WorldWideScience

Sample records for time simulation results

  1. Solar Potential Analysis and Integration of the Time-Dependent Simulation Results for Semantic 3d City Models Using Dynamizers

    Science.gov (United States)

    Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.

    2017-10-01

    Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.

  2. VERSE - Virtual Equivalent Real-time Simulation

    Science.gov (United States)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  3. Time step MOTA thermostat simulation

    International Nuclear Information System (INIS)

    Guthrie, G.L.

    1978-09-01

    The report details the logic, program layout, and operating procedures for the time-step MOTA (Materials Open Test Assembly) thermostat simulation program known as GYRD. It will enable prospective users to understand the operation of the program, run it, and interpret the results. The time-step simulation analysis was the approach chosen to determine the maximum value gain that could be used to minimize steady temperature offset without risking undamped thermal oscillations. The advantage of the GYRD program is that it directly shows hunting, ringing phenomenon, and similar events. Programs BITT and CYLB are faster, but do not directly show ringing time

  4. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  5. CFD simulation of homogenisation time measured by radiotracers

    International Nuclear Information System (INIS)

    Thyn, J.; Novy, M.; Zitny, R.; Mostik, M.; Jahoda, M.

    2004-01-01

    A methodology for CFD (Computational Fluid Dynamics) simulation of radiotracer experiments was suggested. The most important parts of the methodology for validation of CFD results by radiotracers are: a) successful simulation of tracer experiment by CFD code (numerical solution of tracer dispersion in a stirred tank), which results in tracer concentration field at several time intervals; b) post-process data treatment, which uses detection chain description and which enables to simulate the detector measurement of homogenisation time from the tracer concentration field evaluated by CFD code. (author)

  6. Comparison Of Simulation Results When Using Two Different Methods For Mold Creation In Moldflow Simulation

    Directory of Open Access Journals (Sweden)

    Kaushikbhai C. Parmar

    2017-04-01

    Full Text Available Simulation gives different results when using different methods for the same simulation. Autodesk Moldflow Simulation software provide two different facilities for creating mold for the simulation of injection molding process. Mold can be created inside the Moldflow or it can be imported as CAD file. The aim of this paper is to study the difference in the simulation results like mold temperature part temperature deflection in different direction time for the simulation and coolant temperature for this two different methods.

  7. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  8. Computer simulations of long-time tails: what's new?

    NARCIS (Netherlands)

    Hoef, van der M.A.; Frenkel, D.

    1995-01-01

    Twenty five years ago Alder and Wainwright discovered, by simulation, the 'long-time tails' in the velocity autocorrelation function of a single particle in fluid [1]. Since then, few qualitatively new results on long-time tails have been obtained by computer simulations. However, within the

  9. Numerical simulations of time-resolved quantum electronics

    International Nuclear Information System (INIS)

    Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier

    2014-01-01

    Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation

  10. Using relational databases to collect and store discrete-event simulation results

    DEFF Research Database (Denmark)

    Poderys, Justas; Soler, José

    2016-01-01

    , export the results to a data carrier file and then process the results stored in a file using the data processing software. In this work, we propose to save the simulation results directly from a simulation tool to a computer database. We implemented a link between the discrete-even simulation tool...... and the database and performed performance evaluation of 3 different open-source database systems. We show, that with a right choice of a database system, simulation results can be collected and exported up to 2.67 times faster, and use 1.78 times less disk space when compared to using simulation software built...

  11. Time Domain Partitioning of Electricity Production Cost Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hale, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.

  12. Real-Time Incompressible Fluid Simulation on the GPU

    Directory of Open Access Journals (Sweden)

    Xiao Nie

    2015-01-01

    Full Text Available We present a parallel framework for simulating incompressible fluids with predictive-corrective incompressible smoothed particle hydrodynamics (PCISPH on the GPU in real time. To this end, we propose an efficient GPU streaming pipeline to map the entire computational task onto the GPU, fully exploiting the massive computational power of state-of-the-art GPUs. In PCISPH-based simulations, neighbor search is the major performance obstacle because this process is performed several times at each time step. To eliminate this bottleneck, an efficient parallel sorting method for this time-consuming step is introduced. Moreover, we discuss several optimization techniques including using fast on-chip shared memory to avoid global memory bandwidth limitations and thus further improve performance on modern GPU hardware. With our framework, the realism of real-time fluid simulation is significantly improved since our method enforces incompressibility constraint which is typically ignored due to efficiency reason in previous GPU-based SPH methods. The performance results illustrate that our approach can efficiently simulate realistic incompressible fluid in real time and results in a speed-up factor of up to 23 on a high-end NVIDIA GPU in comparison to single-threaded CPU-based implementation.

  13. Time-dependent simulation of organic light-emitting diodes

    International Nuclear Information System (INIS)

    Sharifi, M J

    2009-01-01

    Several methods to simulate the behavior of organic light-emitting diodes (OLEDs) have been proposed in the past. In this paper, we develop a previous method, based on the master equation, in order to allow the simulation of time-dependent behavior and transient states. The calculation algorithm of the program that we have written is described. The time-dependent behaviors of two simple monolayer devices and of a more complicated three-layer device were simulated by means of this program, and the results are discussed. The results show that the turn-off speed of an OLED might be very slow, especially in the case of a multilayer device. This behavior is related to the low mobility of the organic material in weak electric fields. An interesting feature of the time behavior is pointed out, whereby the recombination rate may become considerably larger after the falling edge of an applied voltage pulse. Moreover, the validity of the transient electro-luminescent method for measuring carrier mobility in organic material has been examined by means of simulation. The results show that there is some inconsistency especially in high electric fields

  14. Real-time hybrid simulation using the convolution integral method

    International Nuclear Information System (INIS)

    Kim, Sung Jig; Christenson, Richard E; Wojtkiewicz, Steven F; Johnson, Erik A

    2011-01-01

    This paper proposes a real-time hybrid simulation method that will allow complex systems to be tested within the hybrid test framework by employing the convolution integral (CI) method. The proposed CI method is potentially transformative for real-time hybrid simulation. The CI method can allow real-time hybrid simulation to be conducted regardless of the size and complexity of the numerical model and for numerical stability to be ensured in the presence of high frequency responses in the simulation. This paper presents the general theory behind the proposed CI method and provides experimental verification of the proposed method by comparing the CI method to the current integration time-stepping (ITS) method. Real-time hybrid simulation is conducted in the Advanced Hazard Mitigation Laboratory at the University of Connecticut. A seismically excited two-story shear frame building with a magneto-rheological (MR) fluid damper is selected as the test structure to experimentally validate the proposed method. The building structure is numerically modeled and simulated, while the MR damper is physically tested. Real-time hybrid simulation using the proposed CI method is shown to provide accurate results

  15. Analysis of Time Discretization and its Effect on Simulation Processes

    Directory of Open Access Journals (Sweden)

    Gilbert-Rainer Gillich

    2006-10-01

    Full Text Available The paper presents the influence of time discretization on the results of simulations of technical systems. In this sense the systems are mod-eled using the SciLab/SCICOS environment, using different time inter-vals. Ulterior the processes are simulated and the results are com-pared.

  16. Real-time simulation of ex-core nuclear instrumentation system

    International Nuclear Information System (INIS)

    Zhao Qiang; Zhang Zhijian; Cao Xinrong

    2005-01-01

    Real-time simulation of ex-core nuclear instrumentation system is an indispensable part of nuclear power plant (NPP) full-scope training simulator. The simulation method, which is based upon the theory of measurement, is introduced in the paper. The fitting formula between the measured data and the three-dimensional neutron flux distribution in the core is established. The fitting parameter is adjusted according to the reactor physical calculation or the experiment of power calibration. The simulation result shows that the method can simulate the ex-core neutron instrumentation system accurately in real-time and meets the needs of NPP full-scope training simulator. (authors)

  17. Real time simulation techniques in Taiwan - Maanshan compact simulator

    International Nuclear Information System (INIS)

    Liang, K.-S.; Chuang, Y.-M.; Ko, H.-T.

    2004-01-01

    Recognizing the demand and potential market of simulators in various industries, a special project for real time simulation technology transfer was initiated in Taiwan in 1991. In this technology transfer program, the most advanced real-time dynamic modules for nuclear power simulation were introduced. Those modules can be divided into two categories; one is modeling related to catch dynamic response of each system, and the other is computer related to provide special real time computing environment and man-machine interface. The modeling related modules consist of the thermodynamic module, the three-dimensional core neutronics module and the advanced balance of plant module. As planned in the project, the technology transfer team should build a compact simulator for the Maanshan power plant before the end of the project to demonstrate the success of the technology transfer program. The compact simulator was designed to support the training from the regular full scope simulator which was already equipped in the Maanshan plant. The feature of this compact simulator focused on providing know-why training by the enhanced graphic display. The potential users were identified as senior operators, instructors and nuclear engineers. Total about 13 important systems were covered in the scope of the compact simulator, and multi-graphic displays from three color monitors mounted on the 10 feet compact panel were facilitated to help the user visualize detailed phenomena under scenarios of interest. (author)

  18. Reconstructing the ideal results of a perturbed analog quantum simulator

    Science.gov (United States)

    Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael

    2018-04-01

    Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.

  19. RANA, a real-time multi-agent system simulator

    DEFF Research Database (Denmark)

    Jørgensen, Søren Vissing; Demazeau, Yves; Hallam, John

    2016-01-01

    for individualisation and abstraction while retaining efficiency. Events are managed by the C++ simulator core. Full run state can be recorded for post-processed visualisation or analysis. The new tool is demonstrated in three different cases: a mining robot simulation, which is purely action based; an agent......-based setup that is verifies the high precision exhibited by RANAs simulation core; and a state-based firefly-like agent simulation that models real-time responses to fellow agents' signals, in which event propagation and reception affect the result of the simulation....

  20. Variable slip wind generator modeling for real-time simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, R.; Brochu, J.; Turmel, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ

    2006-07-01

    A model of a wind turbine using a variable slip wound-rotor induction machine was presented. The model was created as part of a library of generic wind generator models intended for wind integration studies. The stator winding of the wind generator was connected directly to the grid and the rotor was driven by the turbine through a drive train. The variable resistors was synthesized by an external resistor in parallel with a diode rectifier. A forced-commutated power electronic device (IGBT) was connected to the wound rotor by slip rings and brushes. Simulations were conducted in a Matlab/Simulink environment using SimPowerSystems blocks to model power systems elements and Simulink blocks to model the turbine, control system and drive train. Detailed descriptions of the turbine, the drive train and the control system were provided. The model's implementation in the simulator was also described. A case study demonstrating the real-time simulation of a wind generator connected at the distribution level of a power system was presented. Results of the case study were then compared with results obtained from the SimPowerSystems off-line simulation. Results showed good agreement between the waveforms, demonstrating the conformity of the real-time and the off-line simulations. The capability of Hypersim for real-time simulation of wind turbines with power electronic converters in a distribution network was demonstrated. It was concluded that hardware-in-the-loop (HIL) simulation of wind turbine controllers for wind integration studies in power systems is now feasible. 5 refs., 1 tab., 6 figs.

  1. Real-Time ECG Simulation for Hybrid Mock Circulatory Loops.

    Science.gov (United States)

    Korn, Leonie; Rüschen, Daniel; Zander, Niklas; Leonhardt, Steffen; Walter, Marian

    2018-02-01

    Classically, mock circulatory loops only simulate mechanical properties of the circulation. To connect the hydraulic world with electrophysiology, we present a real-time electrical activity model of the heart and show how to integrate this model into a real-time mock loop simulation. The model incorporates a predefined conduction pathway and a simplified volume conductor to solve the bidomain equations and the forward problem of electrocardiography, resulting in a physiological simulation of the electrocardiogram (ECG) at arbitrary electrode positions. A complete physiological simulation of the heart's excitation would be too CPU intensive. Thus, in our model, complexity was reduced to allow real-time simulation of ECG-triggered medical systems in vitro; this decreases time and cost in the development process. Conversely, the presented model can still be adapted to various pathologies by locally changing the properties of the heart's conduction pathway. To simulate the ECG, the heart is divided into suitable areas, which are innervated by the hierarchically structured conduction system. To distinguish different cardiac regions, a segmentation of the heart was performed. In these regions, Prim's algorithm was applied to identify the directed minimal spanning trees for conduction orientation. Each node of the tree was assigned to a cardiac action potential generated by its hybrid automaton to represent the heart's conduction system by the spatial distribution of action potentials. To generate the ECG output, the bidomain equations were implemented and a simple model of the volume conductor of the body was used to solve the forward problem of electrocardiography. As a result, the model simulates potentials at arbitrary electrode positions in real-time. To verify the developed real-time ECG model, measurements were made within a hybrid mock circulatory loop, including a simple ECG-triggered ventricular assist device control. The model's potential value is to simulate

  2. Operating system for a real-time multiprocessor propulsion system simulator

    Science.gov (United States)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  3. Estimating order-picking times for return heuristic - equations and simulations

    Directory of Open Access Journals (Sweden)

    Grzegorz Tarczyński

    2015-09-01

    Full Text Available Background: A key element of the evaluation of warehouse operation is the average order-picking time. In warehouses where the order-picking process is carried out according to the "picker-to-part" rule the order-picking time is usually proportional to the distance covered by the picker while picking items. This distance can by estimated by simulations or using mathematical equations. In the paper only the best described in the literature one-block rectangular warehouses are considered. Material and methods: For the one-block rectangular warehouses there are well known five routing heuristics. In the paper the author considers the return heuristic in two variants. The paper presents well known Hall's and De Koster's equations for the average distance traveled by the picker while completing items from one pick list. The author presents own proposals for calculating the expected distance. Results: the results calculated by the use of mathematical equations (the formulas of Hall, De Koster and own propositions were compared with the average values obtained using computer simulations. For the most cases the average error does not exceed 1% (except for Hall's equations. To carry out simulation the computer software Warehouse Real-Time Simulator was used. Conclusions: the order-picking time is a function of many variables and its optimization is not easy. It can be done in two stages: firstly using mathematical equations the set of the potentially best variants is established, next the results are verified using simulations. The results calculated by the use of equations are not precise, but possible to achieve immediately. The simulations are more time-consuming, but allow to analyze the order-picking process more accurately.

  4. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  5. FAST: a three-dimensional time-dependent FEL simulation code

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1999-01-01

    In this report we briefly describe the three-dimensional, time-dependent FEL simulation code FAST. The equations of motion of the particles and Maxwell's equations are solved simultaneously taking into account the slippage effect. Radiation fields are calculated using an integral solution of Maxwell's equations. A special technique has been developed for fast calculations of the radiation field, drastically reducing the required CPU time. As a result, the developed code allows one to use a personal computer for time-dependent simulations. The code allows one to simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate simultaneously an external seed with superimposed noise in the electron beam; to take into account energy spread in the electron beam and the space charge fields; and to simulate a high-gain, high-efficiency FEL amplifier with a tapered undulator. It is important to note that there are no significant memory limitations in the developed code and an electron bunch of any length can be simulated

  6. Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques

    Science.gov (United States)

    Lee, Hanbong

    2016-01-01

    Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.

  7. Presenting simulation results in a nested loop plot.

    Science.gov (United States)

    Rücker, Gerta; Schwarzer, Guido

    2014-12-12

    Statisticians investigate new methods in simulations to evaluate their properties for future real data applications. Results are often presented in a number of figures, e.g., Trellis plots. We had conducted a simulation study on six statistical methods for estimating the treatment effect in binary outcome meta-analyses, where selection bias (e.g., publication bias) was suspected because of apparent funnel plot asymmetry. We varied five simulation parameters: true treatment effect, extent of selection, event proportion in control group, heterogeneity parameter, and number of studies in meta-analysis. In combination, this yielded a total number of 768 scenarios. To present all results using Trellis plots, 12 figures were needed. Choosing bias as criterion of interest, we present a 'nested loop plot', a diagram type that aims to have all simulation results in one plot. The idea was to bring all scenarios into a lexicographical order and arrange them consecutively on the horizontal axis of a plot, whereas the treatment effect estimate is presented on the vertical axis. The plot illustrates how parameters simultaneously influenced the estimate. It can be combined with a Trellis plot in a so-called hybrid plot. Nested loop plots may also be applied to other criteria such as the variance of estimation. The nested loop plot, similar to a time series graph, summarizes all information about the results of a simulation study with respect to a chosen criterion in one picture and provides a suitable alternative or an addition to Trellis plots.

  8. Multi-scale simulations of droplets in generic time-dependent flows

    Science.gov (United States)

    Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.

  9. Just-in-time Time Data Analytics and Visualization of Climate Simulations using the Bellerophon Framework

    Science.gov (United States)

    Anantharaj, V. G.; Venzke, J.; Lingerfelt, E.; Messer, B.

    2015-12-01

    Climate model simulations are used to understand the evolution and variability of earth's climate. Unfortunately, high-resolution multi-decadal climate simulations can take days to weeks to complete. Typically, the simulation results are not analyzed until the model runs have ended. During the course of the simulation, the output may be processed periodically to ensure that the model is preforming as expected. However, most of the data analytics and visualization are not performed until the simulation is finished. The lengthy time period needed for the completion of the simulation constrains the productivity of climate scientists. Our implementation of near real-time data visualization analytics capabilities allows scientists to monitor the progress of their simulations while the model is running. Our analytics software executes concurrently in a co-scheduling mode, monitoring data production. When new data are generated by the simulation, a co-scheduled data analytics job is submitted to render visualization artifacts of the latest results. These visualization output are automatically transferred to Bellerophon's data server located at ORNL's Compute and Data Environment for Science (CADES) where they are processed and archived into Bellerophon's database. During the course of the experiment, climate scientists can then use Bellerophon's graphical user interface to view animated plots and their associated metadata. The quick turnaround from the start of the simulation until the data are analyzed permits research decisions and projections to be made days or sometimes even weeks sooner than otherwise possible! The supercomputer resources used to run the simulation are unaffected by co-scheduling the data visualization jobs, so the model runs continuously while the data are visualized. Our just-in-time data visualization software looks to increase climate scientists' productivity as climate modeling moves into exascale era of computing.

  10. CUDA-based real time surgery simulation.

    Science.gov (United States)

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  11. Real time hardware-in-loop simulation of ESMO satellite attitude control system

    Directory of Open Access Journals (Sweden)

    Rune Finnset

    2006-04-01

    Full Text Available This paper studies attitude control of the ESMO satellite using six reaction thrusters. Bang-bang control with dead-zone and Pulse-Width Modulation (PWM for the modulation of the on-time of the thrusters are treated. Closed loop hardware-in-loop simulations, using themicrocontroller unit (MCU Microchip PIC18F452 for implementation of attitude control and MatLab in a standard PC for simulating satellite dynamics, are carried out. Results for real time simulation are compared with autonomous simulations. The controller gives a satisfactory performance in the real time environment.

  12. Use of high performance networks and supercomputers for real-time flight simulation

    Science.gov (United States)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  13. Simulation of time-dependent free-surface Navier-Stokes flows

    International Nuclear Information System (INIS)

    Muldowney, G.P.

    1989-01-01

    Two numerical methods for simulation of time-dependent free-surface Navier-Stokes flows are developed. Both techniques are based on semi-implicit time advancement of the momentum equations, integral formulation of the spatial problem at each timestep, and spectral-element discretization to solve the resulting integral equation. Central to each algorithm is a boundary-specific solution step which permits the spatial treatment in two dimensions to be performed in O(N 3 ) operations per timestep despite the presence of deforming geometry. The first approach is a domain-integral formulation involving integrals over the entire flow domain of kernel functions which arise in time-differencing the Navier-Stokes equations. The second is a particular-solution formulation which replaces domain integration with an iterative scheme to generate particular velocity and pressure fields on individual elements, followed by a patching step to produce a particular solution continuous over the full domain. Two of the most difficult aspects of viscous free-surface flow simulations, namely time-dependent geometry and nontrivial boundary conditions, are well accommodated by these integral equation techniques. In addition the methods offer spectral accuracy in space and admit arbitrarily high-order discretization in time. For large-scale computations and/or long-term time advancement the domain-integral algorithm must be executed on a supercomputer to deliver results in reasonable processing time. A detailed simulation of gas liquid flow with full resolution of the free phase boundary requires approximately five CPU hours at 80 megaflops

  14. Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk

    International Nuclear Information System (INIS)

    Schmitz, A.T.; Schwalm, W.A.

    2016-01-01

    Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain. - Highlights: • A discrete-time quantum walk is purposed which approximates a continuous-time quantum walk. • The purposed quantum walk could be used to simulate Hamiltonian dynamics on a quantum computer. • Given the spectra decomposition of the Hamiltonian, the quantum walk is solved explicitly. • The method is demonstrated and connected to previous work done on the 1D chain.

  15. The Simulation Realization of Pavement Roughness in the Time Domain

    Science.gov (United States)

    XU, H. L.; He, L.; An, D.

    2017-10-01

    As the needs for the dynamic study on the vehicle-pavement system and the simulated vibration table test, how to simulate the pavement roughness actually is important guarantee for whether calculation and test can reflect the actual situation or not. Using the power spectral density function, the simulation of pavement roughness can be realized by Fourier inverse transform. The main idea of this method was that the spectrum amplitude and random phase were obtained separately according to the power spectrum, and then the simulation of pavement roughness was obtained in the time domain through the Fourier inverse transform (IFFT). In the process, the sampling interval (Δl) was 0.1m, and the sampling points(N) was 4096, which satisfied the accuracy requirements. Using this method, the simulate results of pavement roughness (A~H grades) were obtain in the time domain.

  16. Implicit time-dependent finite different algorithm for quench simulation

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi

    1994-12-01

    A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)

  17. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change

  18. High performance real-time flight simulation at NASA Langley

    Science.gov (United States)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  19. Numerical simulation of electromagnetic wave propagation using time domain meshless method

    International Nuclear Information System (INIS)

    Ikuno, Soichiro; Fujita, Yoshihisa; Itoh, Taku; Nakata, Susumu; Nakamura, Hiroaki; Kamitani, Atsushi

    2012-01-01

    The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electromagnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where R denotes a support radius of the weight function for the shape function. And the results indicate that the support radius R of the weight functions should be selected small, and monomials must be used for calculating the shape functions. (author)

  20. Implementation of SoC Based Real-Time Electromagnetic Transient Simulator

    Directory of Open Access Journals (Sweden)

    I. Herrera-Leandro

    2017-01-01

    Full Text Available Real-time electromagnetic transient simulators are important tools in the design stage of new control and protection systems for power systems. Real-time simulators are used to test and stress new devices under similar conditions that the device will deal with in a real network with the purpose of finding errors and bugs in the design. The computation of an electromagnetic transient is complex and computationally demanding, due to features such as the speed of the phenomenon, the size of the network, and the presence of time variant and nonlinear elements in the network. In this work, the development of a SoC based real-time and also offline electromagnetic transient simulator is presented. In the design, the required performance is met from two sides, (a using a technique to split the power system into smaller subsystems, which allows parallelizing the algorithm, and (b with specialized and parallel hardware designed to boost the solution flow. The results of this work have shown that for the proposed case studies, based on a balanced distribution of the node of subsystems, the proposed approach has decreased the total simulation time by up to 99 times compared with the classical approach running on a single high performance 32-bit embedded processor ARM-Cortex A9.

  1. Wind Energy System Time-domain (WEST) analyzers using hybrid simulation techniques

    Science.gov (United States)

    Hoffman, J. A.

    1979-01-01

    Two stand-alone analyzers constructed for real time simulation of the complex dynamic characteristics of horizontal-axis wind energy systems are described. Mathematical models for an aeroelastic rotor, including nonlinear aerodynamic and elastic loads, are implemented with high speed digital and analog circuitry. Models for elastic supports, a power train, a control system, and a rotor gimbal system are also included. Limited correlation efforts show good comparisons between results produced by the analyzers and results produced by a large digital simulation. The digital simulation results correlate well with test data.

  2. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems

    Science.gov (United States)

    Kang, Yan-Mei

    2016-09-01

    For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.

  3. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    Science.gov (United States)

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  4. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  5. Real-Time-Simulation of IEEE-5-Bus Network on OPAL-RT-OP4510 Simulator

    Science.gov (United States)

    Atul Bhandakkar, Anjali; Mathew, Lini, Dr.

    2018-03-01

    The Real-Time Simulator tools have high computing technologies, improved performance. They are widely used for design and improvement of electrical systems. The advancement of the software tools like MATLAB/SIMULINK with its Real-Time Workshop (RTW) and Real-Time Windows Target (RTWT), real-time simulators are used extensively in many engineering fields, such as industry, education, and research institutions. OPAL-RT-OP4510 is a Real-Time Simulator which is used in both industry and academia. In this paper, the real-time simulation of IEEE-5-Bus network is carried out by means of OPAL-RT-OP4510 with CRO and other hardware. The performance of the network is observed with the introduction of fault at various locations. The waveforms of voltage, current, active and reactive power are observed in the MATLAB simulation environment and on the CRO. Also, Load Flow Analysis (LFA) of IEEE-5-Bus network is computed using MATLAB/Simulink power-gui load flow tool.

  6. Speeding Up Network Simulations Using Discrete Time

    OpenAIRE

    Lucas, Aaron; Armbruster, Benjamin

    2013-01-01

    We develop a way of simulating disease spread in networks faster at the cost of some accuracy. Instead of a discrete event simulation (DES) we use a discrete time simulation. This aggregates events into time periods. We prove a bound on the accuracy attained. We also discuss the choice of step size and do an analytical comparison of the computational costs. Our error bound concept comes from the theory of numerical methods for SDEs and the basic proof structure comes from the theory of numeri...

  7. tms-sim - Timing Models Scheduling Simulation Framework: Release 2014-12

    OpenAIRE

    Kluge, Florian

    2015-01-01

    tms-sim is a framework for the simulation and evaluation of scheduling algorithms. It is being developed to support our work on real-time task scheduling based on time-utility and history-cognisant utility functions. We publish tms-sim under the conditions of the GNU GPL to make our results reproducible and in the hope that it may be useful for others. This report describes the usage of the TMS framework libraries and how they can be used to build further simulation environments. It is not in...

  8. First results from the IllustrisTNG simulations: the galaxy colour bimodality

    Science.gov (United States)

    Nelson, Dylan; Pillepich, Annalisa; Springel, Volker; Weinberger, Rainer; Hernquist, Lars; Pakmor, Rüdiger; Genel, Shy; Torrey, Paul; Vogelsberger, Mark; Kauffmann, Guinevere; Marinacci, Federico; Naiman, Jill

    2018-03-01

    We introduce the first two simulations of the IllustrisTNG project, a next generation of cosmological magnetohydrodynamical simulations, focusing on the optical colours of galaxies. We explore TNG100, a rerun of the original Illustris box, and TNG300, which includes 2 × 25003 resolution elements in a volume 20 times larger. Here, we present first results on the galaxy colour bimodality at low redshift. Accounting for the attenuation of stellar light by dust, we compare the simulated (g - r) colours of 109 1011 M⊙ which redden at z z = 0 mass post-reddening; at the same time, ˜18 per cent of such massive galaxies acquire half or more of their final stellar mass while on the red sequence.

  9. Action simulation: time course and representational mechanisms

    Science.gov (United States)

    Springer, Anne; Parkinson, Jim; Prinz, Wolfgang

    2013-01-01

    The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563

  10. Real-Time Human in the Loop MBS Simulation in the Fraunhofer Robot-Based Driving Simulator

    Directory of Open Access Journals (Sweden)

    Kleer Michael

    2014-08-01

    Full Text Available The paper encompasses the overview of hardware architecture and the systems characteristics of the Fraunhofer driving simulator. First, the requirements of the real-time model and the real-time calculation hardware are defined and discussed in detail. Aspects like transport delay and the parallel computation of complex real-time models are presented. In addition, the interfacing of the models with the simulator system is shown. Two simulator driving tests, including a fully interactive rough terrain driving with a wheeled excavator and a test drive with a passenger car, are set to demonstrate system characteristics. Furthermore, the simulator characteristics of practical significance, such as simulator response time delay, simulator acceleration signal bandwidth obtained from artificial excitation and from the simulator driving test, will be presented and discussed.

  11. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  12. Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator

    Science.gov (United States)

    Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique

    1993-01-01

    The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.

  13. Summarizing Simulation Results using Causally-relevant States

    Science.gov (United States)

    Parikh, Nidhi; Marathe, Madhav; Swarup, Samarth

    2016-01-01

    As increasingly large-scale multiagent simulations are being implemented, new methods are becoming necessary to make sense of the results of these simulations. Even concisely summarizing the results of a given simulation run is a challenge. Here we pose this as the problem of simulation summarization: how to extract the causally-relevant descriptions of the trajectories of the agents in the simulation. We present a simple algorithm to compress agent trajectories through state space by identifying the state transitions which are relevant to determining the distribution of outcomes at the end of the simulation. We present a toy-example to illustrate the working of the algorithm, and then apply it to a complex simulation of a major disaster in an urban area. PMID:28042620

  14. Atomistic simulations of graphite etching at realistic time scales.

    Science.gov (United States)

    Aussems, D U B; Bal, K M; Morgan, T W; van de Sanden, M C M; Neyts, E C

    2017-10-01

    Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼10 20 m -2 s -1 . The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.

  15. Real-time simulation of energy management in a domestic consumer

    DEFF Research Database (Denmark)

    Fernandes, F.; Silva, M.; Faria, P.

    2013-01-01

    Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoi......-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer....

  16. Parareal in Time for Dynamic Simulations of Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurrala, Gurunath [ORNL; Dimitrovski, Aleksandar D [ORNL; Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL; Starke, Michael R [ORNL

    2015-01-01

    In recent years, there have been significant developments in parallel algorithms and high performance parallel computing platforms. Parareal in time algorithm has become popular for long transient simulations (e.g., molecular dynamics, fusion, reacting flows). Parareal is a parallel algorithm which divides the time interval into sub-intervals and solves them concurrently. This paper investigates the applicability of the parareal algorithm to power system dynamic simulations. Preliminary results on the application of parareal for multi-machine power systems are reported in this paper. Two widely used test systems, WECC 3-generator 9-bus system, New England 10-generator 39- bus system, is used to explore the effectiveness of the parareal. Severe 3 phase bus faults are simulated using both the classical and detailed models of multi-machine power systems. Actual Speedup of 5-7 times is observed assuming ideal parallelization. It has been observed that the speedup factors of the order of 20 can be achieved by using fast coarse approximations of power system models. Dependency of parareal convergence on fault duration and location has been observed.

  17. A Real-Time Simulation Platform for Power System Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei

    2010-01-01

    This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...... in real time. Various phenomena commonly encountered when dealing with the two-area system is studied. Despite its small size, it mimics very closely the behavior of typical systems in actual operation. The electromagnetic transient type of simulation made in RSCAD enables the study of fast and detailed...... phenomena like single-phase faults in the two-area network and to observe their effects on a larger time scale. Also, the case study of 11 bus system with 5 generators has been also used and the results are presented....

  18. Exponential stability result for discrete-time stochastic fuzzy uncertain neural networks

    International Nuclear Information System (INIS)

    Mathiyalagan, K.; Sakthivel, R.; Marshal Anthoni, S.

    2012-01-01

    This Letter addresses the stability analysis problem for a class of uncertain discrete-time stochastic fuzzy neural networks (DSFNNs) with time-varying delays. By constructing a new Lyapunov–Krasovskii functional combined with the free weighting matrix technique, a new set of delay-dependent sufficient conditions for the robust exponential stability of the considered DSFNNs is established in terms of Linear Matrix Inequalities (LMIs). Finally, numerical examples with simulation results are provided to illustrate the applicability and usefulness of the obtained theory. -- Highlights: ► Applications of neural networks require the knowledge of dynamic behaviors. ► Exponential stability of discrete-time stochastic fuzzy neural networks is studied. ► Linear matrix inequality optimization approach is used to obtain the result. ► Delay-dependent stability criterion is established in terms of LMIs. ► Examples with simulation are provided to show the effectiveness of the result.

  19. An FFT-accelerated time-domain multiconductor transmission line simulator

    KAUST Repository

    Bagci, Hakan

    2010-02-01

    A fast time-domain multiconductor transmission line (MTL) simulator for analyzing general MTL networks is presented. The simulator models the networks as homogeneous MTLs that are excited by external fields and driven/terminated/ connected by potentially nonlinear lumped circuitry. It hybridizes an MTL solver derived from time-domain integral equations (TDIEs) in unknown wave coefficients for each MTL with a circuit solver rooted in modified nodal analysis equations in unknown node voltages and voltage-source currents for each circuit. These two solvers are rigorously interfaced at MTL and circuit terminals, and the resulting coupled system of equations is solved simultaneously for all MTL and circuit unknowns at each time step. The proposed simulator is amenable to hybridization, is fast Fourier transform (FFT)-accelerated, and is highly accurate: 1) It can easily be hybridized with TDIE-based field solvers (in a fully rigorous mathematical framework) for performing electromagnetic interference and compatibility analysis on electrically large and complex structures loaded with MTL networks. 2) It is accelerated by an FFT algorithm that calculates temporal convolutions of time-domain MTL Green functions in only O(Ntlog2 N t) rather than O(Ntt2) operations, where N t is the number of time steps of simulation. Moreover, the algorithm, which operates on temporal samples of MTL Green functions, is indifferent to the method used to obtain them. 3) It approximates MTL voltages, currents, and wave coefficients, using high-order temporal basis functions. Various numerical examples, including the crosstalk analysis of a (twisted) unshielded twisted-pair (UTP)-CAT5 cable and the analysis of field coupling into UTP-CAT5 and RG-58 cables located on an airplane, are presented to demonstrate the accuracy, efficiency, and versatility of the proposed simulator. © 2010 IEEE.

  20. Real time simulator for material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Ishitsuka, Tatsuo; Tamura, Kazuo [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-03-15

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  1. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide; Ishitsuka, Tatsuo; Tamura, Kazuo

    2012-01-01

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  2. A modular method to handle multiple time-dependent quantities in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Shin, J; Faddegon, B A; Perl, J; Schümann, J; Paganetti, H

    2012-01-01

    A general method for handling time-dependent quantities in Monte Carlo simulations was developed to make such simulations more accessible to the medical community for a wide range of applications in radiotherapy, including fluence and dose calculation. To describe time-dependent changes in the most general way, we developed a grammar of functions that we call ‘Time Features’. When a simulation quantity, such as the position of a geometrical object, an angle, a magnetic field, a current, etc, takes its value from a Time Feature, that quantity varies over time. The operation of time-dependent simulation was separated into distinct parts: the Sequence samples time values either sequentially at equal increments or randomly from a uniform distribution (allowing quantities to vary continuously in time), and then each time-dependent quantity is calculated according to its Time Feature. Due to this modular structure, time-dependent simulations, even in the presence of multiple time-dependent quantities, can be efficiently performed in a single simulation with any given time resolution. This approach has been implemented in TOPAS (TOol for PArticle Simulation), designed to make Monte Carlo simulations with Geant4 more accessible to both clinical and research physicists. To demonstrate the method, three clinical situations were simulated: a variable water column used to verify constancy of the Bragg peak of the Crocker Lab eye treatment facility of the University of California, the double-scattering treatment mode of the passive beam scattering system at Massachusetts General Hospital (MGH), where a spinning range modulator wheel accompanied by beam current modulation produces a spread-out Bragg peak, and the scanning mode at MGH, where time-dependent pulse shape, energy distribution and magnetic fields control Bragg peak positions. Results confirm the clinical applicability of the method. (paper)

  3. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    Science.gov (United States)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  4. TRSM-a thermal-hydraulic real-time simulation model for PWR

    International Nuclear Information System (INIS)

    Zhou Weichang

    1997-01-01

    TRSM (a Thermal-hydraulic Real-time Simulation Model) has been developed for PWR real-time simulation and best-estimate prediction of normal operating and abnormal accident conditions. It is a non-equilibrium two phase flow thermal-hydraulic model based on five basic conservation equations. A drift flux model is used to account for the unequal velocities of liquid and gaseous mixture, with or without the presence of the noncondensibles. Critical flow models are applied for break flow and valve flow calculations. A 5-regime two phase heat convection model is applied for clad-to-coolant as well as fluid-to-tubing heat transfer. A rigorous reactor coolant pump model is used to calculate the pressure drop and rise for the suction and discharge ends with complete pump characteristics curves included. The TRSM model has been adapted in the full-scale training simulator of Qinshan Nuclear Power Plant 300 MW unit to simulate the thermal-hydraulic performance of the NSSS. The simulation results of a cold leg LOCA and a steam generator tube rupture (SGTR) accident are presented

  5. Real-time simulation of aeroelastic rotor loads for horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Marnett, M; Wellenberg, S; Schröder, W

    2014-01-01

    Wind turbine drivetrain research and test facilities with hardware-in-the-loop capabilities require a robust and accurate aeroelastic real-time rotor simulation environment. Recent simulation environments do not guarantee a computational response at real-time. Which is why a novel simulation tool has been developed. It resolves the physical time domain of the turbulent wind spectra and the operational response of the turbine at real-time conditions. Therefore, there is a trade-off between accuracy of the physical models and the computational costs. However, the study shows the possibility to preserve the necessary computational accuracy while simultaneously granting dynamic interaction with the aeroelastic rotor simulation environment. The achieved computational costs allow a complete aeroelastic rotor simulation at a resolution frequency of 100 Hz on standard computer platforms. Results obtained for the 5-MW reference wind turbine by the National Renewable Energy Laboratory (NREL) are discussed and compared to NREL's fatigue, aerodynamics, structures, and turbulence (FAST)- Code. The rotor loads show a convincing match. The novel simulation tool is applied to the wind turbine drivetrain test facility at the Center for Wind Power Drives (CWD), RWTH Aachen University to show the real-time hardware-in-the-loop capabilities

  6. Realistic 3D Terrain Roaming and Real-Time Flight Simulation

    Science.gov (United States)

    Que, Xiang; Liu, Gang; He, Zhenwen; Qi, Guang

    2014-12-01

    This paper presents an integrate method, which can provide access to current status and the dynamic visible scanning topography, to enhance the interactive during the terrain roaming and real-time flight simulation. A digital elevation model and digital ortho-photo map data integrated algorithm is proposed as the base algorithm for our approach to build a realistic 3D terrain scene. A new technique with help of render to texture and head of display for generating the navigation pane is used. In the flight simulating, in order to eliminate flying "jump", we employs the multidimensional linear interpolation method to adjust the camera parameters dynamically and steadily. Meanwhile, based on the principle of scanning laser imaging, we draw pseudo color figures by scanning topography in different directions according to the real-time flying status. Simulation results demonstrate that the proposed algorithm is prospective for applications and the method can improve the effect and enhance dynamic interaction during the real-time flight.

  7. Boat, wake, and wave real-time simulation

    Science.gov (United States)

    Świerkowski, Leszek; Gouthas, Efthimios; Christie, Chad L.; Williams, Owen M.

    2009-05-01

    We describe the extension of our real-time scene generation software VIRSuite to include the dynamic simulation of small boats and their wakes within an ocean environment. Extensive use has been made of the programmabilty available in the current generation of GPUs. We have demonstrated that real-time simulation is feasible, even including such complexities as dynamical calculation of the boat motion, wake generation and calculation of an FFTgenerated sea state.

  8. A real-time computer simulation of nuclear simulator software using standard PC hardware and linux environments

    International Nuclear Information System (INIS)

    Cha, K. H.; Kweon, K. C.

    2001-01-01

    A feasibility study, which standard PC hardware and Real-Time Linux are applied to real-time computer simulation of software for a nuclear simulator, is presented in this paper. The feasibility prototype was established with the existing software in the Compact Nuclear Simulator (CNS). Throughout the real-time implementation in the feasibility prototype, we has identified that the approach can enable the computer-based predictive simulation to be approached, due to both the remarkable improvement in real-time performance and the less efforts for real-time implementation under standard PC hardware and Real-Time Linux envrionments

  9. Power in the loop real time simulation platform for renewable energy generation

    Science.gov (United States)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  10. FPGA-based real-time simulation of power converters of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Kokenyesi, Tamas; Varjasi, Istvan [Budapest University of Technology and Economics, Department of Automation and Applied Informatics (Hungary)], e-mail: kokenyesi.tamas@gmail.com, email: varjasi@aut.bme.hu

    2011-07-01

    This paper presents a hardware-in-the-loop testing (HIL) approach based on a field programmable gate array (FPGA) real-time simulation with real measured signals designed to reduce the cost and time for testing the main circuit of a power converter significantly. This method allows the control unit to measure its outputs on the same signal level in a completely transparent way, unlike other computer based simulation methods. As an example, a simulator for a three-phase inverter used for DC/AC conversion or frequency control is described and the simulated network illustrated. The calculation procedure and relative equations are also detailed, with simulation parameters and some measurement results being presented. It was found that the main advantage of this method is speed, which was only limited by the actual capabilities of the FPGA used. This method can be applied to a wide variety of analog circuits, reducing time to market. More complex circuits and higher frequencies could be simulated in the future with the evolution of FPGAs.

  11. Time simulation of flutter with large stiffness changes

    Science.gov (United States)

    Karpel, Mordechay; Wieseman, Carol D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for a basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness, and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few apriori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  12. Real-time inextensible surgical thread simulation.

    Science.gov (United States)

    Xu, Lang; Liu, Qian

    2018-03-27

    This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.

  13. Numerical simulation of homogenization time measurement by probes with different volume size

    International Nuclear Information System (INIS)

    Thyn, J.; Novy, M.; Zitny, R.; Mostek, M.; Jahoda, M.

    2004-01-01

    Results of continuous homogenization time measurement of liquid in a stirred tank depend on the scale of scrutiny. Experimental techniques use a probe, which is situated inside as a conductivity method, or outside of the tank as in the case of gamma-radiotracer methods. Expected value of homogenization time evaluated for a given degree of homogenization is higher when using the conductivity method because the conductivity probe measures relatively small volume in contrast to application of radiotracer, when the volume is much greater. Measurement through the wall of tank is a great advantage of radiotracer application but a comparison of the results with another method supposes a determination of measured volume, which is not easy. Simulation of measurement by CFD code can help to solve the problem. Methodology for CFD simulation of radiotracer experiments was suggested. Commercial software was used for simulation of liquid homogenization in mixed vessel with Rushton turbine. Numerical simulation of liquid homogenization time by CFD for different values of detected volume was confronted with measurement of homogenization time with conductivity probe and with different radioisotopes 198 Au, 82 Br and 24 Na. Detected size of the tank volume was affected by different energy of radioisotope used. (author)

  14. Time-Domain Simulation of RF Couplers

    International Nuclear Information System (INIS)

    Smithe, David; Carlsson, Johan; Austin, Travis

    2009-01-01

    We have developed a finite-difference time-domain (FDTD) fluid-like approach to integrated plasma-and-coupler simulation [1], and show how it can be used to model LH and ICRF couplers in the MST and larger tokamaks.[2] This approach permits very accurate 3-D representation of coupler geometry, and easily includes non-axi-symmetry in vessel wall, magnetic equilibrium, and plasma density. The plasma is integrated with the FDTD Maxwell solver in an implicit solve that steps over electron time-scales, and permits tenuous plasma in the coupler itself, without any need to distinguish or interface between different regions of vacuum and/or plasma. The FDTD algorithm is also generalized to incorporate a time-domain sheath potential [3] on metal structures within the simulation, to look for situations where the sheath potential might generate local sputtering opportunities. Benchmarking of the time-domain sheath algorithm has been reported in the references. Finally, the time-domain software [4] permits the use of particles, either as field diagnostic (test particles) or to self-consistently compute plasma current from the applied RF power.

  15. Helicopter time-domain electromagnetic numerical simulation based on Leapfrog ADI-FDTD

    Science.gov (United States)

    Guan, S.; Ji, Y.; Li, D.; Wu, Y.; Wang, A.

