subjects according to the severity of their musculoskeletal disorders. The peaks of plantar pressure and the time to peak pressure were recorded with an in-shoe measurement system. The intra-individual coefficient of variability was calculated to indicate the consistency of plantar pressure during walking and to define gait stability. The effect size was computed to quantify the asymmetry and measurements were conducted at eight footprint locations. Results indicated few differences in step-to-step reproducibility between the healthy group and the less spastic group while the most affected group showed a more asymmetrical and unstable gait. From the concept of self-optimisation and depending on the neuromotor disorders the organism could make priorities based on pain, mobility, stability or energy expenditure to develop the best gait auto-optimisation.

  16. Combined Effects of Numerical Method Type and Time Step on Water Stressed Actual Crop ET

    Directory of Open Access Journals (Sweden)

    B. Ghahraman

    2016-02-01

    Full Text Available Introduction: Actual crop evapotranspiration (Eta is important in hydrologic modeling and irrigation water management issues. Actual ET depends on an estimation of a water stress index and average soil water at crop root zone, and so depends on a chosen numerical method and adapted time step. During periods with no rainfall and/or irrigation, actual ET can be computed analytically or by using different numerical methods. Overal, there are many factors that influence actual evapotranspiration. These factors are crop potential evapotranspiration, available root zone water content, time step, crop sensitivity, and soil. In this paper different numerical methods are compared for different soil textures and different crops sensitivities. Materials and Methods: During a specific time step with no rainfall or irrigation, change in soil water content would be equal to evapotranspiration, ET. In this approach, however, deep percolation is generally ignored due to deep water table and negligible unsaturated hydraulic conductivity below rooting depth. This differential equation may be solved analytically or numerically considering different algorithms. We adapted four different numerical methods, as explicit, implicit, and modified Euler, midpoint method, and 3-rd order Heun method to approximate the differential equation. Three general soil types of sand, silt, and clay, and three different crop types of sensitive, moderate, and resistant under Nishaboor plain were used. Standard soil fraction depletion (corresponding to ETc=5 mm.d-1, pstd, below which crop faces water stress is adopted for crop sensitivity. Three values for pstd were considered in this study to cover the common crops in the area, including winter wheat and barley, cotton, alfalfa, sugar beet, saffron, among the others. Based on this parameter, three classes for crop sensitivity was considered, sensitive crops with pstd=0.2, moderate crops with pstd=0.5, and resistive crops with pstd=0

  17. ChromAlign: A two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces.

    Science.gov (United States)

    Sadygov, Rovshan G; Maroto, Fernando Martin; Hühmer, Andreas F R

    2006-12-15

    We present an algorithmic approach to align three-dimensional chromatographic surfaces of LC-MS data of complex mixture samples. The approach consists of two steps. In the first step, we prealign chromatographic profiles: two-dimensional projections of chromatographic surfaces. This is accomplished by correlation analysis using fast Fourier transforms. In this step, a temporal offset that maximizes the overlap and dot product between two chromatographic profiles is determined. In the second step, the algorithm generates correlation matrix elements between full mass scans of the reference and sample chromatographic surfaces. The temporal offset from the first step indicates a range of the mass scans that are possibly correlated, then the correlation matrix is calculated only for these mass scans. The correlation matrix carries information on highly correlated scans, but it does not itself determine the scan or time alignment. Alignment is determined as a path in the correlation matrix that maximizes the sum of the correlation matrix elements. The computational complexity of the optimal path generation problem is reduced by the use of dynamic programming. The program produces time-aligned surfaces. The use of the temporal offset from the first step in the second step reduces the computation time for generating the correlation matrix and speeds up the process. The algorithm has been implemented in a program, ChromAlign, developed in C++ language for the .NET2 environment in WINDOWS XP. In this work, we demonstrate the applications of ChromAlign to alignment of LC-MS surfaces of several datasets: a mixture of known proteins, samples from digests of surface proteins of T-cells, and samples prepared from digests of cerebrospinal fluid. ChromAlign accurately aligns the LC-MS surfaces we studied. In these examples, we discuss various aspects of the alignment by ChromAlign, such as constant time axis shifts and warping of chromatographic surfaces.

  18. A simple shear limited, single size, time dependent flocculation model

    Science.gov (United States)

    Kuprenas, R.; Tran, D. A.; Strom, K.

    2017-12-01

    This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.

  19. What is the optimum minimum segment size used in step and shoot IMRT for prostate cancer?

    International Nuclear Information System (INIS)

    Takahashi, Yutaka; Sumida, Iori; Koizumi, Masahiko

    2010-01-01

    Although the use of small segments in step and shoot intensity modulated radiation therapy (IMRT) provides better dose distribution, extremely small segments decrease treatment accuracy. The purpose of this study was to determine the optimum minimum segment size (MSS) in two-step optimization in prostate step and shoot IMRT with regard to both planning quality and dosimetric accuracy. The XiO treatment planning system and Oncor Impression Plus were used. Results showed that the difference in homogeneity index (HI), defined as the ratio of maximum to minimum doses for planning target volume, between the MSS 1.0 cm and 1.5 cm plans, and 2.0 cm plans, was 0.1%, and 9.6%, respectively. With regard to V107 of planning target volume (PTV), the volume receiving 107% of the prescribed dose of the PTV, the difference between MSS 1.0 cm and 1.5 cm was 2%. However, the value of the MSS 2.0 cm or greater plans was more than 2.5-fold that of the MSS 1.0 cm plan. With regard to maximum rectal dose, a significant difference was seen between the MSS 1.5 cm and 2.0 cm plans, whereas no significant difference was seen between the MSS 1.0 cm and 1.5 cm plans. Composite plan verification revealed a greater than 5% dose difference between planned and measured dose in many regions with the MSS 1.0 cm plan, but in only limited regions in the MSS 1.5 cm plan. Our data suggest that the MSS should be determined with regard to both planning quality and dosimetric accuracy. (author)

  20. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis.

    Science.gov (United States)

    Chidori, Kazuhiro; Yamamoto, Yuji

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.

  1. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    Science.gov (United States)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  2. One-step chemical bath deposition and photocatalytic activity of Cu2O thin films with orientation and size controlled by a chelating agent

    International Nuclear Information System (INIS)

    Xu, HaiYan; Dong, JinKuang; Chen, Chen

    2014-01-01

    Nanocrystalline cuprous oxide (Cu 2 O) thin films were prepared via a one-step chemical bath deposition (CBD) method. The effects of a chelating agent on the orientation, morphology, crystallite size, and photocatalytic activity of the thin films were carefully examined using X-ray diffractometry, scanning electron microscopy, and UV–vis spectrophotometry. The results confirmed that the crystallite size as well as the orientation of the films was dependent on the volume of trisodium citrate (TSC), demonstrating that the band gap ranged from 2.71 eV to 2.49 eV. The morphology and number density of the thin films also depended on the volume of TSC. In addition, the obtained Cu 2 O thin films could degrade methyl orange (MO) efficiently in the presence of H 2 O 2 under visible-light irradiation, and the mechanism for the enhanced photocatalytic activity of the Cu 2 O thin films with the assistance of H 2 O 2 was also explored in detail. - Graphical abstract: Nano-structured Cu 2 O thin films have been prepared by a one-step chemical bath deposition method. The number density, crystallite size, surface morphology and orientation of these thin films could be tailored by chelating agent. The results confirmed that the crystallite size as well as the orientation of the thin films was dependent on the volume of TSC, showed that the band gap ranged from 2.71 eV to 2.49 eV. The formation mechanism of the Cu 2 O particles could be illuminated by an oriented attachment mode. In addition, the obtained Cu 2 O thin films degraded methyl orange efficiently in the presence of H 2 O 2 under the irradiation of visible light, and the mechanism for photocatalytic reaction was also discussed in detail. - Highlights: • Oriented Cu 2 O thin films were prepared by one-step chemical bath deposition. • Orientation and crystallite size were dependent on trisodium citrate volume. • The enhanced visible light degradation mechanism was systematically studied. • Oriented attachment

  3. Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus

    Directory of Open Access Journals (Sweden)

    Tandale Babasaheb V

    2008-12-01

    Full Text Available Abstract Background Chandipura virus (CHPV, a member of family Rhabdoviridae was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR using TaqMan technology was developed for rapid diagnosis. Methods Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [in vivo (mice in ovo (eggs, in vitro (Vero E6, PS, RD and Sand fly cell line] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard. Results Real-time one step RT-PCR was optimized using in vitro transcribed (IVT RNA. Standard curve showed linear relationship for wide range of 102-1010 (r2 = 0.99 with maximum Coefficient of variation (CV = 5.91% for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 100 PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 102 PFU/ml. Vero and PS cell-lines (1.2 × 103 PFU/ml were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy

  4. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  5. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  6. Stepping reaction time and gait adaptability are significantly impaired in people with Parkinson's disease: Implications for fall risk.

    Science.gov (United States)

    Caetano, Maria Joana D; Lord, Stephen R; Allen, Natalie E; Brodie, Matthew A; Song, Jooeun; Paul, Serene S; Canning, Colleen G; Menant, Jasmine C

    2018-02-01

    Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Control of beam size and polarization time in PEP

    International Nuclear Information System (INIS)

    Paterson, J.M.; Rees, J.R.; Wiedemann, H.

    1975-07-01

    In this report we describe a method of controlling beam size in which the focusing functions are not altered with beam energy but the curvature function is drastically altered in a few locations which comprise only a very small fraction of the circumference. As will be described in the following paper we are proposing to control the quantum excitation and radiation damping of the particles by means of special excitation magnets or /open quotes/wigglers/close quotes/. Since the mean square energy deviation and radial beam emittance are proportional approximately to E/sup 2//l angle/G/sup 3//r angle//l angle/G/sup 2//r angle//sup /minus/1 while the damping times are proportional to (E/sup 3//l angle/G/sup 2//r angle/)/sup /minus/1/, it is possible to achieve constant beam size in a constant focusing configuration while the damping times vary roughly as E/sup /minus/2/. In addition, it is possible to reduce the beam polarization time with these devices. A scheme for beam-size and damping control based on the same principle was described by M. Bassetti about a year ago, in which all of the storage-ring bending magnets were involved as wigglers, and a substantial increase in magnet cost resulted. The consequences for polarization times were not explored. The design formulae are derived and two specific applications to the PEP design in which the wigglers are installed in three of the six 5-m straight sections are described with attention given to practical magnet design, synchrotron radiation handling and other matters. 5 refs., 4 figs., 1 tab

  8. Body size and the timing of egg production in parasitoid wasps.

    NARCIS (Netherlands)

    Ellers, J.; Jervis, M.

    2003-01-01

    In insects several key fitness-related variables are positively correlated with intraspecific variation in body size, but little is known about size-related variation in the timing of egg production within species. Female insects are known to vary in the degree to which they concentrate egg

  9. Solution of two-dimensional electromagnetic scattering problem by FDTD with optimal step size, based on a semi-norm analysis

    International Nuclear Information System (INIS)

    Monsefi, Farid; Carlsson, Linus; Silvestrov, Sergei; Rančić, Milica; Otterskog, Magnus

    2014-01-01

    To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm

  10. Solution of two-dimensional electromagnetic scattering problem by FDTD with optimal step size, based on a semi-norm analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monsefi, Farid [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Väs (Sweden); Carlsson, Linus; Silvestrov, Sergei [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås (Sweden); Rančić, Milica [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and Department of Theoretical Electrical Engineering, Faculty of Electronic Engineering, University (Serbia); Otterskog, Magnus [School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Västerås (Sweden)

    2014-12-10

    To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm.

  11. One size fits all electronics for insole-based activity monitoring.

    Science.gov (United States)

    Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward

    2017-07-01

    Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.

  12. One-step chemical bath deposition and photocatalytic activity of Cu{sub 2}O thin films with orientation and size controlled by a chelating agent

    Energy Technology Data Exchange (ETDEWEB)

    Xu, HaiYan, E-mail: xuhaiyan@ahjzu.edu.cn; Dong, JinKuang, E-mail: dongjinkuang1988@126.com; Chen, Chen, E-mail: 13865901653@139.com

    2014-01-15

    Nanocrystalline cuprous oxide (Cu{sub 2}O) thin films were prepared via a one-step chemical bath deposition (CBD) method. The effects of a chelating agent on the orientation, morphology, crystallite size, and photocatalytic activity of the thin films were carefully examined using X-ray diffractometry, scanning electron microscopy, and UV–vis spectrophotometry. The results confirmed that the crystallite size as well as the orientation of the films was dependent on the volume of trisodium citrate (TSC), demonstrating that the band gap ranged from 2.71 eV to 2.49 eV. The morphology and number density of the thin films also depended on the volume of TSC. In addition, the obtained Cu{sub 2}O thin films could degrade methyl orange (MO) efficiently in the presence of H{sub 2}O{sub 2} under visible-light irradiation, and the mechanism for the enhanced photocatalytic activity of the Cu{sub 2}O thin films with the assistance of H{sub 2}O{sub 2} was also explored in detail. - Graphical abstract: Nano-structured Cu{sub 2}O thin films have been prepared by a one-step chemical bath deposition method. The number density, crystallite size, surface morphology and orientation of these thin films could be tailored by chelating agent. The results confirmed that the crystallite size as well as the orientation of the thin films was dependent on the volume of TSC, showed that the band gap ranged from 2.71 eV to 2.49 eV. The formation mechanism of the Cu{sub 2}O particles could be illuminated by an oriented attachment mode. In addition, the obtained Cu{sub 2}O thin films degraded methyl orange efficiently in the presence of H{sub 2}O{sub 2} under the irradiation of visible light, and the mechanism for photocatalytic reaction was also discussed in detail. - Highlights: • Oriented Cu{sub 2}O thin films were prepared by one-step chemical bath deposition. • Orientation and crystallite size were dependent on trisodium citrate volume. • The enhanced visible light degradation mechanism

  13. Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time stepping

    Science.gov (United States)

    Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca

    2017-12-01

    An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.

  14. Global time-size distribution of volcanic eruptions on Earth.

    Science.gov (United States)

    Papale, Paolo

    2018-05-01

    Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.

  15. Stability of one-step methods in transient nonlinear heat conduction

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1977-01-01

    The purpose of the present work is to ascertain practical stability conditions for one-step methods commonly used in transient nonlinear heat conduction analyses. The class of problems considered is governed by a temporally continuous, spatially discrete system involving the capacity matrix C, conductivity matrix K, heat supply vector, temperature vector and time differenciation. In the linear case, in which K and C are constant, the stability behavior of one-step methods is well known. But in this paper the concepts of stability, appropriate to the nonlinear problem, are thoroughly discussed. They of course reduce to the usual stability criterion for the linear, constant coefficient case. However, for nonlinear problems there are differences and these ideas are of key importance in obtaining practical stability conditions. Of particular importance is a recent result which indicates that, in a sense, the trapezoidal and midpoint families are quivalent. Thus, stability results for one family may be translated into a result for the other. The main results obtained are summarized as follows. The stability behavior of the explicit Euler method in the nonlinear regime is analogous to that for linear problems. In particular, an a priori step size restriction may be determined for each time step. The precise time step restriction on implicit conditionally stable members of the trapezoidal and midpoint families is shown not to be determinable a priori. Of considerable practical significance, unconditionally stable members of the trapezoidal and midpoint families are identified

  16. Generation time and effective population size in Polar Eskimos

    Science.gov (United States)

    Matsumura, Shuichi; Forster, Peter

    2008-01-01

    North Greenland Polar Eskimos are the only hunter–gatherer population, to our knowledge, who can offer precise genealogical records spanning several generations. This is the first report from Eskimos on two key parameters in population genetics, namely, generation time (T) and effective population size (Ne). The average mother–daughter and father–son intervals were 27 and 32 years, respectively, roughly similar to the previously published generation times obtained from recent agricultural societies across the world. To gain an insight for the generation time in our distant ancestors, we calculated maternal generation time for two wild chimpanzee populations. We also provide the first comparison among three distinct approaches (genealogy, variance and life table methods) for calculating Ne, which resulted in slightly differing values for the Eskimos. The ratio of the effective to the census population size is estimated as 0.6–0.7 for autosomal and X-chromosomal DNA, 0.7–0.9 for mitochondrial DNA and 0.5 for Y-chromosomal DNA. A simulation of alleles along the genealogy suggested that Y-chromosomal DNA may drift a little faster than mitochondrial DNA in this population, in contrast to agricultural Icelanders. Our values will be useful not only in prehistoric population inference but also in understanding the shaping of our genome today. PMID:18364314

  17. Microsoft Office professional 2010 step by step

    CERN Document Server

    Cox, Joyce; Frye, Curtis

    2011-01-01

    Teach yourself exactly what you need to know about using Office Professional 2010-one step at a time! With STEP BY STEP, you build and practice new skills hands-on, at your own pace. Covering Microsoft Word, PowerPoint, Outlook, Excel, Access, Publisher, and OneNote, this book will help you learn the core features and capabilities needed to: Create attractive documents, publications, and spreadsheetsManage your e-mail, calendar, meetings, and communicationsPut your business data to workDevelop and deliver great presentationsOrganize your ideas and notes in one placeConnect, share, and accom

  18. The enhancement of time-stepping procedures in SYVAC A/C

    International Nuclear Information System (INIS)

    Broyd, T.W.

    1986-01-01

    This report summarises the work carried out an SYVAC A/C between February and May 1985 aimed at improving the way in which time-stepping procedures are handled. The majority of the work was concerned with three types of problem, viz: i) Long vault release, short geosphere response ii) Short vault release, long geosphere response iii) Short vault release, short geosphere response The report contains details of changes to the logic and structure of SYVAC A/C, as well as the results of code implementation tests. It has been written primarily for members of the UK SYVAC development team, and should not be used or referred to in isolation. (author)

  19. Performance of an attention-demanding task during treadmill walking shifts the noise qualities of step-to-step variation in step width.

    Science.gov (United States)

    Grabiner, Mark D; Marone, Jane R; Wyatt, Marilynn; Sessoms, Pinata; Kaufman, Kenton R

    2018-06-01

    The fractal scaling evident in the step-to-step fluctuations of stepping-related time series reflects, to some degree, neuromotor noise. The primary purpose of this study was to determine the extent to which the fractal scaling of step width, step width and step width variability are affected by performance of an attention-demanding task. We hypothesized that the attention-demanding task would shift the structure of the step width time series toward white, uncorrelated noise. Subjects performed two 10-min treadmill walking trials, a control trial of undisturbed walking and a trial during which they performed a mental arithmetic/texting task. Motion capture data was converted to step width time series, the fractal scaling of which were determined from their power spectra. Fractal scaling decreased by 22% during the texting condition (p Step width and step width variability increased 19% and five percent, respectively (p step width fractal scaling. The change of the fractal scaling of step width is consistent with increased cognitive demand and suggests a transition in the characteristics of the signal noise. This may reflect an important advance toward the understanding of the manner in which neuromotor noise contributes to some types of falls. However, further investigation of the repeatability of the results, the sensitivity of the results to progressive increases in cognitive load imposed by attention-demanding tasks, and the extent to which the results can be generalized to the gait of older adults seems warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Discrete maximal regularity of time-stepping schemes for fractional evolution equations.

    Science.gov (United States)

    Jin, Bangti; Li, Buyang; Zhou, Zhi

    2018-01-01

    In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.

  1. Explicit solution of Calderon preconditioned time domain integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2013-07-01

    An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.

  2. Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.

    Science.gov (United States)

    van den Tillaar, Roland; Gamble, Paul

    2018-03-26

    This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η 2  ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between 'fast' vs. 'slow' sub-groups (η 2  ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the 'over-speed' condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.

  3. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    Science.gov (United States)

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  4. Two-step variable selection in quantile regression models

    Directory of Open Access Journals (Sweden)

    FAN Yali

    2015-06-01

    Full Text Available We propose a two-step variable selection procedure for high dimensional quantile regressions, in which the dimension of the covariates, pn is much larger than the sample size n. In the first step, we perform ℓ1 penalty, and we demonstrate that the first step penalized estimator with the LASSO penalty can reduce the model from an ultra-high dimensional to a model whose size has the same order as that of the true model, and the selected model can cover the true model. The second step excludes the remained irrelevant covariates by applying the adaptive LASSO penalty to the reduced model obtained from the first step. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. We conduct a simulation study and a real data analysis to evaluate the finite sample performance of the proposed approach.

  5. First-step nucleation growth dependence of InAs/InGaAs/InP quantum dot formation in two-step growth

    International Nuclear Information System (INIS)

    Yin Zongyou; Tang Xiaohong; Deny, Sentosa; Chin, Mee Koy; Zhang Jixuan; Teng Jinghua; Du Anyan

    2008-01-01

    First-step nucleation growth has an important impact on the two-step growth of high-quality mid-infrared emissive InAs/InGaAs/InP quantum dots (QDs). It has been found that an optimized growth rate for first-step nucleation is critical for forming QDs with narrow size distribution, high dot density and high crystal quality. High growth temperature has an advantage in removing defects in the QDs formed, but the dot density will be reduced. Contrasting behavior in forming InAs QDs using metal-organic vapor phase epitaxy (MOVPE) by varying the input flux ratio of group-V versus group-III source (V/III ratio) in the first-step nucleation growth has been observed and investigated. High-density, 2.5 x 10 10 cm -2 , InAs QDs emitting at>2.15 μm have been formed with narrow size distribution, ∼1 nm standard deviation, by reducing the V/III ratio to zero in first-step nucleation growth

  6. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    OpenAIRE

    Sovová, H. (Helena)

    2012-01-01

    Kinetics of supercritical fluid extraction (SFE) from plants is variable due to different micro-structure of plants and their parts, different properties of extracted substances and solvents, and different flow patterns in the extractor. Variety of published mathematical models for SFE of natural products corresponds to this diversification. This study presents simplified equations of extraction curves in terms of characteristic times of four single extraction steps: internal diffusion, exter...

  7. A one-step, real-time PCR assay for rapid detection of rhinovirus.

    Science.gov (United States)

    Do, Duc H; Laus, Stella; Leber, Amy; Marcon, Mario J; Jordan, Jeanne A; Martin, Judith M; Wadowsky, Robert M

    2010-01-01

    One-step, real-time PCR assays for rhinovirus have been developed for a limited number of PCR amplification platforms and chemistries, and some exhibit cross-reactivity with genetically similar enteroviruses. We developed a one-step, real-time PCR assay for rhinovirus by using a sequence detection system (Applied Biosystems; Foster City, CA). The primers were designed to amplify a 120-base target in the noncoding region of picornavirus RNA, and a TaqMan (Applied Biosystems) degenerate probe was designed for the specific detection of rhinovirus amplicons. The PCR assay had no cross-reactivity with a panel of 76 nontarget nucleic acids, which included RNAs from 43 enterovirus strains. Excellent lower limits of detection relative to viral culture were observed for the PCR assay by using 38 of 40 rhinovirus reference strains representing different serotypes, which could reproducibly detect rhinovirus serotype 2 in viral transport medium containing 10 to 10,000 TCID(50) (50% tissue culture infectious dose endpoint) units/ml of the virus. However, for rhinovirus serotypes 59 and 69, the PCR assay was less sensitive than culture. Testing of 48 clinical specimens from children with cold-like illnesses for rhinovirus by the PCR and culture assays yielded detection rates of 16.7% and 6.3%, respectively. For a batch of 10 specimens, the entire assay was completed in 4.5 hours. This real-time PCR assay enables detection of many rhinovirus serotypes with the Applied Biosystems reagent-instrument platform.

  8. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    International Nuclear Information System (INIS)

    Finn, John M.

    2015-01-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  9. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    Science.gov (United States)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  10. A step-defined sedentary lifestyle index: <5000 steps/day.

    Science.gov (United States)

    Tudor-Locke, Catrine; Craig, Cora L; Thyfault, John P; Spence, John C

    2013-02-01

    Step counting (using pedometers or accelerometers) is widely accepted by researchers, practitioners, and the general public. Given the mounting evidence of the link between low steps/day and time spent in sedentary behaviours, how few steps/day some populations actually perform, and the growing interest in the potentially deleterious effects of excessive sedentary behaviours on health, an emerging question is "How many steps/day are too few?" This review examines the utility, appropriateness, and limitations of using a reoccurring candidate for a step-defined sedentary lifestyle index: 10 000) to lower (sedentary lifestyle index for adults is appropriate for researchers and practitioners and for communicating with the general public. There is little evidence to advocate any specific value indicative of a step-defined sedentary lifestyle index in children and adolescents.

  11. Comparison of step-by-step kinematics in repeated 30m sprints in female soccer players.

    Science.gov (United States)

    van den Tillaar, Roland

    2018-01-04

    The aim of this study was to compare kinematics in repeated 30m sprints in female soccer players. Seventeen subjects performed seven 30m sprints every 30s in one session. Kinematics were measured with an infrared contact mat and laser gun, and running times with an electronic timing device. The main findings were that sprint times increased in the repeated sprint ability test. The main changes in kinematics during the repeated sprint ability test were increased contact time and decreased step frequency, while no change in step length was observed. The step velocity increased in almost each step until the 14, which occurred around 22m. After this, the velocity was stable until the last step, when it decreased. This increase in step velocity was mainly caused by the increased step length and decreased contact times. It was concluded that the fatigue induced in repeated 30m sprints in female soccer players resulted in decreased step frequency and increased contact time. Employing this approach in combination with a laser gun and infrared mat for 30m makes it very easy to analyse running kinematics in repeated sprints in training. This extra information gives the athlete, coach and sports scientist the opportunity to give more detailed feedback and help to target these changes in kinematics better to enhance repeated sprint performance.

  12. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  13. s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lijewski, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carson, Erin [Univ. of California, Berkeley, CA (United States); Knight, Nicholas [Univ. of California, Berkeley, CA (United States); Demmel, James [Univ. of California, Berkeley, CA (United States)

    2014-08-14

    Geometric multigrid solvers within adaptive mesh refinement (AMR) applications often reach a point where further coarsening of the grid becomes impractical as individual sub domain sizes approach unity. At this point the most common solution is to use a bottom solver, such as BiCGStab, to reduce the residual by a fixed factor at the coarsest level. Each iteration of BiCGStab requires multiple global reductions (MPI collectives). As the number of BiCGStab iterations required for convergence grows with problem size, and the time for each collective operation increases with machine scale, bottom solves in large-scale applications can constitute a significant fraction of the overall multigrid solve time. In this paper, we implement, evaluate, and optimize a communication-avoiding s-step formulation of BiCGStab (CABiCGStab for short) as a high-performance, distributed-memory bottom solver for geometric multigrid solvers. This is the first time s-step Krylov subspace methods have been leveraged to improve multigrid bottom solver performance. We use a synthetic benchmark for detailed analysis and integrate the best implementation into BoxLib in order to evaluate the benefit of a s-step Krylov subspace method on the multigrid solves found in the applications LMC and Nyx on up to 32,768 cores on the Cray XE6 at NERSC. Overall, we see bottom solver improvements of up to 4.2x on synthetic problems and up to 2.7x in real applications. This results in as much as a 1.5x improvement in solver performance in real applications.

  14. Traffic safety and step-by-step driving licence for young people

    DEFF Research Database (Denmark)

    Tønning, Charlotte; Agerholm, Niels

    2017-01-01

    presents a review of safety effects from step-by-step driving licence schemes. Most of the investigated schemes consist of a step-by-step driving licence with Step 1) various tests and education, Step 2) a period where driving is only allowed together with an experienced driver and Step 3) driving without...... companion is allowed but with various restrictions and, in some cases, additional driving education and tests. In general, a step-by-step driving licence improves traffic safety even though the young people are permitted to drive a car earlier on. The effects from driving with an experienced driver vary......Young novice car drivers are much more accident-prone than other drivers - up to 10 times that of their parents' generation. A central solution to improve the traffic safety for this group is implementation of a step-by-step driving licence. A number of countries have introduced a step...

  15. Optimal Investment Timing and Size of a Logistics Park: A Real Options Perspective

    Directory of Open Access Journals (Sweden)

    Dezhi Zhang

    2017-01-01

    Full Text Available This paper uses a real options approach to address optimal timing and size of a logistics park investment with logistics demand volatility. Two important problems are examined: when should an investment be introduced, and what size should it be? A real option model is proposed to explicitly incorporate the effect of government subsidies on logistics park investment. Logistic demand that triggers the threshold for investment in a logistics park project is explored analytically. Comparative static analyses of logistics park investment are also carried out. Our analytical results show that (1 investors will select smaller sized logistics parks and prepone the investment if government subsidies are considered; (2 the real option will postpone the optimal investment timing of logistics parks compared with net present value approach; and (3 logistic demands can significantly affect the optimal investment size and timing of logistics park investment.

  16. Control valve sizing and specification: The first step

    International Nuclear Information System (INIS)

    Harkins, J.F.; Hoyle, E.D.

    1991-01-01

    Today's modern control valve can satisfy almost any application. Special trim, materials, operators, and body configurations have been developed to meet the most severe operating conditions. The missing link in the chain connecting design to application is often the interpretation and communication of the requirements for determining the proper valve for each application. This paper addresses an important but often neglected requirement for proper selection and sizing of control valves: the determination of correct input data. It presents criteria necessary to ensure that the data given the manufacturer accurately reflects the conditions under which the control valve will operate. It highlights the importance of communication between the system design engineer, the valve specifying engineer, and the control valve supplier, to ensure that the final system design meets the true requirements of the application. An example is provided of a simple liquid-handling system, for which line losses and variations in flow and equipment capacities are tabulated and requirements shown graphically on typical control valve characteristic curves. The effects of seemingly harmless, conservative assumptions regarding line losses, equipment capacities and selection, sizing practices, and the selection of various flow data can have on the final valve selection are illustrated. Also discussed is the proper selection of equipment and input data, based on the example

  17. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    Science.gov (United States)

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  18. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time.

    Science.gov (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.

  19. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time

    Science.gov (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which—as shown on the contact process—provides a significant improvement of the large deviation function estimators compared to the standard one.

  20. Modelling of Sub-daily Hydrological Processes Using Daily Time-Step Models: A Distribution Function Approach to Temporal Scaling

    Science.gov (United States)

    Kandel, D. D.; Western, A. W.; Grayson, R. B.

    2004-12-01

    Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and

  1. A positive and multi-element conserving time stepping scheme for biogeochemical processes in marine ecosystem models

    Science.gov (United States)

    Radtke, H.; Burchard, H.

    2015-01-01

    In this paper, an unconditionally positive and multi-element conserving time stepping scheme for systems of non-linearly coupled ODE's is presented. These systems of ODE's are used to describe biogeochemical transformation processes in marine ecosystem models. The numerical scheme is a positive-definite modification of the Runge-Kutta method, it can have arbitrarily high order of accuracy and does not require time step adaption. If the scheme is combined with a modified Patankar-Runge-Kutta method from Burchard et al. (2003), it also gets the ability to solve a certain class of stiff numerical problems, but the accuracy is restricted to second-order then. The performance of the new scheme on two test case problems is shown.

  2. Scanning tunneling microscope with a rotary piezoelectric stepping motor

    Science.gov (United States)

    Yakimov, V. N.

    1996-02-01

    A compact scanning tunneling microscope (STM) with a novel rotary piezoelectric stepping motor for coarse positioning has been developed. An inertial method for rotating of the rotor by the pair of piezoplates has been used in the piezomotor. Minimal angular step size was about several arcsec with the spindle working torque up to 1 N×cm. Design of the STM was noticeably simplified by utilization of the piezomotor with such small step size. A shaft eccentrically attached to the piezomotor spindle made it possible to push and pull back the cylindrical bush with the tubular piezoscanner. A linear step of coarse positioning was about 50 nm. STM resolution in vertical direction was better than 0.1 nm without an external vibration isolation.

  3. Stability of one-step methods in transient nonlinear heat conduction

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1977-01-01

    The purpose of the present work is to ascertain practical stability conditions for one-step methods commonly used in transient nonlinear heat conduction analyses. In this paper the concepts of stability, appropriate to the nonlinear problem, are thoroughly discussed. They of course reduce to the usual stability critierion for the linear, constant coefficient case. However, for nonlinear problems there are differences and theses ideas are of key importance in obtaining practical stability conditions. Of particular importance is a recent result which indicates that, in a sense, the trapezoidal and midpoint families are equivalent. Thus, stability results for one family may be translated into a result for the other. The main results obtained are: The stability behaviour of the explicit Euler method in the nonlinear regime is analogous to that for linear problems. In particular, an a priori step size restriction may be determined for each time step. The precise time step restriction on implicit conditionally stable members of the trapezoidal and midpoint families is shown not to be determinable a priori. Of considerable practical significance, unconditionally stable members of the trapezoidal and midpoint families are identified. All notions of stability employed are motivated and defined, and their interpretations in practical computing are indicated. (Auth.)

  4. Time to pause before the next step

    International Nuclear Information System (INIS)

    Siemon, R.E.

    1998-01-01

    Many scientists, who have staunchly supported ITER for years, are coming to realize it is time to further rethink fusion energy's development strategy. Specifically, as was suggested by Grant Logan and Dale Meade, and in keeping with the restructuring of 1996, a theme of better, cheaper, faster fusion would serve the program more effectively than ''demonstrating controlled ignition...and integrated testing of the high-heat-flux and nuclear components required to utilize fusion energy...'' which are the important ingredients of ITER's objectives. The author has personally shifted his view for a mixture of technical and political reasons. On the technical side, he senses that through advanced tokamak research, spherical tokamak research, and advanced stellarator work, scientists are coming to a new understanding that might make a burning-plasma device significantly smaller and less expensive. Thus waiting for a few years, even ten years, seems prudent. Scientifically, there is fascinating physics to be learned through studies of burning plasma on a tokamak. And clearly if one wishes to study burning plasma physics in a sustained plasma, there is no other configuration with an adequate database on which to proceed. But what is the urgency of moving towards an ITER-like step focused on burning plasma? Some of the arguments put forward and the counter arguments are discussed here

  5. Stepping out: dare to step forward, step back, or just stand still and breathe.

    Science.gov (United States)

    Waisman, Mary Sue

    2012-01-01

    It is important to step out and make a difference. We have one of the most unique and diverse professions that allows for diversity in thought and practice, permitting each of us to grow in our unique niches and make significant contributions. I was frightened to 'step out' to go to culinary school at the age of 46, but it changed forever the way I look at my profession and I have since experienced the most enjoyable and innovative career. There are also times when it is important to 'step back' to relish the roots of our profession; to help bring food back into nutrition; to translate all of our wonderful science into a language of food that Canadians understand. We all need to take time to 'just stand still and breathe': to celebrate our accomplishments, reflect on our actions, ensure we are heading toward our vision, keep the profession vibrant and relevant, and cherish one another.

  6. Synthesis and characterization of copper nanofluid by a novel one-step method

    International Nuclear Information System (INIS)

    Kumar, S. Ananda; Meenakshi, K. Shree; Narashimhan, B.R.V.; Srikanth, S.; Arthanareeswaran, G.

