Time Series Analysis of 3D Coordinates Using Nonstochastic Observations
Velsink, H.
2016-01-01
Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on
Time Series Analysis of 3D Coordinates Using Nonstochastic Observations
Hiddo Velsink
2016-01-01
From the article: Abstract Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to
Time Series Observations in the North Indian Ocean
Digital Repository Service at National Institute of Oceanography (India)
Shenoy, D.M.; Naik, H.; Kurian, S.; Naqvi, S.W.A.; Khare, N.
Ocean and the ongoing time series study (Candolim Time Series; CaTS) off Goa. In addition, this article also focuses on the new time series initiative in the Arabian Sea and the Bay of Bengal under Sustained Indian Ocean Biogeochemistry and Ecosystem...
"Observation Obscurer" - Time Series Viewer, Editor and Processor
Andronov, I. L.
The program is described, which contains a set of subroutines suitable for East viewing and interactive filtering and processing of regularly and irregularly spaced time series. Being a 32-bit DOS application, it may be used as a default fast viewer/editor of time series in any compute shell ("commander") or in Windows. It allows to view the data in the "time" or "phase" mode, to remove ("obscure") or filter outstanding bad points; to make scale transformations and smoothing using few methods (e.g. mean with phase binning, determination of the statistically opti- mal number of phase bins; "running parabola" (Andronov, 1997, As. Ap. Suppl, 125, 207) fit and to make time series analysis using some methods, e.g. correlation, autocorrelation and histogram analysis: determination of extrema etc. Some features have been developed specially for variable star observers, e.g. the barycentric correction, the creation and fast analysis of "OC" diagrams etc. The manual for "hot keys" is presented. The computer code was compiled with a 32-bit Free Pascal (www.freepascal.org).
Indirect inference with time series observed with error
DEFF Research Database (Denmark)
Rossi, Eduardo; Santucci de Magistris, Paolo
estimation. We propose to solve this inconsistency by jointly estimating the nuisance and the structural parameters. Under standard assumptions, this estimator is consistent and asymptotically normal. A condition for the identification of ARMA plus noise is obtained. The proposed methodology is used......We analyze the properties of the indirect inference estimator when the observed series are contaminated by measurement error. We show that the indirect inference estimates are asymptotically biased when the nuisance parameters of the measurement error distribution are neglected in the indirect...... to estimate the parameters of continuous-time stochastic volatility models with auxiliary specifications based on realized volatility measures. Monte Carlo simulations shows the bias reduction of the indirect estimates obtained when the microstructure noise is explicitly modeled. Finally, an empirical...
United States forest disturbance trends observed with landsat time series
Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan. Huang
2013-01-01
Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...
United States Forest Disturbance Trends Observed Using Landsat Time Series
Masek, Jeffrey G.; Goward, Samuel N.; Kennedy, Robert E.; Cohen, Warren B.; Moisen, Gretchen G.; Schleeweis, Karen; Huang, Chengquan
2013-01-01
Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing U.S. land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest disturbance across the conterminous United States for 1985-2005. The geographic sample design used a probability-based scheme to encompass major forest types and maximize geographic dispersion. For each sample location disturbance was identified in the Landsat series using the Vegetation Change Tracker (VCT) algorithm. The NAFD analysis indicates that, on average, 2.77 Mha/yr of forests were disturbed annually, representing 1.09%/yr of US forestland. These satellite-based national disturbance rates estimates tend to be lower than those derived from land management inventories, reflecting both methodological and definitional differences. In particular the VCT approach used with a biennial time step has limited sensitivity to low-intensity disturbances. Unlike prior satellite studies, our biennial forest disturbance rates vary by nearly a factor of two between high and low years. High western US disturbance rates were associated with active fire years and insect activity, while variability in the east is more strongly related to harvest rates in managed forests. We note that generating a geographic sample based on representing forest type and variability may be problematic since the spatial pattern of disturbance does not necessarily correlate with forest type. We also find that the prevalence of diffuse, non-stand clearing disturbance in US forests makes the application of a biennial geographic sample problematic. Future satellite-based studies of disturbance at regional and national scales should focus on wall-to-wall analyses with annual time step for improved accuracy.
Osada, Y.; Ohta, Y.; Demachi, T.; Kido, M.; Fujimoto, H.; Azuma, R.; Hino, R.
2013-12-01
Large interplate earthquake repeatedly occurred in Japan Trench. Recently, the detail crustal deformation revealed by the nation-wide inland GPS network called as GEONET by GSI. However, the maximum displacement region for interplate earthquake is mainly located offshore region. GPS/Acoustic seafloor geodetic observation (hereafter GPS/A) is quite important and useful for understanding of shallower part of the interplate coupling between subducting and overriding plates. We typically conduct GPS/A in specific ocean area based on repeated campaign style using research vessel or buoy. Therefore, we cannot monitor the temporal variation of seafloor crustal deformation in real time. The one of technical issue on real time observation is kinematic GPS analysis because kinematic GPS analysis based on reference and rover data. If the precise kinematic GPS analysis will be possible in the offshore region, it should be promising method for real time GPS/A with USV (Unmanned Surface Vehicle) and a moored buoy. We assessed stability, precision and accuracy of StarFireTM global satellites based augmentation system. We primarily tested for StarFire in the static condition. In order to assess coordinate precision and accuracy, we compared 1Hz StarFire time series and post-processed precise point positioning (PPP) 1Hz time series by GIPSY-OASIS II processing software Ver. 6.1.2 with three difference product types (ultra-rapid, rapid, and final orbits). We also used difference interval clock information (30 and 300 seconds) for the post-processed PPP processing. The standard deviation of real time StarFire time series is less than 30 mm (horizontal components) and 60 mm (vertical component) based on 1 month continuous processing. We also assessed noise spectrum of the estimated time series by StarFire and post-processed GIPSY PPP results. We found that the noise spectrum of StarFire time series is similar pattern with GIPSY-OASIS II processing result based on JPL rapid orbit
Russian State Time and Earth Rotation Service: Observations, Eop Series, Prediction
Kaufman, M.; Pasynok, S.
2010-01-01
Russian State Time, Frequency and Earth Rotation Service provides the official EOP data and time for use in scientific, technical and metrological works in Russia. The observations of GLONASS and GPS on 30 stations in Russia, and also the Russian and worldwide observations data of VLBI (35 stations) and SLR (20 stations) are used now. To these three series of EOP the data calculated in two other Russian analysis centers are added: IAA (VLBI, GPS and SLR series) and MCC (SLR). Joint processing of these 7 series is carried out every day (the operational EOP data for the last day and the predicted values for 50 days). The EOP values are weekly refined and systematic errors of every individual series are corrected. The combined results become accessible on the VNIIFTRI server (ftp.imvp.ru) approximately at 6h UT daily.
Watanabe, T.; Nohara, D.
2017-12-01
The shorter temporal scale variation in the downward solar irradiance at the ground level (DSI) is not understood well because researches in the shorter-scale variation in the DSI is based on the ground observation and ground observation stations are located coarsely. Use of dataset derived from satellite observation will overcome such defect. DSI data and MODIS cloud properties product are analyzed simultaneously. Three metrics: mean, standard deviation and sample entropy, are used to evaluate time-series properties of the DSI. Three metrics are computed from two-hours time-series centered at the observation time of MODIS over the ground observation stations. We apply the regression methods to design prediction models of each three metrics from cloud properties. The validation of the model accuracy show that mean and standard deviation are predicted with a higher degree of accuracy and that the accuracy of prediction of sample entropy, which represents the complexity of time-series, is not high. One of causes of lower prediction skill of sample entropy is the resolution of the MODIS cloud properties. Higher sample entropy is corresponding to the rapid fluctuation, which is caused by the small and unordered cloud. It seems that such clouds isn't retrieved well.
Hermosilla, Txomin; Wulder, Michael A.; White, Joanne C.; Coops, Nicholas C.; Hobart, Geordie W.
2017-12-01
The use of time series satellite data allows for the temporally dense, systematic, transparent, and synoptic capture of land dynamics over time. Subsequent to the opening of the Landsat archive, several time series approaches for characterizing landscape change have been developed, often representing a particular analytical time window. The information richness and widespread utility of these time series data have created a need to maintain the currency of time series information via the addition of new data, as it becomes available. When an existing time series is temporally extended, it is critical that previously generated change information remains consistent, thereby not altering reported change statistics or science outcomes based on that change information. In this research, we investigate the impacts and implications of adding additional years to an existing 29-year annual Landsat time series for forest change. To do so, we undertook a spatially explicit comparison of the 29 overlapping years of a time series representing 1984-2012, with a time series representing 1984-2016. Surface reflectance values, and presence, year, and type of change were compared. We found that the addition of years to extend the time series had minimal effect on the annual surface reflectance composites, with slight band-specific differences (r ≥ 0.1) in the final years of the original time series being updated. The area of stand replacing disturbances and determination of change year are virtually unchanged for the overlapping period between the two time-series products. Over the overlapping temporal period (1984-2012), the total area of change differs by 0.53%, equating to an annual difference in change area of 0.019%. Overall, the spatial and temporal agreement of the changes detected by both time series was 96%. Further, our findings suggest that the entire pre-existing historic time series does not need to be re-processed during the update process. Critically, given the time
TIME SERIES MODELS OF THREE SETS OF RXTE OBSERVATIONS OF 4U 1543–47
International Nuclear Information System (INIS)
Koen, C.
2013-01-01
The X-ray nova 4U 1543–47 was in a different physical state (low/hard, high/soft, and very high) during the acquisition of each of the three time series analyzed in this paper. Standard time series models of the autoregressive moving average (ARMA) family are fitted to these series. The low/hard data can be adequately modeled by a simple low-order model with fixed coefficients, once the slowly varying mean count rate has been accounted for. The high/soft series requires a higher order model, or an ARMA model with variable coefficients. The very high state is characterized by a succession of 'dips', with roughly equal depths. These seem to appear independently of one another. The underlying stochastic series can again be modeled by an ARMA form, or roughly as the sum of an ARMA series and white noise. The structuring of each model in terms of short-lived aperiodic and 'quasi-periodic' components is discussed.
Linear time series modeling of GPS-derived TEC observations over the Indo-Thailand region
Suraj, Puram Sai; Kumar Dabbakuti, J. R. K.; Chowdhary, V. Rajesh; Tripathi, Nitin K.; Ratnam, D. Venkata
2017-12-01
This paper proposes a linear time series model to represent the climatology of the ionosphere and to investigate the characteristics of hourly averaged total electron content (TEC). The GPS-TEC observation data at the Bengaluru international global navigation satellite system (GNSS) service (IGS) station (geographic 13.02°N , 77.57°E ; geomagnetic latitude 4.4°N ) have been utilized for processing the TEC data during an extended period (2009-2016) in the 24{th} solar cycle. Solar flux F10.7p index, geomagnetic Ap index, and periodic oscillation factors have been considered to construct a linear TEC model. It is evident from the results that solar activity effect on TEC is high. It reaches the maximum value (˜ 40 TECU) during the high solar activity (HSA) year (2014) and minimum value (˜ 15 TECU) during the low solar activity (LSA) year (2009). The larger magnitudes of semiannual variations are observed during the HSA periods. The geomagnetic effect on TEC is relatively low, with the highest being ˜ 4 TECU (March 2015). The magnitude of periodic variations can be seen more significantly during HSA periods (2013-2015) and less during LSA periods (2009-2011). The correlation coefficient of 0.89 between the observations and model-based estimations has been found. The RMSE between the observed TEC and model TEC values is 4.0 TECU (linear model) and 4.21 TECU (IRI2016 Model). Further, the linear TEC model has been validated at different latitudes over the northern low-latitude region. The solar component (F10.7p index) value decreases with an increase in latitude. The magnitudes of the periodic component become less significant with the increase in latitude. The influence of geomagnetic component becomes less significant at Lucknow GNSS station (26.76°N, 80.88°E) when compared to other GNSS stations. The hourly averaged TEC values have been considered and ionospheric features are well recovered with linear TEC model.
A 40 Year Time Series of SBUV Observations: the Version 8.6 Processing
McPeters, Richard; Bhartia, P. K.; Flynn, L.
2012-01-01
Under a NASA program to produce long term data records from instruments on multiple satellites (MEaSUREs), data from a series of eight SBUV and SBUV 12 instruments have been reprocessed to create a 40 year long ozone time series. Data from the Nimbus 4 BUV, Nimbus 7 SBUV, and SBUV/2 instruments on NOAA 9, 11, 14, 16, 17, and 18 were used covering the period 1970 to 1972 and 1979 to the present. In past analyses an ozone time series was created from these instruments by adjusting ozone itself, instrument by instrument, for consistency during overlap periods. In the version 8.6 processing adjustments were made to the radiance calibration of each instrument to maintain a consistent calibration over the entire time series. Data for all eight instruments were then reprocessed using the adjusted radiances. Reprocessing is necessary to produce an accurate latitude dependence. Other improvements incorporated in version 8.6 included the use of the ozone cross sections of Brion, Daumont, and Malicet, and the use of a cloud height climatology derived from Aura OMI measurements. The new cross sections have a more accurate temperature dependence than the cross sections previously used. The OMI-based cloud heights account for the penetration of UV into the upper layers of clouds. The consistency of the version 8.6 time series was evaluated by intra-instrument comparisons during overlap periods, comparisons with ground-based instruments, and comparisons with measurements made by instruments on other satellites such as SAGE II and UARS MLS. These comparisons show that for the instruments on NOAA 16, 17 and 18, the instrument calibrations were remarkably stable and consistent from instrument to instrument. The data record from the Nimbus 7 SBUV was also very stable, and SAGE and ground-based comparisons show that the' calibration was consistent with measurements made years laterby the NOAA 16 instrument. The calibrations of the SBUV/2 instruments on NOAA 9, 11, and 14 were more of
The IRIS Data Management Center: Enabling Access to Observational Time Series Spanning Decades
Ahern, T.; Benson, R.; Trabant, C.
2009-04-01
The Incorporated Research Institutions for Seismology (IRIS) is funded by the National Science Foundation (NSF) to operate the facilities to generate, archive, and distribute seismological data to research communities in the United States and internationally. The IRIS Data Management System (DMS) is responsible for the ingestion, archiving, curation and distribution of these data. The IRIS Data Management Center (DMC) manages data from more than 100 permanent seismic networks, hundreds of temporary seismic deployments as well as data from other geophysical observing networks such as magnetotelluric sensors, ocean bottom sensors, superconducting gravimeters, strainmeters, surface meteorological measurements, and in-situ atmospheric pressure measurements. The IRIS DMC has data from more than 20 different types of sensors. The IRIS DMC manages approximately 100 terabytes of primary observational data. These data are archived in multiple distributed storage systems that insure data availability independent of any single catastrophic failure. Storage systems include both RAID systems of greater than 100 terabytes as well as robotic tape robots of petabyte capacity. IRIS performs routine transcription of the data to new media and storage systems to insure the long-term viability of the scientific data. IRIS adheres to the OAIS Data Preservation Model in most cases. The IRIS data model requires the availability of metadata describing the characteristics and geographic location of sensors before data can be fully archived. IRIS works with the International Federation of Digital Seismographic Networks (FDSN) in the definition and evolution of the metadata. The metadata insures that the data remain useful to both current and future generations of earth scientists. Curation of the metadata and time series is one of the most important activities at the IRIS DMC. Data analysts and an automated quality assurance system monitor the quality of the incoming data. This insures data
Time series study of EUV spicules observed by SUMER/SoHO
Xia, L. D.; Popescu, M. D.; Doyle, J. G.; Giannikakis, J.
2005-08-01
Here we study the dynamic properties of EUV spicules seen at the solar limb. The selected data were obtained as time series in polar coronal holes by SUMER/SoHO. The short exposure time and the almost fixed position of the spectrometer's slit allow the analysis of spicule properties such as occurrence, lifetime and Doppler velocity. Our data reveal that spicules occur repeatedly at the same location with a birth rate of around 0.16/min as estimated at 10´´ above the limb and a lifetime ranging from 15 down to ≈3 min. We are able to see some spicules showing a process of “falling after rising” indicated by the sudden change of the Doppler velocity sign. A periodicity of ≈5 min is sometimes discernible in their occurrence. Most spicules have a height between 10´´ and 20´´ above the limb. Some can stretch up to 40´´; these “long macro-spicules” seem to be comprised of a group of high spicules. Some of them have an obvious periodicity in the radiance of ≈5 min.
International Nuclear Information System (INIS)
Han Dong; Ma Wanyun; Liao Fulong; Yeh Meiling; Ouyang Zhigang; Sun Yunxu
2003-01-01
The spreading out of microvessel endothelial cells plays a key role in angiogenesis and the post-injury healing of endothelial cells. In our study, a physical force applied with an atomic force microscopic (AFM) cantilever tip in contact mode partly broke the peripheral adhesion that just-confluent cultured rat cerebral microvessel endothelial cells had formed with basal structures and resulted in the cells actively withdrawing from the stimulated area. Time-series changes in cell extension were imaged using tapping mode AFM, in conjunction with total internal reflection fluorescence microscopy, intensified charge-coupled device and field emission scanning electron microscopy. We also interpreted phase images of living endothelial cells. The results showed that formation of a fibronectin molecule monolayer is key to the spreading out of the cells. Lamellipods as well as filopods would spread out in temporal and spatial distribution following the formation of fibronectin layer. In addition, a lattice-like meshwork of filopods formed in the regions leading lamellipods, which would possibly provide a fulcrum for the filaments of the cytoskeleton within the leading cell body periphery
Global Sea Surface Temperature: A Harmonized Multi-sensor Time-series from Satellite Observations
Merchant, C. J.
2017-12-01
This paper presents the methods used to obtain a new global sea surface temperature (SST) dataset spanning the early 1980s to the present, intended for use as a climate data record (CDR). The dataset provides skin SST (the fundamental measurement) and an estimate of the daily mean SST at depths compatible with drifting buoys (adjusting for skin and diurnal variability). The depth SST provided enables the CDR to be used with in situ records and centennial-scale SST reconstructions. The new SST timeseries is as independent as possible from in situ observations, and from 1995 onwards is harmonized to an independent satellite reference (namely, SSTs from the Advanced Along Track Scanning Radiometer (Advanced ATSR)). This maximizes the utility of our new estimates of variability and long-term trends in interrogating previous datasets tied to in situ observations. The new SSTs include full resolution (swath, level 2) data, single-sensor gridded data (level 3, 0.05 degree latitude-longitude grid) and a multi-sensor optimal analysis (level 4, same grid). All product levels are consistent. All SSTs have validated uncertainty estimates attached. The sensors used include all Advanced Very High Resolution Radiometers from NOAA-6 onwards and the ATSR series. AVHRR brightness temperatures (BTs) are calculated from counts using a new in-flight re-calibration for each sensor, ultimately linked through to the AATSR BT calibration by a new harmonization technique. Artefacts in AVHRR BTs linked to varying instrument temperature, orbital regime and solar contamination are significantly reduced. These improvements in the AVHRR BTs (level 1) translate into improved cloud detection and SST (level 2). For cloud detection, we use a Bayesian approach for all sensors. For the ATSRs, SSTs are derived with sufficient accuracy and sensitivity using dual-view coefficients. This is not the case for single-view AVHRR observations, for which a physically based retrieval is employed, using a hybrid
Eberle, J.; Hüttich, C.; Schmullius, C.
2014-12-01
Spatial time series data are freely available around the globe from earth observation satellites and meteorological stations for many years until now. They provide useful and important information to detect ongoing changes of the environment; but for end-users it is often too complex to extract this information out of the original time series datasets. This issue led to the development of the Earth Observation Monitor (EOM), an operational framework and research project to provide simple access, analysis and monitoring tools for global spatial time series data. A multi-source data processing middleware in the backend is linked to MODIS data from Land Processes Distributed Archive Center (LP DAAC) and Google Earth Engine as well as daily climate station data from NOAA National Climatic Data Center. OGC Web Processing Services are used to integrate datasets from linked data providers or external OGC-compliant interfaces to the EOM. Users can either use the web portal (webEOM) or the mobile application (mobileEOM) to execute these processing services and to retrieve the requested data for a given point or polygon in userfriendly file formats (CSV, GeoTiff). Beside providing just data access tools, users can also do further time series analyses like trend calculations, breakpoint detections or the derivation of phenological parameters from vegetation time series data. Furthermore data from climate stations can be aggregated over a given time interval. Calculated results can be visualized in the client and downloaded for offline usage. Automated monitoring and alerting of the time series data integrated by the user is provided by an OGC Sensor Observation Service with a coupled OGC Web Notification Service. Users can decide which datasets and parameters are monitored with a given filter expression (e.g., precipitation value higher than x millimeter per day, occurrence of a MODIS Fire point, detection of a time series anomaly). Datasets integrated in the SOS service are
Assessment of vegetation trends in drylands from time series of earth observation data
Fensholt, R.; Horion, S.; Tagesson, T.; Ehammer, A.; Grogan, K.; Tian, F.; Huber, S.; Verbesselt, J.; Prince, S.D.; Tucker, C.J.; Rasmussen, K.
2015-01-01
This chapter summarizes approaches to the detection of dryland vegetation change and methods for observing spatio-temporal trends from space. An overview of suitable long-term Earth Observation (EO) based datasets for assessment of global dryland vegetation trends is provided and a status map of
National Research Council Canada - National Science Library
Adler, Robert
1997-01-01
We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...
Multivariate Time Series Search
National Aeronautics and Space Administration — Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical...
DEFF Research Database (Denmark)
Hisdal, H.; Holmqvist, E.; Hyvärinen, V.
Awareness that emission of greenhouse gases will raise the global temperature and change the climate has led to studies trying to identify such changes in long-term climate and hydrologic time series. This report, written by the......Awareness that emission of greenhouse gases will raise the global temperature and change the climate has led to studies trying to identify such changes in long-term climate and hydrologic time series. This report, written by the...
Energy Technology Data Exchange (ETDEWEB)
Schoenwiese, C D [J.W. Goethe Univ., Frankfurt (Germany). Inst. for Meteorology and Geophysics
1996-12-31
It is a well-known fact that human activities lead to an atmospheric concentration increase of some IR-active trace gases (greenhouse gases GHG) and that this influence enhances the `greenhouse effect`. However, there are major quantitative and regional uncertainties in the related climate model projections and the observational data reflect the whole complex of both anthropogenic and natural forcing of the climate system. This contribution aims at the separation of the anthropogenic enhanced greenhouse signal in observed global surface air temperature data versus other forcing using statistical methods such as multiple (multiforced) regressions and neural networks. The competitive natural forcing considered are volcanic and solar activity, in addition the ENSO (El Nino/Southern Oscillation) mechanism. This analysis will be extended also to the NAO (North Atlantic Oscillation) and anthropogenic sulfate formation in the troposphere
Energy Technology Data Exchange (ETDEWEB)
Schoenwiese, C.D. [J.W. Goethe Univ., Frankfurt (Germany). Inst. for Meteorology and Geophysics
1995-12-31
It is a well-known fact that human activities lead to an atmospheric concentration increase of some IR-active trace gases (greenhouse gases GHG) and that this influence enhances the `greenhouse effect`. However, there are major quantitative and regional uncertainties in the related climate model projections and the observational data reflect the whole complex of both anthropogenic and natural forcing of the climate system. This contribution aims at the separation of the anthropogenic enhanced greenhouse signal in observed global surface air temperature data versus other forcing using statistical methods such as multiple (multiforced) regressions and neural networks. The competitive natural forcing considered are volcanic and solar activity, in addition the ENSO (El Nino/Southern Oscillation) mechanism. This analysis will be extended also to the NAO (North Atlantic Oscillation) and anthropogenic sulfate formation in the troposphere
20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations
Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.
2016-12-01
Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.
Resolved, Time-Series Observations of Pluto-Charon with the Magellan Telescopes
Elliot, J. L.; Person, M. J.; Adams, E. R.; Gulbis, A. A. S.; Kramer, E. A.
2005-08-01
In support of prediction refinements at MIT for stellar occultations by Pluto and Charon, resolved photometric observations of Pluto and Charon at optical wavelengths have been carried out with the Magellan telescopes at Las Campanas Observatory for each apparition since 2001. Both Sloan and Johnson-Kron-Cousins filters have been used. The median natural image quality for the site is about 0.7 arcsec (with some nights better than 0.3 arcsec). These data yield accurate light ratios for the two bodies as a function of: (1) wavelength, (2) Charon's orbital phase, and (3) the sub-Earth latitude for Pluto and Charon. This information is needed to interpret the location of their center of light, relative to their center of mass, for unresolved images of Pluto and Charon taken with wide-field astrometric instruments. The Raymond and Beverly Magellan Instant Camera ("MagIC") -- the instrument used for these observations -- has a focal-plane scale of 0.069 arcsec/pix and a field of 2.3 arcmin. This field is large enough so that many of our Pluto-Charon frames can be tied to the International Coordinate Reference Frame (ICRF) with stars in the UCAC2 catalog. Initial results for this program have been reported by Clancy et al. (Highlights of Astr. vol. 13, in press), who found a strong trend in the Charon to Pluto light ratio over the wavelength range spanned by the Sloan filters. Further results from this program used to predict the 2005 July 11 stellar occultation by Charon will be presented. We gratefully acknowledge support from NASA Grant NNG04GF25G from the Planetary Astronomy program.
DEFF Research Database (Denmark)
Fischer, Paul; Hilbert, Astrid
2012-01-01
We introduce a platform which supplies an easy-to-handle, interactive, extendable, and fast analysis tool for time series analysis. In contrast to other software suits like Maple, Matlab, or R, which use a command-line-like interface and where the user has to memorize/look-up the appropriate...... commands, our application is select-and-click-driven. It allows to derive many different sequences of deviations for a given time series and to visualize them in different ways in order to judge their expressive power and to reuse the procedure found. For many transformations or model-ts, the user may...... choose between manual and automated parameter selection. The user can dene new transformations and add them to the system. The application contains efficient implementations of advanced and recent techniques for time series analysis including techniques related to extreme value analysis and filtering...
DEFF Research Database (Denmark)
Moskowitz, Tobias J.; Ooi, Yao Hua; Heje Pedersen, Lasse
2012-01-01
We document significant “time series momentum” in equity index, currency, commodity, and bond futures for each of the 58 liquid instruments we consider. We find persistence in returns for one to 12 months that partially reverses over longer horizons, consistent with sentiment theories of initial...... under-reaction and delayed over-reaction. A diversified portfolio of time series momentum strategies across all asset classes delivers substantial abnormal returns with little exposure to standard asset pricing factors and performs best during extreme markets. Examining the trading activities...
Woodward, Wayne A; Elliott, Alan C
2011-01-01
""There is scarcely a standard technique that the reader will find left out … this book is highly recommended for those requiring a ready introduction to applicable methods in time series and serves as a useful resource for pedagogical purposes.""-International Statistical Review (2014), 82""Current time series theory for practice is well summarized in this book.""-Emmanuel Parzen, Texas A&M University""What an extraordinary range of topics covered, all very insightfully. I like [the authors'] innovations very much, such as the AR factor table.""-David Findley, U.S. Census Bureau (retired)""…
Predicting chaotic time series
International Nuclear Information System (INIS)
Farmer, J.D.; Sidorowich, J.J.
1987-01-01
We present a forecasting technique for chaotic data. After embedding a time series in a state space using delay coordinates, we ''learn'' the induced nonlinear mapping using local approximation. This allows us to make short-term predictions of the future behavior of a time series, using information based only on past values. We present an error estimate for this technique, and demonstrate its effectiveness by applying it to several examples, including data from the Mackey-Glass delay differential equation, Rayleigh-Benard convection, and Taylor-Couette flow
Time series with tailored nonlinearities
Räth, C.; Laut, I.
2015-10-01
It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.
Reading, Michael J.; Santos, Isaac R.; Maher, Damien T.; Jeffrey, Luke C.; Tait, Douglas R.