    2017-12-01

    We present a three-dimension (3D) Alternative Direction Implicit Finite-Difference Time-Domain (Leapfrog ADI-FDTD) method for the simulation of helicopter time-domain electromagnetic (HTEM) detection. This method is different from the traditional explicit FDTD, or ADI-FDTD. Comparing with the explicit FDTD, leapfrog ADI-FDTD algorithm is no longer limited by Courant-Friedrichs-Lewy(CFL) condition. Thus, the time step is longer. Comparing with the ADI-FDTD, we reduce the equations from 12 to 6 and .the Leapfrog ADI-FDTD method will be easier for the general simulation. First, we determine initial conditions which are adopted from the existing method presented by Wang and Tripp(1993). Second, we derive Maxwell equation using a new finite difference equation by Leapfrog ADI-FDTD method. The purpose is to eliminate sub-time step and retain unconditional stability characteristics. Third, we add the convolution perfectly matched layer (CPML) absorbing boundary condition into the leapfrog ADI-FDTD simulation and study the absorbing effect of different parameters. Different absorbing parameters will affect the absorbing ability. We find the suitable parameters after many numerical experiments. Fourth, We compare the response with the 1-Dnumerical result method for a homogeneous half-space to verify the correctness of our algorithm.When the model contains 107*107*53 grid points, the conductivity is 0.05S/m. The results show that Leapfrog ADI-FDTD need less simulation time and computer storage space, compared with ADI-FDTD. The calculation speed decreases nearly four times, memory occupation decreases about 32.53%. Thus, this algorithm is more efficient than the conventional ADI-FDTD method for HTEM detection, and is more precise than that of explicit FDTD in the late time.

  16. CFD simulation of local and global mixing time in an agitated tank

    Science.gov (United States)

    Li, Liangchao; Xu, Bin

    2017-01-01

    The Issue of mixing efficiency in agitated tanks has drawn serious concern in many industrial processes. The turbulence model is very critical to predicting mixing process in agitated tanks. On the basis of computational fluid dynamics(CFD) software package Fluent 6.2, the mixing characteristics in a tank agitated by dual six-blade-Rushton-turbines(6-DT) are predicted using the detached eddy simulation(DES) method. A sliding mesh(SM) approach is adopted to solve the rotation of the impeller. The simulated flow patterns and liquid velocities in the agitated tank are verified by experimental data in the literature. The simulation results indicate that the DES method can obtain more flow details than Reynolds-averaged Navier-Stokes(RANS) model. Local and global mixing time in the agitated tank is predicted by solving a tracer concentration scalar transport equation. The simulated results show that feeding points have great influence on mixing process and mixing time. Mixing efficiency is the highest for the feeding point at location of midway of the two impellers. Two methods are used to determine global mixing time and get close result. Dimensionless global mixing time remains unchanged with increasing of impeller speed. Parallel, merging and diverging flow pattern form in the agitated tank, respectively, by changing the impeller spacing and clearance of lower impeller from the bottom of the tank. The global mixing time is the shortest for the merging flow, followed by diverging flow, and the longest for parallel flow. The research presents helpful references for design, optimization and scale-up of agitated tanks with multi-impeller.

  17. Uncertainty Propagation Analysis for the Monte Carlo Time-Dependent Simulations

    International Nuclear Information System (INIS)

    Shaukata, Nadeem; Shim, Hyung Jin

    2015-01-01

    In this paper, a conventional method to control the neutron population for super-critical systems is implemented. Instead of considering the cycles, the simulation is divided in time intervals. At the end of each time interval, neutron population control is applied on the banked neutrons. Randomly selected neutrons are discarded, until the size of neutron population matches the initial neutron histories at the beginning of time simulation. A time-dependent simulation mode has also been implemented in the development version of SERPENT 2 Monte Carlo code. In this mode, sequential population control mechanism has been proposed for modeling of prompt super-critical systems. A Monte Carlo method has been properly used in TART code for dynamic criticality calculations. For super-critical systems, the neutron population is allowed to grow over a period of time. The neutron population is uniformly combed to return it to the neutron population started with at the beginning of time boundary. In this study, conventional time-dependent Monte Carlo (TDMC) algorithm is implemented. There is an exponential growth of neutron population in estimation of neutron density tally for super-critical systems and the number of neutrons being tracked exceed the memory of the computer. In order to control this exponential growth at the end of each time boundary, a conventional time cut-off controlling population strategy is included in TDMC. A scale factor is introduced to tally the desired neutron density at the end of each time boundary. The main purpose of this paper is the quantification of uncertainty propagation in neutron densities at the end of each time boundary for super-critical systems. This uncertainty is caused by the uncertainty resulting from the introduction of scale factor. The effectiveness of TDMC is examined for one-group infinite homogeneous problem (the rod model) and two-group infinite homogeneous problem. The desired neutron density is tallied by the introduction of

  18. Uncertainty Propagation Analysis for the Monte Carlo Time-Dependent Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shaukata, Nadeem; Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    In this paper, a conventional method to control the neutron population for super-critical systems is implemented. Instead of considering the cycles, the simulation is divided in time intervals. At the end of each time interval, neutron population control is applied on the banked neutrons. Randomly selected neutrons are discarded, until the size of neutron population matches the initial neutron histories at the beginning of time simulation. A time-dependent simulation mode has also been implemented in the development version of SERPENT 2 Monte Carlo code. In this mode, sequential population control mechanism has been proposed for modeling of prompt super-critical systems. A Monte Carlo method has been properly used in TART code for dynamic criticality calculations. For super-critical systems, the neutron population is allowed to grow over a period of time. The neutron population is uniformly combed to return it to the neutron population started with at the beginning of time boundary. In this study, conventional time-dependent Monte Carlo (TDMC) algorithm is implemented. There is an exponential growth of neutron population in estimation of neutron density tally for super-critical systems and the number of neutrons being tracked exceed the memory of the computer. In order to control this exponential growth at the end of each time boundary, a conventional time cut-off controlling population strategy is included in TDMC. A scale factor is introduced to tally the desired neutron density at the end of each time boundary. The main purpose of this paper is the quantification of uncertainty propagation in neutron densities at the end of each time boundary for super-critical systems. This uncertainty is caused by the uncertainty resulting from the introduction of scale factor. The effectiveness of TDMC is examined for one-group infinite homogeneous problem (the rod model) and two-group infinite homogeneous problem. The desired neutron density is tallied by the introduction of

  19. Towards Real Time Simulation of Ship-Ship Interaction

    DEFF Research Database (Denmark)

    Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    We present recent and preliminary work directed towards the development of a simplified, physics-based model for improved simulation of ship-ship interaction that can be used for both analysis and real-time computing (i.e. with real-time constraints due to visualization). The goal is to implement...... accurate (realistic) and much faster ship-wave and ship-ship simulations than are currently possible. The coupling of simulation with visualization should improve the visual experience such that it can be perceived as more realistic in training. Today the state-of-art in real-time ship-ship interaction...... is for efficiency reasons and time-constraints in visualization based on model experiments in towing tanks and precomputed force tables. We anticipate that the fast, and highly parallel, algorithm described by Engsig-Karup et al. [2011] for execution on affordable modern high-throughput Graphics Processing Units...

  20. Design base transient analysis using the real-time nuclear reactor simulator model

    International Nuclear Information System (INIS)

    Tien, K.K.; Yakura, S.J.; Morin, J.P.; Gregory, M.V.

    1987-01-01

    A real-time simulation model has been developed to describe the dynamic response of all major systems in a nuclear process reactor. The model consists of a detailed representation of all hydraulic components in the external coolant circulating loops consisting of piping, valves, pumps and heat exchangers. The reactor core is described by a three-dimensional neutron kinetics model with detailed representation of assembly coolant and moderator thermal hydraulics. The models have been developed to support a real-time training simulator, therefore, they reproduce system parameters characteristic of steady state normal operation with high precision. The system responses for postulated severe transients such as large pipe breaks, loss of pumping power, piping leaks, malfunctions in control rod insertion, and emergency injection of neutron absorber are calculated to be in good agreement with reference safety analyses. Restrictions were imposed by the requirement that the resulting code be able to run in real-time with sufficient spare time to allow interfacing with secondary systems and simulator hardware. Due to hardware set-up and real plant instrumentation, simplifications due to symmetry were not allowed. The resulting code represents a coarse-node engineering model in which the level of detail has been tailored to the available computing power of a present generation super-minicomputer. Results for several significant transients, as calculated by the real-time model, are compared both to actual plant data and to results generated by fine-mesh analysis codes

  1. Design base transient analysis using the real-time nuclear reactor simulator model

    International Nuclear Information System (INIS)

    Tien, K.K.; Yakura, S.J.; Morin, J.P.; Gregory, M.V.

    1987-01-01

    A real-time simulation model has been developed to describe the dynamic response of all major systems in a nuclear process reactor. The model consists of a detailed representation of all hydraulic components in the external coolant circulating loops consisting of piping, valves, pumps and heat exchangers. The reactor core is described by a three-dimensional neutron kinetics model with detailed representation of assembly coolant and mode-rator thermal hydraulics. The models have been developed to support a real-time training simulator, therefore, they reproduce system parameters characteristic of steady state normal operation with high precision. The system responses for postulated severe transients such as large pipe breaks, loss of pumping power, piping leaks, malfunctions in control rod insertion, and emergency injection of neutron absorber are calculated to be in good agreement with reference safety analyses. Restrictions were imposed by the requirement that the resulting code be able to run in real-time with sufficient spare time to allow interfacing with secondary systems and simulator hardware. Due to hardware set-up and real plant instrumentation, simplifications due to symmetry were not allowed. The resulting code represents a coarse-node engineering model in which the level of detail has been tailored to the available computing power of a present generation super-minicomputer. Results for several significant transients, as calculated by the real-time model, are compared both to actual plant data and to results generated by fine-mesh analysis codes

  2. Practical Solutions for Reducing Container Ships’ Waiting Times at Ports Using Simulation Model

    Institute of Scientific and Technical Information of China (English)

    Abdorreza Sheikholeslami; Gholamreza Ilati; Yones Eftekhari Yeganeh

    2013-01-01

    The main challenge for container ports is the planning required for berthing container ships while docked in port. Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion. Good planning and management of container terminal operations reduces waiting time for liner ships. Reducing the waiting time improves the terminal’s productivity and decreases the port difficulties. Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions. Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships. We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems. We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results. The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.

  3. Piloted simulator study of allowable time delays in large-airplane response

    Science.gov (United States)

    Grantham, William D.; Bert T.?aetingas, Stephen A.dings with ran; Bert T.?aetingas, Stephen A.dings with ran

    1987-01-01

    A piloted simulation was performed to determine the permissible time delay and phase shift in the flight control system of a specific large transport-type airplane. The study was conducted with a six degree of freedom ground-based simulator and a math model similar to an advanced wide-body jet transport. Time delays in discrete and lagged form were incorporated into the longitudinal, lateral, and directional control systems of the airplane. Three experienced pilots flew simulated approaches and landings with random localizer and glide slope offsets during instrument tracking as their principal evaluation task. Results of the present study suggest a level 1 (satisfactory) handling qualities limit for the effective time delay of 0.15 sec in both the pitch and roll axes, as opposed to a 0.10-sec limit of the present specification (MIL-F-8785C) for both axes. Also, the present results suggest a level 2 (acceptable but unsatisfactory) handling qualities limit for an effective time delay of 0.82 sec and 0.57 sec for the pitch and roll axes, respectively, as opposed to 0.20 sec of the present specifications for both axes. In the area of phase shift between cockpit input and control surface deflection,the results of this study, flown in turbulent air, suggest less severe phase shift limitations for the approach and landing task-approximately 50 deg. in pitch and 40 deg. in roll - as opposed to 15 deg. of the present specifications for both axes.

  4. Numerical simulation of a cabin ventilation subsystem in a space station oriented real-time system

    Directory of Open Access Journals (Sweden)

    Zezheng QIU

    2017-12-01

    Full Text Available An environment control and life support system (ECLSS is an important system in a space station. The ECLSS is a typical complex system, and the real-time simulation technology can help to accelerate its research process by using distributed hardware in a loop simulation system. An implicit fixed time step numerical integration method is recommended for a real-time simulation system with time-varying parameters. However, its computational efficiency is too low to satisfy the real-time data interaction, especially for the complex ECLSS system running on a PC cluster. The instability problem of an explicit method strongly limits its application in the ECLSS real-time simulation although it has a high computational efficiency. This paper proposes an improved numerical simulation method to overcome the instability problem based on the explicit Euler method. A temperature and humidity control subsystem (THCS is firstly established, and its numerical stability is analyzed by using the eigenvalue estimation theory. Furthermore, an adaptive operator is proposed to avoid the potential instability problem. The stability and accuracy of the proposed method are investigated carefully. Simulation results show that this proposed method can provide a good way for some complex time-variant systems to run their real-time simulation on a PC cluster. Keywords: Numerical integration method, Real-time simulation, Stability, THCS, Time-variant system

  5. Time-based MRPC detector response simulations for the CBM time-of-flight system

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Christian; Herrmann, Norbert [Physikalisches Institut und Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet Heidelberg (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The design goal of the future Compressed Baryonic Matter (CBM) experiment is to measure rare probes of dense strongly interacting matter with an unprecedented accuracy. Target interaction rates of up to 10 MHz need to be processed by the detector. The time-of-flight (TOF) wall of CBM which should provide hadron identification at particle fluxes of up to a few tens of kHz/cm{sup 2} is composed of high-resolution timing multi-gap resistive plate chambers (MRPCs). Due to the self-triggered digitization and readout scheme of CBM comprising online event reconstruction preparatory Monte Carlo (MC) transport and response simulations including the MRPC array need to be carried out in a time-based fashion. While in an event-based simulation mode interference between MC tracks in a detector volume owing to rate effects or electronics dead time is confined to a single event, time-based response simulations need to take into account track pile-up and interference across events. A proposed time-based digitizer class for CBM-TOF within the CbmRoot software framework is presented.

  6. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  7. Finite-time thermodynamics and simulated annealing

    International Nuclear Information System (INIS)

    Andresen, B.

    1989-01-01

    When the general, global optimization technique simulated annealing was introduced by Kirkpatrick et al. (1983), this mathematical algorithm was based on an analogy to the statistical mechanical behavior of real physical systems like spin glasses, hence the name. In the intervening span of years the method has proven exceptionally useful for a great variety of extremely complicated problems, notably NP-problems like the travelling salesman, DNA sequencing, and graph partitioning. Only a few highly optimized heuristic algorithms (e.g. Lin, Kernighan 1973) have outperformed simulated annealing on their respective problems (Johnson et al. 1989). Simulated annealing in its current form relies only on the static quantity 'energy' to describe the system, whereas questions of rate, as in the temperature path (annealing schedule, see below), are left to intuition. We extent the connection to physical systems and take over further components from thermodynamics like ensemble, heat capacity, and relaxation time. Finally we refer to finite-time thermodynamics (Andresen, Salomon, Berry 1984) for a dynamical estimate of the optimal temperature path. (orig.)

  8. Real-time simulation of the nonlinear visco-elastic deformations of soft tissues.

    Science.gov (United States)

    Basafa, Ehsan; Farahmand, Farzam

    2011-05-01

    Mass-spring-damper (MSD) models are often used for real-time surgery simulation due to their fast response and fairly realistic deformation replication. An improved real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was developed and tested. The mechanical realization of conventional MSD models was improved using nonlinear springs and nodal dampers, while their high computational efficiency was maintained using an adapted implicit integration algorithm. New practical algorithms for model parameter tuning, collision detection, and simulation were incorporated. The model was able to replicate complex biological soft tissue mechanical properties under large deformations, i.e., the nonlinear and viscoelastic behaviors. The simulated response of the model after tuning of its parameters to the experimental data of a deer liver sample, closely tracked the reference data with high correlation and maximum relative differences of less than 5 and 10%, for the tuning and testing data sets respectively. Finally, implementation of the proposed model and algorithms in a graphical environment resulted in a real-time simulation with update rates of 150 Hz for interactive deformation and haptic manipulation, and 30 Hz for visual rendering. The proposed real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was efficient, realistic, and accurate in ex vivo testing. This model is a suitable candidate for testing in vivo during laparoscopic surgery.

  9. Operational characteristic analysis of conduction cooling HTS SMES for Real Time Digital Simulator based power quality enhancement simulation

    International Nuclear Information System (INIS)

    Kim, A.R.; Kim, G.H.; Kim, K.M.; Kim, D.W.; Park, M.; Yu, I.K.; Kim, S.H.; Sim, K.; Sohn, M.H.; Seong, K.C.

    2010-01-01

    This paper analyzes the operational characteristics of conduction cooling Superconducting Magnetic Energy Storage (SMES) through a real hardware based simulation. To analyze the operational characteristics, the authors manufactured a small-scale toroidal-type SMES and implemented a Real Time Digital Simulator (RTDS) based power quality enhancement simulation. The method can consider not only electrical characteristics such as inductance and current but also temperature characteristic by using the real SMES system. In order to prove the effectiveness of the proposed method, a voltage sag compensation simulation has been implemented using the RTDS connected with the High Temperature Superconducting (HTS) model coil and DC/DC converter system, and the simulation results are discussed in detail.

  10. Real-time dynamic simulator for the Topaz II reactor power system

    International Nuclear Information System (INIS)

    Kwok, K.S.

    1994-01-01

    A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator is a self-contained IBM-PC compatible based system that executes at a speed faster than real-time. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulation program has been tested and it is able to handle a step decrease of $8 worth of reactivity. It also provides simulation of fuel, emitter, collector, stainless steel, and ZrH moderator failures. Presented in this paper are the models used in the calculations, a sample simulation session, and a discussion of the performance and limitations of the simulator. The simulator has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system under both normal and causality conditions

  11. Preliminary time-phased TWRS process model results

    International Nuclear Information System (INIS)

    Orme, R.M.

    1995-01-01

    This report documents the first phase of efforts to model the retrieval and processing of Hanford tank waste within the constraints of an assumed tank farm configuration. This time-phased approach simulates a first try at a retrieval sequence, the batching of waste through retrieval facilities, the batching of retrieved waste through enhanced sludge washing, the batching of liquids through pretreatment and low-level waste (LLW) vitrification, and the batching of pretreated solids through high-level waste (HLW) vitrification. The results reflect the outcome of an assumed retrieval sequence that has not been tailored with respect to accepted measures of performance. The batch data, composition variability, and final waste volume projects in this report should be regarded as tentative. Nevertheless, the results provide interesting insights into time-phased processing of the tank waste. Inspection of the composition variability, for example, suggests modifications to the retrieval sequence that will further improve the uniformity of feed to the vitrification facilities. This model will be a valuable tool for evaluating suggested retrieval sequences and establishing a time-phased processing baseline. An official recommendation on tank retrieval sequence will be made in September, 1995

  12. Monju operator training report. Training results and upgrade of the operation training simulator in 2002 YF

    International Nuclear Information System (INIS)

    Koyagoshi, Naoki; Sasaki, Kazuichi; Sawada, Makoto; Kawanishi, Tomotake; Yoshida, Kazuo

    2003-09-01

    The prototype fast breeder reactor, Monju, has been performing deliberately the operator training which is composed of the regulated training required by the government and the self-training. The training used a full scope type simulator (MARS: Monju Advanced Reactor Simulator) plays an important role among of the above mentioned trainings and greatly contributes to the Monju operator training for Monju restarting. This report covers the activities of Monju operator training in 2002 FY, i.e. the training results and the remodeling working of the MARS in progress since 1999. (1) Eight simulator training courses were carried out 46 times and 180 trainees participated. Additionally, both the regulated training and self-training were held total 10 times by attended 34 trainees, as besides simulator training. (2) Above training data was reduced compare with the last year's data (69 times (338 trainees)) due to the indispensable training courses in Monju operator training were changed by reorganized operator's number and decreasing of training times owing to remodeling working of the simulator was conducted. (3) By means of upgrading of the MARS completed in 2002 FY, its logic arithmetic time was became speedier and its instructing function was improved remarkably, thus, the simulator training was became to be more effective. Moreover, it's planning to do both remodeling in the next year as the final working: remodeling of reactor core model with the aim of improvement simulating accuracy and corresponding to the sodium leakage measures. Regarding on the Monju training results and simulator's remodeling so far finished, please referring JNC report number of JNC TN 4410 2002-001 Translation of Monju Simulator Training owing Monju Accident and Upgrade of MARS''. (author)

  13. Efficient on-the-fly Algorithm for Checking Alternating Timed Simulation

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Chatain, Thomas

    2009-01-01

    In this paper we focus on property-preserving preorders between timed game automata and their application to control of partially observable systems. We define timed weak alternating simulation as a preorder between timed game automata, which preserves controllability. We define the rules...... of building a symbolic turn-based two-player game such that the existence of a winning strategy is equivalent to the simulation being satisfied. We also propose an on-the-fly algorithm for solving this game. This simulation checking method can be applied to the case of non-alternating or strong simulations...

  14. Real-time digital simulation of power electronics systems with Neutral Point Piloted multilevel inverter using FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Rakotozafy, Mamianja [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Saadate, Shahrokh [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Bordas, Cedric; Leclere, Loic [CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France)

    2011-02-15

    Most of actual real time simulation platforms have practically about ten microseconds as minimum calculation time step, mainly due to computation limits such as processing speed, architecture adequacy and modeling complexities. Therefore, simulation of fast switching converters' instantaneous models requires smaller computing time step. The approach presented in this paper proposes an answer to such limited modeling accuracies and computational bandwidth of the currently available digital simulators.As an example, the authors present a low cost, flexible and high performance FPGA-based real-time digital simulator for a complete complex power system with Neutral Point Piloted (NPP) three-level inverter. The proposed real-time simulator can model accurately and efficiently the complete power system, reducing costs, physical space and avoiding any damage to the actual equipment in the case of any dysfunction of the digital controller prototype. The converter model is computed at a small fixed time step as low as 100 ns. Such a computation time step allows high precision account of the gating signals and thus avoids averaging methods and event compensations. Moreover, a novel high performance model of the NPP three-level inverter has also been proposed for FPGA implementation. The proposed FPGA-based simulator models the environment of the NPP converter: the dc link, the RLE load and the digital controller and gating signals. FPGA-based real time simulation results are presented and compared with offline results obtained using PLECS software. They validate the efficiency and accuracy of the modeling for the proposed high performance FPGA-based real-time simulation approach. This paper also introduces new potential FPGA-based applications such as low cost real time simulator for power systems by developing a library of flexible and portable models for power converters, electrical machines and drives. (author)

  15. Multiple Time Series Ising Model for Financial Market Simulations

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    In this paper we propose an Ising model which simulates multiple financial time series. Our model introduces the interaction which couples to spins of other systems. Simulations from our model show that time series exhibit the volatility clustering that is often observed in the real financial markets. Furthermore we also find non-zero cross correlations between the volatilities from our model. Thus our model can simulate stock markets where volatilities of stocks are mutually correlated

  16. tms-sim – Timing Models Scheduling Simulation Framework – Release 2016-07

    OpenAIRE

    Kluge, Florian

    2016-01-01

    tms-sim is a framework for the simulation and evaluation of scheduling algorithms. It is being developed to support our work on real-time task scheduling based on time-utility and history-cognisant utility functions. We publish tms-sim under the conditions of the GNU GPL to make our results reproducible and in the hope that it may be useful for others. This report describes the usage of the TMS framework libraries and how they can be used to build further simulation environments. It is not in...

  17. Electron-cloud simulation results for the SPS and recent results for the LHC

    International Nuclear Information System (INIS)

    Furman, M.A.; Pivi, M.T.F.

    2002-01-01

    We present an update of computer simulation results for some features of the electron cloud at the Large Hadron Collider (LHC) and recent simulation results for the Super Proton Synchrotron (SPS). We focus on the sensitivity of the power deposition on the LHC beam screen to the emitted electron spectrum, which we study by means of a refined secondary electron (SE) emission model recently included in our simulation code

  18. Cycle Time and Throughput Rate Modelling Study through the Simulation Platform

    Directory of Open Access Journals (Sweden)

    Fei Xiong

    2014-02-01

    Full Text Available The shorter cycle time (CT and higher throughput rate (TH are primary goals of the industry, including sensors and transducer factory. The common way of cycle time reduction is to reduce WIP, but such action may also reduce throughput. This paper will show one practical healthy heuristic algorithm based on tool time modelling to balance both the CT and the TH. This algorithm considers the factors that exist in the work in process (WIP and its constrains in modules of the factory. One computer simulation platform based on a semiconductor factory is built to verify this algorithm. The result of computing simulation experiments suggests that the WIP level calculated by this algorithm can achieve the good balance of CT and TH.

  19. Simulation of time of flight defraction signals for reactor vessel head penetrations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Hun; Kim, Young Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The simulation of nondestructive testing has been used in the prediction of the signal characteristics of various defects and in the development of the procedures. CIVA, a simulation tool dedicated to nondestructive testing, has good accuracy and speed, and provides a three-dimensional graphical user interface for improved visualization and familiar data displays consistent with an NDE technique. Even though internal validations have been performed by the CIVA software development specialists, an independent validation study is necessary for the assessment of the accuracy of the software prior to practical use. In this study, time of flight diffraction signals of ultrasonic inspection of a calibration block for reactor vessel head penetrations were simulated using CIVA. The results were compared to the experimentally inspected signals. The accuracy of the simulated signals and the possible range for simulation were verified. It was found that, there is a good agreement between the CIVA simulated and experimental results in the A-scan signal, B-scan image, and measurement of depth.

  20. Simulation of time of flight defraction signals for reactor vessel head penetrations

    International Nuclear Information System (INIS)

    Lim, Tae Hun; Kim, Young Sik; Lee, Jeong Seok

    2016-01-01

    The simulation of nondestructive testing has been used in the prediction of the signal characteristics of various defects and in the development of the procedures. CIVA, a simulation tool dedicated to nondestructive testing, has good accuracy and speed, and provides a three-dimensional graphical user interface for improved visualization and familiar data displays consistent with an NDE technique. Even though internal validations have been performed by the CIVA software development specialists, an independent validation study is necessary for the assessment of the accuracy of the software prior to practical use. In this study, time of flight diffraction signals of ultrasonic inspection of a calibration block for reactor vessel head penetrations were simulated using CIVA. The results were compared to the experimentally inspected signals. The accuracy of the simulated signals and the possible range for simulation were verified. It was found that, there is a good agreement between the CIVA simulated and experimental results in the A-scan signal, B-scan image, and measurement of depth

  1. Calibration of the TIME2 environmental simulation code

    International Nuclear Information System (INIS)

    Wilmot, R.D.; Hiscock, K.; Lloyd, J.

    1991-04-01

    The TARGET finite-difference groundwater modelling code has been used to reconstruct the hydrogeological environment of the area around Killingholme, Humberside, UK. Reconstructions have been made for the present day and for three periods during the past 120,000 years. Permeability development in the Chalk and the stratified nature of the current groundwater system act as boundary conditions for these reconstructions. The results from these reconstructions have been compared with values used by the environmental simulation code TIME2. With optimisation of partition coefficients within the water budget sub-model, values for recharge from TIME2 accord closely with those from this study for temperate and boreal conditions. TIME2 over-estimates recharge during tundra climate states because it does not account for permafrost. (author)

  2. Interactive real-time nuclear plant simulations on a UNIX based supercomputer

    International Nuclear Information System (INIS)

    Behling, S.R.

    1990-01-01

    Interactive real-time nuclear plant simulations are critically important to train nuclear power plant engineers and operators. In addition, real-time simulations can be used to test the validity and timing of plant technical specifications and operational procedures. To accurately and confidently simulate a nuclear power plant transient in real-time, sufficient computer resources must be available. Since some important transients cannot be simulated using preprogrammed responses or non-physical models, commonly used simulation techniques may not be adequate. However, the power of a supercomputer allows one to accurately calculate the behavior of nuclear power plants even during very complex transients. Many of these transients can be calculated in real-time or quicker on the fastest supercomputers. The concept of running interactive real-time nuclear power plant transients on a supercomputer has been tested. This paper describes the architecture of the simulation program, the techniques used to establish real-time synchronization, and other issues related to the use of supercomputers in a new and potentially very important area. (author)

  3. Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yan-Mei, E-mail: ymkang@mail.xjtu.edu.cn

    2016-09-16

    For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.

  4. Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems

    International Nuclear Information System (INIS)

    Kang, Yan-Mei

    2016-01-01

    For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.

  5. Innovative tools for real-time simulation of dynamic systems

    NARCIS (Netherlands)

    Palli, Gianluca; Carloni, Raffaella; Melchiorri, Claudio

    2008-01-01

    In this paper, we present a software architecture, based on RTAI-Linux, for the real-time simulation of dynamic systems and for the rapid prototyping of digital controllers. Our aim is to simplify the testing phase of digital controllers by providing the real-time simulation of the plant with the

  6. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  7. Real-time model for simulating a tracked vehicle on deformable soils

    Directory of Open Access Journals (Sweden)

    Martin Meywerk

    2016-05-01

    Full Text Available Simulation is one possibility to gain insight into the behaviour of tracked vehicles on deformable soils. A lot of publications are known on this topic, but most of the simulations described there cannot be run in real-time. The ability to run a simulation in real-time is necessary for driving simulators. This article describes an approach for real-time simulation of a tracked vehicle on deformable soils. The components of the real-time model are as follows: a conventional wheeled vehicle simulated in the Multi Body System software TRUCKSim, a geometric description of landscape, a track model and an interaction model between track and deformable soils based on Bekker theory and Janosi–Hanamoto, on one hand, and between track and vehicle wheels, on the other hand. Landscape, track model, soil model and the interaction are implemented in MATLAB/Simulink. The details of the real-time model are described in this article, and a detailed description of the Multi Body System part is omitted. Simulations with the real-time model are compared to measurements and to a detailed Multi Body System–finite element method model of a tracked vehicle. An application of the real-time model in a driving simulator is presented, in which 13 drivers assess the comfort of a passive and an active suspension of a tracked vehicle.

  8. Control-Oriented Models for Real-Time Simulation of Automotive Transmission Systems

    Directory of Open Access Journals (Sweden)

    Cavina N.

    2015-01-01

    Full Text Available A control-oriented model of a Dual Clutch Transmission (DCT was developed for real-time Hardware In the Loop (HIL applications, to support model-based development of the DCT controller and to systematically test its performance. The model is an innovative attempt to reproduce the fast dynamics of the actuation system while maintaining a simulation step size large enough for real-time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models. As the oil circulating in the system has a large bulk modulus, the pressure dynamics are very fast, possibly causing instability in a real-time simulation; the same challenge involves the servo valves dynamics, due to the very small masses of the moving elements. Therefore, the hydraulic circuit model has been modified and simplified without losing physical validity, in order to adapt it to the real-time simulation requirements. The results of offline simulations have been compared to on-board measurements to verify the validity of the developed model, which was then implemented in a HIL system and connected to the Transmission Control Unit (TCU. Several tests have been performed on the HIL simulator, to verify the TCU performance: electrical failure tests on sensors and actuators, hydraulic and mechanical failure tests on hydraulic valves, clutches and synchronizers, and application tests comprehending all the main features of the control actions performed by the TCU. Being based on physical laws, in every condition the model simulates a plausible reaction of the system. A test automation procedure has finally been developed to permit the execution of a pattern of tests without the interaction of the user; perfectly repeatable tests can be performed for non-regression verification, allowing the testing of new software releases in fully automatic mode.

  9. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  10. Finite-difference time-domain simulation of thermal noise in open cavities

    International Nuclear Information System (INIS)

    Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem; Cao Changqi

    2008-01-01

    A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes

  11. Real time simulation method for fast breeder reactors dynamics

    International Nuclear Information System (INIS)

    Miki, Tetsushi; Mineo, Yoshiyuki; Ogino, Takamichi; Kishida, Koji; Furuichi, Kenji.

    1985-01-01

    The development of multi-purpose real time simulator models with suitable plant dynamics was made; these models can be used not only in training operators but also in designing control systems, operation sequences and many other items which must be studied for the development of new type reactors. The prototype fast breeder reactor ''Monju'' is taken as an example. Analysis is made on various factors affecting the accuracy and computer load of its dynamic simulation. A method is presented which determines the optimum number of nodes in distributed systems and time steps. The oscillations due to the numerical instability are observed in the dynamic simulation of evaporators with a small number of nodes, and a method to cancel these oscillations is proposed. It has been verified through the development of plant dynamics simulation codes that these methods can provide efficient real time dynamics models of fast breeder reactors. (author)

  12. Simulation of time-control procedures for terminal area flow management

    Science.gov (United States)

    Alcabin, M.; Erzberger, H.; Tobias, L.; Obrien, P. J.

    1985-01-01

    Simulations of a terminal area traffic-management system incorporating automated scheduling and time-control (four-dimensional) techniques conducted at NASA Ames Research Center jointly with the Federal Aviation Administration, have shown that efficient procedures can be developed for handling a mix of 4D-equipped and conventionally equipped aircraft. A crucial role in this system is played by an ATC host computer algorithm, referred to as a speed advisory, that allows controllers to maintain accurate time schedules of the conventionally equipped aircraft in the traffic mix. Results are of the most recent simulations in which two important special cases were investigated. First, the effects of a speed advisory on touchdown time scheduling are examined, when unequipped aircraft are constrained to follow fuel-optimized profiles in the near-terminal area, and rescheduling procedures are developed to handle missed approaches of 4D-equipped aircraft. Various performance measures, including controller opinion, are used to evaluate the effectiveness of the procedures.

  13. Study and simulation of the time behaviour of MOS transistor devices. Application to a logic assembly

    International Nuclear Information System (INIS)

    Barocas, Marcel

    1974-01-01

    The objective of this research thesis is to determine, by simulation, the time response of devices based on MOS transistors. After a theoretical study of the MOS element, the author develops a transistor model based on its physical components. This model is firstly used to obtain the transistor static characteristics. The author then studies the time response of the inverter logic circuit which is the basic operator of these circuits. Theoretical results are verified by simulation and by experiments. The author then reports a detailed study of the inverter input impedance, and the decoupling property between logic operators in cascade. The simulation confirms the obtained results. Based on this decoupling property, the output time response of a logic chain is studied by using a simulation software. A general method of determination of the output time response is developed with application to a logic assembly [fr

  14. Implicit time accurate simulation of unsteady flow

    Science.gov (United States)

    van Buuren, René; Kuerten, Hans; Geurts, Bernard J.

    2001-03-01

    Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright

  15. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  16. Recent simulation results of the magnetic induction tomography forward problem

    Directory of Open Access Journals (Sweden)

    Stawicki Krzysztof

    2016-06-01

    Full Text Available In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.

  17. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  18. Some GCM simulation results on present and possible future climate in northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, J [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    The Intergovernmental Panel on Climate Change initiated in 1993 a project entitled `Evaluation of Regional Climate Simulations`. The two basic aims of this project were to assess the skill of current general circulation models (GCMs) in simulating present climate at a regional level and to intercompare the regional response of various GCMs to increased greenhouse gas concentrations. The public data base established for the comparison included simulation results from several modelling centres, but most of the data were available in the form of time-averaged seasonal means only, and important quantities like precipitation were totally lacking in many cases. This presentation summarizes the intercomparison results for surface air temperature and sea level pressure in northern Europe. The quality of the control simulations and the response of the models to increased CO{sub 2} are addressed in both winter (December-February) and summer (June-August)

  19. Some GCM simulation results on present and possible future climate in northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1995-12-31

    The Intergovernmental Panel on Climate Change initiated in 1993 a project entitled `Evaluation of Regional Climate Simulations`. The two basic aims of this project were to assess the skill of current general circulation models (GCMs) in simulating present climate at a regional level and to intercompare the regional response of various GCMs to increased greenhouse gas concentrations. The public data base established for the comparison included simulation results from several modelling centres, but most of the data were available in the form of time-averaged seasonal means only, and important quantities like precipitation were totally lacking in many cases. This presentation summarizes the intercomparison results for surface air temperature and sea level pressure in northern Europe. The quality of the control simulations and the response of the models to increased CO{sub 2} are addressed in both winter (December-February) and summer (June-August)

  20. Growth Kinetics of the Homogeneously Nucleated Water Droplets: Simulation Results

    International Nuclear Information System (INIS)

    Mokshin, Anatolii V; Galimzyanov, Bulat N

    2012-01-01

    The growth of homogeneously nucleated droplets in water vapor at the fixed temperatures T = 273, 283, 293, 303, 313, 323, 333, 343, 353, 363 and 373 K (the pressure p = 1 atm.) is investigated on the basis of the coarse-grained molecular dynamics simulation data with the mW-model. The treatment of simulation results is performed by means of the statistical method within the mean-first-passage-time approach, where the reaction coordinate is associated with the largest droplet size. It is found that the water droplet growth is characterized by the next features: (i) the rescaled growth law is unified at all the considered temperatures and (ii) the droplet growth evolves with acceleration and follows the power law.

  1. Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.

  2. Real-Time Model and Simulation Architecture for Half- and Full-Bridge Modular Multilevel Converters

    Science.gov (United States)

    Ashourloo, Mojtaba

    This work presents an equivalent model and simulation architecture for real-time electromagnetic transient analysis of either half-bridge or full-bridge modular multilevel converter (MMC) with 400 sub-modules (SMs) per arm. The proposed CPU/FPGA-based architecture is optimized for the parallel implementation of the presented MMC model on the FPGA and is beneficiary of a high-throughput floating-point computational engine. The developed real-time simulation architecture is capable of simulating MMCs with 400 SMs per arm at 825 nanoseconds. To address the difficulties of the sorting process implementation, a modified Odd-Even Bubble sorting is presented in this work. The comparison of the results under various test scenarios reveals that the proposed real-time simulator is representing the system responses in the same way of its corresponding off-line counterpart obtained from the PSCAD/EMTDC program.

  3. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  4. Simulating Real-Time Aspects of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Christian Nastasi

    2010-01-01

    Full Text Available Wireless Sensor Networks (WSNs technology has been mainly used in the applications with low-frequency sampling and little computational complexity. Recently, new classes of WSN-based applications with different characteristics are being considered, including process control, industrial automation and visual surveillance. Such new applications usually involve relatively heavy computations and also present real-time requirements as bounded end-to- end delay and guaranteed Quality of Service. It becomes then necessary to employ proper resource management policies, not only for communication resources but also jointly for computing resources, in the design and development of such WSN-based applications. In this context, simulation can play a critical role, together with analytical models, for validating a system design against the parameters of Quality of Service demanded for. In this paper, we present RTNS, a publicly available free simulation tool which includes Operating System aspects in wireless distributed applications. RTNS extends the well-known NS-2 simulator with models of the CPU, the Real-Time Operating System and the application tasks, to take into account delays due to the computation in addition to the communication. We demonstrate the benefits of RTNS by presenting our simulation study for a complex WSN-based multi-view vision system for real-time event detection.

  5. Noise Simulation of Continuous-Time ΣΔ Modulators

    International Nuclear Information System (INIS)

    Arias, J.; Quintanilla, L.; Bisbal, D.; San Pablo, J.; Enriquez, L.; Vicente, J.; Barbolla, J.

    2005-01-01

    In this work, an approach for the simulation of the effect of noise sources in the performance of continuous-time ΔΣ modulators is presented. Electrical noise including thermal noise, 1/f noise and clock jitter are included in a simulation program and their impact on the system performance is analyzed

  6. Coarse-grained simulation of a real-time process control network under peak load

    International Nuclear Information System (INIS)

    George, A.D.; Clapp, N.E. Jr.

    1992-01-01

    This paper presents a simulation study on the real-time process control network proposed for the new ANS reactor system at ORNL. A background discussion is provided on networks, modeling, and simulation, followed by an overview of the ANS process control network, its three peak-load models, and the results of a series of coarse-grained simulation studies carried out on these models using implementations of 802.3, 802.4, and 802.5 standard local area networks

  7. Effects of travel time delay on multi-faceted activity scheduling under space-time constraints : a simulation study

    NARCIS (Netherlands)

    Rasouli, S.; Timmermans, H.J.P.

    2014-01-01

    This paper presents the results of a study, which simulates the effects of travel time delay on adaptations of planned activity-travel schedules. The activity generation and scheduling engine of the Albatross model system is applied to a fraction of the synthetic population of the Rotterdam region,

  8. Real-time Executive for a basic principle simulator

    International Nuclear Information System (INIS)

    Buerger, L.; Szegi, Zs.; Vegh, E.

    1987-09-01

    A basic principle simulator for WWER-440 type nuclear power plants is under development in the Central Research Institute for Physics, Budapest. So far the technological models of both to primary and secondary circuits are ready and this paper presents the Real-time Executive and the on-line operating environment which controls the simulator. This executive system contains eight programs and the detailed structure of the data base is presented. The control of the execution of the model programs, their timing and the error recoveries are also discussed. (author) 5 refs

  9. Online simulation of classical inorganic analysis - interactive, self instructive simulations give more lab-time

    DEFF Research Database (Denmark)

    Josephsen, Jens

    2005-01-01

    Laboratory exercises, investigations, and experiments are invariably included in university chemistry teaching. The learning of empirical facts, chemical procedures and methods in chemistry depends heavily on the experience, which may be obtained from such teaching activities [1]. Experimental work...... in teaching is, however, both expensive and time consuming, and should therefor effectively benefit from the allotted student time, money, and staff time. If the instructions are too ambitious regarding what the students can manage to do and are overloaded with information [2,3] it may result in the students...... (and in university programmes it often isn’t), but rather to give them experience with chemicals and methods, a computer-based laboratory simulation may function as a cheap and fast extension of student lab time. Virtual investigations seem to be a promising kind of tool [6,7,8] for several reasons...

  10. Influence of Various Irradiance Models and Their Combination on Simulation Results of Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Martin Hofmann

    2017-09-01

    Full Text Available We analyze the output of various state-of-the-art irradiance models for photovoltaic systems. The models include two sun position algorithms, three types of input data time series, nine diffuse fraction models and five transposition models (for tilted surfaces, resulting in 270 different model chains for the photovoltaic (PV system simulation. These model chains are applied to 30 locations worldwide and three different module tracking types, totaling in 24,300 simulations. We show that the simulated PV yearly energy output varies between −5% and +8% for fixed mounted PV modules and between −26% and +14% for modules with two-axis tracking. Model quality varies strongly between locations; sun position algorithms have negligible influence on the simulation results; diffuse fraction models add a lot of variability; and transposition models feature the strongest influence on the simulation results. To highlight the importance of irradiance with high temporal resolution, we present an analysis of the influence of input temporal resolution and simulation models on the inverter clipping losses at varying PV system sizing factors for Lindenberg, Germany. Irradiance in one-minute resolution is essential for accurately calculating inverter clipping losses.

  11. Real time simulation of large systems on mini-computer

    International Nuclear Information System (INIS)

    Nakhle, Michel; Roux, Pierre.

    1979-01-01

    Most simulation languages will only accept an explicit formulation of differential equations, and logical variables hold no special status therein. The pace of the suggested methods of integration is limited by the smallest time constant of the model submitted. The NEPTUNIX 2 simulation software has a language that will take implicit equations and an integration method of which the variable pace is not limited by the time constants of the model. This, together with high time and memory ressources optimization of the code generated, makes NEPTUNIX 2 a basic tool for simulation on mini-computers. Since the logical variables are specific entities under centralized control, correct processing of discontinuities and synchronization with a real process are feasible. The NEPTUNIX 2 is the industrial version of NEPTUNIX 1 [fr

  12. Finite Difference Time Domain (FDTD) Simulations Using Graphics Processors

    National Research Council Canada - National Science Library

    Adams, Samuel; Payne, Jason; Boppana, Rajendra

    2007-01-01

    .... This paper shows how GPUs can be used to greatly speedup FDTD simulations. The main objective is to leverage GPU processing power for FDTD update calculations and complete computationally expensive simulations in reasonable time...