    2009-01-01

    This paper presents a novel one-step method for the preparation of stable, non-agglomerated copper nanofluids by reducing copper sulphate pentahydrate with sodium hypophosphite as reducing agent in ethylene glycol as base fluid by means of conventional heating. This is an in situ, one-step method which gives high yield of product with less time consumption. The characterization of the nanofluid is done by particle size analyzer, X-ray diffraction topography, UV-vis analysis and Fourier transform infrared spectroscopy (FT-IR) followed by the study of thermal conductivity of nanofluid by the transient hot wire method

  7. Time Resolved X-Ray Spot Size Diagnostic

    CERN Document Server

    Richardson, Roger; Falabella, Steven; Guethlein, Gary; Raymond, Brett; Weir, John

    2005-01-01

    A diagnostic was developed for the determination of temporal history of an X-ray spot. A pair of thin (0.5 mm) slits image the x-ray spot to a fast scintillator which is coupled to a fast detector, thus sampling a slice of the X-Ray spot. Two other scintillator/detectors are used to determine the position of the spot and total forward dose. The slit signal is normalized to the dose and the resulting signal is analyzed to get the spot size. The position information is used to compensate for small changes due to spot motion and misalignment. The time resolution of the diagnostic is about 1 ns and measures spots from 0.5 mm to over 3 mm. The theory and equations used to calculate spot size and position are presented, as well as data. The calculations assume a symmetric, Gaussian spot. The spot data is generated by the ETA II accelerator, a 2kA, 5.5 MeV, 60ns electron beam focused on a Tantalum target. The spot generated is typically about 1 mm FWHM. Comparisons are made to an X-ray pinhole camera which images th...

  8. A stable higher order space time Galerkin marching-on-in-time scheme

    KAUST Repository

    Pray, Andrew J.

    2013-07-01

    We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order basis functions in time to improve the accuracy of the solver. The method is validated by showing convergence in temporal basis function order, time step size, and geometric discretization order. © 2013 IEEE.

  9. Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis.

    Science.gov (United States)

    Okubo, Yoshiro; Schoene, Daniel; Lord, Stephen R

    2017-04-01

    To examine the effects of stepping interventions on fall risk factors and fall incidence in older people. Electronic databases (PubMed, EMBASE, CINAHL, Cochrane, CENTRAL) and reference lists of included articles from inception to March 2015. Randomised (RCT) or clinical controlled trials (CCT) of volitional and reactive stepping interventions that included older (minimum age 60) people providing data on falls or fall risk factors. Meta-analyses of seven RCTs (n=660) showed that the stepping interventions significantly reduced the rate of falls (rate ratio=0.48, 95% CI 0.36 to 0.65, prisk ratio=0.51, 95% CI 0.38 to 0.68, pfalls and proportion of fallers. A meta-analysis of two RCTs (n=62) showed that stepping interventions significantly reduced laboratory-induced falls, and meta-analysis findings of up to five RCTs and CCTs (n=36-416) revealed that stepping interventions significantly improved simple and choice stepping reaction time, single leg stance, timed up and go performance (pfalls among older adults by approximately 50%. This clinically significant reduction may be due to improvements in reaction time, gait, balance and balance recovery but not in strength. Further high-quality studies aimed at maximising the effectiveness and feasibility of stepping interventions are required. CRD42015017357. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Time ordering of two-step processes in energetic ion-atom collisions: Basic formalism

    International Nuclear Information System (INIS)

    Stolterfoht, N.

    1993-01-01

    The semiclassical approximation is applied in second order to describe time ordering of two-step processes in energetic ion-atom collisions. Emphasis is given to the conditions for interferences between first- and second-order terms. In systems with two active electrons, time ordering gives rise to a pair of associated paths involving a second-order process and its time-inverted process. Combining these paths within the independent-particle frozen orbital model, time ordering is lost. It is shown that the loss of time ordering modifies the second-order amplitude so that its ability to interfere with the first-order amplitude is essentially reduced. Time ordering and the capability for interference is regained, as one path is blocked by means of the Pauli exclusion principle. The time-ordering formalism is prepared for papers dealing with collision experiments of single excitation [Stolterfoht et al., following paper, Phys. Rev. A 48, 2986 (1993)] and double excitation [Stolterfoht et al. (unpublished)

  11. Typical Periods for Two-Stage Synthesis by Time-Series Aggregation with Bounded Error in Objective Function

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, Björn; Söhler, Theo; Hennen, Maike; Bardow, André, E-mail: andre.bardow@ltt.rwth-aachen.de [Institute of Technical Thermodynamics, RWTH Aachen University, Aachen (Germany)

    2018-01-08

    Two-stage synthesis problems simultaneously consider here-and-now decisions (e.g., optimal investment) and wait-and-see decisions (e.g., optimal operation). The optimal synthesis of energy systems reveals such a two-stage character. The synthesis of energy systems involves multiple large time series such as energy demands and energy prices. Since problem size increases with the size of the time series, synthesis of energy systems leads to complex optimization problems. To reduce the problem size without loosing solution quality, we propose a method for time-series aggregation to identify typical periods. Typical periods retain the chronology of time steps, which enables modeling of energy systems, e.g., with storage units or start-up cost. The aim of the proposed method is to obtain few typical periods with few time steps per period, while accurately representing the objective function of the full time series, e.g., cost. Thus, we determine the error of time-series aggregation as the cost difference between operating the optimal design for the aggregated time series and for the full time series. Thereby, we rigorously bound the maximum performance loss of the optimal energy system design. In an initial step, the proposed method identifies the best length of typical periods by autocorrelation analysis. Subsequently, an adaptive procedure determines aggregated typical periods employing the clustering algorithm k-medoids, which groups similar periods into clusters and selects one representative period per cluster. Moreover, the number of time steps per period is aggregated by a novel clustering algorithm maintaining chronology of the time steps in the periods. The method is iteratively repeated until the error falls below a threshold value. A case study based on a real-world synthesis problem of an energy system shows that time-series aggregation from 8,760 time steps to 2 typical periods with each 2 time steps results in an error smaller than the optimality gap of

  12. An explicit marching on-in-time solver for the time domain volume magnetic field integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2014-07-01

    Transient scattering from inhomogeneous dielectric objects can be modeled using time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marching on-in-time (MOT) techniques. Classical MOT-TDVIE solvers expand the field induced on the scatterer using local spatio-temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation in space and time yields a system of equations that is solved by time marching. Depending on the type of the basis and testing functions and the time step, the time marching scheme can be implicit (N. T. Gres, et al., Radio Sci., 36(3), 379-386, 2001) or explicit (A. Al-Jarro, et al., IEEE Trans. Antennas Propag., 60(11), 5203-5214, 2012). Implicit MOT schemes are known to be more stable and accurate. However, under low-frequency excitation, i.e., when the time step size is large, they call for inversion of a full matrix system at very time step.

  13. An explicit marching on-in-time solver for the time domain volume magnetic field integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2014-01-01

    Transient scattering from inhomogeneous dielectric objects can be modeled using time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marching on-in-time (MOT) techniques. Classical MOT-TDVIE solvers expand the field induced on the scatterer using local spatio-temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation in space and time yields a system of equations that is solved by time marching. Depending on the type of the basis and testing functions and the time step, the time marching scheme can be implicit (N. T. Gres, et al., Radio Sci., 36(3), 379-386, 2001) or explicit (A. Al-Jarro, et al., IEEE Trans. Antennas Propag., 60(11), 5203-5214, 2012). Implicit MOT schemes are known to be more stable and accurate. However, under low-frequency excitation, i.e., when the time step size is large, they call for inversion of a full matrix system at very time step.

  14. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-01

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation.

  15. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements.

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-15

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. On the Convexity of Step out - Step in Sequencing Games

    NARCIS (Netherlands)

    Musegaas, Marieke; Borm, Peter; Quant, Marieke

    2016-01-01

    The main result of this paper is the convexity of Step out - Step in (SoSi) sequencing games, a class of relaxed sequencing games first analyzed by Musegaas, Borm, and Quant (2015). The proof makes use of a polynomial time algorithm determining the value and an optimal processing order for an

  17. Crystallite size variation of TiO_2 samples depending time heat treatment

    International Nuclear Information System (INIS)

    Galante, A.G.M.; Paula, F.R. de; Montanhera, M.A.; Pereira, E.A.; Spada, E.R.

    2016-01-01

    Titanium dioxide (TiO_2) is an oxide semiconductor that may be found in mixed phase or in distinct phases: brookite, anatase and rutile. In this work was carried out the study of the residence time influence at a given temperature in the TiO_2 powder physical properties. After the powder synthesis, the samples were divided and heat treated at 650 °C with a ramp up to 3 °C/min and a residence time ranging from 0 to 20 hours and subsequently characterized by x-ray diffraction. Analyzing the obtained diffraction patterns, it was observed that, from 5-hour residence time, began the two-distinct phase coexistence: anatase and rutile. It also calculated the average crystallite size of each sample. The results showed an increase in average crystallite size with increasing residence time of the heat treatment. (author)

  18. Imaginary Time Step Method to Solve the Dirac Equation with Nonlocal Potential

    International Nuclear Information System (INIS)

    Zhang Ying; Liang Haozhao; Meng Jie

    2009-01-01

    The imaginary time step (ITS) method is applied to solve the Dirac equation with nonlocal potentials in coordinate space. Taking the nucleus 12 C as an example, even with nonlocal potentials, the direct ITS evolution for the Dirac equation still meets the disaster of the Dirac sea. However, following the recipe in our former investigation, the disaster can be avoided by the ITS evolution for the corresponding Schroedinger-like equation without localization, which gives the convergent results exactly the same with those obtained iteratively by the shooting method with localized effective potentials.

  19. Does my step look big in this? A visual illusion leads to safer stepping behaviour.

    Directory of Open Access Journals (Sweden)

    David B Elliott

    Full Text Available BACKGROUND: Tripping is a common factor in falls and a typical safety strategy to avoid tripping on steps or stairs is to increase foot clearance over the step edge. In the present study we asked whether the perceived height of a step could be increased using a visual illusion and whether this would lead to the adoption of a safer stepping strategy, in terms of greater foot clearance over the step edge. The study also addressed the controversial question of whether motor actions are dissociated from visual perception. METHODOLOGY/PRINCIPAL FINDINGS: 21 young, healthy subjects perceived the step to be higher in a configuration of the horizontal-vertical illusion compared to a reverse configuration (p = 0.01. During a simple stepping task, maximum toe elevation changed by an amount corresponding to the size of the visual illusion (p<0.001. Linear regression analyses showed highly significant associations between perceived step height and maximum toe elevation for all conditions. CONCLUSIONS/SIGNIFICANCE: The perceived height of a step can be manipulated using a simple visual illusion, leading to the adoption of a safer stepping strategy in terms of greater foot clearance over a step edge. In addition, the strong link found between perception of a visual illusion and visuomotor action provides additional support to the view that the original, controversial proposal by Goodale and Milner (1992 of two separate and distinct visual streams for perception and visuomotor action should be re-evaluated.

  20. Microsoft® Visual Basic® 2010 Step by Step

    CERN Document Server

    Halvorson, Michael

    2010-01-01

    Your hands-on, step-by-step guide to learning Visual Basic® 2010. Teach yourself the essential tools and techniques for Visual Basic® 2010-one step at a time. No matter what your skill level, you'll find the practical guidance and examples you need to start building professional applications for Windows® and the Web. Discover how to: Work in the Microsoft® Visual Studio® 2010 Integrated Development Environment (IDE)Master essential techniques-from managing data and variables to using inheritance and dialog boxesCreate professional-looking UIs; add visual effects and print supportBuild com

  1. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    International Nuclear Information System (INIS)

    Jacob, J; Ong, M; Wargo, P

    2005-01-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  2. Canadian children's and youth's pedometer-determined steps/day, parent-reported TV watching time, and overweight/obesity: The CANPLAY Surveillance Study

    Directory of Open Access Journals (Sweden)

    Craig Cora L

    2011-06-01

    Full Text Available Abstract Background This study examines associations between pedometer-determined steps/day and parent-reported child's Body Mass Index (BMI and time typically spent watching television between school and dinner. Methods Young people (aged 5-19 years were recruited through their parents by random digit dialling and mailed a data collection package. Information on height and weight and time spent watching television between school and dinner on a typical school day was collected from parents. In total, 5949 boys and 5709 girls reported daily steps. BMI was categorized as overweight or obese using Cole's cut points. Participants wore pedometers for 7 days and logged daily steps. The odds of being overweight and obese by steps/day and parent-reported time spent television watching were estimated using logistic regression for complex samples. Results Girls had a lower median steps/day (10682 versus 11059 for boys and also a narrower variation in steps/day (interquartile range, 4410 versus 5309 for boys. 11% of children aged 5-19 years were classified as obese; 17% of boys and girls were overweight. Both boys and girls watched, on average, Discussion Television viewing is the more prominent factor in terms of predicting overweight, and it contributes to obesity, but steps/day attenuates the association between television viewing and obesity, and therefore can be considered protective against obesity. In addition to replacing opportunities for active alternative behaviours, exposure to television might also impact body weight by promoting excess energy intake. Conclusions In this large nationally representative sample, pedometer-determined steps/day was associated with reduced odds of being obese (but not overweight whereas each parent-reported hour spent watching television between school and dinner increased the odds of both overweight and obesity.

  3. Improving genetic evaluation of litter size and piglet mortality for both genotyped and nongenotyped individuals using a single-step method.

    Science.gov (United States)

    Guo, X; Christensen, O F; Ostersen, T; Wang, Y; Lund, M S; Su, G

    2015-02-01

    A single-step method allows genetic evaluation using information of phenotypes, pedigree, and markers from genotyped and nongenotyped individuals simultaneously. This paper compared genomic predictions obtained from a single-step BLUP (SSBLUP) method, a genomic BLUP (GBLUP) method, a selection index blending (SELIND) method, and a traditional pedigree-based method (BLUP) for total number of piglets born (TNB), litter size at d 5 after birth (LS5), and mortality rate before d 5 (Mort; including stillbirth) in Danish Landrace and Yorkshire pigs. Data sets of 778,095 litters from 309,362 Landrace sows and 472,001 litters from 190,760 Yorkshire sows were used for the analysis. There were 332,795 Landrace and 207,255 Yorkshire animals in the pedigree data, among which 3,445 Landrace pigs (1,366 boars and 2,079 sows) and 3,372 Yorkshire pigs (1,241 boars and 2,131 sows) were genotyped with the Illumina PorcineSNP60 BeadChip. The results showed that the 3 methods with marker information (SSBLUP, GBLUP, and SELIND) produced more accurate predictions for genotyped animals than the pedigree-based method. For genotyped animals, the average of reliabilities for all traits in both breeds using traditional BLUP was 0.091, which increased to 0.171 w+hen using GBLUP and to 0.179 when using SELIND and further increased to 0.209 when using SSBLUP. Furthermore, the average reliability of EBV for nongenotyped animals was increased from 0.091 for traditional BLUP to 0.105 for the SSBLUP. The results indicate that the SSBLUP is a good approach to practical genomic prediction of litter size and piglet mortality in Danish Landrace and Yorkshire populations.

  4. Step by step parallel programming method for molecular dynamics code

    International Nuclear Information System (INIS)

    Orii, Shigeo; Ohta, Toshio

    1996-07-01

    Parallel programming for a numerical simulation program of molecular dynamics is carried out with a step-by-step programming technique using the two phase method. As a result, within the range of a certain computing parameters, it is found to obtain parallel performance by using the level of parallel programming which decomposes the calculation according to indices of do-loops into each processor on the vector parallel computer VPP500 and the scalar parallel computer Paragon. It is also found that VPP500 shows parallel performance in wider range computing parameters. The reason is that the time cost of the program parts, which can not be reduced by the do-loop level of the parallel programming, can be reduced to the negligible level by the vectorization. After that, the time consuming parts of the program are concentrated on less parts that can be accelerated by the do-loop level of the parallel programming. This report shows the step-by-step parallel programming method and the parallel performance of the molecular dynamics code on VPP500 and Paragon. (author)

  5. PHISICS/RELAP5-3D Adaptive Time-Step Method Demonstrated for the HTTR LOFC#1 Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Robin Ivey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Balestra, Paolo [Univ. of Rome (Italy); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-05-01

    A collaborative effort between Japan Atomic Energy Agency (JAEA) and Idaho National Laboratory (INL) as part of the Civil Nuclear Energy Working Group is underway to model the high temperature engineering test reactor (HTTR) loss of forced cooling (LOFC) transient that was performed in December 2010. The coupled version of RELAP5-3D, a thermal fluids code, and PHISICS, a neutronics code, were used to model the transient. The focus of this report is to summarize the changes made to the PHISICS-RELAP5-3D code for implementing an adaptive time step methodology into the code for the first time, and to test it using the full HTTR PHISICS/RELAP5-3D model developed by JAEA and INL and the LOFC simulation. Various adaptive schemes are available based on flux or power convergence criteria that allow significantly larger time steps to be taken by the neutronics module. The report includes a description of the HTTR and the associated PHISICS/RELAP5-3D model test results as well as the University of Rome sub-contractor report documenting the adaptive time step theory and methodology implemented in PHISICS/RELAP5-3D. Two versions of the HTTR model were tested using 8 and 26 energy groups. It was found that most of the new adaptive methods lead to significant improvements in the LOFC simulation time required without significant accuracy penalties in the prediction of the fission power and the fuel temperature. In the best performing 8 group model scenarios, a LOFC simulation of 20 hours could be completed in real-time, or even less than real-time, compared with the previous version of the code that completed the same transient 3-8 times slower than real-time. A few of the user choice combinations between the methodologies available and the tolerance settings did however result in unacceptably high errors or insignificant gains in simulation time. The study is concluded with recommendations on which methods to use for this HTTR model. An important caveat is that these findings

  6. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    Science.gov (United States)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  7. Aging effect on step adjustments and stability control in visually perturbed gait initiation.

    Science.gov (United States)

    Sun, Ruopeng; Cui, Chuyi; Shea, John B

    2017-10-01

    Gait adaptability is essential for fall avoidance during locomotion. It requires the ability to rapidly inhibit original motor planning, select and execute alternative motor commands, while also maintaining the stability of locomotion. This study investigated the aging effect on gait adaptability and dynamic stability control during a visually perturbed gait initiation task. A novel approach was used such that the anticipatory postural adjustment (APA) during gait initiation were used to trigger the unpredictable relocation of a foot-size stepping target. Participants (10 young adults and 10 older adults) completed visually perturbed gait initiation in three adjustment timing conditions (early, intermediate, late; all extracted from the stereotypical APA pattern) and two adjustment direction conditions (medial, lateral). Stepping accuracy, foot rotation at landing, and Margin of Dynamic Stability (MDS) were analyzed and compared across test conditions and groups using a linear mixed model. Stepping accuracy decreased as a function of adjustment timing as well as stepping direction, with older subjects exhibited a significantly greater undershoot in foot placement to late lateral stepping. Late adjustment also elicited a reaching-like movement (i.e. foot rotation prior to landing in order to step on the target), regardless of stepping direction. MDS measures in the medial-lateral and anterior-posterior direction revealed both young and older adults exhibited reduced stability in the adjustment step and subsequent steps. However, young adults returned to stable gait faster than older adults. These findings could be useful for future study of screening deficits in gait adaptability and preventing falls. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Smart Wireless Power Transfer Operated by Time-Modulated Arrays via a Two-Step Procedure

    Directory of Open Access Journals (Sweden)

    Diego Masotti

    2015-01-01

    Full Text Available The paper introduces a novel method for agile and precise wireless power transmission operated by a time-modulated array. The unique, almost real-time reconfiguration capability of these arrays is fully exploited by a two-step procedure: first, a two-element time-modulated subarray is used for localization of tagged sensors to be energized; the entire 16-element TMA then provides the power to the detected tags, by exploiting the fundamental and first-sideband harmonic radiation. An investigation on the best array architecture is carried out, showing the importance of the adopted nonlinear/full-wave computer-aided-design platform. Very promising simulated energy transfer performance of the entire nonlinear radiating system is demonstrated.

  9. Biomechanical influences on balance recovery by stepping.

    Science.gov (United States)

    Hsiao, E T; Robinovitch, S N

    1999-10-01

    Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.

  10. Small Steps: Preliminary effectiveness and feasibility of an incremental goal-setting intervention to reduce sitting time in older adults.

    Science.gov (United States)

    Lewis, L K; Rowlands, A V; Gardiner, P A; Standage, M; English, C; Olds, T

    2016-03-01

    This study aimed to evaluate the preliminary effectiveness and feasibility of a theory-informed program to reduce sitting time in older adults. Pre-experimental (pre-post) study. Thirty non-working adult (≥ 60 years) participants attended a one hour face-to-face intervention session and were guided through: a review of their sitting time; normative feedback on sitting time; and setting goals to reduce total sitting time and bouts of prolonged sitting. Participants chose six goals and integrated one per week incrementally for six weeks. Participants received weekly phone calls. Sitting time and bouts of prolonged sitting (≥ 30 min) were measured objectively for seven days (activPAL3c inclinometer) pre- and post-intervention. During these periods, a 24-h time recall instrument was administered by computer-assisted telephone interview. Participants completed a post-intervention project evaluation questionnaire. Paired t tests with sequential Bonferroni corrections and Cohen's d effect sizes were calculated for all outcomes. Twenty-seven participants completed the assessments (71.7 ± 6.5 years). Post-intervention, objectively-measured total sitting time was significantly reduced by 51.5 min per day (p=0.006; d=-0.58) and number of bouts of prolonged sitting by 0.8 per day (p=0.002; d=-0.70). Objectively-measured standing increased by 39 min per day (p=0.006; d=0.58). Participants self-reported spending 96 min less per day sitting (p<0.001; d=-0.77) and 32 min less per day watching television (p=0.005; d=-0.59). Participants were highly satisfied with the program. The 'Small Steps' program is a feasible and promising avenue for behavioral modification to reduce sitting time in older adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. The association between choice stepping reaction time and falls in older adults--a path analysis model

    NARCIS (Netherlands)

    Pijnappels, M.A.G.M.; Delbaere, K.; Sturnieks, D.L.; Lord, S.R.

    2010-01-01

    Background: choice stepping reaction time (CSRT) is a functional measure that has been shown to significantly discriminate older fallers from non-fallers. Objective: to investigate how physiological and cognitive factors mediate the association between CSRT performance and multiple falls by use of

  12. Intake flow and time step analysis in the modeling of a direct injection Diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Zancanaro Junior, Flavio V.; Vielmo, Horacio A. [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Mechanical Engineering Dept.], E-mails: zancanaro@mecanica.ufrgs.br, vielmoh@mecanica.ufrgs.br

    2010-07-01

    This paper discusses the effects of the time step on turbulence flow structure in the intake and in-cylinder systems of a Diesel engine during the intake process, under the motored condition. The three-dimensional modeling of a reciprocating engine geometry comprising a bowl-in-piston combustion chamber, intake port of shallow ramp helical type and exhaust port of conventional type. The equations are numerically solved, including a transient analysis, valves and piston movements, for engine speed of 1500 rpm, using a commercial Finite Volumes CFD code. A parallel computation is employed. For the purpose of examining the in-cylinder turbulence characteristics two parameters are observed: the discharge coefficient and swirl ratio. This two parameters quantify the fluid flow characteristics inside cylinder in the intake stroke, therefore, it is very important their study and understanding. Additionally, the evolution of the discharge coefficient and swirl ratio, along crank angle, are correlated and compared, with the objective of clarifying the physical mechanisms. Regarding the turbulence, computations are performed with the Eddy Viscosity Model k-u SST, in its Low-Reynolds approaches, with standard near wall treatment. The system of partial differential equations to be solved consists of the Reynolds-averaged compressible Navier-Stokes equations with the constitutive relations for an ideal gas, and using a segregated solution algorithm. The enthalpy equation is also solved. A moving hexahedral trimmed mesh independence study is presented. In the same way many convergence tests are performed, and a secure criterion established. The results of the pressure fields are shown in relation to vertical plane that passes through the valves. Areas of low pressure can be seen in the valve curtain region, due to strong jet flows. Also, it is possible to note divergences between the time steps, mainly for the smaller time step. (author)

  13. Group sequential designs for stepped-wedge cluster randomised trials.

    Science.gov (United States)

    Grayling, Michael J; Wason, James Ms; Mander, Adrian P

    2017-10-01

    The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into

  14. Meta-Analysis of Effect Sizes Reported at Multiple Time Points Using General Linear Mixed Model

    Science.gov (United States)

    Musekiwa, Alfred; Manda, Samuel O. M.; Mwambi, Henry G.; Chen, Ding-Geng

    2016-01-01

    Meta-analysis of longitudinal studies combines effect sizes measured at pre-determined time points. The most common approach involves performing separate univariate meta-analyses at individual time points. This simplistic approach ignores dependence between longitudinal effect sizes, which might result in less precise parameter estimates. In this paper, we show how to conduct a meta-analysis of longitudinal effect sizes where we contrast different covariance structures for dependence between effect sizes, both within and between studies. We propose new combinations of covariance structures for the dependence between effect size and utilize a practical example involving meta-analysis of 17 trials comparing postoperative treatments for a type of cancer, where survival is measured at 6, 12, 18 and 24 months post randomization. Although the results from this particular data set show the benefit of accounting for within-study serial correlation between effect sizes, simulations are required to confirm these results. PMID:27798661

  15. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    Science.gov (United States)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  16. Influence of step complexity and presentation style on step performance of computerized emergency operating procedures

    Energy Technology Data Exchange (ETDEWEB)

    Xu Song [Department of Industrial Engineering, Tsinghua University, Beijing 100084 (China); Li Zhizhong [Department of Industrial Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: zzli@tsinghua.edu.cn; Song Fei; Luo Wei; Zhao Qianyi; Salvendy, Gavriel [Department of Industrial Engineering, Tsinghua University, Beijing 100084 (China)

    2009-02-15

    With the development of information technology, computerized emergency operating procedures (EOPs) are taking the place of paper-based ones. However, ergonomics issues of computerized EOPs have not been studied adequately since the industrial practice is quite limited yet. This study examined the influence of step complexity and presentation style of EOPs on step performance. A simulated computerized EOP system was developed in two presentation styles: Style A: one- and two-dimensional flowcharts combination; Style B: two-dimensional flowchart and success logic tree combination. Step complexity was quantified by a complexity measure model based on an entropy concept. Forty subjects participated in the experiment of EOP execution using the simulated system. The results of data analysis on the experiment data indicate that step complexity and presentation style could significantly influence step performance (both step error rate and operation time). Regression models were also developed. The regression analysis results imply that operation time of a step could be well predicted by step complexity while step error rate could only partly predicted by it. The result of a questionnaire investigation implies that step error rate was influenced not only by the operation task itself but also by other human factors. These findings may be useful for the design and assessment of computerized EOPs.

  17. Body-size trends of the extinct giant shark Carcharocles megalodon: a deep-time perspective on marine apex predators.

    Science.gov (United States)

    Pimiento, Catalina; Balk, Meghan A

    2015-06-01

    The extinct shark Carcharocles megalodon is one of the largest marine apex predators ever to exist. Nonetheless, little is known about its body-size variations through time and space. Here, we studied the body-size trends of C. megalodon through its temporal and geographic range to better understand its ecology and evolution. Given that this species was the last of the megatooth lineage, a group of species that shows a purported size increase through time, we hypothesized that C. megalodon also displayed this trend, increasing in size over time and reaching its largest size prior to extinction. We found that C. megalodon body-size distribution was left-skewed (suggesting a long-term selective pressure favoring larger individuals), and presented significant geographic variation (possibly as a result of the heterogeneous ecological constraints of this cosmopolitan species) over geologic time. Finally, we found that stasis was the general mode of size evolution of C. megalodon (i.e., no net changes over time), contrasting with the trends of the megatooth lineage and our hypothesis. Given that C. megalodon is a relatively long-lived species with a widely distributed fossil record, we further used this study system to provide a deep-time perspective to the understanding of the body-size trends of marine apex predators. For instance, our results suggest that (1) a selective pressure in predatory sharks for consuming a broader range of prey may favor larger individuals and produce left-skewed distributions on a geologic time scale; (2) body-size variations in cosmopolitan apex marine predators may depend on their interactions with geographically discrete communities; and (3) the inherent characteristics of shark species can produce stable sizes over geologic time, regardless of the size trends of their lineages.

  18. Associations between the Objectively Measured Office Environment and Workplace Step Count and Sitting Time: Cross-Sectional Analyses from the Active Buildings Study.

    Science.gov (United States)

    Fisher, Abi; Ucci, Marcella; Smith, Lee; Sawyer, Alexia; Spinney, Richard; Konstantatou, Marina; Marmot, Alexi

    2018-06-01

    Office-based workers spend a large proportion of the day sitting and tend to have low overall activity levels. Despite some evidence that features of the external physical environment are associated with physical activity, little is known about the influence of the spatial layout of the internal environment on movement, and the majority of data use self-report. This study investigated associations between objectively-measured sitting time and activity levels and the spatial layout of office floors in a sample of UK office-based workers. Participants wore activPAL accelerometers for at least three consecutive workdays. Primary outcomes were steps and proportion of sitting time per working hour. Primary exposures were office spatial layout, which was objectively-measured by deriving key spatial variables: 'distance from each workstation to key office destinations', 'distance from participant's workstation to all other workstations', 'visibility of co-workers', and workstation 'closeness'. 131 participants from 10 organisations were included. Fifty-four per cent were female, 81% were white, and the majority had a managerial or professional role (72%) in their organisation. The average proportion of the working hour spent sitting was 0.7 (SD 0.15); participants took on average 444 (SD 210) steps per working hour. Models adjusted for confounders revealed significant negative associations between step count and distance from each workstation to all other office destinations (e.g., B = -4.66, 95% CI: -8.12, -1.12, p office destinations (e.g., B = -6.45, 95% CI: -11.88, -0.41, p office destinations the less they walked, suggesting that changing the relative distance between workstations and other destinations on the same floor may not be the most fruitful target for promoting walking and reducing sitting in the workplace. However, reported effect sizes were very small and based on cross-sectional analyses. The approaches developed in this study could be applied to other

  19. An imbalance in cluster sizes does not lead to notable loss of power in cross-sectional, stepped-wedge cluster randomised trials with a continuous outcome.

    Science.gov (United States)

    Kristunas, Caroline A; Smith, Karen L; Gray, Laura J

    2017-03-07

    The current methodology for sample size calculations for stepped-wedge cluster randomised trials (SW-CRTs) is based on the assumption of equal cluster sizes. However, as is often the case in cluster randomised trials (CRTs), the clusters in SW-CRTs are likely to vary in size, which in other designs of CRT leads to a reduction in power. The effect of an imbalance in cluster size on the power of SW-CRTs has not previously been reported, nor what an appropriate adjustment to the sample size calculation should be to allow for any imbalance. We aimed to assess the impact of an imbalance in cluster size on the power of a cross-sectional SW-CRT and recommend a method for calculating the sample size of a SW-CRT when there is an imbalance in cluster size. The effect of varying degrees of imbalance in cluster size on the power of SW-CRTs was investigated using simulations. The sample size was calculated using both the standard method and two proposed adjusted design effects (DEs), based on those suggested for CRTs with unequal cluster sizes. The data were analysed using generalised estimating equations with an exchangeable correlation matrix and robust standard errors. An imbalance in cluster size was not found to have a notable effect on the power of SW-CRTs. The two proposed adjusted DEs resulted in trials that were generally considerably over-powered. We recommend that the standard method of sample size calculation for SW-CRTs be used, provided that the assumptions of the method hold. However, it would be beneficial to investigate, through simulation, what effect the maximum likely amount of inequality in cluster sizes would be on the power of the trial and whether any inflation of the sample size would be required.

  20. FIRST STEP towards ICF commercialization

    International Nuclear Information System (INIS)

    Saylor, W.W.; Pendergrass, J.H.; Dudziak, D.J.

    1984-01-01

    Production of tritium for weapons and fusion R and D programs and successful development of Inertial Confinement Fusion (ICF) technologies are important national goals. A conceptual design for an ICF facility to meet these goals is presented. FIRST STEP (Fusion, Inertial, Reduced-Requirements Systems Test for Special Nuclear Material, Tritium, and Energy Production) is a concept for a plant to produce SNM, tritium, and energy while serving as a test bed for ICF technology development. A credible conceptual design for an ICF SNM and tritium production facility that competes favorably with fission technology on the bases of cost, production quality, and safety was sought. FIRST STEP is also designed to be an engineering test facility that integrates systems required for an ICF power plant and that is intermediate in scale between proof-of-principle experiment and commercial power plant. FIRST STEP driver and pellet performance requirements are moderate and represent reasonable intermediate goals in an R and D plan for ICF commercialization. Repetition rate requirements for FIRST STEP are similar to those of commercial size plants and FIRST STEP can be used to integrate systems under realistic ICF conditions

  1. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces

    International Nuclear Information System (INIS)

    Omelyan, Igor; Kovalenko, Andriy

    2013-01-01

    We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics

  2. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    Science.gov (United States)

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  3. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild.

    Directory of Open Access Journals (Sweden)

    Franziska Broell

    Full Text Available This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming 'efficiently', is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40, and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time in the wild.

  4. Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics

    International Nuclear Information System (INIS)

    Wang, Siwei; Zhang, Lei; Zhang, Lingling; Brinkman, Kyle; Chen, Fanglin

    2013-01-01

    Ultra-fine grained dense BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ (BZCYYb) ceramics have been successfully prepared via a two-step sintering method. Co-precipitation method has been adopted to prepare nano-sized BZCYYb precursors with an average particle size of 30 nm. By controlling the sintering profile, an average grain size of 184 nm was obtained for dense BZCYYb ceramics via the two-step sintering method, compared to 445 nm for the conventional sintered samples. The two-step sintered BZCYYb samples showed less impurity and an enhanced electrical conductivity compared with the conventional sintered ones. Further, the two-step sintering method was applied to fabricate anode supported solid oxide fuel cells (SOFCs) using BZCYYb as the electrolyte, resulting in dense ultrafine-grained electrolyte membranes and porous anode substrates with fine particles. Due to the reduced ohmic as well as polarization resistances, the maximum power output of the cells fabricated from the two-step sintering method reached 349 mW m −2 at 700 °C, significantly improved from 172 mW cm −2 for the conventional sintered cells, suggesting that two-step sintering method is very promising for optimizing the microstructure and thus enhancing the electrochemical performances for barium cerate based proton-conducting SOFCs.

  5. On the time-averaging of ultrafine particle number size spectra in vehicular plumes

    Directory of Open Access Journals (Sweden)

    X. H. Yao

    2006-01-01

    Full Text Available Ultrafine vehicular particle (<100 nm number size distributions presented in the literature are mostly averages of long scan-time (~30 s or more spectra mainly due to the non-availability of commercial instruments that can measure particle distributions in the <10 nm to 100 nm range faster than 30 s even though individual researchers have built faster (1–2.5 s scanning instruments. With the introduction of the Engine Exhaust Particle Sizer (EEPS in 2004, high time-resolution (1 full 32-channel spectrum per second particle size distribution data become possible and allow atmospheric researchers to study the characteristics of ultrafine vehicular particles in rapidly and perhaps randomly varying high concentration environments such as roadside, on-road and tunnel. In this study, particle size distributions in these environments were found to vary as rapidly as one second frequently. This poses the question on the generality of using averages of long scan-time spectra for dynamic and/or mechanistic studies in rapidly and perhaps randomly varying high concentration environments. One-second EEPS data taken at roadside, on roads and in tunnels by a mobile platform are time-averaged to yield 5, 10, 30 and 120 s distributions to answer this question.