2017-07-01
The oceans are a major source of the potent greenhouse gas nitrous oxide (N2O) to the atmosphere. However, little information is available on how estuaries and the coastal ocean may contribute to N2O budgets, and on the drivers of N2O in aquatic environments. This study utilised five time series stations along the freshwater to marine continuum in a sub-tropical estuary in Australia (Coffs Creek, Australia). Each time series station captured N2O, radon (222Rn, a natural submarine groundwater discharge tracer), dissolved nitrogen, and dissolved organic carbon (DOC) concentrations for a minimum of 25 h. The use of automated time series observations enabled spatial and tidal-scale variability of N2O to be captured. Groundwater was highly enriched in N2O (up to 306 nM) compared to the receiving surface water. Dissolved N2O supersaturation as high as 386% (27.4 nM) was observed in the upstream freshwater and brackish water areas which represented only a small (∼13%) proportion of the total estuary area. A large area of N2O undersaturation (as low as 53% or 3.9 nM) was observed in the mangrove-dominated lower estuary. This undersaturated area likely resulted from N2O consumption due to nitrate/nitrite (NOx) limitation in mangrove sediments subject to shallow porewater exchange. Overall, the estuary was a minor source of N2O to the atmosphere as the lower mangrove-dominated estuary sink of N2O counteracted groundwater-dominated source of N2O in the upper estuary. Average area-weighted N2O fluxes at the water-air interface approached zero (0.2-0.7 μmol m-2 d-1, depending on piston velocity model used), and were much lower than nitrogen-rich Northern Hemisphere estuaries that are considered large sources of N2O to the atmosphere. This study revealed a temporally and spatially diverse estuary, with areas of N2O production and consumption related to oxygen and total dissolved nitrogen availability, submarine groundwater discharge, and uptake within mangroves.
Directory of Open Access Journals (Sweden)
Jin-Woo Kim
2016-04-01
Full Text Available Spatiotemporal deformation of existing sinkholes and the surrounding region in Wink, TX are probed using time-series interferometric synthetic aperture radar (InSAR methods with radar images acquired from the Sentinel-1A satellite launched in April 2014. The two-dimensional deformation maps, calculated using InSAR observations from ascending and descending tracks, reveal that much of the observed deformation is vertical. Our results indicate that the sinkholes are still influenced by ground depression, implying that the sinkholes continue to expand. Particularly, a region 1 km northeast of sinkhole #2 is sinking at a rate of up to 13 cm/year, and its aerial extent has been enlarged in the past eight years when compared with a previous survey. Furthermore, there is a high correlation between groundwater level and surficial subsidence during the summer months, representing the complicated characteristics of sinkhole deformation under the influence of successive roof failures in underlying cavities. We also modeled the sinkhole deformation in a homogenous elastic half-space with two dislocation sources, and the ground depression above cavities could be numerically analyzed. Measurements of ongoing deformation in sinkholes and assessments of the stability of the land surface at sinkhole-prone locations in near real-time, are essential for mitigating the threat posed to people and property by the materialization of sinkholes.
Directory of Open Access Journals (Sweden)
Sylvie Bastuji-Garin
Full Text Available In uncontrolled before-after studies, CONSORT was shown to improve the reporting of randomised trials. Before-after studies ignore underlying secular trends and may overestimate the impact of interventions. Our aim was to assess the impact of the 2007 STROBE statement publication on the quality of observational study reporting, using both uncontrolled before-after analyses and interrupted time series.For this quasi-experimental study, original articles reporting cohort, case-control, and cross-sectional studies published between 2004 and 2010 in the four dermatological journals having the highest 5-year impact factors (≥ 4 were selected. We compared the proportions of STROBE items (STROBE score adequately reported in each article during three periods, two pre STROBE period (2004-2005 and 2006-2007 and one post STROBE period (2008-2010. Segmented regression analysis of interrupted time series was also performed.Of the 456 included articles, 187 (41% reported cohort studies, 166 (36.4% cross-sectional studies, and 103 (22.6% case-control studies. The median STROBE score was 57% (range, 18%-98%. Before-after analysis evidenced significant STROBE score increases between the two pre-STROBE periods and between the earliest pre-STROBE period and the post-STROBE period (median score2004-05 48% versus median score2008-10 58%, p<0.001 but not between the immediate pre-STROBE period and the post-STROBE period (median score2006-07 58% versus median score2008-10 58%, p = 0.42. In the pre STROBE period, the six-monthly mean STROBE score increased significantly, by 1.19% per six-month period (absolute increase 95%CI, 0.26% to 2.11%, p = 0.016. By segmented analysis, no significant changes in STROBE score trends occurred (-0.40%; 95%CI, -2.20 to 1.41; p = 0.64 in the post STROBE statement publication.The quality of reports increased over time but was not affected by STROBE. Our findings raise concerns about the relevance of uncontrolled before
International Nuclear Information System (INIS)
Vajna, Szabolcs; Kertész, János; Tóth, Bálint
2013-01-01
Many human-related activities show power-law decaying interevent time distribution with exponents usually varying between 1 and 2. We study a simple task-queuing model, which produces bursty time series due to the non-trivial dynamics of the task list. The model is characterized by a priority distribution as an input parameter, which describes the choice procedure from the list. We give exact results on the asymptotic behaviour of the model and we show that the interevent time distribution is power-law decaying for any kind of input distributions that remain normalizable in the infinite list limit, with exponents tunable between 1 and 2. The model satisfies a scaling law between the exponents of interevent time distribution (β) and autocorrelation function (α): α + β = 2. This law is general for renewal processes with power-law decaying interevent time distribution. We conclude that slowly decaying autocorrelation function indicates long-range dependence only if the scaling law is violated. (paper)
Durbin, J.; Koopman, S.J.M.
1998-01-01
The analysis of non-Gaussian time series using state space models is considered from both classical and Bayesian perspectives. The treatment in both cases is based on simulation using importance sampling and antithetic variables; Monte Carlo Markov chain methods are not employed. Non-Gaussian
Introduction to Time Series Modeling
Kitagawa, Genshiro
2010-01-01
In time series modeling, the behavior of a certain phenomenon is expressed in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part of the statistical modeling, it is very important and useful to learn fundamental methods of time series modeling. Illustrating how to build models for time series using basic methods, "Introduction to Time Series Modeling" covers numerous time series models and the various tools f
GPS Position Time Series @ JPL
Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen
2013-01-01
Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis
Eberle, J.; Schmullius, C.
2017-12-01
Increasing archives of global satellite data present a new challenge to handle multi-source satellite data in a user-friendly way. Any user is confronted with different data formats and data access services. In addition the handling of time-series data is complex as an automated processing and execution of data processing steps is needed to supply the user with the desired product for a specific area of interest. In order to simplify the access to data archives of various satellite missions and to facilitate the subsequent processing, a regional data and processing middleware has been developed. The aim of this system is to provide standardized and web-based interfaces to multi-source time-series data for individual regions on Earth. For further use and analysis uniform data formats and data access services are provided. Interfaces to data archives of the sensor MODIS (NASA) as well as the satellites Landsat (USGS) and Sentinel (ESA) have been integrated in the middleware. Various scientific algorithms, such as the calculation of trends and breakpoints of time-series data, can be carried out on the preprocessed data on the basis of uniform data management. Jupyter Notebooks are linked to the data and further processing can be conducted directly on the server using Python and the statistical language R. In addition to accessing EO data, the middleware is also used as an intermediary between the user and external databases (e.g., Flickr, YouTube). Standardized web services as specified by OGC are provided for all tools of the middleware. Currently, the use of cloud services is being researched to bring algorithms to the data. As a thematic example, an operational monitoring of vegetation phenology is being implemented on the basis of various optical satellite data and validation data from the German Weather Service. Other examples demonstrate the monitoring of wetlands focusing on automated discovery and access of Landsat and Sentinel data for local areas.
Shimada, Yutaka; Ikeguchi, Tohru; Shigehara, Takaomi
2012-10-01
In this Letter, we propose a framework to transform a complex network to a time series. The transformation from complex networks to time series is realized by the classical multidimensional scaling. Applying the transformation method to a model proposed by Watts and Strogatz [Nature (London) 393, 440 (1998)], we show that ring lattices are transformed to periodic time series, small-world networks to noisy periodic time series, and random networks to random time series. We also show that these relationships are analytically held by using the circulant-matrix theory and the perturbation theory of linear operators. The results are generalized to several high-dimensional lattices.
西埜, 晴久
2004-01-01
The paper investigates an application of long-memory processes to economic time series. We show properties of long-memory processes, which are motivated to model a long-memory phenomenon in economic time series. An FARIMA model is described as an example of long-memory model in statistical terms. The paper explains basic limit theorems and estimation methods for long-memory processes in order to apply long-memory models to economic time series.
Geometric noise reduction for multivariate time series.
Mera, M Eugenia; Morán, Manuel
2006-03-01
We propose an algorithm for the reduction of observational noise in chaotic multivariate time series. The algorithm is based on a maximum likelihood criterion, and its goal is to reduce the mean distance of the points of the cleaned time series to the attractor. We give evidence of the convergence of the empirical measure associated with the cleaned time series to the underlying invariant measure, implying the possibility to predict the long run behavior of the true dynamics.
Statistical criteria for characterizing irradiance time series.
Energy Technology Data Exchange (ETDEWEB)
Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.
2010-10-01
We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.
Forecasting Cryptocurrencies Financial Time Series
DEFF Research Database (Denmark)
Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco
2018-01-01
This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely...
Models for dependent time series
Tunnicliffe Wilson, Granville; Haywood, John
2015-01-01
Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational mater
International Nuclear Information System (INIS)
Zhong Jian; Dong Gang; Sun Yimei; Zhang Zhaoyang; Wu Yuqin
2016-01-01
The present work reports the development of nonlinear time series prediction method of genetic algorithm (GA) with singular spectrum analysis (SSA) for forecasting the surface wind of a point station in the South China Sea (SCS) with scatterometer observations. Before the nonlinear technique GA is used for forecasting the time series of surface wind, the SSA is applied to reduce the noise. The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique. The predictions have been compared with persistence forecasts in terms of root mean square error. The predicted surface wind with GA and SSA made up to four days (longer for some point station) in advance have been found to be significantly superior to those made by persistence model. This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. (paper)
Clustering of financial time series
D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo
2013-05-01
This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.
Time series analysis time series analysis methods and applications
Rao, Tata Subba; Rao, C R
2012-01-01
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respect...
Forecasting Cryptocurrencies Financial Time Series
Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco
2018-01-01
This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely on Dynamic Model Averaging to combine a large set of univariate Dynamic Linear Models and several multivariate Vector Autoregressive models with different forms of time variation. We find statistical si...
Modeling Time Series Data for Supervised Learning
Baydogan, Mustafa Gokce
2012-01-01
Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…
Koslow, J. A.; Brodeur, R.; Duffy-Anderson, J. T.; Perry, I.; jimenez Rosenberg, S.; Aceves, G.
2016-02-01
Ichthyoplankton time series available from the Bering Sea, Gulf of Alaska and California Current (Oregon to Baja California) provide a potential ocean observing network to assess climate impacts on fish communities along the west coast of North America. Larval fish abundance reflects spawning stock biomass, so these data sets provide indicators of the status of a broad range of exploited and unexploited fish populations. Analyses to date have focused on individual time series, which generally exhibit significant change in relation to climate. Off California, a suite of 24 midwater fish taxa have declined > 60%, correlated with declining midwater oxygen concentrations, and overall larval fish abundance has declined 72% since 1969, a trend based on the decline of predominantly cool-water affinity taxa in response to warming ocean temperatures. Off Oregon, there were dramatic differences in community structure and abundance of larval fishes between warm and cool ocean conditions. Midwater deoxygenation and warming sea surface temperature trends are predicted to continue as a result of global climate change. US, Canadian, and Mexican fishery scientists are now collaborating in a virtual ocean observing network to synthesize available ichthyoplankton time series and compare patterns of change in relation to climate. This will provide regional indicators of populations and groups of taxa sensitive to warming, deoxygenation and potentially other stressors, establish the relevant scales of coherence among sub-regions and across Large Marine Ecosystems, and provide the basis for predicting future climate change impacts on these ecosystems.
Homogenising time series: beliefs, dogmas and facts
Domonkos, P.
2011-06-01
In the recent decades various homogenisation methods have been developed, but the real effects of their application on time series are still not known sufficiently. The ongoing COST action HOME (COST ES0601) is devoted to reveal the real impacts of homogenisation methods more detailed and with higher confidence than earlier. As a part of the COST activity, a benchmark dataset was built whose characteristics approach well the characteristics of real networks of observed time series. This dataset offers much better opportunity than ever before to test the wide variety of homogenisation methods, and analyse the real effects of selected theoretical recommendations. Empirical results show that real observed time series usually include several inhomogeneities of different sizes. Small inhomogeneities often have similar statistical characteristics than natural changes caused by climatic variability, thus the pure application of the classic theory that change-points of observed time series can be found and corrected one-by-one is impossible. However, after homogenisation the linear trends, seasonal changes and long-term fluctuations of time series are usually much closer to the reality than in raw time series. Some problems around detecting multiple structures of inhomogeneities, as well as that of time series comparisons within homogenisation procedures are discussed briefly in the study.
Stochastic models for time series
Doukhan, Paul
2018-01-01
This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit ...
Entropic Analysis of Electromyography Time Series
Kaufman, Miron; Sung, Paul
2005-03-01
We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.
International Nuclear Information System (INIS)
Owens, E.H.; Sergy, G.A.
2005-01-01
In 1974, the oil tanker Metula ran aground in the Strait of Magellan, Chile and spilled about 50,000 tons of light Arabian crude and 2,000 tons of Bunker C fuel. No attempt was made to recover or treat the stranded oil and the coast was left to recover by natural attenuation. Field visits to the coastal sites affected by the spill were conducted 30 years after the incident. The survey in 2005 repeated observations and measurements made in 1998 in the heavily affected Punta Espora area that documented salt marsh recovery at 2 sites, and changes in asphalt pavement at a third site. The 1998 survey also indicated that tilling was responsible for a significant increase in the number of plants that recolonized the area. A comparison of the plant counts between 1998 and 2005 showed that the number of plants in tilled plots was reduced because of fewer larger plants. A comparison of oil distribution in the west marsh from 1998 to 2005 showed that recolonization was evident. A large 550 m-long asphalt pavement on a mixed sediment beach showed very little changes in pavement area in the aftermath of the spill. However, the upper edge of the pavement showed signs of erosion by backwash action of waves during high-tide. The presence of surface oil cover continues to dominate the physical character of the upper intertidal and supratidal zones. 11 refs., 6 tabs., 3 figs
International Nuclear Information System (INIS)
Shen Yuandeng; Liu Yu; Liu Rui
2011-01-01
We present stereoscopic observations of six sequential eruptions of a filament in the active region NOAA 11045 on 2010 Feb 8, with the advantage of the STEREO twin viewpoints in combination with Earth's viewpoint from SOHO instruments and ground-based telescopes. The last one of the six eruptions is a coronal mass ejection, but the others are not. The flare in this successful one is more intense than in the others. Moreover, the velocity of filament material in the successful one is also the largest among them. Interestingly, all the filament velocities are found to be proportional to the power of their flares. We calculate magnetic field intensity at low altitude, the decay indexes of the external field above the filament, and the asymmetry properties of the overlying fields before and after the failed eruptions and find little difference between them, indicating the same coronal confinement exists for both the failed and successful eruptions. The results suggest that, besides the confinement of the coronal magnetic field, the energy released in the low corona should be another crucial element affecting a failed or successful filament eruption. That is, a coronal mass ejection can only be launched if the energy released exceeds some critical value, given the same initial coronal conditions.
Energy Technology Data Exchange (ETDEWEB)
Owens, E.H. [Polaris Applied Sciences Inc., Bainbridge Island, WA (United States); Sergy, G.A. [Environment Canada, Edmonton, AB (Canada)
2005-07-01
In 1974, the oil tanker Metula ran aground in the Strait of Magellan, Chile and spilled about 50,000 tons of light Arabian crude and 2,000 tons of Bunker C fuel. No attempt was made to recover or treat the stranded oil and the coast was left to recover by natural attenuation. Field visits to the coastal sites affected by the spill were conducted 30 years after the incident. The survey in 2005 repeated observations and measurements made in 1998 in the heavily affected Punta Espora area that documented salt marsh recovery at 2 sites, and changes in asphalt pavement at a third site. The 1998 survey also indicated that tilling was responsible for a significant increase in the number of plants that recolonized the area. A comparison of the plant counts between 1998 and 2005 showed that the number of plants in tilled plots was reduced because of fewer larger plants. A comparison of oil distribution in the west marsh from 1998 to 2005 showed that recolonization was evident. A large 550 m-long asphalt pavement on a mixed sediment beach showed very little changes in pavement area in the aftermath of the spill. However, the upper edge of the pavement showed signs of erosion by backwash action of waves during high-tide. The presence of surface oil cover continues to dominate the physical character of the upper intertidal and supratidal zones. 11 refs., 6 tabs., 3 figs.
Time averaging, ageing and delay analysis of financial time series
Cherstvy, Andrey G.; Vinod, Deepak; Aghion, Erez; Chechkin, Aleksei V.; Metzler, Ralf
2017-06-01
We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.
van den Akker, R.
2007-01-01
This thesis adresses statistical problems in econometrics. The first part contributes statistical methodology for nonnegative integer-valued time series. The second part of this thesis discusses semiparametric estimation in copula models and develops semiparametric lower bounds for a large class of
Trottini, Mario; Vigo, Isabel; Belda, Santiago
2015-01-01
Given a time series, running trends analysis (RTA) involves evaluating least squares trends over overlapping time windows of L consecutive time points, with overlap by all but one observation. This produces a new series called the “running trends series,” which is used as summary statistics of the original series for further analysis. In recent years, RTA has been widely used in climate applied research as summary statistics for time series and time series association. There is no doubt that ...
Influential Observations in Time Series.
1984-07-01
to appear). 20. Treadway, A. B. (1978). Ifectos sabre la economia espanola de usa devaluacion da Ia "eseta, undacion Ramon-Areces, Madrid. . 21...Also, w (X) z and ;(Xw’X) + 0. in practice this result means that lA . when w is large, all the estimated coefficients w0 are pulled down towards
Highly comparative time-series analysis: the empirical structure of time series and their methods.
Fulcher, Ben D; Little, Max A; Jones, Nick S
2013-06-06
The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.
Clinical and epidemiological rounds. Time series
Directory of Open Access Journals (Sweden)
León-Álvarez, Alba Luz
2016-07-01
Full Text Available Analysis of time series is a technique that implicates the study of individuals or groups observed in successive moments in time. This type of analysis allows the study of potential causal relationships between different variables that change over time and relate to each other. It is the most important technique to make inferences about the future, predicting, on the basis or what has happened in the past and it is applied in different disciplines of knowledge. Here we discuss different components of time series, the analysis technique and specific examples in health research.
A Time Series Forecasting Method
Directory of Open Access Journals (Sweden)
Wang Zhao-Yu
2017-01-01
Full Text Available This paper proposes a novel time series forecasting method based on a weighted self-constructing clustering technique. The weighted self-constructing clustering processes all the data patterns incrementally. If a data pattern is not similar enough to an existing cluster, it forms a new cluster of its own. However, if a data pattern is similar enough to an existing cluster, it is removed from the cluster it currently belongs to and added to the most similar cluster. During the clustering process, weights are learned for each cluster. Given a series of time-stamped data up to time t, we divide it into a set of training patterns. By using the weighted self-constructing clustering, the training patterns are grouped into a set of clusters. To estimate the value at time t + 1, we find the k nearest neighbors of the input pattern and use these k neighbors to decide the estimation. Experimental results are shown to demonstrate the effectiveness of the proposed approach.
Molnar, Gyula I.; Susskind, Joel; Iredell, Lena
2011-01-01
In the beginning, a good measure of a GMCs performance was their ability to simulate the observed mean seasonal cycle. That is, a reasonable simulation of the means (i.e., small biases) and standard deviations of TODAY?S climate would suffice. Here, we argue that coupled GCM (CG CM for short) simulations of FUTURE climates should be evaluated in much more detail, both spatially and temporally. Arguably, it is not the bias, but rather the reliability of the model-generated anomaly time-series, even down to the [C]GCM grid-scale, which really matter. This statement is underlined by the social need to address potential REGIONAL climate variability, and climate drifts/changes in a manner suitable for policy decisions.
Sun, Wenchao; Ishidaira, Hiroshi; Bastola, Satish; Yu, Jingshan
2015-05-01
Lacking observation data for calibration constrains applications of hydrological models to estimate daily time series of streamflow. Recent improvements in remote sensing enable detection of river water-surface width from satellite observations, making possible the tracking of streamflow from space. In this study, a method calibrating hydrological models using river width derived from remote sensing is demonstrated through application to the ungauged Irrawaddy Basin in Myanmar. Generalized likelihood uncertainty estimation (GLUE) is selected as a tool for automatic calibration and uncertainty analysis. Of 50,000 randomly generated parameter sets, 997 are identified as behavioral, based on comparing model simulation with satellite observations. The uncertainty band of streamflow simulation can span most of 10-year average monthly observed streamflow for moderate and high flow conditions. Nash-Sutcliffe efficiency is 95.7% for the simulated streamflow at the 50% quantile. These results indicate that application to the target basin is generally successful. Beyond evaluating the method in a basin lacking streamflow data, difficulties and possible solutions for applications in the real world are addressed to promote future use of the proposed method in more ungauged basins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
International Work-Conference on Time Series
Pomares, Héctor; Valenzuela, Olga
2017-01-01
This volume of selected and peer-reviewed contributions on the latest developments in time series analysis and forecasting updates the reader on topics such as analysis of irregularly sampled time series, multi-scale analysis of univariate and multivariate time series, linear and non-linear time series models, advanced time series forecasting methods, applications in time series analysis and forecasting, advanced methods and online learning in time series and high-dimensional and complex/big data time series. The contributions were originally presented at the International Work-Conference on Time Series, ITISE 2016, held in Granada, Spain, June 27-29, 2016. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary rese arch encompassing the disciplines of comput...
Detecting chaos in irregularly sampled time series.
Kulp, C W
2013-09-01
Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.
Multiple Indicator Stationary Time Series Models.
Sivo, Stephen A.
2001-01-01
Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…
Inferring interdependencies from short time series
Indian Academy of Sciences (India)
Abstract. Complex networks provide an invaluable framework for the study of interlinked dynamical systems. In many cases, such networks are constructed from observed time series by first estimating the ...... does not quantify causal relations (unlike IOTA, or .... Africa_map_regions.svg, which is under public domain.
On modeling panels of time series
Ph.H.B.F. Franses (Philip Hans)
2002-01-01
textabstractThis paper reviews research issues in modeling panels of time series. Examples of this type of data are annually observed macroeconomic indicators for all countries in the world, daily returns on the individual stocks listed in the S&P500, and the sales records of all items in a
Climate Prediction Center (CPC) Global Temperature Time Series
National Oceanic and Atmospheric Administration, Department of Commerce — The global temperature time series provides time series charts using station based observations of daily temperature. These charts provide information about the...
Climate Prediction Center (CPC) Global Precipitation Time Series
National Oceanic and Atmospheric Administration, Department of Commerce — The global precipitation time series provides time series charts showing observations of daily precipitation as well as accumulated precipitation compared to normal...
INSAR observations of the DPRK event series
Mellors, R. J.; Ford, S. R.; Walter, W. R.
2017-12-01
Interferometric synthetic aperture radar (INSAR) data have revealed signals associated with the recent DPRK events in 2016 and 2017. These signals include decorrelation and indications of subsidence. Both standard phase differences and amplitude offsets are calculated. We show results of INSAR analysis as conducted using C and L band data and investigate the causes of the decorrelation (e.g. subsidence, landslide, or spall) and compare the observed signal with numerical models of deformation and seismic observations. A time series approach is applied to constrain post-event deformation at the weeks to months' timescale. We compare the INSAR observations of the DPRK tests with previous observations of events at other source regions using ERS archive data, which revealed a variety of post-seismic signatures. The signatures are evaluated with respect to the known geology and causes, including long-term surface relaxation and possible groundwater/thermal effects. Particular focus is on the sites on Pahute and Rainier Mesa, which displayed long-term subsidence signals that extended for several years after the explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC
Building Chaotic Model From Incomplete Time Series
Siek, Michael; Solomatine, Dimitri
2010-05-01
This paper presents a number of novel techniques for building a predictive chaotic model from incomplete time series. A predictive chaotic model is built by reconstructing the time-delayed phase space from observed time series and the prediction is made by a global model or adaptive local models based on the dynamical neighbors found in the reconstructed phase space. In general, the building of any data-driven models depends on the completeness and quality of the data itself. However, the completeness of the data availability can not always be guaranteed since the measurement or data transmission is intermittently not working properly due to some reasons. We propose two main solutions dealing with incomplete time series: using imputing and non-imputing methods. For imputing methods, we utilized the interpolation methods (weighted sum of linear interpolations, Bayesian principle component analysis and cubic spline interpolation) and predictive models (neural network, kernel machine, chaotic model) for estimating the missing values. After imputing the missing values, the phase space reconstruction and chaotic model prediction are executed as a standard procedure. For non-imputing methods, we reconstructed the time-delayed phase space from observed time series with missing values. This reconstruction results in non-continuous trajectories. However, the local model prediction can still be made from the other dynamical neighbors reconstructed from non-missing values. We implemented and tested these methods to construct a chaotic model for predicting storm surges at Hoek van Holland as the entrance of Rotterdam Port. The hourly surge time series is available for duration of 1990-1996. For measuring the performance of the proposed methods, a synthetic time series with missing values generated by a particular random variable to the original (complete) time series is utilized. There exist two main performance measures used in this work: (1) error measures between the actual
A Course in Time Series Analysis
Peña, Daniel; Tsay, Ruey S
2011-01-01
New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, a
Estimating High-Dimensional Time Series Models
DEFF Research Database (Denmark)
Medeiros, Marcelo C.; Mendes, Eduardo F.
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is, possibly......, larger than the number of observations. We show the adaLASSO consistently chooses the relevant variables as the number of observations increases (model selection consistency), and has the oracle property, even when the errors are non-Gaussian and conditionally heteroskedastic. A simulation study shows...
The analysis of time series: an introduction
National Research Council Canada - National Science Library
Chatfield, Christopher
1989-01-01
.... A variety of practical examples are given to support the theory. The book covers a wide range of time-series topics, including probability models for time series, Box-Jenkins forecasting, spectral analysis, linear systems and system identification...
Prediction and Geometry of Chaotic Time Series
National Research Council Canada - National Science Library
Leonardi, Mary
1997-01-01
This thesis examines the topic of chaotic time series. An overview of chaos, dynamical systems, and traditional approaches to time series analysis is provided, followed by an examination of state space reconstruction...
Global Population Density Grid Time Series Estimates
National Aeronautics and Space Administration — Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's...
Nonlinear time series analysis with R
Huffaker, Ray; Rosa, Rodolfo
2017-01-01
In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjec...
Kolmogorov Space in Time Series Data
Kanjamapornkul, K.; Pinčák, R.
2016-01-01
We provide the proof that the space of time series data is a Kolmogorov space with $T_{0}$-separation axiom using the loop space of time series data. In our approach we define a cyclic coordinate of intrinsic time scale of time series data after empirical mode decomposition. A spinor field of time series data comes from the rotation of data around price and time axis by defining a new extradimension to time series data. We show that there exist hidden eight dimensions in Kolmogorov space for ...
Effective Feature Preprocessing for Time Series Forecasting
DEFF Research Database (Denmark)
Zhao, Junhua; Dong, Zhaoyang; Xu, Zhao
2006-01-01
Time series forecasting is an important area in data mining research. Feature preprocessing techniques have significant influence on forecasting accuracy, therefore are essential in a forecasting model. Although several feature preprocessing techniques have been applied in time series forecasting...... performance in time series forecasting. It is demonstrated in our experiment that, effective feature preprocessing can significantly enhance forecasting accuracy. This research can be a useful guidance for researchers on effectively selecting feature preprocessing techniques and integrating them with time...... series forecasting models....