  13. Storm-time ring current: model-dependent results

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2012-01-01

    Full Text Available The main point of the paper is to investigate how much the modeled ring current depends on the representations of magnetic and electric fields and boundary conditions used in simulations. Two storm events, one moderate (SymH minimum of −120 nT on 6–7 November 1997 and one intense (SymH minimum of −230 nT on 21–22 October 1999, are modeled. A rather simple ring current model is employed, namely, the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM, in order to make the results most evident. Four different magnetic field and two electric field representations and four boundary conditions are used. We find that different combinations of the magnetic and electric field configurations and boundary conditions result in very different modeled ring current, and, therefore, the physical conclusions based on simulation results can differ significantly. A time-dependent boundary outside of 6.6 RE gives a possibility to take into account the particles in the transition region (between dipole and stretched field lines forming partial ring current and near-Earth tail current in that region. Calculating the model SymH* by Biot-Savart's law instead of the widely used Dessler-Parker-Sckopke (DPS relation gives larger and more realistic values, since the currents are calculated in the regions with nondipolar magnetic field. Therefore, the boundary location and the method of SymH* calculation are of key importance for ring current data-model comparisons to be correctly interpreted.

  14. Satellite image time series simulation for environmental monitoring

    Science.gov (United States)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of

  15. One-dimensional, time dependent simulation of the planetary boundary layer over a 48-hour period

    International Nuclear Information System (INIS)

    Haschke, D.; Gassmann, F.; Rudin, F.

    1978-05-01

    Results of a one-dimensional, time dependent simulation of the planetary boundary layer are given. First, a description of the mathematical model used is given and its approximations are discussed. Then a description of the initial and boundary conditions used for the simulation is given. Results are discussed with respect to their agreement with observed data and their precision. It can be demonstrated that a simulation of the planetary boundary layer is possible with satisfactory precision. The incompleteness of observed data gives, however, problems with their use and thus introduces uncertainties into the simulation. As a consequence, the report tries to point to the inherent limitations of such a simulation. (Auth.)

  16. Mixed time slicing in path integral simulations

    International Nuclear Information System (INIS)

    Steele, Ryan P.; Zwickl, Jill; Shushkov, Philip; Tully, John C.

    2011-01-01

    A simple and efficient scheme is presented for using different time slices for different degrees of freedom in path integral calculations. This method bridges the gap between full quantization and the standard mixed quantum-classical (MQC) scheme and, therefore, still provides quantum mechanical effects in the less-quantized variables. Underlying the algorithm is the notion that time slices (beads) may be 'collapsed' in a manner that preserves quantization in the less quantum mechanical degrees of freedom. The method is shown to be analogous to multiple-time step integration techniques in classical molecular dynamics. The algorithm and its associated error are demonstrated on model systems containing coupled high- and low-frequency modes; results indicate that convergence of quantum mechanical observables can be achieved with disparate bead numbers in the different modes. Cost estimates indicate that this procedure, much like the MQC method, is most efficient for only a relatively few quantum mechanical degrees of freedom, such as proton transfer. In this regime, however, the cost of a fully quantum mechanical simulation is determined by the quantization of the least quantum mechanical degrees of freedom.

  17. Real-time simulator for designing electron dual scattering foil systems.

    Science.gov (United States)

    Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M

    2014-11-08

    The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system

  18. Real-time maritime scene simulation for ladar sensors

    Science.gov (United States)

    Christie, Chad L.; Gouthas, Efthimios; Swierkowski, Leszek; Williams, Owen M.

    2011-06-01

    Continuing interest exists in the development of cost-effective synthetic environments for testing Laser Detection and Ranging (ladar) sensors. In this paper we describe a PC-based system for real-time ladar scene simulation of ships and small boats in a dynamic maritime environment. In particular, we describe the techniques employed to generate range imagery accompanied by passive radiance imagery. Our ladar scene generation system is an evolutionary extension of the VIRSuite infrared scene simulation program and includes all previous features such as ocean wave simulation, the physically-realistic representation of boat and ship dynamics, wake generation and simulation of whitecaps, spray, wake trails and foam. A terrain simulation extension is also under development. In this paper we outline the development, capabilities and limitations of the VIRSuite extensions.

  19. Parallel Object Oriented MD Simulation Program for Long Time Simulations of Metallic Glasses and Undercooled Liquids

    Science.gov (United States)

    Böddeker, B.; Teichler, H.

    The MD simulation program TABB is motivated by the need of long time simulations for the investigation of slow processes near the glass transition of glass forming alloys. TABB is written in C++ with a high degree of flexibility: TABB allows the use of any short ranged pair potentials or EAM potentials, by generating and using a spline representation of all functions and their derivatives. TABB supports several numerical integration algorithms like the Runge-Kotta or the modified Gear-predictor-corrector algorithm of order five. The boundary conditions can be chosen to resemble the geometry of bulk materials or films. The simulation box length or the pressure can be fixed for each dimension separately. TABB may be used in isokinetic, isoenergeric or canonic (with random forces) mode. TABB contains a simple instruction interpreter to easily control the parameters and options during the simulation. The same source code can be compiled either for workstations or for parallel computers. The main optimization goal of TABB is to allow long time simulations of medium or small sized systems. To make this possible, much attention is spent on the optimized communication between the nodes. TABB uses a domain decomposition procedure. To use many nodes with a small system, the domain size has to be small compared to the range of particle interactions. In the limit of many nodes for only few atoms, the bottle neck of communication is the latency time. TABB minimizes the number of pairs of domains containing atoms that interact between these domains. This procedure minimizes the need of communication calls between pairs of nodes. TABB decides automatically, to how many, and to which directions the decomposition shall be applied. E.g., in the case of one dimensional domain decomposition, the simulation box is only split into "slabs" along a selected direction. The three dimensional domain decomposition is best with respect to the number of interacting domains only for simulations

  20. Asymptotic analysis of blood flow in stented arteries: time dependency and direct simulations***

    Directory of Open Access Journals (Sweden)

    Pichon Gostaf Kirill

    2010-12-01

    Full Text Available This work aims to extend in two distinct directions results recently obtained in [10]. In a first step we focus on the possible extension of our results to the time dependent case. Whereas in the second part some preliminary numerical simulations aim to give orders of magnitudes in terms of numerical costs of direct 3D simulations. We consider, in the first part, the time dependent rough problem for a simplified heat equation in a straight channel that mimics the axial velocity under an oscillating pressure gradient. We derive first order approximations with respect to ϵ, the size of the roughness. In order to understand the problem and set up correct boundary layer approximations, we perform a time periodic fourier analysis and check that no frequency can interact with the roughness. We show rigorously on this toy problem that the boundary layers remain stationary in time (independent on the frequency number. Finally we perform numerical tests validating our theoretical approach. In the second part, we determine actual limits, when running three-dimensional blood flow simulations of the non-homogenized stented arteries. We solve the stationary Stokes equations for an artery containing a saccular aneurysm. Consecutive levels of uniform mesh refinement, serve to relate spatial resolution, problem scale, and required computation time. Test computations are presented for femoral side aneurysm, where a simplified ten-wire stent model was placed across the aneurysm throat. We advocate the proposed stent homogenization model, by concluding that an actual computation power is not sufficient to run accurate, direct simulations of a pulsatile flow in stented vessels.

  1. Full-f gyrokinetic simulation over a confinement time

    Energy Technology Data Exchange (ETDEWEB)

    Idomura, Yasuhiro, E-mail: idomura.yasuhiro@jaea.go.jp [Japan Atomic Energy Agency, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8587 (Japan)

    2014-02-15

    A long time ion temperature gradient driven turbulence simulation over a confinement time is performed using the full-f gyrokinetic Eulerian code GT5D. The convergence of steady temperature and rotation profiles is examined, and it is shown that the profile relaxation can be significantly accelerated when the simulation is initialized with linearly unstable temperature profiles. In the steady state, the temperature profile and the ion heat diffusivity are self-consistently determined by the power balance condition, while the intrinsic rotation profile is sustained by complicated momentum transport processes without momentum input. The steady turbulent momentum transport is characterized by bursty non-diffusive fluxes, and the resulting turbulent residual stress is consistent with the profile shear stress theory [Y. Camenen et al., “Consequences of profile shearing on toroidal momentum transport,” Nucl. Fusion 51, 073039 (2011)] in which the residual stress depends not only on the profile shear and the radial electric field shear but also on the radial electric field itself. Based on the toroidal angular momentum conservation, it is found that in the steady null momentum transport state, the turbulent residual stress is cancelled by the neoclassical counterpart, which is greatly enhanced in the presence of turbulent fluctuations.

  2. Simulation Results of Double Forward Converter

    Directory of Open Access Journals (Sweden)

    P. Vijaya KUMAR

    2009-12-01

    Full Text Available This work aims to find a better forward converter for DC to DC conversion.Simulation of double forward converter in SMPS system is discussed in this paper. Aforward converter with RCD snubber to synchronous rectifier and/or to current doubleris also discussed. The evolution of the forward converter is first reviewed in a tutorialfashion. Performance parameters are discussed including operating principle, voltageconversion ratio, efficiency, device stress, small-signal dynamics, noise and EMI. Itscircuit operation and its performance characteristics of the forward converter with RCDsnubber and double forward converter are described and the simulation results arepresented.

  3. Event Based Simulator for Parallel Computing over the Wide Area Network for Real Time Visualization

    Science.gov (United States)

    Sundararajan, Elankovan; Harwood, Aaron; Kotagiri, Ramamohanarao; Satria Prabuwono, Anton

    As the computational requirement of applications in computational science continues to grow tremendously, the use of computational resources distributed across the Wide Area Network (WAN) becomes advantageous. However, not all applications can be executed over the WAN due to communication overhead that can drastically slowdown the computation. In this paper, we introduce an event based simulator to investigate the performance of parallel algorithms executed over the WAN. The event based simulator known as SIMPAR (SIMulator for PARallel computation), simulates the actual computations and communications involved in parallel computation over the WAN using time stamps. Visualization of real time applications require steady stream of processed data flow for visualization purposes. Hence, SIMPAR may prove to be a valuable tool to investigate types of applications and computing resource requirements to provide uninterrupted flow of processed data for real time visualization purposes. The results obtained from the simulation show concurrence with the expected performance using the L-BSP model.

  4. Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval.

    Science.gov (United States)

    Woźniak, Marcin; Połap, Dawid

    2017-09-01

    Simulation and positioning are very important aspects of computer aided engineering. To process these two, we can apply traditional methods or intelligent techniques. The difference between them is in the way they process information. In the first case, to simulate an object in a particular state of action, we need to perform an entire process to read values of parameters. It is not very convenient for objects for which simulation takes a long time, i.e. when mathematical calculations are complicated. In the second case, an intelligent solution can efficiently help on devoted way of simulation, which enables us to simulate the object only in a situation that is necessary for a development process. We would like to present research results on developed intelligent simulation and control model of electric drive engine vehicle. For a dedicated simulation method based on intelligent computation, where evolutionary strategy is simulating the states of the dynamic model, an intelligent system based on devoted neural network is introduced to control co-working modules while motion is in time interval. Presented experimental results show implemented solution in situation when a vehicle transports things over area with many obstacles, what provokes sudden changes in stability that may lead to destruction of load. Therefore, applied neural network controller prevents the load from destruction by positioning characteristics like pressure, acceleration, and stiffness voltage to absorb the adverse changes of the ground. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High resolution real time capable combustion chamber simulation; Zeitlich hochaufloesende echtzeitfaehige Brennraumsimulation

    Energy Technology Data Exchange (ETDEWEB)

    Piewek, J. [Volkswagen AG, Wolfsburg (Germany)

    2008-07-01

    The article describes a zero-dimensional model for the real time capable combustion chamber pressure calculation with analogue pressure sensor output. The closed-loop-operation of an Engine Control Unit is shown at the hardware-in-the-loop-simulator (HiL simulator) for a 4-cylinder common rail diesel engine. The presentation of the model focuses on the simulation of the load variation which does not depend on the injection system and thus the simulated heat release rate. Particular attention is paid to the simulation and the resulting test possibilities regarding to full-variable valve gears. It is shown that black box models consisting in the HiL mean value model for the aspirated gas mass, the exhaust gas temperature after the outlet valve and the mean indicated pressure can be replaced by calculations from the high-resolution combustion chamber model. (orig.)

  6. Development and Validation in Air Traffic Control by Means of Real-Time Simulations

    Directory of Open Access Journals (Sweden)

    Stephan Herr

    2009-02-01

    and gradually optimised. This paper focuses on how data were collected during the real-time simulation. In addition to collecting traffic-specific indicators and data concerning the taskload situation, we also performed an eye-tracking analysis in cooperation with the Darmstadt University of Technology to analyse changes relating to the working methods and the information used. Another objective of the paper is to compare the use of the prototype simulation platform for the real-time simulation with the use of operational systems for simulation purposes. Adapting operational systems to new operational procedures and functionalities is always associated with considerable costs. Air traffic controllers, however, need a realistic working environment for such simulations. Otherwise, it is impossible to obtain reliable results. It is not easy to develop a simulation platform that ensures both a realistic environment and quick and flexible adaptation capabilities. The project successfully met this challenge with the help of the Advanced Function Simulator (AFS of the R&D Centre at DFS Deutsche Flugsicherung. The major features of the prototype simulation platform, i.e. rapid data adaptation, iterative development and automatic compilation of all user interactions, are shown using Project MSP D/L as an example. An overview of the results achieved in the real-time simulation is given at the end of the paper.

  7. Computational fluid dynamics simulations and validations of results

    CSIR Research Space (South Africa)

    Sitek, MA

    2013-09-01

    Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...

  8. Statistical methods for elimination of guarantee-time bias in cohort studies: a simulation study

    Directory of Open Access Journals (Sweden)

    In Sung Cho

    2017-08-01

    Full Text Available Abstract Background Aspirin has been considered to be beneficial in preventing cardiovascular diseases and cancer. Several pharmaco-epidemiology cohort studies have shown protective effects of aspirin on diseases using various statistical methods, with the Cox regression model being the most commonly used approach. However, there are some inherent limitations to the conventional Cox regression approach such as guarantee-time bias, resulting in an overestimation of the drug effect. To overcome such limitations, alternative approaches, such as the time-dependent Cox model and landmark methods have been proposed. This study aimed to compare the performance of three methods: Cox regression, time-dependent Cox model and landmark method with different landmark times in order to address the problem of guarantee-time bias. Methods Through statistical modeling and simulation studies, the performance of the above three methods were assessed in terms of type I error, bias, power, and mean squared error (MSE. In addition, the three statistical approaches were applied to a real data example from the Korean National Health Insurance Database. Effect of cumulative rosiglitazone dose on the risk of hepatocellular carcinoma was used as an example for illustration. Results In the simulated data, time-dependent Cox regression outperformed the landmark method in terms of bias and mean squared error but the type I error rates were similar. The results from real-data example showed the same patterns as the simulation findings. Conclusions While both time-dependent Cox regression model and landmark analysis are useful in resolving the problem of guarantee-time bias, time-dependent Cox regression is the most appropriate method for analyzing cumulative dose effects in pharmaco-epidemiological studies.

  9. Test results of the new NSSS thermal-hydraulics program of the KNPEC-2 simulator

    International Nuclear Information System (INIS)

    Jeong, J. Z.; Kim, K. D.; Lee, M. S.; Hong, J. H.; Lee, Y. K.; Seo, J. S.; Kweon, K. J.; Lee, S. W.

    2001-01-01

    As a part of the KNPEC-2 Simulator Upgrade Project, KEPRI and KAERI have developed a new NSSS thermal-hydraulics program, which is based on the best-estimate system code, RETRAN. The RETRAN code was originally developed for realistic simulation of thermal-hydraulic transient in power plant systems. The capability of 'real-time simulation' and robustness' should be first developed before being implemented in full-scope simulators. For this purpose, we have modified the RETRAN code by (i) eliminating the correlations' discontinuities between flow regime maps, (ii) simplifying physical correlations, (iii) correcting errors in the original program, and (iv) others. This paper briefly presents the test results fo the new NSSS thermal-hydraulics program

  10. Milestone M4900: Simulant Mixing Analytical Results

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.I.

    2001-07-26

    This report addresses Milestone M4900, ''Simulant Mixing Sample Analysis Results,'' and contains the data generated during the ''Mixing of Process Heels, Process Solutions, and Recycle Streams: Small-Scale Simulant'' task. The Task Technical and Quality Assurance Plan for this task is BNF-003-98-0079A. A report with a narrative description and discussion of the data will be issued separately.

  11. Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation

    International Nuclear Information System (INIS)

    Roncali, Emilie; Schmall, Jeffrey P; Viswanath, Varsha; Berg, Eric; Cherry, Simon R

    2014-01-01

    Current developments in positron emission tomography focus on improving timing performance for scanners with time-of-flight (TOF) capability, and incorporating depth-of-interaction (DOI) information. Recent studies have shown that incorporating DOI correction in TOF detectors can improve timing resolution, and that DOI also becomes more important in long axial field-of-view scanners. We have previously reported the development of DOI-encoding detectors using phosphor-coated scintillation crystals; here we study the timing properties of those crystals to assess the feasibility of providing some level of DOI information without significantly degrading the timing performance. We used Monte Carlo simulations to provide a detailed understanding of light transport in phosphor-coated crystals which cannot be fully characterized experimentally. Our simulations used a custom reflectance model based on 3D crystal surface measurements. Lutetium oxyorthosilicate crystals were simulated with a phosphor coating in contact with the scintillator surfaces and an external diffuse reflector (teflon). Light output, energy resolution, and pulse shape showed excellent agreement with experimental data obtained on 3 × 3 × 10 mm 3  crystals coupled to a photomultiplier tube. Scintillator intrinsic timing resolution was simulated with head-on and side-on configurations, confirming the trends observed experimentally. These results indicate that the model may be used to predict timing properties in phosphor-coated crystals and guide the coating for optimal DOI resolution/timing performance trade-off for a given crystal geometry. Simulation data suggested that a time stamp generated from early photoelectrons minimizes degradation of the timing resolution, thus making this method potentially more useful for TOF-DOI detectors than our initial experiments suggested. Finally, this approach could easily be extended to the study of timing properties in other scintillation crystals, with a

  12. Long-time atomistic simulations with the Parallel Replica Dynamics method

    Science.gov (United States)

    Perez, Danny

    Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  13. DRK methods for time-domain oscillator simulation

    NARCIS (Netherlands)

    Sevat, M.F.; Houben, S.H.M.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.

    2006-01-01

    This paper presents a new Runge-Kutta type integration method that is well-suited for time-domain simulation of oscillators. A unique property of the new method is that its damping characteristics can be controlled by a continuous parameter.

  14. Nonlinear time-dependent simulation of helix traveling wave tubes

    International Nuclear Information System (INIS)

    Peng Wei-Feng; Yang Zhong-Hai; Hu Yu-Lu; Li Jian-Qing; Lu Qi-Ru; Li Bin

    2011-01-01

    A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory. (interdisciplinary physics and related areas of science and technology)

  15. Time-Dependent Simulation of Free-Electron Laser Amplifiers and Oscillators

    CERN Document Server

    Freund, H

    2005-01-01

    Time-dependent FEL simulations use a variety of techniques. Most simulations use a slowly varying envelope approximation (SVEA). One such technique assumes that the envelope varies only in z combined with a field representation as an ensemble of discrete harmonics, which is equivalent to a time-dependent simulation [1] but is computationally prohibitive. A second technique uses an SVEA in both in z and t [2]. The particles and fields are advanced in z using the same process as in steady-state simulations and then the time derivative describing slippage is applied. This is used in wiggler-averaged codes such as GINGER [3] and GENESIS [4]. We describe the inclusion of this technique in the non-wiggler-averaged code MEDUSA [5], which is applied to amplifiers and oscillators. MEDUSA differs from GINGER and GENESIS also in the way the field is treated. GINGER and GENESIS use a field solver and must explicitly propagate the field outside the wiggler oscillators. This is computationally intensive. MEDUSA uses a Gaus...

  16. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing-HuaUniversity, Hsinchu, Taiwan (China); Jan, Meei-Ling [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (China)

    2015-07-01

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generator based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)

  17. Further Results on Extended Delivery Time for Secondary Packet Transmission

    KAUST Repository

    Usman, Muneer

    2017-07-10

    Cognitive radio transceiver can opportunistically access the underutilized spectrum resource of primary systems for new wireless services. With interweave cognitive implementation, secondary transmission may be interrupted by primary transmission. To facilitate the packet delay analysis of such secondary transmission, we study the extended delivery time of secondary packet transmission. In particular, we derive the exact distribution function of extended delivery time of a fixed-size secondary packet with non-work-preserving strategy, where interrupted packets must be repeated. We also analyze the effect of imperfect periodic sensing, i.e., the secondary user periodically senses the spectrum for availability, with a chance of missing an available channel on a certain sensing attempt. These results complement previous work on work-preserving strategy with perfect sensing. Selected numerical and simulation results are presented for verifying the mathematical formulation.

  18. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    International Nuclear Information System (INIS)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-01-01

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t i (trajectory positions and velocities x i = (r i , v i )) to time t i+1 (x i+1 ) by x i+1 = f i (x i ), the dynamics problem spanning an interval from t 0 …t M can be transformed into a root finding problem, F(X) = [x i − f(x (i−1 )] i =1,M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H 2 O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a

  19. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    Science.gov (United States)

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  20. 2-D CFD time-dependent thermal-hydraulic simulations of CANDU-6 moderator flows

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi Zadeh, Foad [Department of Engineering Physics/Polytechnique Montréal, Montréal, QC (Canada); Étienne, Stéphane [Department of Mechanical Engineering/Polytechnique Montréal, Montréal, QC (Canada); Teyssedou, Alberto, E-mail: alberto.teyssedou@polymtl.ca [Department of Engineering Physics/Polytechnique Montréal, Montréal, QC (Canada)

    2016-12-01

    Highlights: • 2-D time-dependent CFD simulations of CANDU-6 moderator flows are presented. • A thermal-hydraulic code using thermal physical fluid properties is used. • The numerical approach and convergence is validated against available data. • Flow configurations are correlated using Richardson’s number. • Frequency components indicate moderator flow oscillations vs. Richardson numbers. - Abstract: The distribution of the fluid temperature and mass density of the moderator flow in CANDU-6 nuclear power reactors may affect the reactivity coefficient. For this reason, any possible moderator flow configuration and consequently the corresponding temperature distributions must be studied. In particular, the variations of the reactivity may result in major safety issues. For instance, excessive temperature excursions in the vicinity of the calandria tubes nearby local flow stagnation zones, may bring about partial boiling. Moreover, steady-state simulations have shown that for operating condition, intense buoyancy forces may be dominant, which can trigger a thermal stratification. Therefore, the numerical study of the time-dependent flow transition to such a condition, is of fundamental safety concern. Within this framework, this paper presents detailed time-dependent numerical simulations of CANDU-6 moderator flow for a wide range of flow conditions. To get a better insight of the thermal-hydraulic phenomena, the simulations were performed by covering long physical-time periods using an open-source code (Code-Saturne V3) developed by Électricité de France. The results show not only a region where the flow is characterized by coherent structures of flow fluctuations but also the existence of two limit cases where fluid oscillations disappear almost completely.

  1. Efficient method for time-domain simulation of the linear feedback systems containing fractional order controllers.

    Science.gov (United States)

    Merrikh-Bayat, Farshad

    2011-04-01

    One main approach for time-domain simulation of the linear output-feedback systems containing fractional-order controllers is to approximate the transfer function of the controller with an integer-order transfer function and then perform the simulation. In general, this approach suffers from two main disadvantages: first, the internal stability of the resulting feedback system is not guaranteed, and second, the amount of error caused by this approximation is not exactly known. The aim of this paper is to propose an efficient method for time-domain simulation of such systems without facing the above mentioned drawbacks. For this purpose, the fractional-order controller is approximated with an integer-order transfer function (possibly in combination with the delay term) such that the internal stability of the closed-loop system is guaranteed, and then the simulation is performed. It is also shown that the resulting approximate controller can effectively be realized by using the proposed method. Some formulas for estimating and correcting the simulation error, when the feedback system under consideration is subjected to the unit step command or the unit step disturbance, are also presented. Finally, three numerical examples are studied and the results are compared with the Oustaloup continuous approximation method. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations.

    Science.gov (United States)

    Bylaska, Eric J; Weare, Jonathan Q; Weare, John H

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0[ellipsis (horizontal)]tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution/timeparallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a

  3. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    International Nuclear Information System (INIS)

    Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper

  4. Real-time numerical simulation of the Carnot cycle

    International Nuclear Information System (INIS)

    Hurkala, J; Gall, M; Kutner, R; Maciejczyk, M

    2005-01-01

    We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm (Galant et al 2003 Heat Transfer, Newton's Law of Cooling and the Law of Entropy Increase Simulated by the Real-Time Computer Experiments in Java (Lecture Notes in Computer Science vol 2657) pp 45-53, Gall and Kutner 2005 Molecular mechanisms of heat transfer: Debye relaxation versus power-law Physica A 352 347-78) to simulate not only the heat flow but also the macroscopic movement of the piston. Since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usual, the considerations of phenomenological thermodynamics began with a study of the basic properties of heat engines, hence our approach, besides intrinsic physical significance, is also important from the educational, technological and even environmental points of view

  5. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    International Nuclear Information System (INIS)

    Won, Y.J.; Kim, J.G.; Kim, A.R.; Kim, G.H.; Park, M.; Yu, I.K.; Sim, K.D.; Cho, J.; Lee, S.; Jeong, K.W.; Watanabe, K.

    2011-01-01

    KEPCO has planned to construct a test site for renewable energy in Jeju power system. One kilometer length of total 8 km was designed as superconducting DC cable. We have developed a simulation model of the 8 km HVDC system using real time digital simulator. The simulation result shows that the HVDC line was not affected by wind power variation. Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  6. A new ChainMail approach for real-time soft tissue simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2016-07-03

    This paper presents a new ChainMail method for real-time soft tissue simulation. This method enables the use of different material properties for chain elements to accommodate various materials. Based on the ChainMail bounding region, a new time-saving scheme is developed to improve computational efficiency for isotropic materials. The proposed method also conserves volume and strain energy. Experimental results demonstrate that the proposed ChainMail method can not only accommodate isotropic, anisotropic and heterogeneous materials but also model incompressibility and relaxation behaviors of soft tissues. Further, the proposed method can achieve real-time computational performance.

  7. Time-domain simulation and waveform reconstruction for shielding effectiveness of materials against electromagnetic pulse

    International Nuclear Information System (INIS)

    Hu, Xiao-feng; Chen, Xiang; Wei, Ming

    2013-01-01

    Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.

  8. Study on efficiency of time computation in x-ray imaging simulation base on Monte Carlo algorithm using graphics processing unit

    International Nuclear Information System (INIS)

    Setiani, Tia Dwi; Suprijadi; Haryanto, Freddy

    2016-01-01

    Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic images and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10"8 and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.

  9. Study on efficiency of time computation in x-ray imaging simulation base on Monte Carlo algorithm using graphics processing unit

    Energy Technology Data Exchange (ETDEWEB)

    Setiani, Tia Dwi, E-mail: tiadwisetiani@gmail.com [Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132 (Indonesia); Suprijadi [Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132 (Indonesia); Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132 (Indonesia); Haryanto, Freddy [Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132 (Indonesia)

    2016-03-11

    Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic images and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10{sup 8} and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.

  10. Real-time numerical simulation with high efficiency for an experimental reactor system

    International Nuclear Information System (INIS)

    Ding Shuling; Li Fu; Li Sifeng; Chu Xinyuan

    2006-01-01

    The paper presents a systematic and efficient method for numerical real-time simulation of an experimental reactor. The reactor models were built based on the physical characteristics of the experimental reactor, and several real-time simulation approaches were discussed and compared in the paper. How to implement the real-time reactor simulation system in Windows platform for the sake of hardware-in-loop experiment for the reactor power control system was discussed. (authors)

  11. Virtual reality myringotomy simulation with real-time deformation: development and validity testing.

    Science.gov (United States)

    Ho, Andrew K; Alsaffar, Hussain; Doyle, Philip C; Ladak, Hanif M; Agrawal, Sumit K

    2012-08-01

    Surgical simulation is becoming an increasingly common training tool in residency programs. The first objective was to implement real-time soft-tissue deformation and cutting into a virtual reality myringotomy simulator. The second objective was to test the various implemented incision algorithms to determine which most accurately represents the tympanic membrane during myringotomy. Descriptive and face-validity testing. A deformable tympanic membrane was developed, and three soft-tissue cutting algorithms were successfully implemented into the virtual reality myringotomy simulator. The algorithms included element removal, direction prediction, and Delaunay cutting. The simulator was stable and capable of running in real time on inexpensive hardware. A face-validity study was then carried out using a validated questionnaire given to eight otolaryngologists and four senior otolaryngology residents. Each participant was given an adaptation period on the simulator, was blinded to the algorithm being used, and was presented the three algorithms in a randomized order. A virtual reality myringotomy simulator with real-time soft-tissue deformation and cutting was successfully developed. The simulator was stable, ran in real time on inexpensive hardware, and incorporated haptic feedback and stereoscopic vision. The Delaunay cutting algorithm was found to be the most realistic algorithm representing the incision during myringotomy (P virtual reality myringotomy simulator is being developed and now integrates a real-time deformable tympanic membrane that appears to have face validity. Further development and validation studies are necessary before the simulator can be studied with respect to training efficacy and clinical impact. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  12. Automatic Optimization for Large-Scale Real-Time Coastal Water Simulation

    Directory of Open Access Journals (Sweden)

    Shunli Wang

    2016-01-01

    Full Text Available We introduce an automatic optimization approach for the simulation of large-scale coastal water. To solve the singular problem of water waves obtained with the traditional model, a hybrid deep-shallow-water model is estimated by using an automatic coupling algorithm. It can handle arbitrary water depth and different underwater terrain. As a certain feature of coastal terrain, coastline is detected with the collision detection technology. Then, unnecessary water grid cells are simplified by the automatic simplification algorithm according to the depth. Finally, the model is calculated on Central Processing Unit (CPU and the simulation is implemented on Graphics Processing Unit (GPU. We show the effectiveness of our method with various results which achieve real-time rendering on consumer-level computer.

  13. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    Energy Technology Data Exchange (ETDEWEB)

    Bylaska, Eric J., E-mail: Eric.Bylaska@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Weare, Jonathan Q., E-mail: weare@uchicago.edu [Department of Mathematics, University of Chicago, Chicago, Illinois 60637 (United States); Weare, John H., E-mail: jweare@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}…t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} − f(x{sub (i−1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up

  14. Advanced Research and Education in Electrical Drives by Using Digital Real-Time Hardware-in-the-Loop Simulation

    DEFF Research Database (Denmark)

    Bojoi, R.; Profumo, F.; Griva, G.

    2002-01-01

    The authors present in this paper a digital real-time hardware-in-the-loop simulation of a three-phase induction motor drive. The main real-time simulation tool is the dSPACE DS1103 PPC Controller Board which simulates the power and signal conditioning parts. The control algorithm of the virtual...... drive has been implemented on the Evaluation Board of TMS320F240 DSP. The experimental results validate this solution as a powerful tool to be used in research and advanced education. Thus, the students can put in practic the theory without spending too much time with details concerning the hardware...

  15. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    Science.gov (United States)

    Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.

    2017-04-01

    The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.

  16. Migrating to a real-time distributed parallel simulator architecture

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-07-01

    Full Text Available A legacy non-distributed logical time simulator is migrated to a distributed architecture to parallelise execution. The existing Discrete Time System Specification (DTSS) modelling formalism is retained to simplify the reuse of existing models...

  17. Variable dead time counters: 2. A computer simulation

    International Nuclear Information System (INIS)

    Hooton, B.W.; Lees, E.W.

    1980-09-01

    A computer model has been developed to give a pulse train which simulates that generated by a variable dead time counter (VDC) used in safeguards determination of Pu mass. The model is applied to two algorithms generally used for VDC analysis. It is used to determine their limitations at high counting rates and to investigate the effects of random neutrons from (α,n) reactions. Both algorithms are found to be deficient for use with masses of 240 Pu greater than 100g and one commonly used algorithm is shown, by use of the model and also by theory, to yield a result which is dependent on the random neutron intensity. (author)

  18. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  19. Evaluation of stratospheric temperature simulation results by the global GRAPES model

    Science.gov (United States)

    Liu, Ningwei; Wang, Yangfeng; Ma, Xiaogang; Zhang, Yunhai

    2017-12-01

    Global final analysis (FNL) products and the general circulation spectral model (ECHAM) were used to evaluate the simulation of stratospheric temperature by the global assimilation and prediction system (GRAPES). Through a series of comparisons, it was shown that the temperature variations at 50 hPa simulated by GRAPES were significantly elevated in the southern hemisphere, whereas simulations by ECHAM and FNL varied little over time. The regional warming predicted by GRAPES seemed to be too distinct and uncontrolled to be reasonable. The temperature difference between GRAPES and FNL (GRAPES minus FNL) was small at the start time on the global scale. Over time, the positive values became larger in more locations, especially in parts of the southern hemisphere, where the warming predicted by GRAPES was dominant, with a maximal value larger than 24 K. To determine the reasons for the stratospheric warming, we considered the model initial conditions and ozone data to be possible factors; however, a comparison and sensitivity test indicated that the errors produced by GRAPES were not significantly related to either factor. Further research focusing on the impact of factors such as vapor, heating rate, and the temperature tendency on GRAPES simulations will be conducted.

  20. Time domain simulations of beam-loading

    International Nuclear Information System (INIS)

    Koscielniak, S.

    1989-09-01

    We present the results of computer simulations of high current beam loading in a proton storage ring. The model integrates the differential equation for gap voltage, and iterates the difference equations for particle longitudinal motion. The effects of cavity fields on the bunch shape and of the fundamental component of the beam on the cavity are treated in a self-consistent manner. The simulation model is applied to verify the dipole-quadrupole hybrid Robinson instability criterion, which differs from the dipole-mode criterion

  1. RF feedback simulation results for PEP-II

    International Nuclear Information System (INIS)

    Tighe, R.; Corredoura, P.

    1995-06-01

    A model of the RF feedback system for PEP-II has been developed to provide time-domain simulation and frequency-domain analysis of the complete system. The model includes the longitudinal beam dynamics, cavity fundamental resonance, feedback loops, and the nonlinear klystron operating near saturation. Transients from an ion clearing gap and a reference phase modulation from the longitudinal feedback system are also studied. Growth rates are predicted and overall system stability examined

  2. A Compact Synchronous Cellular Model of Nonlinear Calcium Dynamics: Simulation and FPGA Synthesis Results.

    Science.gov (United States)

    Soleimani, Hamid; Drakakis, Emmanuel M

    2017-06-01

    Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.

  3. Virtual Reality Cerebral Aneurysm Clipping Simulation With Real-time Haptic Feedback

    Science.gov (United States)

    Alaraj, Ali; Luciano, Cristian J.; Bailey, Daniel P.; Elsenousi, Abdussalam; Roitberg, Ben Z.; Bernardo, Antonio; Banerjee, P. Pat; Charbel, Fady T.

    2014-01-01

    Background With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. Objective To develop and evaluate the usefulness of a new haptic-based virtual reality (VR) simulator in the training of neurosurgical residents. Methods A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the Immersive Touch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomography angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-D immersive VR environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from three residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Results Residents felt that the simulation would be useful in preparing for real-life surgery. About two thirds of the residents felt that the 3-D immersive anatomical details provided a very close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They believed the simulation is useful for preoperative surgical rehearsal and neurosurgical training. One third of the residents felt that the technology in its current form provided very realistic haptic feedback for aneurysm surgery. Conclusion Neurosurgical residents felt that the novel immersive VR simulator is helpful in their training especially since they do not get a chance to perform aneurysm clippings until very late in their residency programs. PMID:25599200

  4. WinGraphics: An optimized windowing environment for interactive real-time simulations

    International Nuclear Information System (INIS)

    Verboncoeur, J.P.; Vahedi, V.

    1989-01-01

    We have developed a customized windowing environment, Win Graphics, which provides particle simulation codes with an interactive user interface. The environment supports real-time animation of the simulation, displaying multiple diagnostics as they evolve in time. In addition, keyboard and printer (PostScript and dot matrix) support is provided. This paper describes this environment

  5. Multiple time-scale methods in particle simulations of plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1985-01-01

    This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling

  6. Improvements of the two-dimensional FDTD method for the simulation of normal- and superconducting planar waveguides using time series analysis

    International Nuclear Information System (INIS)

    Hofschen, S.; Wolff, I.

    1996-01-01

    Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement

  7. Improvements of the two-dimensional FDTD method for the simulation of normal- and superconducting planar waveguides using time series analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hofschen, S.; Wolff, I. [Gerhard Mercator Univ. of Duisburg (Germany). Dept. of Electrical Engineering

    1996-08-01

    Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement.

  8. Real - time Dynamic Simulation and Prediction of Groundwater in Typical Arid Area Based on SPASS Improvement

    Science.gov (United States)

    Wang, Xiao-ming

    2018-03-01

    The establishment of traditional groundwater numerical simulation model, parameter identification and inspection process, especially the water level fitting and the actual observation of the value obtained compared to a large error. Based on the SPASS software, a large number of statistical analysis of the numerical simulation results show that the complexity of the terrain in the study area, the distribution of lithology and the influence of the parameters on the groundwater level in the study area have great influence on the groundwater level. Through the multi-factor analysis and adjustment, the simulated groundwater flow and the actual observation are similar. Then, the final result is taken as the standard value, and the groundwater in the study area is simulated and predicted in real time. The simulation results provide technical support for the further development and utilization of the local water resources.

  9. Medical Simulation Practices 2010 Survey Results

    Science.gov (United States)

    McCrindle, Jeffrey J.

    2011-01-01

    Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity

  10. Challenges in reducing the computational time of QSTS simulations for distribution system analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Deboever, Jeremiah [Georgia Inst. of Technology, Atlanta, GA (United States); Zhang, Xiaochen [Georgia Inst. of Technology, Atlanta, GA (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Georgia Inst. of Technology, Atlanta, GA (United States); Therrien, Francis [CME International T& D, St. Bruno, QC (Canada)

    2017-06-01

    The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10 to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.

  11. Electron-cloud simulation results for the PSR and SNS

    International Nuclear Information System (INIS)

    Pivi, M.; Furman, M.A.

    2002-01-01

    We present recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos. In particular, a complete refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has been included in the simulation code

  12. Real-world-time simulation of memory consolidation in a large-scale cerebellar model

    Directory of Open Access Journals (Sweden)

    Masato eGosui

    2016-03-01

    Full Text Available We report development of a large-scale spiking network model of thecerebellum composed of more than 1 million neurons. The model isimplemented on graphics processing units (GPUs, which are dedicatedhardware for parallel computing. Using 4 GPUs simultaneously, we achieve realtime simulation, in which computer simulation ofcerebellar activity for 1 sec completes within 1 sec in thereal-world time, with temporal resolution of 1 msec.This allows us to carry out a very long-term computer simulationof cerebellar activity in a practical time with millisecond temporalresolution. Using the model, we carry out computer simulationof long-term gain adaptation of optokinetic response (OKR eye movementsfor 5 days aimed to study the neural mechanisms of posttraining memoryconsolidation. The simulation results are consistent with animal experimentsand our theory of posttraining memory consolidation. These resultssuggest that realtime computing provides a useful means to studya very slow neural process such as memory consolidation in the brain.

  13. Simulation for light extraction in light emitting diode using finite domain time difference method

    International Nuclear Information System (INIS)

    Hong, Jun Hee; Park, Si Hyun

    2008-01-01

    InGaN based LEDs are indispensable to traffic light, full color displays, back lights in liquid crystals, and general lighting. The demand for high efficiency LEDs is on the increase. Recently we have reported the improvement of the light extraction efficiency of InGaN based LED. In this paper we show suitable a three dimensional (3 D)FDTD simulation method for LED simulation and we apply our FDTD simulation to our PNS LED structures, comparing the simulation results with the experimental results. For real FDTD simulation, we first must consider the spatial and temporal grid size. In order to obtain an accurate result, the spatial grid size must be so small that the feature of the field can be resolved. We computed the field power at each time at the surface 0.3mm away from the surface between GaN and air and integrate over surface. The calculations were conducted for the PNS LEDs employing the different height of SiO_2 columns, that is, h=160nm, h=350nm, h=550nm, h=750nm, and h=950nm. Simulation results according to different height is shown in Fig. 1(a,b). All simulation curves follow rough trend that it increases with column height and reaches the maximum at about 600nm height and then decreases with height. And this is a consistent with the trend from our experiments. Our FDTD simulation gives a possibility for design of LED structures of high extraction efficiency

  14. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    Science.gov (United States)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  15. Comparison the results of numerical simulation and experimental results for Amirkabir plasma focus facility

    International Nuclear Information System (INIS)

    Goudarzi, Shervin; Amrollahi, R; Sharak, M Niknam

    2014-01-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  16. Real-time modelling of a ventilation system for a power plant simulator

    International Nuclear Information System (INIS)

    Kocher, P.; Welfonder, E.

    1992-01-01

    This paper describes how to simulate in real-time the ventilation system of a nuclear power plant. The simulation is made under difficult computing time conditions. The ventilation system program is part of a simulator which simulates the whole nuclear power plant process in realtime. Therefore the ventilation system is split up into several smaller units. For each of these process units a real-time module has been developed, being as simple as possible but nevertheless coming close enough to the real dynamic behaviour. After that the simple real-time modules are linked together to form the total dynamic model ''ventilation system''. The continuous dynamic model developed is numerically integrated by the Euler method. The stability of this explicit method is maintained by special modelling measures such as the increasing of too low flow resistances or the limitation of too high gain factors. At the end of the paper some curves, recorded at the simulator, illustrate the behaviour of the ventilation system in the case of an accident. (author)

  17. Time reversibility, computer simulation, algorithms, chaos

    CERN Document Server

    Hoover, William Graham

    2012-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...

  18. Simulation-based validation and arrival-time correction for Patlak analyses of Perfusion-CT scans

    Science.gov (United States)

    Bredno, Jörg; Hom, Jason; Schneider, Thomas; Wintermark, Max

    2009-02-01

    Blood-brain-barrier (BBB) breakdown is a hypothesized mechanism for hemorrhagic transformation in acute stroke. The Patlak analysis of a Perfusion Computed Tomography (PCT) scan measures the BBB permeability, but the method yields higher estimates when applied to the first pass of the contrast bolus compared to a delayed phase. We present a numerical phantom that simulates vascular and parenchymal time-attenuation curves to determine the validity of permeability measurements obtained with different acquisition protocols. A network of tubes represents the major cerebral arteries ipsi- and contralateral to an ischemic event. These tubes branch off into smaller segments that represent capillary beds. Blood flow in the phantom is freely defined and simulated as non-Newtonian tubular flow. Diffusion of contrast in the vessels and permeation through vessel walls is part of the simulation. The phantom allows us to compare the results of a permeability measurement to the simulated vessel wall status. A Patlak analysis reliably detects areas with BBB breakdown for acquisitions of 240s duration, whereas results obtained from the first pass are biased in areas of reduced blood flow. Compensating for differences in contrast arrival times reduces this bias and gives good estimates of BBB permeability for PCT acquisitions of 90-150s duration.

  19. On the fast estimation of transit times application to BWR simulated data

    International Nuclear Information System (INIS)

    Antonopoulos-Domis, M.; Marseguerra, M.; Padovani, E.

    1996-01-01

    Real time estimators of transit times are proposed. BWR noise is simulated including a global component due to rod vibration. The time obtained form the simulation is used to investigate the robustness and noise immunity of the estimators. It is found that, in presence of a coincident (global) signal, the cross-correlation function is the worst estimator. (authors)

  20. Monte Carlo simulations of microchannel plate detectors I: steady-state voltage bias results

    Energy Technology Data Exchange (ETDEWEB)

    Ming Wu, Craig Kruschwitz, Dane Morgan, Jiaming Morgan

    2008-07-01

    X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and timeresolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a microchannel plate under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured microchannel plate sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.