  6. A surface flaw sizing study by time-of-flight ultrasonic technique

    International Nuclear Information System (INIS)

    Lamy, C.A.

    1990-07-01

    In this work, sizing of inclined slits and surface cracks in ferritic steel using the ultrasonic time-of-flight technique was studied. The surface cracks were vertical and inclined, nut the slits were only inclined. It was surface Rayleigh wave that was converted to shear wave mode in the material. The specimens with surface crack were submitted to a three four point loading fracture mechanics tests, so that the region of the crack tip became under an increasing tensile stress. Thus, the ultrasonic crack sizing could be compared to the material stress intensity factor (K) of the material for different loadings. Results show that the greater the slope and/or lenght of the slits the greater its subsizing. Vertical cracks int he parent metal are reliably and accuratly sized; in the weld the same remark held if one increases the gain of ultrasonic flaw detector to compensate for the weld attenuation phenomenon. Sizing of inclined cracks in the parent metal shows the same trends of the inclined slits, differing only in slopes over 30 sup(0) where the sizing in surface cracks is no longer reliable. A new appraisal procedure here proposed made reliable these results. The techniques employed in this work lead to reliable and accurate results for sizing of different slits and cracks. It should be noted however that good results are only obtained if a tensile stress state exists in the neighbourhood of the c rack tip. (author)

  7. Time-step selection considerations in the analysis of reactor transients with DIF3D-K

    International Nuclear Information System (INIS)

    Taiwo, T.A.; Khalil, H.S.; Cahalan, J.E.; Morris, E.E.

    1993-01-01

    The DIF3D-K code solves the three-dimensional, time-dependent multigroup neutron diffusion equations by using a nodal approach for spatial discretization and either the theta method or one of three space-time factorization approaches for temporal integration of the nodal equations. The three space-time factorization options (namely, improved quasistatic, adiabatic and conventional point kinetics) were implemented because of their potential efficiency advantage for the analysis of transients in which the flux shape changes more slowly than its amplitude. Here we describe the implementation of DIF3D-K as the neutronics module within the SAS-HWR accident analysis code. We also describe the neutronics-related time step selection algorithms and their influence on the accuracy and efficiency of the various solution options

  8. Analysis of multi-step transitions in spin crossover nanochains

    Energy Technology Data Exchange (ETDEWEB)

    Chiruta, Daniel [GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France); LISV, Université de Versailles Saint-Quentin-en-Yvelines, 78140 Velizy (France); Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, Suceava 720229 (Romania); Linares, Jorge, E-mail: jorge.linares@uvsq.fr [GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France); Garcia, Yann, E-mail: yann.garcia@uclouvain.be [Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Molecules, Solids and Reactivity (IMCN/MOST), Place Louis Pasteur, 1, 1348 Louvain-la-Neuve (Belgium); Dimian, Mihai [Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, Suceava 720229 (Romania); Dahoo, Pierre Richard [LATMOS, Université de Versailles-Saint-Quentin-en-Yvelines, CNRS-UPMC-UVSQ (UMR 8190), 78280 Guyancourt (France)

    2014-02-01

    The temperature driven phase transition occurring in spin crossover nanochains has been studied by an Ising-like model considering both short-range and long-range interactions. Various types of spin crossover profiles have been described in this framework, including a novel three-step transition identified in a nanosystem with eight molecules, which is modeled for the first time. A special interest has been also given to stepwise transitions accompanied by two hysteresis loops. The edge and size effects on spin crossover behavior have been investigated in order to get a deeper insight of the underlying mechanisms involved in these unusual spin transitions.

  9. Size-Prediction Analysis for Stand-Alone Photovoltaic System

    International Nuclear Information System (INIS)

    Erusiafe, N. E.; Chendo, M. A. C.

    2002-01-01

    The cost - effectiveness of photovoltaic (PV) generator depends, among others, on its ability to satisfy energy demand and the cost of achieving this. In this work a step - by - step procedure for predicting the size of the main components of a stand - alone PV system (array and storage) is presented. The results yield an expression which can he used lo determine the size of both components at optimum cost and desired reliability. The result from this work compare favourably with some earlier works in that, the system sizes shows some degree of agreement

  10. Associations of office workers' objectively assessed occupational sitting, standing and stepping time with musculoskeletal symptoms.

    Science.gov (United States)

    Coenen, Pieter; Healy, Genevieve N; Winkler, Elisabeth A H; Dunstan, David W; Owen, Neville; Moodie, Marj; LaMontagne, Anthony D; Eakin, Elizabeth A; O'Sullivan, Peter B; Straker, Leon M

    2018-04-22

    We examined the association of musculoskeletal symptoms (MSS) with workplace sitting, standing and stepping time, as well as sitting and standing time accumulation (i.e. usual bout duration of these activities), measured objectively with the activPAL3 monitor. Using baseline data from the Stand Up Victoria trial (216 office workers, 14 workplaces), cross-sectional associations of occupational activities with self-reported MSS (low-back, upper and lower extremity symptoms in the last three months) were examined using probit regression, correcting for clustering and adjusting for confounders. Sitting bout duration was significantly (p < 0.05) associated, non-linearly, with MSS, such that those in the middle tertile displayed the highest prevalence of upper extremity symptoms. Other associations were non-significant but sometimes involved large differences in symptom prevalence (e.g. 38%) by activity. Though causation is unclear, these non-linear associations suggest that sitting and its alternatives (i.e. standing and stepping) interact with MSS and this should be considered when designing safe work systems. Practitioner summary: We studied associations of objectively assessed occupational activities with musculoskeletal symptoms in office workers. Workers who accumulated longer sitting bouts reported fewer upper extremity symptoms. Total activity duration was not significantly associated with musculoskeletal symptoms. We underline the importance of considering total volumes and patterns of activity time in musculoskeletal research.

  11. Explicit solution of Calderon preconditioned time domain integral equations

    KAUST Repository

    Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size

  12. Mushroom's spore size and time of fruiting are strongly related: is moisture important?

    Science.gov (United States)

    Kauserud, Håvard; Heegaard, Einar; Halvorsen, Rune; Boddy, Lynne; Høiland, Klaus; Stenseth, Nils Chr

    2011-04-23

    Most basidiomycete fungi produce annual short-lived sexual fruit bodies from which billions of microscopic spores are spread into the air during a short time period. However, little is known about the selective forces that have resulted in some species fruiting early and others later in the fruiting season. This study of relationships between morphological and ecological characteristics, climate factors and time of fruiting are based upon thorough statistical analyses of 66 520 mapped records from Norway, representing 271 species of autumnal fruiting mushroom species. We found a strong relationship between spore size and time of fruiting; on average, a doubling of spore size (volume) corresponded to 3 days earlier fruiting. Small-spored species dominate in the oceanic parts of Norway, whereas large-spored species are typical of more continental parts. In separate analyses, significant relationships were observed between spore size and climate factors. We hypothesize that these relationships are owing to water balance optimization, driven by water storage in spores as a critical factor for successful germination of primary mycelia in the drier micro-environments found earlier in the fruiting season and/or in continental climates.

  13. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  14. Details Matter: Noise and Model Structure Set the Relationship between Cell Size and Cell Cycle Timing

    Directory of Open Access Journals (Sweden)

    Felix Barber

    2017-11-01

    Full Text Available Organisms across all domains of life regulate the size of their cells. However, the means by which this is done is poorly understood. We study two abstracted “molecular” models for size regulation: inhibitor dilution and initiator accumulation. We apply the models to two settings: bacteria like Escherichia coli, that grow fully before they set a division plane and divide into two equally sized cells, and cells that form a bud early in the cell division cycle, confine new growth to that bud, and divide at the connection between that bud and the mother cell, like the budding yeast Saccharomyces cerevisiae. In budding cells, delaying cell division until buds reach the same size as their mother leads to very weak size control, with average cell size and standard deviation of cell size increasing over time and saturating up to 100-fold higher than those values for cells that divide when the bud is still substantially smaller than its mother. In budding yeast, both inhibitor dilution or initiator accumulation models are consistent with the observation that the daughters of diploid cells add a constant volume before they divide. This “adder” behavior has also been observed in bacteria. We find that in bacteria an inhibitor dilution model produces adder correlations that are not robust to noise in the timing of DNA replication initiation or in the timing from initiation of DNA replication to cell division (the C+D period. In contrast, in bacteria an initiator accumulation model yields robust adder correlations in the regime where noise in the timing of DNA replication initiation is much greater than noise in the C + D period, as reported previously (Ho and Amir, 2015. In bacteria, division into two equally sized cells does not broaden the size distribution.

  15. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment.

    Science.gov (United States)

    Bunce, David; Haynes, Becky I; Lord, Stephen R; Gschwind, Yves J; Kochan, Nicole A; Reppermund, Simone; Brodaty, Henry; Sachdev, Perminder S; Delbaere, Kim

    2017-06-01

    Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70-90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose—Einstein Condensates

    International Nuclear Information System (INIS)

    Duan Ya-Fan; Xu Zhen; Qian Jun; Sun Jian-Fang; Jiang Bo-Nan; Hong Tao

    2011-01-01

    We numerically analyze the dynamic behavior of Bose—Einstein condensate (BEC) in a one-dimensional disordered potential before it completely loses spatial quantum coherence. We find that both the disorder statistics and the atom interactions produce remarkable effects on localization. We also find that the single phase of the initial condensate is broken into many small pieces while the system approaches localization, showing a counter-intuitive step-wise phase but not a thoroughly randomized phase. Although the condensates as a whole show less flow and expansion, the currents between adjacent phase steps retain strong time dependence. Thus we show explicitly that the localization of a finite size Bose—Einstein condensate is a dynamic equilibrium state. (general)

  17. Simulation and theory of island growth on stepped substrates

    International Nuclear Information System (INIS)

    Pownall, C.D.

    1999-10-01

    The nucleation, growth and coalescence of islands on stepped substrates is investigated by Monte Carlo simulations and analytical theories. Substrate steps provide a preferential site for the nucleation of islands, making many of the important processes one-dimensional in nature, and are of potentially major importance in the development of low-dimensional structures as a means of growing highly ordered chains of 'quantum dots' or continuous 'quantum wires'. A model is developed in which island nucleation is entirely restricted to the step edge, islands grow in compact morphologies by monomer capture, and eventually coalesce with one another until a single continuous cluster of islands covers the entire step. A series of analytical theories is developed to describe the dynamics of the whole evolution. The initial nucleation and aggregation regimes are modeled using the traditional approach of rate equations, rooted in mean field theory, but incorporating corrections to account for correlations in the nucleation and capture processes. This approach is found to break down close to the point at which the island density saturates and a new approach is developed based upon geometric and probabilistic arguments to describe the saturation behaviour, including the characteristic dynamic scaling which is found to persist through the coalescence regime as well. A further new theory, incorporating arguments based on the geometry of Capture Zones, is presented which reproduces the dynamics of the coalescence regime. The, latter part of the. thesis considers the spatial properties of the system, in particular the spacing of the islands along the step. An expression is derived which describes the distribution of gap sizes, and this is solved using a recently-developed relaxation method. An important result is the discovery that larger critical island sizes tend to yield more evenly spaced arrays of islands. The extent of this effect is analysed by solving for critical island

  18. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    Science.gov (United States)

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  19. Time-step selection considerations in the analysis of reactor transients with DIF3D-K

    International Nuclear Information System (INIS)

    Taiwo, T.A.; Khalil, H.S.; Cahalan, J.E.; Morris, E.E.

    1993-01-01

    The DIF3D-K code solves the three-dimensional, time-dependent multigroup neutron diffusion equations by using a nodal approach for spatial discretization and either the theta method or one of three space-time factorization approaches for temporal integration of the nodal equations. The three space-time factorization options (namely, improved quasistatic, adiabatic, and conventional point kinetics) were implemented because of their potential efficiency advantage for the analysis of transients in which the flux shape changes more slowly than its amplitude. In this paper, we describe the implementation of DIF3D-K as the neutronics module within the SAS-HWR accident analysis code. We also describe the neuronic-related time-step selection algorithms and their influence on the accuracy and efficiency of the various solution options

  20. Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods.

    Science.gov (United States)

    Varenne, Fanny; Makky, Ali; Gaucher-Delmas, Mireille; Violleau, Frédéric; Vauthier, Christine

    2016-05-01

    Evaluation of particle size distribution (PSD) of multimodal dispersion of nanoparticles is a difficult task due to inherent limitations of size measurement methods. The present work reports the evaluation of PSD of a dispersion of poly(isobutylcyanoacrylate) nanoparticles decorated with dextran known as multimodal and developed as nanomedecine. The nine methods used were classified as batch particle i.e. Static Light Scattering (SLS) and Dynamic Light Scattering (DLS), single particle i.e. Electron Microscopy (EM), Atomic Force Microscopy (AFM), Tunable Resistive Pulse Sensing (TRPS) and Nanoparticle Tracking Analysis (NTA) and separative particle i.e. Asymmetrical Flow Field-Flow Fractionation coupled with DLS (AsFlFFF) size measurement methods. The multimodal dispersion was identified using AFM, TRPS and NTA and results were consistent with those provided with the method based on a separation step prior to on-line size measurements. None of the light scattering batch methods could reveal the complexity of the PSD of the dispersion. Difference between PSD obtained from all size measurement methods tested suggested that study of the PSD of multimodal dispersion required to analyze samples by at least one of the single size particle measurement method or a method that uses a separation step prior PSD measurement.

  1. Audiovisual integration increases the intentional step synchronization of side-by-side walkers.

    Science.gov (United States)

    Noy, Dominic; Mouta, Sandra; Lamas, Joao; Basso, Daniel; Silva, Carlos; Santos, Jorge A

    2017-12-01

    When people walk side-by-side, they often synchronize their steps. To achieve this, individuals might cross-modally match audiovisual signals from the movements of the partner and kinesthetic, cutaneous, visual and auditory signals from their own movements. Because signals from different sensory systems are processed with noise and asynchronously, the challenge of the CNS is to derive the best estimate based on this conflicting information. This is currently thought to be done by a mechanism operating as a Maximum Likelihood Estimator (MLE). The present work investigated whether audiovisual signals from the partner are integrated according to MLE in order to synchronize steps during walking. Three experiments were conducted in which the sensory cues from a walking partner were virtually simulated. In Experiment 1 seven participants were instructed to synchronize with human-sized Point Light Walkers and/or footstep sounds. Results revealed highest synchronization performance with auditory and audiovisual cues. This was quantified by the time to achieve synchronization and by synchronization variability. However, this auditory dominance effect might have been due to artifacts of the setup. Therefore, in Experiment 2 human-sized virtual mannequins were implemented. Also, audiovisual stimuli were rendered in real-time and thus were synchronous and co-localized. All four participants synchronized best with audiovisual cues. For three of the four participants results point toward their optimal integration consistent with the MLE model. Experiment 3 yielded performance decrements for all three participants when the cues were incongruent. Overall, these findings suggest that individuals might optimally integrate audiovisual cues to synchronize steps during side-by-side walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Measuring time-dependent deformations in metallic MEMS

    NARCIS (Netherlands)

    Bergers, L.I.J.C.; Hoefnagels, J.P.M.; Delhey, N.K.R.; Geers, M.G.D.

    2011-01-01

    The reliability of metallic microelectromechanical systems (MEMS) depends on time-dependent deformation such as creep. Key to this process is the interaction between microstructural length scales and dimensional length scales, so-called size-effects. As a first critical step towards studying these

  3. Sleep-time sizing and scheduling in green passive optical networks

    KAUST Repository

    Elrasad, Amr

    2012-08-01

    Next-generation passive optical network (PON) has been widely considered as a cost-effective broadband access technology. With the ever-increasing power saving concern, energy efficiency has been an important issue for its operations. In this paper, we present a novel sleep time sizing and scheduling framework that satisfies power efficient bandwidth allocation in PONs. We consider the downstream links from an optical line terminal (OLT) to an optical network unit (ONU). The ONU has two classes of traffic, control and data. Control traffic are delay intolerant with higher priority than the data traffic. Closed form model for average ONU sleeping time and end-to-end data traffic delay are presented and evaluated. Our framework decouples the dependency between ONU sleeping time and the QoS of the traffic.

  4. Impact of first-step potential and time on the vertical growth of ZnO nanorods on ITO substrate by two-step electrochemical deposition

    International Nuclear Information System (INIS)

    Kim, Tae Gyoum; Jang, Jin-Tak; Ryu, Hyukhyun; Lee, Won-Jae

    2013-01-01

    Highlights: •We grew vertical ZnO nanorods on ITO substrate using a two-step continuous potential process. •The nucleation for the ZnO nanorods growth was changed by first-step potential and duration. •The vertical ZnO nanorods were well grown when first-step potential was −1.2 V and 10 s. -- Abstract: In this study, we analyzed the growth of ZnO nanorods on an ITO (indium doped tin oxide) substrate by electrochemical deposition using a two-step, continuous potential process. We examined the effect of changing the first-step potential as well as the first-step duration on the morphological, structural and optical properties of ZnO nanorods, measured via using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photoluminescence (PL), respectively. As a result, vertical ZnO nanorods were grown on ITO substrate without the need for a template when the first-step potential was set to −1.2 V for a duration of 10 s, and the second-step potential was set to −0.7 V for a duration of 1190 s. The ZnO nanorods on this sample showed the highest XRD (0 0 2)/(1 0 0) peak intensity ratio and the highest PL near band edge emission to deep level emission peak intensity ratio (NBE/DLE). In this study, the nucleation for vertical ZnO nanorod growth on an ITO substrate was found to be affected by changes in the first-step potential and first-step duration

  5. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Komonov, A.I. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Prinz, V.Ya., E-mail: prinz@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Seleznev, V.A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Kokh, K.A. [Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (IGM SB RAS), pr. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (NIIC SB RAS), pr. Lavrentieva 3, Novosibirsk 630090 (Russian Federation)

    2017-07-15

    Highlights: • Easily reproducible step-height standard for SPM calibrations was proposed. • Step-height standard is monolayer steps on the surface of layered single crystal. • Long-term change in surface morphology of Bi{sub 2}Se{sub 3} and ZnWO{sub 4} was investigated. • Conducting surface of Bi{sub 2}Se{sub 3} crystals appropriate for calibrating STM. • Ability of robust SPM calibrations under ambient conditions were demonstrated. - Abstract: Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi{sub 2}Se{sub 3} and ZnWO{sub 4} layered single crystals. It was shown that the conducting surface of Bi{sub 2}Se{sub 3} crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi{sub 2}Se{sub 3} surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO{sub 4} crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  6. Phospholipid-assisted synthesis of size-controlled gold nanoparticles

    International Nuclear Information System (INIS)

    He Peng; Zhu Xinyuan

    2007-01-01

    Morphology and size control of gold nanoparticles (AuNPs) by phospholipids (PLs) has been reported. It was found that gold entities could form nanostructures with different sizes controlled by PLs in an aqueous solution. During the preparation of 1.5 nm gold seeds, AuNPs were obtained from the reduction of gold complex by sodium borohydride and capped by citrate for stabilization. With the different ratios between seed solution and growth solution, which was composed by gold complex and PLs, gold seeds grew into larger nanoparticles step by step until enough large size up to 30 nm. The main discovery of this work is that common biomolecules, such as PLs can be used to control nanoparticle size. This conclusion has been confirmed by transmission electron micrographs, particle size analysis, and UV-vis spectra

  7. Analysis of time series and size of equivalent sample

    International Nuclear Information System (INIS)

    Bernal, Nestor; Molina, Alicia; Pabon, Daniel; Martinez, Jorge

    2004-01-01

    In a meteorological context, a first approach to the modeling of time series is to use models of autoregressive type. This allows one to take into account the meteorological persistence or temporal behavior, thereby identifying the memory of the analyzed process. This article seeks to pre-sent the concept of the size of an equivalent sample, which helps to identify in the data series sub periods with a similar structure. Moreover, in this article we examine the alternative of adjusting the variance of the series, keeping in mind its temporal structure, as well as an adjustment to the covariance of two time series. This article presents two examples, the first one corresponding to seven simulated series with autoregressive structure of first order, and the second corresponding to seven meteorological series of anomalies of the air temperature at the surface in two Colombian regions

  8. Effect of increased exposure times on amount of residual monomer released from single-step self-etch adhesives.

    Science.gov (United States)

    Altunsoy, Mustafa; Botsali, Murat Selim; Tosun, Gonca; Yasar, Ahmet

    2015-10-16

    The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.

  9. Time for cleaning and room preparation: connection between surgery size and professional perspectives

    Directory of Open Access Journals (Sweden)

    Marla Andréia Garcia de AVILA

    Full Text Available The objective was to verify the association between time needed for room cleaning (TLPS and the surgery size, and related advantages and difficulties faced by the circulator of the room assigned to this task. A mixed method, with a transverse quantitative, retrospective approach, using a sample of 3095 surgeries performed, from January to June 2011, and a qualitative approach using a Thematic Content Analysis of statements from 11 circulators, was used. The average TLPS was smaller in size 1 surgeries, increasing in sizes 2, 3 and 4, with a significant difference. Advantages reported included organization and size of staff, and difficulties reported related to sharp, bladed materials mixed with surgical instruments and a reduced number of cleaning professionals. The larger the size, the higher the TLPS. Surgical teams operating in the Surgical Center interfere directly in the process, facilitating or hindering the achievement of institutional goals related to quality and productivity.

  10. Diffraction model of a step-out transition

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.; Zimmermann, F.

    1996-06-01

    The diffraction model of a cavity, suggested by Lawson, Bane and Sands is generalized to a step out transition. Using this model, the high frequency impedance is calculated explicitly for the case that the transition step is small compared with the beam pipe radius. In the diffraction model for a small step out transition, the total energy is conserved, but, unlike the cavity case, the diffracted waves in the geometric shadow and the pipe region, in general, do not always carry equal energy. In the limit of small step sizes, the impedance derived from the diffraction model agrees with that found by Balakin, Novokhatsky and also Kheifets. This impedance can be used to compute the wake field of a round collimator whose half aperture is much larger than the bunch length, as existing in the SLC final focus.

  11. Influence of the section size and holding time on the graphite parameters of ductile iron production

    Directory of Open Access Journals (Sweden)

    S. Bockus

    2009-01-01

    Full Text Available This work was conducted to establish the conditions required to produce a desirable structure of the castings of various section sizes. This investigation was focused on the study of the influence of cooling rate or section size and holding time on graphite parameters of the ductile iron. Plates having thickness between 3 and 50mm were cast in sand molds using the same melt. The present investigation has shown that the section size of ductile iron castings and holding time had strong effect on the graphite parameters of the castings.

  12. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.

    2009-01-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  13. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    Energy Technology Data Exchange (ETDEWEB)

    Densmore, Jeffery D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Lowrie, Robert B [Los Alamos National Laboratory; Morel, Jim E [TEXAS A& M UNIV

    2008-01-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  14. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    Science.gov (United States)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.

    2009-09-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  15. Preimages for Step-Reduced SHA-2

    DEFF Research Database (Denmark)

    Aoki, Kazumaro; Guo, Jian; Matusiewicz, Krystian

    2009-01-01

    In this paper, we present preimage attacks on up to 43-step SHA-256 (around 67% of the total 64 steps) and 46-step SHA-512 (around 57.5% of the total 80 steps), which significantly increases the number of attacked steps compared to the best previously published preimage attack working for 24 steps....... The time complexities are 2^251.9, 2^509 for finding pseudo-preimages and 2^254.9, 2^511.5 compression function operations for full preimages. The memory requirements are modest, around 2^6 words for 43-step SHA-256 and 46-step SHA-512. The pseudo-preimage attack also applies to 43-step SHA-224 and SHA-384...

  16. Microsoft Office SharePoint Designer 2007 Step by Step

    CERN Document Server

    Coventry, Penelope

    2008-01-01

    The smart way to learn Office SharePoint Designer 2007-one step at a time! Work at your own pace through the easy numbered steps, practice files on CD, helpful hints, and troubleshooting tips to master the fundamentals of building customized SharePoint sites and applications. You'll learn how to work with Windows® SharePoint Services 3.0 and Office SharePoint Server 2007 to create Web pages complete with Cascading Style Sheets, Lists, Libraries, and customized Web parts. Then, make your site really work for you by adding data sources, including databases, XML data and Web services, and RSS fe

  17. Potentials and Limitations of Real-Time Elastography for Prostate Cancer Detection: A Whole-Mount Step Section Analysis

    Directory of Open Access Journals (Sweden)

    Daniel Junker

    2012-01-01

    Full Text Available Objectives. To evaluate prostate cancer (PCa detection rates of real-time elastography (RTE in dependence of tumor size, tumor volume, localization and histological type. Materials and Methods. Thirdy-nine patients with biopsy proven PCa underwent RTE before radical prostatectomy (RPE to assess prostate tissue elasticity, and hard lesions were considered suspicious for PCa. After RPE, the prostates were prepared as whole-mount step sections and were compared with imaging findings for analyzing PCa detection rates. Results. RTE detected 6/62 cancer lesions with a maximum diameter of 0–5 mm (9.7%, 10/37 with a maximum diameter of 6–10 mm (27%, 24/34 with a maximum diameter of 11–20 20 mm (70.6%, 14/14 with a maximum diameter of >20 mm (100% and 40/48 with a volume ≥0.2 cm3 (83.3%. Regarding cancer lesions with a volume ≥ 0.2 cm³ there was a significant difference in PCa detection rates between Gleason scores with predominant Gleason pattern 3 compared to those with predominant Gleason pattern 4 or 5 (75% versus 100%; P=0.028. Conclusions. RTE is able to detect PCa of significant tumor volume and of predominant Gleason pattern 4 or 5 with high confidence, but is of limited value in the detection of small cancer lesions.

  18. Spectrum of Slip Processes on the Subduction Interface in a Continuum Framework Resolved by Rate-and State Dependent Friction and Adaptive Time Stepping

    Science.gov (United States)

    Herrendoerfer, R.; van Dinther, Y.; Gerya, T.

    2015-12-01

    To explore the relationships between subduction dynamics and the megathrust earthquake potential, we have recently developed a numerical model that bridges the gap between processes on geodynamic and earthquake cycle time scales. In a self-consistent, continuum-based framework including a visco-elasto-plastic constitutive relationship, cycles of megathrust earthquake-like ruptures were simulated through a purely slip rate-dependent friction, albeit with very low slip rates (van Dinther et al., JGR, 2013). In addition to much faster earthquakes, a range of aseismic slip processes operate at different time scales in nature. These aseismic processes likely accommodate a considerable amount of the plate convergence and are thus relevant in order to estimate the long-term seismic coupling and related hazard in subduction zones. To simulate and resolve this wide spectrum of slip processes, we innovatively implemented rate-and state dependent friction (RSF) and an adaptive time-stepping into our continuum framework. The RSF formulation, in contrast to our previous friction formulation, takes the dependency of frictional strength on a state variable into account. It thereby allows for continuous plastic yielding inside rate-weakening regions, which leads to aseismic slip. In contrast to the conventional RSF formulation, we relate slip velocities to strain rates and use an invariant formulation. Thus we do not require the a priori definition of infinitely thin, planar faults in a homogeneous elastic medium. With this new implementation of RSF, we succeed to produce consistent cycles of frictional instabilities. By changing the frictional parameter a, b, and the characteristic slip distance, we observe a transition from stable sliding to stick-slip behaviour. This transition is in general agreement with predictions from theoretical estimates of the nucleation size, thereby to first order validating our implementation. By incorporating adaptive time-stepping based on a

  19. Effects of particle size and heating time on thiobarbituric acid (TBA) test of soybean powder.

    Science.gov (United States)

    Lee, Youn-Ju; Yoon, Won-Byong

    2013-06-01

    Effects of particle size and heating time during TBA test on the thiobarbituric acid reactive substance (TBARS) of soybean (Glycine Max) powder were studied. Effects of processing variables involved in the pulverization of soybean, such as the temperature of soybean powder, the oxygen level in the vessel, and the pulverisation time, were investigated. The temperature of the soybean powder and the oxygen level had no significant influence on the TBARS (pTBA test significantly affected the TBARS. Change of TBARS during heating was well described by the fractional conversion first order kinetics model. A diffusion model was introduced to quantify the effect of particle size on TBARS. The major finding of this study was that the TBA test to estimate the level of the lipid oxidation directly from powders should consider the heating time and the mean particle sizes of the sample. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effect of One-Step and Multi-Steps Polishing System on Enamel Roughness

    Directory of Open Access Journals (Sweden)

    Cynthia Sumali

    2013-07-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 The final procedures of orthodontic treatment are bracket debonding and cleaning the remaining adhesive. Multi-step polishing system is the most common method used. The disadvantage of that system is long working time, because of the stages that should be done. Therefore, dental material manufacturer make an improvement to the system, to reduce several stages into one stage only. This new system is known as one-step polishing system. Objective: To compare the effect of one-step and multi-step polishing system on enamel roughness after orthodontic bracket debonding. Methods: Randomized control trial was conducted included twenty-eight maxillary premolar randomized into two polishing system; one-step OptraPol (Ivoclar, Vivadent and multi-step AstroPol (Ivoclar, Vivadent. After bracket debonding, the remaining adhesive on each group was cleaned by subjective polishing system for ninety seconds using low speed handpiece. The enamel roughness was subjected to profilometer, registering two roughness parameters (Ra, Rz. Independent t-test was used to analyze the mean score of enamel roughness in each group. Results: There was no significant difference of enamel roughness between one-step and multi-step polishing system (p>0.005. Conclusion: One-step polishing system can produce a similar enamel roughness to multi-step polishing system after bracket debonding and adhesive cleaning.DOI: 10.14693/jdi.v19i3.136

  1. SPAR-H Step-by-Step Guidance

    Energy Technology Data Exchange (ETDEWEB)

    W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring

    2011-05-01

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  2. SPAR-H Step-by-Step Guidance

    International Nuclear Information System (INIS)

    Galyean, W.J.; Whaley, A.M.; Kelly, D.L.; Boring, R.L.

    2011-01-01

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  3. A New time Integration Scheme for Cahn-hilliard Equations

    KAUST Repository

    Schaefer, R.

    2015-06-01

    In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.

  4. A New time Integration Scheme for Cahn-hilliard Equations

    KAUST Repository

    Schaefer, R.; Smol-ka, M.; Dalcin, L; Paszyn'ski, M.

    2015-01-01

    In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.

  5. SPAR-H Step-by-Step Guidance

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Dana L. Kelly; Ronald L. Boring; William J. Galyean

    2012-06-01

    Step-by-step guidance was developed recently at Idaho National Laboratory for the US Nuclear Regulatory Commission on the use of the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method for quantifying Human Failure Events (HFEs). This work was done to address SPAR-H user needs, specifically requests for additional guidance on the proper application of various aspects of the methodology. This paper overviews the steps of the SPAR-H analysis process and highlights some of the most important insights gained during the development of the step-by-step directions. This supplemental guidance for analysts is applicable when plant-specific information is available, and goes beyond the general guidance provided in existing SPAR-H documentation. The steps highlighted in this paper are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff.

  6. Exponential stability of continuous-time and discrete-time bidirectional associative memory networks with delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2004-01-01

    First, convergence of continuous-time Bidirectional Associative Memory (BAM) neural networks are studied. By using Lyapunov functionals and some analysis technique, the delay-independent sufficient conditions are obtained for the networks to converge exponentially toward the equilibrium associated with the constant input sources. Second, discrete-time analogues of the continuous-time BAM networks are formulated and studied. It is shown that the convergence characteristics of the continuous-time systems are preserved by the discrete-time analogues without any restriction imposed on the uniform discretionary step size. An illustrative example is given to demonstrate the effectiveness of the obtained results

  7. Effect of the processing steps on compositions of table olive since harvesting time to pasteurization.

    Science.gov (United States)

    Nikzad, Nasim; Sahari, Mohammad A; Vanak, Zahra Piravi; Safafar, Hamed; Boland-nazar, Seyed A

    2013-08-01

    Weight, oil, fatty acids, tocopherol, polyphenol, and sterol properties of 5 olive cultivars (Zard, Fishomi, Ascolana, Amigdalolia, and Conservalia) during crude, lye treatment, washing, fermentation, and pasteurization steps were studied. Results showed: oil percent was higher and lower in Ascolana (crude step) and in Fishomi (pasteurization step), respectively; during processing steps, in all cultivars, oleic, palmitic, linoleic, and stearic acids were higher; the highest changes in saturated and unsaturated fatty acids were in fermentation step; the highest and the lowest ratios of ω3 / ω6 were in Ascolana (washing step) and in Zard (pasteurization step), respectively; the highest and the lowest tocopherol were in Amigdalolia and Fishomi, respectively, and major damage occurred in lye step; the highest and the lowest polyphenols were in Ascolana (crude step) and in Zard and Ascolana (pasteurization step), respectively; the major damage among cultivars occurred during lye step, in which the polyphenol reduced to 1/10 of first content; sterol did not undergo changes during steps. Reviewing of olive patents shows that many compositions of fruits such as oil quality, fatty acids, quantity and its fraction can be changed by alteration in cultivar and process.

  8. Real-time control of a microfluidic channel for size-independent deformability cytometry

    International Nuclear Information System (INIS)

    Guan, Guofeng; Chen, Peter C Y; Ong, Chong Jin; Peng, Weng Kung; Bhagat, Ali Asgar; Han, Jongyoon

    2012-01-01

    Mechanical properties of cells can be correlated with various cell states and are now considered as an important class of biophysical markers. Effectiveness of existing high-throughput microfluidic techniques for investigating cell mechanical properties is adversely affected by cell-size variation in a given cell population. In this work, we introduce a new microfluidic system with real-time feedback control to evaluate single-cell deformability while minimizing cell-size dependence of the measurement. Using breast cancer cells (MCF-7), we demonstrate the potential of this system for stiffness profiling of cells in complex, diverse cell populations. (paper)

  9. Real-time spot size camera for pulsed high-energy radiographic machines

    International Nuclear Information System (INIS)

    Watson, S.A.

    1993-01-01

    The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory's Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison

  10. Battery Energy Storage Sizing When Time of Use Pricing Is Applied

    Science.gov (United States)

    Khormali, Shahab

    2014-01-01

    Battery energy storage systems (BESSs) are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs. PMID:25295309

  11. Battery Energy Storage Sizing When Time of Use Pricing Is Applied

    Directory of Open Access Journals (Sweden)

    Guido Carpinelli

    2014-01-01

    Full Text Available Battery energy storage systems (BESSs are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs.

  12. 3D elastic wave modeling using modified high‐order time stepping schemes with improved stability conditions

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.; Seif, Roustam

    2009-01-01

    We present two Lax‐Wendroff type high‐order time stepping schemes and apply them to solving the 3D elastic wave equation. The proposed schemes have the same format as the Taylor series expansion based schemes, only with modified temporal extrapolation coefficients. We demonstrate by both theoretical analysis and numerical examples that the modified schemes significantly improve the stability conditions.