Schwab, Markus J.; Brauer, Achim; Błaszkiewicz, Mirosław; Raab, Thomas; Wilmking, Martin
2015-04-01
Understanding causes and effects of present-day climate change on landscapes and the human habitat faces two main challenges, (i) too short time series of instrumental observation that do not cover the full range of variability since mechanisms of climate change and landscape evolution work on different time scales, which often not susceptible to human perception, and, (ii) distinct regional differences due to the location with respect to oceanic/continental climatic influences, the geological underground, and the history and intensity of anthropogenic land-use. Both challenges are central for the ICLEA research strategy and demand a high degree of interdisciplinary. In particular, the need to link observations and measurements of ongoing changes with information from the past taken from natural archives requires joint work of scientists with very different time perspectives. On the one hand, scientists that work at geological time scales of thousands and more years and, on the other hand, those observing and investigating recent processes at short time scales. The GFZ, Greifswald University and the Brandenburg University of Technology together with their partner the Polish Academy of Sciences strive for focusing their research capacities and expertise in ICLEA. ICLEA offers young researchers an interdisciplinary and structured education and promote their early independence through coaching and mentoring. Postdoctoral rotation positions at the ICLEA partner institutions ensure mobility of young researchers and promote dissemination of information and expertise between disciplines. Training, Research and Analytical workshops between research partners of the ICLEA virtual institute are another important measure to qualify young researchers. The long-term mission of the Virtual Institute is to provide a substantiated data basis for sustained environmental maintenance based on a profound process understanding at all relevant time scales. Aim is to explore processes of
Directory of Open Access Journals (Sweden)
F. Fusseis
2012-03-01
Full Text Available We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm^{3} proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time.
We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process.
Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (2048^{3} voxels in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway.
Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the
Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.
2011-10-01
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (6.4 × 109 voxel each) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop. We
Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.
2012-03-01
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Hidden Markov Models for Time Series An Introduction Using R
Zucchini, Walter
2009-01-01
Illustrates the flexibility of HMMs as general-purpose models for time series data. This work presents an overview of HMMs for analyzing time series data, from continuous-valued, circular, and multivariate series to binary data, bounded and unbounded counts and categorical observations.
Time Series Analysis and Forecasting by Example
Bisgaard, Soren
2011-01-01
An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in
Directory of Open Access Journals (Sweden)
Jagai Jyotsna S
2007-07-01
Full Text Available Abstract Background This study documented elevated rates of emergency room (ER visits for acute upper and lower respiratory infections and asthma-related conditions in the children of Quito, Ecuador associated with the eruption of Guagua Pichincha in April of 2000. Methods We abstracted 5169 (43% females ER records with primary respiratory conditions treated from January 1 – December 27, 2000 and examined the change in pediatric ER visits for respiratory conditions before, during, and after exposure events of April, 2000. We applied a Poisson regression model adapted to time series of cases for three non-overlapping disease categories: acute upper respiratory infection (AURI, acute lower respiratory infection (ALRI, and asthma-related conditions in boys and girls for three age groups: 0–4, 5–9, and 10–15 years. Results At the main pediatric medical facility, the Baca Ortiz Pediatric Hospital, the rate of emergency room (ER visits due to respiratory conditions substantially increased in the three weeks after eruption (RR = 2.22, 95%CI = [1.95, 2.52] and RR = 1.72 95%CI = [1.49, 1.97] for lower and upper respiratory tract infections respectively. The largest impact of eruptions on respiratory distress was observed in children younger than 5 years (RR = 2.21, 95%CI = [1.79, 2.73] and RR = 2.16 95%CI = [1.67, 2.76] in boys and girls respectively. The rate of asthma and asthma-related diagnosis doubled during the period of volcano fumarolic activity (RR = 1.97, 95%CI = [1.19, 3.24]. Overall, 28 days of volcanic activity and ash releases resulted in 345 (95%CI = [241, 460] additional ER visits due to respiratory conditions. Conclusion The study has demonstrated strong relationship between ash exposure and respiratory effects in children.
Naumova, Elena N; Yepes, Hugo; Griffiths, Jeffrey K; Sempértegui, Fernando; Khurana, Gauri; Jagai, Jyotsna S; Játiva, Edgar; Estrella, Bertha
2007-07-24
This study documented elevated rates of emergency room (ER) visits for acute upper and lower respiratory infections and asthma-related conditions in the children of Quito, Ecuador associated with the eruption of Guagua Pichincha in April of 2000. We abstracted 5169 (43% females) ER records with primary respiratory conditions treated from January 1-December 27, 2000 and examined the change in pediatric ER visits for respiratory conditions before, during, and after exposure events of April, 2000. We applied a Poisson regression model adapted to time series of cases for three non-overlapping disease categories: acute upper respiratory infection (AURI), acute lower respiratory infection (ALRI), and asthma-related conditions in boys and girls for three age groups: 0-4, 5-9, and 10-15 years. At the main pediatric medical facility, the Baca Ortiz Pediatric Hospital, the rate of emergency room (ER) visits due to respiratory conditions substantially increased in the three weeks after eruption (RR = 2.22, 95%CI = [1.95, 2.52] and RR = 1.72 95%CI = [1.49, 1.97] for lower and upper respiratory tract infections respectively. The largest impact of eruptions on respiratory distress was observed in children younger than 5 years (RR = 2.21, 95%CI = [1.79, 2.73] and RR = 2.16 95%CI = [1.67, 2.76] in boys and girls respectively). The rate of asthma and asthma-related diagnosis doubled during the period of volcano fumarolic activity (RR = 1.97, 95%CI = [1.19, 3.24]). Overall, 28 days of volcanic activity and ash releases resulted in 345 (95%CI = [241, 460]) additional ER visits due to respiratory conditions. The study has demonstrated strong relationship between ash exposure and respiratory effects in children.
Duality between Time Series and Networks
Campanharo, Andriana S. L. O.; Sirer, M. Irmak; Malmgren, R. Dean; Ramos, Fernando M.; Amaral, Luís A. Nunes.
2011-01-01
Studying the interaction between a system's components and the temporal evolution of the system are two common ways to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that different time series result in networks with distinct topological properties, it remains unclear how these topological properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate inverse operation, making it possible to use network statistics to characterize time series and time series statistics to characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and confirm that application of the proposed map retains much of the information encoded in the original time series (or networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways. PMID:21858093
A Review of Subsequence Time Series Clustering
Directory of Open Access Journals (Sweden)
Seyedjamal Zolhavarieh
2014-01-01
Full Text Available Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.
A review of subsequence time series clustering.
Zolhavarieh, Seyedjamal; Aghabozorgi, Saeed; Teh, Ying Wah
2014-01-01
Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.
A Review of Subsequence Time Series Clustering
Teh, Ying Wah
2014-01-01
Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies. PMID:25140332
Data mining in time series databases
Kandel, Abraham; Bunke, Horst
2004-01-01
Adding the time dimension to real-world databases produces Time SeriesDatabases (TSDB) and introduces new aspects and difficulties to datamining and knowledge discovery. This book covers the state-of-the-artmethodology for mining time series databases. The novel data miningmethods presented in the book include techniques for efficientsegmentation, indexing, and classification of noisy and dynamic timeseries. A graph-based method for anomaly detection in time series isdescribed and the book also studies the implications of a novel andpotentially useful representation of time series as strings. Theproblem of detecting changes in data mining models that are inducedfrom temporal databases is additionally discussed.
Causal strength induction from time series data.
Soo, Kevin W; Rottman, Benjamin M
2018-04-01
One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
International Work-Conference on Time Series
Pomares, Héctor
2016-01-01
This volume presents selected peer-reviewed contributions from The International Work-Conference on Time Series, ITISE 2015, held in Granada, Spain, July 1-3, 2015. It discusses topics in time series analysis and forecasting, advanced methods and online learning in time series, high-dimensional and complex/big data time series as well as forecasting in real problems. The International Work-Conferences on Time Series (ITISE) provide a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing the disciplines of computer science, mathematics, statistics and econometrics.
BRITS: Bidirectional Recurrent Imputation for Time Series
Cao, Wei; Wang, Dong; Li, Jian; Zhou, Hao; Li, Lei; Li, Yitan
2018-01-01
Time series are widely used as signals in many classification/regression tasks. It is ubiquitous that time series contains many missing values. Given multiple correlated time series data, how to fill in missing values and to predict their class labels? Existing imputation methods often impose strong assumptions of the underlying data generating process, such as linear dynamics in the state space. In this paper, we propose BRITS, a novel method based on recurrent neural networks for missing va...
Frontiers in Time Series and Financial Econometrics
Ling, S.; McAleer, M.J.; Tong, H.
2015-01-01
__Abstract__ Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highlight several areas of research by leading academics in which novel methods have contrib...
Neural Network Models for Time Series Forecasts
Tim Hill; Marcus O'Connor; William Remus
1996-01-01
Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...
Kaier, K; Meyer, E; Dettenkofer, M; Frank, U
2010-10-01
Two multivariate time-series analyses were carried out to identify the impact of bed occupancy rates, turnover intervals and the average length of hospital stay on the spread of multidrug-resistant bacteria in a teaching hospital. Epidemiological data on the incidences of meticillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing bacteria were collected. Time-series of bed occupancy rates, turnover intervals and the average length of stay were tested for inclusion in the models as independent variables. Incidence was defined as nosocomial cases per 1000 patient-days. This included all patients infected or colonised with MRSA/ESBL more than 48h after admission. Between January 2003 and July 2008, a mean incidence of 0.15 nosocomial MRSA cases was identified. ESBL was not included in the surveillance until January 2005. Between January 2005 and July 2008 the mean incidence of nosocomial ESBL was also 0.15 cases per 1000 patient-days. The two multivariate models demonstrate a temporal relationship between bed occupancy rates in general wards and the incidence of nosocomial MRSA and ESBL. Similarly, the temporal relationship between the monthly average length of stay in intensive care units (ICUs) and the incidence of nosocomial MRSA and ESBL was demonstrated. Overcrowding in general wards and long periods of ICU stay were identified as factors influencing the spread of multidrug-resistant bacteria in hospital settings. Copyright 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Forecasting Enrollments with Fuzzy Time Series.
Song, Qiang; Chissom, Brad S.
The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…
Analysis of Heavy-Tailed Time Series
DEFF Research Database (Denmark)
Xie, Xiaolei
This thesis is about analysis of heavy-tailed time series. We discuss tail properties of real-world equity return series and investigate the possibility that a single tail index is shared by all return series of actively traded equities in a market. Conditions for this hypothesis to be true...... are identified. We study the eigenvalues and eigenvectors of sample covariance and sample auto-covariance matrices of multivariate heavy-tailed time series, and particularly for time series with very high dimensions. Asymptotic approximations of the eigenvalues and eigenvectors of such matrices are found...... and expressed in terms of the parameters of the dependence structure, among others. Furthermore, we study an importance sampling method for estimating rare-event probabilities of multivariate heavy-tailed time series generated by matrix recursion. We show that the proposed algorithm is efficient in the sense...
The foundations of modern time series analysis
Mills, Terence C
2011-01-01
This book develops the analysis of Time Series from its formal beginnings in the 1890s through to the publication of Box and Jenkins' watershed publication in 1970, showing how these methods laid the foundations for the modern techniques of Time Series analysis that are in use today.
Lag space estimation in time series modelling
DEFF Research Database (Denmark)
Goutte, Cyril
1997-01-01
The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...
Bootstrapping a time series model
International Nuclear Information System (INIS)
Son, M.S.
1984-01-01
The bootstrap is a methodology for estimating standard errors. The idea is to use a Monte Carlo simulation experiment based on a nonparametric estimate of the error distribution. The main objective of this dissertation was to demonstrate the use of the bootstrap to attach standard errors to coefficient estimates and multi-period forecasts in a second-order autoregressive model fitted by least squares and maximum likelihood estimation. A secondary objective of this article was to present the bootstrap in the context of two econometric equations describing the unemployment rate and individual income tax in the state of Oklahoma. As it turns out, the conventional asymptotic formulae (both the least squares and maximum likelihood estimates) for estimating standard errors appear to overestimate the true standard errors. But there are two problems: 1) the first two observations y 1 and y 2 have been fixed, and 2) the residuals have not been inflated. After these two factors are considered in the trial and bootstrap experiment, both the conventional maximum likelihood and bootstrap estimates of the standard errors appear to be performing quite well. At present, there does not seem to be a good rule of thumb for deciding when the conventional asymptotic formulae will give acceptable results
Correlation and multifractality in climatological time series
International Nuclear Information System (INIS)
Pedron, I T
2010-01-01
Climate can be described by statistical analysis of mean values of atmospheric variables over a period. It is possible to detect correlations in climatological time series and to classify its behavior. In this work the Hurst exponent, which can characterize correlation and persistence in time series, is obtained by using the Detrended Fluctuation Analysis (DFA) method. Data series of temperature, precipitation, humidity, solar radiation, wind speed, maximum squall, atmospheric pressure and randomic series are studied. Furthermore, the multifractality of such series is analyzed applying the Multifractal Detrended Fluctuation Analysis (MF-DFA) method. The results indicate presence of correlation (persistent character) in all climatological series and multifractality as well. A larger set of data, and longer, could provide better results indicating the universality of the exponents.
Time series analysis of temporal networks
Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh
2016-01-01
A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue
Two-fractal overlap time series: Earthquakes and market crashes
Indian Academy of Sciences (India)
velocity over the other and time series of stock prices. An anticipation method for some of the crashes have been proposed here, based on these observations. Keywords. Cantor set; time series; earthquake; market crash. PACS Nos 05.00; 02.50.-r; 64.60; 89.65.Gh; 95.75.Wx. 1. Introduction. Capturing dynamical patterns of ...
National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157610 includes chemical, meteorological, physical and time series data collected from TIME_SERIES_BATS_1994_1996 in the North Atlantic Ocean from...
Efficient Algorithms for Segmentation of Item-Set Time Series
Chundi, Parvathi; Rosenkrantz, Daniel J.
We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.
Network structure of multivariate time series.
Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito
2015-10-21
Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.
Time series modeling, computation, and inference
Prado, Raquel
2010-01-01
The authors systematically develop a state-of-the-art analysis and modeling of time series. … this book is well organized and well written. The authors present various statistical models for engineers to solve problems in time series analysis. Readers no doubt will learn state-of-the-art techniques from this book.-Hsun-Hsien Chang, Computing Reviews, March 2012My favorite chapters were on dynamic linear models and vector AR and vector ARMA models.-William Seaver, Technometrics, August 2011… a very modern entry to the field of time-series modelling, with a rich reference list of the current lit
Time Series Analysis Forecasting and Control
Box, George E P; Reinsel, Gregory C
2011-01-01
A modernized new edition of one of the most trusted books on time series analysis. Since publication of the first edition in 1970, Time Series Analysis has served as one of the most influential and prominent works on the subject. This new edition maintains its balanced presentation of the tools for modeling and analyzing time series and also introduces the latest developments that have occurred n the field over the past decade through applications from areas such as business, finance, and engineering. The Fourth Edition provides a clearly written exploration of the key methods for building, cl
Visibility Graph Based Time Series Analysis.
Stephen, Mutua; Gu, Changgui; Yang, Huijie
2015-01-01
Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.
Visibility Graph Based Time Series Analysis.
Directory of Open Access Journals (Sweden)
Mutua Stephen
Full Text Available Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.
Data Mining Smart Energy Time Series
Directory of Open Access Journals (Sweden)
Janina POPEANGA
2015-07-01
Full Text Available With the advent of smart metering technology the amount of energy data will increase significantly and utilities industry will have to face another big challenge - to find relationships within time-series data and even more - to analyze such huge numbers of time series to find useful patterns and trends with fast or even real-time response. This study makes a small review of the literature in the field, trying to demonstrate how essential is the application of data mining techniques in the time series to make the best use of this large quantity of data, despite all the difficulties. Also, the most important Time Series Data Mining techniques are presented, highlighting their applicability in the energy domain.
Time series prediction: statistical and neural techniques
Zahirniak, Daniel R.; DeSimio, Martin P.
1996-03-01
In this paper we compare the performance of nonlinear neural network techniques to those of linear filtering techniques in the prediction of time series. Specifically, we compare the results of using the nonlinear systems, known as multilayer perceptron and radial basis function neural networks, with the results obtained using the conventional linear Wiener filter, Kalman filter and Widrow-Hoff adaptive filter in predicting future values of stationary and non- stationary time series. Our results indicate the performance of each type of system is heavily dependent upon the form of the time series being predicted and the size of the system used. In particular, the linear filters perform adequately for linear or near linear processes while the nonlinear systems perform better for nonlinear processes. Since the linear systems take much less time to be developed, they should be tried prior to using the nonlinear systems when the linearity properties of the time series process are unknown.
International Nuclear Information System (INIS)
Winans, J.
1994-01-01
The purpose of this document is to augment Synchronized Time Stamp Support authored by Jim Kowalkowski. This document provides additional documentation to clarify and explain software involved in timing operations of the accelerator
Detecting nonlinear structure in time series
International Nuclear Information System (INIS)
Theiler, J.
1991-01-01
We describe an approach for evaluating the statistical significance of evidence for nonlinearity in a time series. The formal application of our method requires the careful statement of a null hypothesis which characterizes a candidate linear process, the generation of an ensemble of ''surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against the null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. While some data sets very cleanly exhibit low-dimensional chaos, there are many cases where the evidence is sketchy and difficult to evaluate. We hope to provide a framework within which such claims of nonlinearity can be evaluated. 5 refs., 4 figs
Nonparametric factor analysis of time series
Rodríguez-Poo, Juan M.; Linton, Oliver Bruce
1998-01-01
We introduce a nonparametric smoothing procedure for nonparametric factor analaysis of multivariate time series. The asymptotic properties of the proposed procedures are derived. We present an application based on the residuals from the Fair macromodel.
Applied time series analysis and innovative computing
Ao, Sio-Iong
2010-01-01
This text is a systematic, state-of-the-art introduction to the use of innovative computing paradigms as an investigative tool for applications in time series analysis. It includes frontier case studies based on recent research.
Measuring multiscaling in financial time-series
International Nuclear Information System (INIS)
Buonocore, R.J.; Aste, T.; Di Matteo, T.
2016-01-01
We discuss the origin of multiscaling in financial time-series and investigate how to best quantify it. Our methodology consists in separating the different sources of measured multifractality by analyzing the multi/uni-scaling behavior of synthetic time-series with known properties. We use the results from the synthetic time-series to interpret the measure of multifractality of real log-returns time-series. The main finding is that the aggregation horizon of the returns can introduce a strong bias effect on the measure of multifractality. This effect can become especially important when returns distributions have power law tails with exponents in the range (2, 5). We discuss the right aggregation horizon to mitigate this bias.
Complex network approach to fractional time series
Energy Technology Data Exchange (ETDEWEB)
Manshour, Pouya [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)
2015-10-15
In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.
Multivariate Time Series Decomposition into Oscillation Components.
Matsuda, Takeru; Komaki, Fumiyasu
2017-08-01
Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.
Automated time series forecasting for biosurveillance.
Burkom, Howard S; Murphy, Sean Patrick; Shmueli, Galit
2007-09-30
For robust detection performance, traditional control chart monitoring for biosurveillance is based on input data free of trends, day-of-week effects, and other systematic behaviour. Time series forecasting methods may be used to remove this behaviour by subtracting forecasts from observations to form residuals for algorithmic input. We describe three forecast methods and compare their predictive accuracy on each of 16 authentic syndromic data streams. The methods are (1) a non-adaptive regression model using a long historical baseline, (2) an adaptive regression model with a shorter, sliding baseline, and (3) the Holt-Winters method for generalized exponential smoothing. Criteria for comparing the forecasts were the root-mean-square error, the median absolute per cent error (MedAPE), and the median absolute deviation. The median-based criteria showed best overall performance for the Holt-Winters method. The MedAPE measures over the 16 test series averaged 16.5, 11.6, and 9.7 for the non-adaptive regression, adaptive regression, and Holt-Winters methods, respectively. The non-adaptive regression forecasts were degraded by changes in the data behaviour in the fixed baseline period used to compute model coefficients. The mean-based criterion was less conclusive because of the effects of poor forecasts on a small number of calendar holidays. The Holt-Winters method was also most effective at removing serial autocorrelation, with most 1-day-lag autocorrelation coefficients below 0.15. The forecast methods were compared without tuning them to the behaviour of individual series. We achieved improved predictions with such tuning of the Holt-Winters method, but practical use of such improvements for routine surveillance will require reliable data classification methods.
On robust forecasting of autoregressive time series under censoring
Kharin, Y.; Badziahin, I.
2009-01-01
Problems of robust statistical forecasting are considered for autoregressive time series observed under distortions generated by interval censoring. Three types of robust forecasting statistics are developed; meansquare risk is evaluated for the developed forecasting statistics. Numerical results are given.
Unsupervised land cover change detection: meaningful sequential time series analysis
CSIR Research Space (South Africa)
Salmon, BP
2011-06-01
Full Text Available An automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short...
Introduction to time series analysis and forecasting
Montgomery, Douglas C; Kulahci, Murat
2008-01-01
An accessible introduction to the most current thinking in and practicality of forecasting techniques in the context of time-oriented data. Analyzing time-oriented data and forecasting are among the most important problems that analysts face across many fields, ranging from finance and economics to production operations and the natural sciences. As a result, there is a widespread need for large groups of people in a variety of fields to understand the basic concepts of time series analysis and forecasting. Introduction to Time Series Analysis and Forecasting presents the time series analysis branch of applied statistics as the underlying methodology for developing practical forecasts, and it also bridges the gap between theory and practice by equipping readers with the tools needed to analyze time-oriented data and construct useful, short- to medium-term, statistically based forecasts.
Time Series Forecasting with Missing Values
Directory of Open Access Journals (Sweden)
Shin-Fu Wu
2015-11-01
Full Text Available Time series prediction has become more popular in various kinds of applications such as weather prediction, control engineering, financial analysis, industrial monitoring, etc. To deal with real-world problems, we are often faced with missing values in the data due to sensor malfunctions or human errors. Traditionally, the missing values are simply omitted or replaced by means of imputation methods. However, omitting those missing values may cause temporal discontinuity. Imputation methods, on the other hand, may alter the original time series. In this study, we propose a novel forecasting method based on least squares support vector machine (LSSVM. We employ the input patterns with the temporal information which is defined as local time index (LTI. Time series data as well as local time indexes are fed to LSSVM for doing forecasting without imputation. We compare the forecasting performance of our method with other imputation methods. Experimental results show that the proposed method is promising and is worth further investigations.
Efficient Approximate OLAP Querying Over Time Series
DEFF Research Database (Denmark)
Perera, Kasun Baruhupolage Don Kasun Sanjeewa; Hahmann, Martin; Lehner, Wolfgang
2016-01-01
The ongoing trend for data gathering not only produces larger volumes of data, but also increases the variety of recorded data types. Out of these, especially time series, e.g. various sensor readings, have attracted attention in the domains of business intelligence and decision making. As OLAP...... queries play a major role in these domains, it is desirable to also execute them on time series data. While this is not a problem on the conceptual level, it can become a bottleneck with regards to query run-time. In general, processing OLAP queries gets more computationally intensive as the volume...... of data grows. This is a particular problem when querying time series data, which generally contains multiple measures recorded at fine time granularities. Usually, this issue is addressed either by scaling up hardware or by employing workload based query optimization techniques. However, these solutions...
Conditional time series forecasting with convolutional neural networks
A. Borovykh (Anastasia); S.M. Bohte (Sander); C.W. Oosterlee (Cornelis)
2017-01-01
textabstractForecasting financial time series using past observations has been a significant topic of interest. While temporal relationships in the data exist, they are difficult to analyze and predict accurately due to the non-linear trends and noise present in the series. We propose to learn these
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui
2014-07-01
The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.
Phase correlation of foreign exchange time series
Wu, Ming-Chya
2007-03-01
Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time scale than in longer time scales. The demonstration for the correlations in periods of 1986-1989 and 1990-1993 indicates two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the observations from the cross-correlation calculation.
Turbulencelike Behavior of Seismic Time Series
International Nuclear Information System (INIS)
Manshour, P.; Saberi, S.; Sahimi, Muhammad; Peinke, J.; Pacheco, Amalio F.; Rahimi Tabar, M. Reza
2009-01-01
We report on a stochastic analysis of Earth's vertical velocity time series by using methods originally developed for complex hierarchical systems and, in particular, for turbulent flows. Analysis of the fluctuations of the detrended increments of the series reveals a pronounced transition in their probability density function from Gaussian to non-Gaussian. The transition occurs 5-10 hours prior to a moderate or large earthquake, hence representing a new and reliable precursor for detecting such earthquakes
Introduction to time series analysis and forecasting
Montgomery, Douglas C; Kulahci, Murat
2015-01-01
Praise for the First Edition ""…[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics."" -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both
Variable Selection in Time Series Forecasting Using Random Forests
Directory of Open Access Journals (Sweden)
Hristos Tyralis
2017-10-01
Full Text Available Time series forecasting using machine learning algorithms has gained popularity recently. Random forest is a machine learning algorithm implemented in time series forecasting; however, most of its forecasting properties have remained unexplored. Here we focus on assessing the performance of random forests in one-step forecasting using two large datasets of short time series with the aim to suggest an optimal set of predictor variables. Furthermore, we compare its performance to benchmarking methods. The first dataset is composed by 16,000 simulated time series from a variety of Autoregressive Fractionally Integrated Moving Average (ARFIMA models. The second dataset consists of 135 mean annual temperature time series. The highest predictive performance of RF is observed when using a low number of recent lagged predictor variables. This outcome could be useful in relevant future applications, with the prospect to achieve higher predictive accuracy.
Time series modeling in traffic safety research.
Lavrenz, Steven M; Vlahogianni, Eleni I; Gkritza, Konstantina; Ke, Yue
2018-08-01
The use of statistical models for analyzing traffic safety (crash) data has been well-established. However, time series techniques have traditionally been underrepresented in the corresponding literature, due to challenges in data collection, along with a limited knowledge of proper methodology. In recent years, new types of high-resolution traffic safety data, especially in measuring driver behavior, have made time series modeling techniques an increasingly salient topic of study. Yet there remains a dearth of information to guide analysts in their use. This paper provides an overview of the state of the art in using time series models in traffic safety research, and discusses some of the fundamental techniques and considerations in classic time series modeling. It also presents ongoing and future opportunities for expanding the use of time series models, and explores newer modeling techniques, including computational intelligence models, which hold promise in effectively handling ever-larger data sets. The information contained herein is meant to guide safety researchers in understanding this broad area of transportation data analysis, and provide a framework for understanding safety trends that can influence policy-making. Copyright © 2017 Elsevier Ltd. All rights reserved.
Forecasting autoregressive time series under changing persistence
DEFF Research Database (Denmark)
Kruse, Robinson
Changing persistence in time series models means that a structural change from nonstationarity to stationarity or vice versa occurs over time. Such a change has important implications for forecasting, as negligence may lead to inaccurate model predictions. This paper derives generally applicable...
Layered Ensemble Architecture for Time Series Forecasting.
Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin
2016-01-01
Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.
Fisher information framework for time series modeling
Venkatesan, R. C.; Plastino, A.
2017-08-01
A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.
Time series clustering in large data sets
Directory of Open Access Journals (Sweden)
Jiří Fejfar
2011-01-01
Full Text Available The clustering of time series is a widely researched area. There are many methods for dealing with this task. We are actually using the Self-organizing map (SOM with the unsupervised learning algorithm for clustering of time series. After the first experiment (Fejfar, Weinlichová, Šťastný, 2009 it seems that the whole concept of the clustering algorithm is correct but that we have to perform time series clustering on much larger dataset to obtain more accurate results and to find the correlation between configured parameters and results more precisely. The second requirement arose in a need for a well-defined evaluation of results. It seems useful to use sound recordings as instances of time series again. There are many recordings to use in digital libraries, many interesting features and patterns can be found in this area. We are searching for recordings with the similar development of information density in this experiment. It can be used for musical form investigation, cover songs detection and many others applications.The objective of the presented paper is to compare clustering results made with different parameters of feature vectors and the SOM itself. We are describing time series in a simplistic way evaluating standard deviations for separated parts of recordings. The resulting feature vectors are clustered with the SOM in batch training mode with different topologies varying from few neurons to large maps.There are other algorithms discussed, usable for finding similarities between time series and finally conclusions for further research are presented. We also present an overview of the related actual literature and projects.