  1. Caution: Precision Error in Blade Alignment Results in Faulty Unsteady CFD Simulation

    Science.gov (United States)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2012-11-01

    Turbomachinery components experience unsteady loads at several frequencies. The rotor frequency corresponds to the time for one rotor blade to rotate between two stator vanes, and is normally dominant for rotor torque oscillations. The guide vane frequency corresponds to the time for two rotor blades to pass by one guide vane. The machine frequency corresponds to the machine RPM. Oscillations at the machine frequency are always present due to minor blade misalignments and imperfections resulting from manufacturing defects. However, machine frequency oscillations should not be present in CFD simulations if the mesh is free of both blade misalignment and surface imperfections. The flow through a Francis hydroturbine was modeled with unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD simulations and a dynamic rotating grid. Spectral analysis of the unsteady torque on the rotor blades revealed a large component at the machine frequency. Close examination showed that one blade was displaced by 0 .0001° due to round-off errors during mesh generation. A second mesh without blade misalignment was then created. Subsequently, large machine frequency oscillations were not observed for this mesh. These results highlight the effect of minor geometry imperfections on CFD solutions. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  2. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    Science.gov (United States)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  3. A discrete event simulation model for evaluating time delays in a pipeline network

    Energy Technology Data Exchange (ETDEWEB)

    Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)

  4. An integral time series on simulated labeling using fractal structure

    International Nuclear Information System (INIS)

    Djainal, D.D.

    1997-01-01

    This research deals with the detection of time series of vertical two-phase flow, in attempt to developed an objective indicator of time series flow patterns. One of new method is fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. in the present work, fractal analysis applied to analyze simulated boiling coolant signal. this simulated signals built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both modes are characterized by their void fractions. in the case of unimodal-PDF signals, the difference between these modes is relative small. on other hand, bimodal-PDF signals have relative large range. in this research, fractal dimension can indicate the characters of that signals simulation

  5. Real-time simulation of MHD/steam power plants by digital parallel processors

    International Nuclear Information System (INIS)

    Johnson, R.M.; Rudberg, D.A.

    1981-01-01

    Attention is given to a large FORTRAN coded program which simulates the dynamic response of the MHD/steam plant on either a SEL 32/55 or VAX 11/780 computer. The code realizes a detailed first-principle model of the plant. Quite recently, in addition to the VAX 11/780, an AD-10 has been installed for usage as a real-time simulation facility. The parallel processor AD-10 is capable of simulating the MHD/steam plant at several times real-time rates. This is desirable in order to develop rapidly a large data base of varied plant operating conditions. The combined-cycle MHD/steam plant model is discussed, taking into account a number of disadvantages. The disadvantages can be overcome with the aid of an array processor used as an adjunct to the unit processor. The conversion of some computations for real-time simulation is considered

  6. Real-time simulation of contact and cutting of heterogeneous soft-tissues.

    Science.gov (United States)

    Courtecuisse, Hadrien; Allard, Jérémie; Kerfriden, Pierre; Bordas, Stéphane P A; Cotin, Stéphane; Duriez, Christian

    2014-02-01

    This paper presents a numerical method for interactive (real-time) simulations, which considerably improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact, cutting and other topological changes. We provide an integrated methodology able to deal both with the ill-conditioning issues associated with material heterogeneities, contact boundary conditions which are one of the main sources of inaccuracies, and cutting which is one of the most challenging issues in interactive simulations. Our approach is based on an implicit time integration of a non-linear finite element model. To enable real-time computations, we propose a new preconditioning technique, based on an asynchronous update at low frequency. The preconditioner is not only used to improve the computation of the deformation of the tissues, but also to simulate the contact response of homogeneous and heterogeneous bodies with the same accuracy. We also address the problem of cutting the heterogeneous structures and propose a method to update the preconditioner according to the topological modifications. Finally, we apply our approach to three challenging demonstrators: (i) a simulation of cataract surgery (ii) a simulation of laparoscopic hepatectomy (iii) a brain tumor surgery. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A multi-GPU real-time dose simulation software framework for lung radiotherapy.

    Science.gov (United States)

    Santhanam, A P; Min, Y; Neelakkantan, H; Papp, N; Meeks, S L; Kupelian, P A

    2012-09-01

    Medical simulation frameworks facilitate both the preoperative and postoperative analysis of the patient's pathophysical condition. Of particular importance is the simulation of radiation dose delivery for real-time radiotherapy monitoring and retrospective analyses of the patient's treatment. In this paper, a software framework tailored for the development of simulation-based real-time radiation dose monitoring medical applications is discussed. A multi-GPU-based computational framework coupled with inter-process communication methods is introduced for simulating the radiation dose delivery on a deformable 3D volumetric lung model and its real-time visualization. The model deformation and the corresponding dose calculation are allocated among the GPUs in a task-specific manner and is performed in a pipelined manner. Radiation dose calculations are computed on two different GPU hardware architectures. The integration of this computational framework with a front-end software layer and back-end patient database repository is also discussed. Real-time simulation of the dose delivered is achieved at once every 120 ms using the proposed framework. With a linear increase in the number of GPU cores, the computational time of the simulation was linearly decreased. The inter-process communication time also improved with an increase in the hardware memory. Variations in the delivered dose and computational speedup for variations in the data dimensions are investigated using D70 and D90 as well as gEUD as metrics for a set of 14 patients. Computational speed-up increased with an increase in the beam dimensions when compared with a CPU-based commercial software while the error in the dose calculation was lung model-based radiotherapy is an effective tool for performing both real-time and retrospective analyses.

  8. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    Science.gov (United States)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the

  9. Minimizing patient waiting time in emergency department of public hospital using simulation optimization approach

    Science.gov (United States)

    Ibrahim, Ireen Munira; Liong, Choong-Yeun; Bakar, Sakhinah Abu; Ahmad, Norazura; Najmuddin, Ahmad Farid

    2017-04-01

    Emergency department (ED) is the main unit of a hospital that provides emergency treatment. Operating 24 hours a day with limited number of resources invites more problems to the current chaotic situation in some hospitals in Malaysia. Delays in getting treatments that caused patients to wait for a long period of time are among the frequent complaints against government hospitals. Therefore, the ED management needs a model that can be used to examine and understand resource capacity which can assist the hospital managers to reduce patients waiting time. Simulation model was developed based on 24 hours data collection. The model developed using Arena simulation replicates the actual ED's operations of a public hospital in Selangor, Malaysia. The OptQuest optimization in Arena is used to find the possible combinations of a number of resources that can minimize patients waiting time while increasing the number of patients served. The simulation model was modified for improvement based on results from OptQuest. The improvement model significantly improves ED's efficiency with an average of 32% reduction in average patients waiting times and 25% increase in the total number of patients served.

  10. Real-Time Simulation Technique of a Microgrid Model for DER Penetration

    Directory of Open Access Journals (Sweden)

    Konstantina Mentesidi

    2014-12-01

    Full Text Available Comprehensive analysis of Distributed Energy Resources (DER integration requires tools that provide computational power and flexibility. In this context, throughout this paper PHIL simulations are performed to emulate the energy management system of a real microgrid including a diesel synchronous machine and inverter-based sources. Moreover, conventional frequency and voltage droops were incorporated into the respective inverters. The results were verified at the real microgrid installation in the Centre for Renewable Energy Sources (CRES premises. This research work is divided into two steps: A Real time in RSCAD/RTDS and Power Hardware-in-the-Loop (PHIL simulations where the diesel generator´s active power droop control is evaluated, the battery inverter´s droop curves are simulated and the load sharing for parallel operation of the system´s generation units is examined. B microgrid experiments during which various tests were executed concerning the diesel generator and the battery inverters in order to examine their dynamic operation within the LV islanded power system.

  11. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    Science.gov (United States)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  12. Real-time simulation requirements for study and optimization of power system controls

    Energy Technology Data Exchange (ETDEWEB)

    Nakra, Harbans; McCallum, David; Gagnon, Charles [Institut de Recherche d` Hydro-Quebec, Quebec, PQ (Canada); Venne, Andre; Gagnon, Julien [Hydro-Quebec, Montreal, PQ (Canada)

    1994-12-31

    At the time of ordering for the multi-terminal dc system linking Hydro-Quebec with New England, Hydro-Quebec also ordered functionally duplicate controls of all the converters and installed these in its real time simulation laboratory. The Hydro-Quebec ac system was also simulated in detail and the testing of the controls as thus made possible in a realistic environment. Many field tests were duplicated and many additional tests were done for correction and optimization. This paper describes some of the features of the real-time simulation carried out for this purpose. (author) 3 figs.

  13. Finite Element Methods for real-time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators

    Science.gov (United States)

    Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.

  14. A DVE Time Management Simulation and Verification Platform Based on Causality Consistency Middleware

    Science.gov (United States)

    Zhou, Hangjun; Zhang, Wei; Peng, Yuxing; Li, Sikun

    During the course of designing a time management algorithm for DVEs, the researchers always become inefficiency for the distraction from the realization of the trivial and fundamental details of simulation and verification. Therefore, a platform having realized theses details is desirable. However, this has not been achieved in any published work to our knowledge. In this paper, we are the first to design and realize a DVE time management simulation and verification platform providing exactly the same interfaces as those defined by the HLA Interface Specification. Moreover, our platform is based on a new designed causality consistency middleware and might offer the comparison of three kinds of time management services: CO, RO and TSO. The experimental results show that the implementation of the platform only costs small overhead, and that the efficient performance of it is highly effective for the researchers to merely focus on the improvement of designing algorithms.

  15. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    Science.gov (United States)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  16. Towards Reconfigurable, Separable and Hard Real-Time Hybrid Simulation and Test Systems

    Science.gov (United States)

    Quartier, F.; Delatte, B.; Joubert, M.

    2009-05-01

    Formation flight needs several new technologies, new disciplines, new approaches and above all, more concurrent engineering by more players. One of the problems to be addressed are more complex simulation and test systems that are easy to re-configure to include parts of the target hardware and that can provide sufficient power to handle simulation cores that are requiring one to two orders of magnitude more processing power than the current technology provides. Critical technologies that are already addressed by CNES and Spacebel are study model reuse and simulator reconfigurability (Basiles), model portability (SMP2) and the federation of several simulators using HLA. Two more critical issues are addressed in ongoing R&D work by CNES and Spacebel and are covered by this paper and concern the time engineering and management. The first issue concerns separability (characterisation, identification and handling of separable subsystems) and the consequences on practical systems. Experiments on the Pleiades operational simulator have shown that adding precise simulation of instruments such as Doris and the Star Tracker can be added without significantly impacting overall performance. Improved time analysis leads to better system understanding and testability. The second issue concerns architectures for distributed hybrid simulators systems that provide hard real-time capabilities and can react with a relative time precision and jitter that is in the 10 to 50 µsecond range using mainstream PC's and mainstream Operating Systems. This opens a way to make smaller economic hardware test systems that can be reconfigured to make large hardware test systems without restarting development. Although such systems were considered next to impossible till now, distributed hard real-time systems are getting in reach when modern but mainstream electronics are used and when processor cores can be isolated and reserved for real-time cores. This requires a complete rethinking of the

  17. DoSSiER: Database of Scientific Simulation and Experimental Results

    CERN Document Server

    Wenzel, Hans; Genser, Krzysztof; Elvira, Daniel; Pokorski, Witold; Carminati, Federico; Konstantinov, Dmitri; Ribon, Alberto; Folger, Gunter; Dotti, Andrea

    2017-01-01

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this article, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  18. Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation

    International Nuclear Information System (INIS)

    Sha, Wei; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng

    2007-01-01

    An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources

  19. Saving time in a space-efficient simulation algorithm

    NARCIS (Netherlands)

    Markovski, J.

    2011-01-01

    We present an efficient algorithm for computing the simulation preorder and equivalence for labeled transition systems. The algorithm improves an existing space-efficient algorithm and improves its time complexity by employing a variant of the stability condition and exploiting properties of the

  20. IGBT Switching Characteristic Curve Embedded Half-Bridge MMC Modelling and Real Time Simulation Realization

    Science.gov (United States)

    Zhengang, Lu; Hongyang, Yu; Xi, Yang

    2017-05-01

    The Modular Multilevel Converter (MMC) is one of the most attractive topologies in recent years for medium or high voltage industrial applications, such as high voltage dc transmission (HVDC) and medium voltage varying speed motor drive. The wide adoption of MMCs in industry is mainly due to its flexible expandability, transformer-less configuration, common dc bus, high reliability from redundancy, and so on. But, when the sub module number of MMC is more, the test of MMC controller will cost more time and effort. Hardware in the loop test based on real time simulator will save a lot of time and money caused by the MMC test. And due to the flexible of HIL, it becomes more and more popular in the industry area. The MMC modelling method remains an important issue for the MMC HIL test. Specifically, the VSC model should realistically reflect the nonlinear device switching characteristics, switching and conduction losses, tailing current, and diode reverse recovery behaviour of a realistic converter. In this paper, an IGBT switching characteristic curve embedded half-bridge MMC modelling method is proposed. This method is based on the switching curve referring and sample circuit calculation, and it is sample for implementation. Based on the proposed method, a FPGA real time simulation is carried out with 200ns sample time. The real time simulation results show the proposed method is correct.

  1. OVNI: a full-size real-time power system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J. R.; Linares, L. R.; Rosales, R.; Dommel, H. W. [British Columbia Univ., Vancouver, BC (Canada)

    1997-12-31

    The concept and work-in-progress to develop a computer-based power system simulator that would mimic as closely as possible the behaviour of an actual power system, was described. The simulator, dubbed OVNI for Object Virtual Network Integrator, is capable of running continuously. It produces at each discreet time instant, the correct voltages and currents in a power system. OVNI is being implemented using a network of off-the-shelf Pentium Pro 200 MHz workstations. The Ada 95 language is used to satisfy object-oriented requirements and provide the code with the reliability required for mission-critical applications. An important characteristic of OVNI is its fully graphical and integrated simulation environment. System events can be directly applied to the simulator and outputs probed as the simulator is running. Input events can originate from user action or directly through A/D boards. Output probes can also be directed to the screen as running plots, or forwarded through D/A boards. 6 refs., 6 figs.

  2. OVNI: a full-size real-time power system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J R; Linares, L R; Rosales, R; Dommel, H W [British Columbia Univ., Vancouver, BC (Canada)

    1998-12-31

    The concept and work-in-progress to develop a computer-based power system simulator that would mimic as closely as possible the behaviour of an actual power system, was described. The simulator, dubbed OVNI for Object Virtual Network Integrator, is capable of running continuously. It produces at each discreet time instant, the correct voltages and currents in a power system. OVNI is being implemented using a network of off-the-shelf Pentium Pro 200 MHz workstations. The Ada 95 language is used to satisfy object-oriented requirements and provide the code with the reliability required for mission-critical applications. An important characteristic of OVNI is its fully graphical and integrated simulation environment. System events can be directly applied to the simulator and outputs probed as the simulator is running. Input events can originate from user action or directly through A/D boards. Output probes can also be directed to the screen as running plots, or forwarded through D/A boards. 6 refs., 6 figs.

  3. Real-time modeling and simulation of distribution feeder and distributed resources

    Science.gov (United States)

    Singh, Pawan

    The analysis of the electrical system dates back to the days when analog network analyzers were used. With the advent of digital computers, many programs were written for power-flow and short circuit analysis for the improvement of the electrical system. Real-time computer simulations can answer many what-if scenarios in the existing or the proposed power system. In this thesis, the standard IEEE 13-Node distribution feeder is developed and validated on a real-time platform OPAL-RT. The concept and the challenges of the real-time simulation are studied and addressed. Distributed energy resources include some of the commonly used distributed generation and storage devices like diesel engine, solar photovoltaic array, and battery storage system are modeled and simulated on a real-time platform. A microgrid encompasses a portion of an electric power distribution which is located downstream of the distribution substation. Normally, the microgrid operates in paralleled mode with the grid; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. The microgrid can operate in grid connected and islanded mode, both the operating modes are studied in the last chapter. Towards the end, a simple microgrid controller modeled and simulated on the real-time platform is developed for energy management and protection for the microgrid.

  4. A simulation program for the timing of fungicides to control Sooty Blotch in organic apple growing. First results in 2003

    OpenAIRE

    Trapman, Marc

    2004-01-01

    A simulation program for infections by Sooty Blotch was developed based on literature data and expert judgements. The value of the model as tool for timing fungicide sprays to control Sooty Blotch was tested in 2003 in two randomized plot trials, and four “on farm” trials where the treatments where made by the growers. Disease pressure was relative low due to the warm and dry summer of 2003. Two to five post infection treatments with lime sulfur or coconut soap aimed at severe ...

  5. Simulation of time curves in small animal PET using GATE

    International Nuclear Information System (INIS)

    Simon, Luc; Strul, Daniel; Santin, Giovanni; Krieguer, Magalie; Morel, Christian

    2004-01-01

    The ClearPET project of the Crystal Clear Collaboration (CCC) is building spin-off technology for high resolution small animal Positron Emission Tomography (PET). Monte Carlo simulation is essential for optimizing the specifications of these systems with regards to their most important characteristics, such as spatial resolution, sensitivity, or count rate performance. GATE, the Geant4 Application for Tomographic Emission simulates the passing of time during real acquisitions, allowing to handle dynamic systems such as decaying source distributions or moving detectors. GATE output is analyzed on an event-by-event basis. The time associated with each single event allows to sort coincidences and to model dead-time. This leads to the study of time curves for a prospective small animal PET scanner design. The count rates of true, and random coincidences are discussed together with the corresponding Noise Equivalent Count (NEC) rates as a function of some PET scanner specifications such as detector dead time, or coincidence time window

  6. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    Science.gov (United States)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  7. Study on Real-Time Simulation Analysis and Inverse Analysis System for Temperature and Stress of Concrete Dam

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-01-01

    Full Text Available In the concrete dam construction, it is very necessary to strengthen the real-time monitoring and scientific management of concrete temperature control. This paper constructs the analysis and inverse analysis system of temperature stress simulation, which is based on various useful data collected in real time in the process of concrete construction. The system can produce automatically data file of temperature and stress calculation and then achieve the remote real-time simulation calculation of temperature stress by using high performance computing techniques, so the inverse analysis can be carried out based on a basis of monitoring data in the database; it fulfills the automatic feedback calculation according to the error requirement and generates the corresponding curve and chart after the automatic processing and analysis of corresponding results. The system realizes the automation and intellectualization of complex data analysis and preparation work in simulation process and complex data adjustment in the inverse analysis process, which can facilitate the real-time tracking simulation and feedback analysis of concrete temperature stress in construction process and enable you to discover problems timely, take measures timely, and adjust construction scheme and can well instruct you how to ensure project quality.

  8. Discrete events simulation of a route with traffic lights through automated control in real time

    Directory of Open Access Journals (Sweden)

    Rodrigo César Teixeira Baptista

    2013-03-01

    Full Text Available This paper presents the integration and communication in real-time of a discrete event simulation model with an automatic control system. The simulation model of an intersection with roads having traffic lights was built in the Arena environment. The integration and communication have been made via network, and the control system was operated by a programmable logic controller. Scenarios were simulated for the free, regular and congested traffic situations. The results showed the average number of vehicles that entered in the system and that were retained and also the total average time of the crossing of the vehicles on the road. In general, the model allowed evaluating the behavior of the traffic in each of the ways and the commands from the controller to activation and deactivation of the traffic lights.

  9. Simulation evaluation of TIMER, a time-based, terminal air traffic, flow-management concept

    Science.gov (United States)

    Credeur, Leonard; Capron, William R.

    1989-01-01

    A description of a time-based, extended terminal area ATC concept called Traffic Intelligence for the Management of Efficient Runway scheduling (TIMER) and the results of a fast-time evaluation are presented. The TIMER concept is intended to bridge the gap between today's ATC system and a future automated time-based ATC system. The TIMER concept integrates en route metering, fuel-efficient cruise and profile descents, terminal time-based sequencing and spacing together with computer-generated controller aids, to improve delivery precision for fuller use of runway capacity. Simulation results identify and show the effects and interactions of such key variables as horizon of control location, delivery time error at both the metering fix and runway threshold, aircraft separation requirements, delay discounting, wind, aircraft heading and speed errors, and knowledge of final approach speed.

  10. Real-time modelling and simulation of an active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, S.; Ouhrouche, M. [Quebec Univ., Chicoutimi, PQ (Canada); Dufour, C.; Allaire, P.F. [Opal RT Technologies Inc., Montreal, PQ (Canada)

    2007-07-01

    Power electronics converters generate harmonics and cause electromagnetic compatibility problems. Active power filter (APF) technology has advanced to the point that it can compensate for harmonics in electrical networks and provide reactive power and neutral current in AC networks. This paper presented a contribution in the design of a shunt APF for harmonics compensation in real-time simulation using the RT-LAB software package running on a simple personal computer. Real-time simulations were performed to validate the effectiveness of the proposed model. Several high-tech industries have adopted this tool for rapid control prototyping and for Hardware-in-the-Loop applications. The switching signals of the APF are determined by the hysteresis band current controller. The suitable current reference signals were determined by the algorithm based on synchronous reference frame. Real-time simulation runs showed good performance in harmonics compensation, thus satisfying the requirements of IEEE Standard 519-1992. The rate of total harmonic distortion for the source current decreased from 30 to 5 per cent. 12 refs., 1 tab., 9 figs.

  11. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    Science.gov (United States)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  12. Simulation model for transcervical laryngeal injection providing real-time feedback.

    Science.gov (United States)

    Ainsworth, Tiffiny A; Kobler, James B; Loan, Gregory J; Burns, James A

    2014-12-01

    This study aimed to develop and evaluate a model for teaching transcervical laryngeal injections. A 3-dimensional printer was used to create a laryngotracheal framework based on de-identified computed tomography images of a human larynx. The arytenoid cartilages and intrinsic laryngeal musculature were created in silicone from clay casts and thermoplastic molds. The thyroarytenoid (TA) muscle was created with electrically conductive silicone using metallic filaments embedded in silicone. Wires connected TA muscles to an electrical circuit incorporating a cell phone and speaker. A needle electrode completed the circuit when inserted in the TA during simulated injection, providing real-time feedback of successful needle placement by producing an audible sound. Face validation by the senior author confirmed appropriate tactile feedback and anatomical realism. Otolaryngologists pilot tested the model and completed presimulation and postsimulation questionnaires. The high-fidelity simulation model provided tactile and audio feedback during needle placement, simulating transcervical vocal fold injections. Otolaryngology residents demonstrated higher comfort levels with transcervical thyroarytenoid injection on postsimulation questionnaires. This is the first study to describe a simulator for developing transcervical vocal fold injection skills. The model provides real-time tactile and auditory feedback that aids in skill acquisition. Otolaryngologists reported increased confidence with transcervical injection after using the simulator. © The Author(s) 2014.

  13. Analysis of Time Delay Simulation in Networked Control System

    OpenAIRE

    Nyan Phyo Aung; Zaw Min Naing; Hla Myo Tun

    2016-01-01

    The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analy...

  14. Toward transient finite element simulation of thermal deformation of machine tools in real-time

    Science.gov (United States)

    Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg

    2018-01-01

    Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.

  15. Comparison of simulation and experimental results for a model aqueous tert-butanol solution

    Science.gov (United States)

    Overduin, S. D.; Patey, G. N.

    2017-07-01

    Molecular dynamics simulations are used to investigate the behavior of aqueous tert-butanol (TBA) solutions for a range of temperatures, using the CHARMM generalized force field (CGenFF) to model TBA and the TIP4P/2005 or TIP4P-Ew water model. Simulation results for the density, isothermal compressibility, constant pressure heat capacity, and self-diffusion coefficients are in good accord with experimental measurements. Agreement with the experiment is particularly good at low TBA concentration, where experiments have revealed anomalies in a number of thermodynamic properties. Importantly, the CGenFF model does not exhibit liquid-liquid demixing at temperatures between 290 and 320 K (for systems of 32 000 molecules), in contrast with the situation for several other common TBA models [R. Gupta and G. N. Patey, J. Chem. Phys. 137, 034509 (2012)]. However, whereas real water and TBA are miscible at all temperatures where the liquid is stable, we observe some evidence of demixing at 340 K and above. To evaluate the structural properties at low concentrations, we compare with both neutron scattering and recent spectroscopic measurements. This reveals that while the CGenFF model is a definite improvement over other models that have been considered, the TBA molecules still exhibit a tendency to associate at low concentrations that is somewhat stronger than that indicated by experiments. Finally, we discuss the range and decay times of the long-range correlations, providing an indication of the system size and simulation times that are necessary in order to obtain reliable results for certain properties.

  16. Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2018-02-01

    Full Text Available Precise Point Positioning (PPP is a popular technology for precise applications based on the Global Navigation Satellite System (GNSS. Multi-GNSS combined PPP has become a hot topic in recent years with the development of multiple GNSSs. Meanwhile, with the operation of the real-time service (RTS of the International GNSS Service (IGS agency that provides satellite orbit and clock corrections to broadcast ephemeris, it is possible to obtain the real-time precise products of satellite orbits and clocks and to conduct real-time PPP. In this contribution, the real-time multi-GNSS orbit and clock corrections of the CLK93 product are applied for real-time multi-GNSS PPP processing, and its orbit and clock qualities are investigated, first with a seven-day experiment by comparing them with the final multi-GNSS precise product ‘GBM’ from GFZ. Then, an experiment involving real-time PPP processing for three stations in the Multi-GNSS Experiment (MGEX network with a testing period of two weeks is conducted in order to evaluate the convergence performance of real-time PPP in a simulated kinematic mode. The experimental result shows that real-time PPP can achieve a convergence performance of less than 15 min for an accuracy level of 20 cm. Finally, the real-time data streams from 12 globally distributed IGS/MGEX stations for one month are used to assess and validate the positioning accuracy of real-time multi-GNSS PPP. The results show that the simulated kinematic positioning accuracy achieved by real-time PPP on different stations is about 3.0 to 4.0 cm for the horizontal direction and 5.0 to 7.0 cm for the three-dimensional (3D direction.

  17. Architecture for an integrated real-time air combat and sensor network simulation

    Science.gov (United States)

    Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara

    2007-04-01

    An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.

  18. Time parallelization of advanced operation scenario simulations of ITER plasma

    International Nuclear Information System (INIS)

    Samaddar, D; Casper, T A; Kim, S H; Houlberg, W A; Berry, L A; Elwasif, W R; Batchelor, D

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA -an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  19. Simulating GPS radio signal to synchronize network--a new technique for redundant timing.

    Science.gov (United States)

    Shan, Qingxiao; Jun, Yang; Le Floch, Jean-Michel; Fan, Yaohui; Ivanov, Eugene N; Tobar, Michael E

    2014-07-01

    Currently, many distributed systems such as 3G mobile communications and power systems are time synchronized with a Global Positioning System (GPS) signal. If there is a GPS failure, it is difficult to realize redundant timing, and thus time-synchronized devices may fail. In this work, we develop time transfer by simulating GPS signals, which promises no extra modification to original GPS-synchronized devices. This is achieved by applying a simplified GPS simulator for synchronization purposes only. Navigation data are calculated based on a pre-assigned time at a fixed position. Pseudo-range data which describes the distance change between the space vehicle (SV) and users are calculated. Because real-time simulation requires heavy-duty computations, we use self-developed software optimized on a PC to generate data, and save the data onto memory disks while the simulator is operating. The radio signal generation is similar to the SV at an initial position, and the frequency synthesis of the simulator is locked to a pre-assigned time. A filtering group technique is used to simulate the signal transmission delay corresponding to the SV displacement. Each SV generates a digital baseband signal, where a unique identifying code is added to the signal and up-converted to generate the output radio signal at the centered frequency of 1575.42 MHz (L1 band). A prototype with a field-programmable gate array (FPGA) has been built and experiments have been conducted to prove that we can realize time transfer. The prototype has been applied to the CDMA network for a three-month long experiment. Its precision has been verified and can meet the requirements of most telecommunication systems.

  20. SCI-Clone/32 - a distributed real time simulation system

    International Nuclear Information System (INIS)

    Wilks, C.F.

    1986-01-01

    Advances in engineering and in particular digital computers has enabled the simulation manufacturers to deliver a realism of a kind undreamt of a decade ago. 32-bit computers ranging in processor power from several hundred thousand instructions per second to many millions are at the heart of each simulator. Gould has pioneered digital computers in simulation with real time systems using shared memory, parallel processors, 64KByte cache, and shadow memory. The market is planning for higher iteration rates, lower life cycle costs, and the development of part task products. These can be met by distributing the tasks amongst nodal computers having a unique architecture for sharing data variables with minimal contention. (Auth.)

  1. Hard real-time multibody simulations using ARM-based embedded systems

    Energy Technology Data Exchange (ETDEWEB)

    Pastorino, Roland, E-mail: roland.pastorino@kuleuven.be, E-mail: rpastorino@udc.es; Cosco, Francesco, E-mail: francesco.cosco@kuleuven.be; Naets, Frank, E-mail: frank.naets@kuleuven.be; Desmet, Wim, E-mail: wim.desmet@kuleuven.be [KU Leuven, PMA division, Department of Mechanical Engineering (Belgium); Cuadrado, Javier, E-mail: javicuad@cdf.udc.es [Universidad de La Coruña, Laboratorio de Ingeniería Mecánica (Spain)

    2016-05-15

    The real-time simulation of multibody models on embedded systems is of particular interest for controllers and observers such as model predictive controllers and state observers, which rely on a dynamic model of the process and are customarily executed in electronic control units. This work first identifies the software techniques and tools required to easily write efficient code for multibody models to be simulated on ARM-based embedded systems. Automatic Programming and Source Code Translation are the two techniques that were chosen to generate source code for multibody models in different programming languages. Automatic Programming is used to generate procedural code in an intermediate representation from an object-oriented library and Source Code Translation is used to translate the intermediate representation automatically to an interpreted language or to a compiled language for efficiency purposes. An implementation of these techniques is proposed. It is based on a Python template engine and AST tree walkers for Source Code Generation and on a model-driven translator for the Source Code Translation. The code is translated from a metalanguage to any of the following four programming languages: Python-Numpy, Matlab, C++-Armadillo, C++-Eigen. Two examples of multibody models were simulated: a four-bar linkage with multiple loops and a 3D vehicle steering system. The code for these examples has been generated and executed on two ARM-based single-board computers. Using compiled languages, both models could be simulated faster than real-time despite the low resources and performance of these embedded systems. Finally, the real-time performance of both models was evaluated when executed in hard real-time on Xenomai for both embedded systems. This work shows through measurements that Automatic Programming and Source Code Translation are valuable techniques to develop real-time multibody models to be used in embedded observers and controllers.

  2. Hard real-time multibody simulations using ARM-based embedded systems

    International Nuclear Information System (INIS)

    Pastorino, Roland; Cosco, Francesco; Naets, Frank; Desmet, Wim; Cuadrado, Javier

    2016-01-01

    The real-time simulation of multibody models on embedded systems is of particular interest for controllers and observers such as model predictive controllers and state observers, which rely on a dynamic model of the process and are customarily executed in electronic control units. This work first identifies the software techniques and tools required to easily write efficient code for multibody models to be simulated on ARM-based embedded systems. Automatic Programming and Source Code Translation are the two techniques that were chosen to generate source code for multibody models in different programming languages. Automatic Programming is used to generate procedural code in an intermediate representation from an object-oriented library and Source Code Translation is used to translate the intermediate representation automatically to an interpreted language or to a compiled language for efficiency purposes. An implementation of these techniques is proposed. It is based on a Python template engine and AST tree walkers for Source Code Generation and on a model-driven translator for the Source Code Translation. The code is translated from a metalanguage to any of the following four programming languages: Python-Numpy, Matlab, C++-Armadillo, C++-Eigen. Two examples of multibody models were simulated: a four-bar linkage with multiple loops and a 3D vehicle steering system. The code for these examples has been generated and executed on two ARM-based single-board computers. Using compiled languages, both models could be simulated faster than real-time despite the low resources and performance of these embedded systems. Finally, the real-time performance of both models was evaluated when executed in hard real-time on Xenomai for both embedded systems. This work shows through measurements that Automatic Programming and Source Code Translation are valuable techniques to develop real-time multibody models to be used in embedded observers and controllers.

  3. Creep simulation of adhesively bonded joints using modified generalized time hardening model

    Energy Technology Data Exchange (ETDEWEB)

    Sadigh, Mohammad Ali Saeimi [Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2016-04-15

    Creep behavior of double lap adhesively bonded joints was investigated using experimental tests and numerical analysis. Firstly, uniaxial creep tests were carried out to obtain the creep characteristics and constitutive parameters of the adhesive at different stress and temperature levels. Generalized time hardening model was used to predict the creep behavior of the adhesive. This model was modified to simulate the creep behavior at different stress and temperature levels. Secondly, the developed model was used to simulate the creep behavior of bonded joints using finite element based numerical analysis. Creep deformations of the joints were measured experimentally and good agreement was observed in comparison with the results obtained using numerical simulation. Afterward, stress redistribution due to the creep along the adhesively bonded joint was obtained numerically. It was observed that temperature level had a significant effect on the stress redistribution along the adhesive thickness.

  4. Efficient Simulation of Compressible, Viscous Fluids using Multi-rate Time Integration

    Science.gov (United States)

    Mikida, Cory; Kloeckner, Andreas; Bodony, Daniel

    2017-11-01

    In the numerical simulation of problems of compressible, viscous fluids with single-rate time integrators, the global timestep used is limited to that of the finest mesh point or fastest physical process. This talk discusses the application of multi-rate Adams-Bashforth (MRAB) integrators to an overset mesh framework to solve compressible viscous fluid problems of varying scale with improved efficiency, with emphasis on the strategy of timescale separation and the application of the resulting numerical method to two sample problems: subsonic viscous flow over a cylinder and a viscous jet in crossflow. The results presented indicate the numerical efficacy of MRAB integrators, outline a number of outstanding code challenges, demonstrate the expected reduction in time enabled by MRAB, and emphasize the need for proper load balancing through spatial decomposition in order for parallel runs to achieve the predicted time-saving benefit. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  5. Progress on RTSS simulation-based analysis for real-time systems development at two laboratories

    International Nuclear Information System (INIS)

    Shu, Y.; Jia, M.; Fei, Y.; Zhang, Y.; Liu, G.; Yang, S.; Chen, Y.

    1996-01-01

    A new object-oriented Real Time System Simulator (RTSS) with the capability for simulation graphics and animation, has been developed and used for modeling the distributed data acquisition and processing systems at JET and ASIPP. Simulation allows estimates of response time, throughput and resource utilization for a variety of configurations to be investigated. Performance measurements, simulation and analysis are used together to calibrate and validate each other

  6. Long time scale simulation of a grain boundary in copper

    DEFF Research Database (Denmark)

    Pedersen, A.; Henkelman, G.; Schiøtz, Jakob

    2009-01-01

    A general, twisted and tilted, grain boundary in copper has been simulated using the adaptive kinetic Monte Carlo method to study the atomistic structure of the non-crystalline region and the mechanism of annealing events that occur at low temperature. The simulated time interval spanned 67 mu s...... was also observed. In the final low-energy configurations, the thickness of the region separating the crystalline grains corresponds to just one atomic layer, in good agreement with reported experimental observations. The simulated system consists of 1307 atoms and atomic interactions were described using...

  7. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

    Directory of Open Access Journals (Sweden)

    C. Nabert

    2017-05-01

    Full Text Available The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms magnetosheath data to estimate Earth's dipole moment.

  8. CONFRONTING THREE-DIMENSIONAL TIME-DEPENDENT JET SIMULATIONS WITH HUBBLE SPACE TELESCOPE OBSERVATIONS

    International Nuclear Information System (INIS)

    Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai

    2010-01-01

    We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s -1 ) and outer (less than 100 km s -1 ) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.

  9. Simulation of Cavity Flow by the Lattice Boltzmann Method using Multiple-Relaxation-Time scheme

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Kang, Ha Nok; Seo, Jae Kwang; Yun, Ju Hyeon; Zee, Sung Quun

    2006-01-01

    Recently, the lattice Boltzmann method(LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for pressure, and (3) ease with multiphase flows, complex geometries and interfacial dynamics may be treated. The LBM using relaxation technique was introduced by Higuerea and Jimenez to overcome some drawbacks of lattice gas automata(LGA) such as large statistical noise, limited range of physical parameters, non- Galilean invariance, and implementation difficulty in three-dimensional problem. The simplest LBM is the lattice Bhatnager-Gross-Krook(LBGK) equation, which based on a single-relaxation-time(SRT) approximation. Due to its extreme simplicity, the lattice BGK(LBGK) equation has become the most popular lattice Boltzmann model in spite of its well-known deficiencies, for example, in simulating high-Reynolds numbers flow. The Multiple-Relaxation-Time(MRT) LBM was originally developed by D'Humieres. Lallemand and Luo suggests that the use of a Multiple-Relaxation-Time(MRT) models are much more stable than LBGK, because the different relaxation times can be individually tuned to achieve 'optimal' stability. A lid-driven cavity flow is selected as the test problem because it has geometrically singular points in the flow, but geometrically simple. Results are compared with those using SRT, MRT model in the LBGK method and previous simulation data using Navier-Stokes equations for the same flow conditions. In summary, LBM using MRT model introduces much less spatial oscillations near geometrical singular points, which is important for the successful simulation of higher Reynolds number flows

  10. Cost minimization analysis of different growth hormone pen devices based on time-and-motion simulations

    Directory of Open Access Journals (Sweden)

    Kim Jaewhan

    2010-04-01

    Full Text Available Abstract Background Numerous pen devices are available to administer recombinant Human Growth Hormone (rhGH, and both patients and health plans have varying issues to consider when selecting a particular product and device for daily use. Therefore, the present study utilized multi-dimensional product analysis to assess potential time involvement, required weekly administration steps, and utilization costs relative to daily rhGH administration. Methods Study objectives were to conduct 1 Time-and-Motion (TM simulations in a randomized block design that allowed time and steps comparisons related to rhGH preparation, administration and storage, and 2 a Cost Minimization Analysis (CMA relative to opportunity and supply costs. Nurses naïve to rhGH administration and devices were recruited to evaluate four rhGH pen devices (2 in liquid form, 2 requiring reconstitution via TM simulations. Five videotaped and timed trials for each product were evaluated based on: 1 Learning (initial use instructions, 2 Preparation (arrange device for use, 3 Administration (actual simulation manikin injection, and 4 Storage (maintain product viability between doses, in addition to assessment of steps required for weekly use. The CMA applied micro-costing techniques related to opportunity costs for caregivers (categorized as wages, non-drug medical supplies, and drug product costs. Results Norditropin® NordiFlex and Norditropin® NordiPen (NNF and NNP, Novo Nordisk, Inc., Bagsværd, Denmark took less weekly Total Time (p ® Pen (GTP, Pfizer, Inc, New York, New York or HumatroPen® (HTP, Eli Lilly and Company, Indianapolis, Indiana. Time savings were directly related to differences in new package Preparation times (NNF (1.35 minutes, NNP (2.48 minutes GTP (4.11 minutes, HTP (8.64 minutes, p Conclusions Time-and-motion simulation data used to support a micro-cost analysis demonstrated that the pen device with the greater time demand has highest net costs.

  11. A finite-difference time-domain simulation of high power microwave generated plasma at atmospheric pressures

    International Nuclear Information System (INIS)

    Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A.

    2012-01-01

    A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N 2 , air, or argon environment at pressures exceeding 50 Torr.

  12. Simulating Photon Mapping for Real-time Applications

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Christensen, Niels Jørgen

    2004-01-01

    This paper introduces a novel method for simulating photon mapping for real-time applications. First we introduce a new method for selectively redistributing photons. Then we describe a method for selectively updating the indirect illumination. The indirect illumination is calculated using a new...... GPU accelerated final gathering method and the illumination is then stored in light maps. Caustic photons are traced on the CPU and then drawn using points in the framebuffer, and finally filtered using the GPU. Both diffuse and non-diffuse surfaces can be handled by calculating the direct...... illumination on the GPU and the photon tracing on the CPU. We achieve real-time frame rates for dynamic scenes....

  13. Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2006-05-01

    Full Text Available We compare the ionospheric electron precipitation morphology and power from a global MHD simulation (GUMICS-4 with direct measurements of auroral energy flux during a pair of substorms on 28-29 March 1998. The electron precipitation power is computed directly from global images of auroral light observed by the Polar satellite ultraviolet imager (UVI. Independent of the Polar UVI measurements, the electron precipitation energy is determined from SNOE satellite observations on the thermospheric nitric oxide (NO density. We find that the GUMICS-4 simulation reproduces the spatial variation of the global aurora rather reliably in the sense that the onset of the substorm is shown in GUMICS-4 simulation as enhanced precipitation in the right location at the right time. The total integrated precipitation power in the GUMICS-4 simulation is in quantitative agreement with the observations during quiet times, i.e., before the two substorm intensifications. We find that during active times the GUMICS-4 integrated precipitation is a factor of 5 lower than the observations indicate. However, we also find factor of 2-3 differences in the precipitation power among the three different UVI processing methods tested here. The findings of this paper are used to complete an earlier objective, in which the total ionospheric power deposition in the simulation is forecasted from a mathematical expression, which is a function of solar wind density, velocity and magnetic field. We find that during this event, the correlation coefficient between the outcome of the forecasting expression and the simulation results is 0.83. During the event, the simulation result on the total ionospheric power deposition agrees with observations (correlation coefficient 0.8 and the AE index (0.85.

  14. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    Science.gov (United States)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected

  15. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  16. Testing power system controllers by real-time simulation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, Xavier; Sirois, Frédéric

    2007-01-01

    In this paper, we present a number of state-of-the art methods for testing power system controllers based on the use of a real-time power system simulator. After introducing Hypersim, we list and discuss the different means of connection between the controller under tests and the power system...

  17. An approach to evaluate the cutting time for the nuclear dismantling simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghwan; Hyun, Dongjun; Kang, Sinyoung; Kim, Ikjune; Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear power plant (NPP) decommissioning involves various processes and technologies. Decommissioning should be performed after a comprehensive review of the information related to these processes and technologies. There are various means of prior examination and evaluation to ensure the feasibility and safety of the decommissioning process plan. Our dismantling simulation system aims to simulate and evaluate whole processes related to the dismantlement of core equipment of NPP such as the device preparation, cutting operation, waste transfer, and so on. This paper introduces the estimation methodology of the time required for the cutting processes based on real cutting conditions in order to provide effective economic evaluation functionalities used for the system. The methodology to estimate the time required for the remote cutting process in the nuclear dismantling simulation system was proposed. Among the factors which mainly determine the time, the cutting trace was directly calculated from the simulation system and the continuous cutting speed was obtained by proper order of the spline fitting with constraint conditions.

  18. Fast simulation of reconstructed phylogenies under global time-dependent birth-death processes.

    Science.gov (United States)

    Höhna, Sebastian

    2013-06-01

    Diversification rates and patterns may be inferred from reconstructed phylogenies. Both the time-dependent and the diversity-dependent birth-death process can produce the same observed patterns of diversity over time. To develop and test new models describing the macro-evolutionary process of diversification, generic and fast algorithms to simulate under these models are necessary. Simulations are not only important for testing and developing models but play an influential role in the assessment of model fit. In the present article, I consider as the model a global time-dependent birth-death process where each species has the same rates but rates may vary over time. For this model, I derive the likelihood of the speciation times from a reconstructed phylogenetic tree and show that each speciation event is independent and identically distributed. This fact can be used to simulate efficiently reconstructed phylogenetic trees when conditioning on the number of species, the time of the process or both. I show the usability of the simulation by approximating the posterior predictive distribution of a birth-death process with decreasing diversification rates applied on a published bird phylogeny (family Cettiidae). The methods described in this manuscript are implemented in the R package TESS, available from the repository CRAN (http://cran.r-project.org/web/packages/TESS/). Supplementary data are available at Bioinformatics online.