  13. Multiple-step fault estimation for interval type-II T-S fuzzy system of hypersonic vehicle with time-varying elevator faults

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-03-01

    Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.

  14. General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding.

    Science.gov (United States)

    Lucius, Aaron L; Maluf, Nasib K; Fischer, Christopher J; Lohman, Timothy M

    2003-10-01

    Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.

  15. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    Science.gov (United States)

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  16. Detection and Correction of Step Discontinuities in Kepler Flux Time Series

    Science.gov (United States)

    Kolodziejczak, J. J.; Morris, R. L.

    2011-01-01

    PDC 8.0 includes an implementation of a new algorithm to detect and correct step discontinuities appearing in roughly one of every 20 stellar light curves during a given quarter. The majority of such discontinuities are believed to result from high-energy particles (either cosmic or solar in origin) striking the photometer and causing permanent local changes (typically -0.5%) in quantum efficiency, though a partial exponential recovery is often observed [1]. Since these features, dubbed sudden pixel sensitivity dropouts (SPSDs), are uncorrelated across targets they cannot be properly accounted for by the current detrending algorithm. PDC detrending is based on the assumption that features in flux time series are due either to intrinsic stellar phenomena or to systematic errors and that systematics will exhibit measurable correlations across targets. SPSD events violate these assumptions and their successful removal not only rectifies the flux values of affected targets, but demonstrably improves the overall performance of PDC detrending [1].

  17. On an adaptive time stepping strategy for solving nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Chen, K.; Baines, M.J.; Sweby, P.K.

    1993-01-01

    A new time step selection procedure is proposed for solving non- linear diffusion equations. It has been implemented in the ASWR finite element code of Lorenz and Svoboda [10] for 2D semiconductor process modelling diffusion equations. The strategy is based on equi-distributing the local truncation errors of the numerical scheme. The use of B-splines for interpolation (as well as for the trial space) results in a banded and diagonally dominant matrix. The approximate inverse of such a matrix can be provided to a high degree of accuracy by another banded matrix, which in turn can be used to work out the approximate finite difference scheme corresponding to the ASWR finite element method, and further to calculate estimates of the local truncation errors of the numerical scheme. Numerical experiments on six full simulation problems arising in semiconductor process modelling have been carried out. Results show that our proposed strategy is more efficient and better conserves the total mass. 18 refs., 6 figs., 2 tabs

  18. [In vitro comparison of root canal preparation with step-back technique and GT rotary file--a nickel-titanium engine driven rotary instrument system].

    Science.gov (United States)

    Krajczár, Károly; Tóth, Vilmos; Nyárády, Zoltán; Szabó, Gyula

    2005-06-01

    The aim of the authors' study was to compare the remaining root canal wall thickness and the preparation time of root canals, prepared either with step-back technique, or with GT Rotary File, an engine driven nickel-titanium rotary instrument system. Twenty extracted molars were decoronated. Teeth were divided in two groups. In Group 1 root canals were prepared with step-back technique. In Group 2 GT Rotary File System was utilized. Preoperative vestibulo-oral X-ray pictures were taken from all teeth with radiovisiograph (RVG). The final preparations at the mesiobuccal canals (MB) were performed with size #30 and palatinal/distal canals with size #40 instruments. Postoperative RVG pictures were taken ensuring the preoperative positioning. The working time was measured in seconds during each preparation. The authors also assessed the remaining root canal wall thickness at 3, 6 and 9 mm from the radiological apex, comparing the width of the canal walls of the vestibulo-oral projections on pre- and postoperative RVG pictures both mesially and buccally. The ratios of the residual and preoperative root canal wall thickness were calculated and compared. The largest difference was found at the MB canals of the coronal and middle third level of the root, measured on the distal canal wall. The ratio of the remaining dentin wall thickness at the coronal and the middle level in the case of step-back preparation was 0.605 and 0.754, and 0.824 and 0.895 in the cases of GT files respectively. The preparation time needed for GT Rotary File System was altogether 68.7% (MB) and 52.5% (D/P canals) of corresponding step-back preparation times. The use of GT Rotary File with comparison of standard step-back method resulted in a shortened preparation time and excessive damage of the coronal part of the root canal could be avoided.

  19. The Relaxation of Vicinal (001) with ZigZag [110] Steps

    Science.gov (United States)

    Hawkins, Micah; Hamouda, Ajmi Bh; González-Cabrera, Diego Luis; Einstein, Theodore L.

    2012-02-01

    This talk presents a kinetic Monte Carlo study of the relaxation dynamics of [110] steps on a vicinal (001) simple cubic surface. This system is interesting because [110] steps have different elementary excitation energetics and favor step diffusion more than close-packed [100] steps. In this talk we show how this leads to relaxation dynamics showing greater fluctuations on a shorter time scale for [110] steps as well as 2-bond breaking processes being rate determining in contrast to 3-bond breaking processes for [100] steps. The existence of a steady state is shown via the convergence of terrace width distributions at times much longer than the relaxation time. In this time regime excellent fits to the modified generalized Wigner distribution (as well as to the Berry-Robnik model when steps can overlap) were obtained. Also, step-position correlation function data show diffusion-limited increase for small distances along the step as well as greater average step displacement for zigzag steps compared to straight steps for somewhat longer distances along the step. Work supported by NSF-MRSEC Grant DMR 05-20471 as well as a DOE-CMCSN Grant.

  20. Standalone Photovoltaic System Sizing using Peak Sun Hour Method and Evaluation by TRNSYS Simulation

    OpenAIRE

    Riza, Dimas Firmanda Al; Gilani, Syed Ihtshamul-Haq

    2016-01-01

    This paper presents sizing and evaluation of a standalone photovoltaic system for residential load. Peak Sun Hour method is used to determine photovoltaic panel and battery capacity, then the sizing results is tested and evaluated using hourly time-step transient simulation model by using TRNSYS 16.0. The results shows for typical Malaysian terraced house that have about 6 kWh daily electricity load, the photovoltaic system requirement consist of 1.9 kWp photovoltaic panel and 2200 Ah battery...

  1. Sample size for comparing negative binomial rates in noninferiority and equivalence trials with unequal follow-up times.

    Science.gov (United States)

    Tang, Yongqiang

    2017-05-25

    We derive the sample size formulae for comparing two negative binomial rates based on both the relative and absolute rate difference metrics in noninferiority and equivalence trials with unequal follow-up times, and establish an approximate relationship between the sample sizes required for the treatment comparison based on the two treatment effect metrics. The proposed method allows the dispersion parameter to vary by treatment groups. The accuracy of these methods is assessed by simulations. It is demonstrated that ignoring the between-subject variation in the follow-up time by setting the follow-up time for all individuals to be the mean follow-up time may greatly underestimate the required size, resulting in underpowered studies. Methods are provided for back-calculating the dispersion parameter based on the published summary results.

  2. A theory of the stepped leader in lightning

    International Nuclear Information System (INIS)

    Lowke, J.J.

    1999-01-01

    There is no generally accepted explanation of the stepped leader behaviour in terms of basic physical processes. Existing theories generally involve significant gas heating within the stepped leader. In the present paper, the stepped nature of the leader is proposed to arise due to a combination of two physical phenomena. Electron transport is dominant over ion transport, during the luminous step stage, because electron mobilities are about 100 times larger than ion mobilities, and the streamer front velocity is determined by electron ionization effects. During the dark time between steps, there are only ions and charge transport is very much slower. The second effect leading to stepped behaviour arises because the electric field required for electric breakdown in air prior to a discharge is ∼30kV/cm, and is very much higher than the electric field of 5kV/cm that is required to sustain a glow discharge in air. During the luminous step stage, electrons tend to produce space charges to make a uniform field in the streamer of ∼5kV/cm. During the dark time between steps, there are no electrons but only ions. Time is required for ion drift to produce a space charge sheath of negative ions at the head of the streamer to produce a field of ∼30kV/cm sufficient for electron ionization to produce a new luminous step

  3. Rock sampling. [method for controlling particle size distribution

    Science.gov (United States)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  4. Digital controller for stepping motor-driven X-ray diffractometer

    International Nuclear Information System (INIS)

    Naval, P.C. Jr.; Saligan, P.P.; Calix, V.B.S.

    1985-01-01

    Presented is a stepping motor controller for the Philips PW 1050 Vertical Goniometer featuring crystal-controlled scan rates of 4, 2, 1, 1/2, 1/4, 1/8, 1/16 degree per minute in the continuous scan mode, and step sizes of 0.005, 0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.5 degree when operated in the step scan mode. A slow rate of 96 degrees per minute is provided for positioning purposes. The TTL-implemented design accomodates upgrading to higher levels of automation by a simple substitution of the control logic card. (Auth.)

  5. New heuristics for the fleet size and mix vehicle routing problem with time windows

    NARCIS (Netherlands)

    Dullaert, W.; Janssens, Gerrit K.; Sirensen, K.; Vernimmen, Bert

    2002-01-01

    In the Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW) customers need to be serviced in their time windows at minimal costs by a heterogeneous fleet. In this paper new heuristics for the FSMVRPTW are developed. The performance of the heuristics is shown to be significantly

  6. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2012-08-01

    Full Text Available Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05. Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

  7. An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO₂ adsorption.

    Science.gov (United States)

    Wang, Jiacheng; Liu, Qian

    2014-04-21

    A series of microporous carbons (MPCs) were successfully prepared by an efficient one-step condensation and activation strategy using commercially available dialdehyde and diamine as carbon sources. The resulting MPCs have large surface areas (up to 1881 m(2) g(-1)), micropore volumes (up to 0.78 cm(3) g(-1)), and narrow micropore size distributions (0.7-1.1 nm). The CO₂ uptakes of the MPCs prepared at high temperatures (700-750 °C) are higher than those prepared under mild conditions (600-650 °C), because the former samples possess optimal micropore sizes (0.7-0.8 nm) that are highly suitable for CO₂ capture due to enhanced adsorbate-adsorbent interactions. At 1 bar, MPC-750 prepared at 750 °C demonstrates the best CO₂ capture performance and can efficiently adsorb CO₂ molecules at 2.86 mmol g(-1) and 4.92 mmol g(-1) at 25 and 0 °C, respectively. In particular, the MPCs with optimal micropore sizes (0.7-0.8 nm) have extremely high CO₂/N₂ adsorption ratios (47 and 52 at 25 and 0 °C, respectively) at 1 bar, and initial CO₂/N₂ adsorption selectivities of up to 81 and 119 at 25 °C and 0 °C, respectively, which are far superior to previously reported values for various porous solids. These excellent results, combined with good adsorption capacities and efficient regeneration/recyclability, make these carbons amongst the most promising sorbents reported so far for selective CO₂ adsorption in practical applications.

  8. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    Science.gov (United States)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  9. Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2017-01-01

    Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.

  10. Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode

    OpenAIRE

    Saffarzadeh, Alireza; Daqiq, Reza

    2009-01-01

    We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...

  11. One False Step: "Detroit," "Step" and Movies of Rising and Falling

    Science.gov (United States)

    Beck, Bernard

    2018-01-01

    "Detroit" and "Step" are two recent movies in the context of urban riots in protest of police brutality. They refer to time periods separated by half a century, but there are common themes in the two that seem appropriate to both times. The movies are not primarily concerned with the riot events, but the riot is a major…

  12. Multigrid Reduction in Time for Nonlinear Parabolic Problems

    Energy Technology Data Exchange (ETDEWEB)

    Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Univ. of Colorado, Boulder, CO (United States); O' Neill, B. [Univ. of Colorado, Boulder, CO (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-04

    The need for parallel-in-time is being driven by changes in computer architectures, where future speed-ups will be available through greater concurrency, but not faster clock speeds, which are stagnant.This leads to a bottleneck for sequential time marching schemes, because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficient is defined as achieving similar performance when compared to a corresponding linear problem. As our benchmark, we use the p-Laplacian, where p = 4 corresponds to a well-known nonlinear diffusion equation and p = 2 corresponds to our benchmark linear diffusion problem. When considering linear problems and implicit methods, the use of optimal spatial solvers such as spatial multigrid imply that the cost of one time step evaluation is fixed across temporal levels, which have a large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases dramatically on coarser time grids, where relatively large time steps lead to worse conditioned nonlinear solves and increased nonlinear iteration counts per time step evaluation. This is the key difficulty explored by this paper. We show that by using a variety of strategies, most importantly, spatial coarsening and an alternate initial guess to the nonlinear time-step solver, we can reduce the work per time step evaluation over all temporal levels to a range similar with the corresponding linear problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.

  13. Sample Size Estimation for Negative Binomial Regression Comparing Rates of Recurrent Events with Unequal Follow-Up Time.

    Science.gov (United States)

    Tang, Yongqiang

    2015-01-01

    A sample size formula is derived for negative binomial regression for the analysis of recurrent events, in which subjects can have unequal follow-up time. We obtain sharp lower and upper bounds on the required size, which is easy to compute. The upper bound is generally only slightly larger than the required size, and hence can be used to approximate the sample size. The lower and upper size bounds can be decomposed into two terms. The first term relies on the mean number of events in each group, and the second term depends on two factors that measure, respectively, the extent of between-subject variability in event rates, and follow-up time. Simulation studies are conducted to assess the performance of the proposed method. An application of our formulae to a multiple sclerosis trial is provided.

  14. Statistical distribution of time to crack initiation and initial crack size using service data

    Science.gov (United States)

    Heller, R. A.; Yang, J. N.

    1977-01-01

    Crack growth inspection data gathered during the service life of the C-130 Hercules airplane were used in conjunction with a crack propagation rule to estimate the distribution of crack initiation times and of initial crack sizes. A Bayesian statistical approach was used to calculate the fraction of undetected initiation times as a function of the inspection time and the reliability of the inspection procedure used.

  15. Microfluidic step-emulsification in axisymmetric geometry.

    Science.gov (United States)

    Chakraborty, I; Ricouvier, J; Yazhgur, P; Tabeling, P; Leshansky, A M

    2017-10-25

    Biphasic step-emulsification (Z. Li et al., Lab Chip, 2015, 15, 1023) is a promising microfluidic technique for high-throughput production of μm and sub-μm highly monodisperse droplets. The step-emulsifier consists of a shallow (Hele-Shaw) microchannel operating with two co-flowing immiscible liquids and an abrupt expansion (i.e., step) to a deep and wide reservoir. Under certain conditions the confined stream of the disperse phase, engulfed by the co-flowing continuous phase, breaks into small highly monodisperse droplets at the step. Theoretical investigation of the corresponding hydrodynamics is complicated due to the complex geometry of the planar device, calling for numerical approaches. However, direct numerical simulations of the three dimensional surface-tension-dominated biphasic flows in confined geometries are computationally expensive. In the present paper we study a model problem of axisymmetric step-emulsification. This setup consists of a stable core-annular biphasic flow in a cylindrical capillary tube connected co-axially to a reservoir tube of a larger diameter through a sudden expansion mimicking the edge of the planar step-emulsifier. We demonstrate that the axisymmetric setup exhibits similar regimes of droplet generation to the planar device. A detailed parametric study of the underlying hydrodynamics is feasible via inexpensive (two dimensional) simulations owing to the axial symmetry. The phase diagram quantifying the different regimes of droplet generation in terms of governing dimensionless parameters is presented. We show that in qualitative agreement with experiments in planar devices, the size of the droplets generated in the step-emulsification regime is independent of the capillary number and almost insensitive to the viscosity ratio. These findings confirm that the step-emulsification regime is solely controlled by surface tension. The numerical predictions are in excellent agreement with in-house experiments with the axisymmetric

  16. Effect of milling time on the structure, particle size, and morphology of montmorillonite

    International Nuclear Information System (INIS)

    Abareshi, M.

    2017-01-01

    In the current research, effect of milling on the structure, particle size and morphology of montmorillonite was investigated. For this purpose, the montmorillonite was analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Then the montmorillonite was milled using high energy planetary ball mill at different milling times (1-60 hours). After that, the structure, particle size and morphology of all samples were investigated by XRD, FTIR, SEM, and transmission electron microscopy. Results showed that the ball milling causes the particle size reduction of clay and separation of the clay layers. Moreover, ball milling increases the overall structural disorder and transforms the crystalline structure into an amorphous phase. Also, the morphology of clay particle changes from layered to aggregates of almost rounded particles after 60 hours of milling.

  17. Configurable multi-step linear feedback shift register

    NARCIS (Netherlands)

    2010-01-01

    The state transition of a linear feedback shift register (LFSR) controlled by a clock (310) with length N and step size W, W being at least two, is accomplished via a next-state function (320). The next-state function deploys a state transition matrix (350). The state vector (330), which represents

  18. Generation and prediction of time series by a neural network

    International Nuclear Information System (INIS)

    Eisenstein, E.; Kanter, I.; Kessler, D.A.; Kinzel, W.

    1995-01-01

    Generation and prediction of time series are analyzed for the case of a bit generator: a perceptron where in each time step the input units are shifted one bit to the right with the state of the leftmost input unit set equal to the output unit in the previous time step. The long-time dynamical behavior of the bit generator consists of cycles whose typical period scales polynomially with the size of the network and whose spatial structure is periodic with a typical finite wavelength. The generalization error on a cycle is zero for a finite training set, and global dynamical behaviors can also be learned in a finite time. Hence, a projection of a rule can be learned in a finite time

  19. Step out - Step in Sequencing Games

    NARCIS (Netherlands)

    Musegaas, M.; Borm, P.E.M.; Quant, M.

    2014-01-01

    In this paper a new class of relaxed sequencing games is introduced: the class of Step out - Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order.

  20. Step-to-step variability in treadmill walking: influence of rhythmic auditory cueing.

    Directory of Open Access Journals (Sweden)

    Philippe Terrier

    Full Text Available While walking, human beings continuously adjust step length (SpL, step time (SpT, step speed (SpS = SpL/SpT and step width (SpW by integrating both feedforward and feedback mechanisms. These motor control processes result in correlations of gait parameters between consecutive strides (statistical persistence. Constraining gait with a speed cue (treadmill and/or a rhythmic auditory cue (metronome, modifies the statistical persistence to anti-persistence. The objective was to analyze whether the combined effect of treadmill and rhythmic auditory cueing (RAC modified not only statistical persistence, but also fluctuation magnitude (standard deviation, SD, and stationarity of SpL, SpT, SpS and SpW. Twenty healthy subjects performed 6 × 5 min. walking tests at various imposed speeds on a treadmill instrumented with foot-pressure sensors. Freely-chosen walking cadences were assessed during the first three trials, and then imposed accordingly in the last trials with a metronome. Fluctuation magnitude (SD of SpT, SpL, SpS and SpW was assessed, as well as NonStationarity Index (NSI, which estimates the dispersion of local means in the times series (SD of 20 local means over 10 steps. No effect of RAC on fluctuation magnitude (SD was observed. SpW was not modified by RAC, what is likely the evidence that lateral foot placement is separately regulated. Stationarity (NSI was modified by RAC in the same manner as persistent pattern: Treadmill induced low NSI in the time series of SpS, and high NSI in SpT and SpL. On the contrary, SpT, SpL and SpS exhibited low NSI under RAC condition. We used relatively short sample of consecutive strides (100 as compared to the usual number of strides required to analyze fluctuation dynamics (200 to 1000 strides. Therefore, the responsiveness of stationarity measure (NSI to cued walking opens the perspective to perform short walking tests that would be adapted to patients with a reduced gait perimeter.

  1. Calibration and Evaluation of Different Estimation Models of Daily Solar Radiation in Seasonally and Annual Time Steps in Shiraz Region

    Directory of Open Access Journals (Sweden)

    Hamid Reza Fooladmand

    2017-06-01

    2006 to 2008 were used for calibrating fourteen estimated models of solar radiation in seasonally and annual time steps and the measured data of years 2009 and 2010 were used for evaluating the obtained results. The equations were used in this study divided into three groups contains: 1 The equations based on only sunshine hours. 2 The equations based on only air temperature. 3 The equations based on sunshine hours and air temperature together. On the other hand, statistical comparison must be done to select the best equation for estimating solar radiation in seasonally and annual time steps. For this purpose, in validation stage the combination of statistical equations and linear correlation was used, and then the value of mean square deviation (MSD was calculated to evaluate the different models for estimating solar radiation in mentioned time steps. Results and Discussion: The mean values of mean square deviation (MSD of fourteen models for estimating solar radiation were equal to 24.16, 20.42, 4.08 and 16.19 for spring to winter respectively, and 15.40 in annual time step. Therefore, the results showed that using the equations for autumn enjoyed high accuracy, however for other seasons had low accuracy. So, using the equations for annual time step were appropriate more than the equations for seasonally time steps. Also, the mean values of mean square deviation (MSD of the equations based on only sunshine hours, the equations based on only air temperature, and the equations based on the combination of sunshine hours and air temperature for estimating solar radiation were equal to 14.82, 17.40 and 14.88, respectively. Therefore, the results indicated that the models based on only air temperature were the worst conditions for estimating solar radiation in Shiraz region, and therefore, using the sunshine hours for estimating solar radiation is necessary. Conclusions: In this study for estimating solar radiation in seasonally and annual time steps in Shiraz region

  2. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    Science.gov (United States)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  3. Step out-step in sequencing games

    NARCIS (Netherlands)

    Musegaas, Marieke; Borm, Peter; Quant, Marieke

    2015-01-01

    In this paper a new class of relaxed sequencing games is introduced: the class of Step out–Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order. First,

  4. Natural selection and inheritance of breeding time and clutch size in the collared flycatcher.

    Science.gov (United States)

    Sheldon, B C; Kruuk, L E B; Merilä, J

    2003-02-01

    Many characteristics of organisms in free-living populations appear to be under directional selection, possess additive genetic variance, and yet show no evolutionary response to selection. Avian breeding time and clutch size are often-cited examples of such characters. We report analyses of inheritance of, and selection on, these traits in a long-term study of a wild population of the collared flycatcher Ficedula albicollis. We used mixed model analysis with REML estimation ("animal models") to make full use of the information in complex multigenerational pedigrees. Heritability of laying date, but not clutch size, was lower than that estimated previously using parent-offspring regressions, although for both traits there was evidence of substantial additive genetic variance (h2 = 0.19 and 0.29, respectively). Laying date and clutch size were negatively genetically correlated (rA = -0.41 +/- 0.09), implying that selection on one of the traits would cause a correlated response in the other, but there was little evidence to suggest that evolution of either trait would be constrained by correlations with other phenotypic characters. Analysis of selection on these traits in females revealed consistent strong directional fecundity selection for earlier breeding at the level of the phenotype (beta = -0.28 +/- 0.03), but little evidence for stabilising selection on breeding time. We found no evidence that clutch size was independently under selection. Analysis of fecundity selection on breeding values for laying date, estimated from an animal model, indicated that selection acts directly on additive genetic variance underlying breeding time (beta = -0.20 +/- 0.04), but not on clutch size (beta = 0.03 +/- 0.05). In contrast, selection on laying date via adult female survival fluctuated in sign between years, and was opposite in sign for selection on phenotypes (negative) and breeding values (positive). Our data thus suggest that any evolutionary response to selection on

  5. Assessment of radiopacity of restorative composite resins with various target distances and exposure times and a modified aluminum step wedge

    Energy Technology Data Exchange (ETDEWEB)

    Bejeh Mir, Arash Poorsattar [Dentistry Student Research Committee (DSRC), Dental Materials Research Center, Dentistry School, Babol University of Medical Sciences, Babol (Iran, Islamic Republic of); Bejeh Mir, Morvarid Poorsattar [Private Practice of Orthodontics, Montreal, Quebec (Canada)

    2012-09-15

    ANSI/ADA has established standards for adequate radiopacity. This study was aimed to assess the changes in radiopacity of composite resins according to various tube-target distances and exposure times. Five 1-mm thick samples of Filtek P60 and Clearfil composite resins were prepared and exposed with six tube-target distance/exposure time setups (i.e., 40 cm, 0.2 seconds; 30 cm, 0.2 seconds; 30 cm, 0.16 seconds, 30 cm, 0.12 seconds; 15 cm, 0.2 seconds; 15 cm, 0.12 seconds) performing at 70 kVp and 7 mA along with a 12-step aluminum stepwedge (1 mm incremental steps) using a PSP digital sensor. Thereafter, the radiopacities measured with Digora for Windows software 2.5 were converted to absorbencies (i.e., A=-log (1-G/255)), where A is the absorbency and G is the measured gray scale). Furthermore, the linear regression model of aluminum thickness and absorbency was developed and used to convert the radiopacity of dental materials to the equivalent aluminum thickness. In addition, all calculations were compared with those obtained from a modified 3-step stepwedge (i.e., using data for the 2nd, 5th, and 8th steps). The radiopacities of the composite resins differed significantly with various setups (p<0.001) and between the materials (p<0.001). The best predicted model was obtained for the 30 cm 0.2 seconds setup (R2=0.999). Data from the reduced modified stepwedge was remarkable and comparable with the 12-step stepwedge. Within the limits of the present study, our findings support that various setups might influence the radiopacity of dental materials on digital radiographs.

  6. Evolution of robot-assisted orthotopic ileal neobladder formation: a step-by-step update to the University of Southern California (USC) technique.

    Science.gov (United States)

    Chopra, Sameer; de Castro Abreu, Andre Luis; Berger, Andre K; Sehgal, Shuchi; Gill, Inderbir; Aron, Monish; Desai, Mihir M

    2017-01-01

    To describe our, step-by-step, technique for robotic intracorporeal neobladder formation. The main surgical steps to forming the intracorporeal orthotopic ileal neobladder are: isolation of 65 cm of small bowel; small bowel anastomosis; bowel detubularisation; suture of the posterior wall of the neobladder; neobladder-urethral anastomosis and cross folding of the pouch; and uretero-enteral anastomosis. Improvements have been made to these steps to enhance time efficiency without compromising neobladder configuration. Our technical improvements have resulted in an improvement in operative time from 450 to 360 min. We describe an updated step-by-step technique of robot-assisted intracorporeal orthotopic ileal neobladder formation. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  7. Concepts in sample size determination

    Directory of Open Access Journals (Sweden)

    Umadevi K Rao

    2012-01-01

    Full Text Available Investigators involved in clinical, epidemiological or translational research, have the drive to publish their results so that they can extrapolate their findings to the population. This begins with the preliminary step of deciding the topic to be studied, the subjects and the type of study design. In this context, the researcher must determine how many subjects would be required for the proposed study. Thus, the number of individuals to be included in the study, i.e., the sample size is an important consideration in the design of many clinical studies. The sample size determination should be based on the difference in the outcome between the two groups studied as in an analytical study, as well as on the accepted p value for statistical significance and the required statistical power to test a hypothesis. The accepted risk of type I error or alpha value, which by convention is set at the 0.05 level in biomedical research defines the cutoff point at which the p value obtained in the study is judged as significant or not. The power in clinical research is the likelihood of finding a statistically significant result when it exists and is typically set to >80%. This is necessary since the most rigorously executed studies may fail to answer the research question if the sample size is too small. Alternatively, a study with too large a sample size will be difficult and will result in waste of time and resources. Thus, the goal of sample size planning is to estimate an appropriate number of subjects for a given study design. This article describes the concepts in estimating the sample size.

  8. Step Detection Robust against the Dynamics of Smartphones

    Science.gov (United States)

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  9. Acoustic programming in step-split-flow lateral-transport thin fractionation.

    Science.gov (United States)

    Ratier, Claire; Hoyos, Mauricio

    2010-02-15

    We propose a new separation scheme for micrometer-sized particles combining acoustic forces and gravitational field in split-flow lateral-transport thin (SPLITT)-like fractionation channels. Acoustic forces are generated by ultrasonic standing waves set up in the channel thickness. We report on the separation of latex particles of two different sizes in a preliminary experiment using this proposed hydrodynamic acoustic sorter, HAS. Total binary separation of 5 and 10 microm diameter particles has been achieved. Numerical simulations of trajectories of particles flowing through a step-SPLITT under the conditions which combine acoustic standing waves and gravity show a very good agreement with the experiment. Calculations in order to compare separations obtained by the acoustic programming s-SPLITT fractionation and the conventional SPLITT fractionation show that the improvement in separation time is around 1 order of magnitude and could still be improved; this is the major finding of this work. This separation technique can be extended to biomimetic particles and blood cells.

  10. Method and apparatus for sizing nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Koehler, L.

    1976-01-01

    Nuclear fuel rod cladding tubes are sized internally to diameters precisely fitting nuclear fuel pellets with which the tubes are charged by externally applying hydraulic pressure to short lengths of each tube. The pressure is applied while the tube is stationary. The tube is then moved to bring a new length within the hydraulic pressure zone. The volume of the hydraulic liquid used and the pressure applied to this liquid is such that the liquid is compressed slightly so that the length being sized yields, the expansion of the liquid then completing the sizing. The lengths being sized step-by-step are internally supported by either the fuel pellets or a mandrel having the same diameter as the pellets

  11. One-step synthesis of single phase micro-sized BaFe12O19 hexaplates via a modified hydrothermal approach

    International Nuclear Information System (INIS)

    Cao, Liangliang; Zeng, Yanwei; Ding, Chuan; Li, Rongjie; Li, Chuanming; Zhang, Chengzhe

    2016-01-01

    Single phase BaFe 12 O 19 ferrite identified by X-ray diffraction and Raman spectroscopy has been successfully synthesized using Fe(NO 3 ) 3 ·9H 2 O and Ba(NO 3 ) 2 as starting materials and NaOH as a precipitant via a modified one-step hydrothermal approach which involves the elimination of carbonate radicals from reaction system based on the stoichiometric ratio of [Ba 2+ ]/[Fe 3+ ]. Hydrothermal products under various synthetic conditions were studied, including different addition amounts of Ba(NO 3 ) 2 in the modified operation, reaction temperatures and times, and hydroxyl concentrations. The BaFe 12 O 19 particles featuring an excellent hexagonal plates shape can be hydrothermally synthesized with the aid of polyethylene glycol. It has been found that the presence of α-Fe 2 O 3 in a traditional hydrothermal process is motivated by the deviation from the desired [Ba 2+ ]/[Fe 3+ ] ratio caused by the negligent precipitation of Ba 2+ ions to BaCO 3 . An investigation on the preferred hydrothermal product through thermodynamic calculation shows that the reduction in Gibbs free energy for the exclusive formation of BaFe 12 O 19 with 1 mol of Fe 3+ ions at 220 °C is approximately 32 kJ higher than that for the complete transformation to α-Fe 2 O 3 with an equal consumption quantity of Fe 3+ ions. - Highlights: • Pure BaFe 12 O 19 was hydrothermally synthesized based on the stoichiometric ratio. • A modified operation was employed to eliminate self-invited carbonate ions. • BaFe 12 O 19 particles feature an excellent micro-sized hexaplates shape. • BaFe 12 O 19 was thermodynamically confirmed to be preferred result instead of α-Fe 2 O 3 .

  12. Effects of habitat size and quality on equilibrium density and extinction time of Sorex araneus populations

    NARCIS (Netherlands)

    Klok, C.; Roos, de A.M.

    1998-01-01

    1. The effects of changes in habitat size and quality on the expected population density and the expected time to extinction of Sorex araneus are studied by means of mathematical models that incorporate demographic stochasticity. 2. Habitat size is characterized by the number of territories, while

  13. Diffusion tensor imaging fiber tracking with reliable tracking orientation and flexible step size☆

    Science.gov (United States)

    Yao, Xufeng; Wang, Manning; Chen, Xinrong; Nie, Shengdong; Li, Zhexu; Xu, Xiaoping; Zhang, Xuelong; Song, Zhijian

    2013-01-01

    We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based on the single-tensor model and the two-tensor model. The directional set of planar voxels contained three tracking directions: two from the two-tensor model and one from the single-tensor model. The directional set of linear voxels contained only one principal vector. In addition, a flexible step size, rather than fixable step sizes, was implemented to improve the accuracy of fiber tracking. We used two sets of human data to assess the performance of our method; one was from a healthy volunteer and the other from a patient with low-grade glioma. Results verified that our method was superior to the single-tensor Fiber Assignment by Continuous Tracking and the two-tensor eXtended Streamline Tractography for showing detailed images of fiber bundles. PMID:25206444

  14. Finite element time domain modeling of controlled-Source electromagnetic data with a hybrid boundary condition

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin

    2017-01-01

    method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....

  15. Detection of Tomato black ring virus by real-time one-step RT-PCR.

    Science.gov (United States)

    Harper, Scott J; Delmiglio, Catia; Ward, Lisa I; Clover, Gerard R G

    2011-01-01

    A TaqMan-based real-time one-step RT-PCR assay was developed for the rapid detection of Tomato black ring virus (TBRV), a significant plant pathogen which infects a wide range of economically important crops. Primers and a probe were designed against existing genomic sequences to amplify a 72 bp fragment from RNA-2. The assay amplified all isolates of TBRV tested, but no amplification was observed from the RNA of other nepovirus species or healthy host plants. The detection limit of the assay was estimated to be around nine copies of the TBRV target region in total RNA. A comparison with conventional RT-PCR and ELISA, indicated that ELISA, the current standard test method, lacked specificity and reacted to all nepovirus species tested, while conventional RT-PCR was approximately ten-fold less sensitive than the real-time RT-PCR assay. Finally, the real-time RT-PCR assay was tested using five different RT-PCR reagent kits and was found to be robust and reliable, with no significant differences in sensitivity being found. The development of this rapid assay should aid in quarantine and post-border surveys for regulatory agencies. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Gibbs-Thomson Law for Singular Step Segments: Thermodynamics Versus Kinetics

    Science.gov (United States)

    Chernov, A. A.

    2003-01-01

    Classical Burton-Cabrera-Frank theory presumes that thermal fluctuations are so fast that at any time density of kinks on a step is comparable with the reciprocal intermolecular distance, so that the step rate is about isotropic within the crystal plane. Such azimuthal isotropy is, however, often not the case: Kink density may be much lower. In particular, it was recently found on the (010) face of orthorhombic lysozyme that interkink distance may exceed 500-600 intermolecular distances. Under such conditions, Gibbs-Thomson law (GTL) may not be applicable: On a straight step segment between two corners, communication between the comers occurs exclusively by kink exchange. Annihilation between kinks of opposite sign generated at the comers results in the grain in step energy entering GTL. If the step segment length l much greater than D/v, where D and v are the kink diffusivity and propagation rate, respectively, the opposite kinks have practically no chance to annihilate and GTL is not applicable. The opposite condition of the GTL applicability, l much less than D/v, is equivalent to the requirement that relative supersaturation Delta(sub mu)/kT much less than alpha/l, where alpha is molecular size. Thus, GTL may be applied to a segment of 10(exp 3)alpha approx. 3 x 10(exp -5)cm approx 0.3 micron only if supersaturation is less than 0.1%, while practically used driving forces for crystallization are much larger. Relationships alternative to the GTL for different, but low, kink density have been discussed. They confirm experimental evidences that the Burton-Cabrera-Frank theory of spiral growth is growth rates twice as low as compared to the observed figures. Also, application of GTL results in unrealistic step energy while suggested kinetic law give reasonable figures.