Introduction to time series and forecasting
Brockwell, Peter J
2016-01-01
This book is aimed at the reader who wishes to gain a working knowledge of time series and forecasting methods as applied to economics, engineering and the natural and social sciences. It assumes knowledge only of basic calculus, matrix algebra and elementary statistics. This third edition contains detailed instructions for the use of the professional version of the Windows-based computer package ITSM2000, now available as a free download from the Springer Extras website. The logic and tools of time series model-building are developed in detail. Numerous exercises are included and the software can be used to analyze and forecast data sets of the user's own choosing. The book can also be used in conjunction with other time series packages such as those included in R. The programs in ITSM2000 however are menu-driven and can be used with minimal investment of time in the computational details. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space mod...
Multiple Time Series Ising Model for Financial Market Simulations
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2015-01-01
In this paper we propose an Ising model which simulates multiple financial time series. Our model introduces the interaction which couples to spins of other systems. Simulations from our model show that time series exhibit the volatility clustering that is often observed in the real financial markets. Furthermore we also find non-zero cross correlations between the volatilities from our model. Thus our model can simulate stock markets where volatilities of stocks are mutually correlated
Complex dynamic in ecological time series
Peter Turchin; Andrew D. Taylor
1992-01-01
Although the possibility of complex dynamical behaviors-limit cycles, quasiperiodic oscillations, and aperiodic chaos-has been recognized theoretically, most ecologists are skeptical of their importance in nature. In this paper we develop a methodology for reconstructing endogenous (or deterministic) dynamics from ecological time series. Our method consists of fitting...
25 years of time series forecasting
de Gooijer, J.G.; Hyndman, R.J.
2006-01-01
We review the past 25 years of research into time series forecasting. In this silver jubilee issue, we naturally highlight results published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985 and International Journal of Forecasting 1985-2005). During
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Markov Trends in Macroeconomic Time Series
R. Paap (Richard)
1997-01-01
textabstractMany macroeconomic time series are characterised by long periods of positive growth, expansion periods, and short periods of negative growth, recessions. A popular model to describe this phenomenon is the Markov trend, which is a stochastic segmented trend where the slope depends on the
Modeling vector nonlinear time series using POLYMARS
de Gooijer, J.G.; Ray, B.K.
2003-01-01
A modified multivariate adaptive regression splines method for modeling vector nonlinear time series is investigated. The method results in models that can capture certain types of vector self-exciting threshold autoregressive behavior, as well as provide good predictions for more general vector
Modeling seasonality in bimonthly time series
Ph.H.B.F. Franses (Philip Hans)
1992-01-01
textabstractA recurring issue in modeling seasonal time series variables is the choice of the most adequate model for the seasonal movements. One selection method for quarterly data is proposed in Hylleberg et al. (1990). Market response models are often constructed for bimonthly variables, and
Time Series Modelling using Proc Varmax
DEFF Research Database (Denmark)
Milhøj, Anders
2007-01-01
In this paper it will be demonstrated how various time series problems could be met using Proc Varmax. The procedure is rather new and hence new features like cointegration, testing for Granger causality are included, but it also means that more traditional ARIMA modelling as outlined by Box...
On clustering fMRI time series
DEFF Research Database (Denmark)
Goutte, Cyril; Toft, Peter Aundal; Rostrup, E.
1999-01-01
Analysis of fMRI time series is often performed by extracting one or more parameters for the individual voxels. Methods based, e.g., on various statistical tests are then used to yield parameters corresponding to probability of activation or activation strength. However, these methods do...
Robust Control Charts for Time Series Data
Croux, C.; Gelper, S.; Mahieu, K.
2010-01-01
This article presents a control chart for time series data, based on the one-step- ahead forecast errors of the Holt-Winters forecasting method. We use robust techniques to prevent that outliers affect the estimation of the control limits of the chart. Moreover, robustness is important to maintain
Optimal transformations for categorical autoregressive time series
Buuren, S. van
1996-01-01
This paper describes a method for finding optimal transformations for analyzing time series by autoregressive models. 'Optimal' implies that the agreement between the autoregressive model and the transformed data is maximal. Such transformations help 1) to increase the model fit, and 2) to analyze
Lecture notes for Advanced Time Series Analysis
DEFF Research Database (Denmark)
Madsen, Henrik; Holst, Jan
1997-01-01
A first version of this notes was used at the lectures in Grenoble, and they are now extended and improved (together with Jan Holst), and used in Ph.D. courses on Advanced Time Series Analysis at IMM and at the Department of Mathematical Statistics, University of Lund, 1994, 1997, ...
Forecasting with periodic autoregressive time series models
Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)
1999-01-01
textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption
Clinical time series prediction: Toward a hierarchical dynamical system framework.
Liu, Zitao; Hauskrecht, Milos
2015-09-01
Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Clinical time series prediction: towards a hierarchical dynamical system framework
Liu, Zitao; Hauskrecht, Milos
2014-01-01
Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive
Stochastic nature of series of waiting times
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H.; Salehi, E.; Behjat, E.; Qorbani, M.; Khazaei Nezhad, M.; Zirak, M.; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M. Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the “waiting times” series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
The Statistical Analysis of Time Series
Anderson, T W
2011-01-01
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences George
Horváth, Csilla; Kornelis, Marcel; Leeflang, Peter S.H.
2002-01-01
In this review, we give a comprehensive summary of time series techniques in marketing, and discuss a variety of time series analysis (TSA) techniques and models. We classify them in the sets (i) univariate TSA, (ii) multivariate TSA, and (iii) multiple TSA. We provide relevant marketing
Algorithm for Compressing Time-Series Data
Hawkins, S. Edward, III; Darlington, Edward Hugo
2012-01-01
An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").
Data imputation analysis for Cosmic Rays time series
Fernandes, R. C.; Lucio, P. S.; Fernandez, J. H.
2017-05-01
The occurrence of missing data concerning Galactic Cosmic Rays time series (GCR) is inevitable since loss of data is due to mechanical and human failure or technical problems and different periods of operation of GCR stations. The aim of this study was to perform multiple dataset imputation in order to depict the observational dataset. The study has used the monthly time series of GCR Climax (CLMX) and Roma (ROME) from 1960 to 2004 to simulate scenarios of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of missing data compared to observed ROME series, with 50 replicates. Then, the CLMX station as a proxy for allocation of these scenarios was used. Three different methods for monthly dataset imputation were selected: AMÉLIA II - runs the bootstrap Expectation Maximization algorithm, MICE - runs an algorithm via Multivariate Imputation by Chained Equations and MTSDI - an Expectation Maximization algorithm-based method for imputation of missing values in multivariate normal time series. The synthetic time series compared with the observed ROME series has also been evaluated using several skill measures as such as RMSE, NRMSE, Agreement Index, R, R2, F-test and t-test. The results showed that for CLMX and ROME, the R2 and R statistics were equal to 0.98 and 0.96, respectively. It was observed that increases in the number of gaps generate loss of quality of the time series. Data imputation was more efficient with MTSDI method, with negligible errors and best skill coefficients. The results suggest a limit of about 60% of missing data for imputation, for monthly averages, no more than this. It is noteworthy that CLMX, ROME and KIEL stations present no missing data in the target period. This methodology allowed reconstructing 43 time series.
Time Series Analysis of Insar Data: Methods and Trends
Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique
2015-01-01
Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.
Constructing ordinal partition transition networks from multivariate time series.
Zhang, Jiayang; Zhou, Jie; Tang, Ming; Guo, Heng; Small, Michael; Zou, Yong
2017-08-10
A growing number of algorithms have been proposed to map a scalar time series into ordinal partition transition networks. However, most observable phenomena in the empirical sciences are of a multivariate nature. We construct ordinal partition transition networks for multivariate time series. This approach yields weighted directed networks representing the pattern transition properties of time series in velocity space, which hence provides dynamic insights of the underling system. Furthermore, we propose a measure of entropy to characterize ordinal partition transition dynamics, which is sensitive to capturing the possible local geometric changes of phase space trajectories. We demonstrate the applicability of pattern transition networks to capture phase coherence to non-coherence transitions, and to characterize paths to phase synchronizations. Therefore, we conclude that the ordinal partition transition network approach provides complementary insight to the traditional symbolic analysis of nonlinear multivariate time series.
Inverse statistical approach in heartbeat time series
International Nuclear Information System (INIS)
Ebadi, H; Shirazi, A H; Mani, Ali R; Jafari, G R
2011-01-01
We present an investigation on heart cycle time series, using inverse statistical analysis, a concept borrowed from studying turbulence. Using this approach, we studied the distribution of the exit times needed to achieve a predefined level of heart rate alteration. Such analysis uncovers the most likely waiting time needed to reach a certain change in the rate of heart beat. This analysis showed a significant difference between the raw data and shuffled data, when the heart rate accelerates or decelerates to a rare event. We also report that inverse statistical analysis can distinguish between the electrocardiograms taken from healthy volunteers and patients with heart failure
Visibility graphlet approach to chaotic time series
Energy Technology Data Exchange (ETDEWEB)
Mutua, Stephen [Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega (Kenya); Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn; Yang, Huijie, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn [Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China)
2016-05-15
Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems. Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.
Time-Series Analysis: A Cautionary Tale
Damadeo, Robert
2015-01-01
Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.
Time Series Analysis Using Geometric Template Matching.
Frank, Jordan; Mannor, Shie; Pineau, Joelle; Precup, Doina
2013-03-01
We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data.
Forecasting with nonlinear time series models
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Teräsvirta, Timo
In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...
Reconstruction of tritium time series in precipitation
International Nuclear Information System (INIS)
Celle-Jeanton, H.; Gourcy, L.; Aggarwal, P.K.
2002-01-01
Tritium is commonly used in groundwaters studies to calculate the recharge rate and to identify the presence of a modern recharge. The knowledge of 3 H precipitation time series is then very important for the study of groundwater recharge. Rozanski and Araguas provided good information on precipitation tritium content in 180 stations of the GNIP network to the end of 1987, but it shows some lacks of measurements either within one chronicle or within one region (the Southern hemisphere for instance). Therefore, it seems to be essential to find a method to recalculate data for a region where no measurement is available.To solve this problem, we propose another method which is based on triangulation. It needs the knowledge of 3 H time series of 3 stations surrounding geographically the 4-th station for which tritium input curve has to be reconstructed
Quantifying memory in complex physiological time-series.
Shirazi, Amir H; Raoufy, Mohammad R; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R; Amodio, Piero; Jafari, G Reza; Montagnese, Sara; Mani, Ali R
2013-01-01
In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of "memory length" was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are 'forgotten' quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations.
Time Series Forecasting with Missing Values
Shin-Fu Wu; Chia-Yung Chang; Shie-Jue Lee
2015-01-01
Time series prediction has become more popular in various kinds of applications such as weather prediction, control engineering, financial analysis, industrial monitoring, etc. To deal with real-world problems, we are often faced with missing values in the data due to sensor malfunctions or human errors. Traditionally, the missing values are simply omitted or replaced by means of imputation methods. However, omitting those missing values may cause temporal discontinuity. Imputation methods, o...
Time series analysis of barometric pressure data
International Nuclear Information System (INIS)
La Rocca, Paola; Riggi, Francesco; Riggi, Daniele
2010-01-01
Time series of atmospheric pressure data, collected over a period of several years, were analysed to provide undergraduate students with educational examples of application of simple statistical methods of analysis. In addition to basic methods for the analysis of periodicities, a comparison of two forecast models, one based on autoregression algorithms, and the other making use of an artificial neural network, was made. Results show that the application of artificial neural networks may give slightly better results compared to traditional methods.
Interpretable Categorization of Heterogeneous Time Series Data
Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Silbermann, Joshua
2017-01-01
We analyze data from simulated aircraft encounters to validate and inform the development of a prototype aircraft collision avoidance system. The high-dimensional and heterogeneous time series dataset is analyzed to discover properties of near mid-air collisions (NMACs) and categorize the NMAC encounters. Domain experts use these properties to better organize and understand NMAC occurrences. Existing solutions either are not capable of handling high-dimensional and heterogeneous time series datasets or do not provide explanations that are interpretable by a domain expert. The latter is critical to the acceptance and deployment of safety-critical systems. To address this gap, we propose grammar-based decision trees along with a learning algorithm. Our approach extends decision trees with a grammar framework for classifying heterogeneous time series data. A context-free grammar is used to derive decision expressions that are interpretable, application-specific, and support heterogeneous data types. In addition to classification, we show how grammar-based decision trees can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply grammar-based decision trees to a simulated aircraft encounter dataset and evaluate the performance of four variants of our learning algorithm. The best algorithm is used to analyze and categorize near mid-air collisions in the aircraft encounter dataset. We describe each discovered category in detail and discuss its relevance to aircraft collision avoidance.
Interpretation of a compositional time series
Tolosana-Delgado, R.; van den Boogaart, K. G.
2012-04-01
Common methods for multivariate time series analysis use linear operations, from the definition of a time-lagged covariance/correlation to the prediction of new outcomes. However, when the time series response is a composition (a vector of positive components showing the relative importance of a set of parts in a total, like percentages and proportions), then linear operations are afflicted of several problems. For instance, it has been long recognised that (auto/cross-)correlations between raw percentages are spurious, more dependent on which other components are being considered than on any natural link between the components of interest. Also, a long-term forecast of a composition in models with a linear trend will ultimately predict negative components. In general terms, compositional data should not be treated in a raw scale, but after a log-ratio transformation (Aitchison, 1986: The statistical analysis of compositional data. Chapman and Hill). This is so because the information conveyed by a compositional data is relative, as stated in their definition. The principle of working in coordinates allows to apply any sort of multivariate analysis to a log-ratio transformed composition, as long as this transformation is invertible. This principle is of full application to time series analysis. We will discuss how results (both auto/cross-correlation functions and predictions) can be back-transformed, viewed and interpreted in a meaningful way. One view is to use the exhaustive set of all possible pairwise log-ratios, which allows to express the results into D(D - 1)/2 separate, interpretable sets of one-dimensional models showing the behaviour of each possible pairwise log-ratios. Another view is the interpretation of estimated coefficients or correlations back-transformed in terms of compositions. These two views are compatible and complementary. These issues are illustrated with time series of seasonal precipitation patterns at different rain gauges of the USA
Arbitrage, market definition and monitoring a time series approach
Burke, S; Hunter, J
2012-01-01
This article considers the application to regional price data of time series methods to test stationarity, multivariate cointegration and exogeneity. The discovery of stationary price differentials in a bivariate setting implies that the series are rendered stationary by capturing a common trend and we observe through this mechanism long-run arbitrage. This is indicative of a broader market definition and efficiency. The problem is considered in relation to more than 700 weekly data points on...
Timing calibration and spectral cleaning of LOFAR time series data
Corstanje, A.; Buitink, S.; Enriquez, J. E.; Falcke, H.; Horandel, J. R.; Krause, M.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.
We describe a method for spectral cleaning and timing calibration of short time series data of the voltage in individual radio interferometer receivers. It makes use of phase differences in fast Fourier transform (FFT) spectra across antenna pairs. For strong, localized terrestrial sources these are
Outlier Detection in Structural Time Series Models
DEFF Research Database (Denmark)
Marczak, Martyna; Proietti, Tommaso
investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality......Structural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general......–to–specific approach to the detection of structural change, currently implemented in Autometrics via indicator saturation, has proven to be both practical and effective in the context of stationary dynamic regression models and unit–root autoregressions. By focusing on impulse– and step–indicator saturation, we...
Analysis of JET ELMy time series
International Nuclear Information System (INIS)
Zvejnieks, G.; Kuzovkov, V.N.
2005-01-01
Full text: Achievement of the planned operational regime in the next generation tokamaks (such as ITER) still faces principal problems. One of the main challenges is obtaining the control of edge localized modes (ELMs), which should lead to both long plasma pulse times and reasonable divertor life time. In order to control ELMs the hypothesis was proposed by Degeling [1] that ELMs exhibit features of chaotic dynamics and thus a standard chaos control methods might be applicable. However, our findings which are based on the nonlinear autoregressive (NAR) model contradict this hypothesis for JET ELMy time-series. In turn, it means that ELM behavior is of a relaxation or random type. These conclusions coincide with our previous results obtained for ASDEX Upgrade time series [2]. [1] A.W. Degeling, Y.R. Martin, P.E. Bak, J. B.Lister, and X. Llobet, Plasma Phys. Control. Fusion 43, 1671 (2001). [2] G. Zvejnieks, V.N. Kuzovkov, O. Dumbrajs, A.W. Degeling, W. Suttrop, H. Urano, and H. Zohm, Physics of Plasmas 11, 5658 (2004)
Correlation measure to detect time series distances, whence economy globalization
Miśkiewicz, Janusz; Ausloos, Marcel
2008-11-01
An instantaneous time series distance is defined through the equal time correlation coefficient. The idea is applied to the Gross Domestic Product (GDP) yearly increments of 21 rich countries between 1950 and 2005 in order to test the process of economic globalisation. Some data discussion is first presented to decide what (EKS, GK, or derived) GDP series should be studied. Distances are then calculated from the correlation coefficient values between pairs of series. The role of time averaging of the distances over finite size windows is discussed. Three network structures are next constructed based on the hierarchy of distances. It is shown that the mean distance between the most developed countries on several networks actually decreases in time, -which we consider as a proof of globalization. An empirical law is found for the evolution after 1990, similar to that found in flux creep. The optimal observation time window size is found ≃15 years.
FALSE DETERMINATIONS OF CHAOS IN SHORT NOISY TIME SERIES. (R828745)
A method (NEMG) proposed in 1992 for diagnosing chaos in noisy time series with 50 or fewer observations entails fitting the time series with an empirical function which predicts an observation in the series from previous observations, and then estimating the rate of divergenc...
Fourier analysis of time series an introduction
Bloomfield, Peter
2000-01-01
A new, revised edition of a yet unrivaled work on frequency domain analysis Long recognized for his unique focus on frequency domain methods for the analysis of time series data as well as for his applied, easy-to-understand approach, Peter Bloomfield brings his well-known 1976 work thoroughly up to date. With a minimum of mathematics and an engaging, highly rewarding style, Bloomfield provides in-depth discussions of harmonic regression, harmonic analysis, complex demodulation, and spectrum analysis. All methods are clearly illustrated using examples of specific data sets, while ample
Inferring causality from noisy time series data
DEFF Research Database (Denmark)
Mønster, Dan; Fusaroli, Riccardo; Tylén, Kristian
2016-01-01
Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength...... and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise...
Useful Pattern Mining on Time Series
DEFF Research Database (Denmark)
Goumatianos, Nikitas; Christou, Ioannis T; Lindgren, Peter
2013-01-01
We present the architecture of a “useful pattern” mining system that is capable of detecting thousands of different candlestick sequence patterns at the tick or any higher granularity levels. The system architecture is highly distributed and performs most of its highly compute-intensive aggregation...... calculations as complex but efficient distributed SQL queries on the relational databases that store the time-series. We present initial results from mining all frequent candlestick sequences with the characteristic property that when they occur then, with an average at least 60% probability, they signal a 2...
Conditional mode regression: Application to functional time series prediction
Dabo-Niang, Sophie; Laksaci, Ali
2008-01-01
We consider $\\alpha$-mixing observations and deal with the estimation of the conditional mode of a scalar response variable $Y$ given a random variable $X$ taking values in a semi-metric space. We provide a convergence rate in $L^p$ norm of the estimator. A useful and typical application to functional times series prediction is given.
Evaluation of scaling invariance embedded in short time series.
Directory of Open Access Journals (Sweden)
Xue Pan
Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Evaluation of scaling invariance embedded in short time series.
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Anomaly on Superspace of Time Series Data
Capozziello, Salvatore; Pincak, Richard; Kanjamapornkul, Kabin
2017-11-01
We apply the G-theory and anomaly of ghost and antighost fields in the theory of supersymmetry to study a superspace over time series data for the detection of hidden general supply and demand equilibrium in the financial market. We provide proof of the existence of a general equilibrium point over 14 extradimensions of the new G-theory compared with the M-theory of the 11 dimensions model of Edward Witten. We found that the process of coupling between nonequilibrium and equilibrium spinor fields of expectation ghost fields in the superspace of time series data induces an infinitely long exact sequence of cohomology from a short exact sequence of moduli state space model. If we assume that the financial market is separated into two topological spaces of supply and demand as the D-brane and anti-D-brane model, then we can use a cohomology group to compute the stability of the market as a stable point of the general equilibrium of the interaction between D-branes of the market. We obtain the result that the general equilibrium will exist if and only if the 14th Batalin-Vilkovisky cohomology group with the negative dimensions underlying 14 major hidden factors influencing the market is zero.
Tool Wear Monitoring Using Time Series Analysis
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.
Time Series Based for Online Signature Verification
Directory of Open Access Journals (Sweden)
I Ketut Gede Darma Putra
2013-11-01
Full Text Available Signature verification system is to match the tested signature with a claimed signature. This paper proposes time series based for feature extraction method and dynamic time warping for match method. The system made by process of testing 900 signatures belong to 50 participants, 3 signatures for reference and 5 signatures from original user, simple imposters and trained imposters for signatures test. The final result system was tested with 50 participants with 3 references. This test obtained that system accuracy without imposters is 90,44897959% at threshold 44 with rejection errors (FNMR is 5,2% and acceptance errors (FMR is 4,35102%, when with imposters system accuracy is 80,1361% at threshold 27 with error rejection (FNMR is 15,6% and acceptance errors (average FMR is 4,263946%, with details as follows: acceptance errors is 0,391837%, acceptance errors simple imposters is 3,2% and acceptance errors trained imposters is 9,2%.
Self-affinity in the dengue fever time series
Azevedo, S. M.; Saba, H.; Miranda, J. G. V.; Filho, A. S. Nascimento; Moret, M. A.
2016-06-01
Dengue is a complex public health problem that is common in tropical and subtropical regions. This disease has risen substantially in the last three decades, and the physical symptoms depict the self-affine behavior of the occurrences of reported dengue cases in Bahia, Brazil. This study uses detrended fluctuation analysis (DFA) to verify the scale behavior in a time series of dengue cases and to evaluate the long-range correlations that are characterized by the power law α exponent for different cities in Bahia, Brazil. The scaling exponent (α) presents different long-range correlations, i.e. uncorrelated, anti-persistent, persistent and diffusive behaviors. The long-range correlations highlight the complex behavior of the time series of this disease. The findings show that there are two distinct types of scale behavior. In the first behavior, the time series presents a persistent α exponent for a one-month period. For large periods, the time series signal approaches subdiffusive behavior. The hypothesis of the long-range correlations in the time series of the occurrences of reported dengue cases was validated. The observed self-affinity is useful as a forecasting tool for future periods through extrapolation of the α exponent behavior. This complex system has a higher predictability in a relatively short time (approximately one month), and it suggests a new tool in epidemiological control strategies. However, predictions for large periods using DFA are hidden by the subdiffusive behavior.
Timed Testing under Partial Observability
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Li, Shuhao
2009-01-01
observability of SUT using a set of predicates over the TGA state space, and specify the test purposes in Computation Tree Logic (CTL) formulas. A recently developed partially observable timed game solver is used to generate winning strategies, which are used as test cases. We propose a conformance testing...
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains carbonate chemistry and environmental parameters data that were collected from a 200-day time series monitoring on the Heron Island...
Palmprint Verification Using Time Series Method
Directory of Open Access Journals (Sweden)
A. A. Ketut Agung Cahyawan Wiranatha
2013-11-01
Full Text Available The use of biometrics as an automatic recognition system is growing rapidly in solving security problems, palmprint is one of biometric system which often used. This paper used two steps in center of mass moment method for region of interest (ROI segmentation and apply the time series method combined with block window method as feature representation. Normalized Euclidean Distance is used to measure the similarity degrees of two feature vectors of palmprint. System testing is done using 500 samples palms, with 4 samples as the reference image and the 6 samples as test images. Experiment results show that this system can achieve a high performance with success rate about 97.33% (FNMR=1.67%, FMR=1.00 %, T=0.036.
Deconvolution of time series in the laboratory
John, Thomas; Pietschmann, Dirk; Becker, Volker; Wagner, Christian
2016-10-01
In this study, we present two practical applications of the deconvolution of time series in Fourier space. First, we reconstruct a filtered input signal of sound cards that has been heavily distorted by a built-in high-pass filter using a software approach. Using deconvolution, we can partially bypass the filter and extend the dynamic frequency range by two orders of magnitude. Second, we construct required input signals for a mechanical shaker in order to obtain arbitrary acceleration waveforms, referred to as feedforward control. For both situations, experimental and theoretical approaches are discussed to determine the system-dependent frequency response. Moreover, for the shaker, we propose a simple feedback loop as an extension to the feedforward control in order to handle nonlinearities of the system.
Using entropy to cut complex time series
Mertens, David; Poncela Casasnovas, Julia; Spring, Bonnie; Amaral, L. A. N.
2013-03-01
Using techniques from statistical physics, physicists have modeled and analyzed human phenomena varying from academic citation rates to disease spreading to vehicular traffic jams. The last decade's explosion of digital information and the growing ubiquity of smartphones has led to a wealth of human self-reported data. This wealth of data comes at a cost, including non-uniform sampling and statistically significant but physically insignificant correlations. In this talk I present our work using entropy to identify stationary sub-sequences of self-reported human weight from a weight management web site. Our entropic approach-inspired by the infomap network community detection algorithm-is far less biased by rare fluctuations than more traditional time series segmentation techniques. Supported by the Howard Hughes Medical Institute
Normalizing the causality between time series
Liang, X. San
2015-08-01
Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.
Stochastic modeling of hourly rainfall times series in Campania (Italy)
Giorgio, M.; Greco, R.
2009-04-01
Occurrence of flowslides and floods in small catchments is uneasy to predict, since it is affected by a number of variables, such as mechanical and hydraulic soil properties, slope morphology, vegetation coverage, rainfall spatial and temporal variability. Consequently, landslide risk assessment procedures and early warning systems still rely on simple empirical models based on correlation between recorded rainfall data and observed landslides and/or river discharges. Effectiveness of such systems could be improved by reliable quantitative rainfall prediction, which can allow gaining larger lead-times. Analysis of on-site recorded rainfall height time series represents the most effective approach for a reliable prediction of local temporal evolution of rainfall. Hydrological time series analysis is a widely studied field in hydrology, often carried out by means of autoregressive models, such as AR, ARMA, ARX, ARMAX (e.g. Salas [1992]). Such models gave the best results when applied to the analysis of autocorrelated hydrological time series, like river flow or level time series. Conversely, they are not able to model the behaviour of intermittent time series, like point rainfall height series usually are, especially when recorded with short sampling time intervals. More useful for this issue are the so-called DRIP (Disaggregated Rectangular Intensity Pulse) and NSRP (Neymann-Scott Rectangular Pulse) model [Heneker et al., 2001; Cowpertwait et al., 2002], usually adopted to generate synthetic point rainfall series. In this paper, the DRIP model approach is adopted, in which the sequence of rain storms and dry intervals constituting the structure of rainfall time series is modeled as an alternating renewal process. Final aim of the study is to provide a useful tool to implement an early warning system for hydrogeological risk management. Model calibration has been carried out with hourly rainfall hieght data provided by the rain gauges of Campania Region civil
Time Series Outlier Detection Based on Sliding Window Prediction
Directory of Open Access Journals (Sweden)
Yufeng Yu
2014-01-01
Full Text Available In order to detect outliers in hydrological time series data for improving data quality and decision-making quality related to design, operation, and management of water resources, this research develops a time series outlier detection method for hydrologic data that can be used to identify data that deviate from historical patterns. The method first built a forecasting model on the history data and then used it to predict future values. Anomalies are assumed to take place if the observed values fall outside a given prediction confidence interval (PCI, which can be calculated by the predicted value and confidence coefficient. The use of PCI as threshold is mainly on the fact that it considers the uncertainty in the data series parameters in the forecasting model to address the suitable threshold selection problem. The method performs fast, incremental evaluation of data as it becomes available, scales to large quantities of data, and requires no preclassification of anomalies. Experiments with different hydrologic real-world time series showed that the proposed methods are fast and correctly identify abnormal data and can be used for hydrologic time series analysis.
Costationarity of Locally Stationary Time Series Using costat
Cardinali, Alessandro; Nason, Guy P.
2013-01-01
This article describes the R package costat. This package enables a user to (i) perform a test for time series stationarity; (ii) compute and plot time-localized autocovariances, and (iii) to determine and explore any costationary relationship between two locally stationary time series. Two locally stationary time series are said to be costationary if there exists two time-varying combination functions such that the linear combination of the two series with the functions produces another time...