  19. AN INVESTIGATION OF TIME LAG MAPS USING THREE-DIMENSIONAL SIMULATIONS OF HIGHLY STRATIFIED HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Lionello, Roberto; Downs, Cooper; Mikić, Zoran; Linker, Jon [Predictive Science, Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-2910 (United States); Mok, Yung, E-mail: amy.r.winebarger@nasa.gov, E-mail: lionel@predsci.com, E-mail: cdowns@predsci.com, E-mail: mikicz@predsci.com, E-mail: linkerj@predsci.com, E-mail: ymok@uci.edu [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2016-11-10

    The location and frequency of coronal energy release provide a significant constraint on the coronal heating mechanism. The evolution of the intensity observed in coronal structures found from time lag analysis of Atmospheric Imaging Assembly (AIA) data has been used to argue that heating must occur sporadically. Recently, we have demonstrated that quasi-steady, highly stratified (footpoint) heating can produce results qualitatively consistent with the evolution of observed coronal structures. The goals of this paper are to demonstrate that time lag analysis of 3D simulations of footpoint heating are qualitatively consistent with time lag analysis of observations and to use the 3D simulations to further understand whether time lag analysis is a useful tool in defining the evolution of coronal structures. We find the time lag maps generated from simulated data are consistent with the observed time lag maps. We next investigate several example points. In some cases, the calculated time lag reflects the evolution of a unique loop along the line of sight, though there may be additional evolving structures along the line of sight. We confirm that using the multi-peak AIA channels can produce time lags that are difficult to interpret. We suggest using a different high temperature channel, such as an X-ray channel. Finally, we find that multiple evolving structures along the line of sight can produce time lags that do not represent the physical properties of any structure along the line of sight, although the cross-correlation coefficient of the lightcurves is high. Considering the projected geometry of the loops may reduce some of the line-of-sight confusion.

  20. Real-time image-based B-mode ultrasound image simulation of needles using tensor-product interpolation.

    Science.gov (United States)

    Zhu, Mengchen; Salcudean, Septimiu E

    2011-07-01

    In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.

  1. Real-Time Numerical Simulation of the Carnot Cycle

    International Nuclear Information System (INIS)

    Hurkala, J.; Gall, M.; Kutner, R.; Maciejczyk, M.

    2005-01-01

    We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm to simulate not only the heat flow but also the macroscopic movement of the piston. since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usually the considerations of phenomenomenological thermodynamics began with a study of the basic properties of heat engines hence our approach, beside intrinsic physical significance, is also important from the educational, technological and even environmental points of view. (author)

  2. Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations.

    Science.gov (United States)

    Hallock, Michael J; Stone, John E; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida

    2014-05-01

    Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli . Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems.

  3. Ground testing and simulation. II - Aerodynamic testing and simulation: Saving lives, time, and money

    Science.gov (United States)

    Dayman, B., Jr.; Fiore, A. W.

    1974-01-01

    The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.

  4. Simulation of time variation of Uranium, Plutonium and fission product hold up in mixer settler contactors

    International Nuclear Information System (INIS)

    Dionisi, M.; D'Agostino, F.; Remetti, R.

    1990-01-01

    A simulation model of PUREX process extraction phase for a contactors (mixer-settlers) battery has been developed. This model has been implemented in a FORTRAN code tailored both for mainframe and PC. The main goal of the code is to determine Uranium and Plutonium hold-ups vs.time within contactors in order to implement a NRTA project for a reprocessing plant. These results are extremely important for a complete analysis of NRTA system perfomance particularly to overcome the difficulty of executing physical inventory within liquid-liquid contactors of extraction lines. The chemical process simulation has been carried out conventional theoretical models with the exeption of hydrodynamic simulation which has been developed utilizing a model based on experimental results

  5. Quantitative evaluation for training results of nuclear plant operator on BWR simulator

    International Nuclear Information System (INIS)

    Sato, Takao; Sato, Tatsuaki; Onishi, Hiroshi; Miyakita, Kohji; Mizuno, Toshiyuki

    1985-01-01

    Recently, the reliability of neclear power plants has largely risen, and the abnormal phenomena in the actual plants are rarely encountered. Therefore, the training using simulators becomes more and more important. In BWR Operator Training Center Corp., the training of the operators of BWR power plants has been continued for about ten years using a simulator having the nearly same function as the actual plants. The recent high capacity ratio of nuclear power plants has been mostly supported by excellent operators trained in this way. Taking the opportunity of the start of operation of No.2 simulator, effort has been exerted to quantitatively grasp the effect of training and to heighten the quality of training. The outline of seven training courses is shown. The technical ability required for operators, the items of quantifying the effect of training, that is, operational errors and the time required for operation, the method of quantifying, the method of collecting the data and the results of the application to the actual training are described. It was found that this method is suitable to quantify the effect of training. (Kako, I.)

  6. Development and application of dispersive soft ferrite models for time-domain simulation

    International Nuclear Information System (INIS)

    DeFord, J.F.; Kamin, G.; Craig, G.D.; Walling, L.

    1992-01-01

    Ferrite has a variety of applications in accelerator components, and the capability to model this magnetic material in the time domain is an important adjunct to currently available accelerator modeling tool. We describe in this report a material model we have developed for the magnetic characteristics of PE11BL, the ferrite found in the ETA-II (Experimental Test Accelerator-II) induction module. This model, which includes the important magnetic dispersion effects found in most soft ferrites, has been implemented in 1-D and 2-D finite-difference time-domain (FDTD) electromagnetic simulators, and comparisons with analytic and experimental results are presented

  7. Real-time simulation of an F110/STOVL turbofan engine

    Science.gov (United States)

    Drummond, Colin K.; Ouzts, Peter J.

    1989-01-01

    A traditional F110-type turbofan engine model was extended to include a ventral nozzle and two thrust-augmenting ejectors for Short Take-Off Vertical Landing (STOVL) aircraft applications. Development of the real-time F110/STOVL simulation required special attention to the modeling approach to component performance maps, the low pressure turbine exit mixing region, and the tailpipe dynamic approximation. Simulation validation derives by comparing output from the ADSIM simulation with the output for a validated F110/STOVL General Electric Aircraft Engines FORTRAN deck. General Electric substantiated basic engine component characteristics through factory testing and full scale ejector data.

  8. Fast and Low-Complexity Simulations of the Inquiry Time in Bluetooth

    DEFF Research Database (Denmark)

    Figueiras, Joao; Schwefel, Hans-Peter

    2006-01-01

    The timing behavior of the Inquiry Procedure in Bluetooth is relevant for several important functionalities, in particular topology formation and localization. The detailed Inquiry procedure is rather complex and simulation models may become inefficient if they implement the full detailed...... specification. This paper presents an abstracted model to approximate the distribution of Bluetooth inquiry time for scenarios in which multiple Bluetooth nodes perform the inquiry procedure. The abstracted model leads to a simple algorithm which can be used in simulation models to generate samples from...

  9. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)

    1996-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  10. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P [VTT Chemical Technology, Espoo (Finland); Laukkanen, L [VTT Automation, Espoo (Finland); Penttilae, K [Kemira Engineering Oy, Helsinki (Finland)

    1997-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  11. A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor

    Science.gov (United States)

    Rao, Hariprasad Nannapaneni

    1989-01-01

    The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.

  12. Real time simulation of the release and transport of radioactive contaminants

    International Nuclear Information System (INIS)

    Popa, F.; Weber, M.

    1991-01-01

    Calculating the responses of the radiation monitoring system (RMS) remains one of the most difficult aspects of nuclear power plant simulation to bring into the post-TMI, first principles simulator era. This task requires the simulation of the transport of radioactive contaminants, the transport of the radiation itself, and the instrument channel including the detector. The complex physics and lack of knowledge of input parameters have made these models lag the general simulator trend away from logical/heuristic modeling of physical systems. This paper describes a series of advances to the modeling methodology to change this situation. The objective in the design of this real time simulation model was to always calculate qualitatively reasonable radiation detector readings

  13. Design of a real-time wind turbine simulator using a custom parallel architecture

    Science.gov (United States)

    Hoffman, John A.; Gluck, R.; Sridhar, S.

    1995-01-01

    The design of a new parallel-processing digital simulator is described. The new simulator has been developed specifically for analysis of wind energy systems in real time. The new processor has been named: the Wind Energy System Time-domain simulator, version 3 (WEST-3). Like previous WEST versions, WEST-3 performs many computations in parallel. The modules in WEST-3 are pure digital processors, however. These digital processors can be programmed individually and operated in concert to achieve real-time simulation of wind turbine systems. Because of this programmability, WEST-3 is very much more flexible and general than its two predecessors. The design features of WEST-3 are described to show how the system produces high-speed solutions of nonlinear time-domain equations. WEST-3 has two very fast Computational Units (CU's) that use minicomputer technology plus special architectural features that make them many times faster than a microcomputer. These CU's are needed to perform the complex computations associated with the wind turbine rotor system in real time. The parallel architecture of the CU causes several tasks to be done in each cycle, including an IO operation and the combination of a multiply, add, and store. The WEST-3 simulator can be expanded at any time for additional computational power. This is possible because the CU's interfaced to each other and to other portions of the simulation using special serial buses. These buses can be 'patched' together in essentially any configuration (in a manner very similar to the programming methods used in analog computation) to balance the input/ output requirements. CU's can be added in any number to share a given computational load. This flexible bus feature is very different from many other parallel processors which usually have a throughput limit because of rigid bus architecture.

  14. Real-Time Simulation and Hardware-in-the-Loop Testbed for Distribution Synchrophasor Applications

    Directory of Open Access Journals (Sweden)

    Matthias Stifter

    2018-04-01

    Full Text Available With the advent of Distribution Phasor Measurement Units (D-PMUs and Micro-Synchrophasors (Micro-PMUs, the situational awareness in power distribution systems is going to the next level using time-synchronization. However, designing, analyzing, and testing of such accurate measurement devices are still challenging. Due to the lack of available knowledge and sufficient history for synchrophasors’ applications at the power distribution level, the realistic simulation, and validation environments are essential for D-PMU development and deployment. This paper presents a vendor agnostic PMU real-time simulation and hardware-in-the-Loop (PMU-RTS-HIL testbed, which helps in multiple PMUs validation and studies. The network of real and virtual PMUs was built in a full time-synchronized environment for PMU applications’ validation. The proposed testbed also includes an emulated communication network (CNS layer to replicate bandwidth, packet loss and collisions conditions inherent to the PMUs data streams’ issues. Experimental results demonstrate the flexibility and scalability of the developed PMU-RTS-HIL testbed by producing large amounts of measurements under typical normal and abnormal distribution grid operation conditions.

  15. a Real-Time GIS Platform for High Sour Gas Leakage Simulation, Evaluation and Visualization

    Science.gov (United States)

    Li, M.; Liu, H.; Yang, C.

    2015-07-01

    The development of high-sulfur gas fields, also known as sour gas field, is faced with a series of safety control and emergency management problems. The GIS-based emergency response system is placed high expectations under the consideration of high pressure, high content, complex terrain and highly density population in Sichuan Basin, southwest China. The most researches on high hydrogen sulphide gas dispersion simulation and evaluation are used for environmental impact assessment (EIA) or emergency preparedness planning. This paper introduces a real-time GIS platform for high-sulfur gas emergency response. Combining with real-time data from the leak detection systems and the meteorological monitoring stations, GIS platform provides the functions of simulating, evaluating and displaying of the different spatial-temporal toxic gas distribution patterns and evaluation results. This paper firstly proposes the architecture of Emergency Response/Management System, secondly explains EPA's Gaussian dispersion model CALPUFF simulation workflow under high complex terrain and real-time data, thirdly explains the emergency workflow and spatial analysis functions of computing the accident influencing areas, population and the optimal evacuation routes. Finally, a well blow scenarios is used for verify the system. The study shows that GIS platform which integrates the real-time data and CALPUFF models will be one of the essential operational platforms for high-sulfur gas fields emergency management.

  16. Towards dual recycling with the aid of time and frequency domain simulations

    International Nuclear Information System (INIS)

    Malec, M; Grote, H; Freise, A; Heinzel, G; Strain, K A; Hough, J; Danzmann, K

    2004-01-01

    Dual recycling, the combination of the interferometric techniques of power and signal recycling, allows the improvement of the shot noise limited sensitivity of interferometric gravitational wave detectors. GEO 600 is the first km-scale gravitational wave detector using dual recycling. The hardware installation is completed and dual recycling has become a great challenge in terms of commissioning of GEO 600. Simulations show that lock acquisition of the optical system can only be achieved in certain detector states. Thus as we need to start with a locked detector in such a specific state, an appropriate strategy is needed to change the state of detector operation without losing lock. The basic concepts and first results based on time and frequency domain simulations will be presented in this paper

  17. InfiniBand-based real-time simulation of HVDC, STATCOM and SVC devices with commercial-off-the-shelf PCs and FPGAs

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, C.; Abourida, S.; Belanger, J.; Lapointe, V. [OPAL-RT Technologies Inc., Montreal, PQ (Canada)

    2006-07-01

    Details of a real-time simulator for large power networks using commercial-off-the-shelf products and an RT-LAB platform were presented. The simulator was designed to realistically simulate bipolar high voltage DC (HVDC) networks transmission systems and to meet large grid simulation challenges. The system was also designed to cope with complex power grid design and validation tests as well as to interface with modern power electronic controllers and protection systems. The platform used Pentium, Xeon or Opteron based PCs and InfiniBand communication fabric for fast inter-PC communications. The real-time PC ran under well-known operating systems while the main control interface used Simulink software. Grid circuits were designed using an SPS interface using an ARTEMIS plug-in. Various model performances were reported. The results of several simulations suggested that InfiniBand communication was slower than shared-memory communication, while STATCOM timing was difficult to compare with the Opteron benchmarks. Results also suggested that XEON CPUs were slower than Opteron counterparts. Hardware-in-the-loop (HIL) testing was also performed with a prototype controller and with a real production controller. It was concluded that a communication time of 5 microseconds was obtained across the 2 PCs. The paper also discussed recent advances in HIL simulation and programming devices. 10 refs., 15 figs.

  18. Comparison of Muon Arrival Time Distributions measured in KASCADE Experiment with Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Badea, A.F.; Brancus, I.M.; Haeusler, R.; Rebel, H.

    2000-01-01

    The muon arrival time distributions of Extensive Air Showers (EAS) have been studied in KASCADE experiment by data collected in the period October 1997 - April 1999 with more than 3.4 millions of reconstructed showers. The radial distance of the shower center from the central detector has been selected smaller than 110 m. The experimental muon arrival time distributions are compared with simulations of the air shower development, calculated with the Monte Carlo air shower simulation program CORSIKA. The actual calculations are based on the QGSJET model and cover an energy range of 5·10 14 - 3.06·10 16 eV (divided in 7 overlapping energy bins) and a zenith angle range of 0 angle - 40 angle. They are performed for three mass groups: H = light group, O = CNO group, Fe = heavy group) with an energy distribution of a spectral index of -2.7. The simulations comprise a set of ≅ 2000$ showers for each case, except for the bins of the highest energies (6.51·10 15 - 1.82·10 16 eV with ≅1000$ simulated showers and 1.09·10 16 - 3.06·10 16 eV with ≅ 500 simulated showers). The response of the KASCADE detector system and the timing qualities have been simulated using the CRES program, dedicatedly developed by the KASCADE group on the basis of the GEANT code. The particles of the simulated EAS are tracked through the detector setup and the timing response of the detectors are recorded for various core distances from the central detector facilities. Particularly, it should be noted that the timing depends on the energy deposit in the scintillation detectors and on the multiplicities of the muon samples spanning the arrival time distributions of the single EAS. Such effects slightly distorts the measured time distributions and have been corrected by introducing a corresponding correction procedure. The dependence of the experimental and simulated median time values on the N μ tr range, as being proportional to the primary energy, is presented. The good agreement of the

  19. Simulation of time-dependent Heisenberg models in one dimension

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.

    2016-01-01

    In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...... constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle....

  20. Region-oriented CT image representation for reducing computing time of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Sarrut, David; Guigues, Laurent

    2008-01-01

    Purpose. We propose a new method for efficient particle transportation in voxelized geometry for Monte Carlo simulations. We describe its use for calculating dose distribution in CT images for radiation therapy. Material and methods. The proposed approach, based on an implicit volume representation named segmented volume, coupled with an adapted segmentation procedure and a distance map, allows us to minimize the number of boundary crossings, which slows down simulation. The method was implemented with the GEANT4 toolkit and compared to four other methods: One box per voxel, parameterized volumes, octree-based volumes, and nested parameterized volumes. For each representation, we compared dose distribution, time, and memory consumption. Results. The proposed method allows us to decrease computational time by up to a factor of 15, while keeping memory consumption low, and without any modification of the transportation engine. Speeding up is related to the geometry complexity and the number of different materials used. We obtained an optimal number of steps with removal of all unnecessary steps between adjacent voxels sharing a similar material. However, the cost of each step is increased. When the number of steps cannot be decreased enough, due for example, to the large number of material boundaries, such a method is not considered suitable. Conclusion. This feasibility study shows that optimizing the representation of an image in memory potentially increases computing efficiency. We used the GEANT4 toolkit, but we could potentially use other Monte Carlo simulation codes. The method introduces a tradeoff between speed and geometry accuracy, allowing computational time gain. However, simulations with GEANT4 remain slow and further work is needed to speed up the procedure while preserving the desired accuracy

  1. A derivation and scalable implementation of the synchronous parallel kinetic Monte Carlo method for simulating long-time dynamics

    Science.gov (United States)

    Byun, Hye Suk; El-Naggar, Mohamed Y.; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2017-10-01

    Kinetic Monte Carlo (KMC) simulations are used to study long-time dynamics of a wide variety of systems. Unfortunately, the conventional KMC algorithm is not scalable to larger systems, since its time scale is inversely proportional to the simulated system size. A promising approach to resolving this issue is the synchronous parallel KMC (SPKMC) algorithm, which makes the time scale size-independent. This paper introduces a formal derivation of the SPKMC algorithm based on local transition-state and time-dependent Hartree approximations, as well as its scalable parallel implementation based on a dual linked-list cell method. The resulting algorithm has achieved a weak-scaling parallel efficiency of 0.935 on 1024 Intel Xeon processors for simulating biological electron transfer dynamics in a 4.2 billion-heme system, as well as decent strong-scaling parallel efficiency. The parallel code has been used to simulate a lattice of cytochrome complexes on a bacterial-membrane nanowire, and it is broadly applicable to other problems such as computational synthesis of new materials.

  2. Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame

    Energy Technology Data Exchange (ETDEWEB)

    Stoellinger, Michael; Heinz, Stefan [Department of Mathematics, University of Wyoming, Laramie, WY (United States)

    2010-09-15

    Numerical simulation results obtained with a transported scalar probability density function (PDF) method are presented for a piloted turbulent premixed flame. The accuracy of the PDF method depends on the scalar mixing model and the scalar time scale model. Three widely used scalar mixing models are evaluated: the interaction by exchange with the mean (IEM) model, the modified Curl's coalescence/dispersion (CD) model and the Euclidean minimum spanning tree (EMST) model. The three scalar mixing models are combined with a simple model for the scalar time scale which assumes a constant C{sub {phi}}=12 value. A comparison of the simulation results with available measurements shows that only the EMST model calculates accurately the mean and variance of the reaction progress variable. An evaluation of the structure of the PDF's of the reaction progress variable predicted by the three scalar mixing models confirms this conclusion: the IEM and CD models predict an unrealistic shape of the PDF. Simulations using various C{sub {phi}} values ranging from 2 to 50 combined with the three scalar mixing models have been performed. The observed deficiencies of the IEM and CD models persisted for all C{sub {phi}} values considered. The value C{sub {phi}}=12 combined with the EMST model was found to be an optimal choice. To avoid the ad hoc choice for C{sub {phi}}, more sophisticated models for the scalar time scale have been used in simulations using the EMST model. A new model for the scalar time scale which is based on a linear blending between a model for flamelet combustion and a model for distributed combustion is developed. The new model has proven to be very promising as a scalar time scale model which can be applied from flamelet to distributed combustion. (author)

  3. The use of best estimate codes to improve the simulation in real time

    International Nuclear Information System (INIS)

    Rivero, N.; Esteban, J. A.; Lenhardt, G.

    2007-01-01

    Best estimate codes are assumed to be the technology solution providing the most realistic and accurate response. Best estimate technology provides a complementary solution to the conservative simulation technology usually applied to determine plant safety margins and perform security related studies. Tecnatom in the early 90's, within the MAS project, pioneered the initiative to implement best estimate code in its training simulators. Result of this project was the implementation of the first six-equations thermal hydraulic code worldwide (TRAC R T), running in a training environment. To meet real time and other specific training requirements, it was necessary to overcome important difficulties. Tecnatom has just adapted the Global Nuclear Fuel core Design code: PANAC 11, and is about to complete the General Electric TRACG04 thermal hydraulic code adaptation. This technology features a unique solution for nuclear plants aiming at providing the highest fidelity in simulation, enabling to consider the simulator as a multipurpose: engineering and training, simulation platform. Besides, a visual environment designed to optimize the models life cycle, covering both pre and post-processing activities, is in its late development phase. (Author)

  4. A New Time-Hopping Multiple Access Communication System Simulator: Application to Ultra-Wideband

    Directory of Open Access Journals (Sweden)

    José M. Páez-Borrallo

    2005-03-01

    Full Text Available Time-hopping ultra-wideband technology presents some very attractive features for future indoor wireless systems in terms of achievable transmission rate and multiple access capabilities. This paper develops an algorithm to design time-hopping system simulators specially suitable for ultra-wideband, which takes advantage of some of the specific characteristics of this kind of systems. The algorithm allows an improvement of both the time capabilities and the achievable sampling rate and can be used to research into the influence of different parameters on the performance of the system. An additional result is the validation of a new general performance formula for time-hopping ultra-wideband systems with multipath channels.

  5. PHISICS/RELAP5-3D Adaptive Time-Step Method Demonstrated for the HTTR LOFC#1 Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Robin Ivey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Balestra, Paolo [Univ. of Rome (Italy); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-05-01

    A collaborative effort between Japan Atomic Energy Agency (JAEA) and Idaho National Laboratory (INL) as part of the Civil Nuclear Energy Working Group is underway to model the high temperature engineering test reactor (HTTR) loss of forced cooling (LOFC) transient that was performed in December 2010. The coupled version of RELAP5-3D, a thermal fluids code, and PHISICS, a neutronics code, were used to model the transient. The focus of this report is to summarize the changes made to the PHISICS-RELAP5-3D code for implementing an adaptive time step methodology into the code for the first time, and to test it using the full HTTR PHISICS/RELAP5-3D model developed by JAEA and INL and the LOFC simulation. Various adaptive schemes are available based on flux or power convergence criteria that allow significantly larger time steps to be taken by the neutronics module. The report includes a description of the HTTR and the associated PHISICS/RELAP5-3D model test results as well as the University of Rome sub-contractor report documenting the adaptive time step theory and methodology implemented in PHISICS/RELAP5-3D. Two versions of the HTTR model were tested using 8 and 26 energy groups. It was found that most of the new adaptive methods lead to significant improvements in the LOFC simulation time required without significant accuracy penalties in the prediction of the fission power and the fuel temperature. In the best performing 8 group model scenarios, a LOFC simulation of 20 hours could be completed in real-time, or even less than real-time, compared with the previous version of the code that completed the same transient 3-8 times slower than real-time. A few of the user choice combinations between the methodologies available and the tolerance settings did however result in unacceptably high errors or insignificant gains in simulation time. The study is concluded with recommendations on which methods to use for this HTTR model. An important caveat is that these findings

  6. Earthquake simulations with time-dependent nucleation and long-range interactions

    Directory of Open Access Journals (Sweden)

    J. H. Dieterich

    1995-01-01

    Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.

  7. Transient analysis of a grid connected wind driven induction generator using a real-time simulation platform

    Energy Technology Data Exchange (ETDEWEB)

    Ouhrouche, Mohand [Department of Applied Sciences, University of Quebec at Chicoutimi, Quebec, G7H2B1 (Canada)

    2009-03-15

    Due to its simple construction, ruggedness and low cost, the induction generator driven by a wind turbine and feeding power to the grid appears to be an attractive solution to the problem of growing energy demand in the context of environmental issues. This paper investigates the integration of such a system into the main utility using RT-Lab trademark (Trademark of Opal-RT Technologies) software package running on a simple off-the-shelf PC. This real-time simulation platform is now adopted by many high-tech industries as a real-time laboratory package for rapid control prototyping and for Hardware-in-the-Loop applications. Real-time digital simulation results obtained during contingencies, such as islanding and unbalanced faults are presented and analysed. (author)

  8. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, T. [Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife (Spain); Braun, D. C.; Crouch, A. D. [NorthWest Research Associates, Colorado Research Associates, Boulder, CO 80301 (United States); Birch, A. C., E-mail: tobias@iac.es [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-10-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  9. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    International Nuclear Information System (INIS)

    Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.

    2016-01-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  10. Comparison between the performance of some KEK-klystrons and simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shigeki [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-04-01

    Recent developments of various klystron simulation codes have enabled us to realistically design klystrons. This paper presents various simulation results using the FCI code and the performances of tubes manufactured based on this code. Upgrading a 30-MW S-band klystron and developing a 50-MW S-band klystron for the KEKB projects are successful examples based on FCI-code predictions. Mass-productions of these tubes have already started. On the other hand, a discrepancy has been found between the FCI simulation results and the performance of real tubes. In some cases, the simulation results lead to high-efficiency results, while manufactured tubes show the usual value, or a lower value, of the efficiency. One possible cause may come from a data mismatch between the electron-gun simulation and the input data set of the FCI code for the gun region. This kind of discrepancy has been observed in 30-MW S-band pulsed tubes, sub-booster pulsed tubes and L-band high-duty pulsed klystrons. Sometimes, JPNDSK (one-dimensional disk-model code) gives similar results. Some examples using the FCI code are given in this article. An Arsenal-MSU code could be applied to the 50-MW klystron under collaboration with Moscow State University; a good agreement has been found between the prediction of the code and performance. (author)

  11. Reducing the throughput time of the diagnostic track involving CT scanning with computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lent, Wineke A.M. van, E-mail: w.v.lent@nki.nl [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), P.O. Box 90203, 1006 BE Amsterdam (Netherlands); University of Twente, IGS Institute for Innovation and Governance Studies, Department of Health Technology Services Research (HTSR), Enschede (Netherlands); Deetman, Joost W., E-mail: j.deetman@nki.nl [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), P.O. Box 90203, 1006 BE Amsterdam (Netherlands); Teertstra, H. Jelle, E-mail: h.teertstra@nki.nl [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), P.O. Box 90203, 1006 BE Amsterdam (Netherlands); Muller, Sara H., E-mail: s.muller@nki.nl [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), P.O. Box 90203, 1006 BE Amsterdam (Netherlands); Hans, Erwin W., E-mail: e.w.hans@utwente.nl [University of Twente, School of Management and Governance, Dept. of Industrial Engineering and Business Intelligence Systems, Enschede (Netherlands); Harten, Wim H. van, E-mail: w.v.harten@nki.nl [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), P.O. Box 90203, 1006 BE Amsterdam (Netherlands); University of Twente, IGS Institute for Innovation and Governance Studies, Department of Health Technology Services Research (HTSR), Enschede (Netherlands)

    2012-11-15

    Introduction: To examine the use of computer simulation to reduce the time between the CT request and the consult in which the CT report is discussed (diagnostic track) while restricting idle time and overtime. Methods: After a pre implementation analysis in our case study hospital, by computer simulation three scenarios were evaluated on access time, overtime and idle time of the CT; after implementation these same aspects were evaluated again. Effects on throughput time were measured for outpatient short-term and urgent requests only. Conclusion: The pre implementation analysis showed an average CT access time of 9.8 operating days and an average diagnostic track of 14.5 operating days. Based on the outcomes of the simulation, management changed the capacity for the different patient groups to facilitate a diagnostic track of 10 operating days, with a CT access time of 7 days. After the implementation of changes, the average diagnostic track duration was 12.6 days with an average CT access time of 7.3 days. The fraction of patients with a total throughput time within 10 days increased from 29% to 44% while the utilization remained equal with 82%, the idle time increased by 11% and the overtime decreased by 82%. The fraction of patients that completed the diagnostic track within 10 days improved with 52%. Computer simulation proved useful for studying the effects of proposed scenarios in radiology management. Besides the tangible effects, the simulation increased the awareness that optimizing capacity allocation can reduce access times.

  12. Reducing the throughput time of the diagnostic track involving CT scanning with computer simulation

    International Nuclear Information System (INIS)

    Lent, Wineke A.M. van; Deetman, Joost W.; Teertstra, H. Jelle; Muller, Sara H.; Hans, Erwin W.; Harten, Wim H. van

    2012-01-01

    Introduction: To examine the use of computer simulation to reduce the time between the CT request and the consult in which the CT report is discussed (diagnostic track) while restricting idle time and overtime. Methods: After a pre implementation analysis in our case study hospital, by computer simulation three scenarios were evaluated on access time, overtime and idle time of the CT; after implementation these same aspects were evaluated again. Effects on throughput time were measured for outpatient short-term and urgent requests only. Conclusion: The pre implementation analysis showed an average CT access time of 9.8 operating days and an average diagnostic track of 14.5 operating days. Based on the outcomes of the simulation, management changed the capacity for the different patient groups to facilitate a diagnostic track of 10 operating days, with a CT access time of 7 days. After the implementation of changes, the average diagnostic track duration was 12.6 days with an average CT access time of 7.3 days. The fraction of patients with a total throughput time within 10 days increased from 29% to 44% while the utilization remained equal with 82%, the idle time increased by 11% and the overtime decreased by 82%. The fraction of patients that completed the diagnostic track within 10 days improved with 52%. Computer simulation proved useful for studying the effects of proposed scenarios in radiology management. Besides the tangible effects, the simulation increased the awareness that optimizing capacity allocation can reduce access times.

  13. Secondary task for full flight simulation incorporating tasks that commonly cause pilot error: Time estimation

    Science.gov (United States)

    Rosch, E.

    1975-01-01

    The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

  14. Scalability of Direct Solver for Non-stationary Cahn-Hilliard Simulations with Linearized time Integration Scheme

    KAUST Repository

    Woźniak, M.

    2016-06-02

    We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme with a linearized right-hand side operator. It was applied in solving the Cahn-Hilliard parabolic equation with a nonlinear, fourth-order elliptic part. The second order of the approximation along the time variable was proven. Moreover, the good scalability of the software based on this scheme was confirmed during simulations. We verify the proposed time integration scheme by monitoring the Ginzburg-Landau free energy. The numerical simulations are performed by using a parallel multi-frontal direct solver executed over STAMPEDE Linux cluster. Its scalability was compared to the results of the three direct solvers, including MUMPS, SuperLU and PaSTiX.

  15. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Science.gov (United States)

    Rummukainen, M.; Räisänen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willén, U.; Hansson, U.; Jones, C.

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results.

  16. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M.; Raeisaenen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willen, U.; Hansson, U.; Jones, C. [Rossby Centre, Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2001-03-01

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results. (orig.)

  17. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    International Nuclear Information System (INIS)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J

    2016-01-01

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  18. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2016-06-15

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  19. First results from simulations of supersymmetric lattices

    Science.gov (United States)

    Catterall, Simon

    2009-01-01

    We conduct the first numerical simulations of lattice theories with exact supersymmetry arising from the orbifold constructions of \\cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the Script Q = 4 theory in D = 0,2 dimensions and the Script Q = 16 theory in D = 0,2,4 dimensions. We show that the U(N) theories do not possess vacua which are stable non-perturbatively, but that this problem can be circumvented after truncation to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum of the fermion operator and the phase of the Pfaffian arising after integration over the fermions. We monitor supersymmetry breaking effects by measuring a simple Ward identity. Our results indicate that simulations of Script N = 4 super Yang-Mills may be achievable in the near future.

  20. Collecting real-time data with a behavioral simulation: A new methodological trait

    DEFF Research Database (Denmark)

    Jespersen, Kristina Risom

    interactive methods of collecting data [1, 2]. To collect real-time data as opposed to retrospective data, new methodological traits are needed. The paper proposes that a behavioral simulation supported by Web technology is a valid new research strategy to handle the collection of real-time data. Adapting...... the knowledge on agent-based modeling [3, 4], a behavioral simulation synergizes the benefits of self-administered questionnaires and the experimental design, and furthermore, introduces role-playing [5, 6] and scenario [7-11] strategies as very effective methods to ensure high interaction with the respondents....... The Web technology is the key to make a simulation for data collection objectives 'light'. Additionally, Web technology can be a solution to some of the challenges facing the traditional research methodologies such as time, ease, flexibility and cost, but perhaps more interesting, a possible solution...

  1. Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    DEFF Research Database (Denmark)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2011-01-01

    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...

  2. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems: A Case Study on Vocal Fold Inflammation and Healing.

    Science.gov (United States)

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2016-05-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.

  3. Real-time hybrid simulation in a shaking table configuration for parametric studies of high-voltage equipment and IEEE693 development

    Energy Technology Data Exchange (ETDEWEB)

    Günay, Selim [nees@berkeley, UC Berkeley, Richmond, CA (United States); Mosalam, Khalid [Department of Civil and Environmental Engineering, UC Berkeley, Berkeley, CA (United States); Takhirov, Shakhzod, E-mail: takhirov@berkeley.edu [nees@berkeley, UC Berkeley, Richmond, CA (United States)

    2015-12-15

    Highlights: • A real-time hybrid simulation (RTHS) system for high-voltage (HV) equipment is developed. • The system is a cost effective and timely efficient approach for seismic testing and evaluation. • The coupled system of equipment and modeled support structure is tested/analyzed in real time. • The system is validated by comparing the RTHS test results with the shaking table results. • The effect of support structure on the equipment response is analyzed in a parametric study. - Abstract: This paper presents extensive discussion on seismic qualification of substation equipment in conventional shake table tests and its comparison to real-time hybrid simulation (RTHS). The hybrid simulation technique is based on a sub-structuring idea where a portion of a test specimen with well-predicted performance can be replaced by its finite element model. The rest of the test specimen is experimentally studied as part of the coupled system, where the test object and the mathematical model are interacting with each other in real time. The real-time hybrid simulation technique has a strong potential of complementing and in some cases replacing seismic qualification testing. In addition to that, it has a strong potential as a comprehensive and reliable tool for IEEE693 development, where code provisions can be developed from parametric hybrid simulation studies of actual pieces of substation equipment which are otherwise difficult to model. As a typical example of successful application of hybrid simulation, a comprehensive study related to RTHS of electrical disconnect switches is discussed in the paper. First, the RTHS system developed for this purpose is described and the results of a RTHS test are compared with a benchmark conventional shaking table test as a validation of the system. Second, effect of the support structures of the disconnect switches on the global and local responses of different insulator types is evaluated using the results of a series of

  4. Real-time hybrid simulation in a shaking table configuration for parametric studies of high-voltage equipment and IEEE693 development

    International Nuclear Information System (INIS)

    Günay, Selim; Mosalam, Khalid; Takhirov, Shakhzod

    2015-01-01

    Highlights: • A real-time hybrid simulation (RTHS) system for high-voltage (HV) equipment is developed. • The system is a cost effective and timely efficient approach for seismic testing and evaluation. • The coupled system of equipment and modeled support structure is tested/analyzed in real time. • The system is validated by comparing the RTHS test results with the shaking table results. • The effect of support structure on the equipment response is analyzed in a parametric study. - Abstract: This paper presents extensive discussion on seismic qualification of substation equipment in conventional shake table tests and its comparison to real-time hybrid simulation (RTHS). The hybrid simulation technique is based on a sub-structuring idea where a portion of a test specimen with well-predicted performance can be replaced by its finite element model. The rest of the test specimen is experimentally studied as part of the coupled system, where the test object and the mathematical model are interacting with each other in real time. The real-time hybrid simulation technique has a strong potential of complementing and in some cases replacing seismic qualification testing. In addition to that, it has a strong potential as a comprehensive and reliable tool for IEEE693 development, where code provisions can be developed from parametric hybrid simulation studies of actual pieces of substation equipment which are otherwise difficult to model. As a typical example of successful application of hybrid simulation, a comprehensive study related to RTHS of electrical disconnect switches is discussed in the paper. First, the RTHS system developed for this purpose is described and the results of a RTHS test are compared with a benchmark conventional shaking table test as a validation of the system. Second, effect of the support structures of the disconnect switches on the global and local responses of different insulator types is evaluated using the results of a series of

  5. Migrating to a real-time distributed parallel simulator architecture- An update

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-09-01

    Full Text Available A legacy non-distributed logical time simulator was previously migrated to a distributed architecture to parallelise execution. The existing Discrete Time System Specification (DTSS) modelling formalism was retained to simplify the reuse of existing...

  6. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    Science.gov (United States)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  7. Implementation of the frequency dependent line model in a real-time power system simulator

    Directory of Open Access Journals (Sweden)

    Reynaldo Iracheta-Cortez

    2017-09-01

    Full Text Available In this paper is described the implementation of the frequency-dependent line model (FD-Line in a real-time digital power system simulator. The main goal with such development is to describe a general procedure to incorporate new realistic models of power system components in modern real-time simulators based on the Electromagnetic Transients Program (EMTP. In this procedure are described, firstly, the steps to obtain the time domain solution of the differential equations that models the electromagnetic behavior in multi-phase transmission lines with frequency dependent parameters. After, the algorithmic solution of the FD-Line model is implemented in Simulink environment, through an S-function programmed in C language, for running off-line simulations of electromagnetic transients. This implementation allows the free assembling of the FD Line model with any element of the Power System Blockset library and also, it can be used to build any network topology. The main advantage of having a power network built in Simulink is that can be executed in real-time by means of the commercial eMEGAsim simulator. Finally, several simulation cases are presented to validate the accuracy and the real-time performance of the FD-Line model.

  8. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power

    Science.gov (United States)

    Yost, Dillon C.; Yao, Yi; Kanai, Yosuke

    2017-09-01

    In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.

  9. A Group Simulation of the Development of the Geologic Time Scale.

    Science.gov (United States)

    Bennington, J. Bret

    2000-01-01

    Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)

  10. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    Science.gov (United States)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect

  11. Simulation-based medical education: time for a pedagogical shift.

    Science.gov (United States)

    Kalaniti, Kaarthigeyan; Campbell, Douglas M

    2015-01-01

    The purpose of medical education at all levels is to prepare physicians with the knowledge and comprehensive skills, required to deliver safe and effective patient care. The traditional 'apprentice' learning model in medical education is undergoing a pedagogical shift to a 'simulation-based' learning model. Experiential learning, deliberate practice and the ability to provide immediate feedback are the primary advantages of simulation-based medical education. It is an effective way to develop new skills, identify knowledge gaps, reduce medical errors, and maintain infrequently used clinical skills even among experienced clinical teams, with the overall goal of improving patient care. Although simulation cannot replace clinical exposure as a form of experiential learning, it promotes learning without compromising patient safety. This new paradigm shift is revolutionizing medical education in the Western world. It is time that the developing countries embrace this new pedagogical shift.

  12. SU-D-BRF-06: A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

    International Nuclear Information System (INIS)

    Beaulieu, L; Carette, A; Comtois, S; Lavigueur, M; Cardou, P; Laurendeau, D

    2014-01-01

    Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation. Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor nonlinear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6- core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link. Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m. Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other

  13. Real-Time Simulation of Ship Impact for Crew Training

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    2003-01-01

    Real-time simulation of marine accidents and representation in a realistic, virtual environment may be an efficient way to train emergency procedures for ship?s crews and thus improve safety at sea. However, although various fast, simplified methods have been presented over the past decades...

  14. Time-domain simulations for metallic nano-structures - a Krylov-subspace approach beyond the limitations of FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Michael [Institut fuer Theoretische Festkoerperphysik, Universitaet Karlsruhe (Germany); Karlsruhe School of Optics and Photonics (KSOP), Universitaet Karlsruhe (Germany); Niegemann, Jens; Tkeshelashvili, Lasha; Busch, Kurt [Institut fuer Theoretische Festkoerperphysik, Universitaet Karlsruhe (Germany); DFG Forschungszentrum Center for Functional Nanostructures (CFN), Universitaet Karlsruhe (Germany); Karlsruhe School of Optics and Photonics (KSOP), Universitaet Karlsruhe (Germany)

    2008-07-01

    Numerical simulations of metallic nano-structures are crucial for the efficient design of plasmonic devices. Conventional time-domain solvers such as FDTD introduce large numerical errors especially at metallic surfaces. Our approach combines a discontinuous Galerkin method on an adaptive mesh for the spatial discretisation with a Krylov-subspace technique for the time-stepping procedure. Thus, the higher-order accuracy in both time and space is supported by unconditional stability. As illustrative examples, we compare numerical results obtained with our method against analytical reference solutions and results from FDTD calculations.

  15. Deep Space Navigation and Timing Architecture and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will develop a deep space navigation and timing architecture and associated simulation, incorporating state-of-the art radiometric, x-ray pulsar, and laser...

  16. A flexible hydrological warning system in Denmark for real-time surface water and groundwater simulations

    Science.gov (United States)

    He, Xin; Stisen, Simon; Wiese, Marianne B.; Jørgen Henriksen, Hans

    2015-04-01

    In Denmark, increasing focus on extreme weather events has created considerable demand for short term forecasts and early warnings in relation to groundwater and surface water flooding. The Geological Survey of Denmark and Greenland (GEUS) has setup, calibrated and applied a nationwide water resources model, the DK-Model, primarily for simulating groundwater and surface water flows and groundwater levels during the past 20 years. So far, the DK-model has only been used in offline historical and future scenario simulations. Therefore, challenges arise in operating such a model for online forecasts and early warnings, which requires access to continuously updated observed climate input data and forecast data of precipitation, temperature and global radiation for the next 48 hours or longer. GEUS has a close collaboration with the Danish Meteorological Institute in order to test and enable this data input for the DK model. Due to the comprehensive physical descriptions of the DK-Model, the simulation results can potentially be any component of the hydrological cycle within the models domain. Therefore, it is important to identify which results need to be updated and saved in the real-time mode, since it is not computationally economical to save every result considering the heavy load of data. GEUS have worked closely with the end-users and interest groups such as water planners and emergency managers from the municipalities, water supply and waste water companies, consulting companies and farmer organizations, in order to understand their possible needs for real time simulation and monitoring of the nationwide water cycle. This participatory process has been supported by a web based questionnaire survey, and a workshop that connected the model developers and the users. For qualifying the stakeholder engagement, GEUS has selected a representative catchment area (Skjern River) for testing and demonstrating a prototype of the web based hydrological warning system at the

  17. Defining the Simulation Technician Role: Results of a Survey-Based Study.

    Science.gov (United States)

    Bailey, Rachel; Taylor, Regina G; FitzGerald, Michael R; Kerrey, Benjamin T; LeMaster, Thomas; Geis, Gary L

    2015-10-01

    In health care simulation, simulation technicians perform multiple tasks to support various educational offerings. Technician responsibilities and the tasks that accompany them seem to vary between centers. The objectives were to identify the range and frequency of tasks that technicians perform and to determine if there is a correspondence between what technicians do and what they feel their responsibilities should be. We hypothesized that there is a core set of responsibilities and tasks for the technician position regardless of background, experience, and type of simulation center. We conducted a prospective, survey-based study of individuals currently functioning in a simulation technician role in a simulation center. This survey was designed internally and piloted within 3 academic simulation centers. Potential respondents were identified through a national mailing list, and the survey was distributed electronically during a 3-week period. A survey request was sent to 280 potential participants, 136 (49%) responded, and 73 met inclusion criteria. Five core tasks were identified as follows: equipment setup and breakdown, programming scenarios into software, operation of software during simulation, audiovisual support for courses, and on-site simulator maintenance. Independent of background before they were hired, technicians felt unprepared for their role once taking the position. Formal training was identified as a need; however, the majority of technicians felt experience over time was the main contributor toward developing knowledge and skills within their role. This study represents a first step in defining the technician role within simulation-based education and supports the need for the development of a formal job description to allow recruitment, development, and certification.