  17. Multi-type Step-wise group screening designs with unequal A-priori ...

    African Journals Online (AJOL)

    ... design with unequal group sizes and obtain values of the group sizes that minimize the expected number of runs.. Keywords: Group Screening, Group factors, multi-type step-wise group screening, expected number of runs, Optimum group screening designs > East African Journal of Statistics Vol. 1 (1) 2005: pp. 49-67 ...

  18. Variable Neighborhood Search for Parallel Machines Scheduling Problem with Step Deteriorating Jobs

    Directory of Open Access Journals (Sweden)

    Wenming Cheng

    2012-01-01

    Full Text Available In many real scheduling environments, a job processed later needs longer time than the same job when it starts earlier. This phenomenon is known as scheduling with deteriorating jobs to many industrial applications. In this paper, we study a scheduling problem of minimizing the total completion time on identical parallel machines where the processing time of a job is a step function of its starting time and a deteriorating date that is individual to all jobs. Firstly, a mixed integer programming model is presented for the problem. And then, a modified weight-combination search algorithm and a variable neighborhood search are employed to yield optimal or near-optimal schedule. To evaluate the performance of the proposed algorithms, computational experiments are performed on randomly generated test instances. Finally, computational results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time even for large-sized problems.

  19. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    Science.gov (United States)

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  20. Iteratively improving Hi-C experiments one step at a time.

    Science.gov (United States)

    Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton

    2018-04-30

    The 3D organization of eukaryotic chromosomes affects key processes such as gene expression, DNA replication, cell division, and response to DNA damage. The genome-wide chromosome conformation capture (Hi-C) approach can characterize the landscape of 3D genome organization by measuring interaction frequencies between all genomic regions. Hi-C protocol improvements and rapid advances in DNA sequencing power have made Hi-C useful to study diverse biological systems, not only to elucidate the role of 3D genome structure in proper cellular function, but also to characterize genomic rearrangements, assemble new genomes, and consider chromatin interactions as potential biomarkers for diseases. Yet, the Hi-C protocol is still complex and subject to variations at numerous steps that can affect the resulting data. Thus, there is still a need for better understanding and control of factors that contribute to Hi-C experiment success and data quality. Here, we evaluate recently proposed Hi-C protocol modifications as well as often overlooked variables in sample preparation and examine their effects on Hi-C data quality. We examine artifacts that can occur during Hi-C library preparation, including microhomology-based artificial template copying and chimera formation that can add noise to the downstream data. Exploring the mechanisms underlying Hi-C artifacts pinpoints steps that should be further optimized in the future. To improve the utility of Hi-C in characterizing the 3D genome of specialized populations of cells or small samples of primary tissue, we identify steps prone to DNA loss which should be considered to adapt Hi-C to lower cell numbers. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    Science.gov (United States)

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  2. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

    DEFF Research Database (Denmark)

    Hiermann, Gerhard; Puchinger, Jakob; Røpke, Stefan

    2016-01-01

    Due to new regulations and further technological progress in the field of electric vehicles, the research community faces the new challenge of incorporating the electric energy based restrictions into vehicle routing problems. One of these restrictions is the limited battery capacity which makes...... detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations (E......-FSMFTW) to model decisions to be made with regards to fleet composition and the actual vehicle routes including the choice of recharging times and locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost. Furthermore, we consider time windows at customer...

  3. Automated measurement of diatom size

    Science.gov (United States)

    Spaulding, Sarah A.; Jewson, David H.; Bixby, Rebecca J.; Nelson, Harry; McKnight, Diane M.

    2012-01-01

    Size analysis of diatom populations has not been widely considered, but it is a potentially powerful tool for understanding diatom life histories, population dynamics, and phylogenetic relationships. However, measuring cell dimensions on a light microscope is a time-consuming process. An alternative technique has been developed using digital flow cytometry on a FlowCAM® (Fluid Imaging Technologies) to capture hundreds, or even thousands, of images of a chosen taxon from a single sample in a matter of minutes. Up to 30 morphological measures may be quantified through post-processing of the high resolution images. We evaluated FlowCAM size measurements, comparing them against measurements from a light microscope. We found good agreement between measurement of apical cell length in species with elongated, straight valves, including small Achnanthidium minutissimum (11-21 µm) and largeDidymosphenia geminata (87–137 µm) forms. However, a taxon with curved cells, Hannaea baicalensis (37–96 µm), showed differences of ~ 4 µm between the two methods. Discrepancies appear to be influenced by the choice of feret or geodesic measurement for asymmetric cells. We describe the operating conditions necessary for analysis of size distributions and present suggestions for optimal instrument conditions for size analysis of diatom samples using the FlowCAM. The increased speed of data acquisition through use of imaging flow cytometers like the FlowCAM is an essential step for advancing studies of diatom populations.

  4. Detection of Listeria monocytogenes in ready-to-eat food by Step One real-time polymerase chain reaction.

    Science.gov (United States)

    Pochop, Jaroslav; Kačániová, Miroslava; Hleba, Lukáš; Lopasovský, L'ubomír; Bobková, Alica; Zeleňáková, Lucia; Stričík, Michal

    2012-01-01

    The aim of this study was to follow contamination of ready-to-eat food with Listeria monocytogenes by using the Step One real time polymerase chain reaction (PCR). We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and MicroSEQ® Listeria monocytogenes Detection Kit for the real-time PCR performance. In 30 samples of ready-to-eat milk and meat products without incubation we detected strains of Listeria monocytogenes in five samples (swabs). Internal positive control (IPC) was positive in all samples. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in ready-to-eat food without incubation.

  5. Compensatory stepping responses in individuals with stroke: a pilot study.

    Science.gov (United States)

    Lakhani, Bimal; Mansfield, Avril; Inness, Elizabeth L; McIlroy, William E

    2011-05-01

    Impaired postural control and a high incidence of falls are commonly observed following stroke. Compensatory stepping responses are critical to reactive balance control. We hypothesize that, following a stroke, individuals with unilateral limb dyscontrol will be faced with the unique challenge of controlling such rapid stepping reactions that may eventually be linked to the high rate of falling. The objectives of this exploratory pilot study were to investigate compensatory stepping in individuals poststroke with regard to: (1) choice of initial stepping limb (paretic or non-paretic); (2) step characteristics; and (3) differences in step characteristics when the initial step is taken with the paretic vs. the non-paretic limb. Four subjects following stroke (38-165 days post) and 11 healthy young adults were recruited. Anterior and posterior perturbations were delivered by using a weight drop system. Force plates recorded centre-of-pressure excursion prior to the onset of stepping and step timing. Of the four subjects, three only attempted to step with their non-paretic limb and one stepped with either limb. Time to foot-off was generally slow, whereas step onset time and swing time were comparable to healthy controls. Two of the four subjects executed multistep responses in every trial, and attempts to force stepping with the paretic limb were unsuccessful in three of the four subjects. Despite high clinical balance scores, these individuals with stroke demonstrated impaired compensatory stepping responses, suggesting that current clinical evaluations might not accurately reflect reactive balance control in this population.

  6. Recovery of forward stepping in spinal cord injured patients does not transfer to untrained backward stepping.

    Science.gov (United States)

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Lacquaniti, Francesco

    2004-08-01

    Six spinal cord injured (SCI) patients were trained to step on a treadmill with body-weight support for 1.5-3 months. At the end of training, foot motion recovered the shape and the step-by-step reproducibility that characterize normal gait. They were then asked to step backward on the treadmill belt that moved in the opposite direction relative to standard forward training. In contrast to healthy subjects, who can immediately reverse the direction of walking by time-reversing the kinematic waveforms, patients were unable to step backward. Similarly patients were unable to perform another untrained locomotor task, namely stepping in place on the idle treadmill. Two patients who were trained to step backward for 2-3 weeks were able to develop control of foot motion appropriate for this task. The results show that locomotor improvement does not transfer to untrained tasks, thus supporting the idea of task-dependent plasticity in human locomotor networks.

  7. Temporal step fluctuations on a conductor surface: electromigration force, surface resistivity and low-frequency noise

    International Nuclear Information System (INIS)

    Williams, E D; Bondarchuk, O; Tao, C G; Yan, W; Cullen, W G; Rous, P J; Bole, T

    2007-01-01

    Scattering of charge carriers from surface structures will become an increasing factor in the resistivity as the structure decreases in size to the nanoscale. The effects of scattering at the most basic surface defect, a kink in a step edge, are here analyzed using the continuum step model. Using a Langevin analysis, it has been shown that the electromigration force on the atoms at the step edge causes changes in the temporal evolution of the step-edge. For an electromigration force acting perpendicular to the average step edge and mass-transport dominated by step-edge diffusion, significant deviations from the usual t 1/4 scaling of the displacement correlation function occur dependent on a critical time τ and the direction of the force relative to the step edge (i.e. uphill or downhill). Experimental observations of step fluctuations on Ag(111) show the predicted changes among step fluctuations without current, and with current in the up- and down-hill directions for a current density of order 10 5 A cm -2 . The results yield the magnitude of the electromigration force acting on kinked sites at the step-edge. This in turn yields the contribution of the fluctuating steps to the surface resistivity, which exceeds 1% of the bulk resistivity as wire diameters decrease below 10s of nanometres. The temporal fluctuations of kink density can thus also be related to resistivity noise. Relating the known fluctuation spectrum of the step displacements to fluctuations in their lengths, the corresponding resistivity noise is predicted to show spectral signatures of ∼f -1/2 for step fluctuations governed by random attachment/detachment, and ∼f -3/4 for step fluctuations governed by step-edge diffusion

  8. Biofuel manufacturing from woody biomass: effects of sieve size used in biomass size reduction.

    Science.gov (United States)

    Zhang, Meng; Song, Xiaoxu; Deines, T W; Pei, Z J; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes.

  9. Modeling the light-travel-time effect on the far-infrared size of IRC +10216

    Science.gov (United States)

    Wright, Edward L.; Baganoff, Frederick K.

    1995-01-01

    Models of the far-infrared emission from the large circumstellar dust envelope surrounding the carbon star IRC +10216 are used to assess the importance of the light-travel-time effect (LTTE) on the observed size of the source. The central star is a long-period variable with an average period of 644 +/- 17 days and a peak-to-peak amplitude of two magnituds, so a large light-travel-time effect is seen at 1 min radius. An attempt is made to use the LTTE to reconcile the discrepancy between the observations of Fazio et al. and Lester et al. regarding the far-infrared source size. This discrepancy is reviewed in light of recent, high-spatial-resolution observations at 11 microns by Danchi et al. We conclude that IRC +10216 has been resolved on the arcminute scale by Fazio et al. Convolution of the model intensity profile at 61 microns with the 60 sec x 90 sec Gaussian beam of Fazio et al. yields an observed source size full width at half maximum (FWHM) that ranges from approximately 67 sec to 75 sec depending on the phase of the star and the assumed distance to the source. Using a simple r(exp -2) dust distribution and the 106 deg phase of the Fazio et al. observations, the LTTE model reaches a peak size of 74.3 sec at a distance of 300 pc. This agrees favorably with the 78 sec x 6 sec size measured by Fazio et al. Finally, a method is outlined for using the LTTE as a distance indicator to IRC +10216 and other stars with extended mass outflows.

  10. Effects of walking speed on the step-by-step control of step width.

    Science.gov (United States)

    Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C

    2018-02-08

    Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.

  11. A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data.

    Directory of Open Access Journals (Sweden)

    J Rasmus Nielsen

    Full Text Available Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes zero observations and over-dispersion. The model utilises the fact the correlation between numbers of fish caught increases when the distance in space and time between the fish decreases, and the correlation between size groups in a haul increases when the difference in size decreases. Here the model is extended in two ways. Instead of assuming a natural scale size correlation, the model is further developed to allow for a transformed length scale. Furthermore, in the present application, the spatial- and size-dependent correlation between species was included. For cod (Gadus morhua and whiting (Merlangius merlangus, a common structured size correlation was fitted, and a separable structure between the time and space-size correlation was found for each species, whereas more complex structures were required to describe the correlation between species (and space-size. The within-species time correlation is strong, whereas the correlations between the species are weaker over time but strong within the year.

  12. Survival Times of Meter-Sized Rock Boulders on the Surface of Airless Bodies

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.; Horz, F.; Ramsley, K.

    2015-01-01

    This study considers the survival times of meter-sized rock boulders on the surfaces of several airless bodies. As the starting point, we employ estimates of the survival times of such boulders on the surface of the Moon by[1], then discuss the role of destruction due to day-night temperature cycling, consider the meteorite bombardment environment on the considered bodies in terms of projectile flux and velocities and finally estimate the survival times. Survival times of meter-sized rocks on lunar surface: The survival times of hand specimen-sized rocks exposed to the lunar surface environment were estimated based on experiments modeling the destruction of rocks by meteorite impacts, combined with measurements of the lunar surface meteorite flux, (e.g.,[2]). For estimations of the survival times of meter-sized lunar boulders, [1] suggested a different approach based on analysis of the spatial density of boulders on the rims of small lunar craters of known absolute age. It was found that for a few million years, only a small fraction of the boulders ejected by cratering process are destroyed, for several tens of million years approx.50% are destroyed, and for 200-300 Ma, 90 to 99% are destroyed. Following [2] and other works, [1] considered that the rocks are mostly destroyed by meteorite impacts. Destruction of rocks by thermal-stress. However, high diurnal temperature variations on the surface of the Moon and other airless bodies imply that thermal stresses may also be a cause of surface rock destruction. Delbo et al. [3] interpreted the observed presence of fine debris on the surface of small asteroids as due to thermal surface cycling. They stated that because of the very low gravity on the surface of these bodies, ejecta from meteorite impacts should leave the body, so formation there of fine debris has to be due to thermal cycling. Based on experiments on heating-cooling of cm-scale pieces of ordinary and carbonaceous chondrites and theoretical modeling of

  13. Study of CdTe quantum dots grown using a two-step annealing method

    Science.gov (United States)

    Sharma, Kriti; Pandey, Praveen K.; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.

    2006-02-01

    High size dispersion, large average radius of quantum dot and low-volume ratio has been a major hurdle in the development of quantum dot based devices. In the present paper, we have grown CdTe quantum dots in a borosilicate glass matrix using a two-step annealing method. Results of optical characterization and the theoretical model of absorption spectra have shown that quantum dots grown using two-step annealing have lower average radius, lesser size dispersion, higher volume ratio and higher decrease in bulk free energy as compared to quantum dots grown conventionally.

  14. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute

    Science.gov (United States)

    Felder, Stefan; Chanson, Hubert

    2009-07-01

    In high-velocity free-surface flows, air entrainment is common through the interface, and intense interactions take place between turbulent structures and entrained bubbles. Two-phase flow properties were measured herein in high-velocity open channel flows above a stepped chute. Detailed turbulence measurements were conducted in a large-size facility, and a comparative analysis was applied to test the validity of the Froude and Reynolds similarities. The results showed consistently that the Froude similitude was not satisfied using a 2:1 geometric scaling ratio. Lesser number of entrained bubbles and comparatively greater bubble sizes were observed at the smaller Reynolds numbers, as well as lower turbulence levels and larger turbulent length and time scales. The results implied that small-size models did underestimate the rate of energy dissipation and the aeration efficiency of prototype stepped spillways for similar flow conditions. Similarly a Reynolds similitude was tested. The results showed also some significant scale effects. However a number of self-similar relationships remained invariant under changes of scale and confirmed the analysis of Chanson and Carosi (Exp Fluids 42:385-401, 2007). The finding is significant because self-similarity may provide a picture general enough to be used to characterise the air-water flow field in large prototype channels.

  15. How many steps/day are enough? for adults

    Directory of Open Access Journals (Sweden)

    Rowe David A

    2011-07-01

    Full Text Available Abstract Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA. Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in

  16. Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!

    Science.gov (United States)

    Bank, Paulina J M; Roerdink, Melvyn; Peper, C E

    2011-03-01

    Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait adjustments, viz. acoustic temporal cues in the form of metronome beeps and visual spatial cues in the form of projected stepping stones. Twenty healthy elderly (aged 63.2 ± 3.6 years) were recruited to walk on an instrumented treadmill at preferred speed and cadence, paced by either metronome beeps or projected stepping stones. Gait adaptations were induced using two manipulations: by perturbing the sequence of cues and by imposing switches from one cueing type to the other. Responses to these manipulations were quantified in terms of step-length and step-time adjustments, the percentage correction achieved over subsequent steps, and the number of steps required to restore the relation between gait and the beeps or stepping stones. The results showed that perturbations in a sequence of stepping stones were overcome faster than those in a sequence of metronome beeps. In switching trials, switching from metronome beeps to stepping stones was achieved faster than vice versa, indicating that gait was influenced more strongly by the stepping stones than the metronome beeps. Together these results revealed that, in healthy elderly, the stepping stones induced gait adjustments more effectively than did the metronome beeps. Potential implications for the use of metronome beeps and stepping stones in gait rehabilitation practice are discussed.

  17. Seismic Travel Time Tomography in Modeling Low Velocity Anomalies between the Boreholes

    Science.gov (United States)

    Octova, A.; Sule, R.

    2018-04-01

    Travel time cross-hole seismic tomography is applied to describing the structure of the subsurface. The sources are placed at one borehole and some receivers are placed in the others. First arrival travel time data that received by each receiver is used as the input data in seismic tomography method. This research is devided into three steps. The first step is reconstructing the synthetic model based on field parameters. Field parameters are divided into 24 receivers and 45 receivers. The second step is applying inversion process for the field data that consists of five pairs bore holes. The last step is testing quality of tomogram with resolution test. Data processing using FAST software produces an explicit shape and resemble the initial model reconstruction of synthetic model with 45 receivers. The tomography processing in field data indicates cavities in several place between the bore holes. Cavities are identified on BH2A-BH1, BH4A-BH2A and BH4A-BH5 with elongated and rounded structure. In resolution tests using a checker-board, anomalies still can be identified up to 2 meter x 2 meter size. Travel time cross-hole seismic tomography analysis proves this mothod is very good to describing subsurface structure and boundary layer. Size and anomalies position can be recognized and interpreted easily.

  18. Relativistic time-dependent Fermion-mass renormalization using statistical regularization

    Science.gov (United States)

    Kutnink, Timothy; McMurray, Christian; Santrach, Amelia; Hockett, Sarah; Barcus, Scott; Petridis, Athanasios

    2017-09-01

    The time-dependent electromagnetically self-coupled Dirac equation is solved numerically by means of the staggered-leap-frog algorithm with reflecting boundary conditions. The stability region of the method versus the interaction strength and the spatial-grid size over time-step ratio is established. The expectation values of several dynamic operators are then evaluated as functions of time. These include the fermion and electromagnetic energies and the fermion dynamic mass. There is a characteristic, non-exponential, oscillatory dependence leading to asymptotic constants of these expectation values. In the case of the fermion mass this amounts to renormalization. The dependence of the expectation values on the spatial-grid size is evaluated in detail. Furthermore, the contribution of positive and negative energy states to the asymptotic values and the gauge fields is analyzed. Statistical regularization, employing a canonical ensemble whose temperature is the inverse of the grid size, is used to remove the grid-size and momentum-dependence and produce a finite result in the continuum limit.

  19. A Novel Multiple-Time Scale Integrator for the Hybrid Monte Carlo Algorithm

    International Nuclear Information System (INIS)

    Kamleh, Waseem

    2011-01-01

    Hybrid Monte Carlo simulations that implement the fermion action using multiple terms are commonly used. By the nature of their formulation they involve multiple integration time scales in the evolution of the system through simulation time. These different scales are usually dealt with by the Sexton-Weingarten nested leapfrog integrator. In this scheme the choice of time scales is somewhat restricted as each time step must be an exact multiple of the next smallest scale in the sequence. A novel generalisation of the nested leapfrog integrator is introduced which allows for far greater flexibility in the choice of time scales, as each scale now must only be an exact multiple of the smallest step size.

  20. Arnold tongues and the Devil's Staircase in a discrete-time Hindmarsh–Rose neuron model

    International Nuclear Information System (INIS)

    Felicio, Carolini C.; Rech, Paulo C.

    2015-01-01

    We investigate a three-dimensional discrete-time dynamical system, described by a three-dimensional map derived from a continuous-time Hindmarsh–Rose neuron model by the forward Euler method. For a fixed integration step size, we report a two-dimensional parameter-space for this system, where periodic structures, the so-called Arnold tongues, can be seen with periods organized in a Farey tree sequence. We also report possible modifications in this parameter-space, as a function of the integration step size. - Highlights: • We investigate the parameter-space of a particular 3D map. • Periodic structures, namely Arnold tongues, can be seen there. • They are organized in a Farey tree sequence. • The map was derived from a continuous-time Hindmarsh–Rose neuron model. • The forward Euler method was used for such purpose.

  1. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    Science.gov (United States)

    O'Connell, Sandra; ÓLaighin, Gearóid; Quinlan, Leo R

    2017-01-01

    Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P positive steps during the cycling exercises (P positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non-stepping physical activities can result in the false detection of steps. This can negatively affect the quantification of physical

  2. Step-by-Step Model for the Study of the Apriori Algorithm for Predictive Analysis

    Directory of Open Access Journals (Sweden)

    Daniel Grigore ROŞCA

    2015-06-01

    Full Text Available The goal of this paper was to develop an educational oriented application based on the Data Mining Apriori Algorithm which facilitates both the research and the study of data mining by graduate students. The application could be used to discover interesting patterns in the corpus of data and to measure the impact on the speed of execution as a function of problem constraints (value of support and confidence variables or size of the transactional data-base. The paper presents a brief overview of the Apriori Algorithm, aspects about the implementation of the algorithm using a step-by-step process, a discussion of the education-oriented user interface and the process of data mining of a test transactional data base. The impact of some constraints on the speed of the algorithm is also experimentally measured without a systematic review of different approaches to increase execution speed. Possible applications of the implementation, as well as its limits, are briefly reviewed.

  3. Towards a comprehensive framework for cosimulation of dynamic models with an emphasis on time stepping

    Science.gov (United States)

    Hoepfer, Matthias

    co-simulation approach to modeling and simulation. It lays out the general approach to dynamic system co-simulation, and gives a comprehensive overview of what co-simulation is and what it is not. It creates a taxonomy of the requirements and limits of co-simulation, and the issues arising with co-simulating sub-models. Possible solutions towards resolving the stated problems are investigated to a certain depth. A particular focus is given to the issue of time stepping. It will be shown that for dynamic models, the selection of the simulation time step is a crucial issue with respect to computational expense, simulation accuracy, and error control. The reasons for this are discussed in depth, and a time stepping algorithm for co-simulation with unknown dynamic sub-models is proposed. Motivations and suggestions for the further treatment of selected issues are presented.

  4. Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture.

    Science.gov (United States)

    Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S

    2014-10-01

    This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  5. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    Energy Technology Data Exchange (ETDEWEB)

    Murari, A.; Barana, O. [Consorzio RFX Associazione EURATOM ENEA per la Fusione, Corso Stati Uniti 4, Padua (Italy); Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon (United Kingdom); Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D. [Association EURATOM-CEA, CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Albanese, R. [Assoc. Euratom-ENEA-CREATE, Univ. Mediterranea RC (Italy); Arena, P.; Bruno, M. [Assoc. Euratom-ENEA-CREATE, Univ.di Catania (Italy); Ambrosino, G.; Ariola, M. [Assoc. Euratom-ENEA-CREATE, Univ. Napoli Federico Napoli (Italy); Crisanti, F. [Associazone EURATOM ENEA sulla Fusione, C.R. Frascati (Italy); Luna, E. de la; Sanchez, J. [Associacion EURATOM CIEMAT para Fusion, Madrid (Spain)

    2004-07-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  6. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    International Nuclear Information System (INIS)

    Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Murari, A.; Barana, O.; Albanese, R.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.

    2004-01-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with internal transport barriers. Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  7. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    International Nuclear Information System (INIS)

    Murari, A.; Barana, O.; Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Albanese, R.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.

    2004-01-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  8. Free Modal Algebras Revisited: The Step-by-Step Method

    NARCIS (Netherlands)

    Bezhanishvili, N.; Ghilardi, Silvio; Jibladze, Mamuka

    2012-01-01

    We review the step-by-step method of constructing finitely generated free modal algebras. First we discuss the global step-by-step method, which works well for rank one modal logics. Next we refine the global step-by-step method to obtain the local step-by-step method, which is applicable beyond

  9. SYSTEMATIZATION OF THE BASIC STEPS OF THE STEP-AEROBICS

    Directory of Open Access Journals (Sweden)

    Darinka Korovljev

    2011-03-01

    Full Text Available Following the development of the powerful sport industry, in front of us appeared a lot of new opportunities for creating of the new programmes of exercising with certain requisites. One of such programmes is certainly step-aerobics. Step-aerobics can be defined as a type of aerobics consisting of the basic aerobic steps (basic steps applied in exercising on stepper (step bench, with a possibility to regulate its height. Step-aerobics itself can be divided into several groups, depending on the following: type of music, working methods and adopted knowledge of the attendants. In this work, the systematization of the basic steps in step-aerobics was made on the basis of the following criteria: steps origin, number of leg motions in stepping and relating the body support at the end of the step. Systematization of the basic steps of the step-aerobics is quite significant for making a concrete review of the existing basic steps, thus making creation of the step-aerobics lesson easier

  10. The optimal design of stepped wedge trials with equal allocation to sequences and a comparison to other trial designs.

    Science.gov (United States)

    Thompson, Jennifer A; Fielding, Katherine; Hargreaves, James; Copas, Andrew

    2017-12-01

    Background/Aims We sought to optimise the design of stepped wedge trials with an equal allocation of clusters to sequences and explored sample size comparisons with alternative trial designs. Methods We developed a new expression for the design effect for a stepped wedge trial, assuming that observations are equally correlated within clusters and an equal number of observations in each period between sequences switching to the intervention. We minimised the design effect with respect to (1) the fraction of observations before the first and after the final sequence switches (the periods with all clusters in the control or intervention condition, respectively) and (2) the number of sequences. We compared the design effect of this optimised stepped wedge trial to the design effects of a parallel cluster-randomised trial, a cluster-randomised trial with baseline observations, and a hybrid trial design (a mixture of cluster-randomised trial and stepped wedge trial) with the same total cluster size for all designs. Results We found that a stepped wedge trial with an equal allocation to sequences is optimised by obtaining all observations after the first sequence switches and before the final sequence switches to the intervention; this means that the first sequence remains in the control condition and the last sequence remains in the intervention condition for the duration of the trial. With this design, the optimal number of sequences is [Formula: see text], where [Formula: see text] is the cluster-mean correlation, [Formula: see text] is the intracluster correlation coefficient, and m is the total cluster size. The optimal number of sequences is small when the intracluster correlation coefficient and cluster size are small and large when the intracluster correlation coefficient or cluster size is large. A cluster-randomised trial remains more efficient than the optimised stepped wedge trial when the intracluster correlation coefficient or cluster size is small. A

  11. Simultaneous digital quantification and fluorescence-based size characterization of massively parallel sequencing libraries.

    Science.gov (United States)

    Laurie, Matthew T; Bertout, Jessica A; Taylor, Sean D; Burton, Joshua N; Shendure, Jay A; Bielas, Jason H

    2013-08-01

    Due to the high cost of failed runs and suboptimal data yields, quantification and determination of fragment size range are crucial steps in the library preparation process for massively parallel sequencing (or next-generation sequencing). Current library quality control methods commonly involve quantification using real-time quantitative PCR and size determination using gel or capillary electrophoresis. These methods are laborious and subject to a number of significant limitations that can make library calibration unreliable. Herein, we propose and test an alternative method for quality control of sequencing libraries using droplet digital PCR (ddPCR). By exploiting a correlation we have discovered between droplet fluorescence and amplicon size, we achieve the joint quantification and size determination of target DNA with a single ddPCR assay. We demonstrate the accuracy and precision of applying this method to the preparation of sequencing libraries.

  12. A simple test of choice stepping reaction time for assessing fall risk in people with multiple sclerosis.

    Science.gov (United States)

    Tijsma, Mylou; Vister, Eva; Hoang, Phu; Lord, Stephen R

    2017-03-01

    Purpose To determine (a) the discriminant validity for established fall risk factors and (b) the predictive validity for falls of a simple test of choice stepping reaction time (CSRT) in people with multiple sclerosis (MS). Method People with MS (n = 210, 21-74y) performed the CSRT, sensorimotor, balance and neuropsychological tests in a single session. They were then followed up for falls using monthly fall diaries for 6 months. Results The CSRT test had excellent discriminant validity with respect to established fall risk factors. Frequent fallers (≥3 falls) performed significantly worse in the CSRT test than non-frequent fallers (0-2 falls). With the odds of suffering frequent falls increasing 69% with each SD increase in CSRT (OR = 1.69, 95% CI: 1.27-2.26, p = falls in people with MS. This test may prove useful in documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions. Implications for rehabilitation Good choice stepping reaction time (CSRT) is required for maintaining balance. A simple low-tech CSRT test has excellent discriminative and predictive validity in relation to falls in people with MS. This test may prove useful documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions.

  13. Computer experiments of the time-sequence of individual steps in multiple Coulomb-excitation

    International Nuclear Information System (INIS)

    Boer, J. de; Dannhaueser, G.

    1982-01-01

    The way in which the multiple E2 steps in the Coulomb-excitation of a rotational band of a nucleus follow one another is elucidated for selected examples using semiclassical computer experiments. The role a given transition plays for the excitation of a given final state is measured by a quantity named ''importance function''. It is found that these functions, calculated for the highest rotational state, peak at times forming a sequence for the successive E2 transitions starting from the ground state. This sequential behaviour is used to approximately account for the effects on the projectile orbit of the sequential transfer of excitation energy and angular momentum from projectile to target. These orbits lead to similar deflection functions and cross sections as those obtained from a symmetrization procedure approximately accounting for the transfer of angular momentum and energy. (Auth.)

  14. Observation of Shapiro-steps in AFM-plought micron-size YBCO planar construction

    CSIR Research Space (South Africa)

    Elkaseh, AAO

    2009-01-01

    Full Text Available Using an Atomic Force Microscope (AFM), micron size planar constriction type junctions was successfully ploughed on YBa2Cu3O7-x thin films. The 100 nanometer (nm) thin films are deposited on MgO substrates by an Inverted Cylindrical Magnetron (ICM...

  15. Comparison between time-step-integration and probabilistic methods in seismic analysis of a linear structure

    International Nuclear Information System (INIS)

    Schneeberger, B.; Breuleux, R.

    1977-01-01

    Assuming that earthquake ground motion is a stationary time function, the seismic analysis of a linear structure can be done by probailistic methods using the 'power spectral density function' (PSD), instead of applying the more traditional time-step-integration using earthquake time histories (TH). A given structure was analysed both by PSD and TH methods computing and comparing 'floor response spectra'. The analysis using TH was performed for two different TH and different frequency intervals for the 'floor-response-spectra'. The analysis using PSD first produced PSD functions of the responses of the floors and these were then converted into 'foor-response-spectra'. Plots of the resulting 'floor-response-spectra' show: (1) The agreement of TH and PSD results is quite close. (2) The curves produced by PSD are much smoother than those produced by TH and mostly form an enelope of the latter. (3) The curves produced by TH are quite jagged with the location and magnitude of the peaks depending on the choice of frequencies at which the 'floor-response-spectra' were evaluated and on the choice of TH. (Auth.)

  16. Some features of stepped and dart-stepped leaders near the ground in natural negative cloud-to-ground lightning discharges

    Directory of Open Access Journals (Sweden)

    X. Qie

    2002-06-01

    Full Text Available Characteristics of the electric fields produced by stepped and dart-stepped leaders 200 µs just prior to the return strokes during natural negative cloud-to-ground (CG lightning discharges have been analyzed by using data from a broad-band slow antenna system with 0.08 µs time resolution in southeastern China. It has been found that the electric field changes between the last stepped leader and the first return stroke could be classified in three categories. The first type is characterized by a small pulse superimposed on the abrupt beginning of the return stroke, and accounts for 42% of all the cases. The second type accounts for 33.3% and is characterized by relatively smooth electric field changes between the last leader pulse and the following return stroke. The third type accounts for 24.7%, and is characterized by small pulses between the last recognizable leader pulse and the following return stroke. On the average, the time interval between the successive leader pulses prior to the first return strokes and subsequent return strokes was 15.8 µs and 9.4 µs, respectively. The distribution of time intervals between successive stepped leader pulses is quite similar to Gaussian distribution while that for dart-stepped leader pulses is more similar to a log-normal distribution. Other discharge features, such as the average time interval between the last leader step and the first return stroke peak, the ratio of the last leader pulse peak to that of the return stroke amplitude are also discussed in the paper.Key words. Meteology and atmospheric dynamics (atmospheric electricity; lightning – Radio science (electromagnetic noise and interference

  17. Some features of stepped and dart-stepped leaders near the ground in natural negative cloud-to-ground lightning discharges

    Directory of Open Access Journals (Sweden)

    X. Qie

    Full Text Available Characteristics of the electric fields produced by stepped and dart-stepped leaders 200 µs just prior to the return strokes during natural negative cloud-to-ground (CG lightning discharges have been analyzed by using data from a broad-band slow antenna system with 0.08 µs time resolution in southeastern China. It has been found that the electric field changes between the last stepped leader and the first return stroke could be classified in three categories. The first type is characterized by a small pulse superimposed on the abrupt beginning of the return stroke, and accounts for 42% of all the cases. The second type accounts for 33.3% and is characterized by relatively smooth electric field changes between the last leader pulse and the following return stroke. The third type accounts for 24.7%, and is characterized by small pulses between the last recognizable leader pulse and the following return stroke. On the average, the time interval between the successive leader pulses prior to the first return strokes and subsequent return strokes was 15.8 µs and 9.4 µs, respectively. The distribution of time intervals between successive stepped leader pulses is quite similar to Gaussian distribution while that for dart-stepped leader pulses is more similar to a log-normal distribution. Other discharge features, such as the average time interval between the last leader step and the first return stroke peak, the ratio of the last leader pulse peak to that of the return stroke amplitude are also discussed in the paper.

    Key words. Meteology and atmospheric dynamics (atmospheric electricity; lightning – Radio science (electromagnetic noise and interference

  18. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Horieh Moosavi

    2013-05-01

    Full Text Available Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO, Clearfil S3 Bond (CSB, Bond Force (BF. Each main group divided into three subgroups regarding the air-drying time: without application of air stream, following the manufacturer's instruction, for 10 sec more than manufacturer's instruction. After completion of restorations, specimens were thermocycled and then connected to a fluid filtration system to evaluate microleakage. The data were statistically analyzed using two-way ANOVA and Tukey-test (α = 0.05. Results The microleakage of all adhesives decreased when the air-drying time increased from 0 sec to manufacturer's instruction (p < 0.001. The microleakage of BF reached its lowest values after increasing the drying time to 10 sec more than the manufacturer's instruction (p < 0.001. Microleakage of OBAO and CSB was significantly lower compared to BF in all three drying time (p < 0.001. Conclusions Increasing in air-drying time of adhesive layer in one-step self-etch adhesives caused reduction of microleakage, but the amount of this reduction may be dependent on the adhesive components of self-etch adhesives.