Stochastic generation of hourly wind speed time series
International Nuclear Information System (INIS)
Shamshad, A.; Wan Mohd Ali Wan Hussin; Bawadi, M.A.; Mohd Sanusi, S.A.
2006-01-01
In the present study hourly wind speed data of Kuala Terengganu in Peninsular Malaysia are simulated by using transition matrix approach of Markovian process. The wind speed time series is divided into various states based on certain criteria. The next wind speed states are selected based on the previous states. The cumulative probability transition matrix has been formed in which each row ends with 1. Using the uniform random numbers between 0 and 1, a series of future states is generated. These states have been converted to the corresponding wind speed values using another uniform random number generator. The accuracy of the model has been determined by comparing the statistical characteristics such as average, standard deviation, root mean square error, probability density function and autocorrelation function of the generated data to those of the original data. The generated wind speed time series data is capable to preserve the wind speed characteristics of the observed data
A multidisciplinary database for geophysical time series management
Montalto, P.; Aliotta, M.; Cassisi, C.; Prestifilippo, M.; Cannata, A.
2013-12-01
The variables collected by a sensor network constitute a heterogeneous data source that needs to be properly organized in order to be used in research and geophysical monitoring. With the time series term we refer to a set of observations of a given phenomenon acquired sequentially in time. When the time intervals are equally spaced one speaks of period or sampling frequency. Our work describes in detail a possible methodology for storage and management of time series using a specific data structure. We designed a framework, hereinafter called TSDSystem (Time Series Database System), in order to acquire time series from different data sources and standardize them within a relational database. The operation of standardization provides the ability to perform operations, such as query and visualization, of many measures synchronizing them using a common time scale. The proposed architecture follows a multiple layer paradigm (Loaders layer, Database layer and Business Logic layer). Each layer is specialized in performing particular operations for the reorganization and archiving of data from different sources such as ASCII, Excel, ODBC (Open DataBase Connectivity), file accessible from the Internet (web pages, XML). In particular, the loader layer performs a security check of the working status of each running software through an heartbeat system, in order to automate the discovery of acquisition issues and other warning conditions. Although our system has to manage huge amounts of data, performance is guaranteed by using a smart partitioning table strategy, that keeps balanced the percentage of data stored in each database table. TSDSystem also contains modules for the visualization of acquired data, that provide the possibility to query different time series on a specified time range, or follow the realtime signal acquisition, according to a data access policy from the users.
Time series modeling for syndromic surveillance
Directory of Open Access Journals (Sweden)
Mandl Kenneth D
2003-01-01
Full Text Available Abstract Background Emergency department (ED based syndromic surveillance systems identify abnormally high visit rates that may be an early signal of a bioterrorist attack. For example, an anthrax outbreak might first be detectable as an unusual increase in the number of patients reporting to the ED with respiratory symptoms. Reliably identifying these abnormal visit patterns requires a good understanding of the normal patterns of healthcare usage. Unfortunately, systematic methods for determining the expected number of (ED visits on a particular day have not yet been well established. We present here a generalized methodology for developing models of expected ED visit rates. Methods Using time-series methods, we developed robust models of ED utilization for the purpose of defining expected visit rates. The models were based on nearly a decade of historical data at a major metropolitan academic, tertiary care pediatric emergency department. The historical data were fit using trimmed-mean seasonal models, and additional models were fit with autoregressive integrated moving average (ARIMA residuals to account for recent trends in the data. The detection capabilities of the model were tested with simulated outbreaks. Results Models were built both for overall visits and for respiratory-related visits, classified according to the chief complaint recorded at the beginning of each visit. The mean absolute percentage error of the ARIMA models was 9.37% for overall visits and 27.54% for respiratory visits. A simple detection system based on the ARIMA model of overall visits was able to detect 7-day-long simulated outbreaks of 30 visits per day with 100% sensitivity and 97% specificity. Sensitivity decreased with outbreak size, dropping to 94% for outbreaks of 20 visits per day, and 57% for 10 visits per day, all while maintaining a 97% benchmark specificity. Conclusions Time series methods applied to historical ED utilization data are an important tool
Foundations of Sequence-to-Sequence Modeling for Time Series
Kuznetsov, Vitaly; Mariet, Zelda
2018-01-01
The availability of large amounts of time series data, paired with the performance of deep-learning algorithms on a broad class of problems, has recently led to significant interest in the use of sequence-to-sequence models for time series forecasting. We provide the first theoretical analysis of this time series forecasting framework. We include a comparison of sequence-to-sequence modeling to classical time series models, and as such our theory can serve as a quantitative guide for practiti...
Effectiveness of firefly algorithm based neural network in time series ...
African Journals Online (AJOL)
Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...
Modeling of Volatility with Non-linear Time Series Model
Kim Song Yon; Kim Mun Chol
2013-01-01
In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.
Susskind, Joel; Molnar, Gyula; Iredell, Lena
2011-01-01
Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product
Models for Pooled Time-Series Cross-Section Data
Directory of Open Access Journals (Sweden)
Lawrence E Raffalovich
2015-07-01
Full Text Available Several models are available for the analysis of pooled time-series cross-section (TSCS data, defined as “repeated observations on fixed units” (Beck and Katz 1995. In this paper, we run the following models: (1 a completely pooled model, (2 fixed effects models, and (3 multi-level/hierarchical linear models. To illustrate these models, we use a Generalized Least Squares (GLS estimator with cross-section weights and panel-corrected standard errors (with EViews 8 on the cross-national homicide trends data of forty countries from 1950 to 2005, which we source from published research (Messner et al. 2011. We describe and discuss the similarities and differences between the models, and what information each can contribute to help answer substantive research questions. We conclude with a discussion of how the models we present may help to mitigate validity threats inherent in pooled time-series cross-section data analysis.
Detecting structural breaks in time series via genetic algorithms
DEFF Research Database (Denmark)
Doerr, Benjamin; Fischer, Paul; Hilbert, Astrid
2016-01-01
of the time series under consideration is available. Therefore, a black-box optimization approach is our method of choice for detecting structural breaks. We describe a genetic algorithm framework which easily adapts to a large number of statistical settings. To evaluate the usefulness of different crossover...... and mutation operations for this problem, we conduct extensive experiments to determine good choices for the parameters and operators of the genetic algorithm. One surprising observation is that use of uniform and one-point crossover together gave significantly better results than using either crossover...... operator alone. Moreover, we present a specific fitness function which exploits the sparse structure of the break points and which can be evaluated particularly efficiently. The experiments on artificial and real-world time series show that the resulting algorithm detects break points with high precision...
Time-Series Analysis of Supergranule Characterstics at Solar Minimum
Williams, Peter E.; Pesnell, W. Dean
2013-01-01
Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three to five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.
STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS
Energy Technology Data Exchange (ETDEWEB)
Scargle, Jeffrey D. [Space Science and Astrobiology Division, MS 245-3, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Norris, Jay P. [Physics Department, Boise State University, 2110 University Drive, Boise, ID 83725-1570 (United States); Jackson, Brad [The Center for Applied Mathematics and Computer Science, Department of Mathematics, San Jose State University, One Washington Square, MH 308, San Jose, CA 95192-0103 (United States); Chiang, James, E-mail: jeffrey.d.scargle@nasa.gov [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)
2013-02-20
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.
Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations
Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James
2013-01-01
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks [Scargle 1998]-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piece- wise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by [Arias-Castro, Donoho and Huo 2003]. In the spirit of Reproducible Research [Donoho et al. (2008)] all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.
STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS
International Nuclear Information System (INIS)
Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James
2013-01-01
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it—an improved and generalized version of Bayesian Blocks—that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.
TIME SERIES ANALYSIS USING A UNIQUE MODEL OF TRANSFORMATION
Directory of Open Access Journals (Sweden)
Goran Klepac
2007-12-01
Full Text Available REFII1 model is an authorial mathematical model for time series data mining. The main purpose of that model is to automate time series analysis, through a unique transformation model of time series. An advantage of this approach of time series analysis is the linkage of different methods for time series analysis, linking traditional data mining tools in time series, and constructing new algorithms for analyzing time series. It is worth mentioning that REFII model is not a closed system, which means that we have a finite set of methods. At first, this is a model for transformation of values of time series, which prepares data used by different sets of methods based on the same model of transformation in a domain of problem space. REFII model gives a new approach in time series analysis based on a unique model of transformation, which is a base for all kind of time series analysis. The advantage of REFII model is its possible application in many different areas such as finance, medicine, voice recognition, face recognition and text mining.
An Energy-Based Similarity Measure for Time Series
Directory of Open Access Journals (Sweden)
Pierre Brunagel
2007-11-01
Full Text Available A new similarity measure, called SimilB, for time series analysis, based on the cross-ÃŽÂ¨B-energy operator (2004, is introduced. ÃŽÂ¨B is a nonlinear measure which quantifies the interaction between two time series. Compared to Euclidean distance (ED or the Pearson correlation coefficient (CC, SimilB includes the temporal information and relative changes of the time series using the first and second derivatives of the time series. SimilB is well suited for both nonstationary and stationary time series and particularly those presenting discontinuities. Some new properties of ÃŽÂ¨B are presented. Particularly, we show that ÃŽÂ¨B as similarity measure is robust to both scale and time shift. SimilB is illustrated with synthetic time series and an artificial dataset and compared to the CC and the ED measures.
Time-series prediction and applications a machine intelligence approach
Konar, Amit
2017-01-01
This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at...
Vector bilinear autoregressive time series model and its superiority ...
African Journals Online (AJOL)
In this research, a vector bilinear autoregressive time series model was proposed and used to model three revenue series (X1, X2, X3) . The “orders” of the three series were identified on the basis of the distribution of autocorrelation and partial autocorrelation functions and were used to construct the vector bilinear models.
A novel weight determination method for time series data aggregation
Xu, Paiheng; Zhang, Rong; Deng, Yong
2017-09-01
Aggregation in time series is of great importance in time series smoothing, predicting and other time series analysis process, which makes it crucial to address the weights in times series correctly and reasonably. In this paper, a novel method to obtain the weights in time series is proposed, in which we adopt induced ordered weighted aggregation (IOWA) operator and visibility graph averaging (VGA) operator and linearly combine the weights separately generated by the two operator. The IOWA operator is introduced to the weight determination of time series, through which the time decay factor is taken into consideration. The VGA operator is able to generate weights with respect to the degree distribution in the visibility graph constructed from the corresponding time series, which reflects the relative importance of vertices in time series. The proposed method is applied to two practical datasets to illustrate its merits. The aggregation of Construction Cost Index (CCI) demonstrates the ability of proposed method to smooth time series, while the aggregation of The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) illustrate how proposed method maintain the variation tendency of original data.
Earthquake forecasting studies using radon time series data in Taiwan
Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong
2017-04-01
For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.
Comparison of correlation analysis techniques for irregularly sampled time series
Directory of Open Access Journals (Sweden)
K. Rehfeld
2011-06-01
Full Text Available Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques.
All methods have comparable root mean square errors (RMSEs for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods.
We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ^{18}O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.
Monitoring Forest Regrowth Using a Multi-Platform Time Series
Sabol, Donald E., Jr.; Smith, Milton O.; Adams, John B.; Gillespie, Alan R.; Tucker, Compton J.
1996-01-01
Over the past 50 years, the forests of western Washington and Oregon have been extensively harvested for timber. This has resulted in a heterogeneous mosaic of remaining mature forests, clear-cuts, new plantations, and second-growth stands that now occur in areas that formerly were dominated by extensive old-growth forests and younger forests resulting from fire disturbance. Traditionally, determination of seral stage and stand condition have been made using aerial photography and spot field observations, a methodology that is not only time- and resource-intensive, but falls short of providing current information on a regional scale. These limitations may be solved, in part, through the use of multispectral images which can cover large areas at spatial resolutions in the order of tens of meters. The use of multiple images comprising a time series potentially can be used to monitor land use (e.g. cutting and replanting), and to observe natural processes such as regeneration, maturation and phenologic change. These processes are more likely to be spectrally observed in a time series composed of images taken during different seasons over a long period of time. Therefore, for many areas, it may be necessary to use a variety of images taken with different imaging systems. A common framework for interpretation is needed that reduces topographic, atmospheric, instrumental, effects as well as differences in lighting geometry between images. The present state of remote-sensing technology in general use does not realize the full potential of the multispectral data in areas of high topographic relief. For example, the primary method for analyzing images of forested landscapes in the Northwest has been with statistical classifiers (e.g. parallelepiped, nearest-neighbor, maximum likelihood, etc.), often applied to uncalibrated multispectral data. Although this approach has produced useful information from individual images in some areas, landcover classes defined by these
Capturing Structure Implicitly from Time-Series having Limited Data
Emaasit, Daniel; Johnson, Matthew
2018-01-01
Scientific fields such as insider-threat detection and highway-safety planning often lack sufficient amounts of time-series data to estimate statistical models for the purpose of scientific discovery. Moreover, the available limited data are quite noisy. This presents a major challenge when estimating time-series models that are robust to overfitting and have well-calibrated uncertainty estimates. Most of the current literature in these fields involve visualizing the time-series for noticeabl...
Mathematical foundations of time series analysis a concise introduction
Beran, Jan
2017-01-01
This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.
Trend time-series modeling and forecasting with neural networks.
Qi, Min; Zhang, G Peter
2008-05-01
Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.
Time series analysis in the social sciences the fundamentals
Shin, Youseop
2017-01-01
Times Series Analysis in the Social Sciences is a practical and highly readable introduction written exclusively for students and researchers whose mathematical background is limited to basic algebra. The book focuses on fundamental elements of time series analysis that social scientists need to understand so they can employ time series analysis for their research and practice. Through step-by-step explanations and using monthly violent crime rates as case studies, this book explains univariate time series from the preliminary visual analysis through the modeling of seasonality, trends, and re
Stochastic time series analysis of hydrology data for water resources
Sathish, S.; Khadar Babu, S. K.
2017-11-01
The prediction to current publication of stochastic time series analysis in hydrology and seasonal stage. The different statistical tests for predicting the hydrology time series on Thomas-Fiering model. The hydrology time series of flood flow have accept a great deal of consideration worldwide. The concentration of stochastic process areas of time series analysis method are expanding with develop concerns about seasonal periods and global warming. The recent trend by the researchers for testing seasonal periods in the hydrologic flowseries using stochastic process on Thomas-Fiering model. The present article proposed to predict the seasonal periods in hydrology using Thomas-Fiering model.
A method for generating high resolution satellite image time series
Guo, Tao
2014-10-01
There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation
Satellite Image Time Series Decomposition Based on EEMD
Directory of Open Access Journals (Sweden)
Yun-long Kong
2015-11-01
Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.
Exploratory joint and separate tracking of geographically related time series
Balasingam, Balakumar; Willett, Peter; Levchuk, Georgiy; Freeman, Jared
2012-05-01
Target tracking techniques have usually been applied to physical systems via radar, sonar or imaging modalities. But the same techniques - filtering, association, classification, track management - can be applied to nontraditional data such as one might find in other fields such as economics, business and national defense. In this paper we explore a particular data set. The measurements are time series collected at various sites; but other than that little is known about it. We shall refer to as the data as representing the Megawatt hour (MWH) output of various power plants located in Afghanistan. We pose such questions as: 1. Which power plants seem to have a common model? 2. Do any power plants change their models with time? 3. Can power plant behavior be predicted, and if so, how far to the future? 4. Are some of the power plants stochastically linked? That is, do we observed a lack of power demand at one power plant as implying a surfeit of demand elsewhere? The observations seem well modeled as hidden Markov. This HMM modeling is compared to other approaches; and tests are continued to other (albeit self-generated) data sets with similar characteristics. Keywords: Time-series analysis, hidden Markov models, statistical similarity, clustering weighted
Interpretable Early Classification of Multivariate Time Series
Ghalwash, Mohamed F.
2013-01-01
Recent advances in technology have led to an explosion in data collection over time rather than in a single snapshot. For example, microarray technology allows us to measure gene expression levels in different conditions over time. Such temporal data grants the opportunity for data miners to develop algorithms to address domain-related problems,…
Incorporating Satellite Time-Series Data into Modeling
Gregg, Watson
2008-01-01
In situ time series observations have provided a multi-decadal view of long-term changes in ocean biology. These observations are sufficiently reliable to enable discernment of even relatively small changes, and provide continuous information on a host of variables. Their key drawback is their limited domain. Satellite observations from ocean color sensors do not suffer the drawback of domain, and simultaneously view the global oceans. This attribute lends credence to their use in global and regional model validation and data assimilation. We focus on these applications using the NASA Ocean Biogeochemical Model. The enhancement of the satellite data using data assimilation is featured and the limitation of tongterm satellite data sets is also discussed.
Studies on time series applications in environmental sciences
Bărbulescu, Alina
2016-01-01
Time series analysis and modelling represent a large study field, implying the approach from the perspective of the time and frequency, with applications in different domains. Modelling hydro-meteorological time series is difficult due to the characteristics of these series, as long range dependence, spatial dependence, the correlation with other series. Continuous spatial data plays an important role in planning, risk assessment and decision making in environmental management. In this context, in this book we present various statistical tests and modelling techniques used for time series analysis, as well as applications to hydro-meteorological series from Dobrogea, a region situated in the south-eastern part of Romania, less studied till now. Part of the results are accompanied by their R code. .
The Timeseries Toolbox - A Web Application to Enable Accessible, Reproducible Time Series Analysis
Veatch, W.; Friedman, D.; Baker, B.; Mueller, C.
2017-12-01
The vast majority of data analyzed by climate researchers are repeated observations of physical process or time series data. This data lends itself of a common set of statistical techniques and models designed to determine trends and variability (e.g., seasonality) of these repeated observations. Often, these same techniques and models can be applied to a wide variety of different time series data. The Timeseries Toolbox is a web application designed to standardize and streamline these common approaches to time series analysis and modeling with particular attention to hydrologic time series used in climate preparedness and resilience planning and design by the U. S. Army Corps of Engineers. The application performs much of the pre-processing of time series data necessary for more complex techniques (e.g. interpolation, aggregation). With this tool, users can upload any dataset that conforms to a standard template and immediately begin applying these techniques to analyze their time series data.
DTW-APPROACH FOR UNCORRELATED MULTIVARIATE TIME SERIES IMPUTATION
Phan , Thi-Thu-Hong; Poisson Caillault , Emilie; Bigand , André; Lefebvre , Alain
2017-01-01
International audience; Missing data are inevitable in almost domains of applied sciences. Data analysis with missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Some well-known methods for multivariate time series imputation require high correlations between series or their features. In this paper , we propose an approach based on the shape-behaviour relation in low/un-correlated multivariate time series under an assumption of...
Detecting and characterising ramp events in wind power time series
International Nuclear Information System (INIS)
Gallego, Cristóbal; Cuerva, Álvaro; Costa, Alexandre
2014-01-01
In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain
Perrot, Laurie; Gohin, Francis; Ruiz-Pino, Diana; Lampert, Luis
2016-04-01
Coccolithophores belong to the nano-phytoplankton size-class and produce CaCO3 scales called coccoliths which form the «shell» of the algae cell. Coccoliths are in the size range of a few μm and can also be detached from the cell in the water. This phytoplankton group has an ubiquitous distribution in all oceans but blooms only in some oceanic regions, like the North East Atlantic ocean and the South Western Atlantic (Patagonian Sea). At a global scale coccolithopore blooms are studied in regard of CaCO3 production and three potential feedback on climate change: albedo modification by the way of dimethylsulfide (DMS) production and atmospheric CO2 source by calcification and a CO2 pump by photosynthesis. As the oceans are more and more acidified by anthropogenic CO2 emissions, coccolithophores generally are expected to be negatively affected. However, recent studies have shown an increase in coccolithophore occurrence in the North Atlantic. A poleward expansion of the coccolithophore Emiliana Huxleyi has also been pointed out. By using a simplified fuzzy method applied to a 18-year time series of SeaWiFS (1998-2002) and MODIS (2003-2015) spectral reflectance, we assessed the seasonal and inter-annual variability of coccolithophore blooms in the vicinity of the shelf break in the Bay of Biscay and the Celtic Sea After identification of the coccolith pixels by applying the fuzzy method, the abundance of coccoliths is assessed from a database of non-algal Suspended Particulate Matter (SPM). Although a regular pattern in the phenology of the blooms is observed, starting south in April in Biscay and moving northwards until July in Ireland, there is a high seasonal and interannual variability in the extent of the blooms. Year 2014 shows very low concentrations of detached coccoliths (twice less than average) from space and anomalies point out the maximum level in 2001. Non-algal SPM, derived from a procedure defined for the continental shelf, appears to be well
Metagenomics meets time series analysis: unraveling microbial community dynamics
Faust, K.; Lahti, L.M.; Gonze, D.; Vos, de W.M.; Raes, J.
2015-01-01
The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic
forecasting with nonlinear time series model: a monte-carlo
African Journals Online (AJOL)
PUBLICATIONS1
erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.
Critical values for unit root tests in seasonal time series
Ph.H.B.F. Franses (Philip Hans); B. Hobijn (Bart)
1997-01-01
textabstractIn this paper, we present tables with critical values for a variety of tests for seasonal and non-seasonal unit roots in seasonal time series. We consider (extensions of) the Hylleberg et al. and Osborn et al. test procedures. These extensions concern time series with increasing seasonal
Measurements of spatial population synchrony: influence of time series transformations.
Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël
2015-09-01
Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.
Transition Icons for Time-Series Visualization and Exploratory Analysis.
Nickerson, Paul V; Baharloo, Raheleh; Wanigatunga, Amal A; Manini, Todd M; Tighe, Patrick J; Rashidi, Parisa
2018-03-01
The modern healthcare landscape has seen the rapid emergence of techniques and devices that temporally monitor and record physiological signals. The prevalence of time-series data within the healthcare field necessitates the development of methods that can analyze the data in order to draw meaningful conclusions. Time-series behavior is notoriously difficult to intuitively understand due to its intrinsic high-dimensionality, which is compounded in the case of analyzing groups of time series collected from different patients. Our framework, which we call transition icons, renders common patterns in a visual format useful for understanding the shared behavior within groups of time series. Transition icons are adept at detecting and displaying subtle differences and similarities, e.g., between measurements taken from patients receiving different treatment strategies or stratified by demographics. We introduce various methods that collectively allow for exploratory analysis of groups of time series, while being free of distribution assumptions and including simple heuristics for parameter determination. Our technique extracts discrete transition patterns from symbolic aggregate approXimation representations, and compiles transition frequencies into a bag of patterns constructed for each group. These transition frequencies are normalized and aligned in icon form to intuitively display the underlying patterns. We demonstrate the transition icon technique for two time-series datasets-postoperative pain scores, and hip-worn accelerometer activity counts. We believe transition icons can be an important tool for researchers approaching time-series data, as they give rich and intuitive information about collective time-series behaviors.
Time Series Econometrics for the 21st Century
Hansen, Bruce E.
2017-01-01
The field of econometrics largely started with time series analysis because many early datasets were time-series macroeconomic data. As the field developed, more cross-sectional and longitudinal datasets were collected, which today dominate the majority of academic empirical research. In nonacademic (private sector, central bank, and governmental)…
The Prediction of Teacher Turnover Employing Time Series Analysis.
Costa, Crist H.
The purpose of this study was to combine knowledge of teacher demographic data with time-series forecasting methods to predict teacher turnover. Moving averages and exponential smoothing were used to forecast discrete time series. The study used data collected from the 22 largest school districts in Iowa, designated as FACT schools. Predictions…
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Time series forecasting based on deep extreme learning machine
Guo, Xuqi; Pang, Y.; Yan, Gaowei; Qiao, Tiezhu; Yang, Guang-Hong; Yang, Dan
2017-01-01
Multi-layer Artificial Neural Networks (ANN) has caught widespread attention as a new method for time series forecasting due to the ability of approximating any nonlinear function. In this paper, a new local time series prediction model is established with the nearest neighbor domain theory, in
Parameterizing unconditional skewness in models for financial time series
DEFF Research Database (Denmark)
He, Changli; Silvennoinen, Annastiina; Teräsvirta, Timo
In this paper we consider the third-moment structure of a class of time series models. It is often argued that the marginal distribution of financial time series such as returns is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate...
Robust Forecasting of Non-Stationary Time Series
Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.
2010-01-01
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable
Efficient use of correlation entropy for analysing time series data
Indian Academy of Sciences (India)
Abstract. The correlation dimension D2 and correlation entropy K2 are both important quantifiers in nonlinear time series analysis. However, use of D2 has been more common compared to K2 as a discriminating measure. One reason for this is that D2 is a static measure and can be easily evaluated from a time series.
Time series prediction of apple scab using meteorological ...
African Journals Online (AJOL)
A new prediction model for the early warning of apple scab is proposed in this study. The method is based on artificial intelligence and time series prediction. The infection period of apple scab was evaluated as the time series prediction model instead of summation of wetness duration. Also, the relations of different ...
Time-series analysis for ambient concentrations
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Manteiga, W.; Prada-Sanchez, J.M.; Cao, R.; Garcia-Jurado, I.; Febrero-Bande, M.; Lucas-Dominguez, T. (Santiago de Compostela University, Santiago de Compostela (Spain). Dept. of Statistics and Operations Research)
1993-02-01
In this paper a dynamic system is presented which has been implemented to predict, every 5 min, the ambient concentrations of SO[sub 2] in the neighbourhood of a power station run by ENDESA, the National Electricity Company of Spain, in As Pontes. This prediction task is very important in order to prevent a high ground-level of concentration of SO[sub 2]. For forecasting a mixed model is used which has a parametric component and a nonparametric one. Confidence intervals are also constructed for future observations using bootstrap and classical techniques. 4 refs., 5 figs., 3 tabs.
A Dynamic Fuzzy Cluster Algorithm for Time Series
Directory of Open Access Journals (Sweden)
Min Ji
2013-01-01
clustering time series by introducing the definition of key point and improving FCM algorithm. The proposed algorithm works by determining those time series whose class labels are vague and further partitions them into different clusters over time. The main advantage of this approach compared with other existing algorithms is that the property of some time series belonging to different clusters over time can be partially revealed. Results from simulation-based experiments on geographical data demonstrate the excellent performance and the desired results have been obtained. The proposed algorithm can be applied to solve other clustering problems in data mining.
Hamid, Nor Zila Abd; Adenan, Nur Hamiza; Noorani, Mohd Salmi Md
2017-08-01
Forecasting and analyzing the ozone (O3) concentration time series is important because the pollutant is harmful to health. This study is a pilot study for forecasting and analyzing the O3 time series in one of Malaysian educational area namely Shah Alam using chaotic approach. Through this approach, the observed hourly scalar time series is reconstructed into a multi-dimensional phase space, which is then used to forecast the future time series through the local linear approximation method. The main purpose is to forecast the high O3 concentrations. The original method performed poorly but the improved method addressed the weakness thereby enabling the high concentrations to be successfully forecast. The correlation coefficient between the observed and forecasted time series through the improved method is 0.9159 and both the mean absolute error and root mean squared error are low. Thus, the improved method is advantageous. The time series analysis by means of the phase space plot and Cao method identified the presence of low-dimensional chaotic dynamics in the observed O3 time series. Results showed that at least seven factors affect the studied O3 time series, which is consistent with the listed factors from the diurnal variations investigation and the sensitivity analysis from past studies. In conclusion, chaotic approach has been successfully forecast and analyzes the O3 time series in educational area of Shah Alam. These findings are expected to help stakeholders such as Ministry of Education and Department of Environment in having a better air pollution management.
Frontiers in Time Series and Financial Econometrics : An overview
S. Ling (Shiqing); M.J. McAleer (Michael); H. Tong (Howell)
2015-01-01
markdownabstract__Abstract__ Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time
Frontiers in Time Series and Financial Econometrics: An Overview
S. Ling (Shiqing); M.J. McAleer (Michael); H. Tong (Howell)
2015-01-01
markdownabstract__Abstract__ Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time
vector bilinear autoregressive time series model and its superiority
African Journals Online (AJOL)
KEYWORDS: Linear time series, Autoregressive process, Autocorrelation function, Partial autocorrelation function,. Vector time .... important result on matrix algebra with respect to the spectral ..... application to covariance analysis of super-.