  18. Systematic comparison of position and time dependent macroparticle simulations in beam dynamics studies

    Directory of Open Access Journals (Sweden)

    Ji Qiang

    2002-06-01

    Full Text Available Macroparticle simulation plays an important role in modern accelerator design and operation. Most linear rf accelerators have been designed based on macroparticle simulations using longitudinal position as the independent variable. In this paper, we have done a systematic comparison between using longitudinal position as the independent variable and using time as the independent variable in macroparticle simulations. We have found that, for an rms-matched beam, the maximum relative moment difference for second, fourth moments and beam maximum amplitudes between these two types of simulations is 0.25% in a 10 m reference transport system with physical parameters similar to the Spallation Neutron Source linac design. The maximum z-to- t transform error in the space-charge force calculation of the position dependent simulation is about 0.1% in such a system. This might cause a several percent error in a complete simulation of a linac with a length of hundreds of meters. Furthermore, the error may be several times larger in simulations of mismatched beams. However, if such errors are acceptable to the linac designer, then one is justified in using position dependent macroparticle simulations in this type of linac design application.

  19. Real-time simulation of biological soft tissues: a PGD approach.

    Science.gov (United States)

    Niroomandi, S; González, D; Alfaro, I; Bordeu, F; Leygue, A; Cueto, E; Chinesta, F

    2013-05-01

    We introduce here a novel approach for the numerical simulation of nonlinear, hyperelastic soft tissues at kilohertz feedback rates necessary for haptic rendering. This approach is based upon the use of proper generalized decomposition techniques, a generalization of PODs. Proper generalized decomposition techniques can be considered as a means of a priori model order reduction and provides a physics-based meta-model without the need for prior computer experiments. The suggested strategy is thus composed of an offline phase, in which a general meta-model is computed, and an online evaluation phase in which the results are obtained at real time. Results are provided that show the potential of the proposed technique, together with some benchmark test that shows the accuracy of the method. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Fusing Simulation Results From Multifidelity Aero-servo-elastic Simulators - Application To Extreme Loads On Wind Turbine

    DEFF Research Database (Denmark)

    Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos

    2015-01-01

    Fusing predictions from multiple simulators in the early stages of the conceptual design of a wind turbine results in reduction in model uncertainty and risk mitigation. Aero-servo-elastic is a term that refers to the coupling of wind inflow, aerodynamics, structural dynamics and controls. Fusing...... the response data from multiple aero-servo-elastic simulators could provide better predictive ability than using any single simulator. The co-Kriging approach to fuse information from multifidelity aero-servo-elastic simulators is presented. We illustrate the co-Kriging approach to fuse the extreme flapwise...... bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST...

  1. Improved real-time dynamics from imaginary frequency lattice simulations

    Directory of Open Access Journals (Sweden)

    Pawlowski Jan M.

    2018-01-01

    Full Text Available The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.

  2. Improved real-time dynamics from imaginary frequency lattice simulations

    Science.gov (United States)

    Pawlowski, Jan M.; Rothkopf, Alexander

    2018-03-01

    The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.

  3. First order simulations on time measurements using inorganic scintillators for PET applications

    International Nuclear Information System (INIS)

    Joly, B.; Montarou, G.; Pauna, N.

    2008-01-01

    Time measurements based on scintillating crystals are used in many different experimental sets-up in high energy physics, nuclear physics and medical imaging (e.g. PET). Time of Flight (TOF) positron emission tomography (PET) is based on the measurement of the difference between the detection times of the two gamma arising from positrons decays. The fundamental improvement of TOF is an increase in signal to noise ratio which translates into sensitivity improvement. Conventional method for time measurements is based on the detection of first photoelectrons. Recently, in LHC experiments and more particularly for electromagnetic calorimeter, a fully digital method based on optimal filtering that considers samples of the entire signal was successfully applied. Since such a method allows ultimately time resolutions of about a few tens of picoseconds, for this report, first order simulations were performed using a simplified model of a detection block made of a PMT coupled to a LYSO or LaBr 3 crystal. These simulations were achieved to estimate time resolutions with the conventional method (first photoelectrons detection with CFD) or the optimal filtering. A hybrid method is also tested to be applied with fast running front-end electronics. These simulations will be the basis for experimental future studies. (authors)

  4. First order simulations on time measurements using inorganic scintillators for PET applications

    Energy Technology Data Exchange (ETDEWEB)

    Joly, B.; Montarou, G.; Pauna, N

    2008-07-01

    Time measurements based on scintillating crystals are used in many different experimental sets-up in high energy physics, nuclear physics and medical imaging (e.g. PET). Time of Flight (TOF) positron emission tomography (PET) is based on the measurement of the difference between the detection times of the two gamma arising from positrons decays. The fundamental improvement of TOF is an increase in signal to noise ratio which translates into sensitivity improvement. Conventional method for time measurements is based on the detection of first photoelectrons. Recently, in LHC experiments and more particularly for electromagnetic calorimeter, a fully digital method based on optimal filtering that considers samples of the entire signal was successfully applied. Since such a method allows ultimately time resolutions of about a few tens of picoseconds, for this report, first order simulations were performed using a simplified model of a detection block made of a PMT coupled to a LYSO or LaBr{sub 3} crystal. These simulations were achieved to estimate time resolutions with the conventional method (first photoelectrons detection with CFD) or the optimal filtering. A hybrid method is also tested to be applied with fast running front-end electronics. These simulations will be the basis for experimental future studies. (authors)

  5. Numerical simulation of pseudoelastic shape memory alloys using the large time increment method

    Science.gov (United States)

    Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad

    2017-04-01

    The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.

  6. Rainout assessment: the ACRA system and summaries of simulation results

    International Nuclear Information System (INIS)

    Watson, C.W.; Barr, S.; Allenson, R.E.

    1977-09-01

    A generalized, three-dimensional, integrated computer code system was developed to estimate collateral-damage threats from precipitation-scavenging (rainout) of airborne debris-clouds from defensive tactical nuclear engagements. This code system, called ACRA for Atmospheric-Contaminant Rainout Assessment, is based on Monte Carlo statistical simulation methods that allow realistic, unbiased simulations of probabilistic storm, wind, and precipitation fields that determine actual magnitudes and probabilities of rainout threats. Detailed models (or data bases) are included for synoptic-scale storm and wind fields; debris transport and dispersal (with the roles of complex flow fields, time-dependent diffusion, and multidimensional shear effects accounted for automatically); microscopic debris-precipitation interactions and scavenging probabilities; air-to-ground debris transport; local demographic features, for assessing actual threats to populations; and nonlinear effects accumulations from multishot scenarios. We simulated several hundred representative shots for West European scenarios and climates to study single-shot and multishot sensitivities of rainout effects to variations in pertinent physical variables

  7. Feasibility study of teleoperational maintenance using real-time simulator for experimental fusion reactor

    International Nuclear Information System (INIS)

    Hamada, Tomoyuki; Tanaka, Keiji; Oka, Kiyoshi; Shibanuma, Kiyoshi

    2004-01-01

    The maintenance manipulator for the experimental fusion reactor has long vertical and horizontal telescopic booms to access the neutral beam injector of the fusion reactor. Due to this boom structure, the vibration and deflection of the manipulator are the critical issues for the accurate operation. A real-time simulation system was constructed to evaluate the maneuverability of the manipulator under these vibration and deflection. In this simulation system, the dynamic behavior of the flexible manipulator is calculated synchronized with the real-time control input of the human operator. A vibration and position compensation method was adapted to improve the maneuverability. Through the evaluation using the real-time simulation system, it was verified that the manipulator is maneuverable by using vibration and position compensation. (author)

  8. Analysis of actuator delay and its effect on uncertainty quantification for real-time hybrid simulation

    Science.gov (United States)

    Chen, Cheng; Xu, Weijie; Guo, Tong; Chen, Kai

    2017-10-01

    Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these uncertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.

  9. Model-based framework for multi-axial real-time hybrid simulation testing

    Science.gov (United States)

    Fermandois, Gaston A.; Spencer, Billie F.

    2017-10-01

    Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six

  10. Simulated annealing (SA to vehicle routing problems with soft time windows

    Directory of Open Access Journals (Sweden)

    Suphan Sodsoon

    2014-12-01

    Full Text Available The researcher has applied and develops the meta-heuristics method to solve Vehicle Routing Problems with Soft Time Windows (VRPSTW. For this case there was only one depot, multi customers which each generally sparse either or demand was different though perceived number of demand and specific period of time to receive them. The Operation Research was representative combinatorial optimization problems and is known to be NP-hard. In this research algorithm, use Simulated Annealing (SA to determine the optimum solutions which rapidly time solving. After developed the algorithms, apply them to examine the factors and the optimum extended time windows and test these factors with vehicle problem routing under specific time windows by Solomon in OR-Library in case of maximum 25 customers. Meanwhile, 6 problems are including of C101, C102, R101, R102, RC101 and RC102 respectively. The result shows the optimum extended time windows at level of 50%. At last, after comparison these answers with the case of vehicle problem routing under specific time windows and flexible time windows, found that percentage errors on number of vehicles approximately by -28.57% and percentage errors on distances approximately by -28.57% which this algorithm spent average processing time on 45.5 sec/problems.

  11. Implementation of a Real-Time Microgrid Simulation Platform Based on Centralized and Distributed Management

    Directory of Open Access Journals (Sweden)

    Omid Abrishambaf

    2017-06-01

    Full Text Available Demand response and distributed generation are key components of power systems. Several challenges are raised at both technical and business model levels for integration of those resources in smart grids and microgrids. The implementation of a distribution network as a test bed can be difficult and not cost-effective; using computational modeling is not sufficient for producing realistic results. Real-time simulation allows us to validate the business model’s impact at the technical level. This paper comprises a platform supporting the real-time simulation of a microgrid connected to a larger distribution network. The implemented platform allows us to use both centralized and distributed energy resource management. Using an optimization model for the energy resource operation, a virtual power player manages all the available resources. Then, the simulation platform allows us to technically validate the actual implementation of the requested demand reduction in the scope of demand response programs. The case study has 33 buses, 220 consumers, and 68 distributed generators. It demonstrates the impact of demand response events, also performing resource management in the presence of an energy shortage.

  12. Simulation of decay processes and radiation transport times in radioactivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    García-Toraño, E., E-mail: e.garciatorano@ciemat.es [Laboratorio de Metrología de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Peyres, V. [Laboratorio de Metrología de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Bé, M.-M.; Dulieu, C.; Lépy, M.-C. [CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Bldg 602, PC111, 91191 Gif-sur-Yvette Cedex (France); Salvat, F. [Facultat de Física (FQA and ICC), Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

    2017-04-01

    The Fortran subroutine package PENNUC, which simulates random decay pathways of radioactive nuclides, is described. The decay scheme of the active nuclide is obtained from the NUCLEIDE database, whose web application has been complemented with the option of exporting nuclear decay data (possible nuclear transitions, branching ratios, type and energy of emitted particles) in a format that is readable by the simulation subroutines. In the case of beta emitters, the initial energy of the electron or positron is sampled from the theoretical Fermi spectrum. De-excitation of the atomic electron cloud following electron capture and internal conversion is described using transition probabilities from the LLNL Evaluated Atomic Data Library and empirical or calculated energies of released X rays and Auger electrons. The time evolution of radiation showers is determined by considering the lifetimes of nuclear and atomic levels, as well as radiation propagation times. Although PENNUC is designed to operate independently, here it is used in conjunction with the electron-photon transport code PENELOPE, and both together allow the simulation of experiments with radioactive sources in complex material structures consisting of homogeneous bodies limited by quadric surfaces. The reliability of these simulation tools is demonstrated through comparisons of simulated and measured energy spectra from radionuclides with complex multi-gamma spectra, nuclides with metastable levels in their decay pathways, nuclides with two daughters, and beta plus emitters.

  13. Testbeam results of the first real-time embedded tracking system with artificial retina

    Energy Technology Data Exchange (ETDEWEB)

    Neri, N., E-mail: nicola.neri@mi.infn.it; Abba, A.; Caponio, F.; Citterio, M.; Coelli, S.; Fu, J.; Merli, A.; Monti, M.; Petruzzo, M.

    2017-02-11

    We present the testbeam results of the first real-time embedded tracking system based on artificial retina algorithm. The tracking system prototype is capable of fast track reconstruction with a latency of the response below 1 μs and track parameter resolutions that are comparable with the offline results. The artificial retina algorithm was implemented in hardware in a custom data acquisition board based on commercial FPGA. The system was tested successfully using a 180 GeV/c proton beam at the CERN SPS with a maximum track rate of about 280 kHz. Online track parameters were found in good agreement with offline results and with the simulated response. - Highlights: • First real-time tracking system based on artificial retina algorithm tested on beam. • Fast track reconstruction within one microsecond latency and offline like quality. • Fast tracking algorithm implemented in commercial FPGAs.

  14. ANOVA parameters influence in LCF experimental data and simulation results

    Directory of Open Access Journals (Sweden)

    Vercelli A.

    2010-06-01

    Full Text Available The virtual design of components undergoing thermo mechanical fatigue (TMF and plastic strains is usually run in many phases. The numerical finite element method gives a useful instrument which becomes increasingly effective as the geometrical and numerical modelling gets more accurate. The constitutive model definition plays an important role in the effectiveness of the numerical simulation [1, 2] as, for example, shown in Figure 1. In this picture it is shown how a good cyclic plasticity constitutive model can simulate a cyclic load experiment. The component life estimation is the subsequent phase and it needs complex damage and life estimation models [3-5] which take into account of several parameters and phenomena contributing to damage and life duration. The calibration of these constitutive and damage models requires an accurate testing activity. In the present paper the main topic of the research activity is to investigate whether the parameters, which result to be influent in the experimental activity, influence the numerical simulations, thus defining the effectiveness of the models in taking into account of all the phenomena actually influencing the life of the component. To obtain this aim a procedure to tune the parameters needed to estimate the life of mechanical components undergoing TMF and plastic strains is presented for commercial steel. This procedure aims to be easy and to allow calibrating both material constitutive model (for the numerical structural simulation and the damage and life model (for life assessment. The procedure has been applied to specimens. The experimental activity has been developed on three sets of tests run at several temperatures: static tests, high cycle fatigue (HCF tests, low cycle fatigue (LCF tests. The numerical structural FEM simulations have been run on a commercial non linear solver, ABAQUS®6.8. The simulations replied the experimental tests. The stress, strain, thermal results from the thermo

  15. Saltstone Matrix Characterization And Stadium Simulation Results

    International Nuclear Information System (INIS)

    Langton, C.

    2009-01-01

    SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM(reg s ign) service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM(reg s ign) concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples

  16. Simulation of three-dimensional, time-dependent, incompressible flows by a finite element method

    International Nuclear Information System (INIS)

    Chan, S.T.; Gresho, P.M.; Lee, R.L.; Upson, C.D.

    1981-01-01

    A finite element model has been developed for simulating the dynamics of problems encountered in atmospheric pollution and safety assessment studies. The model is based on solving the set of three-dimensional, time-dependent, conservation equations governing incompressible flows. Spatial discretization is performed via a modified Galerkin finite element method, and time integration is carried out via the forward Euler method (pressure is computed implicitly, however). Several cost-effective techniques (including subcycling, mass lumping, and reduced Gauss-Legendre quadrature) which have been implemented are discussed. Numerical results are presented to demonstrate the applicability of the model

  17. Real-time tumor ablation simulation based on the dynamic mode decomposition method

    KAUST Repository

    Bourantas, George C.

    2014-05-01

    Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must be employed, taking into account both the water evaporation phenomenon and the tissue damage during tumor ablation. Methods: A meshless point collocation solver is used for the numerical solution of the governing equations. The results obtained are used by the DMD method for forecasting the numerical solution faster than the meshless solver. The procedure is first validated against analytical and numerical predictions for simple problems. The DMD method is then applied to three-dimensional simulations that involve modeling of tumor ablation and account for metabolic heat generation, blood perfusion, and heat ablation using realistic values for the various parameters. Results: The present method offers very fast numerical solution to bioheat transfer, which is of clinical significance in medical practice. It also sidesteps the mathematical treatment of boundaries between tumor and healthy tissue, which is usually a tedious procedure with some inevitable degree of approximation. The DMD method provides excellent predictions of the temperature profile in tumors and in the healthy parts of the tissue, for linear and nonlinear thermal properties of the tissue. Conclusions: The low computational cost renders the use of DMD suitable forin situ real time tumor ablation simulations without sacrificing accuracy. In such a way, the tumor ablation treatment planning is feasible using just a personal computer thanks to the simplicity of the numerical procedure used. The geometrical data can be provided directly by medical image modalities used in everyday practice. © 2014 American Association of Physicists in Medicine.

  18. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    Science.gov (United States)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  19. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    Science.gov (United States)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  20. Pricing and Timing Strategies for New Product Using Agent-Based Simulation of Behavioural Consumers

    OpenAIRE

    Keeheon Lee; Hoyeop Lee; Chang Ouk Kim

    2014-01-01

    In this study, we are interested in the problem of determining the pricing and timing strategies of a new product by developing an agent-based product diffusion simulation. In the proposed simulation model, agents imitate behavioural consumers, who are reference dependent and risk averse in the evaluation of new products and whose interactions create word-of-mouth regarding new products. Pricing and timing strategies involve the timing of a new product release, the timing of providing a disco...

  1. How to statistically analyze nano exposure measurement results: using an ARIMA time series approach

    International Nuclear Information System (INIS)

    Klein Entink, Rinke H.; Fransman, Wouter; Brouwer, Derk H.

    2011-01-01

    Measurement strategies for exposure to nano-sized particles differ from traditional integrated sampling methods for exposure assessment by the use of real-time instruments. The resulting measurement series is a time series, where typically the sequential measurements are not independent from each other but show a pattern of autocorrelation. This article addresses the statistical difficulties when analyzing real-time measurements for exposure assessment to manufactured nano objects. To account for autocorrelation patterns, Autoregressive Integrated Moving Average (ARIMA) models are proposed. A simulation study shows the pitfalls of using a standard t-test and the application of ARIMA models is illustrated with three real-data examples. Some practical suggestions for the data analysis of real-time exposure measurements conclude this article.

  2. Implementation and evaluation of a simulation curriculum for paediatric residency programs including just-in-time in situ mock codes.

    Science.gov (United States)

    Sam, Jonathan; Pierse, Michael; Al-Qahtani, Abdullah; Cheng, Adam

    2012-02-01

    To develop, implement and evaluate a simulation-based acute care curriculum in a paediatric residency program using an integrated and longitudinal approach. Curriculum framework consisting of three modular, year-specific courses and longitudinal just-in-time, in situ mock codes. Paediatric residency program at BC Children's Hospital, Vancouver, British Columbia. The three year-specific courses focused on the critical first 5 min, complex medical management and crisis resource management, respectively. The just-in-time in situ mock codes simulated the acute deterioration of an existing ward patient, prepared the actual multidisciplinary code team, and primed the surrounding crisis support systems. Each curriculum component was evaluated with surveys using a five-point Likert scale. A total of 40 resident surveys were completed after each of the modular courses, and an additional 28 surveys were completed for the overall simulation curriculum. The highest Likert scores were for hands-on skill stations, immersive simulation environment and crisis resource management teaching. Survey results also suggested that just-in-time mock codes were realistic, reinforced learning, and prepared ward teams for patient deterioration. A simulation-based acute care curriculum was successfully integrated into a paediatric residency program. It provides a model for integrating simulation-based learning into other training programs, as well as a model for any hospital that wishes to improve paediatric resuscitation outcomes using just-in-time in situ mock codes.

  3. An inexpensive underwater mine countermeasures simulator with real-time 3D after action review

    Directory of Open Access Journals (Sweden)

    Robert Stone

    2016-10-01

    Full Text Available This paper presents the results of a concept capability demonstration pilot study, the aim of which was to investigate how inexpensive gaming software and hardware technologies could be exploited in the development and evaluation of a simulator prototype for training Royal Navy mine clearance divers, specifically focusing on the detection and accurate reporting of the location and condition of underwater ordnance. The simulator was constructed using the Blender open source 3D modelling toolkit and game engine, and featured not only an interactive 3D editor for underwater scenario generation by instructors, but also a real-time, 3D After Action Review (AAR system for formative assessment and feedback. The simulated scenarios and AAR architecture were based on early human factors observations and briefings conducted at the UK's Defence Diving School (DDS, an organisation that provides basic military diving training for all Royal Navy and Army (Royal Engineers divers. An experimental pilot study was undertaken to determine whether or not basic navigational and mine detection components of diver performance could be improved as a result of exposing participants to the AAR system, delivered between simulated diving scenarios. The results suggest that the provision of AAR was accompanied by significant performance improvements in the positive identification of simulated underwater ordnance (in contrast to non-ordnance objects and on participants' description of their location, their immediate in-water or seabed context and their structural condition. Only marginal improvements were found with participants' navigational performance in terms of their deviation accuracies from a pre-programmed expert search path. Overall, this project contributes to the growing corpus of evidence supporting the development of simulators that demonstrate the value of exploiting open source gaming software and the significance of adopting established games design

  4. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    International Nuclear Information System (INIS)

    Ragusa, J.C.

    2001-01-01

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  5. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, J.C. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)

    2001-07-01

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  6. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    Science.gov (United States)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  7. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    International Nuclear Information System (INIS)

    Wang, Henry; Ma Yunzhi; Pratx, Guillem; Xing Lei

    2011-01-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  8. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henry [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Ma Yunzhi; Pratx, Guillem; Xing Lei, E-mail: hwang41@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847 (United States)

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  9. Inhomogeneities detection in annual precipitation time series in Portugal using direct sequential simulation

    Science.gov (United States)

    Caineta, Júlio; Ribeiro, Sara; Costa, Ana Cristina; Henriques, Roberto; Soares, Amílcar

    2014-05-01

    Climate data homogenisation is of major importance in monitoring climate change, the validation of weather forecasting, general circulation and regional atmospheric models, modelling of erosion, drought monitoring, among other studies of hydrological and environmental impacts. This happens because non-climate factors can cause time series discontinuities which may hide the true climatic signal and patterns, thus potentially bias the conclusions of those studies. In the last two decades, many methods have been developed to identify and remove these inhomogeneities. One of those is based on geostatistical simulation (DSS - direct sequential simulation), where local probability density functions (pdf) are calculated at candidate monitoring stations, using spatial and temporal neighbouring observations, and then are used for detection of inhomogeneities. This approach has been previously applied to detect inhomogeneities in four precipitation series (wet day count) from a network with 66 monitoring stations located in the southern region of Portugal (1980-2001). This study revealed promising results and the potential advantages of geostatistical techniques for inhomogeneities detection in climate time series. This work extends the case study presented before and investigates the application of the geostatistical stochastic approach to ten precipitation series that were previously classified as inhomogeneous by one of six absolute homogeneity tests (Mann-Kendall test, Wald-Wolfowitz runs test, Von Neumann ratio test, Standard normal homogeneity test (SNHT) for a single break, Pettit test, and Buishand range test). Moreover, a sensibility analysis is implemented to investigate the number of simulated realisations that should be used to accurately infer the local pdfs. Accordingly, the number of simulations per iteration is increased from 50 to 500, which resulted in a more representative local pdf. A set of default and recommended settings is provided, which will help

  10. Superior memory efficiency of quantum devices for the simulation of continuous-time stochastic processes

    Science.gov (United States)

    Elliott, Thomas J.; Gu, Mile

    2018-03-01

    Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.

  11. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    Science.gov (United States)

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  12. Online Synchrophasor-Based Dynamic State Estimation using Real-Time Digital Simulator

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Adewole, Adeyemi Charles; Udaya, Annakkage

    2018-01-01

    Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real-...... using the RTDS (real-time digital simulator). The dynamic state variables of multi-machine systems are monitored and measured for the study on the transient behavior of power systems.......Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real......-time digital simulator (RTDS). The dynamic state variables of the system are the rotor angle and speed of the generators. The performance of the UKF method is tested with PMU measurements as inputs using the IEEE 14-bus test system. This test system was modeled in the RSCAD software and tested in real time...

  13. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    Science.gov (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  14. Modeling and simulation of nuclear fuel in scenarios with long time scales

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Carlos E.; Bodmann, Bardo E.J., E-mail: eduardo.espinosa@ufrgs.br, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (DENUC/PROMEC/UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Nuclear. Programa de Pos Graduacao em Engenharia Mecanica

    2015-07-01

    Nuclear reactors play a key role in defining the energy matrix. A study by the Fraunhofer Society shows in different time scales for long periods of time the distribution of energy sources. Regardless of scale, the use of nuclear energy is practically constant. In these scenarios, the nuclear fuel behavior over time is of interest. For kinetics of long-term scales, changing the chemical composition of fuel is significant. Thus, it is appropriate to consider fission products called neutron poisons. Such products are of interest in the nuclear reactor, since they become parasitic neutron absorbers and result in long thermal heat sources. The objective of this work is to solve the kinetics system coupled to neutron poison products. To solve this system, we use similar ideas to the method of Adomian decomposition. Initially, one separates the system of equations as the sum of a linear part and a non-linear part in order to solve a recursive system. The nonlinearity is treated as Adomian polynomial. We present numerical results of the effects of changing the power of a reactor, scenarios such as start-up and shut-down. For these results we consider time dependent reactivity, such as linear reactivity, quadratic polynomial and oscillatory. With these results one can simulate the chemical composition of the fuel due to the reuse of the spent fuel in subsequent cycles. (author)

  15. Modeling and simulation of nuclear fuel in scenarios with long time scales

    International Nuclear Information System (INIS)

    Espinosa, Carlos E.; Bodmann, Bardo E.J.

    2015-01-01

    Nuclear reactors play a key role in defining the energy matrix. A study by the Fraunhofer Society shows in different time scales for long periods of time the distribution of energy sources. Regardless of scale, the use of nuclear energy is practically constant. In these scenarios, the nuclear fuel behavior over time is of interest. For kinetics of long-term scales, changing the chemical composition of fuel is significant. Thus, it is appropriate to consider fission products called neutron poisons. Such products are of interest in the nuclear reactor, since they become parasitic neutron absorbers and result in long thermal heat sources. The objective of this work is to solve the kinetics system coupled to neutron poison products. To solve this system, we use similar ideas to the method of Adomian decomposition. Initially, one separates the system of equations as the sum of a linear part and a non-linear part in order to solve a recursive system. The nonlinearity is treated as Adomian polynomial. We present numerical results of the effects of changing the power of a reactor, scenarios such as start-up and shut-down. For these results we consider time dependent reactivity, such as linear reactivity, quadratic polynomial and oscillatory. With these results one can simulate the chemical composition of the fuel due to the reuse of the spent fuel in subsequent cycles. (author)

  16. Limitations in simulator time-based human reliability analysis methods

    International Nuclear Information System (INIS)

    Wreathall, J.

    1989-01-01

    Developments in human reliability analysis (HRA) methods have evolved slowly. Current methods are little changed from those of almost a decade ago, particularly in the use of time-reliability relationships. While these methods were suitable as an interim step, the time (and the need) has come to specify the next evolution of HRA methods. As with any performance-oriented data source, power plant simulator data have no direct connection to HRA models. Errors reported in data are normal deficiencies observed in human performance; failures are events modeled in probabilistic risk assessments (PRAs). Not all errors cause failures; not all failures are caused by errors. Second, the times at which actions are taken provide no measure of the likelihood of failures to act correctly within an accident scenario. Inferences can be made about human reliability, but they must be made with great care. Specific limitations are discussed. Simulator performance data are useful in providing qualitative evidence of the variety of error types and their potential influences on operating systems. More work is required to combine recent developments in the psychology of error with the qualitative data collected at stimulators. Until data become openly available, however, such an advance will not be practical

  17. High-speed extended-term time-domain simulation for online cascading analysis of power system

    Science.gov (United States)

    Fu, Chuan

    A high-speed extended-term (HSET) time domain simulator (TDS), intended to become a part of an energy management system (EMS), has been newly developed for use in online extended-term dynamic cascading analysis of power systems. HSET-TDS includes the following attributes for providing situational awareness of high-consequence events: (i) online analysis, including n-1 and n-k events, (ii) ability to simulate both fast and slow dynamics for 1-3 hours in advance, (iii) inclusion of rigorous protection-system modeling, (iv) intelligence for corrective action ID, storage, and fast retrieval, and (v) high-speed execution. Very fast on-line computational capability is the most desired attribute of this simulator. Based on the process of solving algebraic differential equations describing the dynamics of power system, HSET-TDS seeks to develop computational efficiency at each of the following hierarchical levels, (i) hardware, (ii) strategies, (iii) integration methods, (iv) nonlinear solvers, and (v) linear solver libraries. This thesis first describes the Hammer-Hollingsworth 4 (HH4) implicit integration method. Like the trapezoidal rule, HH4 is symmetrically A-Stable but it possesses greater high-order precision (h4 ) than the trapezoidal rule. Such precision enables larger integration steps and therefore improves simulation efficiency for variable step size implementations. This thesis provides the underlying theory on which we advocate use of HH4 over other numerical integration methods for power system time-domain simulation. Second, motivated by the need to perform high speed extended-term time domain simulation (HSET-TDS) for on-line purposes, this thesis presents principles for designing numerical solvers of differential algebraic systems associated with power system time-domain simulation, including DAE construction strategies (Direct Solution Method), integration methods(HH4), nonlinear solvers(Very Dishonest Newton), and linear solvers(SuperLU). We have

  18. Measurement and simulation of the time-dependent behavior of the UMER source

    International Nuclear Information System (INIS)

    Haber, I.; Feldman, D.; Fiorito, R.; Friedman, A.; Grote, D.P.; Kishek, R.A.; Quinn, B.; Reiser, M.; Rodgers, J.; O'Shea, P.G.; Stratakis, D.; Tian, K.; Vay, J.-L.; Walter, M.

    2007-01-01

    Control of the time-dependent characteristics of the beam pulse, beginning when it is born from the source, is important for obtaining adequate beam intensity on a target. Recent experimental measurements combined with the new mesh-refinement capability in WARP have improved the understanding of time-dependent beam characteristics beginning at the source, as well as the predictive ability of the simulation codes. The University of Maryland Electron Ring (UMER), because of its ease of operation and flexible diagnostics has proved particularly useful for benchmarking WARP by comparing simulation to measurement. One source of significant agreement has been in the ability of three-dimensional WARP simulations to predict the onset of virtual cathode oscillations in the vicinity of the cathode grid in the UMER gun, and the subsequent measurement of the predicted oscillations

  19. Extending the range of real time density matrix renormalization group simulations

    Science.gov (United States)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  20. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Directory of Open Access Journals (Sweden)

    Song-Gui Chen

    2016-01-01

    Full Text Available This paper presents a three-dimensional (3D parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-LBM is then validated through a benchmark problem: a 3D steady Poiseuille flow. The results from the numerical simulations are consistent with those derived analytically which indicates that the MRT-LBM effectively simulates Bingham fluids but with better stability. A parallel MRT-LBM framework is introduced, and the parallel efficiency is tested through a simple case. The MRT-LBM is shown to be appropriate for parallel implementation and to have high efficiency. Finally, a Bingham fluid flowing past a square-based prism with a fixed sphere is simulated. It is found the drag coefficient is a function of both Reynolds number (Re and Bingham number (Bn. These results reveal the flow behavior of Bingham plastics.

  1. Synthetic LISA: Simulating time delay interferometry in a model LISA

    International Nuclear Information System (INIS)

    Vallisneri, Michele

    2005-01-01

    We report on three numerical experiments on the implementation of Time-Delay Interferometry (TDI) for LISA, performed with Synthetic LISA, a C++/Python package that we developed to simulate the LISA science process at the level of scientific and technical requirements. Specifically, we study the laser-noise residuals left by first-generation TDI when the LISA armlengths have a realistic time dependence; we characterize the armlength-measurement accuracies that are needed to have effective laser-noise cancellation in both first- and second-generation TDI; and we estimate the quantization and telemetry bitdepth needed for the phase measurements. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables; it also provides a streamlined module to compute the TDI responses to gravitational waves according to a full model of TDI, including the motion of the LISA array and the temporal and directional dependence of the armlengths. We discuss the theoretical model that underlies the simulation, its implementation, and its use in future investigations on system-characterization and data-analysis prototyping for LISA

  2. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  3. A method for data handling numerical results in parallel OpenFOAM simulations

    International Nuclear Information System (INIS)

    nd Vasile Pârvan Ave., 300223, TM Timişoara, Romania, alin.anton@cs.upt.ro (Romania))" data-affiliation=" (Faculty of Automatic Control and Computing, Politehnica University of Timişoara, 2nd Vasile Pârvan Ave., 300223, TM Timişoara, Romania, alin.anton@cs.upt.ro (Romania))" >Anton, Alin; th Mihai Viteazu Ave., 300221, TM Timişoara (Romania))" data-affiliation=" (Center for Advanced Research in Engineering Science, Romanian Academy – Timişoara Branch, 24th Mihai Viteazu Ave., 300221, TM Timişoara (Romania))" >Muntean, Sebastian

    2015-01-01

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit ® [1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms

  4. A method for data handling numerical results in parallel OpenFOAM simulations

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Alin [Faculty of Automatic Control and Computing, Politehnica University of Timişoara, 2" n" d Vasile Pârvan Ave., 300223, TM Timişoara, Romania, alin.anton@cs.upt.ro (Romania); Muntean, Sebastian [Center for Advanced Research in Engineering Science, Romanian Academy – Timişoara Branch, 24" t" h Mihai Viteazu Ave., 300221, TM Timişoara (Romania)

    2015-12-31

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  5. The time dependent propensity function for acceleration of spatial stochastic simulation of reaction–diffusion systems

    International Nuclear Information System (INIS)

    Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.

    2014-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy

  6. Simulation studies for a high resolution time projection chamber at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Muennich, A.

    2007-03-26

    The International Linear Collider (ILC) is planned to be the next large accelerator. The ILC will be able to perform high precision measurements only possible at the clean environment of electron positron collisions. In order to reach this high accuracy, the requirements for the detector performance are challenging. Several detector concepts are currently under study. The understanding of the detector and its performance will be crucial to extract the desired physics results from the data. To optimise the detector design, simulation studies are needed. Simulation packages like GEANT4 allow to model the detector geometry and simulate the energy deposit in the different materials. However, the detector response taking into account the transportation of the produced charge to the readout devices and the effects ofthe readout electronics cannot be described in detail. These processes in the detector will change the measured position of the energy deposit relative to the point of origin. The determination of this detector response is the task of detailed simulation studies, which have to be carried out for each subdetector. A high resolution Time Projection Chamber (TPC) with gas amplification based on micro pattern gas detectors, is one of the options for the main tracking system at the ILC. In the present thesis a detailed simulation tool to study the performance of a TPC was developed. Its goal is to find the optimal settings to reach an excellent momentum and spatial resolution. After an introduction to the present status of particle physics and the ILC project with special focus on the TPC as central tracker, the simulation framework is presented. The basic simulation methods and implemented processes are introduced. Within this stand-alone simulation framework each electron produced by primary ionisation is transferred through the gas volume and amplified using Gas Electron Multipliers (GEMs). The output format of the simulation is identical to the raw data from a

  7. LHCb time-dependent results

    OpenAIRE

    Calvi, Marta

    2011-01-01

    This review reports preliminary results of time-dependent measurements of decays of $B^0$ mesons and $B^0_s$ mesons coming from the analysis of about 36 pb$^{-1}$ of data collected by the LHCb experiment during the 2010 run of the Large Hadron Collider at $\\sqrt{s}$ = 7 TeV.

  8. LHCb time-dependent results

    OpenAIRE

    Calvi, Marta; Collaboration, for the LHCb

    2011-01-01

    This review reports preliminary results of time-dependent measurements of decays of B^0 mesons and B^0_s mesons coming from the analysis of about 36 pb^-1 of data collected by the LHCb experiment during the 2010 run of the Large Hadron Collider at sqrt(s)=7 TeV.

  9. Combining numerical simulations with time-domain random walk for pathogen risk assessment in groundwater

    Science.gov (United States)

    Cvetkovic, V.; Molin, S.

    2012-02-01

    We present a methodology that combines numerical simulations of groundwater flow and advective transport in heterogeneous porous media with analytical retention models for computing the infection risk probability from pathogens in aquifers. The methodology is based on the analytical results presented in [1,2] for utilising the colloid filtration theory in a time-domain random walk framework. It is shown that in uniform flow, the results from the numerical simulations of advection yield comparable results as the analytical TDRW model for generating advection segments. It is shown that spatial variability of the attachment rate may be significant, however, it appears to affect risk in a different manner depending on if the flow is uniform or radially converging. In spite of the fact that numerous issues remain open regarding pathogen transport in aquifers on the field scale, the methodology presented here may be useful for screening purposes, and may also serve as a basis for future studies that would include greater complexity.

  10. Exploring organizational crises from a legitimation perspective: Results from a computer simulation and illustrative cases

    OpenAIRE

    Breitsohl, Heiko

    2008-01-01

    Organizational crises are rare, yet they fundamentally influence the evolution of organizations. An aspect of crises deserving more attention is the interaction of organizations and their stakeholders during a crisis from a legitimation perspective. This paper presents a simulation model mapping causal relationships behind this interaction. Results suggest that the nature and timing of organizational response to crises has considerable effect on the success and duration of attempts of regaini...

  11. A correction method for systematic error in (1)H-NMR time-course data validated through stochastic cell culture simulation.

    Science.gov (United States)

    Sokolenko, Stanislav; Aucoin, Marc G

    2015-09-04

    The growing ubiquity of metabolomic techniques has facilitated high frequency time-course data collection for an increasing number of applications. While the concentration trends of individual metabolites can be modeled with common curve fitting techniques, a more accurate representation of the data needs to consider effects that act on more than one metabolite in a given sample. To this end, we present a simple algorithm that uses nonparametric smoothing carried out on all observed metabolites at once to identify and correct systematic error from dilution effects. In addition, we develop a simulation of metabolite concentration time-course trends to supplement available data and explore algorithm performance. Although we focus on nuclear magnetic resonance (NMR) analysis in the context of cell culture, a number of possible extensions are discussed. Realistic metabolic data was successfully simulated using a 4-step process. Starting with a set of metabolite concentration time-courses from a metabolomic experiment, each time-course was classified as either increasing, decreasing, concave, or approximately constant. Trend shapes were simulated from generic functions corresponding to each classification. The resulting shapes were then scaled to simulated compound concentrations. Finally, the scaled trends were perturbed using a combination of random and systematic errors. To detect systematic errors, a nonparametric fit was applied to each trend and percent deviations calculated at every timepoint. Systematic errors could be identified at time-points where the median percent deviation exceeded a threshold value, determined by the choice of smoothing model and the number of observed trends. Regardless of model, increasing the number of observations over a time-course resulted in more accurate error estimates, although the improvement was not particularly large between 10 and 20 samples per trend. The presented algorithm was able to identify systematic errors as small

  12. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  13. Electron-cloud updated simulation results for the PSR, and recent results for the SNS

    International Nuclear Information System (INIS)

    Pivi, M.; Furman, M.A.

    2002-01-01

    Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code

  14. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations

    Science.gov (United States)

    Plante, Ianik; Devroye, Luc

    2017-10-01

    Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.

  15. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    Science.gov (United States)

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  16. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    International Nuclear Information System (INIS)

    Tisseur, D.; Costin, M.; Rattoni, B.; Vienne, C.; Vabre, A.; Cattiaux, G.; Sollier, T.

    2015-01-01

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software

  17. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    Energy Technology Data Exchange (ETDEWEB)

    Tisseur, D., E-mail: david.tisseur@cea.fr; Costin, M., E-mail: david.tisseur@cea.fr; Rattoni, B., E-mail: david.tisseur@cea.fr; Vienne, C., E-mail: david.tisseur@cea.fr; Vabre, A., E-mail: david.tisseur@cea.fr; Cattiaux, G., E-mail: david.tisseur@cea.fr [CEA LIST, CEA Saclay 91191 Gif sur Yvette Cedex (France); Sollier, T. [Institut de Radioprotection et de Sûreté Nucléaire, B.P.17 92262 Fontenay-Aux-Roses (France)

    2015-03-31

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software.

  18. Time-Motion and Biological Responses in Simulated Mixed Martial Arts Sparring Matches.

    Science.gov (United States)

    Coswig, Victor S; Ramos, Solange de P; Del Vecchio, Fabrício B

    2016-08-01

    Coswig, VS, Ramos, SdP, and Del Vecchio, FB. Time-motion and biological responses in simulated mixed martial arts sparring matches. J Strength Cond Res 30(8): 2156-2163, 2016-Simulated matches are a relevant component of training for mixed martial arts (MMA) athletes. This study aimed to characterize time-motion responses and investigate physiological stress and neuromuscular changes related to MMA sparring matches. Thirteen athletes with an average age of 25 ± 5 years, body mass of 81.3 ± 9.5 kg, height of 176.2 ± 5.5 cm, and time of practice in MMA of 39 ± 25 months participated in the study. The fighters executed three 5-minute rounds with 1-minute intervals. Blood and salivary samples were collected and physical tests and psychometric questionnaires administered at 3 time points: before (PRE), immediately after (POST), and 48 hours after the combat (48 h). Statistical analysis applied analysis of variance for repeated measurements. In biochemical analysis, significant changes (p ≤ 0.05) were identified between PRE and POST (glucose: 80.3 ± 12.7 to 156.5 ± 19.1 mg·ml; lactate: 4 ± 1.7 to 15.6 ± 4.8 mmol·dl), POST and 48 hours (glucose: 156.5 ± 19.1 to 87.6 ± 15.5 mg·ml; lactate: 15.6 ± 4.8 to 2.9 ± 3.5 mmol·dl; urea: 44.1 ± 8.9 to 36.3 ± 7.8 mg·ml), and PRE and 48 hours (creatine kinase [CK]: 255.8 ± 137.4 to 395.9 ± 188.7 U/L). In addition, time-motion analyses showed a total high:low intensity of 1:2 and an effort:pause ratio of 1:3. In conclusion, simulated MMA sparring matches feature moderate to high intensity and a low degree of musculoskeletal damage, which can be seen by absence of physical performance and decrease in CK. Results of the study indicate that sparring training could be introduced into competitive microcycles to improve technical and tactical aspects of MMA matches, due to the high motor specificity and low muscle damage.

  19. A fire management simulation model using stochastic arrival times

    Science.gov (United States)

    Eric L. Smith

    1987-01-01

    Fire management simulation models are used to predict the impact of changes in the fire management program on fire outcomes. As with all models, the goal is to abstract reality without seriously distorting relationships between variables of interest. One important variable of fire organization performance is the length of time it takes to get suppression units to the...

  20. Real-time simulation of soft tissue deformation and electrocautery procedures in laparoscopic rectal cancer radical surgery.

    Science.gov (United States)

    Sui, Yuan; Pan, Jun J; Qin, Hong; Liu, Hao; Lu, Yun

    2017-12-01

    Laparoscopic surgery (LS), also referred to as minimally invasive surgery, is a modern surgical technique which is widely applied. The fulcrum effect makes LS a non-intuitive motor skill with a steep learning curve. A hybrid model of tetrahedrons and a multi-layer triangular mesh are constructed to simulate the deformable behavior of the rectum and surrounding tissues in the Position-Based Dynamics (PBD) framework. A heat-conduction based electric-burn technique is employed to simulate the electrocautery procedure. The simulator has been applied for laparoscopic rectum cancer surgery training. From the experimental results, trainees can operate in real time with high degrees of stability and fidelity. A preliminary study was performed to evaluate the realism and usefulness. This prototype simulator has been tested and verified by colorectal surgeons through a pilot study. They believed both the visual and the haptic performance of the simulation are realistic and helpful to enhance laparoscopic skills. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Three axis electronic flight motion simulator real time control system design and implementation.