  19. A Novel Molten Salt Reactor Concept to Implement the Multi-Step Time-Scheduled Transmutation Strategy

    International Nuclear Information System (INIS)

    Csom, Gyula; Feher, Sandor; Szieberthj, Mate

    2002-01-01

    Nowadays the molten salt reactor (MSR) concept seems to revive as one of the most promising systems for the realization of transmutation. In the molten salt reactors and subcritical systems the fuel and material to be transmuted circulate dissolved in some molten salt. The main advantage of this reactor type is the possibility of the continuous feed and reprocessing of the fuel. In the present paper a novel molten salt reactor concept is introduced and its transmutation capabilities are studied. The goal is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures and thus results in radioactive waste whose load on the environment is reduced both in magnitude and time length. The procedure is the multi-step time-scheduled transmutation, in which transformation is done in several consecutive steps of different neutron flux and spectrum. In the new MSR concept, named 'multi-region' MSR (MRMSR), the primary circuit is made up of a few separate loops, in which salt-fuel mixtures of different compositions are circulated. The loop sections constituting the core region are only neutronically and thermally coupled. This new concept makes possible the utilization of the spatial dependence of spectrum as well as the advantageous features of liquid fuel such as the possibility of continuous chemical processing etc. In order to compare a 'conventional' MSR and a proposed MRMSR in terms of efficiency, preliminary calculational results are shown. Further calculations in order to find the optimal implementation of this new concept and to emphasize its other advantageous features are going on. (authors)

  20. Understanding and controlling the step bunching instability in aqueous silicon etching

    Science.gov (United States)

    Bao, Hailing

    Chemical etching of silicon has been widely used for more than half a century in the semiconductor industry. It not only forms the basis for current wafer cleaning processes, it also serves as a powerful tool to create a variety of surface morphologies for different applications. Its potential for controlling surface morphology at the atomic scale over micron-size regions is especially appealing. In spite of its wide usage, the chemistry of silicon etching is poorly understood. Many seemingly simple but fundamental questions have not been answered. As a result, the development of new etchants and new etching protocols are based on expensive and tedious trial-and-error experiments. A better understanding of the etching mechanism would direct the rational formulation of new etchants that produce controlled etch morphologies. Particularly, micron-scale step bunches spontaneously develop on the vicinal Si(111) surface etched in KOH or other anisotropic aqueous etchants. The ability to control the size, orientation, density and regularity of these surface features would greatly improve the performance of microelectromechanical devices. This study is directed towards understanding the chemistry and step bunching instability in aqueous anisotropic etching of silicon through a combination of experimental techniques and theoretical simulations. To reveal the cause of step-bunching instability, kinetic Monte Carlo simulations were constructed based on an atomistic model of the silicon lattice and a modified kinematic wave theory. The simulations showed that inhomogeneity was the origin of step-bunching, which was confirmed through STM studies of etch morphologies created under controlled flow conditions. To quantify the size of the inhomogeneities in different etchants and to clarify their effects, a five-parallel-trench pattern was fabricated. This pattern used a nitride mask to protect most regions of the wafer; five evenly spaced etch windows were opened to the Si(110

  1. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    Directory of Open Access Journals (Sweden)

    Sandra O'Connell

    Full Text Available Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities.Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video.All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025. The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both. The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both.As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non-stepping

  2. Microsoft® SQL Server® 2008 MDX Step by Step

    CERN Document Server

    Smith, Bryan; Consulting, Hitachi

    2009-01-01

    Teach yourself the Multidimensional Expressions (MDX) query language-one step at a time. With this practical, learn-by-doing tutorial, you'll build the core techniques for using MDX with Analysis Services to deliver high-performance business intelligence solutions. Discover how to: Construct and execute MDX queriesWork with tuples, sets, and expressionsBuild complex sets to retrieve the exact data users needPerform aggregation functions and navigate data hierarchiesAssemble time-based business metricsCustomize an Analysis Services cube through the MDX scriptImplement dynamic security to cont

  3. BIOMAP A Daily Time Step, Mechanistic Model for the Study of Ecosystem Dynamics

    Science.gov (United States)

    Wells, J. R.; Neilson, R. P.; Drapek, R. J.; Pitts, B. S.

    2010-12-01

    BIOMAP simulates competition between two Plant Functional Types (PFT) at any given point in the conterminous U.S. using a time series of daily temperature (mean, minimum, maximum), precipitation, humidity, light and nutrients, with PFT-specific rooting within a multi-layer soil. The model employs a 2-layer canopy biophysics, Farquhar photosynthesis, the Beer-Lambert Law for light attenuation and a mechanistic soil hydrology. In essence, BIOMAP is a re-built version of the biogeochemistry model, BIOME-BGC, into the form of the MAPSS biogeography model. Specific enhancements are: 1) the 2-layer canopy biophysics of Dolman (1993); 2) the unique MAPSS-based hydrology, which incorporates canopy evaporation, snow dynamics, infiltration and saturated and unsaturated percolation with ‘fast’ flow and base flow and a ‘tunable aquifer’ capacity, a metaphor of D’Arcy’s Law; and, 3) a unique MAPSS-based stomatal conductance algorithm, which simultaneously incorporates vapor pressure and soil water potential constraints, based on physiological information and many other improvements. Over small domains the PFTs can be parameterized as individual species to investigate fundamental vs. potential niche theory; while, at more coarse scales the PFTs can be rendered as more general functional groups. Since all of the model processes are intrinsically leaf to plot scale (physiology to PFT competition), it essentially has no ‘intrinsic’ scale and can be implemented on a grid of any size, taking on the characteristics defined by the homogeneous climate of each grid cell. Currently, the model is implemented on the VEMAP 1/2 degree, daily grid over the conterminous U.S. Although both the thermal and water-limited ecotones are dynamic, following climate variability, the PFT distributions remain fixed. Thus, the model is currently being fitted with a ‘reproduction niche’ to allow full dynamic operation as a Dynamic General Vegetation Model (DGVM). While global simulations

  4. Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys

    Science.gov (United States)

    Liu, K.; Ma, H.; Chen, X. Grant

    2018-05-01

    In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β ' -Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β ″-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10-9 s-1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.

  5. Determination of the structures of small gold clusters on stepped magnesia by density functional calculations.

    Science.gov (United States)

    Damianos, Konstantina; Ferrando, Riccardo

    2012-02-21

    The structural modifications of small supported gold clusters caused by realistic surface defects (steps) in the MgO(001) support are investigated by computational methods. The most stable gold cluster structures on a stepped MgO(001) surface are searched for in the size range up to 24 Au atoms, and locally optimized by density-functional calculations. Several structural motifs are found within energy differences of 1 eV: inclined leaflets, arched leaflets, pyramidal hollow cages and compact structures. We show that the interaction with the step clearly modifies the structures with respect to adsorption on the flat defect-free surface. We find that leaflet structures clearly dominate for smaller sizes. These leaflets are either inclined and quasi-horizontal, or arched, at variance with the case of the flat surface in which vertical leaflets prevail. With increasing cluster size pyramidal hollow cages begin to compete against leaflet structures. Cage structures become more and more favourable as size increases. The only exception is size 20, at which the tetrahedron is found as the most stable isomer. This tetrahedron is however quite distorted. The comparison of two different exchange-correlation functionals (Perdew-Burke-Ernzerhof and local density approximation) show the same qualitative trends. This journal is © The Royal Society of Chemistry 2012

  6. Real-time inverse planning for Gamma KnifeTM radiosurgery

    International Nuclear Information System (INIS)

    Wu, Q. Jackie; Chankong, Vira; Jitprapaikulsarn, Suradet; Wessels, Barry W.; Einstein, Douglas B.; Mathayomchan, Boonyanit; Kinsella, Timothy J.

    2003-01-01

    The challenges of real-time Gamma Knife TM inverse planning are the large number of variables involved and the unknown search space a priori. With limited collimator sizes, shots have to be heavily overlapped to form a smooth prescription isodose line that conforms to the irregular target shape. Such overlaps greatly influence the total number of shots per plan, making pre-determination of the total number of shots impractical. However, this total number of shots usually defines the search space, a pre-requisite for most of the optimization methods. Since each shot only covers part of the target, a collection of shots in different locations and various collimator sizes selected makes up the global dose distribution that conforms to the target. Hence, planning or placing these shots is a combinatorial optimization process that is computationally expensive by nature. We have previously developed a theory of shot placement and optimization based on skeletonization. The real-time inverse planning process, reported in this paper, is an expansion and the clinical implementation of this theory. The complete planning process consists of two steps. The first step is to determine an optimal number of shots including locations and sizes and to assign initial collimator size to each of the shots. The second step is to fine-tune the weights using a linear-programming technique. The objective function is to minimize the total dose to the target boundary (i.e., maximize the dose conformity). Results of an ellipsoid test target and ten clinical cases are presented. The clinical cases are also compared with physician's manual plans. The target coverage is more than 99% for manual plans and 97% for all the inverse plans. The RTOG PITV conformity indices for the manual plans are between 1.16 and 3.46, compared to 1.36 to 2.4 for the inverse plans. All the inverse plans are generated in less than 2 min, making real-time inverse planning a reality

  7. Evaluating Web-Scale Discovery Services: A Step-by-Step Guide

    Directory of Open Access Journals (Sweden)

    Joseph Deodato

    2015-06-01

    Full Text Available Selecting a web-scale discovery service is a large and important undertaking that involves a significant investment of time, staff, and resources. Finding the right match begins with a thorough and carefully planned evaluation process. In order to be successful, this process should be inclusive, goal-oriented, data-driven, user-centered, and transparent. The following article offers a step-by-step guide for developing a web-scale discovery evaluation plan rooted in these five key principles based on best practices synthesized from the literature as well as the author’s own experiences coordinating the evaluation process at Rutgers University. The goal is to offer academic libraries that are considering acquiring a web-scale discovery service a blueprint for planning a structured and comprehensive evaluation process.

  8. Study on Sumbawa gold ore liberation using rod mill: effect of rod-number and rotational speed on particle size distribution

    Science.gov (United States)

    Prasetya, A.; Mawadati, A.; Putri, A. M. R.; Petrus, H. T. B. M.

    2018-01-01

    Comminution is one of crucial steps in gold ore processing used to liberate the valuable minerals from gaunge mineral. This research is done to find the particle size distribution of gold ore after it has been treated through the comminution process in a rod mill with various number of rod and rotational speed that will results in one optimum milling condition. For the initial step, Sumbawa gold ore was crushed and then sieved to pass the 2.5 mesh and retained on the 5 mesh (this condition was taken to mimic real application in artisanal gold mining). Inserting the prepared sample into the rod mill, the observation on effect of rod-number and rotational speed was then conducted by variating the rod number of 7 and 10 while the rotational speed was varied from 60, 85, and 110 rpm. In order to be able to provide estimation on particle distribution of every condition, the comminution kinetic was applied by taking sample at 15, 30, 60, and 120 minutes for size distribution analysis. The change of particle distribution of top and bottom product as time series was then treated using Rosin-Rammler distribution equation. The result shows that the homogenity of particle size and particle size distribution is affected by rod-number and rotational speed. The particle size distribution is more homogeneous by increasing of milling time, regardless of rod-number and rotational speed. Mean size of particles do not change significantly after 60 minutes milling time. Experimental results showed that the optimum condition was achieved at rotational speed of 85 rpm, using rod-number of 7.

  9. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    Science.gov (United States)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  10. Canadian children's and youth's pedometer-determined steps/day, parent-reported TV watching time, and overweight/obesity: The CANPLAY Surveillance Study

    OpenAIRE

    Tudor-Locke, Catrine; Craig, Cora L; Cameron, Christine; Griffiths, Joseph M

    2011-01-01

    Abstract Background This study examines associations between pedometer-determined steps/day and parent-reported child's Body Mass Index (BMI) and time typically spent watching television between school and dinner. Methods Young people (aged 5-19 years) were recruited through their parents by random digit dialling and mailed a data collection package. Information on height and weight and time spent watching television between school and dinner on a typical school day was collected from parents...

  11. Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Hidalgo, G., E-mail: gfloreshidalgo@unifei.edu.br [Instituto de Física e Química, Universidade Federal de Itajubá, 37500-903, Itajubá, MG (Brazil); Rojas, M., E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil); Rojas, Onofre, E-mail: ors@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil)

    2017-05-10

    We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical. - Highlights: • Entanglement time evolution in arbitrary cavity size is considered. • In free space concurrence approaches a fixed value at large time. • For finite cavity, concurrence behaves almost as a periodic function of time.

  12. Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model

    Science.gov (United States)

    Batac, Rene; Longjas, Anthony; Monterola, Christopher

    2012-02-01

    Sandpile-based models have successfully shed light on key features of nonlinear relaxational processes in nature, particularly the occurrence of fat-tailed magnitude distributions and exponential return times, from simple local stress redistributions. In this work, we extend the existing sandpile paradigm into an inter-sandpile cascade, wherein the avalanches emanating from a uniformly-driven sandpile (first layer) is used to trigger the next (second layer), and so on, in a successive fashion. Statistical characterizations reveal that avalanche size distributions evolve from a power-law p(S)≈S-1.3 for the first layer to gamma distributions p(S)≈Sαexp(-S/S0) for layers far away from the uniformly driven sandpile. The resulting avalanche size statistics is found to be associated with the corresponding waiting time distribution, as explained in an accompanying analytic formulation. Interestingly, both the numerical and analytic models show good agreement with actual inventories of non-uniformly driven events in nature.

  13. Full-waveform data for building roof step edge localization

    Science.gov (United States)

    Słota, Małgorzata

    2015-08-01

    Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.

  14. Numerical simulation of 2 D laminar flow subjected to the Lorentz force effect in a channel with backward facing step

    Energy Technology Data Exchange (ETDEWEB)

    Farahbakhsh, Iman; Paknejad, Amin; Ghassemi, Hassan [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of)

    2012-10-15

    This paper presents the numerical solutions of a two dimensional laminar flow over a backward facing step in the presence of the Lorentz body force. The Navier Stokes equations in a vorticity stream function formulation are numerically solved using a uniform grid mesh of 2001 {Chi} 51 points. A second order central difference approximation is used for spatial derivatives. The solutions progress in time with a fourth order Runge Kutta method. The unsteady backward facing step flow solution is computed for Reynolds numbers 100 to 800. The size and genesis of the recirculating regions are dramatically affected by applying the Lorentz force. The results demonstrate that using an appropriate configuration for applying the Lorentz force can make it an essential tool for controlling the flow in channels with a backward facing step.

  15. Extraction of Human Stepping Pattern Using Acceleration Sensors

    Directory of Open Access Journals (Sweden)

    Toyohira Takayuki

    2017-01-01

    Full Text Available Gait analysis plays an important role in characterizing individuals and each condition and gait analysis systems have been developed using various devices or instruments. However, most systems do not catch synchronous stepping actions between right foot and left foot. For obtaining a precise gait pattern, a synchronous walking sensing system is developed, in which a pair of acceleration and angular velocity sensors are attached to left and right shoes of a walking person and their data are transmitted to a PC through a wireless channel. Walking data from 19 persons of the age of 14 to 20 are acquired for walking analysis. Stepping time diagrams are extracted from the acquired data of right and left foot actions of stepping-off and-on the ground, and the time diagrams distinguish between an ordinary person and a person injured on left leg, and a stepping recovery process of the injured person is shown. Synchronous sensing of stepping action between right foot and left foot contributes to obtain precise stepping patterns.

  16. Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger.

    Science.gov (United States)

    Rogers, Mark W; Mille, Marie-Laure

    2016-08-15

    Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation-induced steps that are triggered as fast as or faster than for younger adults. While age-associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step-triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event-triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  17. Application of a time-dependent coalescence process for inferring the history of population size changes from DNA sequence data.

    Science.gov (United States)

    Polanski, A; Kimmel, M; Chakraborty, R

    1998-05-12

    Distribution of pairwise differences of nucleotides from data on a sample of DNA sequences from a given segment of the genome has been used in the past to draw inferences about the past history of population size changes. However, all earlier methods assume a given model of population size changes (such as sudden expansion), parameters of which (e.g., time and amplitude of expansion) are fitted to the observed distributions of nucleotide differences among pairwise comparisons of all DNA sequences in the sample. Our theory indicates that for any time-dependent population size, N(tau) (in which time tau is counted backward from present), a time-dependent coalescence process yields the distribution, p(tau), of the time of coalescence between two DNA sequences randomly drawn from the population. Prediction of p(tau) and N(tau) requires the use of a reverse Laplace transform known to be unstable. Nevertheless, simulated data obtained from three models of monotone population change (stepwise, exponential, and logistic) indicate that the pattern of a past population size change leaves its signature on the pattern of DNA polymorphism. Application of the theory to the published mtDNA sequences indicates that the current mtDNA sequence variation is not inconsistent with a logistic growth of the human population.

  18. Single product lot-sizing on unrelated parallel machines with non-decreasing processing times

    Science.gov (United States)

    Eremeev, A.; Kovalyov, M.; Kuznetsov, P.

    2018-01-01

    We consider a problem in which at least a given quantity of a single product has to be partitioned into lots, and lots have to be assigned to unrelated parallel machines for processing. In one version of the problem, the maximum machine completion time should be minimized, in another version of the problem, the sum of machine completion times is to be minimized. Machine-dependent lower and upper bounds on the lot size are given. The product is either assumed to be continuously divisible or discrete. The processing time of each machine is defined by an increasing function of the lot volume, given as an oracle. Setup times and costs are assumed to be negligibly small, and therefore, they are not considered. We derive optimal polynomial time algorithms for several special cases of the problem. An NP-hard case is shown to admit a fully polynomial time approximation scheme. An application of the problem in energy efficient processors scheduling is considered.

  19. Finite-size effects and switching times for Moran process with mutation.

    Science.gov (United States)

    DeVille, Lee; Galiardi, Meghan

    2017-04-01

    We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.

  20. Arnold tongues and the Devil's Staircase in a discrete-time Hindmarsh–Rose neuron model

    Energy Technology Data Exchange (ETDEWEB)

    Felicio, Carolini C., E-mail: carolini.cf@gmail.com; Rech, Paulo C., E-mail: paulo.rech@udesc.br

    2015-11-06

    We investigate a three-dimensional discrete-time dynamical system, described by a three-dimensional map derived from a continuous-time Hindmarsh–Rose neuron model by the forward Euler method. For a fixed integration step size, we report a two-dimensional parameter-space for this system, where periodic structures, the so-called Arnold tongues, can be seen with periods organized in a Farey tree sequence. We also report possible modifications in this parameter-space, as a function of the integration step size. - Highlights: • We investigate the parameter-space of a particular 3D map. • Periodic structures, namely Arnold tongues, can be seen there. • They are organized in a Farey tree sequence. • The map was derived from a continuous-time Hindmarsh–Rose neuron model. • The forward Euler method was used for such purpose.

  1. The step complexity measure for emergency operating procedures: measure verification

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea; Ha, Jaejoo; Park, Changkue

    2002-01-01

    In complex systems, such as nuclear power plants (NPPs) or airplane control systems, human errors play a major role in many accidents. Therefore, to prevent an occurrence of accidents or to ensure system safety, extensive effort has been made to identify significant factors that can cause human errors. According to related studies, written manuals or operating procedures are revealed as one of the most important factors, and the understandability is pointed out as one of the major reasons for procedure-related human errors. Many qualitative checklists are suggested to evaluate emergency operating procedures (EOPs) of NPPs. However, since qualitative evaluations using checklists have some drawbacks, a quantitative measure that can quantify the complexity of EOPs is very necessary to compensate for them. In order to quantify the complexity of steps included in EOPs, Park et al. suggested the step complexity (SC) measure. In addition, to ascertain the appropriateness of the SC measure, averaged step performance time data obtained from emergency training records for the loss of coolant accident and the excess steam dump event were compared with estimated SC scores. Although averaged step performance time data show good correlation with estimated SC scores, conclusions for some important issues that have to be clarified to ensure the appropriateness of the SC measure were not properly drawn because of lack of backup data. In this paper, to clarify remaining issues, additional activities to verify the appropriateness of the SC measure are performed using averaged step performance time data obtained from emergency training records. The total number of available records is 36, and training scenarios are the steam generator tube rupture and the loss of all feedwater. The number of scenarios is 18 each. From these emergency training records, averaged step performance time data for 30 steps are retrieved. As the results, the SC measure shows statistically meaningful

  2. Propagation of nonlinear waves over submerged step: wave separation and subharmonic generation

    Science.gov (United States)

    Monsalve, Eduardo; Maurel, Agnes; Pagneux, Vincent; Petitjeans, Philippe

    2015-11-01

    Water waves can be described in simplified cases by the Helmholtz equation. However, even in these cases, they present a high complexity, among which their dispersive character and their nonlinearities are the subject of the present study. Using Fourier Transform Profilometry, we study experimentally the propagation of waves passing over a submerged step. Because of the small water depth after the step, the wave enters in a nonlinear regime. In the shallow water region, the second harmonic leads to two types of waves: bound waves which are slaves of the fundamental frequency with wavenumber 2 k (ω) , and free waves which propagate according to the usual dispersion relation with wavenumber k (2 ω) . Because of the presence of these two waves, beats are produced at the second harmonic with characteristic beat length. In this work, for the first time we extended this analysis to the third and higher harmonics. Next, the region after the step is limited to a finite size L with a reflecting wall. For certain frequencies and L- values, the spectral component becomes involved, with the appearance of sub harmonics. This regime is analyzed in more details, suggesting a transition to a chaotic and quasi-periodic wave behavior.

  3. Focal cryotherapy: step by step technique description

    Directory of Open Access Journals (Sweden)

    Cristina Redondo

    Full Text Available ABSTRACT Introduction and objective: Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa. The purpose of this video is to describe the procedure step by step. Materials and methods: We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. Results: The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipment utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40°C to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1–5. Conclusions: Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment.

  4. Disassembly of Faceted Macrosteps in the Step Droplet Zone in Non-Equilibrium Steady State

    Directory of Open Access Journals (Sweden)

    Noriko Akutsu

    2017-02-01

    Full Text Available A Wulff figure—the polar graph of the surface tension of a crystal—with a discontinuity was calculated by applying the density matrix renormalization group method to the p-RSOS model, a restricted solid-on-solid model with a point-contact-type step–step attraction. In the step droplet zone in this model, the surface tension is discontinuous around the (111 surface and continuous around the (001 surface. The vicinal surface of 4H-SiC crystal in a Si–Cr–C solution is thought to be in the step droplet zone. The dependence of the vicinal surface growth rate and the macrostep size 〈 n 〉 on the driving force Δ μ for a typical state in the step droplet zone in non-equilibrium steady state was calculated using the Monte Carlo method. In contrast to the known step bunching phenomenon, the size of the macrostep was found to decrease with increasing driving force. The detachment of elementary steps from a macrostep was investigated, and it was found that 〈 n 〉 satisfies a scaling function. Moreover, kinetic roughening was observed for | Δ μ | > Δ μ R , where Δ μ R is the crossover driving force above which the macrostep disappears.

  5. Improving stability of stabilized and multiscale formulations in flow simulations at small time steps

    KAUST Repository

    Hsu, Ming-Chen

    2010-02-01

    The objective of this paper is to show that use of the element-vector-based definition of stabilization parameters, introduced in [T.E. Tezduyar, Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids 43 (2003) 555-575; T.E. Tezduyar, Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg. 190 (2000) 411-430], circumvents the well-known instability associated with conventional stabilized formulations at small time steps. We describe formulations for linear advection-diffusion and incompressible Navier-Stokes equations and test them on three benchmark problems: advection of an L-shaped discontinuity, laminar flow in a square domain at low Reynolds number, and turbulent channel flow at friction-velocity Reynolds number of 395. © 2009 Elsevier B.V. All rights reserved.

  6. Stepping movement analysis of control rod drive mechanism

    International Nuclear Information System (INIS)

    Xu Yantao; Zu Hongbiao

    2013-01-01

    Background: Control rod drive mechanism (CRDM) is one of the important safety-related equipment for nuclear power plants. Purpose: The operating parameters of stepping movement, including lifting loads, step distance and step velocity, are all critical design targets. Methods: FEA and numerical simulation are used to analyze stepping movement separately. Results: The motion equations of the movable magnet in stepping movement are established by load analysis. Gravitation, magnetic force, fluid resistance and spring force are all in consideration in the load analysis. The operating parameters of stepping movement are given. Conclusions: The results, including time history curves of force, speed and etc, can positively used in the design of CRDM. (authors)

  7. Speeding Up Network Simulations Using Discrete Time

    OpenAIRE

    Lucas, Aaron; Armbruster, Benjamin

    2013-01-01

    We develop a way of simulating disease spread in networks faster at the cost of some accuracy. Instead of a discrete event simulation (DES) we use a discrete time simulation. This aggregates events into time periods. We prove a bound on the accuracy attained. We also discuss the choice of step size and do an analytical comparison of the computational costs. Our error bound concept comes from the theory of numerical methods for SDEs and the basic proof structure comes from the theory of numeri...

  8. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    Science.gov (United States)

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Marching on-in-time solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    An explicit marching on-in-time (MOT) scheme for solving the time-domain magnetic field integral equation (TD-MFIE) is presented. The proposed MOT-TD-MFIE solver uses Rao-Wilton-Glisson basis functions for spatial discretization and a PE(CE)m-type linear multistep method for time marching. Unlike previous explicit MOT-TD-MFIE solvers, the time step size can be chosen as large as that of the implicit MOT-TD-MFIE solvers without adversely affecting accuracy or stability. An algebraic stability analysis demonstrates the stability of the proposed explicit solver; its accuracy and efficiency are established via numerical examples. © 1963-2012 IEEE.

  10. Marching on-in-time solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda

    2013-08-01

    An explicit marching on-in-time (MOT) scheme for solving the time-domain magnetic field integral equation (TD-MFIE) is presented. The proposed MOT-TD-MFIE solver uses Rao-Wilton-Glisson basis functions for spatial discretization and a PE(CE)m-type linear multistep method for time marching. Unlike previous explicit MOT-TD-MFIE solvers, the time step size can be chosen as large as that of the implicit MOT-TD-MFIE solvers without adversely affecting accuracy or stability. An algebraic stability analysis demonstrates the stability of the proposed explicit solver; its accuracy and efficiency are established via numerical examples. © 1963-2012 IEEE.

  11. Proposal for element size and time increment selection guideline by 3-D finite element method for elastic waves propagation analysis

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Meshii, Toshiyuki

    2008-01-01

    This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)

  12. A Derivation of a Microscopic Entropy and Time Irreversibility From the Discreteness of Time

    Directory of Open Access Journals (Sweden)

    Roland Riek

    2014-06-01

    Full Text Available The basic microsopic physical laws are time reversible. In contrast, the second law of thermodynamics, which is a macroscopic physical representation of the world, is able to describe irreversible processes in an isolated system through the change of entropy ΔS > 0. It is the attempt of the present manuscript to bridge the microscopic physical world with its macrosocpic one with an alternative approach than the statistical mechanics theory of Gibbs and Boltzmann. It is proposed that time is discrete with constant step size. Its consequence is the presence of time irreversibility at the microscopic level if the present force is of complex nature (F(r ≠ const. In order to compare this discrete time irreversible mechamics (for simplicity a “classical”, single particle in a one dimensional space is selected with its classical Newton analog, time reversibility is reintroduced by scaling the time steps for any given time step n by the variable sn leading to the Nosé-Hoover Lagrangian. The corresponding Nos´e-Hoover Hamiltonian comprises a term Ndf kB T ln sn (kB the Boltzmann constant, T the temperature, and Ndf the number of degrees of freedom which is defined as the microscopic entropy Sn at time point n multiplied by T. Upon ensemble averaging this microscopic entropy Sn in equilibrium for a system which does not have fast changing forces approximates its macroscopic counterpart known from thermodynamics. The presented derivation with the resulting analogy between the ensemble averaged microscopic entropy and its thermodynamic analog suggests that the original description of the entropy by Boltzmann and Gibbs is just an ensemble averaging of the time scaling variable sn which is in equilibrium close to 1, but that the entropy

  13. Avoid the tsunami of the Dirac sea in the imaginary time step method

    International Nuclear Information System (INIS)

    Zhang, Ying; Liang, Haozhao; Meng, Jie

    2010-01-01

    The discrete single-particle spectra in both the Fermi and Dirac sea have been calculated by the imaginary time step (ITS) method for the Schroedinger-like equation after avoiding the "tsunami" of the Dirac sea, i.e. the diving behavior of the single-particle level into the Dirac sea in the direct application of the ITS method for the Dirac equation. It is found that by the transform from the Dirac equation to the Schroedinger-like equation, the single-particle spectra, which extend from the positive to the negative infinity, can be separately obtained by the ITS evolution in either the Fermi sea or the Dirac sea. Identical results with those in the conventional shooting method have been obtained via the ITS evolution for the equivalent Schroedinger-like equation, which demonstrates the feasibility, practicality and reliability of the present algorithm and dispels the doubts on the ITS method in the relativistic system. (author)

  14. Webinar Presentation: Environmental Exposures and Health Risks in California Child Care Facilities: First Steps to Improve Environmental Health where Children Spend Time

    Science.gov (United States)

    This presentation, Environmental Exposures and Health Risks in California Child Care Facilities: First Steps to Improve Environmental Health where Children Spend Time, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Exposome.

  15. Nondestructive evaluation of crystallized-particle size in lactose-powder by terahertz time-domain spectroscopy

    Science.gov (United States)

    Yamauchi, Satoshi; Hatakeyama, Sakura; Imai, Yoh; Tonouchi, Masayoshi

    2014-03-01

    Transmission-type terahertz time-domain spectroscopy is applied to evaluate crystallized lactose particle of size below 30 μm, which is far too small compared to the wavelength of incident terahertz (THz)-wave. The THz-absorption spectrum of lactose is successfully deconvoluted by Lorentzian to two spectra with peaks at 17.1 cm-1 (0.53 THz) and 45.6 cm-1 (1.37 THz) derived from α-lactose monohydrate, and a spectrum at 39.7 cm-1 (1.19 THz) from anhydrous β-lactose after removal of the broad-band spectrum by polynomial cubic function. Lactose is mainly crystallized into α-lactose monohydrate from the supersaturated solution at room temperature with a small amount of anhydrous β-lactose below 4%. The absorption feature is dependent on the crystallized particle size and the integrated intensity ratio of the two absorptions due to α-lactose monohydrate is correlated in linear for the size.

  16. Depicting Changes in Multiple Symptoms Over Time.

    Science.gov (United States)

    Muehrer, Rebecca J; Brown, Roger L; Lanuza, Dorothy M

    2015-09-01

    Ridit analysis, an acronym for Relative to an Identified Distribution, is a method for assessing change in ordinal data and can be used to show how individual symptoms change or remain the same over time. The purposes of this article are to (a) describe how to use ridit analysis to assess change in a symptom measure using data from a longitudinal study, (b) give a step-by-step example of ridit analysis, (c) show the clinical relevance of applying ridit analysis, and (d) display results in an innovative graphic. Mean ridit effect sizes were calculated for the frequency and distress of 64 symptoms in lung transplant patients before and after transplant. Results were displayed in a bubble graph. Ridit analysis allowed us to maintain the specificity of individual symptoms and to show how each symptom changed or remained the same over time. The bubble graph provides an efficient way for clinicians to identify changes in symptom frequency and distress over time. © The Author(s) 2014.

  17. The influences of impurity content, tensile strength, and grain size on in-service temper embrittlement of CrMoV steels

    International Nuclear Information System (INIS)

    Cheruvu, N.S.; Seth, B.B.

    1989-01-01

    The influences of impurity levels, grain size, and tensile strength on in-service temper embrittlement of CrMoV steels have been investigated. The samples for this study were taken from steam turbine CrMoV rotors which had operated for 15 to 26 years. The effects of grain size and tensile strength on embrittlement susceptibility were separated by evaluating the embrittlement behavior of two rotor forgings made from the same ingot after an extended step-cooling treatment. Among the residual elements in the steels, only P produces a significant embrittlement. The variation of P and tensile strength has no effect on in-service temper embrittlement susceptibility, as measured by the shift in fracture appearance transition temperature (FATT). However, the prior austenite grain size plays a major role in service embrittlement. The fine grain steels with a grain size of ASTM No. 9 or higher are virtually immune to in-service embrittlement. In steels having duplex grain sizes, embrittlement susceptibility is controlled by the size of coarser grains. For a given steel chemistry, the coarse grain steel is more susceptible to in-service embrittlement, and a decrease in ASTM grain size number from 4 to 0/1 increases the shift in FATT by 61 degrees C (10/10 degrees F). It is demonstrated that long-term service embrittlement can be simulated, except in very coarse grain steels, by using the extended step-cooling treatment. The results of step-cooling studies show that the coarse grain rotor steels take longer time during service to reach a fully embrittled state than the fine grain rotor steels

  18. Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Martinovic, Ferenc L.; Simikić, Mirko Ð.; Molnar, Tibor T.

    2016-01-01

    Highlights: • Single-step supercritical transesterification compared to the two-step process. • Two-step process: oil hydrolysis and subsequent supercritical methyl esterification. • Experiments were conducted in a laboratory-scale batch reactor. • Higher biodiesel yields in two-step process at milder reaction conditions. • Two-step process has potential to be cost-competitive with the single-step process. - Abstract: Single-step supercritical transesterification and two-step biodiesel production process consisting of oil hydrolysis and subsequent supercritical methyl esterification were studied and compared. For this purpose, comparative experiments were conducted in a laboratory-scale batch reactor and optimal reaction conditions (temperature, pressure, molar ratio and time) were determined. Results indicate that in comparison to a single-step transesterification, methyl esterification (second step of the two-step process) produces higher biodiesel yields (95 wt% vs. 91 wt%) at lower temperatures (270 °C vs. 350 °C), pressures (8 MPa vs. 12 MPa) and methanol to oil molar ratios (1:20 vs. 1:42). This can be explained by the fact that the reaction system consisting of free fatty acid (FFA) and methanol achieves supercritical condition at milder reaction conditions. Furthermore, the dissolved FFA increases the acidity of supercritical methanol and acts as an acid catalyst that increases the reaction rate. There is a direct correlation between FFA content of the product obtained in hydrolysis and biodiesel yields in methyl esterification. Therefore, the reaction parameters of hydrolysis were optimized to yield the highest FFA content at 12 MPa, 250 °C and 1:20 oil to water molar ratio. Results of direct material and energy costs comparison suggest that the process based on the two-step reaction has the potential to be cost-competitive with the process based on single-step supercritical transesterification. Higher biodiesel yields, similar or lower energy

  19. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    International Nuclear Information System (INIS)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-01-01

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided

  20. On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2009-01-01

    The crystallographic orientation of Au nanoparticles electrodeposited at glassy carbon (nano-Au/GC) electrodes (prepared by potential step electrolysis) is markedly influenced by the width of the potential step. The oxygen reduction reaction (ORR) and the reductive desorption of cysteine have been studied on nano-Au/GC electrodes. Furthermore, electron backscatter diffraction (EBSD) technique has been used to probe the crystallographic orientation of the electrodeposited Au nanoparticles. That is, Au nanoparticles prepared in short time (5-60 s) have been found rich in the Au(1 1 1) facet orientation and are characterized by a relatively small particle size (ca. 10-50 nm) as well as high particle density (number of particles per unit area) as revealed by SEM images. Whereas Au nanoparticles prepared by longer electrolysis time (>60 s) are found to be much enriched in the Au(1 0 0) and Au(1 1 0) facets and are characterized by a relatively large particle size (>100 nm). EBSD patterns provided definitive information about the crystal orientations mapping of Au nanoparticles prepared at various deposition times.