Effectiveness of Multivariate Time Series Classification Using Shapelets
Directory of Open Access Journals (Sweden)
A. P. Karpenko
2015-01-01
Full Text Available Typically, time series classifiers require signal pre-processing (filtering signals from noise and artifact removal, etc., enhancement of signal features (amplitude, frequency, spectrum, etc., classification of signal features in space using the classical techniques and classification algorithms of multivariate data. We consider a method of classifying time series, which does not require enhancement of the signal features. The method uses the shapelets of time series (time series shapelets i.e. small fragments of this series, which reflect properties of one of its classes most of all.Despite the significant number of publications on the theory and shapelet applications for classification of time series, the task to evaluate the effectiveness of this technique remains relevant. An objective of this publication is to study the effectiveness of a number of modifications of the original shapelet method as applied to the multivariate series classification that is a littlestudied problem. The paper presents the problem statement of multivariate time series classification using the shapelets and describes the shapelet–based basic method of binary classification, as well as various generalizations and proposed modification of the method. It also offers the software that implements a modified method and results of computational experiments confirming the effectiveness of the algorithmic and software solutions.The paper shows that the modified method and the software to use it allow us to reach the classification accuracy of about 85%, at best. The shapelet search time increases in proportion to input data dimension.
Recurrent Patterns in Dst Time Series
Directory of Open Access Journals (Sweden)
Hee-Jeong Kim
2003-06-01
Full Text Available This study reports one approach for the classification of magnetic storms into recurrent patterns. A storm event is defined as a local minimum of Dst index. The analysis of Dst index for the period of year 1957 through year 2000 has demonstrated that a large portion of the storm events can be classified into a set of recurrent patterns. In our approach, the classification is performed by seeking a categorization that minimizes thermodynamic free energy which is defined as the sum of classification errors and entropy. The error is calculated as the squared sum of the value differences between events. The classification depends on the noise parameter T that represents the strength of the intrinsic error in the observation and classification process. The classification results would be applicable in space weather forecasting.
Pseudo-random bit generator based on lag time series
García-Martínez, M.; Campos-Cantón, E.
2014-12-01
In this paper, we present a pseudo-random bit generator (PRBG) based on two lag time series of the logistic map using positive and negative values in the bifurcation parameter. In order to hidden the map used to build the pseudo-random series we have used a delay in the generation of time series. These new series when they are mapped xn against xn+1 present a cloud of points unrelated to the logistic map. Finally, the pseudo-random sequences have been tested with the suite of NIST giving satisfactory results for use in stream ciphers.
Quantifying evolutionary dynamics from variant-frequency time series
Khatri, Bhavin S.
2016-09-01
From Kimura’s neutral theory of protein evolution to Hubbell’s neutral theory of biodiversity, quantifying the relative importance of neutrality versus selection has long been a basic question in evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new form: given a time-series of the frequency of different variants in a population, what is the likelihood that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit Fisher’s angular transformation, which despite being discovered by Ronald Fisher a century ago, has remained an intellectual curiosity. We show together with a heuristic approach it provides a simple solution for the transition probability density at short times, including drift, selection and mutation. Our results show under that under strong selection and sufficiently frequent sampling these evolutionary parameters can be accurately determined from simulation data and so they provide a theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.
Aerosol Climate Time Series Evaluation In ESA Aerosol_cci
Popp, T.; de Leeuw, G.; Pinnock, S.
2015-12-01
Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products
Analysis of time series and size of equivalent sample
International Nuclear Information System (INIS)
Bernal, Nestor; Molina, Alicia; Pabon, Daniel; Martinez, Jorge
2004-01-01
In a meteorological context, a first approach to the modeling of time series is to use models of autoregressive type. This allows one to take into account the meteorological persistence or temporal behavior, thereby identifying the memory of the analyzed process. This article seeks to pre-sent the concept of the size of an equivalent sample, which helps to identify in the data series sub periods with a similar structure. Moreover, in this article we examine the alternative of adjusting the variance of the series, keeping in mind its temporal structure, as well as an adjustment to the covariance of two time series. This article presents two examples, the first one corresponding to seven simulated series with autoregressive structure of first order, and the second corresponding to seven meteorological series of anomalies of the air temperature at the surface in two Colombian regions
Characterizing time series: when Granger causality triggers complex networks
International Nuclear Information System (INIS)
Ge Tian; Cui Yindong; Lin Wei; Liu Chong; Kurths, Jürgen
2012-01-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length. (paper)
Characterizing time series: when Granger causality triggers complex networks
Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong
2012-08-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.
Sensor-Generated Time Series Events: A Definition Language
Anguera, Aurea; Lara, Juan A.; Lizcano, David; Martínez, Maria Aurora; Pazos, Juan
2012-01-01
There are now a great many domains where information is recorded by sensors over a limited time period or on a permanent basis. This data flow leads to sequences of data known as time series. In many domains, like seismography or medicine, time series analysis focuses on particular regions of interest, known as events, whereas the remainder of the time series contains hardly any useful information. In these domains, there is a need for mechanisms to identify and locate such events. In this paper, we propose an events definition language that is general enough to be used to easily and naturally define events in time series recorded by sensors in any domain. The proposed language has been applied to the definition of time series events generated within the branch of medicine dealing with balance-related functions in human beings. A device, called posturograph, is used to study balance-related functions. The platform has four sensors that record the pressure intensity being exerted on the platform, generating four interrelated time series. As opposed to the existing ad hoc proposals, the results confirm that the proposed language is valid, that is generally applicable and accurate, for identifying the events contained in the time series.
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Lunde, Asger
2014-01-01
An economic time series can often be viewed as a noisy proxy for an underlying economic variable. Measurement errors will influence the dynamic properties of the observed process and may conceal the persistence of the underlying time series. In this paper we develop instrumental variable (IV...
Mapping air temperature using time series analysis of LST : The SINTESI approach
Alfieri, S.M.; De Lorenzi, F.; Menenti, M.
2013-01-01
This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded
Time Series Decomposition into Oscillation Components and Phase Estimation.
Matsuda, Takeru; Komaki, Fumiyasu
2017-02-01
Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.
Signal Processing for Time-Series Functions on a Graph
2018-02-01
Figures Fig. 1 Time -series function on a fixed graph.............................................2 iv Approved for public release; distribution is...φi〉`2(V)φi (39) 6= f̄ (40) Instead, we simply recover the average of f over time . 13 Approved for public release; distribution is unlimited. This...ARL-TR-8276• FEB 2018 US Army Research Laboratory Signal Processing for Time -Series Functions on a Graph by Humberto Muñoz-Barona, Jean Vettel, and
ALBEDO PATTERN RECOGNITION AND TIME-SERIES ANALYSES IN MALAYSIA
Directory of Open Access Journals (Sweden)
S. A. Salleh
2012-07-01
Full Text Available Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000–2009 MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools. There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI and aerosol optical depth (AOD. There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high
Empirical intrinsic geometry for nonlinear modeling and time series filtering.
Talmon, Ronen; Coifman, Ronald R
2013-07-30
In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.
Analysis of complex time series using refined composite multiscale entropy
International Nuclear Information System (INIS)
Wu, Shuen-De; Wu, Chiu-Wen; Lin, Shiou-Gwo; Lee, Kung-Yen; Peng, Chung-Kang
2014-01-01
Multiscale entropy (MSE) is an effective algorithm for measuring the complexity of a time series that has been applied in many fields successfully. However, MSE may yield an inaccurate estimation of entropy or induce undefined entropy because the coarse-graining procedure reduces the length of a time series considerably at large scales. Composite multiscale entropy (CMSE) was recently proposed to improve the accuracy of MSE, but it does not resolve undefined entropy. Here we propose a refined composite multiscale entropy (RCMSE) to improve CMSE. For short time series analyses, we demonstrate that RCMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy.
Forecasting daily meteorological time series using ARIMA and regression models
Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir
2018-04-01
The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.
Segmentation of Nonstationary Time Series with Geometric Clustering
DEFF Research Database (Denmark)
Bocharov, Alexei; Thiesson, Bo
2013-01-01
We introduce a non-parametric method for segmentation in regimeswitching time-series models. The approach is based on spectral clustering of target-regressor tuples and derives a switching regression tree, where regime switches are modeled by oblique splits. Such models can be learned efficiently...... from data, where clustering is used to propose one single split candidate at each split level. We use the class of ART time series models to serve as illustration, but because of the non-parametric nature of our segmentation approach, it readily generalizes to a wide range of time-series models that go...
Modelling road accidents: An approach using structural time series
Junus, Noor Wahida Md; Ismail, Mohd Tahir
2014-09-01
In this paper, the trend of road accidents in Malaysia for the years 2001 until 2012 was modelled using a structural time series approach. The structural time series model was identified using a stepwise method, and the residuals for each model were tested. The best-fitted model was chosen based on the smallest Akaike Information Criterion (AIC) and prediction error variance. In order to check the quality of the model, a data validation procedure was performed by predicting the monthly number of road accidents for the year 2012. Results indicate that the best specification of the structural time series model to represent road accidents is the local level with a seasonal model.
Multivariate time series analysis with R and financial applications
Tsay, Ruey S
2013-01-01
Since the publication of his first book, Analysis of Financial Time Series, Ruey Tsay has become one of the most influential and prominent experts on the topic of time series. Different from the traditional and oftentimes complex approach to multivariate (MV) time series, this sequel book emphasizes structural specification, which results in simplified parsimonious VARMA modeling and, hence, eases comprehension. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-worl
Time series trends of the safety effects of pavement resurfacing.
Park, Juneyoung; Abdel-Aty, Mohamed; Wang, Jung-Han
2017-04-01
This study evaluated the safety performance of pavement resurfacing projects on urban arterials in Florida using the observational before and after approaches. The safety effects of pavement resurfacing were quantified in the crash modification factors (CMFs) and estimated based on different ranges of heavy vehicle traffic volume and time changes for different severity levels. In order to evaluate the variation of CMFs over time, crash modification functions (CMFunctions) were developed using nonlinear regression and time series models. The results showed that pavement resurfacing projects decrease crash frequency and are found to be more safety effective to reduce severe crashes in general. Moreover, the results of the general relationship between the safety effects and time changes indicated that the CMFs increase over time after the resurfacing treatment. It was also found that pavement resurfacing projects for the urban roadways with higher heavy vehicle volume rate are more safety effective than the roadways with lower heavy vehicle volume rate. Based on the exploration and comparison of the developed CMFucntions, the seasonal autoregressive integrated moving average (SARIMA) and exponential functional form of the nonlinear regression models can be utilized to identify the trend of CMFs over time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Scalable Prediction of Energy Consumption using Incremental Time Series Clustering
Energy Technology Data Exchange (ETDEWEB)
Simmhan, Yogesh; Noor, Muhammad Usman
2013-10-09
Time series datasets are a canonical form of high velocity Big Data, and often generated by pervasive sensors, such as found in smart infrastructure. Performing predictive analytics on time series data can be computationally complex, and requires approximation techniques. In this paper, we motivate this problem using a real application from the smart grid domain. We propose an incremental clustering technique, along with a novel affinity score for determining cluster similarity, which help reduce the prediction error for cumulative time series within a cluster. We evaluate this technique, along with optimizations, using real datasets from smart meters, totaling ~700,000 data points, and show the efficacy of our techniques in improving the prediction error of time series data within polynomial time.
Characterizing interdependencies of multiple time series theory and applications
Hosoya, Yuzo; Takimoto, Taro; Kinoshita, Ryo
2017-01-01
This book introduces academic researchers and professionals to the basic concepts and methods for characterizing interdependencies of multiple time series in the frequency domain. Detecting causal directions between a pair of time series and the extent of their effects, as well as testing the non existence of a feedback relation between them, have constituted major focal points in multiple time series analysis since Granger introduced the celebrated definition of causality in view of prediction improvement. Causality analysis has since been widely applied in many disciplines. Although most analyses are conducted from the perspective of the time domain, a frequency domain method introduced in this book sheds new light on another aspect that disentangles the interdependencies between multiple time series in terms of long-term or short-term effects, quantitatively characterizing them. The frequency domain method includes the Granger noncausality test as a special case. Chapters 2 and 3 of the book introduce an i...
Scale-dependent intrinsic entropies of complex time series.
Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E
2016-04-13
Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).
Elements of nonlinear time series analysis and forecasting
De Gooijer, Jan G
2017-01-01
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible...
Geiger, Tobias
2018-04-01
Gross domestic product (GDP) represents a widely used metric to compare economic development across time and space. GDP estimates have been routinely assembled only since the beginning of the second half of the 20th century, making comparisons with prior periods cumbersome or even impossible. In recent years various efforts have been put forward to re-estimate national GDP for specific years in the past centuries and even millennia, providing new insights into past economic development on a snapshot basis. In order to make this wealth of data utilizable across research disciplines, we here present a first continuous and consistent data set of GDP time series for 195 countries from 1850 to 2009, based mainly on data from the Maddison Project and other population and GDP sources. The GDP data are consistent with Penn World Tables v8.1 and future GDP projections from the Shared Socio-economic Pathways (SSPs), and are freely available at http://doi.org/10.5880/pik.2018.010 (Geiger and Frieler, 2018). To ease usability, we additionally provide GDP per capita data and further supplementary and data description files in the online archive. We utilize various methods to handle missing data and discuss the advantages and limitations of our methodology. Despite known shortcomings this data set provides valuable input, e.g., for climate impact research, in order to consistently analyze economic impacts from pre-industrial times to the future.
Rodgers, Joseph Lee; Beasley, William Howard; Schuelke, Matthew
2014-01-01
Many data structures, particularly time series data, are naturally seasonal, cyclical, or otherwise circular. Past graphical methods for time series have focused on linear plots. In this article, we move graphical analysis onto the circle. We focus on 2 particular methods, one old and one new. Rose diagrams are circular histograms and can be produced in several different forms using the RRose software system. In addition, we propose, develop, illustrate, and provide software support for a new circular graphical method, called Wrap-Around Time Series Plots (WATS Plots), which is a graphical method useful to support time series analyses in general but in particular in relation to interrupted time series designs. We illustrate the use of WATS Plots with an interrupted time series design evaluating the effect of the Oklahoma City bombing on birthrates in Oklahoma County during the 10 years surrounding the bombing of the Murrah Building in Oklahoma City. We compare WATS Plots with linear time series representations and overlay them with smoothing and error bands. Each method is shown to have advantages in relation to the other; in our example, the WATS Plots more clearly show the existence and effect size of the fertility differential.
Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.
Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo
2007-10-01
Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.
Growth And Export Expansion In Mauritius - A Time Series Analysis ...
African Journals Online (AJOL)
Growth And Export Expansion In Mauritius - A Time Series Analysis. ... RV Sannassee, R Pearce ... Using Granger Causality tests, the short-run analysis results revealed that there is significant reciprocal causality between real export earnings ...
AFSC/ABL: Ugashik sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 b?? 2002) collected from adult sockeye salmon returning to Ugashik River were retrieved from the Alaska Department of Fish and...
Fast and Flexible Multivariate Time Series Subsequence Search
National Aeronautics and Space Administration — Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical...
AFSC/ABL: Naknek sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 2002) collected from adult sockeye salmon returning to Naknek River were retrieved from the Alaska Department of Fish and Game....
forecasting with nonlinear time series model: a monte-carlo
African Journals Online (AJOL)
PUBLICATIONS1
Carlo method of forecasting using a special nonlinear time series model, called logistic smooth transition ... We illustrate this new method using some simulation ..... in MATLAB 7.5.0. ... process (DGP) using the logistic smooth transi-.
Analyzing time-ordered event data with missed observations
Dokter, Adriaan M.; van Loon, E. Emiel; Fokkema, Wimke; Lameris, Thomas K.; Nolet, Bart A.; van der Jeugd, Henk P.
2017-01-01
A common problem with observational datasets is that not all events of interest may be detected. For example, observing animals in the wild can difficult when animals move, hide, or cannot be closely approached. We consider time series of events recorded in conditions where events are occasionally
Satellite image time series simulation for environmental monitoring
Guo, Tao
2014-11-01
The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of
Blind source separation problem in GPS time series
Gualandi, A.; Serpelloni, E.; Belardinelli, M. E.
2016-04-01
A critical point in the analysis of ground displacement time series, as those recorded by space geodetic techniques, is the development of data-driven methods that allow the different sources of deformation to be discerned and characterized in the space and time domains. Multivariate statistic includes several approaches that can be considered as a part of data-driven methods. A widely used technique is the principal component analysis (PCA), which allows us to reduce the dimensionality of the data space while maintaining most of the variance of the dataset explained. However, PCA does not perform well in finding the solution to the so-called blind source separation (BSS) problem, i.e., in recovering and separating the original sources that generate the observed data. This is mainly due to the fact that PCA minimizes the misfit calculated using an L2 norm (χ 2), looking for a new Euclidean space where the projected data are uncorrelated. The independent component analysis (ICA) is a popular technique adopted to approach the BSS problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we test the use of a modified variational Bayesian ICA (vbICA) method to recover the multiple sources of ground deformation even in the presence of missing data. The vbICA method models the probability density function (pdf) of each source signal using a mix of Gaussian distributions, allowing for more flexibility in the description of the pdf of the sources with respect to standard ICA, and giving a more reliable estimate of them. Here we present its application to synthetic global positioning system (GPS) position time series, generated by simulating deformation near an active fault, including inter-seismic, co-seismic, and post-seismic signals, plus seasonal signals and noise, and an additional time-dependent volcanic source. We evaluate the ability of the PCA and ICA decomposition
Chaotic time series prediction: From one to another
International Nuclear Information System (INIS)
Zhao Pengfei; Xing Lei; Yu Jun
2009-01-01
In this Letter, a new local linear prediction model is proposed to predict a chaotic time series of a component x(t) by using the chaotic time series of another component y(t) in the same system with x(t). Our approach is based on the phase space reconstruction coming from the Takens embedding theorem. To illustrate our results, we present an example of Lorenz system and compare with the performance of the original local linear prediction model.
The use of synthetic input sequences in time series modeling
International Nuclear Information System (INIS)
Oliveira, Dair Jose de; Letellier, Christophe; Gomes, Murilo E.D.; Aguirre, Luis A.
2008-01-01
In many situations time series models obtained from noise-like data settle to trivial solutions under iteration. This Letter proposes a way of producing a synthetic (dummy) input, that is included to prevent the model from settling down to a trivial solution, while maintaining features of the original signal. Simulated benchmark models and a real time series of RR intervals from an ECG are used to illustrate the procedure
Advances in Antithetic Time Series Analysis : Separating Fact from Artifact
Directory of Open Access Journals (Sweden)
Dennis Ridley
2016-01-01
Full Text Available The problem of biased time series mathematical model parameter estimates is well known to be insurmountable. When used to predict future values by extrapolation, even a de minimis bias will eventually grow into a large bias, with misleading results. This paper elucidates how combining antithetic time series' solves this baffling problem of bias in the fitted and forecast values by dynamic bias cancellation. Instead of growing to infinity, the average error can converge to a constant. (original abstract
Stacked Heterogeneous Neural Networks for Time Series Forecasting
Directory of Open Access Journals (Sweden)
Florin Leon
2010-01-01
Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.
Robust Forecasting of Non-Stationary Time Series
Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.
2010-01-01
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedasticity. In the absence of outliers, the forecasts are only slightly less precise than those based on a localized Least Squares estima...
Automated Feature Design for Time Series Classification by Genetic Programming
Harvey, Dustin Yewell
2014-01-01
Time series classification (TSC) methods discover and exploit patterns in time series and other one-dimensional signals. Although many accurate, robust classifiers exist for multivariate feature sets, general approaches are needed to extend machine learning techniques to make use of signal inputs. Numerous applications of TSC can be found in structural engineering, especially in the areas of structural health monitoring and non-destructive evaluation. Additionally, the fields of process contr...
Geomechanical time series and its singularity spectrum analysis
Czech Academy of Sciences Publication Activity Database
Lyubushin, Alexei A.; Kaláb, Zdeněk; Lednická, Markéta
2012-01-01
Roč. 47, č. 1 (2012), s. 69-77 ISSN 1217-8977 R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z30860518 Keywords : geomechanical time series * singularity spectrum * time series segmentation * laser distance meter Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.347, year: 2012 http://www.akademiai.com/content/88v4027758382225/fulltext.pdf
Visser, H.; Molenaar, J.
1995-05-01
The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of
Water Quality Time Series, Aggregate values, and Related Aggregate Risk Measures
U.S. Environmental Protection Agency — The excel file contains time series data of flow rates, concentrations of alachlor , atrazine, ammonia, total phosphorus, and total suspended solids observed in two...
Similarity estimators for irregular and age uncertain time series
Rehfeld, K.; Kurths, J.
2013-09-01
Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many datasets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age uncertain time series. We compare the Gaussian-kernel based cross correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity
Similarity estimators for irregular and age-uncertain time series
Rehfeld, K.; Kurths, J.
2014-01-01
Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity
DEFF Research Database (Denmark)
Vincent, Claire Louise; Giebel, Gregor; Pinson, Pierre
2010-01-01
a 4-yr time series of 10-min wind speed observations. An adaptive spectral analysis method called the Hilbert–Huang transform is chosen for the analysis, because the nonstationarity of time series of wind speed observations means that they are not well described by a global spectral analysis method...... such as the Fourier transform. The Hilbert–Huang transform is a local method based on a nonparametric and empirical decomposition of the data followed by calculation of instantaneous amplitudes and frequencies using the Hilbert transform. The Hilbert–Huang transformed 4-yr time series is averaged and summarized...
Adaptive Sampling of Time Series During Remote Exploration
Thompson, David R.
2012-01-01
This work deals with the challenge of online adaptive data collection in a time series. A remote sensor or explorer agent adapts its rate of data collection in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility (all its datapoints lie in the past) and limited control (it can only decide when to collect its next datapoint). This problem is treated from an information-theoretic perspective, fitting a probabilistic model to collected data and optimizing the future sampling strategy to maximize information gain. The performance characteristics of stationary and nonstationary Gaussian process models are compared. Self-throttling sensors could benefit environmental sensor networks and monitoring as well as robotic exploration. Explorer agents can improve performance by adjusting their data collection rate, preserving scarce power or bandwidth resources during uninteresting times while fully covering anomalous events of interest. For example, a remote earthquake sensor could conserve power by limiting its measurements during normal conditions and increasing its cadence during rare earthquake events. A similar capability could improve sensor platforms traversing a fixed trajectory, such as an exploration rover transect or a deep space flyby. These agents can adapt observation times to improve sample coverage during moments of rapid change. An adaptive sampling approach couples sensor autonomy, instrument interpretation, and sampling. The challenge is addressed as an active learning problem, which already has extensive theoretical treatment in the statistics and machine learning literature. A statistical Gaussian process (GP) model is employed to guide sample decisions that maximize information gain. Nonsta tion - ary (e.g., time-varying) covariance relationships permit the system to represent and track local anomalies, in contrast with current GP approaches. Most common GP models
GPS coordinate time series measurements in Ontario and Quebec, Canada
Samadi Alinia, Hadis; Tiampo, Kristy F.; James, Thomas S.
2017-06-01
New precise network solutions for continuous GPS (cGPS) stations distributed in eastern Ontario and western Québec provide constraints on the regional three-dimensional crustal velocity field. Five years of continuous observations at fourteen cGPS sites were analyzed using Bernese GPS processing software. Several different sub-networks were chosen from these stations, and the data were processed and compared to in order to select the optimal configuration to accurately estimate the vertical and horizontal station velocities and minimize the associated errors. The coordinate time series were then compared to the crustal motions from global solutions and the optimized solution is presented here. A noise analysis model with power-law and white noise, which best describes the noise characteristics of all three components, was employed for the GPS time series analysis. The linear trend, associated uncertainties, and the spectral index of the power-law noise were calculated using a maximum likelihood estimation approach. The residual horizontal velocities, after removal of rigid plate motion, have a magnitude consistent with expected glacial isostatic adjustment (GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 mm/year. The residual horizontal velocities range from approximately 0.5 mm/year, oriented south-southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward the interior of Hudson Bay at stations adjacent to its shoreline. Here, the velocity uncertainties are estimated at less than 0.6 mm/year for the horizontal component and 1.1 mm/year for the vertical component. A comparison between the observed velocities and GIA model predictions, for a limited range of Earth models, shows a better fit to the observations for the Earth model with the smallest upper mantle viscosity and the largest lower mantle viscosity. However, the
Multiresolution analysis of Bursa Malaysia KLCI time series
Ismail, Mohd Tahir; Dghais, Amel Abdoullah Ahmed
2017-05-01
In general, a time series is simply a sequence of numbers collected at regular intervals over a period. Financial time series data processing is concerned with the theory and practice of processing asset price over time, such as currency, commodity data, and stock market data. The primary aim of this study is to understand the fundamental characteristics of selected financial time series by using the time as well as the frequency domain analysis. After that prediction can be executed for the desired system for in sample forecasting. In this study, multiresolution analysis which the assist of discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transform (MODWT) will be used to pinpoint special characteristics of Bursa Malaysia KLCI (Kuala Lumpur Composite Index) daily closing prices and return values. In addition, further case study discussions include the modeling of Bursa Malaysia KLCI using linear ARIMA with wavelets to address how multiresolution approach improves fitting and forecasting results.
Time domain series system definition and gear set reliability modeling
International Nuclear Information System (INIS)
Xie, Liyang; Wu, Ningxiang; Qian, Wenxue
2016-01-01
Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.
Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi
2015-02-01
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
Assimilation of LAI time-series in crop production models
Kooistra, Lammert; Rijk, Bert; Nannes, Louis
2014-05-01
Agriculture is worldwide a large consumer of freshwater, nutrients and land. Spatial explicit agricultural management activities (e.g., fertilization, irrigation) could significantly improve efficiency in resource use. In previous studies and operational applications, remote sensing has shown to be a powerful method for spatio-temporal monitoring of actual crop status. As a next step, yield forecasting by assimilating remote sensing based plant variables in crop production models would improve agricultural decision support both at the farm and field level. In this study we investigated the potential of remote sensing based Leaf Area Index (LAI) time-series assimilated in the crop production model LINTUL to improve yield forecasting at field level. The effect of assimilation method and amount of assimilated observations was evaluated. The LINTUL-3 crop production model was calibrated and validated for a potato crop on two experimental fields in the south of the Netherlands. A range of data sources (e.g., in-situ soil moisture and weather sensors, destructive crop measurements) was used for calibration of the model for the experimental field in 2010. LAI from cropscan field radiometer measurements and actual LAI measured with the LAI-2000 instrument were used as input for the LAI time-series. The LAI time-series were assimilated in the LINTUL model and validated for a second experimental field on which potatoes were grown in 2011. Yield in 2011 was simulated with an R2 of 0.82 when compared with field measured yield. Furthermore, we analysed the potential of assimilation of LAI into the LINTUL-3 model through the 'updating' assimilation technique. The deviation between measured and simulated yield decreased from 9371 kg/ha to 8729 kg/ha when assimilating weekly LAI measurements in the LINTUL model over the season of 2011. LINTUL-3 furthermore shows the main growth reducing factors, which are useful for farm decision support. The combination of crop models and sensor
Aerosol Climate Time Series in ESA Aerosol_cci
Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon
2016-04-01
Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension
Physics constrained nonlinear regression models for time series
International Nuclear Information System (INIS)
Majda, Andrew J; Harlim, John
2013-01-01
A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)
Drunk driving detection based on classification of multivariate time series.
Li, Zhenlong; Jin, Xue; Zhao, Xiaohua
2015-09-01
This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Recurrent Neural Networks for Multivariate Time Series with Missing Values.
Che, Zhengping; Purushotham, Sanjay; Cho, Kyunghyun; Sontag, David; Liu, Yan
2018-04-17
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provide useful insights for better understanding and utilization of missing values in time series analysis.
Statistical methods of parameter estimation for deterministically chaotic time series
Pisarenko, V. F.; Sornette, D.