    Science.gov (United States)

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  2. Three axis electronic flight motion simulator real time control system design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua [School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072 (China); Wang, Xuyong [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  3. Comparisons of the simulation results using different codes for ADS spallation target

    International Nuclear Information System (INIS)

    Yu Hongwei; Fan Sheng; Shen Qingbiao; Zhao Zhixiang; Wan Junsheng

    2002-01-01

    The calculations to the standard thick target were made by using different codes. The simulation of the thick Pb target with length of 60 cm, diameter of 20 cm bombarded with 800, 1000, 1500 and 2000 MeV energetic proton beam was carried out. The yields and the spectra of emitted neutron were studied. The spallation target was simulated by SNSP, SHIELD, DCM/CEM (Dubna Cascade Model /Cascade Evaporation Mode) and LAHET codes. The Simulation Results were compared with experiments. The comparisons show good agreement between the experiments and the SNSP simulated leakage neutron yield. The SHIELD simulated leakage neutron spectra are in good agreement with the LAHET and the DCM/CEM simulated leakage neutron spectra

  4. Towards Online Visualization and Interactive Monitoring of Real-Time CFD Simulations on Commodity Hardware

    Directory of Open Access Journals (Sweden)

    Nils Koliha

    2015-09-01

    Full Text Available Real-time rendering in the realm of computational fluid dynamics (CFD in particular and scientific high performance computing (HPC in general is a comparably young field of research, as the complexity of most problems with practical relevance is too high for a real-time numerical simulation. However, recent advances in HPC and the development of very efficient numerical techniques allow running first optimized numerical simulations in or near real-time, which in return requires integrated and optimized visualization techniques that do not affect performance. In this contribution, we present concepts, implementation details and several application examples of a minimally-invasive, efficient visualization tool for the interactive monitoring of 2D and 3D turbulent flow simulations on commodity hardware. The numerical simulations are conducted with ELBE, an efficient lattice Boltzmann environment based on NVIDIA CUDA (Compute Unified Device Architecture, which provides optimized numerical kernels for 2D and 3D computational fluid dynamics with fluid-structure interactions and turbulence.

  5. Comparing the accuracy of ABC and time-driven ABC in complex and dynamic environments: a simulation analysis

    OpenAIRE

    S. HOOZÉE; M. VANHOUCKE; W. BRUGGEMAN; -

    2010-01-01

    This paper compares the accuracy of traditional ABC and time-driven ABC in complex and dynamic environments through simulation analysis. First, when unit times in time-driven ABC are known or can be flawlessly estimated, time-driven ABC coincides with the benchmark system and in this case our results show that the overall accuracy of traditional ABC depends on (1) existing capacity utilization, (2) diversity in the actual mix of productive work, and (3) error in the estimated percentage mix. ...

  6. Time domain simulations of preliminary breakdown pulses in natural lightning.

    Science.gov (United States)

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-06-16

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.

  7. Stochastic Simulation and Forecast of Hydrologic Time Series Based on Probabilistic Chaos Expansion

    Science.gov (United States)

    Li, Z.; Ghaith, M.

    2017-12-01

    Hydrological processes are characterized by many complex features, such as nonlinearity, dynamics and uncertainty. How to quantify and address such complexities and uncertainties has been a challenging task for water engineers and managers for decades. To support robust uncertainty analysis, an innovative approach for the stochastic simulation and forecast of hydrologic time series is developed is this study. Probabilistic Chaos Expansions (PCEs) are established through probabilistic collocation to tackle uncertainties associated with the parameters of traditional hydrological models. The uncertainties are quantified in model outputs as Hermite polynomials with regard to standard normal random variables. Sequentially, multivariate analysis techniques are used to analyze the complex nonlinear relationships between meteorological inputs (e.g., temperature, precipitation, evapotranspiration, etc.) and the coefficients of the Hermite polynomials. With the established relationships between model inputs and PCE coefficients, forecasts of hydrologic time series can be generated and the uncertainties in the future time series can be further tackled. The proposed approach is demonstrated using a case study in China and is compared to a traditional stochastic simulation technique, the Markov-Chain Monte-Carlo (MCMC) method. Results show that the proposed approach can serve as a reliable proxy to complicated hydrological models. It can provide probabilistic forecasting in a more computationally efficient manner, compared to the traditional MCMC method. This work provides technical support for addressing uncertainties associated with hydrological modeling and for enhancing the reliability of hydrological modeling results. Applications of the developed approach can be extended to many other complicated geophysical and environmental modeling systems to support the associated uncertainty quantification and risk analysis.

  8. LOFT Engineering Simulator

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1982-02-01

    The LOFT Engineering Simulator was developed to supply plant equivalent data for evaluating graphic aids and advanced control concepts for nuclear plant operators. The Simulator, a combination of hardware and software, combines some of the features of best estimate (safety analysis) computer codes with reactor operator training simulators. The LOFT Engineering Simulator represents an attempt to develop a simulation with sufficient physical detail (solution of the conservation equations) for moderate accident simulation, but which will still run in real time and provide an interface for the operator to interact with the model. As a result of this combination, a real time simulation of the LOFT plant has been developed which yields realistic transient results. These data can be used for evaluating reactor control room aids such as Safety Parameter Displays and Janus Predictive Displays

  9. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator

    Directory of Open Access Journals (Sweden)

    Jan Hahne

    2017-05-01

    Full Text Available Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  10. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.

    Science.gov (United States)

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  11. Time-dependent simulations of disk-embedded planetary atmospheres

    Science.gov (United States)

    Stökl, A.; Dorfi, E. A.

    2014-03-01

    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  12. An implementation of the maximum-caliber principle by replica-averaged time-resolved restrained simulations.

    Science.gov (United States)

    Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo

    2018-05-14

    Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.

  13. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.

    Science.gov (United States)

    Alaraj, Ali; Luciano, Cristian J; Bailey, Daniel P; Elsenousi, Abdussalam; Roitberg, Ben Z; Bernardo, Antonio; Banerjee, P Pat; Charbel, Fady T

    2015-03-01

    With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the ImmersiveTouch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomographic angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from 3 residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Residents thought that the simulation would be useful in preparing for real-life surgery. About two-thirds of the residents thought that the 3-dimensional immersive anatomic details provided a close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They thought the simulation was useful for preoperative surgical rehearsal and neurosurgical training. A third of the residents thought that the technology in its current form provided realistic haptic feedback for aneurysm surgery. Neurosurgical residents thought that the novel immersive VR simulator is helpful in their training, especially because they do not get a chance to perform aneurysm clippings until late in their residency programs.

  14. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  15. Evaluating time-lapse ERT for monitoring DNAPL remediation via numerical simulation

    Science.gov (United States)

    Power, C.; Karaoulis, M.; Gerhard, J.; Tsourlos, P.; Giannopoulos, A.

    2012-12-01

    Dense non-aqueous phase liquids (DNAPLs) remain a challenging geoenvironmental problem in the near subsurface. Numerous thermal, chemical, and biological treatment methods are being applied at sites but without a non-destructive, rapid technique to map the evolution of DNAPL mass in space and time, the degree of remedial success is difficult to quantify. Electrical resistivity tomography (ERT) has long been presented as highly promising in this context but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites where the initial condition (DNAPL mass, DNAPL distribution, subsurface heterogeneity) is typically unknown. Recently, a new numerical model was presented that couples DNAPL and ERT simulation at the field scale, providing a tool for optimizing ERT application and interpretation at DNAPL sites (Power et al., 2011, Fall AGU, H31D-1191). The objective of this study is to employ this tool to evaluate the effectiveness of time-lapse ERT to monitor DNAPL source zone remediation, taking advantage of new inversion methodologies that exploit the differences in the target over time. Several three-dimensional releases of chlorinated solvent DNAPLs into heterogeneous clayey sand at the field scale were generated, varying in the depth and complexity of the source zone (target). Over time, dissolution of the DNAPL in groundwater was simulated with simultaneous mapping via periodic ERT surveys. Both surface and borehole ERT surveys were conducted for comparison purposes. The latest four-dimensional ERT inversion algorithms were employed to generate time-lapse isosurfaces of the DNAPL source zone for all cases. This methodology provided a qualitative assessment of the ability of ERT to track DNAPL mass removal for complex source zones in realistically heterogeneous environments. In addition, it provided a quantitative comparison between the actual DNAPL mass removed and that interpreted by ERT as a function of depth below

  16. Analysis of lightning fault detection, location and protection on short and long transmission lines using Real Time Digital Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Andre Luiz Pereira de [Siemens Ltda., Sao Paulo, SP (Brazil)], E-mail: andreluiz.oliveira@siemens.com

    2007-07-01

    The purpose of this paper is to present an analysis of lightning fault detection, location and protection using numeric distance relays applied in high voltage transmission lines, more specifically in the 500 kV transmission lines of CEMIG (Brazilian Energy Utility) between the Vespasiano 2 - Neves 1 (short line - 23.9 km) and Vespasiano 2 - Mesquita (long line - 148.6 km) substations. The analysis was based on the simulations results of numeric distance protective relays on power transmission lines, realized in September 02 to 06, 2002, at Siemens AG's facilities (Erlangen - Germany), using Real Time Digital Simulator (RTDS{sup TM}). Several lightning faults simulations were accomplished, in several conditions of the electrical power system where the protective relays would be installed. The results are presented not only with the times of lightning faults elimination, but also all the functionality of a protection system, including the correct detection, location and other advantages that these modern protection devices make possible to the power system. (author)

  17. Parallel algorithms for simulating continuous time Markov chains

    Science.gov (United States)

    Nicol, David M.; Heidelberger, Philip

    1992-01-01

    We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.

  18. Time domain simulation of the response of geometrically nonlinear panels subjected to random loading

    Science.gov (United States)

    Moyer, E. Thomas, Jr.

    1988-01-01

    The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.

  19. Comparison of multiple-criteria decision-making methods - results of simulation study

    Directory of Open Access Journals (Sweden)

    Michał Adamczak

    2016-12-01

    Full Text Available Background: Today, both researchers and practitioners have many methods for supporting the decision-making process. Due to the conditions in which supply chains function, the most interesting are multi-criteria methods. The use of sophisticated methods for supporting decisions requires the parameterization and execution of calculations that are often complex. So is it efficient to use sophisticated methods? Methods: The authors of the publication compared two popular multi-criteria decision-making methods: the  Weighted Sum Model (WSM and the Analytic Hierarchy Process (AHP. A simulation study reflects these two decision-making methods. Input data for this study was a set of criteria weights and the value of each in terms of each criterion. Results: The iGrafx Process for Six Sigma simulation software recreated how both multiple-criteria decision-making methods (WSM and AHP function. The result of the simulation was a numerical value defining the preference of each of the alternatives according to the WSM and AHP methods. The alternative producing a result of higher numerical value  was considered preferred, according to the selected method. In the analysis of the results, the relationship between the values of the parameters and the difference in the results presented by both methods was investigated. Statistical methods, including hypothesis testing, were used for this purpose. Conclusions: The simulation study findings prove that the results obtained with the use of two multiple-criteria decision-making methods are very similar. Differences occurred more frequently in lower-value parameters from the "value of each alternative" group and higher-value parameters from the "weight of criteria" group.

  20. Integrated visualization of simulation results and experimental devices in virtual-reality space

    International Nuclear Information System (INIS)

    Ohtani, Hiroaki; Ishiguro, Seiji; Shohji, Mamoru; Kageyama, Akira; Tamura, Yuichi

    2011-01-01

    We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research. (author)

  1. A prototype percutaneous transhepatic cholangiography training simulator with real-time breathing motion.

    Science.gov (United States)

    Villard, P F; Vidal, F P; Hunt, C; Bello, F; John, N W; Johnson, S; Gould, D A

    2009-11-01

    We present here a simulator for interventional radiology focusing on percutaneous transhepatic cholangiography (PTC). This procedure consists of inserting a needle into the biliary tree using fluoroscopy for guidance. The requirements of the simulator have been driven by a task analysis. The three main components have been identified: the respiration, the real-time X-ray display (fluoroscopy) and the haptic rendering (sense of touch). The framework for modelling the respiratory motion is based on kinematics laws and on the Chainmail algorithm. The fluoroscopic simulation is performed on the graphic card and makes use of the Beer-Lambert law to compute the X-ray attenuation. Finally, the haptic rendering is integrated to the virtual environment and takes into account the soft-tissue reaction force feedback and maintenance of the initial direction of the needle during the insertion. Five training scenarios have been created using patient-specific data. Each of these provides the user with variable breathing behaviour, fluoroscopic display tuneable to any device parameters and needle force feedback. A detailed task analysis has been used to design and build the PTC simulator described in this paper. The simulator includes real-time respiratory motion with two independent parameters (rib kinematics and diaphragm action), on-line fluoroscopy implemented on the Graphics Processing Unit and haptic feedback to feel the soft-tissue behaviour of the organs during the needle insertion.

  2. Simulation of acoustic streaming by means of the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2012-01-01

    Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...

  3. Theory and simulation of time-fractional fluid diffusion in porous media

    International Nuclear Information System (INIS)

    Carcione, José M; Sanchez-Sesma, Francisco J; Gavilán, Juan J Perez; Luzón, Francisco

    2013-01-01

    We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald–Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’. (paper)

  4. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  5. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    International Nuclear Information System (INIS)

    Humbert, P.; Authier, N.; Richard, B.; Grivot, P.; Casoli, P.

    2012-01-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present the point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)

  6. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, P. [Commissariat a l' Energie Atomique CEA, Centre de Bruyeres-le-Chatel, 91297 Arpajon (France); Authier, N.; Richard, B.; Grivot, P.; Casoli, P. [Commissariat a l' Energie Atomique CEA, Centre de Valduc, 21120 Is-sur-Tille (France)

    2012-07-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present the point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)

  7. Preliminary results of sequential monitoring of simulated clandestine graves in Colombia, South America, using ground penetrating radar and botany.

    Science.gov (United States)

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Hernández, Orlando

    2015-03-01

    In most Latin American countries there are significant numbers of missing people and forced disappearances, 68,000 alone currently in Colombia. Successful detection of shallow buried human remains by forensic search teams is difficult in varying terrain and climates. This research has created three simulated clandestine burial styles at two different depths commonly encountered in Latin America to gain knowledge of optimum forensic geophysics detection techniques. Repeated monitoring of the graves post-burial was undertaken by ground penetrating radar. Radar survey 2D profile results show reasonable detection of ½ clothed pig cadavers up to 19 weeks of burial, with decreasing confidence after this time. Simulated burials using skeletonized human remains were not able to be imaged after 19 weeks of burial, with beheaded and burnt human remains not being able to be detected throughout the survey period. Horizontal radar time slices showed good early results up to 19 weeks of burial as more area was covered and bi-directional surveys were collected, but these decreased in amplitude over time. Deeper burials were all harder to image than shallower ones. Analysis of excavated soil found soil moisture content almost double compared to those reported from temperate climate studies. Vegetation variations over the simulated graves were also noted which would provide promising indicators for grave detection. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Time domain simulation of Gd3+-Gd3+ distance measurements by EPR

    Science.gov (United States)

    Manukovsky, Nurit; Feintuch, Akiva; Kuprov, Ilya; Goldfarb, Daniella

    2017-07-01

    Gd3+-based spin labels are useful as an alternative to nitroxides for intramolecular distance measurements at high fields in biological systems. However, double electron-electron resonance (DEER) measurements using model Gd3+ complexes featured a low modulation depth and an unexpected broadening of the distance distribution for short Gd3+-Gd3+ distances, when analysed using the software designed for S = 1/2 pairs. It appears that these effects result from the different spectroscopic characteristics of Gd3+—the high spin, the zero field splitting (ZFS), and the flip-flop terms in the dipolar Hamiltonian that are often ignored for spin-1/2 systems. An understanding of the factors affecting the modulation frequency and amplitude is essential for the correct analysis of Gd3+-Gd3+ DEER data and for the educated choice of experimental settings, such as Gd3+ spin label type and the pulse parameters. This work uses time-domain simulations of Gd3+-Gd3+ DEER by explicit density matrix propagation to elucidate the factors shaping Gd3+ DEER traces. The simulations show that mixing between the |+½, -½> and |-½, +½> states of the two spins, caused by the flip-flop term in the dipolar Hamiltonian, leads to dampening of the dipolar modulation. This effect may be mitigated by a large ZFS or by pulse frequency settings allowing for a decreased contribution of the central transition and the one adjacent to it. The simulations reproduce both the experimental line shapes of the Fourier-transforms of the DEER time domain traces and the trends in the behaviour of the modulation depth, thus enabling a more systematic design and analysis of Gd3+ DEER experiments.

  9. Co-simulation for real time safety verification of nuclear power plants

    International Nuclear Information System (INIS)

    Boafo, E.K.; Zhang, L.; Nasimi, E.; Gabbar, H.A.

    2015-01-01

    Small and major accidents and near misses are still occurring in nuclear power plants (NPPs). Risk level has increased with the degradation of NPP equipment and instrumentations. In order to achieve NPP safety, it is important to continuously evaluate risk for all potential hazard and fault propagation scenarios and map protection layers to fault / failure / hazard propagation scenarios to be able to evaluate and verify safety level during NPP operation. There are major limitations in current real time safety verification tools, as it is mainly offline and with no integration to NPP simulation tools. The main goal of this research is to develop real time safety verification with co-simulation tool to be integrated with plant operation support systems. This includes the development of static and dynamic fault semantic network (FSN) to model all possible fault propagation scenarios and the interrelationships among associated process variables. Safety and protection layers along with their reliability are mapped to FSN so that safety levels can be verified during plant operation. Errors between multiphysics models and real time data are modeled to accurately and dynamically tune FSN for each fault propagation scenario. The detailed methodology will show how to integrate process models, construction of static FSN with fault propagation scenarios, and evaluation and tuning of dynamic FSN with probabilistic and process variable interaction values. Principle Component Analysis method is used reduce dimensionality and reduce process variables associated with each fault scenario. Then map independent protection layers (IPL) to FSN with estimated reliability measures of each protection layer to accurately verify safety for different operational scenarios. Intelligent algorithms is used with multivariate techniques to accurate define the interrelation among process variables, in terms of signal strength and time delay, using Genetic Programming (GP), which will provide basis

  10. Real-Time Simulation of Aeroheating of the Hyper-X Airplane

    Science.gov (United States)

    Gong, Les

    2005-01-01

    A capability for real-time computational simulation of aeroheating has been developed in support of the Hyper-X program, which is directed toward demonstrating the feasibility of operating an air-breathing ramjet/scramjet engine at mach 5, mach 7, and mach 10. The simulation software will serve as a valuable design tool for initial trajectory studies in which aerodynamic heating is expected to exert a major influence in the design of the Hyper-X airplane; this tool will aid in the selection of materials, sizing of structural skin thicknesses, and selection of components of a thermal-protection system (TPS) for structures that must be insulated against aeroheating.

  11. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Science.gov (United States)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  12. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2018-03-01

    Full Text Available A Low-level radio-frequency (LLRF control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  13. Atomistic simulations of materials: Methods for accurate potentials and realistic time scales

    Science.gov (United States)

    Tiwary, Pratyush

    This thesis deals with achieving more realistic atomistic simulations of materials, by developing accurate and robust force-fields, and algorithms for practical time scales. I develop a formalism for generating interatomic potentials for simulating atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. This is done by fitting against an extensive database of ab initio results, as well as to experimental measurements for mixed oxide nuclear fuels. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies. A hybrid stochastic and deterministic algorithm is proposed that while maintaining fully atomistic resolution, allows one to achieve milliseconds and longer time scales for several thousands of atoms. The method exploits the rare event nature of the dynamics like other such methods, but goes beyond them by (i) not having to pick a scheme for biasing the energy landscape, (ii) providing control on the accuracy of the boosted time scale, (iii) not assuming any harmonic transition state theory (HTST), and (iv) not having to identify collective coordinates or interesting degrees of freedom. The method is validated by calculating diffusion constants for vacancy-mediated diffusion in iron metal at low temperatures, and comparing against brute-force high temperature molecular dynamics. We also calculate diffusion constants for vacancy diffusion in tantalum metal, where we compare against low-temperature HTST as well

  14. Decentralized real-time simulation of forest machines

    Science.gov (United States)

    Freund, Eckhard; Adam, Frank; Hoffmann, Katharina; Rossmann, Juergen; Kraemer, Michael; Schluse, Michael

    2000-10-01

    To develop realistic forest machine simulators is a demanding task. A useful simulator has to provide a close- to-reality simulation of the forest environment as well as the simulation of the physics of the vehicle. Customers demand a highly realistic three dimensional forestry landscape and the realistic simulation of the complex motion of the vehicle even in rough terrain in order to be able to use the simulator for operator training under close-to- reality conditions. The realistic simulation of the vehicle, especially with the driver's seat mounted on a motion platform, greatly improves the effect of immersion into the virtual reality of a simulated forest and the achievable level of education of the driver. Thus, the connection of the real control devices of forest machines to the simulation system has to be supported, i.e. the real control devices like the joysticks or the board computer system to control the crane, the aggregate etc. Beyond, the fusion of the board computer system and the simulation system is realized by means of sensors, i.e. digital and analog signals. The decentralized system structure allows several virtual reality systems to evaluate and visualize the information of the control devices and the sensors. So, while the driver is practicing, the instructor can immerse into the same virtual forest to monitor the session from his own viewpoint. In this paper, we are describing the realized structure as well as the necessary software and hardware components and application experiences.

  15. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  16. POD for Real-Time Simulation of Hyperelastic Soft Biological Tissue Using the Point Collocation Method of Finite Spheres

    Directory of Open Access Journals (Sweden)

    Suleiman Banihani

    2013-01-01

    Full Text Available The point collocation method of finite spheres (PCMFS is used to model the hyperelastic response of soft biological tissue in real time within the framework of virtual surgery simulation. The proper orthogonal decomposition (POD model order reduction (MOR technique was used to achieve reduced-order model of the problem, minimizing computational cost. The PCMFS is a physics-based meshfree numerical technique for real-time simulation of surgical procedures where the approximation functions are applied directly on the strong form of the boundary value problem without the need for integration, increasing computational efficiency. Since computational speed has a significant role in simulation of surgical procedures, the proposed technique was able to model realistic nonlinear behavior of organs in real time. Numerical results are shown to demonstrate the effectiveness of the new methodology through a comparison between full and reduced analyses for several nonlinear problems. It is shown that the proposed technique was able to achieve good agreement with the full model; moreover, the computational and data storage costs were significantly reduced.

  17. The Dynamic Optimization of the Departure Times of Metro Users during Rush Hour in an Agent-Based Simulation: A Case Study in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Yuliang Xi

    2017-10-01

    Full Text Available As serious traffic problems have increased throughout the world, various types of studies, especially traffic simulations, have been conducted to investigate this issue. Activity-based traffic simulation models, such as MATSim (Multi-Agent Transport Simulation, are intended to identify optimal combinations of activities in time and space. It is also necessary to examine commuting-based traffic simulations. Such simulations focus on optimizing travel times by adjusting departure times, travel modes or travel routes to present travel suggestions to the public. This paper examines the optimal departure times of metro users during rush hour using a newly developed simulation tool. A strategy for identifying relatively optimal departure times is identified. This study examines 103,637 person agents (passengers in Shenzhen, China, and reports their average departure time, travel time and travel utility, as well as the numbers of person agents who are late and miss metro trips in every iteration. The results demonstrate that as the number of iterations increases, the average travel time of these person agents decreases by approximately 4 min. Moreover, the latest average departure time with no risk of being late when going to work is approximately 8:04, and the earliest average departure time with no risk of missing metro trips when getting off work is approximately 17:50.

  18. Adaptive multi-rate interface: development and experimental verification for real-time hybrid simulation

    DEFF Research Database (Denmark)

    Maghareh, Amin; Waldbjørn, Jacob Paamand; Dyke, Shirley J.

    2016-01-01

    Real-time hybrid simulation (RTHS) is a powerful cyber-physical technique that is a relatively cost-effective method to perform global/local system evaluation of structural systems. A major factor that determines the ability of an RTHS to represent true system-level behavior is the fidelity...... of the numerical substructure. While the use of higher-order models increases fidelity of the simulation, it also increases the demand for computational resources. Because RTHS is executed at real-time, in a conventional RTHS configuration, this increase in computational resources may limit the achievable sampling...

  19. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study

    Science.gov (United States)

    Wolfs, Cecile J. A.; Brás, Mariana G.; Schyns, Lotte E. J. R.; Nijsten, Sebastiaan M. J. J. G.; van Elmpt, Wouter; Scheib, Stefan G.; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-08-01

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95%) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95%, which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  20. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study.

    Science.gov (United States)

    Wolfs, Cecile J A; Brás, Mariana G; Schyns, Lotte E J R; Nijsten, Sebastiaan M J J G; van Elmpt, Wouter; Scheib, Stefan G; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-07-12

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95% ) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95% , which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  1. Time-dependent simulations of a Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Stotler, D.P.; Bateman, G.

    1988-05-01

    Detailed simulations of the Compact Ignition Tokamak are carried out using a 1-1/2-D transport code. The calculations include time-varying densities, fields, and plasma shape. It is shown that ignition can be achieved in this device if somewhat better than L-mode energy confinement time scaling is possible. We also conclude that the performance of such a compact, short-pulse device can depend greatly on how the plasma is evolved to its flat-top parameters. Furthermore, in cases such as the ones discussed here, where there is not a great deal of ignition margin and the electron density is held constant, ignition ends if the helium ash is not removed. In general, control of the deuterium--tritium density is equivalent to burn control. 48 refs., 15 figs

  2. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    Science.gov (United States)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  3. Coupled-Flow Simulation of HP-LP Turbines Has Resulted in Significant Fuel Savings

    Science.gov (United States)

    Veres, Joseph P.

    2001-01-01

    Our objective was to create a high-fidelity Navier-Stokes computer simulation of the flow through the turbines of a modern high-bypass-ratio turbofan engine. The simulation would have to capture the aerodynamic interactions between closely coupled high- and low-pressure turbines. A computer simulation of the flow in the GE90 turbofan engine's high-pressure (HP) and low-pressure (LP) turbines was created at GE Aircraft Engines under contract with the NASA Glenn Research Center. The three-dimensional steady-state computer simulation was performed using Glenn's average-passage approach named APNASA. The areas upstream and downstream of each blade row mutually interact with each other during engine operation. The embedded blade row operating conditions are modeled since the average passage equations in APNASA actively include the effects of the adjacent blade rows. The turbine airfoils, platforms, and casing are actively cooled by compressor bleed air. Hot gas leaks around the tips of rotors through labyrinth seals. The flow exiting the high work HP turbines is partially transonic and, therefore, has a strong shock system in the transition region. The simulation was done using 121 processors of a Silicon Graphics Origin 2000 (NAS 02K) cluster at the NASA Ames Research Center, with a parallel efficiency of 87 percent in 15 hr. The typical average-passage analysis mesh size per blade row was 280 by 45 by 55, or approx.700,000 grid points. The total number of blade rows was 18 for a combined HP and LP turbine system including the struts in the transition duct and exit guide vane, which contain 12.6 million grid points. Design cycle turnaround time requirements ran typically from 24 to 48 hr of wall clock time. The number of iterations for convergence was 10,000 at 8.03x10(exp -5) sec/iteration/grid point (NAS O2K). Parallel processing by up to 40 processors is required to meet the design cycle time constraints. This is the first-ever flow simulation of an HP and LP

  4. Critical dynamics of the Potts model: short-time Monte Carlo simulations

    International Nuclear Information System (INIS)

    Silva, Roberto da; Drugowich de Felicio, J.R.

    2004-01-01

    We calculate the new dynamic exponent θ of the 4-state Potts model, using short-time simulations. Our estimates θ1=-0.0471(33) and θ2=-0.0429(11) obtained by following the behavior of the magnetization or measuring the evolution of the time correlation function of the magnetization corroborate the conjecture by Okano et al. [Nucl. Phys. B 485 (1997) 727]. In addition, these values agree with previous estimate of the same dynamic exponent for the two-dimensional Ising model with three-spin interactions in one direction, that is known to belong to the same universality class as the 4-state Potts model. The anomalous dimension of initial magnetization x0=zθ+β/ν is calculated by an alternative way that mixes two different initial conditions. We have also estimated the values of the static exponents β and ν. They are in complete agreement with the pertinent results of the literature

  5. Simulation Results: Optimization of Contact Ratio for Interdigitated Back-Contact Solar Cells

    Directory of Open Access Journals (Sweden)

    Vinay Budhraja

    2017-01-01

    Full Text Available In the fabrication of interdigitated back contact (IBC solar cells, it is very important to choose the right size of contact to achieve the maximum efficiency. Line contacts and point contacts are the two possibilities, which are being chosen for IBC structure. It is expected that the point contacts would give better results because of the reduced recombination rate. In this work, we are simulating the effect of contact size on the performance of IBC solar cells. Simulations were done in three dimension using Quokka, which numerically solves the charge carrier transport. Our simulation results show that around 10% of contact ratio is able to achieve optimum cell efficiency.

  6. Real-time simulation of the Space Station mobile service center

    Science.gov (United States)

    Thomas, Segun

    1988-01-01

    A method for building a generic N-joint simulation program is presented. It is shown that the multibody program can be operated in real time using a careful connection-array numbering scheme and a preprocessor. An example of a rigid manipulator on the Shuttle Orbiter was used to demonstrate the implementation technique.

  7. Caffeine Reduces Reaction Time and Improves Performance in Simulated-Contest of Taekwondo

    Science.gov (United States)

    Santos, Victor G. F.; Santos, Vander R. F.; Felippe, Leandro J. C.; Almeida, Jose W.; Bertuzzi, Rômulo; Kiss, Maria A. P. D. M.; Lima-Silva, Adriano E.

    2014-01-01

    The aim of this study was to investigate the effects of caffeine on reaction time during a specific taekwondo task and athletic performance during a simulated taekwondo contest. Ten taekwondo athletes ingested either 5 mg·kg−1 body mass caffeine or placebo and performed two combats (spaced apart by 20 min). The reaction-time test (five kicks “Bandal Tchagui”) was performed immediately prior to the first combat and immediately after the first and second combats. Caffeine improved reaction time (from 0.42 ± 0.05 to 0.37 ± 0.07 s) only prior to the first combat (P = 0.004). During the first combat, break times during the first two rounds were shorter in caffeine ingestion, followed by higher plasma lactate concentrations compared with placebo (P = 0.029 and 0.014, respectively). During the second combat, skipping-time was reduced, and relative attack times and attack/skipping ratio was increased following ingestion of caffeine during the first two rounds (all P Caffeine resulted in no change in combat intensity parameters between the first and second combat (all P > 0.05), but combat intensity was decreased following placebo (all P caffeine reduced reaction time in non-fatigued conditions and delayed fatigue during successive taekwondo combats. PMID:24518826

  8. Utilisation of simulation in industrial design and resulting business opportunities (SISU) - MASIT18

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M.; Leppaevuori, J.; Manninen, J. (VTT Technical Research Centre of Finland, Espoo (Finland)); Valli, A.; Hasari, H.; Koistinen, A.; Leppaenen, S. (Helsinki Polytechnic Stadia, City of Helsinki, Helsinki (Finland)); Lahti, S. (EVTEK University of Applied Sciences, Vantaa (Finland))

    2008-07-01

    In the SISU project, over 10 case studies are carried out in many different fields and applications. Results and experience of developing simulation applications have started to accumulate. One of the most important results this far is that there are many common features, both good and bad, between our test cases. Simulation is a fast, reliable, and often low risk method of studying different systems and processes. On the other hand, many applications need very expensive licences, plenty of parametric data and highly specialised knowledge in order to produce really valuable results. Industrial partners are acting like real customers in the case studies. We hope that this methodology will help us to answer our main question: how do we create a value chain from model development via model application for end users? The best thing to happen will be if partners learn to apply simulation productively. Other scientists and companies will follow, and new value chains will mushroom. In the case study of Mamec and EVTEK - Mixing model - the aim is to develop a fluid mechanical model for a mixing chamber. This study is similar to the preceding case of Watrec. In this study, the main problems have been in material properties area, because of non-Newtonian fluids and multiphase flows. Material property parameters of the non-Newtonian power law have been defined and flow field simulations have started. In the case study of Fortum and EVTEK - MDR - Measurement data reconciliation - the aim is to apply MDR in a power plant environment and study the possibility of developing a commercial additional tool for power plant simulation through the well-proven MDR technique based on linear filtering theory. The MDR method has been applied, for example, to energy and chemical processes. MDR is closely connected with system maintenance, simulation pre-processing and process diagnostics. Experimental work has proceeded from simple unit processes to large and complicated process systems. One

  9. Measurement of time delay for a prospectively gated CT simulator.

    Science.gov (United States)

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  10. Real-Time and Real-Fast Performance of General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation of Complex Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Carlos Garre

    2014-01-01

    Full Text Available Physical simulation is a valuable tool in many fields of engineering for the tasks of design, prototyping, and testing. General-purpose operating systems (GPOS are designed for real-fast tasks, such as offline simulation of complex physical models that should finish as soon as possible. Interfacing hardware at a given rate (as in a hardware-in-the-loop test requires instead maximizing time determinism, for which real-time operating systems (RTOS are designed. In this paper, real-fast and real-time performance of RTOS and GPOS are compared when simulating models of high complexity with large time steps. This type of applications is usually present in the automotive industry and requires a good trade-off between real-fast and real-time performance. The performance of an RTOS and a GPOS is compared by running a tire model scalable on the number of degrees-of-freedom and parallel threads. The benchmark shows that the GPOS present better performance in real-fast runs but worse in real-time due to nonexplicit task switches and to the latency associated with interprocess communication (IPC and task switch.

  11. Development of Fast-Time Stochastic Airport Ground and Runway Simulation Model and Its Traffic Analysis

    Directory of Open Access Journals (Sweden)

    Ryota Mori

    2015-01-01

    Full Text Available Airport congestion, in particular congestion of departure aircraft, has already been discussed by other researches. Most solutions, though, fail to account for uncertainties. Since it is difficult to remove uncertainties of the operations in the real world, a strategy should be developed assuming such uncertainties exist. Therefore, this research develops a fast-time stochastic simulation model used to validate various methods in order to decrease airport congestion level under existing uncertainties. The surface movement data is analyzed first, and the uncertainty level is obtained. Next, based on the result of data analysis, the stochastic simulation model is developed. The model is validated statistically and the characteristics of airport operation under existing uncertainties are investigated.

  12. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.

    Science.gov (United States)

    Vestergaard, Christian L; Génois, Mathieu

    2015-10-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.

  13. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2018-06-01

    Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment. The THS experiment, developed at NASA Ames’ COSmIC facility is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma.Gas phase: The residence time of the jet-accelerated gas in the active plasma region is less than 4 µs, which results in a truncated chemistry enabling us to control how far in the chain of reactions the chemistry is processing. By adding heavier molecules in the initial gas mixture, it is then possible to study the first and intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways, as demonstrated by mass spectrometry and comparison to Cassini CAPS data [1]. A new model was recently developed to simulate the plasma chemistry in the THS. Calculated mass spectra produced by this model are in good agreement with the experimental THS mass spectra, confirming that the short residence time in the plasma cavity limits the growth of larger species [2].Solid phase: Scanning electron microscopy and infrared spectroscopy have been used to investigate the effect of the initial gas mixture on the morphology of the THS Titan aerosol analogs as well as on the level and nature of the nitrogen incorporation into these aerosols. A comparison to Cassini VIMS observational data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols [3]. In addition, a new optical constant facility has been developed at NASA Ames that allows us to determine the complex refractive indices of THS Titan aerosol analogs from NIR to FIR (0.76-222 cm-1). The facility and preliminary results

  14. Simulation results of the electron-proton telescope for Solar Orbiter

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Sebastian; Steinhagen, Jan; Kulkarni, Shrinivasrao; Grunau, Jan; Paspirgilis, Rolf; Martin, Cesar; Boettcher, Stephan; Seimetz, Lars; Schuster, Bjoern; Kulemzin, Alexander; Wimmer-Schweingruber, Robert F. [Christian-Albrechts-Universitaet Kiel (Germany)

    2013-07-01

    The Electron Proton Telescope (EPT) is one of five instruments in the Energetic Particle Detector suite for Solar Orbiter. It investigates low energy electrons and protons of solar events. EPT covers an energy range from 20400 keV for electrons and 20 keV-7 MeV for protons and distinguishes electrons from protons using a magnet/foil technique with silicon detectors. There will be two EPT units, each with double-barreled telescopes, one looking sunwards/antisunwards and the other north/south. EPT is designed using the GEometry ANd Tracking (GEANT) simulation toolkit developed by CERN for Monte Carlo calculations. Here we present the details of our simulations and the simulation results with respect to energy coverage and the geometrical factor of the EPT instrument. We also look at the far-field of the EPT magnets, which is important for electromagnetic cleanliness considerations.

  15. On time discretizations for the simulation of the batch settling-compression process in one dimension.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Mejías, Camilo

    2016-01-01

    The main purpose of the recently introduced Bürger-Diehl simulation model for secondary settling tanks was to resolve spatial discretization problems when both hindered settling and the phenomena of compression and dispersion are included. Straightforward time integration unfortunately means long computational times. The next step in the development is to introduce and investigate time-integration methods for more efficient simulations, but where other aspects such as implementation complexity and robustness are equally considered. This is done for batch settling simulations. The key findings are partly a new time-discretization method and partly its comparison with other specially tailored and standard methods. Several advantages and disadvantages for each method are given. One conclusion is that the new linearly implicit method is easier to implement than another one (semi-implicit method), but less efficient based on two types of batch sedimentation tests.

  16. Simulation and Analysis of Autonomous Time Synchronization Based on Asynchronism Two-way Inter-satellite Link

    Science.gov (United States)

    Fang, L.; Yang, X. H.; Sun, B. Q.; Qin, W. J.; Kong, Y.

    2013-09-01

    The measurement of the inter-satellite link is one of the key techniques in the autonomous operation of satellite navigation system. Based on the asynchronism inter-satellite two-way measurement mode in GPS constellation, the reduction formula of the inter-satellite time synchronization is built in this paper. Moreover, the corrective method of main systematic errors is proposed. Inter-satellite two-way time synchronization is simulated on the basis of IGS (International GNSS Service) precise ephemeris. The impacts of the epoch domestication of asynchronism inter-satellite link pseudo-range, the initial orbit, and the main systematic errors on satellite time synchronization are analyzed. Furthermore, the broadcast clock error of each satellite is calculated by the ``centralized'' inter-satellite autonomous time synchronization. Simulation results show that the epoch domestication of asynchronism inter-satellite link pseudo-range and the initial orbit have little impact on the satellite clock errors, and thus they needn't be taken into account. The errors caused by the relativistic effect and the asymmetry of path travel have large impact on the satellite clock errors. These should be corrected with theoretical formula. Compared with the IGS precise clock error, the root mean square of the broadcast clock error of each satellite is about 0.4 ns.

  17. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  18. A Preliminary Study on Time Projection Chamber Simulation for Fission Cross Section Measurements with Geant4

    International Nuclear Information System (INIS)

    Kim, Jong Woon; Lee, Youngouk; Kim, Jae Cheon

    2014-01-01

    We present the details of the TPC simulation with Geant4 and show the results. TPC can provide more information than a fission chamber in that it is possible to distinguish different particle types. Simulations are conducted for uranium and plutonium targets with 20MeV neutrons. The simulation results are compared with the reference and show reasonable results. This is the first phase of study for realizing a TPC in the NFS at RAON, and we have more work to do, such as applying an electric field, signal processing in the simulation, and manufacturing of a TPC. The standard in fission cross section measurement is a fission chamber. It is basically just two parallel plates separated by a few centimeters of gas. A power supply connected to the plates sets up a moderate electric field. The target is deposited onto one of the plates. When fission occurs, the fragments ionize the gas, and the electric field causes the produced electrons to drift to the opposite plate, which records the total energy deposited in the chamber. A Time Projection Chamber (TPC) is a gas ionization detector similar to a fission chamber. However, it can measure the charged particle trajectories in the active volume in three dimensions by adding several readouts on the pad plane (fission chamber has only one readout one a pad plane). The specific ionization for each particle track enables the TPC to distinguish different particle types. A TPC will be used for fission cross section measurements in the Neutron Science Facility (NSF) at RAON. As a preliminary study, we present details of TPC simulation with Geant4 and discuss the results

  19. Real-Time Animation Using a Mix of Physical Simulation and Kinematics

    NARCIS (Netherlands)

    van Welbergen, H.; Zwiers, Jakob; Ruttkay, Z.M.

    2009-01-01

    Expressive animation (such as gesturing or conducting) is typically generated using procedural animation techniques. These techniques offer precision in both timing and limb placement, but they lack physical realism. On the other hand, physical simulation offers physical realism, but does not

  20. Timing Interactions in Social Simulations: The Voter Model

    Science.gov (United States)

    Fernández-Gracia, Juan; Eguíluz, Víctor M.; Miguel, Maxi San

    The recent availability of huge high resolution datasets on human activities has revealed the heavy-tailed nature of the interevent time distributions. In social simulations of interacting agents the standard approach has been to use Poisson processes to update the state of the agents, which gives rise to very homogeneous activity patterns with a well defined characteristic interevent time. As a paradigmatic opinion model we investigate the voter model and review the standard update rules and propose two new update rules which are able to account for heterogeneous activity patterns. For the new update rules each node gets updated with a probability that depends on the time since the last event of the node, where an event can be an update attempt (exogenous update) or a change of state (endogenous update). We find that both update rules can give rise to power law interevent time distributions, although the endogenous one more robustly. Apart from that for the exogenous update rule and the standard update rules the voter model does not reach consensus in the infinite size limit, while for the endogenous update there exist a coarsening process that drives the system toward consensus configurations.

  1. On the choice of the demand and hydraulic modeling approach to WDN real-time simulation

    Science.gov (United States)

    Creaco, Enrico; Pezzinga, Giuseppe; Savic, Dragan

    2017-07-01

    This paper aims to analyze two demand modeling approaches, i.e., top-down deterministic (TDA) and bottom-up stochastic (BUA), with particular reference to their impact on the hydraulic modeling of water distribution networks (WDNs). In the applications, the hydraulic modeling is carried out through the extended period simulation (EPS) and unsteady flow modeling (UFM). Taking as benchmark the modeling conditions that are closest to the WDN's real operation (UFM + BUA), the analysis showed that the traditional use of EPS + TDA produces large pressure head and water discharge errors, which can be attenuated only when large temporal steps (up to 1 h in the case study) are used inside EPS. The use of EPS + BUA always yields better results. Indeed, EPS + BUA already gives a good approximation of the WDN's real operation when intermediate temporal steps (larger than 2 min in the case study) are used for the simulation. The trade-off between consistency of results and computational burden makes EPS + BUA the most suitable tool for real-time WDN simulation, while benefitting from data acquired through smart meters for the parameterization of demand generation models.

  2. Simulated building energy demand biases resulting from the use of representative weather stations

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; Xie, Yulong; Kraucunas, Ian

    2018-01-01

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. We quantify the potential reduction in bias from using an increasing number of weather stations over the western U.S. The approach is based on deriving temperature and load time series using incrementally more weather stations, ranging from 8 to roughly 150, to capture weather across different seasons. Using 8 stations, one from each climate zone, across the western U.S. results in an average absolute summertime temperature bias of 7.2°F with respect to a spatially-resolved gridded dataset. The mean absolute bias drops to 2.8°F using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.8%, a significant error for capacity expansion planners who may use these types of simulations. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20-40% overestimation of peak building loads during both summer and winter. Using weather stations close to population centers reduces both mean and peak load biases. This approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.