  1. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    Science.gov (United States)

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature

    Science.gov (United States)

    Tódor, István Sz.; Szabó, László; Marişca, Oana T.; Chiş, Vasile; Leopold, Nicolae

    2014-12-01

    Colloidal nanoparticle assemblies (NPAs) were obtained in a one-step procedure, by reduction of HAuCl4 by hydroxylamine hydrochloride, at room temperature, without the use of any additional nucleating agent. By changing the order of the reactants, NPAs with mean size of 20 and 120 nm were obtained. Because of their size and irregular popcorn like shape, the larger size NPAs show absorption in the NIR spectral region. The building blocks of the resulted nanoassemblies are spherical nanoparticles with diameters of 4-8 and 10-30 nm, respectively. Moreover, by stabilizing the colloid with bovine serum albumin at different time moments after synthesis, NPAs of controlled size between 20 and 120 nm, could be obtained. The NPAs were characterized using UV-Vis spectroscopy, TEM and SEM electron microscopies. In addition, the possibility of using the here proposed NPAs as surface-enhanced Raman scattering (SERS) substrate was assessed and found to provide a higher enhancement compared to conventional citrate-reduced nanoparticles.

  3. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    Science.gov (United States)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  4. A new and inexpensive non-bit-for-bit solution reproducibility test based on time step convergence (TSC1.0)

    Science.gov (United States)

    Wan, Hui; Zhang, Kai; Rasch, Philip J.; Singh, Balwinder; Chen, Xingyuan; Edwards, Jim

    2017-02-01

    A test procedure is proposed for identifying numerically significant solution changes in evolution equations used in atmospheric models. The test issues a fail signal when any code modifications or computing environment changes lead to solution differences that exceed the known time step sensitivity of the reference model. Initial evidence is provided using the Community Atmosphere Model (CAM) version 5.3 that the proposed procedure can be used to distinguish rounding-level solution changes from impacts of compiler optimization or parameter perturbation, which are known to cause substantial differences in the simulated climate. The test is not exhaustive since it does not detect issues associated with diagnostic calculations that do not feedback to the model state variables. Nevertheless, it provides a practical and objective way to assess the significance of solution changes. The short simulation length implies low computational cost. The independence between ensemble members allows for parallel execution of all simulations, thus facilitating fast turnaround. The new method is simple to implement since it does not require any code modifications. We expect that the same methodology can be used for any geophysical model to which the concept of time step convergence is applicable.

  5. Physiological and cognitive mediators for the association between self-reported depressed mood and impaired choice stepping reaction time in older people.

    NARCIS (Netherlands)

    Kvelde, T.; Pijnappels, M.A.G.M.; Delbaere, K.; Close, J.C.; Lord, S.R.

    2010-01-01

    Background. The aim of the study was to use path analysis to test a theoretical model proposing that the relationship between self-reported depressed mood and choice stepping reaction time (CSRT) is mediated by psychoactive medication use, physiological performance, and cognitive ability.A total of

  6. Visualization and quantification of four steps in magnetic field induced two-dimensional ordering of superparamagnetic submicron particles

    DEFF Research Database (Denmark)

    Gajula, Gnana Prakash; Neves Petersen, Teresa; Petersen, Steffen B.

    2010-01-01

    , resolved growth steps (condensation, polarization, co-linearity and concatenation), the average chain growth rate, and inter-particle interaction length were calculated in the presence of a 120 G external magnetic field using optical microscopy and ‘in-house' developed image analysis software......We hereby report a methodology that permits a quantitative investigation of the temporal self-organization of superparamagnetic nanoparticles in the presence of an external magnetic field. The kinetics of field-induced self-organization into linear chains, time-dependent chain-size distribution...

  7. Steps and dislocations in cubic lyotropic crystals

    International Nuclear Information System (INIS)

    Leroy, S; Pieranski, P

    2006-01-01

    It has been shown recently that lyotropic systems are convenient for studies of faceting, growth or anisotropic surface melting of crystals. All these phenomena imply the active contribution of surface steps and bulk dislocations. We show here that steps can be observed in situ and in real time by means of a new method combining hygroscopy with phase contrast. First results raise interesting issues about the consequences of bicontinuous topology on the structure and dynamical behaviour of steps and dislocations

  8. Time-division-multiplex control scheme for voltage multiplier rectifiers

    Directory of Open Access Journals (Sweden)

    Bin-Han Liu

    2017-03-01

    Full Text Available A voltage multiplier rectifier with a novel time-division-multiplexing (TDM control scheme for high step-up converters is proposed in this study. In the proposed TDM control scheme, two full-wave voltage doubler rectifiers can be combined to realise a voltage quadrupler rectifier. The proposed voltage quadrupler rectifier can reduce transformer turn ratio and transformer size for high step-up converters and also reduce voltage stress for the output capacitors and rectifier diodes. An N-times voltage rectifier can be straightforwardly produced by extending the concepts from the proposed TDM control scheme. A phase-shift full-bridge (PSFB converter is adopted in the primary side of the proposed voltage quadrupler rectifier to construct a PSFB quadrupler converter. Experimental results for the PSFB quadrupler converter demonstrate the performance of the proposed TDM control scheme for voltage quadrupler rectifiers. An 8-times voltage rectifier is simulated to determine the validity of extending the proposed TDM control scheme to realise an N-times voltage rectifier. Experimental and simulation results show that the proposed TDM control scheme has great potential to be used in high step-up converters.

  9. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  10. Fault size classification of rotating machinery using support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Lee, D. H.; Park, S. K. [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2012-03-15

    Studies on fault diagnosis of rotating machinery have been carried out to obtain a machinery condition in two ways. First is a classical approach based on signal processing and analysis using vibration and acoustic signals. Second is to use artificial intelligence techniques to classify machinery conditions into normal or one of the pre-determined fault conditions. Support Vector Machine (SVM) is well known as intelligent classifier with robust generalization ability. In this study, a two-step approach is proposed to predict fault types and fault sizes of rotating machinery in nuclear power plants using multi-class SVM technique. The model firstly classifies normal and 12 fault types and then identifies their sizes in case of predicting any faults. The time and frequency domain features are extracted from the measured vibration signals and used as input to SVM. A test rig is used to simulate normal and the well-know 12 artificial fault conditions with three to six fault sizes of rotating machinery. The application results to the test data show that the present method can estimate fault types as well as fault sizes with high accuracy for bearing an shaft-related faults and misalignment. Further research, however, is required to identify fault size in case of unbalance, rubbing, looseness, and coupling-related faults.

  11. Fault size classification of rotating machinery using support vector machine

    International Nuclear Information System (INIS)

    Kim, Y. S.; Lee, D. H.; Park, S. K.

    2012-01-01

    Studies on fault diagnosis of rotating machinery have been carried out to obtain a machinery condition in two ways. First is a classical approach based on signal processing and analysis using vibration and acoustic signals. Second is to use artificial intelligence techniques to classify machinery conditions into normal or one of the pre-determined fault conditions. Support Vector Machine (SVM) is well known as intelligent classifier with robust generalization ability. In this study, a two-step approach is proposed to predict fault types and fault sizes of rotating machinery in nuclear power plants using multi-class SVM technique. The model firstly classifies normal and 12 fault types and then identifies their sizes in case of predicting any faults. The time and frequency domain features are extracted from the measured vibration signals and used as input to SVM. A test rig is used to simulate normal and the well-know 12 artificial fault conditions with three to six fault sizes of rotating machinery. The application results to the test data show that the present method can estimate fault types as well as fault sizes with high accuracy for bearing an shaft-related faults and misalignment. Further research, however, is required to identify fault size in case of unbalance, rubbing, looseness, and coupling-related faults

  12. Constructing an exposure chart: step by step (based on standard procedures)

    International Nuclear Information System (INIS)

    David, Jocelyn L; Cansino, Percedita T.; Taguibao, Angileo P.

    2000-01-01

    An exposure chart is very important in conducting radiographic inspection of materials. By using an accurate exposure chart, an inspector is able to avoid a trial and error way of determining correct time to expose a specimen, thereby producing a radiograph that has an acceptable density based on a standard. The chart gives the following information: x-ray machine model and brand, distance of the x-ray tube from the film, type and thickness of intensifying screens, film type, radiograph density, and film processing conditions. The methods of preparing an exposure chart are available in existing radiographic testing manuals. These described methods are presented in step by step procedures, covering the actual laboratory set-up, data gathering, computations, and transformation of derived data into Characteristic Curve and Exposure Chart

  13. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jaime Salazar

    2014-01-01

    Full Text Available Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals.

  14. A two-step lyssavirus real-time polymerase chain reaction using degenerate primers with superior sensitivity to the fluorescent antigen test.

    Science.gov (United States)

    Suin, Vanessa; Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael; Van Gucht, Steven

    2014-01-01

    A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤ 1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.

  15. Dynamic balance and stepping versus tai chi training to improve balance and stepping in at-risk older adults.

    Science.gov (United States)

    Nnodim, Joseph O; Strasburg, Debra; Nabozny, Martina; Nyquist, Linda; Galecki, Andrzej; Chen, Shu; Alexander, Neil B

    2006-12-01

    To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. Prospective intervention trial. Local senior centers and congregate housing facilities. Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. Participants were allocated to TC (n = 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n = 106, mean age 78). At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs.

  16. Effect of harvest time and physical form of alfalfa silage on chewing time and particle size distribution in boli, rumen content and faeces

    DEFF Research Database (Denmark)

    Kornfelt, L. F.; Weisbjerg, Martin Riis; Norgaard, P.

    2013-01-01

    The study examined the effects of physical form and harvest time of alfalfa silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in dry cows. The alfalfa crop was harvested at two stages of growth (early: NDF 37 late: NDF 44% in dry matter.......01), physical form (P time (P distribution function...... fractions. The length (PL) and width (PW) of particles within each fraction was measured by the use of image analysis. The eating activity (min/kg dry matter intake (P time. The mean ruminating time (min/kg DM) was affected by harvest time (P

  17. Model catalysis by size-selected cluster deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Univ. of Utah, Salt Lake City, UT (United States)

    2015-11-20

    This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.

  18. A New Approach and Solution Technique to Solve Time Fractional Nonlinear Reaction-Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Inci Cilingir Sungu

    2015-01-01

    Full Text Available A new application of the hybrid generalized differential transform and finite difference method is proposed by solving time fractional nonlinear reaction-diffusion equations. This method is a combination of the multi-time-stepping temporal generalized differential transform and the spatial finite difference methods. The procedure first converts the time-evolutionary equations into Poisson equations which are then solved using the central difference method. The temporal differential transform method as used in the paper takes care of stability and the finite difference method on the resulting equation results in a system of diagonally dominant linear algebraic equations. The Gauss-Seidel iterative procedure then used to solve the linear system thus has assured convergence. To have optimized convergence rate, numerical experiments were done by using a combination of factors involving multi-time-stepping, spatial step size, and degree of the polynomial fit in time. It is shown that the hybrid technique is reliable, accurate, and easy to apply.

  19. Some effects of temperature, meal size, and body weight on gastric evacuation time in the dab Limanda limanda (L)

    Energy Technology Data Exchange (ETDEWEB)

    Jobling, M; Gwyther, D; Grove, D J

    1977-03-01

    Gastric emptying time in the dab, Limanda limanda, has been studied using an X-ray technique. The addition of 25% barium sulphate to a test meal did not significantly affect the transit time. Lowering the experimental temperature from 16.4 to 8.5/sup 0/C markedly decreased gastric evacuation time. An increase in ration size led to an increase in the time required to empty the stomach and also to increase the amount of food digested per unit of time. For any given ration size, expressed as percent body weight, the larger the animal the longer is the time required for evacuation of that meal. We suggest that the food intake per day, as a percentage of live body weight, will be smaller for larger L. limanda in the wild.

  20. A study on development of the step complexity measure for emergency operating procedures using entropy concepts

    International Nuclear Information System (INIS)

    Park, J. K.; Jung, W. D.; Kim, J. W.; Ha, J. J.

    2001-04-01

    In complex systems, such as nuclear power plants (NPPs) or airplane control systems, human errors play a major role in many accidents. For example, it was reported that about 70% of aviation accidents are due to human errors, and that approximately 28% of accidents in process industries are caused by human errors. According to related studies, written manuals or operating procedures are revealed as one of the most important factors in aviation and manufacturing industries. In case of NPPs, the importance of procedures is more salient than other industries because not only over 50% of human errors were due to procedures but also about 18% of accidents were caused by the failure of following procedures. Thus, the provision of emergency operating procedures (EOPs) that are designed so that the possibility of human errors can be reduced is very important. To accomplish this goal, a quantitative and objective measure that can evaluate EOPs is indispensable. The purpose of this study is the development of a method that can quantify the complexity of a step included in EOPs. In this regard, the step complexity measure (SC) is developed based on three sub-measures such as the SIC (step information complexity), the SLC (step logic complexity) and the SSC (step size complexity). To verify the SC measure, not only quantitative validations (such as comparing SC scores with subjective evaluation results and with averaged step performance time) but also qualitative validations to clarify physical meanings of the SC measure are performed

  1. A study on development of the step complexity measure for emergency operating procedures using entropy concepts

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. K.; Jung, W. D.; Kim, J. W.; Ha, J. J

    2001-04-01

    In complex systems, such as nuclear power plants (NPPs) or airplane control systems, human errors play a major role in many accidents. For example, it was reported that about 70% of aviation accidents are due to human errors, and that approximately 28% of accidents in process industries are caused by human errors. According to related studies, written manuals or operating procedures are revealed as one of the most important factors in aviation and manufacturing industries. In case of NPPs, the importance of procedures is more salient than other industries because not only over 50% of human errors were due to procedures but also about 18% of accidents were caused by the failure of following procedures. Thus, the provision of emergency operating procedures (EOPs) that are designed so that the possibility of human errors can be reduced is very important. To accomplish this goal, a quantitative and objective measure that can evaluate EOPs is indispensable. The purpose of this study is the development of a method that can quantify the complexity of a step included in EOPs. In this regard, the step complexity measure (SC) is developed based on three sub-measures such as the SIC (step information complexity), the SLC (step logic complexity) and the SSC (step size complexity). To verify the SC measure, not only quantitative validations (such as comparing SC scores with subjective evaluation results and with averaged step performance time) but also qualitative validations to clarify physical meanings of the SC measure are performed.

  2. Obese and overweight individuals are less sensitive to information about meal times in portion size judgements.

    Science.gov (United States)

    Zimmerman, A R; Mason, A; Rogers, P J; Brunstrom, J M

    2017-11-16

    Obesity is related to a tendency to discount the future. Information regarding inter-meal interval (IMI) allows meal planning. We sought to assess how obese, overweight, and lean people select portion sizes based on the length of an IMI. We hypothesised that individuals with a high BMI would discount information about the IMI. In addition, we investigated how reduced sensitivity to IMIs relates to monetary temporal discounting. Participants (lean, n=35; overweight, n=31; obese, n=22), selected lunchtime portion sizes in response to information about the timings of their next meal. In seven trials, the time of the IMI was systematically manipulated, ranging from 'right now' to '8 h'. Participants then completed a monetary temporal discounting task. BMI was included as a continuous measure. For each participant, we conducted a linear regression of portion size on IMI to yield a gradient that reflected reduced sensitivity to future meal timings. As expected, participants selected larger portion sizes in response to a long IMI. Consistent with our hypothesis, individuals with a high BMI discounted information about the IMI (β=-3.49, P=0.015; confidence interval (CI) 6.29 to -0.70). Monetary discounting also negatively predicted BMI (β=-8.1, P=0.003; CI=-13.43 to -2.77), but did not correlate with IMI sensitivity (P>0.05). These results are the first to demonstrate that temporal discounting operates in planning from one meal to the next, and is more prevalent in obese and overweight, relative to lean individuals. Participants with a high BMI discounted concerns about potential future fullness and hunger in the IMI. Our observations might begin to explain associations between obesity and irregular meal timings or help to form the basis for a targeted intervention that promotes future thinking in meal planning.International Journal of Obesity accepted article preview online, 16 November 2017. doi:10.1038/ijo.2017.275.

  3. Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    Science.gov (United States)

    Lee, Woochan

    Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution

  4. Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    DEFF Research Database (Denmark)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2011-01-01

    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...

  5. Effect of the roughening transition on the vicinal surface in the step droplet zone

    Science.gov (United States)

    Akutsu, Noriko

    2017-06-01

    For vicinal surfaces around the (001) surface inclined towards the 〈 111 〉 direction, the influence of roughening transitions on the surface tension and on step droplets is studied numerically. The surface tension is calculated using a restricted solid-on-solid model with a point-contact type step-step attraction (p-RSOS model) on a square lattice. To ensure the reliability of the calculations, the density matrix renormalization group method is used. The growth rate of the vicinal surface near equilibrium is also calculated by the Monte Carlo method. It is found that the roughening transition changes the morphology around the (001) surface, and the roughening transition affects the size of locally merged steps (step droplets).

  6. Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion

    Science.gov (United States)

    Pandey, Praveen K.; Sharma, Kriti; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.

    2003-11-01

    CdTe quantum dots embedded in glass matrix are grown using two-step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single-step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two-step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single-step annealed samples. (

  7. Characterization of Time-Dependent Contact Angles for Oleic Acid Mixed Sands with Different Particle Size Fractions

    DEFF Research Database (Denmark)

    Wijewardana, Y. N. S.; Kawamoto, Ken; Komatsu, Toshiko

    2014-01-01

    ) mixed sands representing four different particle size fractions ranging from 0.105 to 0.84 mm. Initial soil-water contact angle (αi), and the time dependence of contact angle were measured by the sessile drop method. Results showed that the αi value for fine and middle sand fractions increased rapidly...... in contact angle (α), well captured the time dependence of α....

  8. The Throw-and-Catch Model of Human Gait: Evidence from Coupling of Pre-Step Postural Activity and Step Location

    Science.gov (United States)

    Bancroft, Matthew J.; Day, Brian L.

    2016-01-01

    Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body’s momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait. PMID:28066208

  9. The Throw-and-Catch Model of Human Gait: Evidence from Coupling of Pre-Step Postural Activity and Step Location.

    Science.gov (United States)

    Bancroft, Matthew J; Day, Brian L

    2016-01-01

    Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body's momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait.

  10. Precise large deviations of aggregate claims in a size-dependent renewal risk model with stopping time claim-number process

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2017-04-01

    Full Text Available Abstract In this paper, we consider a size-dependent renewal risk model with stopping time claim-number process. In this model, we do not make any assumption on the dependence structure of claim sizes and inter-arrival times. We study large deviations of the aggregate amount of claims. For the subexponential heavy-tailed case, we obtain a precise large-deviation formula; our method substantially relies on a martingale for the structure of our models.

  11. Crystal size control of sulfathiazole using high pressure carbon dioxide

    Science.gov (United States)

    Kitamura, M.; Yamamoto, M.; Yoshinaga, Y.; Masuoka, H.

    1997-07-01

    The effect of the pressurization method of carbon dioxide on the crystallization behavior and crystal size of sulphathiazole (SUT) was investigated. In the "stepwise pressurization" method exceptionally large pillar-like crystals of 2-6 mm were obtained as mainly a scaling on the wall of the crystallizer. In the "rapid pressurization" method, crystals with a size one third to half of that obtained in the stepwise method precipitated, indicating the accelerated nucleation rate by the rapid increase of the supersaturation degree with a vigorous bubbling. With the new method of "two-step pressurization", in the first step the nucleation is accelerated with a much larger pressure instantly created, and in the second step the growth rate is retarded with the lower pressure. By this method much more fine crystals (from a few tens to several hundred micrometers) were produced and the scaling was suppressed. In this method a large supersaturation degree at an interface between the gas (bubble) and liquid phase under a vigorous bubbling may play an important role in accelerating the nucleation. The average size of the crystals tended to become smaller with increase of the first pressure and the expansion ratio at a decompression point, and it tended to get larger with increase of the second pressure. These results show that the GAS method is very useful for the control of crystal size over a wide range.

  12. Accessory stimulus modulates executive function during stepping task.

    Science.gov (United States)

    Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo; Nojima, Ippei

    2015-07-01

    When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. Copyright © 2015 the American Physiological Society.

  13. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  14. Introducing Meta-Partition, a Useful Methodology to Explore Factors That Influence Ecological Effect Sizes.

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    Full Text Available The study of the heterogeneity of effect sizes is a key aspect of ecological meta-analyses. Here we propose a meta-analytic methodology to study the influence of moderators in effect sizes by splitting heterogeneity: meta-partition. To introduce this methodology, we performed a meta-partition of published data about the traits that influence species sensitivity to habitat loss, that have been previously analyzed through meta-regression. Thus, here we aim to introduce meta-partition and to make an initial comparison with meta-regression. Meta-partition algorithm consists of three steps. Step 1 is to study the heterogeneity of effect sizes under the assumption of fixed effect model. If heterogeneity is found, we perform step 2, that is, to partition the heterogeneity by the moderator that minimizes heterogeneity within a subset while maximizing heterogeneity between subsets. Then, if effect sizes of the subset are still heterogeneous, we repeat step 1 and 2 until we reach final subsets. Finally, step 3 is to integrate effect sizes of final subsets, with fixed effect model if there is homogeneity, and with random effects model if there is heterogeneity. Results show that meta-partition is valuable to assess the importance of moderators in explaining heterogeneity of effect sizes, as well as to assess the directions of these relations and to detect possible interactions between moderators. With meta-partition we have been able to evaluate the importance of moderators in a more objective way than with meta-regression, and to visualize the complex relations that may exist between them. As ecological issues are often influenced by several factors interacting in complex ways, ranking the importance of possible moderators and detecting possible interactions would make meta-partition a useful exploration tool for ecological meta-analyses.

  15. Effect of incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder on ACE inhibitory activity in fermented milk by L. plantarum LP69.

    Science.gov (United States)

    Shu, Guowei; Yang, Hui; Chen, He; Zhang, Qiuhong; Tian, Yue

    2015-01-01

    Angiotensin I converting enzyme (ACE) plays an important physiological role in regulating hypertension. Lactic acid bacteria are known to produce ACE inhibitory peptides which can lower hypertension during fermentation. The effect of incubation time (0~36 h), inoculum size (3, 4, 5, 6 and 7%, v/v), temperature (25, 30, 35, 40 and 45°C), sterilization time (5, 10, 15, 20 and 25 min), concentration of goat milk powder (8, 10, 12, 14 and 16%, w/v) and whey powder (0.5, 0.6, 0.7, 0.8 and 0.9%, w/v) on ACE inhibitory peptides fermented from goat milk by Lactobacillus plantarum LP69 was investigated using single factor experiment. The optimal incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder in fermented milk by L. plantarum LP69 was 14 h, 3.0%, 35°C, 20 min, 14% and 0.70% for ACE inhibitory activity and 22 h, 3.0%, 40°C, 25 min, 16% and 0.60% for viable cell counts, respectively. The incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder had a significant influence on ACE inhibitory activity in fermented milk by Lactobacillus plantarum LP69, the results are beneficial for further screening of main factors by using fractional factorial designs.

  16. Informality as a stepping stone: A search-theoretical assessment of informal sector and government policy

    Directory of Open Access Journals (Sweden)

    Semih Tümen

    2016-09-01

    Full Text Available This paper develops a model of sequential job search to understand the factors determining the effect of tax and enforcement policies on the size (i.e., employment share of informal sector. The focus is on the role of informal sector as a stepping stone to formal jobs. I argue that the stepping-stone role of informal jobs is an important concept determining how strongly government policies affect the size of informal sector. I measure the extent of the stepping-stone role with the intensity of skill accumulation in the informal sector. If informal jobs help workers acquire skills, gain expertise, and build professional networks for boosting the chances to switch to a formal job, then the size of informal sector is less sensitive to government policy. In this case, the option value of a job in informal sector will be high and a worker with an informal job will not rush to switch to a formal job when a policy encouraging formal employment is in effect. If, on the other hand, informal sector does not provide satisfactory training opportunities, then the size of informal sector becomes more sensitive to government policy. Calibrating the model to the Brazilian data, I perform numerical exercises confirming that the effect of government policy on the size of informal sector is a decreasing function of the intensity of skill acquisition in the informal sector.

  17. Composition of hydroponic lettuce: effect of time of day, plant size, and season.

    Science.gov (United States)

    Gent, Martin P N

    2012-02-01

    The diurnal variation of nitrate and sugars in leafy green vegetables may vary with plant size or the ability of plants to buffer the uptake, synthesis, and use of metabolites. Bibb lettuce was grown in hydroponics in a greenhouse and sampled at 3 h intervals throughout one day in August 2007 and another day in November 2008 to determine fresh weight, dry matter, and concentration of nitrate and sugars. Plantings differing in size and age were sampled on each date. The dry/fresh weight ratio increased during the daylight period. This increase was greater for small compared to large plants. On a fresh weight basis, tissue nitrate of small plants was only half that of larger plants. The variation in concentration with time was much less for nitrate than for soluble sugars. Soluble sugars were similar for all plant sizes early in the day, but they increased far more for small compared to large plants in the long days of summer. The greatest yield on a fresh weight basis was obtained by harvesting lettuce at dawn. Although dry matter or sugar content increased later in the day, there is no commercial benefit to delaying harvest as consumers do not buy lettuce for these attributes. Copyright © 2011 Society of Chemical Industry.

  18. Flow cell coupled dynamic light scattering for real-time monitoring of nanoparticle size during liquid phase bottom-up synthesis

    NARCIS (Netherlands)

    Meulendijks, N.; van Ee, R.; Stevens, R.; Mourad, M.; Verheijen, M.A.; Kambly, N.; Armenta, R.; Buskens, P.

    2018-01-01

    To tailor the properties of nanoparticles and nanocomposites, precise control over particle size is of vital importance. Real-time monitoring of particle size during bottom-up synthesis in liquids would allow a detailed study of particle nucleation and growth, which provides valuable insights in the

  19. Contrast, size, and orientation-invariant target detection in infrared imagery

    Science.gov (United States)

    Zhou, Yi-Tong; Crawshaw, Richard D.

    1991-08-01

    Automatic target detection in IR imagery is a very difficult task due to variations in target brightness, shape, size, and orientation. In this paper, the authors present a contrast, size, and orientation invariant algorithm based on Gabor functions for detecting targets from a single IR image frame. The algorithms consists of three steps. First, it locates potential targets by using low-resolution Gabor functions which resist noise and background clutter effects, then, it removes false targets and eliminates redundant target points based on a similarity measure. These two steps mimic human vision processing but are different from Zeevi's Foveating Vision System. Finally, it uses both low- and high-resolution Gabor functions to verify target existence. This algorithm has been successfully tested on several IR images that contain multiple examples of military vehicles with different size and brightness in various background scenes and orientations.

  20. Time evolution of the drop size distribution for liquid-liquid dispersion in an agitated tank

    Czech Academy of Sciences Publication Activity Database

    Šulc, R.; Kysela, Bohuš; Ditl, P.

    2018-01-01

    Roč. 72, č. 3 (2018), s. 543-553 ISSN 0366-6352 R&D Projects: GA ČR GA16-20175S Institutional support: RVO:67985874 Keywords : liquid–liquid dispersion * drop breakup * drop size distribution * time evolution Subject RIV: BK - Fluid Dynamics Impact factor: 1.258, year: 2016

  1. Lead, zinc and copper fine powder with controlled size and shape

    Directory of Open Access Journals (Sweden)

    Mahmoud A Rabah

    2017-12-01

    Full Text Available This study describes the preparation of lead, zinc and copper powders by hydrometallurgy from secondary resources. Chloride, sulphate and acetate salts of zinc, copper and lead were prepared. The powders were prepared by reducing the ionic species of these metals by hydrazine hydrate or ascorbic acid. The effect of addition of some water soluble polar organic solvents to the aqueous salt solutions on the morphology and particle size of the prepared powder was studied. Findings were explained on the basis of the transition state theory and according to the Hughes and Ingold’s rule. Aqueous solutions alone produce metal powder having different size and irregular shape. The presence of polar organic solvents with high molecular weight and polarity produce powders having controlled size and regular morphology. The reason was because solvent polarity enhances the rate of red-ox reactions between metal ions and the reducing agent. The mean particle size of the powder was 60 um with zinc, 80 um with copper, and 90 um with lead. The extent of productivity was ≥98%. Results highlighted that the chemical reduction of the ionic species took place in a sequence steps. The first is a diffusion of the reactants across a boundary layer established at the polar site of the organic solvent molecules. The next step is the direct contact of the reactants. The third step involved reduction to yield powder. The last is the backward diffusion of the powder outside the boundary layer. Results showed that addition of water-miscible solvents having high dielectric constant increased the polarity of the medium. This energizes and enhances the one or more t step of the model to be more rapid to yield particles with small size and symmetrical shape.

  2. Performance of the Seven-step Procedure in Problem-based Hospitality Management Education

    Directory of Open Access Journals (Sweden)

    Wichard Zwaal

    2016-12-01

    Full Text Available The study focuses on the seven-step procedure (SSP in problem-based learning (PBL. The way students apply the seven-step procedure will help us understand how students work in a problem-based learning curriculum. So far, little is known about how students rate the performance and importance of the different steps, the amount of time they spend on each step and the perceived quality of execution of the procedure. A survey was administered to a sample of 101 students enrolled in a problem-based hospitality management program. Results show that students consider step 6 (Collect additional information outside the group to be most important. The highest performance-rating is for step two (Define the problem and the lowest for step four (Draw a systemic inventory of explanations from step three. Step seven is classified as low in performance and high in importance implicating urgent attention. The average amount of time spent on the seven steps is 133 minutes with the largest part of the time spent on self-study outside the group (42 minutes. The assessment of the execution of a set of specific guidelines (the Blue Card did not completely match with the overall performance ratings for the seven steps. The SSP could be improved by reducing the number of steps and incorporating more attention to group dynamics.

  3. One-step synthesis of highly efficient nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel.

    Science.gov (United States)

    Kang, Xinchen; Zhang, Jianling; Shang, Wenting; Wu, Tianbin; Zhang, Peng; Han, Buxing; Wu, Zhonghua; Mo, Guang; Xing, Xueqing

    2014-03-12

    Stable porous ionic liquid-water gel induced by inorganic salts was created for the first time. The porous gel was used to develop a one-step method to synthesize supported metal nanocatalysts. Au/SiO2, Ru/SiO2, Pd/Cu(2-pymo)2 metal-organic framework (Cu-MOF), and Au/polyacrylamide (PAM) were synthesized, in which the supports had hierarchical meso- and macropores, the size of the metal nanocatalysts could be very small (esterification of benzyl alcohol to methyl benzoate, benzene hydrogenation to cyclohexane, and oxidation of benzyl alcohol to benzaldehyde because they combined the advantages of the nanocatalysts of small size and hierarchical porosity of the supports. In addition, this method is very simple.

  4. Step dynamics and terrace-width distribution on flame-annealed gold films: The effect of step-step interaction

    International Nuclear Information System (INIS)

    Shimoni, Nira; Ayal, Shai; Millo, Oded

    2000-01-01

    Dynamics of atomic steps and the terrace-width distribution within step bunches on flame-annealed gold films are studied using scanning tunneling microscopy. The distribution is narrower than commonly observed for vicinal planes and has a Gaussian shape, indicating a short-range repulsive interaction between the steps, with an apparently large interaction constant. The dynamics of the atomic steps, on the other hand, appear to be influenced, in addition to these short-range interactions, also by a longer-range attraction of steps towards step bunches. Both types of interactions promote self-ordering of terrace structures on the surface. When current is driven through the films a step-fingering instability sets in, reminiscent of the Bales-Zangwill instability

  5. A Two-Step Resume Information Extraction Algorithm

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2018-01-01

    Full Text Available With the rapid growth of Internet-based recruiting, there are a great number of personal resumes among recruiting systems. To gain more attention from the recruiters, most resumes are written in diverse formats, including varying font size, font colour, and table cells. However, the diversity of format is harmful to data mining, such as resume information extraction, automatic job matching, and candidates ranking. Supervised methods and rule-based methods have been proposed to extract facts from resumes, but they strongly rely on hierarchical structure information and large amounts of labelled data, which are hard to collect in reality. In this paper, we propose a two-step resume information extraction approach. In the first step, raw text of resume is identified as different resume blocks. To achieve the goal, we design a novel feature, Writing Style, to model sentence syntax information. Besides word index and punctuation index, word lexical attribute and prediction results of classifiers are included in Writing Style. In the second step, multiple classifiers are employed to identify different attributes of fact information in resumes. Experimental results on a real-world dataset show that the algorithm is feasible and effective.

  6. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    Science.gov (United States)

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  7. Robust Detection of Stepping-Stone Attacks

    National Research Council Canada - National Science Library

    He, Ting; Tong, Lang

    2006-01-01

    The detection of encrypted stepping-stone attack is considered. Besides encryption and padding, the attacker is capable of inserting chaff packets and perturbing packet timing and transmission order...

  8. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    Science.gov (United States)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  9. Development and validation of a local time stepping-based PaSR solver for combustion and radiation modeling

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Ivarsson, Anders; Haider, Sajjad

    2013-01-01

    In the current work, a local time stepping (LTS) solver for the modeling of combustion, radiative heat transfer and soot formation is developed and validated. This is achieved using an open source computational fluid dynamics code, OpenFOAM. Akin to the solver provided in default assembly i...... library in the edcSimpleFoam solver which was introduced during the 6th OpenFOAM workshop is modified and coupled with the current solver. One of the main amendments made is the integration of soot radiation submodel since this is significant in rich flames where soot particles are formed. The new solver...

  10. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

    Science.gov (United States)

    Jothiprakash, V.; Magar, R. B.

    2012-07-01

    SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.

  11. A Two-Step Lyssavirus Real-Time Polymerase Chain Reaction Using Degenerate Primers with Superior Sensitivity to the Fluorescent Antigen Test

    Directory of Open Access Journals (Sweden)

    Vanessa Suin

    2014-01-01

    Full Text Available A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR, based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.

  12. Robotic-assisted laparoscopic radical nephrectomy using the Da Vinci Si system: how to improve surgeon autonomy. Our step-by-step technique.