2004-03-01
We discuss the possibility of applying some standard statistical methods (the least-square method, the maximum likelihood method, and the method of statistical moments for estimation of parameters) to deterministically chaotic low-dimensional dynamic system (the logistic map) containing an observational noise. A “segmentation fitting” maximum likelihood (ML) method is suggested to estimate the structural parameter of the logistic map along with the initial value x1 considered as an additional unknown parameter. The segmentation fitting method, called “piece-wise” ML, is similar in spirit but simpler and has smaller bias than the “multiple shooting” previously proposed. Comparisons with different previously proposed techniques on simulated numerical examples give favorable results (at least, for the investigated combinations of sample size N and noise level). Besides, unlike some suggested techniques, our method does not require the a priori knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the trade off between the need of using a large number of data points in the ML analysis to decrease the bias (to guarantee consistency of the estimation) and the unstable nature of dynamical trajectories with exponentially fast loss of memory of the initial condition. The method of statistical moments for the estimation of the parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for deterministically chaotic time series is proved so far theoretically (not only numerically).
Time Series Analysis of Wheat Futures Reward in China
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Different from the fact that the main researches are focused on single futures contract and lack of the comparison of different periods, this paper described the statistical characteristics of wheat futures reward time series of Zhengzhou Commodity Exchange in recent three years. Besides the basic statistic analysis, the paper used the GARCH and EGARCH model to describe the time series which had the ARCH effect and analyzed the persistence of volatility shocks and the leverage effect. The results showed that compared with that of normal one,wheat futures reward series were abnormality, leptokurtic and thick tail distribution. The study also found that two-part of the reward series had no autocorrelation. Among the six correlative series, three ones presented the ARCH effect. By using of the Auto-regressive Distributed Lag Model, GARCH model and EGARCH model, the paper demonstrates the persistence of volatility shocks and the leverage effect on the wheat futures reward time series. The results reveal that on the one hand, the statistical characteristics of the wheat futures reward are similar to the aboard mature futures market as a whole. But on the other hand, the results reflect some shortages such as the immatureness and the over-control by the government in the Chinese future market.
Unstable Periodic Orbit Analysis of Histograms of Chaotic Time Series
International Nuclear Information System (INIS)
Zoldi, S.M.
1998-01-01
Using the Lorenz equations, we have investigated whether unstable periodic orbits (UPOs) associated with a strange attractor may predict the occurrence of the robust sharp peaks in histograms of some experimental chaotic time series. Histograms with sharp peaks occur for the Lorenz parameter value r=60.0 but not for r=28.0 , and the sharp peaks for r=60.0 do not correspond to a histogram derived from any single UPO. However, we show that histograms derived from the time series of a non-Axiom-A chaotic system can be accurately predicted by an escape-time weighting of UPO histograms. copyright 1998 The American Physical Society
Minimum entropy density method for the time series analysis
Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae
2009-01-01
The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.
Multi-Scale Dissemination of Time Series Data
DEFF Research Database (Denmark)
Guo, Qingsong; Zhou, Yongluan; Su, Li
2013-01-01
In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time...
Compounding approach for univariate time series with nonstationary variances
Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich
2015-12-01
A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-05-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods that can analyze multidimensional time series. One important attribute of this method is that it is not dependent on any statistical assumption and does not need local stationarity in the time series. In this paper, it is shown how the FEM-clustering method can be used to locate change points in the trend of temperature time series from in situ observations. This method is applied to the temperature time series of North Carolina (NC) and the results represent region-specific climate variability despite higher frequency harmonics in climatic time series. Next, we investigated the relationship between the climatic indices with the clusters/trends detected based on this clustering method. It appears that the natural variability of climate change in NC during 1950-2009 can be explained mostly by AMO and solar activity.
Characterizing time series via complexity-entropy curves
Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K.
2017-06-01
The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q -complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.
Recurrent Neural Network Applications for Astronomical Time Series
Protopapas, Pavlos
2017-06-01
The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.
Multi-granular trend detection for time-series analysis
van Goethem, A.I.; Staals, F.; Löffler, M.; Dykes, J.; Speckmann, B.
2017-01-01
Time series (such as stock prices) and ensembles (such as model runs for weather forecasts) are two important types of one-dimensional time-varying data. Such data is readily available in large quantities but visual analysis of the raw data quickly becomes infeasible, even for moderately sized data
Time Series Analysis Based on Running Mann Whitney Z Statistics
A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...
The Photoplethismographic Signal Processed with Nonlinear Time Series Analysis Tools
International Nuclear Information System (INIS)
Hernandez Caceres, Jose Luis; Hong, Rolando; Garcia Lanz, Abel; Garcia Dominguez, Luis; Cabannas, Karelia
2001-01-01
Finger photoplethismography (PPG) signals were submitted to nonlinear time series analysis. The applied analytical techniques were: (i) High degree polynomial fitting for baseline estimation; (ii) FFT analysis for estimating power spectra; (iii) fractal dimension estimation via the Higuchi's time-domain method, and (iv) kernel nonparametric estimation for reconstructing noise free-attractors and also for estimating signal's stochastic components
Spectral Time Series of the Cas A Supernova
Rest, Armin
2016-10-01
We propose to obtain time-resolved spectroscopy of the outburst of the enigmatic historical supernova Cas A using STIS spectroscopy of light scattered by a narrow filament of interstellar dust. Our group has identified recent, high-surface brightness filaments that are likely to provide high signal-to-noise reproduction of the evolving spectrum of the Cas A outburst using verified, published techniques developed by us.The timescales to see any appreciable evolution in individual astrophysical objects are typically many orders of magnitudes larger than a human life. As a result, astronomers study large numbers of objects at different stages of their evolution to connect how a single object should change with time. Cas A can provide us with the ability, to look back in time to the point of explosion by observing its light echoes - SN light scattered off of dust in the Milky Way, which causes a time delay in reaching us. In obtaining spectra of light echoes, we have been able to determine the maximum-light characteristics of the SN. Our goal here is to obtain a single STIS spectrum of a bright Cas A LE, which will provide us a time series of spectra and a spatially resolved light curve of the Cas A SN. With these data, we will measure the properties of the cooling envelope after the shock breakout of the SN to estimate the radius of the progenitor star. We will then be able to connect the progenitor star to the explosion to the SN to the SNR.
Analyzing time-ordered event data with missed observations.
Dokter, Adriaan M; van Loon, E Emiel; Fokkema, Wimke; Lameris, Thomas K; Nolet, Bart A; van der Jeugd, Henk P
2017-09-01
A common problem with observational datasets is that not all events of interest may be detected. For example, observing animals in the wild can difficult when animals move, hide, or cannot be closely approached. We consider time series of events recorded in conditions where events are occasionally missed by observers or observational devices. These time series are not restricted to behavioral protocols, but can be any cyclic or recurring process where discrete outcomes are observed. Undetected events cause biased inferences on the process of interest, and statistical analyses are needed that can identify and correct the compromised detection processes. Missed observations in time series lead to observed time intervals between events at multiples of the true inter-event time, which conveys information on their detection probability. We derive the theoretical probability density function for observed intervals between events that includes a probability of missed detection. Methodology and software tools are provided for analysis of event data with potential observation bias and its removal. The methodology was applied to simulation data and a case study of defecation rate estimation in geese, which is commonly used to estimate their digestive throughput and energetic uptake, or to calculate goose usage of a feeding site from dropping density. Simulations indicate that at a moderate chance to miss arrival events ( p = 0.3), uncorrected arrival intervals were biased upward by up to a factor 3, while parameter values corrected for missed observations were within 1% of their true simulated value. A field case study shows that not accounting for missed observations leads to substantial underestimates of the true defecation rate in geese, and spurious rate differences between sites, which are introduced by differences in observational conditions. These results show that the derived methodology can be used to effectively remove observational biases in time-ordered event
Interrupted time-series analysis: studying trends in neurosurgery.
Wong, Ricky H; Smieliauskas, Fabrice; Pan, I-Wen; Lam, Sandi K
2015-12-01
OBJECT Neurosurgery studies traditionally have evaluated the effects of interventions on health care outcomes by studying overall changes in measured outcomes over time. Yet, this type of linear analysis is limited due to lack of consideration of the trend's effects both pre- and postintervention and the potential for confounding influences. The aim of this study was to illustrate interrupted time-series analysis (ITSA) as applied to an example in the neurosurgical literature and highlight ITSA's potential for future applications. METHODS The methods used in previous neurosurgical studies were analyzed and then compared with the methodology of ITSA. RESULTS The ITSA method was identified in the neurosurgical literature as an important technique for isolating the effect of an intervention (such as a policy change or a quality and safety initiative) on a health outcome independent of other factors driving trends in the outcome. The authors determined that ITSA allows for analysis of the intervention's immediate impact on outcome level and on subsequent trends and enables a more careful measure of the causal effects of interventions on health care outcomes. CONCLUSIONS ITSA represents a significant improvement over traditional observational study designs in quantifying the impact of an intervention. ITSA is a useful statistical procedure to understand, consider, and implement as the field of neurosurgery evolves in sophistication in big-data analytics, economics, and health services research.
Impact of Sensor Degradation on the MODIS NDVI Time Series
Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert
2012-01-01
Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.
Grammar-based feature generation for time-series prediction
De Silva, Anthony Mihirana
2015-01-01
This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method ...
Learning of time series through neuron-to-neuron instruction
Energy Technology Data Exchange (ETDEWEB)
Miyazaki, Y [Department of Physics, Kyoto University, Kyoto 606-8502, (Japan); Kinzel, W [Institut fuer Theoretische Physik, Universitaet Wurzburg, 97074 Wurzburg (Germany); Shinomoto, S [Department of Physics, Kyoto University, Kyoto (Japan)
2003-02-07
A model neuron with delayline feedback connections can learn a time series generated by another model neuron. It has been known that some student neurons that have completed such learning under the instruction of a teacher's quasi-periodic sequence mimic the teacher's time series over a long interval, even after instruction has ceased. We found that in addition to such faithful students, there are unfaithful students whose time series eventually diverge exponentially from that of the teacher. In order to understand the circumstances that allow for such a variety of students, the orbit dimension was estimated numerically. The quasi-periodic orbits in question were found to be confined in spaces with dimensions significantly smaller than that of the full phase space.
Learning of time series through neuron-to-neuron instruction
International Nuclear Information System (INIS)
Miyazaki, Y; Kinzel, W; Shinomoto, S
2003-01-01
A model neuron with delayline feedback connections can learn a time series generated by another model neuron. It has been known that some student neurons that have completed such learning under the instruction of a teacher's quasi-periodic sequence mimic the teacher's time series over a long interval, even after instruction has ceased. We found that in addition to such faithful students, there are unfaithful students whose time series eventually diverge exponentially from that of the teacher. In order to understand the circumstances that allow for such a variety of students, the orbit dimension was estimated numerically. The quasi-periodic orbits in question were found to be confined in spaces with dimensions significantly smaller than that of the full phase space
Time series analysis and its applications with R examples
Shumway, Robert H
2017-01-01
The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonli...
Nonlinear time series analysis of the human electrocardiogram
International Nuclear Information System (INIS)
Perc, Matjaz
2005-01-01
We analyse the human electrocardiogram with simple nonlinear time series analysis methods that are appropriate for graduate as well as undergraduate courses. In particular, attention is devoted to the notions of determinism and stationarity in physiological data. We emphasize that methods of nonlinear time series analysis can be successfully applied only if the studied data set originates from a deterministic stationary system. After positively establishing the presence of determinism and stationarity in the studied electrocardiogram, we calculate the maximal Lyapunov exponent, thus providing interesting insights into the dynamics of the human heart. Moreover, to facilitate interest and enable the integration of nonlinear time series analysis methods into the curriculum at an early stage of the educational process, we also provide user-friendly programs for each implemented method
Neural network versus classical time series forecasting models
Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam
2017-05-01
Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
Track Irregularity Time Series Analysis and Trend Forecasting
Directory of Open Access Journals (Sweden)
Jia Chaolong
2012-01-01
Full Text Available The combination of linear and nonlinear methods is widely used in the prediction of time series data. This paper analyzes track irregularity time series data by using gray incidence degree models and methods of data transformation, trying to find the connotative relationship between the time series data. In this paper, GM (1,1 is based on first-order, single variable linear differential equations; after an adaptive improvement and error correction, it is used to predict the long-term changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman filtering model, and artificial neural network model are applied to predict the short-term changing trend of track irregularity at unit section. Both long-term and short-term changes prove that the model is effective and can achieve the expected accuracy.
A novel time series link prediction method: Learning automata approach
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2017-09-01
Link prediction is a main social network challenge that uses the network structure to predict future links. The common link prediction approaches to predict hidden links use a static graph representation where a snapshot of the network is analyzed to find hidden or future links. For example, similarity metric based link predictions are a common traditional approach that calculates the similarity metric for each non-connected link and sort the links based on their similarity metrics and label the links with higher similarity scores as the future links. Because people activities in social networks are dynamic and uncertainty, and the structure of the networks changes over time, using deterministic graphs for modeling and analysis of the social network may not be appropriate. In the time-series link prediction problem, the time series link occurrences are used to predict the future links In this paper, we propose a new time series link prediction based on learning automata. In the proposed algorithm for each link that must be predicted there is one learning automaton and each learning automaton tries to predict the existence or non-existence of the corresponding link. To predict the link occurrence in time T, there is a chain consists of stages 1 through T - 1 and the learning automaton passes from these stages to learn the existence or non-existence of the corresponding link. Our preliminary link prediction experiments with co-authorship and email networks have provided satisfactory results when time series link occurrences are considered.
Time series patterns and language support in DBMS
Telnarova, Zdenka
2017-07-01
This contribution is focused on pattern type Time Series as a rich in semantics representation of data. Some example of implementation of this pattern type in traditional Data Base Management Systems is briefly presented. There are many approaches how to manipulate with patterns and query patterns. Crucial issue can be seen in systematic approach to pattern management and specific pattern query language which takes into consideration semantics of patterns. Query language SQL-TS for manipulating with patterns is shown on Time Series data.
Testing for intracycle determinism in pseudoperiodic time series.
Coelho, Mara C S; Mendes, Eduardo M A M; Aguirre, Luis A
2008-06-01
A determinism test is proposed based on the well-known method of the surrogate data. Assuming predictability to be a signature of determinism, the proposed method checks for intracycle (e.g., short-term) determinism in the pseudoperiodic time series for which standard methods of surrogate analysis do not apply. The approach presented is composed of two steps. First, the data are preprocessed to reduce the effects of seasonal and trend components. Second, standard tests of surrogate analysis can then be used. The determinism test is applied to simulated and experimental pseudoperiodic time series and the results show the applicability of the proposed test.
Bootstrap Power of Time Series Goodness of fit tests
Directory of Open Access Journals (Sweden)
Sohail Chand
2013-10-01
Full Text Available In this article, we looked at power of various versions of Box and Pierce statistic and Cramer von Mises test. An extensive simulation study has been conducted to compare the power of these tests. Algorithms have been provided for the power calculations and comparison has also been made between the semi parametric bootstrap methods used for time series. Results show that Box-Pierce statistic and its various versions have good power against linear time series models but poor power against non linear models while situation reverses for Cramer von Mises test. Moreover, we found that dynamic bootstrap method is better than xed design bootstrap method.
Handbook of Time Series Analysis Recent Theoretical Developments and Applications
Schelter, Björn; Timmer, Jens
2006-01-01
This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest de
Identification of the time series interrelationships with reference to ...
African Journals Online (AJOL)
In this study, the model of interest is that of a rational distributed lag function Y on X plus an independent Autoregressive Moving Average (ARMA) model. To investigate the model structure relating X and Y we considered the inverse cross correlation function for the observed and residual series in the presence of outliers.
A new approach for measuring power spectra and reconstructing time series in active galactic nuclei
Li, Yan-Rong; Wang, Jian-Min
2018-05-01
We provide a new approach to measure power spectra and reconstruct time series in active galactic nuclei (AGNs) based on the fact that the Fourier transform of AGN stochastic variations is a series of complex Gaussian random variables. The approach parametrizes a stochastic series in frequency domain and transforms it back to time domain to fit the observed data. The parameters and their uncertainties are derived in a Bayesian framework, which also allows us to compare the relative merits of different power spectral density models. The well-developed fast Fourier transform algorithm together with parallel computation enables an acceptable time complexity for the approach.
Quantifying Selection with Pool-Seq Time Series Data.
Taus, Thomas; Futschik, Andreas; Schlötterer, Christian
2017-11-01
Allele frequency time series data constitute a powerful resource for unraveling mechanisms of adaptation, because the temporal dimension captures important information about evolutionary forces. In particular, Evolve and Resequence (E&R), the whole-genome sequencing of replicated experimentally evolving populations, is becoming increasingly popular. Based on computer simulations several studies proposed experimental parameters to optimize the identification of the selection targets. No such recommendations are available for the underlying parameters selection strength and dominance. Here, we introduce a highly accurate method to estimate selection parameters from replicated time series data, which is fast enough to be applied on a genome scale. Using this new method, we evaluate how experimental parameters can be optimized to obtain the most reliable estimates for selection parameters. We show that the effective population size (Ne) and the number of replicates have the largest impact. Because the number of time points and sequencing coverage had only a minor effect, we suggest that time series analysis is feasible without major increase in sequencing costs. We anticipate that time series analysis will become routine in E&R studies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
A window-based time series feature extraction method.
Katircioglu-Öztürk, Deniz; Güvenir, H Altay; Ravens, Ursula; Baykal, Nazife
2017-10-01
This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of Reconstructed Remote Sensing Time Series Data
Rivera-Camacho, J.; Didan, K.; Barreto-munoz, A.; Yitayew, M.
2011-12-01
Vegetation phenology is the study of vegetation state, function and change over time and is directly linked to the carbon cycle and an integrative measure of climate change impacts. Field observations of phenology can address some questions associated with phenology and climate change, but they are not effective at estimating and understanding large scale change in biome seasonality. Synoptic remote sensing has emerged as a practical tool for studying the land surface vegetation over large spatial and temporal scales. However, the presence of clouds, noise, inadequate processing algorithms result in poor quality data that needs to be discarded. Discarded data is so prevalent sometimes that up to 80% of the spatial and temporal coverage is missing which inhibits the proper study of vegetation phenology. To improve these data records gap filling techniques are employed. The purpose is to accurately reconstruct the VI time series profile, while preserving as much of the original data to support accurate land surface vegetation characterization. Some methods use complex Fourier Transform (FT) functions, Gaussian fitting models, or Piecewise techniques, while others are based on simpler linear interpolation. The impact of these gap filling methods on the resulting record is yet to be fully explored and characterized. In this project, we devised a new hybrid gap filling technique based on finding the seasonally variable per-pixel optimum composite period and then filling the remaining gaps with a simple local interpolation using the Inverse Distance Weighting (IDW) approach. The method is further constrained by a moving window long term average to minimize the biases that may result from over- or under-fitting. This method was applied to a 30-year sensor independent Vegetation Index ESDR from AHRR and MODIS records. To understand the impact of this gap filling technique, we performed statistical analyses to determine the error and uncertainty associated with estimating
Segmentation of time series with long-range fractal correlations
Bernaola-Galván, P.; Oliver, J.L.; Hackenberg, M.; Coronado, A.V.; Ivanov, P.Ch.; Carpena, P.
2012-01-01
Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome. PMID:23645997
Segmentation of time series with long-range fractal correlations.
Bernaola-Galván, P; Oliver, J L; Hackenberg, M; Coronado, A V; Ivanov, P Ch; Carpena, P
2012-06-01
Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.
Verger, Aleixandre; Baret, F.; Weiss, M.; Kandasamy, S.; Vermote, E.
2013-01-01
Consistent, continuous, and long time series of global biophysical variables derived from satellite data are required for global change research. A novel climatology fitting approach called CACAO (Consistent Adjustment of the Climatology to Actual Observations) is proposed to reduce noise and fill gaps in time series by scaling and shifting the seasonal climatological patterns to the actual observations. The shift and scale CACAO parameters adjusted for each season allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. CACAO was assessed first over simulated daily Leaf Area Index (LAI) time series with varying fractions of missing data and noise. Then, performances were analyzed over actual satellite LAI products derived from AVHRR Long-Term Data Record for the 1981-2000 period over the BELMANIP2 globally representative sample of sites. Comparison with two widely used temporal filtering methods-the asymmetric Gaussian (AG) model and the Savitzky-Golay (SG) filter as implemented in TIMESAT-revealed that CACAO achieved better performances for smoothing AVHRR time series characterized by high level of noise and frequent missing observations. The resulting smoothed time series captures well the vegetation dynamics and shows no gaps as compared to the 50-60% of still missing data after AG or SG reconstructions. Results of simulation experiments as well as confrontation with actual AVHRR time series indicate that the proposed CACAO method is more robust to noise and missing data than AG and SG methods for phenology extraction.
National Oceanic and Atmospheric Administration, Department of Commerce — This archival package consists of time series of physical and biogeochemical data from 8 locations (8 tubes) in Pool 100 as well as temperature time series from Pool...
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Lunde, Asger
An economic time series can often be viewed as a noisy proxy for an underlying economic variable. Measurement errors will influence the dynamic properties of the observed process and may conceal the persistence of the underlying time series. In this paper we develop instrumental variable (IV...... application despite the large sample. Unit root tests based on the IV estimator have better finite sample properties in this context....
Ocean time-series near Bermuda: Hydrostation S and the US JGOFS Bermuda Atlantic time-series study
Michaels, Anthony F.; Knap, Anthony H.
1992-01-01
Bermuda is the site of two ocean time-series programs. At Hydrostation S, the ongoing biweekly profiles of temperature, salinity and oxygen now span 37 years. This is one of the longest open-ocean time-series data sets and provides a view of decadal scale variability in ocean processes. In 1988, the U.S. JGOFS Bermuda Atlantic Time-series Study began a wide range of measurements at a frequency of 14-18 cruises each year to understand temporal variability in ocean biogeochemistry. On each cruise, the data range from chemical analyses of discrete water samples to data from electronic packages of hydrographic and optics sensors. In addition, a range of biological and geochemical rate measurements are conducted that integrate over time-periods of minutes to days. This sampling strategy yields a reasonable resolution of the major seasonal patterns and of decadal scale variability. The Sargasso Sea also has a variety of episodic production events on scales of days to weeks and these are only poorly resolved. In addition, there is a substantial amount of mesoscale variability in this region and some of the perceived temporal patterns are caused by the intersection of the biweekly sampling with the natural spatial variability. In the Bermuda time-series programs, we have added a series of additional cruises to begin to assess these other sources of variation and their impacts on the interpretation of the main time-series record. However, the adequate resolution of higher frequency temporal patterns will probably require the introduction of new sampling strategies and some emerging technologies such as biogeochemical moorings and autonomous underwater vehicles.
Complexity analysis of the turbulent environmental fluid flow time series
Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.
2014-02-01
We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.
Outlier detection algorithms for least squares time series regression
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Bent
We review recent asymptotic results on some robust methods for multiple regression. The regressors include stationary and non-stationary time series as well as polynomial terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators, in particular the Impulse Indicator Sat...
Tempered fractional time series model for turbulence in geophysical flows
Meerschaert, Mark M.; Sabzikar, Farzad; Phanikumar, Mantha S.; Zeleke, Aklilu
2014-09-01
We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model.
Tempered fractional time series model for turbulence in geophysical flows
International Nuclear Information System (INIS)
Meerschaert, Mark M; Sabzikar, Farzad; Phanikumar, Mantha S; Zeleke, Aklilu
2014-01-01
We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model. (paper)
Classical pooling of cross-section and time series data
International Nuclear Information System (INIS)
Nuamah, N.N.N.N.
2000-04-01
This paper discusses the classical pooling of cross-section and time series data. The re-expressions of the normal equations of this model are given to indicate the source of the paradox that arises in the estimation of the regression coefficient. (author)
Time series analysis in chaotic diode resonator circuit
Energy Technology Data Exchange (ETDEWEB)
Hanias, M.P. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)] e-mail: mhanias@teihal.gr; Giannaris, G. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Spyridakis, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Rigas, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)
2006-01-01
A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension {nu} and m {sub min}, respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated.
Time series analysis in chaotic diode resonator circuit
International Nuclear Information System (INIS)
Hanias, M.P.; Giannaris, G.; Spyridakis, A.; Rigas, A.
2006-01-01
A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension ν and m min , respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated
Time Series Factor Analysis with an Application to Measuring Money
Gilbert, Paul D.; Meijer, Erik
2005-01-01
Time series factor analysis (TSFA) and its associated statistical theory is developed. Unlike dynamic factor analysis (DFA), TSFA obviates the need for explicitly modeling the process dynamics of the underlying phenomena. It also differs from standard factor analysis (FA) in important respects: the
Time series analysis of monthly pulpwood use in the Northeast
James T. Bones
1980-01-01
Time series analysis was used to develop a model that depicts pulpwood use in the Northeast. The model is useful in forecasting future pulpwood requirements (short term) or monitoring pulpwood-use activity in relation to past use patterns. The model predicted a downturn in use during 1980.
Time series prediction with simple recurrent neural networks ...
African Journals Online (AJOL)
A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used. In this study, we evaluated the performance of these neural networks on three established bench mark time series prediction problems. Results from the experiments showed that Jordan neural network performed significantly ...
Dynamic Factor Analysis of Nonstationary Multivariate Time Series.
Molenaar, Peter C. M.; And Others
1992-01-01
The dynamic factor model proposed by P. C. Molenaar (1985) is exhibited, and a dynamic nonstationary factor model (DNFM) is constructed with latent factor series that have time-varying mean functions. The use of a DNFM is illustrated using data from a television viewing habits study. (SLD)
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA; GENTON, MARC G.
2009-01-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided
Daily time series evapotranspiration maps for Oklahoma and Texas panhandle
Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...
Koopman Operator Framework for Time Series Modeling and Analysis
Surana, Amit
2018-01-01
We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.
Time series analysis in astronomy: Limits and potentialities
DEFF Research Database (Denmark)
Vio, R.; Kristensen, N.R.; Madsen, Henrik
2005-01-01
In this paper we consider the problem of the limits concerning the physical information that can be extracted from the analysis of one or more time series ( light curves) typical of astrophysical objects. On the basis of theoretical considerations and numerical simulations, we show that with no a...
A Hybrid Joint Moment Ratio Test for Financial Time Series
P.A. Groenendijk (Patrick); A. Lucas (André); C.G. de Vries (Casper)
1998-01-01
textabstractWe advocate the use of absolute moment ratio statistics in conjunction with standard variance ratio statistics in order to disentangle linear dependence, non-linear dependence, and leptokurtosis in financial time series. Both statistics are computed for multiple return horizons
Time Series, Stochastic Processes and Completeness of Quantum Theory
International Nuclear Information System (INIS)
Kupczynski, Marian
2011-01-01
Most of physical experiments are usually described as repeated measurements of some random variables. Experimental data registered by on-line computers form time series of outcomes. The frequencies of different outcomes are compared with the probabilities provided by the algorithms of quantum theory (QT). In spite of statistical predictions of QT a claim was made that it provided the most complete description of the data and of the underlying physical phenomena. This claim could be easily rejected if some fine structures, averaged out in the standard descriptive statistical analysis, were found in time series of experimental data. To search for these structures one has to use more subtle statistical tools which were developed to study time series produced by various stochastic processes. In this talk we review some of these tools. As an example we show how the standard descriptive statistical analysis of the data is unable to reveal a fine structure in a simulated sample of AR (2) stochastic process. We emphasize once again that the violation of Bell inequalities gives no information on the completeness or the non locality of QT. The appropriate way to test the completeness of quantum theory is to search for fine structures in time series of the experimental data by means of the purity tests or by studying the autocorrelation and partial autocorrelation functions.
factor high order fuzzy time series with applications to temperature
African Journals Online (AJOL)
HOD
In this paper, a novel two – factor high – order fuzzy time series forecasting method based on .... to balance between local and global exploitations of the swarms. While, .... Although, there were a number of outliers but, the spread at the spot in ...
RADON CONCENTRATION TIME SERIES MODELING AND APPLICATION DISCUSSION.
Stránský, V; Thinová, L
2017-11-01
In the year 2010 a continual radon measurement was established at Mladeč Caves in the Czech Republic using a continual radon monitor RADIM3A. In order to model radon time series in the years 2010-15, the Box-Jenkins Methodology, often used in econometrics, was applied. Because of the behavior of radon concentrations (RCs), a seasonal integrated, autoregressive moving averages model with exogenous variables (SARIMAX) has been chosen to model the measured time series. This model uses the time series seasonality, previously acquired values and delayed atmospheric parameters, to forecast RC. The developed model for RC time series is called regARIMA(5,1,3). Model residuals could be retrospectively compared with seismic evidence of local or global earthquakes, which occurred during the RCs measurement. This technique enables us to asses if continuously measured RC could serve an earthquake precursor. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Identification of human operator performance models utilizing time series analysis
Holden, F. M.; Shinners, S. M.