  3. European Working Time Directive and the use of simulators and models in Irish orthopaedics.

    LENUS (Irish Health Repository)

    Egan, C

    2011-09-07

    OBJECTIVE: To report on the perceptions of a group of orthopaedic trainees and trainers on perceived effects of the proposed introduction of European Working Time Directive (EWTD) restrictions into Ireland and on the use of simulators in training orthopaedic skills. METHODS: A structured questionnaire was developed to evaluate the opinions of a group of orthopaedic surgeons and trainees at the annual national orthopaedic conference. RESULTS: There were 44 participants [12 consultants, 32 trainees (15 specialist registrars, 8 registrars, 9 senior house officers)]. Seventy-five percent of participants felt that both the quality of patient care and training would be negatively affected. A higher proportion of consultants than trainees felt that quality of life would be affected. A high proportion of participants (81.8%) had used a simulator or model to learn a surgical skill and 100% would consider using them again. CONCLUSIONS: While we wait for the full introduction of the EWTD hours the perception is that both quality of patient care and training will be affected. Models and simulators are well perceived as a method of training.

  4. Scalable space-time adaptive simulation tools for computational electrocardiology

    OpenAIRE

    Krause, Dorian; Krause, Rolf

    2013-01-01

    This work is concerned with the development of computational tools for the solution of reaction-diffusion equations from the field of computational electrocardiology. We designed lightweight spatially and space-time adaptive schemes for large-scale parallel simulations. We propose two different adaptive schemes based on locally structured meshes, managed either via a conforming coarse tessellation or a forest of shallow trees. A crucial ingredient of our approach is a non-conforming morta...

  5. 3D Simulations of the ``Keyhole'' Hohlraum for Shock Timing on NIF

    Science.gov (United States)

    Robey, H. F.; Marinak, M. M.; Munro, D. H.; Jones, O. S.

    2007-11-01

    Ignition implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of steps, which launch a series of shocks through the ablator and DT fuel. The relative timing of these shocks must be tuned to better than +/- 100ps to maintain the DT fuel on a sufficiently low adiabat. To meet these requirements, pre-ignition tuning experiments using a modified hohlraum geometry are being planned. This modified geometry, known as the ``keyhole'' hohlraum, adds a re-entrant gold cone, which passes through the hohlraum and capsule walls, to provide an optical line-of-sight to directly measure the shocks as they break out of the ablator. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The drive conditions and the resulting effect on shock timing in the keyhole hohlraum will be compared with the corresponding results for the standard ignition hohlraum. [1] M.M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).

  6. Design and implementation of a software tool intended for simulation and test of real time codes

    International Nuclear Information System (INIS)

    Le Louarn, C.

    1986-09-01

    The objective of real time software testing is to show off processing errors and unobserved functional requirements or timing constraints in a code. In the perspective of safety analysis of nuclear equipments of power plants testing should be carried independently from the physical process (which is not generally available), and because casual hardware failures must be considered. We propose here a simulation and test tool, integrally software, with large interactive possibilities for testing assembly code running on microprocessor. The OST (outil d'aide a la simulation et au Test de logiciels temps reel) simulates code execution and hardware or software environment behaviour. Test execution is closely monitored and many useful informations are automatically saved. The present thesis work details, after exposing methods and tools dedicated to real time software, the OST system. We show the internal mechanisms and objects of the system: particularly ''events'' (which describe evolutions of the system under test) and mnemonics (which describe the variables). Then, we detail the interactive means available to the user for constructing the test data and the environment of the tested software. Finally, a prototype implementation is presented along with the results of the tests carried out. This demonstrates the many advantages of the use of an automatic tool over a manual investigation. As a conclusion, further developments, nececessary to complete the final tool are rewieved [fr

  7. Modeling and real time simulation of an HVDC inverter feeding a weak AC system based on commutation failure study.

    Science.gov (United States)

    Mankour, Mohamed; Khiat, Mounir; Ghomri, Leila; Chaker, Abdelkader; Bessalah, Mourad

    2018-06-01

    This paper presents modeling and study of 12-pulse HVDC (High Voltage Direct Current) based on real time simulation where the HVDC inverter is connected to a weak AC system. In goal to study the dynamic performance of the HVDC link, two serious kind of disturbance are applied at HVDC converters where the first one is the single phase to ground AC fault and the second one is the DC link to ground fault. The study is based on two different mode of analysis, which the first is to test the performance of the DC control and the second is focalized to study the effect of the protection function on the system behavior. This real time simulation considers the strength of the AC system to witch is connected and his relativity with the capacity of the DC link. The results obtained are validated by means of RT-lab platform using digital Real time simulator Hypersim (OP-5600), the results carried out show the effect of the DC control and the influence of the protection function to reduce the probability of commutation failures and also for helping inverter to take out from commutation failure even while the DC control fails to eliminate them. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Simulations of ITER disruption and VDE scenarios with TSC and comparison with DINA results

    International Nuclear Information System (INIS)

    Bandyopadhyay, I.

    2008-01-01

    Vertical Displacement Events (VDEs) and plasma current disruptions pose one of the major concerns for the lifetime of in-vessel components in ITER, as well as for machine robustness, as large electromagnetic and thermal loads will induced at such events. Hence, accurate modelling of such events is crucial for estimating disruption induced forces. In the past, ITER disruption modelling has been carried out for ITER using the DINA code. However, since predictive simulations of such events depend on a large number of model assumptions, there exists chances of large error bars on the model predictions. As such it is imperative to validate the code results with other models. Towards this objective, we have carried out the VDE and Disruption simulations using the TSC code and the results are compared with the earlier DINA predictions. A detailed electromagnetic model of the ITER vessel, blankets and the first wall components has been created in TSC. In both VDE and disruption cases, the initial plasma is taken as ITER reference scenario 2 end of burn (EOB) specifications with I p = 15 MA, B t = 5 .3 T, e > 8.8 keV, e > = 1.1 x 10 20 m -3 . The plasma current disruption is initiated by dropping the plasma β in 1 msec, so that after the β crash e > = 6 eV, following which the plasma position control is switched off, resulting in a plasma current quench in about 65 msec. On the other hand, in the VDE case, the plasma control is switched off which results in either upward or downward VDE depending on the initial position of the plasma current centroid. In this case the plasma current remains close to 15 MA for a much longer time, about 700 msec in the simulations till the edge safety factor (q) becomes less than 1.5, following which the β is crashed resulting in plasma current quench. Significant differences exist in the DINA and TSC models, for example, even though the plasma current quench rate predicted by the models matches well in till the halo currents start flowing

  9. Instructional Advice, Time Advice and Learning Questions in Computer Simulations

    Science.gov (United States)

    Rey, Gunter Daniel

    2010-01-01

    Undergraduate students (N = 97) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without instructional advice) x 2 (with or without time advice) x 2…

  10. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...

  11. Long-time analytic approximation of large stochastic oscillators: Simulation, analysis and inference.

    Directory of Open Access Journals (Sweden)

    Giorgos Minas

    2017-07-01

    Full Text Available In order to analyse large complex stochastic dynamical models such as those studied in systems biology there is currently a great need for both analytical tools and also algorithms for accurate and fast simulation and estimation. We present a new stochastic approximation of biological oscillators that addresses these needs. Our method, called phase-corrected LNA (pcLNA overcomes the main limitations of the standard Linear Noise Approximation (LNA to remain uniformly accurate for long times, still maintaining the speed and analytically tractability of the LNA. As part of this, we develop analytical expressions for key probability distributions and associated quantities, such as the Fisher Information Matrix and Kullback-Leibler divergence and we introduce a new approach to system-global sensitivity analysis. We also present algorithms for statistical inference and for long-term simulation of oscillating systems that are shown to be as accurate but much faster than leaping algorithms and algorithms for integration of diffusion equations. Stochastic versions of published models of the circadian clock and NF-κB system are used to illustrate our results.

  12. Time-Lapse Analysis of Methane Quantity in the Mary Lee Group of Coal Seams Using Filter-Based Multiple-Point Geostatistical Simulation.

    Science.gov (United States)

    Karacan, C Özgen; Olea, Ricardo A

    2013-08-01

    Coal seam degasification and its success are important for controlling methane, and thus for the health and safety of coal miners. During the course of degasification, properties of coal seams change. Thus, the changes in coal reservoir conditions and in-place gas content as well as methane emission potential into mines should be evaluated by examining time-dependent changes and the presence of major heterogeneities and geological discontinuities in the field. In this work, time-lapsed reservoir and fluid storage properties of the New Castle coal seam, Mary Lee/Blue Creek seam, and Jagger seam of Black Warrior Basin, Alabama, were determined from gas and water production history matching and production forecasting of vertical degasification wellbores. These properties were combined with isotherm and other important data to compute gas-in-place (GIP) and its change with time at borehole locations. Time-lapsed training images (TIs) of GIP and GIP difference corresponding to each coal and date were generated by using these point-wise data and Voronoi decomposition on the TI grid, which included faults as discontinuities for expansion of Voronoi regions. Filter-based multiple-point geostatistical simulations, which were preferred in this study due to anisotropies and discontinuities in the area, were used to predict time-lapsed GIP distributions within the study area. Performed simulations were used for mapping spatial time-lapsed methane quantities as well as their uncertainties within the study area. The systematic approach presented in this paper is the first time in literature that history matching, TIs of GIPs and filter simulations are used for degasification performance evaluation and for assessing GIP for mining safety. Results from this study showed that using production history matching of coalbed methane wells to determine time-lapsed reservoir data could be used to compute spatial GIP and representative GIP TIs generated through Voronoi decomposition

  13. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model

    Science.gov (United States)

    Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun

    2018-03-01

    This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm ​combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.

  14. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    Science.gov (United States)

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  15. A comparison among observations and earthquake simulator results for the allcal2 California fault model

    Science.gov (United States)

    Tullis, Terry. E.; Richards-Dinger, Keith B.; Barall, Michael; Dieterich, James H.; Field, Edward H.; Heien, Eric M.; Kellogg, Louise; Pollitz, Fred F.; Rundle, John B.; Sachs, Michael K.; Turcotte, Donald L.; Ward, Steven N.; Yikilmaz, M. Burak

    2012-01-01

    In order to understand earthquake hazards we would ideally have a statistical description of earthquakes for tens of thousands of years. Unfortunately the ∼100‐year instrumental, several 100‐year historical, and few 1000‐year paleoseismological records are woefully inadequate to provide a statistically significant record. Physics‐based earthquake simulators can generate arbitrarily long histories of earthquakes; thus they can provide a statistically meaningful history of simulated earthquakes. The question is, how realistic are these simulated histories? This purpose of this paper is to begin to answer that question. We compare the results between different simulators and with information that is known from the limited instrumental, historic, and paleoseismological data.As expected, the results from all the simulators show that the observational record is too short to properly represent the system behavior; therefore, although tests of the simulators against the limited observations are necessary, they are not a sufficient test of the simulators’ realism. The simulators appear to pass this necessary test. In addition, the physics‐based simulators show similar behavior even though there are large differences in the methodology. This suggests that they represent realistic behavior. Different assumptions concerning the constitutive properties of the faults do result in enhanced capabilities of some simulators. However, it appears that the similar behavior of the different simulators may result from the fault‐system geometry, slip rates, and assumed strength drops, along with the shared physics of stress transfer.This paper describes the results of running four earthquake simulators that are described elsewhere in this issue of Seismological Research Letters. The simulators ALLCAL (Ward, 2012), VIRTCAL (Sachs et al., 2012), RSQSim (Richards‐Dinger and Dieterich, 2012), and ViscoSim (Pollitz, 2012) were run on our most recent all‐California fault

  16. Direct drive: Simulations and results from the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Radha, P. B., E-mail: rbah@lle.rochester.edu; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2016-05-15

    Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

  17. Time evolution simulation of heat removal in a small water tank by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Carlos Alberto de, E-mail: carlos.freitas1950@hotmail.com [Instituto Federal do Rio de Janeiro (IFRJ), Nilopolis, RJ (Brazil); Jachic, Joao; Moreira, Maria de Lourdes, E-mail: jjachic@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)

  18. Time evolution simulation of heat removal in a small water tank by natural convection

    International Nuclear Information System (INIS)

    Freitas, Carlos Alberto de; Jachic, Joao; Moreira, Maria de Lourdes

    2013-01-01

    One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)

  19. Transient simulation for a real-time operator advisor expert system

    International Nuclear Information System (INIS)

    Jakubowski, T.; Hajek, B.K.; Miller, D.W.; Bhatnagar, R.

    1990-01-01

    An Operator Advisor (OA) consisting of four integrated expert systems has been under development at The Ohio State University since 1985. The OA, designed for a General Electric BWR-6 plant, has used the Perry Nuclear Power Plants full scope simulator near Cleveland, Ohio (USA) as the reference plant. The primary goal of this development has been to provide a single system which not only performs monitoring and diagnosis functions, but also provides fault mitigation procedures to the operator, monitors the performance of these procedures and provides backup procudures should the initial ones fail. To test the system off line, a transient event simulation methodology has been developed. The simulator employs event scenarios from the Perry simulator. Scenarios are selected to test both inter- and intra-modular system behavior and response and to verify the consistency and accuracy of the knowledge base. This paper describes the OA architecture and design and the transient simulation. A discussion of a sample scenario test, including the rationale for scenario selection, is included as an example. The results of the testing demonstrate the value of off line transient simulations in that they verify system operation and help to identify characteristics requiring further improvements

  20. Numerical Simulation of the Time Evolution of Small-Scale Irregularities in the F-Layer Ionospheric Plasma

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2011-01-01

    Full Text Available Dynamics of magnetic field-aligned small-scale irregularities in the electron concentration, existing in the F-layer ionospheric plasma, is investigated with the help of a mathematical model. The plasma is assumed to be a rarefied compound consisting of electrons and positive ions and being in a strong, external magnetic field. In the applied model, kinetic processes in the plasma are simulated by using the Vlasov-Poisson system of equations. The system of equations is numerically solved applying a macroparticle method. The time evolution of a plasma irregularity, having initial cross-section dimension commensurable with a Debye length, is simulated during the period sufficient for the irregularity to decay completely. The results of simulation indicate that the small-scale irregularity, created initially in the F-region ionosphere, decays accomplishing periodic damped vibrations, with the process being collisionless.

  1. Parallelized FDTD simulation for flat-plate bounded wave EMP simulator with lumped terminator

    International Nuclear Information System (INIS)

    Zhu Xiangqin; Chen Weiqing; Chen Zaigao; Cai Libing; Wang Jianguo

    2013-01-01

    A parallelized finite-difference time-domain(FDTD) method for simulating the bounded wave electromagnetic pulse (EMP) simulator with lumped terminator and parallel plate is presented. The effects of several model-parameters on the simulator to the fields in the working volume are simulated and analyzed. The results show that if the width of the lower PEC plate is(or is bigger than)1.5 times that of the upper plate of working volume, the projection length of front transitional section does not have a significant effect on the rise-times of electric fields at the points near the front transitional section, and the rise-times of electric fields at the points near the working volume center decrease as the projection length increases, but the decrement of rise-time decreases. The rise-times of E z at all points also decrease as the lower PEC plate's width increases, but the decrements of rise-time decreases. If the projection length of the front transitional section is fixed, the good results can not be obtained by increasing or decreasing the height of the simulator only, however, which has an optimal value. (authors)

  2. Improving the trust in results of numerical simulations and scientific data analytics

    Energy Technology Data Exchange (ETDEWEB)

    Cappello, Franck [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil [Argonne National Lab. (ANL), Argonne, IL (United States); Hovland, Paul [Argonne National Lab. (ANL), Argonne, IL (United States); Peterka, Tom [Argonne National Lab. (ANL), Argonne, IL (United States); Phillips, Carolyn [Argonne National Lab. (ANL), Argonne, IL (United States); Snir, Marc [Argonne National Lab. (ANL), Argonne, IL (United States); Wild, Stefan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-30

    This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation and scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary general

  3. Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2012-01-01

    Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.

  4. Simulating last interglacial climate with NorESM: role of insolation and greenhouse gases in the timing of peak warmth

    Directory of Open Access Journals (Sweden)

    P.M. Langebroek

    2014-07-01

    Full Text Available The last interglacial (LIG, ~130–116 ka, ka = 1000 yr ago is characterized by high-latitude warming and is therefore often considered as a possible analogue for future warming. However, in contrast to predicted future greenhouse warming, the LIG climate is largely governed by variations in insolation. Greenhouse gas (GHG concentrations were relatively stable and similar to pre-industrial values, with the exception of the early LIG when, on average, GHGs were slightly lower. We performed six time-slice simulations with the low-resolution version of the Norwegian Earth System Model covering the LIG. In four simulations only the orbital forcing was changed. In two other simulations, representing the early LIG, additionally the GHG forcing was reduced. With these simulations we investigate (1 the different effects of GHG versus insolation forcing on the temperatures during the LIG; (2 whether reduced GHGs can explain the low temperatures reconstructed for the North Atlantic; and (3 the timing of the observed LIG peak warmth. Our simulations show that the insolation forcing results in seasonal and hemispheric differences in temperature. In contrast, a reduction in the GHG forcing causes a global and seasonal-independent cooling. Furthermore, we compare modelled temperatures with proxy-based LIG sea-surface temperatures along a transect in the North Atlantic. The modelled North Atlantic summer sea-surface temperatures capture the general trend of the reconstructed summer temperatures, with low values in the early LIG, a peak around 125 ka, and a steady decrease towards the end of the LIG. Simulations with reduced GHG forcing improve the model–data fit as they show lower temperatures in the early LIG. Furthermore we show that the timing of maximum summer and winter surface temperatures is in line with the local summer and winter insolation maximum at most latitudes. Two regions where the maximum local insolation and temperature do not occur at the

  5. Simulation of the pressure recovery time in a CLIC standard module

    CERN Document Server

    Costa-Pinto, P

    2008-01-01

    Vacuum pressure inside the CLIC accelerating structures (AS) is crucial for both beam and RF stability. Gas molecules released during RF breakdown must be evacuated from the cells of the AS before the arrival of the next train of particles. Due to its complex geometry, accurate analytical calculations are not viable. In this paper we introduce a calculation method based on the combination of analytical vacuum equations with Monte Carlo test particle simulations, implemented in a PSpice environment via the vacuum-electrical network analogy. Pressure recovery times are calculated for the main gas species released during a breakdown. The number and type of molecules used for the calculation is the result of measurements performed in the DC spark test system.

  6. Nonlinear Aerodynamics-Structure Time Simulation for HALE Aircraft Design/Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Time simulation of a nonlinear aerodynamics model (NA) developed at Virginia Tech coupled with a nonlinear structure model (NS) is proposed as a design/analysis...

  7. One-at-a-time versus grouped presentation of mug book pictures: some surprising results.

    Science.gov (United States)

    Stewart, H A; McAllister, H A

    2001-12-01

    Eyewitnesses to a simulated crime attempted to identify the perpetrator from a computerized mug book. The 208 mug book pictures were presented either 1 mug shot per page or in groups of 12 mug shots per page. Half of the mug books were arranged by similarity to the perpetrator as determined by a facial recognition algorithm, and half were randomly arranged. In contrast to past findings with photospreads, false-positive identifications were significantly higher using the one-at-a-time procedure than the grouped procedure. Results suggest that the best practice for mug books may be the use of groups of pictures per page rather than the one-at-a-time procedure long advocated by experts for use in lineups and photospreads.

  8. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schlarb, Michael Christian

    2009-11-17

    is accomplished by searching the simulated signal basis for the best agreement with the experimental signal. The particular challenge lies in the binomial growth of the search space making an intelligent search algorithm compulsory. In order to reduce the search space, the starting time t{sub 0} for the pulse shapes can be determined independently by a neural network algorithm, developed in the scope of this work. The precision of 2 - 5ns(FWHM), which is far beyond the sampling time of the digitizers, directly influences the attainable position resolution. For the search of the positions the so-called 'Fully Informed Particle Swarm' (FIPS) was developed, implemented and has proofed to be very efficient. Depending on the number of interactions an accurate reconstruction of the positions is accomplished within several {mu}s to a few ms. Data from a simulated (d, p) reaction in inverse kinematics, using a {sup 48}Ti beam at an energy of 100 MeV, impinging on a deuterated titanium target were used to test the capabilities of the developed PSA algorithms in a realistic setting. In the ideal case of an extensive PSA an energy resolution of 2.8 keV (FWHM) for the 1382 keV line of {sup 49}Ti results but this approach works only on the limited amount of data in which only a single segment has been hit. Selecting the same events the FIPS-PSA Algorithm achieves 3.3 keV with an average computation time of {proportional_to} 0.9ms. The extensive grid search, by comparison takes 27ms. Including events with multiple hit segments increases the statistics roughly twofold and the resolution of FIPS-PSA does not deteriorate significantly at an average computing time of 2.2ms. (orig.)

  9. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    International Nuclear Information System (INIS)

    Schlarb, Michael Christian

    2009-01-01

    accomplished by searching the simulated signal basis for the best agreement with the experimental signal. The particular challenge lies in the binomial growth of the search space making an intelligent search algorithm compulsory. In order to reduce the search space, the starting time t 0 for the pulse shapes can be determined independently by a neural network algorithm, developed in the scope of this work. The precision of 2 - 5ns(FWHM), which is far beyond the sampling time of the digitizers, directly influences the attainable position resolution. For the search of the positions the so-called 'Fully Informed Particle Swarm' (FIPS) was developed, implemented and has proofed to be very efficient. Depending on the number of interactions an accurate reconstruction of the positions is accomplished within several μs to a few ms. Data from a simulated (d, p) reaction in inverse kinematics, using a 48 Ti beam at an energy of 100 MeV, impinging on a deuterated titanium target were used to test the capabilities of the developed PSA algorithms in a realistic setting. In the ideal case of an extensive PSA an energy resolution of 2.8 keV (FWHM) for the 1382 keV line of 49 Ti results but this approach works only on the limited amount of data in which only a single segment has been hit. Selecting the same events the FIPS-PSA Algorithm achieves 3.3 keV with an average computation time of ∝ 0.9ms. The extensive grid search, by comparison takes 27ms. Including events with multiple hit segments increases the statistics roughly twofold and the resolution of FIPS-PSA does not deteriorate significantly at an average computing time of 2.2ms. (orig.)

  10. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    Directory of Open Access Journals (Sweden)

    I. Cionni

    2011-11-01

    Full Text Available A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009 with multi-model mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2 Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISS-PUCCINI and of the future by one CCM (CAM3.5. The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs. Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that

  11. Simulation and real-time replacement of missing plasma signals for disruption prediction: an implementation with APODIS

    International Nuclear Information System (INIS)

    Rattá, G A; Vega, J; Murari, A

    2014-01-01

    So far, the best results for real-time disruption prediction on the Joint European Torus (JET) have been achieved with the Advanced Predictor of Disruptions (APODIS). APODIS is a data-driven system whose latest version has been implemented in JET's real time-data network. It has been designed for the real-time analysis of features (mean and frequency values) corresponding to seven plasma signals in order to foresee upcoming disruptions. In this article, non-linear regression techniques are applied to create (off-line) signal models. The models are able to generate (in real-time) ‘synthetic’ signals. Therefore, these ‘synthetic’ signals can be used to replace the original ones in cases where they are in error or missing. APODIS has been tested under these conditions, emulating real-time operation. The simulation results demonstrate that once a signal in error is replaced by the generated ‘synthetic’ one, APODIS performance is considerably improved. The development of the regression models and the implications of the results are detailed and discussed in this paper. (paper)

  12. Model simulations of flood and debris flow timing in steep catchments after wildfire

    Science.gov (United States)

    Rengers, Francis K.; McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J

    2016-01-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  13. Model simulations of flood and debris flow timing in steep catchments after wildfire

    Science.gov (United States)

    Rengers, F. K.; McGuire, L. A.; Kean, J. W.; Staley, D. M.; Hobley, D. E. J.

    2016-08-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most postwildfire debris flows are generated from water runoff. The majority of existing debris flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's n) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall, the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  14. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    Science.gov (United States)

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  15. Endovascular aneurysm repair simulation can lead to decreased fluoroscopy time and accurately delineate the proximal seal zone.

    Science.gov (United States)

    Kim, Ann H; Kendrick, Daniel E; Moorehead, Pamela A; Nagavalli, Anil; Miller, Claire P; Liu, Nathaniel T; Wang, John C; Kashyap, Vikram S

    2016-07-01

    The use of simulators for endovascular aneurysm repair (EVAR) is not widespread. We examined whether simulation could improve procedural variables, including operative time and optimizing proximal seal. For the latter, we compared suprarenal vs infrarenal fixation endografts, right femoral vs left femoral main body access, and increasing angulation of the proximal aortic neck. Computed tomography angiography was obtained from 18 patients who underwent EVAR at a single institution. Patient cases were uploaded to the ANGIO Mentor endovascular simulator (Simbionix, Cleveland, Ohio) allowing for three-dimensional reconstruction and adapted for simulation with suprarenal fixation (Endurant II; Medtronic Inc, Minneapolis, Minn) and infrarenal fixation (C3; W. L. Gore & Associates Inc, Newark, Del) deployment systems. Three EVAR novices and three experienced surgeons performed 18 cases from each side with each device in randomized order (n = 72 simulations/participant). The cases were stratified into three groups according to the degree of infrarenal angulation: 0° to 20°, 21° to 40°, and 41° to 66°. Statistical analysis used paired t-test and one-way analysis of variance. Mean fluoroscopy time for participants decreased by 48.6% (P time decreased by 33.8% (P zone coverage in highly angulated aortic necks was significantly decreased. The infrarenal device resulted in mean aortic neck zone coverage of 91.9%, 89.4%, and 75.4% (P zone coverage. The side of femoral access for the main body did not influence proximal seal zone coverage regardless of infrarenal angulation. Simulation of EVAR leads to decreased fluoroscopy times for novice and experienced operators. Side of femoral access did not affect precision of proximal endograft landing. The angulated aortic neck leads to decreased proximal seal zone coverage regardless of infrarenal or suprarenal fixation devices. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  16. Simulation model of a single-server order picking workstation using aggregate process times

    NARCIS (Netherlands)

    Andriansyah, R.; Etman, L.F.P.; Rooda, J.E.; Biles, W.E.; Saltelli, A.; Dini, C.

    2009-01-01

    In this paper we propose a simulation modeling approach based on aggregate process times for the performance analysis of order picking workstations in automated warehouses with first-in-first-out processing of orders. The aggregate process time distribution is calculated from tote arrival and

  17. Measurement of time delay for a prospectively gated CT simulator

    Directory of Open Access Journals (Sweden)

    Goharian M

    2010-01-01

    Full Text Available For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient′s breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore™ (Philips Medical Systems, Madison, WI scanner attached to a Varian Real-Time Position Management™ (RPM system (Varian Medical Systems, Palo Alto, CA was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL ′X-Ray ON′ status signal from the CT scanner in a text file. The TTL ′X-Ray ON′ indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for

  18. Measurement of time delay for a prospectively gated CT simulator

    International Nuclear Information System (INIS)

    Goharian, M.; Khan, R.F.H.

    2010-01-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  19. Reduction Methods for Real-time Simulations in Hybrid Testing

    DEFF Research Database (Denmark)

    Andersen, Sebastian

    2016-01-01

    Hybrid testing constitutes a cost-effective experimental full scale testing method. The method was introduced in the 1960's by Japanese researchers, as an alternative to conventional full scale testing and small scale material testing, such as shake table tests. The principle of the method...... is performed on a glass fibre reinforced polymer composite box girder. The test serves as a pilot test for prospective real-time tests on a wind turbine blade. The Taylor basis is implemented in the test, used to perform the numerical simulations. Despite of a number of introduced errors in the real...... is to divide a structure into a physical substructure and a numerical substructure, and couple these in a test. If the test is conducted in real-time it is referred to as real time hybrid testing. The hybrid testing concept has developed significantly since its introduction in the 1960', both with respect...

  20. Interactive Real-time Simulation of a Nuclear Reactor Emergency Core Cooling System on a Desktop Computer

    International Nuclear Information System (INIS)

    Muncharoen, C.; Chanyotha, S.; Bereznai, G.

    1998-01-01

    The simulation of the Emergency Core Cooling System for a 900 MW nuclear power plant has been developed by using object oriented programming language. It is capable of generating code that executes in real-time on a PENTIUM 100 or equivalent personal computer. Graphical user interface ECCS screens have been developed using Lab VIEW to allow interactive control of ECCS. The usual simulator functions, such as freeze, run, iterate, have been provided, and a number of malfunctions may be activated. A large pipe break near the reactor inlet header has been simulated to verify the response of the ECCS model. LOCA detection, ECC initiation, injection and recovery phased are all modeled, and give results consistent with safety analysis data for a 100% break. With stand alone ECCS simulation, the changes of flow and pressure in ECCS can be observed. The operator can study operational procedures and get used to LOCA in case of the LOCA. Practicing with malfunction, the operator will improve problem solving skills and gain a deeper comprehension of ECCS

  1. SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator System for Skull Radiography Using the Microsoft Kinect

    International Nuclear Information System (INIS)

    Kurata, T; Ono, M; Kozono, K; Fukuyoshi, R; Sato, S; Toyofuku, F

    2014-01-01

    Purpose: The purpose of this study is to investigate the feasibility of a low cost, small size positioning assistance simulator system for skull radiography using the Microsoft Kinect sensor. A conventional radiographic simulator system can only measure the three-dimensional coordinates of an x-ray tube using angle sensors, but not measure the movement of the subject. Therefore, in this study, we developed a real-time simulator system using the Microsoft Kinect to measure both the x-ray tube and the subject, and evaluated its accuracy and feasibility by comparing the simulated and the measured x-ray images. Methods: This system can track a head phantom by using Face Tracking, which is one of the functions of the Kinect. The relative relationship between the Kinect and the head phantom was measured and the projection image was calculated by using the ray casting method, and by using three-dimensional CT head data with 220 slices at 512 × 512 pixels. X-ray images were thus obtained by using a computed radiography (CR) system. We could then compare the simulated projection images with the measured x-ray images from 0 degrees to 45 degrees at increments of 15 degrees by calculating the cross correlation coefficient C. Results: The calculation time of the simulated projection images was almost real-time (within 1 second) by using the Graphics Processing Unit(GPU). The cross-correlation coefficients C are: 0.916; 0.909; 0.891; and, 0.886 at 0, 15, 30, and 45 degrees, respectively. As a result, there were strong correlations between the simulated and measured images. Conclusion: This system can be used to perform head positioning more easily and accurately. It is expected that this system will be useful for learning radiographic techniques by students. Moreover, it could also be used for predicting the actual x-ray image prior to x-ray exposure in clinical environments

  2. Extended post processing for simulation results of FEM synthesized UHF-RFID transponder antennas

    Directory of Open Access Journals (Sweden)

    R. Herschmann

    2007-06-01

    Full Text Available The computer aided design process of sophisticated UHF-RFID transponder antennas requires the application of reliable simulation software. This paper describes a Matlab implemented extension of the post processor capabilities of the commercially available three dimensional field simulation programme Ansoft HFSS to compute an accurate solution of the antenna's surface current distribution. The accuracy of the simulated surface currents, which are physically related to the impedance at the feeding point of the antenna, depends on the convergence of the electromagnetic fields inside the simulation volume. The introduced method estimates the overall quality of the simulation results by combining the surface currents with the electromagnetic fields extracted from the field solution of Ansoft HFSS.

  3. Modeling results for a linear simulator of a divertor

    International Nuclear Information System (INIS)

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-01-01

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach ∼ 1 Gw/m 2 along the magnetic fieldlines and > 10 MW/m 2 on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report

  4. The Trick Simulation Toolkit: A NASA/Opensource Framework for Running Time Based Physics Models

    Science.gov (United States)

    Penn, John M.

    2016-01-01

    The Trick Simulation Toolkit is a simulation development environment used to create high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. Its purpose is to generate a simulation executable from a collection of user-supplied models and a simulation definition file. For each Trick-based simulation, Trick automatically provides job scheduling, numerical integration, the ability to write and restore human readable checkpoints, data recording, interactive variable manipulation, a run-time interpreter, and many other commonly needed capabilities. This allows simulation developers to concentrate on their domain expertise and the algorithms and equations of their models. Also included in Trick are tools for plotting recorded data and various other supporting utilities and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX computer operating systems. This paper describes Trick's design and use at NASA Johnson Space Center.

  5. Real-time surgical simulation for deformable soft-tissue objects with a tumour using Boundary Element techniques

    Science.gov (United States)

    Wang, P.; Becker, A. A.; Jones, I. A.; Glover, A. T.; Benford, S. D.; Vloeberghs, M.

    2009-08-01

    A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.

  6. Real-time surgical simulation for deformable soft-tissue objects with a tumour using Boundary Element techniques

    International Nuclear Information System (INIS)

    Wang, P; Becker, A A; Jones, I A; Glover, A T; Benford, S D; Vloeberghs, M

    2009-01-01

    A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.

  7. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach

  8. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    Energy Technology Data Exchange (ETDEWEB)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.

  9. Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices

    International Nuclear Information System (INIS)

    Keles, Dogan; Genoese, Massimo; Möst, Dominik; Fichtner, Wolf

    2012-01-01

    This paper evaluates different financial price and time series models, such as mean reversion, autoregressive moving average (ARMA), integrated ARMA (ARIMA) and general autoregressive conditional heteroscedasticity (GARCH) process, usually applied for electricity price simulations. However, as these models are developed to describe the stochastic behaviour of electricity prices, they are extended by a separate data treatment for the deterministic components (trend, daily, weekly and annual cycles) of electricity spot prices. Furthermore price jumps are considered and implemented within a regime-switching model. Since 2008 market design allows for negative prices at the European Energy Exchange, which also occurred for several hours in the last years. Up to now, only a few financial and time series approaches exist, which are able to capture negative prices. This paper presents a new approach incorporating negative prices. The evaluation of the different approaches presented points out that the mean reversion and the ARMA models deliver the lowest mean root square error between simulated and historical electricity spot prices gained from the European Energy Exchange. These models posses also lower mean average errors than GARCH models. Hence, they are more suitable to simulate well-fitting price paths. Furthermore it is shown that the daily structure of historical price curves is better captured applying ARMA or ARIMA processes instead of mean-reversion or GARCH models. Another important outcome of the paper is that the regime-switching approach and the consideration of negative prices via the new proposed approach lead to a significant improvement of the electricity price simulation. - Highlights: ► Considering negative prices improves the results of time-series and financial models for electricity prices. ► Regime-switching approach captures the jumps and base prices quite well. ► Removing and separate modelling of deterministic annual, weekly and daily

  10. Verification of results of core physics on-line simulation by NGFM code

    International Nuclear Information System (INIS)

    Zhao Yu; Cao Xinrong; Zhao Qiang

    2008-01-01

    Nodal Green's Function Method program NGFM/TNGFM has been trans- planted to windows system. The 2-D and 3-D benchmarks have been checked by this program. And the program has been used to check the results of QINSHAN-II reactor simulation. It is proved that the NGFM/TNGFM program is applicable for reactor core physics on-line simulation system. (authors)

  11. WRF simulation of a severe hailstorm over Baramati: a study into the space-time evolution

    Science.gov (United States)

    Murthy, B. S.; Latha, R.; Madhuparna, H.

    2018-04-01

    Space-time evolution of a severe hailstorm occurred over the western India as revealed by WRF-ARW simulations are presented. We simulated a specific event centered over Baramati (18.15°N, 74.58°E, 537 m AMSL) on March 9, 2014. A physical mechanism, proposed as a conceptual model, signifies the role of multiple convective cells organizing through outflows leading to a cold frontal type flow, in the presence of a low over the northern Arabian Sea, propagates from NW to SE triggering deep convection and precipitation. A `U' shaped cold pool encircled by a converging boundary forms to the north of Baramati due to precipitation behind the moisture convergence line with strong updrafts ( 15 ms-1) leading to convective clouds extending up to 8 km in a narrow region of 30 km. The outflows from the convective clouds merge with the opposing southerly or southwesterly winds from the Arabian Sea and southerly or southeasterly winds from the Bay of Bengal resulting in moisture convergence (maximum 80 × 10-3 g kg-1 s-1). The vertical profile of the area-averaged moisture convergence over the cold pool shows strong convergence above 850 hPa and divergence near the surface indicating elevated convection. Radar reflectivity (50-60 dBZ) and vertical component of vorticity maximum ( 0.01-0.14 s-1) are observed along the convergence zone. Stratiform clouds ahead of the squall line and parallel wind flow at 850 hPa and nearly perpendicular flow at higher levels relative to squall line as evidenced by relatively low and wide-spread reflectivity suggests that organizational mode of squall line may be categorized as `Mixed Mode' type where northern part can be a parallel stratiform while the southern part resembles with a leading stratiform. Simulated rainfall (grid scale 27 km) leads the observed rainfall by 1 h while its magnitude is 2 times of the observed rainfall (grid scale 100 km) derived from Kalpana-1. Thus, this study indicates that under synoptically favorable conditions

  12. Simulation of a Real-Time Brain Computer Interface for Detecting a Self-Paced Hitting Task.

    Science.gov (United States)

    Hammad, Sofyan H; Kamavuako, Ernest N; Farina, Dario; Jensen, Winnie

    2016-12-01

    An invasive brain-computer interface (BCI) is a promising neurorehabilitation device for severely disabled patients. Although some systems have been shown to work well in restricted laboratory settings, their utility must be tested in less controlled, real-time environments. Our objective was to investigate whether a specific motor task could be reliably detected from multiunit intracortical signals from freely moving animals in a simulated, real-time setting. Intracortical signals were first obtained from electrodes placed in the primary motor cortex of four rats that were trained to hit a retractable paddle (defined as a "Hit"). In the simulated real-time setting, the signal-to-noise-ratio was first increased by wavelet denoising. Action potentials were detected, and features were extracted (spike count, mean absolute values, entropy, and combination of these features) within pre-defined time windows (200 ms, 300 ms, and 400 ms) to classify the occurrence of a "Hit." We found higher detection accuracy of a "Hit" (73.1%, 73.4%, and 67.9% for the three window sizes, respectively) when the decision was made based on a combination of features rather than on a single feature. However, the duration of the window length was not statistically significant (p = 0.5). Our results showed the feasibility of detecting a motor task in real time in a less restricted environment compared to environments commonly applied within invasive BCI research, and they showed the feasibility of using information extracted from multiunit recordings, thereby avoiding the time-consuming and complex task of extracting and sorting single units. © 2016 International Neuromodulation Society.

  13. BIM-Integrated Construction Operation Simulation for Just-In-Time Production Management

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2016-10-01

    Full Text Available Traditional construction planning, which depends on historical data and heuristic modification, prevents the integration of managerial details such as productivity dynamics. Specifically, the distance between planning and execution brings cost overruns and duration extensions. To minimize variations, this research presents a Building Information Modeling (BIM-integrated simulation framework for predicting productivity dynamics at the construction planning phase. To develop this framework, we examined critical factors affecting productivity at the operational level, and then forecast the productivity dynamics. The resulting plan includes specific commands for retrieving the required information from BIM and executing operation simulations. It consists of the following steps: (1 preparing a BIM model to produce input data; (2 composing a construction simulation at the operational level; and (3 obtaining productivity dynamics from the BIM-integrated simulation. To validate our framework, we applied it to a structural steel model; this was due to the significance of steel erections. By integrating BIM with construction operation simulations, we were able to create reliable construction plans that adapted to project changes. Our results show that the developed framework facilitates the reliable prediction of productivity dynamics, and can contribute to improved schedule reliability, optimized resource allocation, cost savings associated with buffers, and reduced material waste.

  14. Providing many results of evacuation simulation around a nuclear power plant and its speedy use

    International Nuclear Information System (INIS)

    Ishida, Shoji; Nagase, Shinichiro; Ino, Masanori

    1990-01-01

    According to the peculiar situation around nuclear power plant in Japan, many results of evacuation simulation in that the public buses and family cars were used together have being obtained by a super computer. These were comprised of the time dependence of the number of residents and vehicles at the exit and starting points, and traffic jam datas at each intersection on the evacuation roads. Also, exposed dose for each group of the residents were calculated in case of Xe and I-131 release. The retrieval system was applied for selecting the indispensable data from many results, and in order to see data on the display screen, the graphic system was provided. (author)

  15. Numerical simulation of the time-dependent deformation behaviour of clay-stone rock mass at the Tournemire site with 2D and 3D models

    International Nuclear Information System (INIS)

    Rutenberg, M.; Lux, K. H.

    2011-01-01

    Clay-stone rock masses are a reasonable alternative to e.g. salt rock masses as a host rock for underground radioactive waste repositories because of their very low permeability as well as their radionuclide retention capacity. Though clay-stone has been explored for many years, there is still a need for further research on its hydro-mechanical behaviour. Convergence measurements over a 4-year period in the tunnel system of the argillaceous Tournemire site in France yielded the presence of a time-dependent deformation behaviour in indurated clay. Moreover, a mine-by test was carried out with extensometer measurements capturing the rock mass deformation during the excavation process of a new gallery in 2003.This work focuses on the validation of a constitutive model by means of a three-dimensional (3D) simulation of the mine-by test. The utilised constitutive model Hou/Lux-T is based on the viscous constitutive model Lubby2 with which time-dependent deformation behaviour of salt rock can appropriately be simulated. It has been adapted to clay-stone by considering anisotropy effects, and in addition it features a strain-dependent fracture and failure criterion. The results of the mine-by-test simulation show that the calculated stresses and deformations in the rock mass seem to behave reasonably under this constitutive model with respect to time-dependency. A comparison of the 3D results to the results of a simplified two-dimensional (2D) simulation confirms the adequacy of using a 2D model with the constitutive model Hou/Lux-T for the setting at hand, described in the text (material parameters, time scale), in order to assess load-bearing capacity and deformability of the gallery near field away from heading face and tunnel crossing. Finally, a comparison of the 3D simulation results to the extensometer measurement results yields the principal ability of the used constitutive model to describe time-dependent evolutions of stresses and deformations during a three

  16. BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios, E-mail: junhankim@email.arizona.edu [Department of Astronomy and Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.

  17. Numerical results for near surface time domain electromagnetic exploration: a full waveform approach

    Science.gov (United States)

    Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.

    2015-12-01

    Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two

  18. The impact of secondary-task type on the sensitivity of reaction-time based measurement of cognitive load for novices learning surgical skills using simulation.

    Science.gov (United States)

    Rojas, David; Haji, Faizal; Shewaga, Rob; Kapralos, Bill; Dubrowski, Adam

    2014-01-01

    Interest in the measurement of cognitive load (CL) in simulation-based education has grown in recent years. In this paper we present two pilot experiments comparing the sensitivity of two reaction time based secondary task measures of CL. The results suggest that simple reaction time measures are sensitive enough to detect changes in CL experienced by novice learners in the initial stages of simulation-based surgical skills training.

  19. On an efficient multiple time step Monte Carlo simulation of the SABR model

    NARCIS (Netherlands)

    Leitao Rodriguez, A.; Grzelak, L.A.; Oosterlee, C.W.

    2017-01-01

    In this paper, we will present a multiple time step Monte Carlo simulation technique for pricing options under the Stochastic Alpha Beta Rho model. The proposed method is an extension of the one time step Monte Carlo method that we proposed in an accompanying paper Leitao et al. [Appl. Math.

  20. Real-time tumor ablation simulation based on the dynamic mode decomposition method

    KAUST Repository

    Bourantas, George C.; Ghommem, Mehdi; Kagadis, George C.; Katsanos, Konstantinos H.; Loukopoulos, Vassilios C.; Burganos, Vasilis N.; Nikiforidis, George C.

    2014-01-01

    Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must