    Science.gov (United States)

    Davila, Hugo H; Storey, Raul E; Rose, Marc C

    2016-09-01

    Herein, we describe several steps to improve surgeon autonomy during a Left Robotic-Assisted Laparoscopic Radical Nephrectomy (RALRN), using the Da Vinci Si system. Our kidney cancer program is based on 2 community hospitals. We use the Da Vinci Si system. Access is obtained with the following trocars: Two 8 mm robotic, one 8 mm robotic, bariatric length (arm 3), 15 mm for the assistant and 12 mm for the camera. We use curved monopolar scissors in robotic arm 1, Bipolar Maryland in arm 2, Prograsp Forceps in arm 3, and we alternate throughout the surgery with EndoWrist clip appliers and the vessel sealer. Here, we described three steps and the use of 3 robotic instruments to improve surgeon autonomy. Step 1: the lower pole of the kidney was dissected and this was retracted upwards and laterally. This maneuver was performed using the 3rd robotic arm with the Prograsp Forceps. Step 2: the monopolar scissors was replaced (robotic arm 1) with the robotic EndoWrist clip applier, 10 mm Hem-o-Lok. The renal artery and vein were controlled and transected by the main surgeon. Step 3: the superior, posterolateral dissection and all bleeders were carefully coagulated by the surgeon with the EndoWrist one vessel sealer. We have now performed 15 RALRN following these steps. Our results were: blood loss 300 cc, console time 140 min, operating room time 200 min, anesthesia time 180 min, hospital stay 2.5 days, 1 incisional hernia, pathology: (13) RCC clear cell, (1) chromophobe and (1) papillary type 1. Tumor Stage: (5) T1b, (8) T2a, (2) T2b. We provide a concise, step-by-step technique for radical nephrectomy (RN) using the Da Vinci Si robotic system that may provide more autonomy to the surgeon, while maintaining surgical outcome equivalent to standard laparoscopic RN.

  13. Real-Time Predictions of Reservoir Size and Rebound Time during Antiretroviral Therapy Interruption Trials for HIV.

    Directory of Open Access Journals (Sweden)

    Alison L Hill

    2016-04-01

    Full Text Available Monitoring the efficacy of novel reservoir-reducing treatments for HIV is challenging. The limited ability to sample and quantify latent infection means that supervised antiretroviral therapy (ART interruption studies are generally required. Here we introduce a set of mathematical and statistical modeling tools to aid in the design and interpretation of ART-interruption trials. We show how the likely size of the remaining reservoir can be updated in real-time as patients continue off treatment, by combining the output of laboratory assays with insights from models of reservoir dynamics and rebound. We design an optimal schedule for viral load sampling during interruption, whereby the frequency of follow-up can be decreased as patients continue off ART without rebound. While this scheme can minimize costs when the chance of rebound between visits is low, we find that the reservoir will be almost completely reseeded before rebound is detected unless sampling occurs at least every two weeks and the most sensitive viral load assays are used. We use simulated data to predict the clinical trial size needed to estimate treatment effects in the face of highly variable patient outcomes and imperfect reservoir assays. Our findings suggest that large numbers of patients-between 40 and 150-will be necessary to reliably estimate the reservoir-reducing potential of a new therapy and to compare this across interventions. As an example, we apply these methods to the two "Boston patients", recipients of allogeneic hematopoietic stem cell transplants who experienced large reductions in latent infection and underwent ART-interruption. We argue that the timing of viral rebound was not particularly surprising given the information available before treatment cessation. Additionally, we show how other clinical data can be used to estimate the relative contribution that remaining HIV+ cells in the recipient versus newly infected cells from the donor made to the

  14. Microsoft® SQL Server® 2008 Step by Step

    CERN Document Server

    Hotek, Mike

    2009-01-01

    Teach yourself SQL Server 2008-one step at a time. Get the practical guidance you need to build database solutions that solve real-world business problems. Learn to integrate SQL Server data in your applications, write queries, develop reports, and employ powerful business intelligence systems.Discover how to:Install and work with core components and toolsCreate tables and index structuresManipulate and retrieve dataSecure, manage, back up, and recover databasesApply tuning plus optimization techniques to generate high-performing database applicationsOptimize availability through clustering, d

  15. The Satellite Test of the Equivalence Principle (STEP)

    Science.gov (United States)

    2004-01-01

    STEP will carry concentric test masses to Earth orbit to test a fundamental assumption underlying Einstein's theory of general relativity: that gravitational mass is equivalent to inertial mass. STEP is a 21st-century version of the test that Galileo is said to have performed by dropping a carnon ball and a musket ball simultaneously from the top of the Leaning Tower of Pisa to compare their accelerations. During the STEP experiment, four pairs of test masses will be falling around the Earth, and their accelerations will be measured by superconducting quantum interference devices (SQUIDS). The extended time sensitivity of the instruments will allow the measurements to be a million times more accurate than those made in modern ground-based tests.

  16. One-step lowrank wave extrapolation

    KAUST Repository

    Sindi, Ghada Atif

    2014-01-01

    Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a modified one-step lowrank wave extrapolation using Shanks transform in isotropic, and anisotropic media. Specifically, we utilize a velocity gradient term to add to the accuracy of the phase approximation function in the spectral implementation. With the higher accuracy, we can utilize larger time steps and make the extrapolation more efficient. Applications to models with strong inhomogeneity and considerable anisotropy demonstrates the utility of the approach.

  17. SHARP, a first step towards a full sized Jules Verne Launcher

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, L.R.; Hunter, J.W. [Lawrence Livermore National Lab., CA (United States); Powell, J.R. [Brookhaven National Lab., Upton, NY (United States); Tidman, D.A. [GT-Devices, Inc., Alexandria, VA (United States)

    1993-05-01

    A vital element for space exploration and utilization is the ability to affordably place large quantities of consumables and building material into low earth orbit. Calculations and supportive data indicate this can be done with a large hydrogen gas gun referred to as the Jules Verne Launcher (JVL). We present a design for the JVL based upon the concept of side injecting preheated hydrogen along a long barrel. This dramatically reduces the peak pressures in the launcher as well as the pressures and g-loads at the vehicle. The JVL has the promise of reducing payload delivery costs to Low Earth Orbit (LEO) to below $500/kg. The Super High Altitude Research Project (SHARP) is a conventional two-stage hydrogen gas gun which is configured to launch 5 kg packages on suborbital trajectories. It is the first step towards the much larger Jules Verne system and will demonstrate several important features of the larger system. SHARP is currently in the middle of a series of tests aimed at its first milestone. This is to launch 5 kg at 4 km/sec horizontally. In its inclined configuration SHARP should launch vehicles to apogees in excess of 400 km and ranges in excess of 700 km.

  18. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    Science.gov (United States)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  19. Detection of SYT-SSX mutant transcripts in formalin-fixed paraffin-embedded sarcoma tissues using one-step reverse transcriptase real-time PCR.

    Science.gov (United States)

    Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M

    2016-04-01

    Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.

  20. The Effect of Phosphoric Acid Pre-etching Times on Bonding Performance and Surface Free Energy with Single-step Self-etch Adhesives.

    Science.gov (United States)

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to evaluate the effect of phosphoric acid pre-etching times on shear bond strength (SBS) and surface free energy (SFE) with single-step self-etch adhesives. The three single-step self-etch adhesives used were: 1) Scotchbond Universal Adhesive (3M ESPE), 2) Clearfil tri-S Bond (Kuraray Noritake Dental), and 3) G-Bond Plus (GC). Two no pre-etching groups, 1) untreated enamel and 2) enamel surfaces after ultrasonic cleaning with distilled water for 30 seconds to remove the smear layer, were prepared. There were four pre-etching groups: 1) enamel surfaces were pre-etched with phosphoric acid (Etchant, 3M ESPE) for 3 seconds, 2) enamel surfaces were pre-etched for 5 seconds, 3) enamel surfaces were pre-etched for 10 seconds, and 4) enamel surfaces were pre-etched for 15 seconds. Resin composite was bonded to the treated enamel surface to determine SBS. The SFEs of treated enamel surfaces were determined by measuring the contact angles of three test liquids. Scanning electron microscopy was used to examine the enamel surfaces and enamel-adhesive interface. The specimens with phosphoric acid pre-etching showed significantly higher SBS and SFEs than the specimens without phosphoric acid pre-etching regardless of the adhesive system used. SBS and SFEs did not increase for phosphoric acid pre-etching times over 3 seconds. There were no significant differences in SBS and SFEs between the specimens with and without a smear layer. The data suggest that phosphoric acid pre-etching of ground enamel improves the bonding performance of single-step self-etch adhesives, but these bonding properties do not increase for phosphoric acid pre-etching times over 3 seconds.

  1. Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate

    International Nuclear Information System (INIS)

    Wang, Rong; Xu, Yi; Wang, Chunyan; Zhao, Huazhou; Wang, Renjie; Liao, Xin; Chen, Li; Chen, Gang

    2015-01-01

    Highlights: • A novel structure of ITO-rGO/Ag NPs substrate was developed for SERS application. • Two-step chronoamperometry deposition method was used to prepare SERS substrate. • The SERS substrate had high SERS activity, good uniformity and reproducibility. - Abstract: A novel composite structure of reduced graphene oxide (rGO)–Ag nanoparticles (Ag NPs) nanocomposite, which was integrated on the indium tin oxide (ITO) glass by a facile and rapid two-step chronoamperometry electrodeposition route, was proposed and developed in this paper. SERS-activity of the rGO/Ag NPs nanocomposite was mainly affected by the structure and size of the fabricated rGO/Ag NPs nanocomposite. In the experiments, the operational conditions of electrodeposition process were studied in details. The electrodeposited time was the important controllable factor, which decided the particle size and surface coverage of the deposited Ag NPs on ITO glass. Under the optimized conditions, the detection limit for rhodamine6G (R6G) was as low as 10 −11 M and the Raman enhancement factor was as large as 5.9 × 10 8 , which was 24 times higher than that for the ITO–Ag NPs substrate. Apart from this higher enhancement effect, it was also illustrated that extremely good uniformity and reproducibility with low standard deviation could be obtained by the prepared ITO-rGO/Ag NPs nanocomposite for SRES detection

  2. Effectiveness of a step-by-step oral recount before a practical simulation of fracture fixation.

    Science.gov (United States)

    Abagge, Marcelo; Uliana, Christiano Saliba; Fischer, Sergei Taggesell; Kojima, Kodi Edson

    2017-10-01

    To evaluate the effectiveness of a step-by-step oral recount by residents before the final execution of a practical exercise simulating a surgical fixation of a radial diaphyseal fracture. The study included 10 residents of orthopaedics and traumatology (four second- year and six first-year residents) divided into two groups with five residents each. All participants initially gathered in a room in which a video was presented demonstrating the practical exercise to be performed. One group (Group A) was referred directly to the practical exercise room. The other group (Group B) attended an extra session before the practical exercise, in which they were invited by instructors to recount all the steps that they would perform during the practical exercise. During this session, the instructors corrected the residents if any errors in the step-by-step recount were identified, and clarified questions from them. After this session, both Groups A and B gathered in a room in which they proceeded to the practical exercise, while being video recorded and evaluated using a 20-point checklist. Group A achieved a 57% accuracy, with results in this group ranging from 7 to 15 points out of a total of a possible 20 points. Group B achieved an 89% accuracy, with results in this group ranging from 15 to 20 points out of 20. An oral step-by-step recount by the residents before the final execution of a practical simulation exercise of surgical fixation of a diaphyseal radial fracture improved the technique and reduced the execution time of the exercise. © 2017 Elsevier Ltd. All rights reserved.

  3. Astronomical sketching a step-by-step introduction

    CERN Document Server

    Handy, Richard; Perez, Jeremy; Rix, Erika; Robbins, Sol

    2007-01-01

    This book presents the amateur with fine examples of astronomical sketches and step-by-step tutorials in each medium, from pencil to computer graphics programs. This unique book can teach almost anyone to create beautiful sketches of celestial objects.

  4. Numerical simulation of homogenization time measurement by probes with different volume size

    International Nuclear Information System (INIS)

    Thyn, J.; Novy, M.; Zitny, R.; Mostek, M.; Jahoda, M.

    2004-01-01

    Results of continuous homogenization time measurement of liquid in a stirred tank depend on the scale of scrutiny. Experimental techniques use a probe, which is situated inside as a conductivity method, or outside of the tank as in the case of gamma-radiotracer methods. Expected value of homogenization time evaluated for a given degree of homogenization is higher when using the conductivity method because the conductivity probe measures relatively small volume in contrast to application of radiotracer, when the volume is much greater. Measurement through the wall of tank is a great advantage of radiotracer application but a comparison of the results with another method supposes a determination of measured volume, which is not easy. Simulation of measurement by CFD code can help to solve the problem. Methodology for CFD simulation of radiotracer experiments was suggested. Commercial software was used for simulation of liquid homogenization in mixed vessel with Rushton turbine. Numerical simulation of liquid homogenization time by CFD for different values of detected volume was confronted with measurement of homogenization time with conductivity probe and with different radioisotopes 198 Au, 82 Br and 24 Na. Detected size of the tank volume was affected by different energy of radioisotope used. (author)

  5. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    Science.gov (United States)

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  6. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tódor, István Sz.; Szabó, László; Marişca, Oana T.; Chiş, Vasile; Leopold, Nicolae, E-mail: nicolae.leopold@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics (Romania)

    2014-12-15

    Colloidal nanoparticle assemblies (NPAs) were obtained in a one-step procedure, by reduction of HAuCl{sub 4} by hydroxylamine hydrochloride, at room temperature, without the use of any additional nucleating agent. By changing the order of the reactants, NPAs with mean size of ∼20 and ∼120 nm were obtained. Because of their size and irregular popcorn like shape, the larger size NPAs show absorption in the NIR spectral region. The building blocks of the resulted nanoassemblies are spherical nanoparticles with diameters of 4–8 and 10–30 nm, respectively. Moreover, by stabilizing the colloid with bovine serum albumin at different time moments after synthesis, NPAs of controlled size between 20 and 120 nm, could be obtained. The NPAs were characterized using UV–Vis spectroscopy, TEM and SEM electron microscopies. In addition, the possibility of using the here proposed NPAs as surface-enhanced Raman scattering (SERS) substrate was assessed and found to provide a higher enhancement compared to conventional citrate-reduced nanoparticles.

  7. Multiscale time-splitting strategy for multiscale multiphysics processes of two-phase flow in fractured media

    KAUST Repository

    Sun, S.; Kou, J.; Yu, B.

    2011-01-01

    The temporal discretization scheme is one important ingredient of efficient simulator for two-phase flow in the fractured porous media. The application of single-scale temporal scheme is restricted by the rapid changes of the pressure and saturation in the fractured system with capillarity. In this paper, we propose a multi-scale time splitting strategy to simulate multi-scale multi-physics processes of two-phase flow in fractured porous media. We use the multi-scale time schemes for both the pressure and saturation equations; that is, a large time-step size is employed for the matrix domain, along with a small time-step size being applied in the fractures. The total time interval is partitioned into four temporal levels: the first level is used for the pressure in the entire domain, the second level matching rapid changes of the pressure in the fractures, the third level treating the response gap between the pressure and the saturation, and the fourth level applied for the saturation in the fractures. This method can reduce the computational cost arisen from the implicit solution of the pressure equation. Numerical examples are provided to demonstrate the efficiency of the proposed method.

  8. Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate.

    Science.gov (United States)

    Nath, Suman C; Horie, Masanobu; Nagamori, Eiji; Kino-Oka, Masahiro

    2017-10-01

    Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 10 1 -(2.8 ± 0.5) × 10 1 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 10 1 -(6.8 ± 1.1) × 10 2 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 10 3 -(3.5 ± 1.1) × 10 3 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs

    Directory of Open Access Journals (Sweden)

    Fana Michilsens

    2012-02-01

    In brachiation, two main gaits are distinguished, ricochetal brachiation and continuous contact brachiation. During ricochetal brachiation, a flight phase exists and the body centre of mass (bCOM describes a parabolic trajectory. For continuous contact brachiation, where at least one hand is always in contact with the substrate, we showed in an earlier paper that four step-to-step transition types occur. We referred to these as a ‘point’, a ‘loop’, a ‘backward pendulum’ and a ‘parabolic’ transition. Only the first two transition types have previously been mentioned in the existing literature on gibbon brachiation. In the current study, we used three-dimensional video and force analysis to describe and characterize these four step-to-step transition types. Results show that, although individual preference occurs, the brachiation strides characterized by each transition type are mainly associated with speed. Yet, these four transitions seem to form a continuum rather than four distinct types. Energy recovery and collision fraction are used as estimators of mechanical efficiency of brachiation and, remarkably, these parameters do not differ between strides with different transition types. All strides show high energy recoveries (mean  = 70±11.4% and low collision fractions (mean  = 0.2±0.13, regardless of the step-to-step transition type used. We conclude that siamangs have efficient means of modifying locomotor speed during continuous contact brachiation by choosing particular step-to-step transition types, which all minimize collision fraction and enhance energy recovery.

  10. Size validity of plasma-metamaterial cloaking monitored by scattering wave in finite-difference time-domain method

    Directory of Open Access Journals (Sweden)

    Alexandre Bambina

    2018-01-01

    Full Text Available Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.

  11. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  12. Estimating Divergence Time and Ancestral Effective Population Size of Bornean and Sumatran Orangutan Subspecies Using a Coalescent Hidden Markov Model

    DEFF Research Database (Denmark)

    Mailund, Thomas; Dutheil, Julien; Hobolth, Asger

    2011-01-01

    event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may......, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus......) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report...

  13. Internship guide : Work placements step by step

    NARCIS (Netherlands)

    Haag, Esther

    2013-01-01

    Internship Guide: Work Placements Step by Step has been written from the practical perspective of a placement coordinator. This book addresses the following questions : what problems do students encounter when they start thinking about the jobs their degree programme prepares them for? How do you

  14. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  15. Time-dependent liquid metal flows with free convection and free surfaces

    International Nuclear Information System (INIS)

    McClelland, M.A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement

  16. Note on "An efficient approach for solving the lot-sizing problem with time-varying storage capacities"

    NARCIS (Netherlands)

    W. van den Heuvel (Wilco); J.M. Gutierrez (Jose Miguel); H.C. Hwang (Hark-Chin)

    2011-01-01

    textabstractIn a recent paper Gutierrez et al. (2008) show that the lot-sizing problem with inventory bounds can be solved in O(T log T) time. In this note we show that their algorithm does not lead to an optimal solution in general.

  17. The Power of Low Back Pain Trials: A Systematic Review of Power, Sample Size, and Reporting of Sample Size Calculations Over Time, in Trials Published Between 1980 and 2012.

    Science.gov (United States)

    Froud, Robert; Rajendran, Dévan; Patel, Shilpa; Bright, Philip; Bjørkli, Tom; Eldridge, Sandra; Buchbinder, Rachelle; Underwood, Martin

    2017-06-01

    A systematic review of nonspecific low back pain trials published between 1980 and 2012. To explore what proportion of trials have been powered to detect different bands of effect size; whether there is evidence that sample size in low back pain trials has been increasing; what proportion of trial reports include a sample size calculation; and whether likelihood of reporting sample size calculations has increased. Clinical trials should have a sample size sufficient to detect a minimally important difference for a given power and type I error rate. An underpowered trial is one within which probability of type II error is too high. Meta-analyses do not mitigate underpowered trials. Reviewers independently abstracted data on sample size at point of analysis, whether a sample size calculation was reported, and year of publication. Descriptive analyses were used to explore ability to detect effect sizes, and regression analyses to explore the relationship between sample size, or reporting sample size calculations, and time. We included 383 trials. One-third were powered to detect a standardized mean difference of less than 0.5, and 5% were powered to detect less than 0.3. The average sample size was 153 people, which increased only slightly (∼4 people/yr) from 1980 to 2000, and declined slightly (∼4.5 people/yr) from 2005 to 2011 (P pain trials and the reporting of sample size calculations may need to be increased. It may be justifiable to power a trial to detect only large effects in the case of novel interventions. 3.

  18. Optimized spray drying process for preparation of one-step calcium-alginate gel microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Popeski-Dimovski, Riste [Department of physic, Faculty of Natural Sciences and Mathematics, “ss. Cyril and Methodius” University, Arhimedova 3, 1000 Skopje, R. Macedonia (Macedonia, The Former Yugoslav Republic of)

    2016-03-25

    Calcium-alginate micro particles have been used extensively in drug delivery systems. Therefore we establish a one-step method for preparation of internally gelated micro particles with spherical shape and narrow size distribution. We use four types of alginate with different G/M ratio and molar weight. The size of the particles is measured using light diffraction and scanning electron microscopy. Measurements showed that with this method, micro particles with size distribution around 4 micrometers can be prepared, and SEM imaging showed that those particles are spherical in shape.

  19. Tax-Optimal Step-Up and Imperfect Loss Offset

    Directory of Open Access Journals (Sweden)

    Markus Diller

    2012-05-01

    Full Text Available In the field of mergers and acquisitions, German and international tax law allow for several opportunities to step up a firm's assets, i.e., to revaluate the assets at fair market values. When a step-up is performed the taxpayer recognizes a taxable gain, but also obtains tax benefits in the form of higher future depreciation allowances associated with stepping up the tax base of the assets. This tax-planning problem is well known in taxation literature and can also be applied to firm valuation in the presence of taxation. However, the known models usually assume a perfect loss offset. If this assumption is abandoned, the depreciation allowances may lose value as they become tax effective at a later point in time, or even never if there are not enough cash flows to be offset against. This aspect is especiallyrelevant if future cash flows are assumed to be uncertain. This paper shows that a step-up may be disadvantageous or a firm overvalued if these aspects are not integrated into the basic calculus. Compared to the standard approach, assets should be stepped up only in a few cases and - under specific conditions - at a later point in time. Firm values may be considerably lower under imperfect loss offset.

  20. Size effects in electrochemistry

    International Nuclear Information System (INIS)

    Petrii, Oleg A; Tsirlina, Galina A

    2001-01-01

    General characteristics of size-dependent phenomena in electrochemical systems are given. Primary attention is paid to methodical achievements of nanoelectrochemistry, which is a line of research created over the last 15 years. The development of the main concepts of electrochemistry initiated by the stream of nanoscopic information is considered. The prospects for local studies of processes on charged interfaces, elementary steps of these processes and application of nanoelectrodes and related systems in interdisciplinary fields are discussed. The bibliography includes 198 references.

  1. SU-G-IeP1-12: Size Selective Arterial Cerebral Blood Volume Mapping Using Multiple Inversion Time Arterial Spin Labeling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y; Johnston, M; Whitlow, C [Wake Forest School of Medicine, Winston-salem, NC (United States); Liu, H [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To demonstrate the feasibility of a novel method for size specific arterial cerebral blood volume (aCBV) mapping using pseudo-continuous arterial spin labeling (PCASL), with multiple TI. Methods: Multiple PCASL images were obtained from a subject with TI of [300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000] ms. Each TI pair was averaged six times. Two scans were performed: one without a flow crusher gradient and the other with a crusher gradient (10cm/s in three directions) to remove signals from large arteries. Scan times were 5min. without a crusher gradient and 5.5 min with a crusher gradient. Non-linear fitting algorithm finds the minimum mean squared solution of per-voxel based aCBV, cerebral blood flow, and arterial transit time, and fits the data into a hemodynamic model that represents superposition of blood volume and flow components within a single voxel. Results: aCBV maps with a crusher gradient represent signals from medium and small sized arteries, while those without a crusher gradient represent signals from all sized arteries, indicating that flow crusher gradients can be effectively employed to achieve size-specific aCBV mapping. Regardless of flow crusher, the CBF and ATT maps are very similar in appearance. Conclusion: Quantitative size selective blood volume mapping controlled by a flow crusher is feasible without additional information because the ASL quantification process doesn’t require an arterial input function measured from a large artery. The size specific blood volume mapping is not interfered by sSignals from large arteries do not interfere with size specific aCBV mapping in the applications of interest in for applications in which only medium or small arteries are of interest.

  2. Note on "An efficient approach for solving the lot-sizing problem with time-varying storage capacities"

    NARCIS (Netherlands)

    W.J. van den Heuvel; J.M. Gutierrez (Jose Miguel); H.C. Hwang (Hark-Chin)

    2010-01-01

    textabstractIn a recent paper Gutiérrez et al. (2008) show that the lot-sizing problem with inventory bounds can be solved in O(T log T) time. In this note we show that their algorithm does not lead to an optimal solution in general.

  3. A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows

    NARCIS (Netherlands)

    Bräysy, Olli; Porkka, Pasi P.; Dullaert, Wout; Repoussis, Panagiotis P.; Tarantilis, Christos D.

    This paper presents an efficient and well-scalable metaheuristic for fleet size and mix vehicle routing with time windows. The suggested solution method combines the strengths of well-known threshold accepting and guided local search metaheuristics to guide a set of four local search heuristics. The

  4. An efficient explicit marching on in time solver for magnetic field volume integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2015-07-25

    An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep scheme. At each time step, a system with a Gram matrix is solved for the predicted/corrected field expansion coefficients. Depending on the type of spatial testing scheme Gram matrix is sparse or consists of blocks with only diagonal entries regardless of the time step size. Consequently, the resulting MOT scheme is more efficient than its implicit counterparts, which call for inversion of fuller matrix system at lower frequencies. Numerical results, which demonstrate the efficiency, accuracy, and stability of the proposed MOT scheme, are presented.

  5. High temperature superconducting Josephson transmission lines for pulse and step sharpening

    International Nuclear Information System (INIS)

    Martens, J.S.; Wendt, J.R.; Hietala, V.M.; Ginley, D.S.; Ashby, C.I.H.; Plut, T.A.; Vawter, G.A.; Tigges, C.P.; Siegal, M.P.; Hou, S.Y.; Phillips, J.M.; Hohenwarter, G.K.G.

    1992-01-01

    An increasing number of high speed digital and other circuit applications require very narrow impulses or rapid pulse edge transitions. Shock wave transmission lines using series or shunt Josephson junctions are one way to generate these signals. Using two different high temperature superconducting Josephson junction processes (step-edge and electron beam defined nanobridges), such transmission lines have been constructed and tested at 77 K. Shock wave lines with approximately 60 YBaCuO nanobridges, have generated steps with fall times of about 10 ps. With step-edge junctions (with higher figures of merit but lower uniformity), step transition times have been reduced to an estimated 1 ps

  6. Quantification of the evolution of firm size distributions due to mergers and acquisitions

    Science.gov (United States)

    Sornette, Didier

    2017-01-01

    The distribution of firm sizes is known to be heavy tailed. In order to account for this stylized fact, previous economic models have focused mainly on growth through investments in a company’s own operations (internal growth). Thereby, the impact of mergers and acquisitions (M&A) on the firm size (external growth) is often not taken into consideration, notwithstanding its potential large impact. In this article, we make a first step into accounting for M&A. Specifically, we describe the effect of mergers and acquisitions on the firm size distribution in terms of an integro-differential equation. This equation is subsequently solved both analytically and numerically for various initial conditions, which allows us to account for different observations of previous empirical studies. In particular, it rationalises shortcomings of past work by quantifying that mergers and acquisitions develop a significant influence on the firm size distribution only over time scales much longer than a few decades. This explains why M&A has apparently little impact on the firm size distributions in existing data sets. Our approach is very flexible and can be extended to account for other sources of external growth, thus contributing towards a holistic understanding of the distribution of firm sizes. PMID:28841683

  7. Quantification of the evolution of firm size distributions due to mergers and acquisitions.

    Science.gov (United States)

    Lera, Sandro Claudio; Sornette, Didier

    2017-01-01

    The distribution of firm sizes is known to be heavy tailed. In order to account for this stylized fact, previous economic models have focused mainly on growth through investments in a company's own operations (internal growth). Thereby, the impact of mergers and acquisitions (M&A) on the firm size (external growth) is often not taken into consideration, notwithstanding its potential large impact. In this article, we make a first step into accounting for M&A. Specifically, we describe the effect of mergers and acquisitions on the firm size distribution in terms of an integro-differential equation. This equation is subsequently solved both analytically and numerically for various initial conditions, which allows us to account for different observations of previous empirical studies. In particular, it rationalises shortcomings of past work by quantifying that mergers and acquisitions develop a significant influence on the firm size distribution only over time scales much longer than a few decades. This explains why M&A has apparently little impact on the firm size distributions in existing data sets. Our approach is very flexible and can be extended to account for other sources of external growth, thus contributing towards a holistic understanding of the distribution of firm sizes.

  8. Quantification of the evolution of firm size distributions due to mergers and acquisitions.

    Directory of Open Access Journals (Sweden)

    Sandro Claudio Lera

    Full Text Available The distribution of firm sizes is known to be heavy tailed. In order to account for this stylized fact, previous economic models have focused mainly on growth through investments in a company's own operations (internal growth. Thereby, the impact of mergers and acquisitions (M&A on the firm size (external growth is often not taken into consideration, notwithstanding its potential large impact. In this article, we make a first step into accounting for M&A. Specifically, we describe the effect of mergers and acquisitions on the firm size distribution in terms of an integro-differential equation. This equation is subsequently solved both analytically and numerically for various initial conditions, which allows us to account for different observations of previous empirical studies. In particular, it rationalises shortcomings of past work by quantifying that mergers and acquisitions develop a significant influence on the firm size distribution only over time scales much longer than a few decades. This explains why M&A has apparently little impact on the firm size distributions in existing data sets. Our approach is very flexible and can be extended to account for other sources of external growth, thus contributing towards a holistic understanding of the distribution of firm sizes.

  9. Step scaling and the Yang-Mills gradient flow

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2014-01-01

    The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0,T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.

  10. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc).

    Science.gov (United States)

    Milner, Phillip J; Martell, Jeffrey D; Siegelman, Rebecca L; Gygi, David; Weston, Simon C; Long, Jeffrey R

    2018-01-07

    Alkyldiamine-functionalized variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary , secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2 (dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2 (dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2 (pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para -carboxylate), which, in contrast to Mg 2 (dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2 (pc-dobpdc) with large diamines such as N -( n -heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of

  11. The six-spot-step test - a new method for monitoring walking ability in patients with chronic inflammatory polyneuropathy

    DEFF Research Database (Denmark)

    Kreutzfeldt, Melissa; Jensen, Henrik B; Ravnborg, Mads

    2017-01-01

    OBJECTIVE: To evaluate whether the Six-Spot-Step-Test (SSST) is more suitable for monitoring walking ability in patients with chronic inflammatory polyneuropathy than the Timed-25-Foot-Walking test (T25FW). METHOD: In the SSST, participants have to walk as quickly as possible across a field...... of effect size, standardized response means and relative efficiency. Both ambulation tests correlated moderately to PGIC. CONCLUSION: The SSST may be superior to the T25FW in terms of dynamic range, floor effect and responsiveness which makes the SSST a possible alternative for monitoring walking ability...

  12. The stepping behavior analysis of pedestrians from different age groups via a single-file experiment

    Science.gov (United States)

    Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang

    2018-03-01

    The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.

  13. The way to collisions, step by step

    CERN Multimedia

    2009-01-01

    While the LHC sectors cool down and reach the cryogenic operating temperature, spirits are warming up as we all eagerly await the first collisions. No reason to hurry, though. Making particles collide involves the complex manoeuvring of thousands of delicate components. The experts will make it happen using a step-by-step approach.

  14. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    Science.gov (United States)

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity. © 2010 Blackwell Publishing Ltd.

  15. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.

    Science.gov (United States)

    Sleep, John; Irving, Malcolm; Burton, Kevin

    2005-03-15

    The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two

  16. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies

    DEFF Research Database (Denmark)

    Neuheimer, Anna; Hartvig, Martin; Heuschele, Jan

    2015-01-01

    is observed along with variability in physical and biological forcing factors in space and time. We compiled adult and offspring size for 407 pelagic marine species covering more than 17 orders of magnitude in body mass including Cephalopoda, Cnidaria, Crustaceans, Ctenophora, Elasmobranchii, Mammalia...... discuss where these two strategies occur and how these patterns (along with the relative size of the offspring) may be shaped by physical and biological constraints in the organism’s environment. This adaptive environment along with the evolutionary history of the different groups shape observed life......Explaining variability in offspring vs. adult size among groups is a necessary step to determine the evolutionary and environmental constraints shaping variability in life history strategies. This is of particular interest for life in the ocean where a diversity of offspring development strategies...

  17. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    Science.gov (United States)

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

  18. Improved size-tunable synthesis and SERS properties of Au nanostars

    Science.gov (United States)

    Khlebtsov, Boris; Panfilova, Elizaveta; Khanadeev, Vitaly; Khlebtsov, Nikolai

    2014-10-01

    Multibranched Au nanoparticles with sharp tips (commonly called nanostars, NSTs) have attracted significant attention as bright scattering labels, photothermal transducers, nanocarriers, and surface-enhanced Raman scattering (SERS) tags. However, for surfactant-free synthesized NSTs, the existing data on the size tuning and the relation between the size of NSTs and their SERS efficiency still remain limited. Here, we address these questions by synthesizing and comparing SERS for surfactant-free NSTs of different sizes and plasmon resonance (PR) wavelengths. The NSTs were fabricated by seeded growth through a two-step surfactant-free approach in which quasispherical seeds were overgrown via reduction of added Au by ascorbic acid in the presence of Ag ions. By varying the seed size from 3 to 35 nm, we tuned the final NST size from 45 to 150 nm while retaining the star-like morphology with sharp tips and ensuring PR tunability from 630 to 900 nm. The NST size and PR limits can be expanded from 40 to 200 nm and from 600 to 930 nm, respectively, by simultaneous variation in the seed size and concentration. The SERS efficiency of the fabricated NSTs was examined by Raman measurements of 1,4-aminothiophenol (ATP) adsorbed on the surface of colloidal NST particles. Although the homogenous analytical enhancement factor (AEF) did not depend essentially on the NST size and varied from 4 × 106 to 107, the enhancing properties of single-particle NST tags were strongly size-dependent. Specifically, the AEF for 150-nm NST35-ATP complexes was 30 and 100 times greater than that for 70-nm NST15-ATP and 45-nm NST3-ATP complexes, respectively. These properties make the NST-ATP complex a prospective platform for SERS imaging.

  19. Comparison of histological size at the time of diagnosis of invasive nonpalpable ductal and lobular breast cancers

    International Nuclear Information System (INIS)

    Perez-Aznar, J. M.; Garcia-Laborda, E.; Guzman de Villoria, J. A.

    2002-01-01

    To determine if there are differences in the mean histological sizes at the time of diagnosis between infiltrating ductal carcinomas (IDC) and infiltrating lobular carcinomas (ILC) of the breast. The distribution of the two histological types was compared by grouping tumor size in intervals according to the pTNM classification. We has a series of 900 consecutive non-palpable lesions suggestive of malignancy in the mammography of women undergoing annual screening. All lesions were marked by sterotaxis statistical study was made with the SPSS-X statisdics application. The data of 254 pure IDC and 24 pure ILC were obtained. The mean tumor size of the IDC was 12.o mm (SD=0.58). The mean size of the ILC was 15.7 mm (SD=1.28). There was no significant difference between them (p=0.179). No differences were found in the pTNM distribution between the two groups even after segmenting pT1 into T1a. T1b and T1c. Although it is accepted that ILC entails more clinical-radiological diagnostic difficulty, most authors find no differences in tumor size between ILC and other invasive carcinomas. The tumor size of our series was smaller than that of other authors who included palpable and non-palpable carcinomas in their series. The small number of cases of ILC was a study limitation. In our series, although the tumor size of ILC was somewhat larger, the difference was not statistically significant. (Author) 21 refs

  20. Image grating metrology using phase-stepping interferometry in scanning beam interference lithography

    Science.gov (United States)

    Li, Minkang; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Lu, Yancong; Xiang, Changcheng; Xiang, XianSong

    2016-10-01

    Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.