1973-01-01
The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.
Notes on economic time series analysis system theoretic perspectives
Aoki, Masanao
1983-01-01
In seminars and graduate level courses I have had several opportunities to discuss modeling and analysis of time series with economists and economic graduate students during the past several years. These experiences made me aware of a gap between what economic graduate students are taught about vector-valued time series and what is available in recent system literature. Wishing to fill or narrow the gap that I suspect is more widely spread than my personal experiences indicate, I have written these notes to augment and reor ganize materials I have given in these courses and seminars. I have endeavored to present, in as much a self-contained way as practicable, a body of results and techniques in system theory that I judge to be relevant and useful to economists interested in using time series in their research. I have essentially acted as an intermediary and interpreter of system theoretic results and perspectives in time series by filtering out non-essential details, and presenting coherent accounts of wha...
Book Review: "Hidden Markov Models for Time Series: An ...
African Journals Online (AJOL)
Hidden Markov Models for Time Series: An Introduction using R. by Walter Zucchini and Iain L. MacDonald. Chapman & Hall (CRC Press), 2009. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/saaj.v10i1.61717 · AJOL African Journals Online.
Long-memory time series theory and methods
Palma, Wilfredo
2007-01-01
Wilfredo Palma, PhD, is Chairman and Professor of Statistics in the Department of Statistics at Pontificia Universidad Católica de Chile. Dr. Palma has published several refereed articles and has received over a dozen academic honors and awards. His research interests include time series analysis, prediction theory, state space systems, linear models, and econometrics.
ISO 9000 Series Certification Over Time: what have we learnt?
A. van der Wiele (Ton); A.M. Brown (Alan)
2002-01-01
textabstractThe ISO 9000 experiences of the same sample of organisations over a five year time period is examined in this paper. The responses to a questionnaire sent out at the end of 1999 to companies which had a reasonably long term experience with the ISO 9000 series quality system are analysed.
Detection of "noisy" chaos in a time series
DEFF Research Database (Denmark)
Chon, K H; Kanters, J K; Cohen, R J
1997-01-01
Time series from biological system often displays fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". The output from most biological systems is probably the result of both...
Tests for nonlinearity in short stationary time series
International Nuclear Information System (INIS)
Chang, T.; Sauer, T.; Schiff, S.J.
1995-01-01
To compare direct tests for detecting determinism in chaotic time series, data from Henon, Lorenz, and Mackey--Glass equations were contaminated with various levels of additive colored noise. These data were analyzed with a variety of recently developed tests for determinism, and the results compared
Seasonal time series forecasting: a comparative study of arima and ...
African Journals Online (AJOL)
This paper addresses the concerns of Faraway and Chatfield (1998) who questioned the forecasting ability of Artificial Neural Networks (ANN). In particular the paper compares the performance of Artificial Neural Networks (ANN) and ARIMA models in forecasting of seasonal (monthly) Time series. Using the Airline data ...
Multivariate time series modeling of selected childhood diseases in ...
African Journals Online (AJOL)
This paper is focused on modeling the five most prevalent childhood diseases in Akwa Ibom State using a multivariate approach to time series. An aggregate of 78,839 reported cases of malaria, upper respiratory tract infection (URTI), Pneumonia, anaemia and tetanus were extracted from five randomly selected hospitals in ...
multivariate time series modeling of selected childhood diseases
African Journals Online (AJOL)
2016-06-17
Jun 17, 2016 ... KEYWORDS: Multivariate Approach, Pre-whitening, Vector Time Series, .... Alternatively, the process may be written in mean adjusted form as .... The AIC criterion asymptotically over estimates the order with positive probability, whereas the BIC and HQC criteria ... has the same asymptotic distribution as Ǫ.
Distinguishing deterministic and noise components in ELM time series
International Nuclear Information System (INIS)
Zvejnieks, G.; Kuzovkov, V.N
2004-01-01
Full text: One of the main problems in the preliminary data analysis is distinguishing the deterministic and noise components in the experimental signals. For example, in plasma physics the question arises analyzing edge localized modes (ELMs): is observed ELM behavior governed by a complicate deterministic chaos or just by random processes. We have developed methodology based on financial engineering principles, which allows us to distinguish deterministic and noise components. We extended the linear auto regression method (AR) by including the non-linearity (NAR method). As a starting point we have chosen the nonlinearity in the polynomial form, however, the NAR method can be extended to any other type of non-linear functions. The best polynomial model describing the experimental ELM time series was selected using Bayesian Information Criterion (BIC). With this method we have analyzed type I ELM behavior in a subset of ASDEX Upgrade shots. Obtained results indicate that a linear AR model can describe the ELM behavior. In turn, it means that type I ELM behavior is of a relaxation or random type
Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis
Eberhart, C. J.; Casiano, M. J.
2015-01-01
Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.
Imputation of missing data in time series for air pollutants
Junger, W. L.; Ponce de Leon, A.
2015-02-01
Missing data are major concerns in epidemiological studies of the health effects of environmental air pollutants. This article presents an imputation-based method that is suitable for multivariate time series data, which uses the EM algorithm under the assumption of normal distribution. Different approaches are considered for filtering the temporal component. A simulation study was performed to assess validity and performance of proposed method in comparison with some frequently used methods. Simulations showed that when the amount of missing data was as low as 5%, the complete data analysis yielded satisfactory results regardless of the generating mechanism of the missing data, whereas the validity began to degenerate when the proportion of missing values exceeded 10%. The proposed imputation method exhibited good accuracy and precision in different settings with respect to the patterns of missing observations. Most of the imputations obtained valid results, even under missing not at random. The methods proposed in this study are implemented as a package called mtsdi for the statistical software system R.
Innovative techniques to analyze time series of geomagnetic activity indices
Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Potirakis, Stelios M.; Eftaxias, Konstantinos
2016-04-01
Magnetic storms are undoubtedly among the most important phenomena in space physics and also a central subject of space weather. The non-extensive Tsallis entropy has been recently introduced, as an effective complexity measure for the analysis of the geomagnetic activity Dst index. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). More precisely, the Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization. Other entropy measures such as Block Entropy, T-Complexity, Approximate Entropy, Sample Entropy and Fuzzy Entropy verify the above mentioned result. Importantly, the wavelet spectral analysis in terms of Hurst exponent, H, also shows the existence of two different patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a fractional Brownian persistent behavior (ii) a pattern associated with normal periods, which is characterized by a fractional Brownian anti-persistent behavior. Finally, we observe universality in the magnetic storm and earthquake dynamics, on a basis of a modified form of the Gutenberg-Richter law for the Tsallis statistics. This finding suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism. Signatures of discrete scale invariance in Dst time series further supports the aforementioned proposal.
Time Series Analysis of the Quasar PKS 1749+096
Lam, Michael T.; Balonek, T. J.
2011-01-01
Multiple timescales of variability are observed in quasars at a variety of wavelengths, the nature of which is not fully understood. In 2007 and 2008, the quasar 1749+096 underwent two unprecedented optical outbursts, reaching a brightness never before seen in our twenty years of monitoring. Much lower level activity had been seen prior to these two outbursts. We present an analysis of the timescales of variability over the two regimes using a variety of statistical techniques. An IDL software package developed at Colgate University over the summer of 2010, the Quasar User Interface (QUI), provides effective computation of four time series functions for analyzing underlying trends present in generic, discretely sampled data sets. Using the Autocorrelation Function, Structure Function, and Power Spectrum, we are able to quickly identify possible variability timescales. QUI is also capable of computing the Cross-Correlation Function for comparing variability at different wavelengths. We apply these algorithms to 1749+096 and present our analysis of the timescales for this object. Funding for this project was received from Colgate University, the Justus and Jayne Schlichting Student Research Fund, and the NASA / New York Space Grant.
Pal, Mayukha; Madhusudana Rao, P.; Manimaran, P.
2014-12-01
We apply the recently developed multifractal detrended cross-correlation analysis method to investigate the cross-correlation behavior and fractal nature between two non-stationary time series. We analyze the daily return price of gold, West Texas Intermediate and Brent crude oil, foreign exchange rate data, over a period of 18 years. The cross correlation has been measured from the Hurst scaling exponents and the singularity spectrum quantitatively. From the results, the existence of multifractal cross-correlation between all of these time series is found. We also found that the cross correlation between gold and oil prices possess uncorrelated behavior and the remaining bivariate time series possess persistent behavior. It was observed for five bivariate series that the cross-correlation exponents are less than the calculated average generalized Hurst exponents (GHE) for q0 and for one bivariate series the cross-correlation exponent is greater than GHE for all q values.
Mackenzie River Delta morphological change based on Landsat time series
Vesakoski, Jenni-Mari; Alho, Petteri; Gustafsson, David; Arheimer, Berit; Isberg, Kristina
2015-04-01
Arctic rivers are sensitive and yet quite unexplored river systems to which the climate change will impact on. Research has not focused in detail on the fluvial geomorphology of the Arctic rivers mainly due to the remoteness and wideness of the watersheds, problems with data availability and difficult accessibility. Nowadays wide collaborative spatial databases in hydrology as well as extensive remote sensing datasets over the Arctic are available and they enable improved investigation of the Arctic watersheds. Thereby, it is also important to develop and improve methods that enable detecting the fluvio-morphological processes based on the available data. Furthermore, it is essential to reconstruct and improve the understanding of the past fluvial processes in order to better understand prevailing and future fluvial processes. In this study we sum up the fluvial geomorphological change in the Mackenzie River Delta during the last ~30 years. The Mackenzie River Delta (~13 000 km2) is situated in the North Western Territories, Canada where the Mackenzie River enters to the Beaufort Sea, Arctic Ocean near the city of Inuvik. Mackenzie River Delta is lake-rich, productive ecosystem and ecologically sensitive environment. Research objective is achieved through two sub-objectives: 1) Interpretation of the deltaic river channel planform change by applying Landsat time series. 2) Definition of the variables that have impacted the most on detected changes by applying statistics and long hydrological time series derived from Arctic-HYPE model (HYdrologic Predictions for Environment) developed by Swedish Meteorological and Hydrological Institute. According to our satellite interpretation, field observations and statistical analyses, notable spatio-temporal changes have occurred in the morphology of the river channel and delta during the past 30 years. For example, the channels have been developing in braiding and sinuosity. In addition, various linkages between the studied
Classification of time series patterns from complex dynamic systems
Energy Technology Data Exchange (ETDEWEB)
Schryver, J.C.; Rao, N.
1998-07-01
An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.
A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series
Energy Technology Data Exchange (ETDEWEB)
Chandola, Varun [ORNL; Vatsavai, Raju [ORNL
2011-01-01
Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).
Normalization methods in time series of platelet function assays
Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham
2016-01-01
Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217
Rigler, E. Joshua
2017-04-26
A theoretical basis and prototype numerical algorithm are provided that decompose regular time series of geomagnetic observations into three components: secular variation; solar quiet, and disturbance. Respectively, these three components correspond roughly to slow changes in the Earth’s internal magnetic field, periodic daily variations caused by quasi-stationary (with respect to the sun) electrical current systems in the Earth’s magnetosphere, and episodic perturbations to the geomagnetic baseline that are typically driven by fluctuations in a solar wind that interacts electromagnetically with the Earth’s magnetosphere. In contrast to similar algorithms applied to geomagnetic data in the past, this one addresses the issue of real time data acquisition directly by applying a time-causal, exponential smoother with “seasonal corrections” to the data as soon as they become available.
Near-Real-Time Monitoring of Insect Defoliation Using Landsat Time Series
Directory of Open Access Journals (Sweden)
Valerie J. Pasquarella
2017-07-01
Full Text Available Introduced insects and pathogens impact millions of acres of forested land in the United States each year, and large-scale monitoring efforts are essential for tracking the spread of outbreaks and quantifying the extent of damage. However, monitoring the impacts of defoliating insects presents a significant challenge due to the ephemeral nature of defoliation events. Using the 2016 gypsy moth (Lymantria dispar outbreak in Southern New England as a case study, we present a new approach for near-real-time defoliation monitoring using synthetic images produced from Landsat time series. By comparing predicted and observed images, we assessed changes in vegetation condition multiple times over the course of an outbreak. Initial measures can be made as imagery becomes available, and season-integrated products provide a wall-to-wall assessment of potential defoliation at 30 m resolution. Qualitative and quantitative comparisons suggest our Landsat Time Series (LTS products improve identification of defoliation events relative to existing products and provide a repeatable metric of change in condition. Our synthetic-image approach is an important step toward using the full temporal potential of the Landsat archive for operational monitoring of forest health over large extents, and provides an important new tool for understanding spatial and temporal dynamics of insect defoliators.
Wavelet transform approach for fitting financial time series data
Ahmed, Amel Abdoullah; Ismail, Mohd Tahir
2015-10-01
This study investigates a newly developed technique; a combined wavelet filtering and VEC model, to study the dynamic relationship among financial time series. Wavelet filter has been used to annihilate noise data in daily data set of NASDAQ stock market of US, and three stock markets of Middle East and North Africa (MENA) region, namely, Egypt, Jordan, and Istanbul. The data covered is from 6/29/2001 to 5/5/2009. After that, the returns of generated series by wavelet filter and original series are analyzed by cointegration test and VEC model. The results show that the cointegration test affirms the existence of cointegration between the studied series, and there is a long-term relationship between the US, stock markets and MENA stock markets. A comparison between the proposed model and traditional model demonstrates that, the proposed model (DWT with VEC model) outperforms traditional model (VEC model) to fit the financial stock markets series well, and shows real information about these relationships among the stock markets.
Directory of Open Access Journals (Sweden)
Tetsuji Ota
2014-11-01
Full Text Available In this study, we test and demonstrate the utility of disturbance and recovery information derived from annual Landsat time series to predict current forest vertical structure (as compared to the more common approaches, that consider a sample of airborne Lidar and single-date Landsat derived variables. Mean Canopy Height (MCH was estimated separately using single date, time series, and the combination of single date and time series variables in multiple regression and random forest (RF models. The combination of single date and time series variables, which integrate disturbance history over the entire time series, overall provided better MCH prediction than using either of the two sets of variables separately. In general, the RF models resulted in improved performance in all estimates over those using multiple regression. The lowest validation error was obtained using Landsat time series variables in a RF model (R2 = 0.75 and RMSE = 2.81 m. Combining single date and time series data was more effective when the RF model was used (opposed to multiple regression. The RMSE for RF mean canopy height prediction was reduced by 13.5% when combining the two sets of variables as compared to the 3.6% RMSE decline presented by multiple regression. This study demonstrates the value of airborne Lidar and long term Landsat observations to generate estimates of forest canopy height using the random forest algorithm.
Analysis of three amphibian populations with quarter-century long time-series.
Meyer, A H; Schimidt, B R; Grossenbacher, K
1998-01-01
Amphibians are in decline in many parts of the world. Long tme-series of amphibian populations are necessary to distinguish declines from the often strong fluctuations observed in natural populations. Time-series may also help to understand the causes of these declines. We analysed 23-28-year long time-series of the frog Rana temporaria. Only one of the three studied populations showed a negative trend which was probably caused by the introduction of fish. Two populations appeared to be densi...
Optimization of recurrent neural networks for time series modeling
DEFF Research Database (Denmark)
Pedersen, Morten With
1997-01-01
The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...
Recursive Bayesian recurrent neural networks for time-series modeling.
Mirikitani, Derrick T; Nikolaev, Nikolay
2010-02-01
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
On the plurality of times: disunified time and the A-series | Nefdt ...
African Journals Online (AJOL)
Then, I attempt to show that disunified time is a problem for a semantics based on the A-series since A-truthmakers are hard to come by in a universe of temporally disconnected time-series. Finally, I provide a novel argument showing that presentists should be particularly fearful of such a universe. South African Journal of ...
Recurrence and symmetry of time series: Application to transition detection
International Nuclear Information System (INIS)
Girault, Jean-Marc
2015-01-01
Highlights: •A new theoretical framework based on the symmetry concept is proposed. •Four types of symmetry present in any time series were analyzed. •New descriptors make possible the analysis of regime changes in logistic systems. •Chaos–chaos, chaos–periodic, symmetry-breaking, symmetry-increasing bifurcations can be detected. -- Abstract: The study of transitions in low dimensional, nonlinear dynamical systems is a complex problem for which there is not yet a simple, global numerical method able to detect chaos–chaos, chaos–periodic bifurcations and symmetry-breaking, symmetry-increasing bifurcations. We present here for the first time a general framework focusing on the symmetry concept of time series that at the same time reveals new kinds of recurrence. We propose several numerical tools based on the symmetry concept allowing both the qualification and quantification of different kinds of possible symmetry. By using several examples based on periodic symmetrical time series and on logistic and cubic maps, we show that it is possible with simple numerical tools to detect a large number of bifurcations of chaos–chaos, chaos–periodic, broken symmetry and increased symmetry types
Directory of Open Access Journals (Sweden)
Madeira Sara C
2009-06-01
Full Text Available Abstract Background The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters. Methods In this work, we propose e-CCC-Biclustering, a biclustering algorithm that finds and reports all maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a discretized version of the original matrix using efficient string processing techniques. We also propose extensions to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical significance of expression patterns with a similarity measure between overlapping biclusters. Results We present results in real data showing the effectiveness of e-CCC-Biclustering and its relevance in the discovery of regulatory modules describing the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress. In particular, the results show the advantage of considering approximate patterns when compared to state of
Non-parametric characterization of long-term rainfall time series
Tiwari, Harinarayan; Pandey, Brij Kishor
2018-03-01
The statistical study of rainfall time series is one of the approaches for efficient hydrological system design. Identifying, and characterizing long-term rainfall time series could aid in improving hydrological systems forecasting. In the present study, eventual statistics was applied for the long-term (1851-2006) rainfall time series under seven meteorological regions of India. Linear trend analysis was carried out using Mann-Kendall test for the observed rainfall series. The observed trend using the above-mentioned approach has been ascertained using the innovative trend analysis method. Innovative trend analysis has been found to be a strong tool to detect the general trend of rainfall time series. Sequential Mann-Kendall test has also been carried out to examine nonlinear trends of the series. The partial sum of cumulative deviation test is also found to be suitable to detect the nonlinear trend. Innovative trend analysis, sequential Mann-Kendall test and partial cumulative deviation test have potential to detect the general as well as nonlinear trend for the rainfall time series. Annual rainfall analysis suggests that the maximum changes in mean rainfall is 11.53% for West Peninsular India, whereas the maximum fall in mean rainfall is 7.8% for the North Mountainous Indian region. The innovative trend analysis method is also capable of finding the number of change point available in the time series. Additionally, we have performed von Neumann ratio test and cumulative deviation test to estimate the departure from homogeneity. Singular spectrum analysis has been applied in this study to evaluate the order of departure from homogeneity in the rainfall time series. Monsoon season (JS) of North Mountainous India and West Peninsular India zones has higher departure from homogeneity and singular spectrum analysis shows the results to be in coherence with the same.
Reconstruction of ensembles of coupled time-delay systems from time series.
Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P
2014-06-01
We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.
A Comparison of Missing-Data Procedures for Arima Time-Series Analysis
Velicer, Wayne F.; Colby, Suzanne M.
2005-01-01
Missing data are a common practical problem for longitudinal designs. Time-series analysis is a longitudinal method that involves a large number of observations on a single unit. Four different missing-data methods (deletion, mean substitution, mean of adjacent observations, and maximum likelihood estimation) were evaluated. Computer-generated…
Reconstruction of coupling architecture of neural field networks from vector time series
Sysoev, Ilya V.; Ponomarenko, Vladimir I.; Pikovsky, Arkady
2018-04-01
We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.
Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology
Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus
2013-01-01
Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.
Topological data analysis of financial time series: Landscapes of crashes
Gidea, Marian; Katz, Yuri
2018-02-01
We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their Lp-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the Lp-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of Lp-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which complements the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.
FTSPlot: fast time series visualization for large datasets.
Directory of Open Access Journals (Sweden)
Michael Riss
Full Text Available The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to conventional data plotting software because the plotting time increases proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a computational complexity of O(n x log(N; the visualization itself can be done with a complexity of O(1 and is therefore independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with < 20 ms ms. The current 64-bit implementation theoretically supports datasets with up to 2(64 bytes, on the x86_64 architecture currently up to 2(48 bytes are supported, and benchmarks have been conducted with 2(40 bytes/1 TiB or 1.3 x 10(11 double precision samples. The presented software is freely available and can be included as a Qt GUI component in future software projects, providing a standard visualization method for long-term electrophysiological experiments.
Dynamical analysis and visualization of tornadoes time series.
Directory of Open Access Journals (Sweden)
António M Lopes
Full Text Available In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Dynamical analysis and visualization of tornadoes time series.
Lopes, António M; Tenreiro Machado, J A
2015-01-01
In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Financial time series analysis based on information categorization method
Tian, Qiang; Shang, Pengjian; Feng, Guochen
2014-12-01
The paper mainly applies the information categorization method to analyze the financial time series. The method is used to examine the similarity of different sequences by calculating the distances between them. We apply this method to quantify the similarity of different stock markets. And we report the results of similarity in US and Chinese stock markets in periods 1991-1998 (before the Asian currency crisis), 1999-2006 (after the Asian currency crisis and before the global financial crisis), and 2007-2013 (during and after global financial crisis) by using this method. The results show the difference of similarity between different stock markets in different time periods and the similarity of the two stock markets become larger after these two crises. Also we acquire the results of similarity of 10 stock indices in three areas; it means the method can distinguish different areas' markets from the phylogenetic trees. The results show that we can get satisfactory information from financial markets by this method. The information categorization method can not only be used in physiologic time series, but also in financial time series.
Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar
2016-02-01
The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time
Parametric, nonparametric and parametric modelling of a chaotic circuit time series
Timmer, J.; Rust, H.; Horbelt, W.; Voss, H. U.
2000-09-01
The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.
Cluster analysis of activity-time series in motor learning
DEFF Research Database (Denmark)
Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A
2002-01-01
Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...
Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations?
Rebischung, P.; Chanard, K.; Metivier, L.; Altamimi, Z.
2017-12-01
The presence of colored noise in GNSS station position time series was detected 20 years ago. It has been shown since then that the background spectrum of non-linear GNSS station position residuals closely follows a power-law process (known as flicker noise, 1/f noise or pink noise), with some white noise taking over at the highest frequencies. However, the origin of the flicker noise present in GNSS station position time series is still unclear. Flicker noise is often described as intrinsic to the GNSS system, i.e. due to errors in the GNSS observations or in their modeling, but no such error source has been identified so far that could explain the level of observed flicker noise, nor its spatial correlation.We investigate another possible contributor to the observed flicker noise, namely real crustal displacements driven by surface mass transports, i.e. non-tidal loading deformations. This study is motivated by the presence of power-law noise in the time series of low-degree (≤ 40) and low-order (≤ 12) Stokes coefficients observed by GRACE - power-law noise might also exist at higher degrees and orders, but obscured by GRACE observational noise. By comparing GNSS station position time series with loading deformation time series derived from GRACE gravity fields, both with their periodic components removed, we therefore assess whether GNSS and GRACE both plausibly observe the same flicker behavior of surface mass transports / loading deformations. Taking into account GRACE observability limitations, we also quantify the amount of flicker noise in GNSS station position time series that could be explained by such flicker loading deformations.
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance
Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.
Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.
A Non-standard Empirical Likelihood for Time Series
DEFF Research Database (Denmark)
Nordman, Daniel J.; Bunzel, Helle; Lahiri, Soumendra N.
Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version...... of BEL based on a simple, though non-standard, data-blocking rule which uses a data block of every possible length. Consequently, the method involves no block selection and is also anticipated to exhibit better coverage performance. Its non-standard blocking scheme, however, induces non......-standard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi...
Time Series Analysis, Modeling and Applications A Computational Intelligence Perspective
Chen, Shyi-Ming
2013-01-01
Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Internet activities, etc.). A quest for a thorough analysis, interpretation, modeling and prediction of time series comes with an ongoing challenge for developing models that are both accurate and user-friendly (interpretable). The volume is aimed to exploit the conceptual and algorithmic framework of Computational Intelligence (CI) to form a cohesive and comprehensive environment for building models of time series. The contributions covered in the volume are fully reflective of the wealth of the CI technologies by bringing together ideas, algorithms, and numeric studies, which convincingly demonstrate their relevance, maturity and visible usefulness. It reflects upon the truly remarkable diversity of methodological a...
Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis
Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.
We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.
Time series prediction by feedforward neural networks - is it difficult?
International Nuclear Information System (INIS)
Rosen-Zvi, Michal; Kanter, Ido; Kinzel, Wolfgang
2003-01-01
The difficulties that a neural network faces when trying to learn from a quasi-periodic time series are studied analytically using a teacher-student scenario where the random input is divided into two macroscopic regions with different variances, 1 and 1/γ 2 (γ >> 1). The generalization error is found to decrease as ε g ∝ exp(-α/γ 2 ), where α is the number of examples per input dimension. In contradiction to this very slow vanishing generalization error, the next output prediction is found to be almost free of mistakes. This picture is consistent with learning quasi-periodic time series produced by feedforward neural networks, which is dominated by enhanced components of the Fourier spectrum of the input. Simulation results are in good agreement with the analytical results
Time series analysis methods and applications for flight data
Zhang, Jianye
2017-01-01
This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.
Nonparametric autocovariance estimation from censored time series by Gaussian imputation.
Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K
2009-02-01
One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.
Deviations from uniform power law scaling in nonstationary time series
Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.
1997-01-01
A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.
An integral time series on simulated labeling using fractal structure
International Nuclear Information System (INIS)
Djainal, D.D.
1997-01-01
This research deals with the detection of time series of vertical two-phase flow, in attempt to developed an objective indicator of time series flow patterns. One of new method is fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. in the present work, fractal analysis applied to analyze simulated boiling coolant signal. this simulated signals built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both modes are characterized by their void fractions. in the case of unimodal-PDF signals, the difference between these modes is relative small. on other hand, bimodal-PDF signals have relative large range. in this research, fractal dimension can indicate the characters of that signals simulation
Chaotic time series. Part II. System Identification and Prediction
Directory of Open Access Journals (Sweden)
Bjørn Lillekjendlie
1994-10-01
Full Text Available This paper is the second in a series of two, and describes the current state of the art in modeling and prediction of chaotic time series. Sample data from deterministic non-linear systems may look stochastic when analysed with linear methods. However, the deterministic structure may be uncovered and non-linear models constructed that allow improved prediction. We give the background for such methods from a geometrical point of view, and briefly describe the following types of methods: global polynomials, local polynomials, multilayer perceptrons and semi-local methods including radial basis functions. Some illustrative examples from known chaotic systems are presented, emphasising the increase in prediction error with time. We compare some of the algorithms with respect to prediction accuracy and storage requirements, and list applications of these methods to real data from widely different areas.
Time series analysis of ozone data in Isfahan
Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.
2008-07-01
Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.
Time series analysis of nuclear instrumentation in EBR-II
International Nuclear Information System (INIS)
Imel, G.R.
1996-01-01
Results of a time series analysis of the scaler count data from the 3 wide range nuclear detectors in the Experimental Breeder Reactor-II are presented. One of the channels was replaced, and it was desired to determine if there was any statistically significant change (ie, improvement) in the channel's response after the replacement. Data were collected from all 3 channels for 16-day periods before and after detector replacement. Time series analysis and statistical tests showed that there was no significant change after the detector replacement. Also, there were no statistically significant differences among the 3 channels, either before or after the replacement. Finally, it was determined that errors in the reactivity change inferred from subcritical count monitoring during fuel handling would be on the other of 20-30 cents for single count intervals
Mathematical methods in time series analysis and digital image processing
Kurths, J; Maass, P; Timmer, J
2008-01-01
The aim of this volume is to bring together research directions in theoretical signal and imaging processing developed rather independently in electrical engineering, theoretical physics, mathematics and the computer sciences. In particular, mathematically justified algorithms and methods, the mathematical analysis of these algorithms, and methods as well as the investigation of connections between methods from time series analysis and image processing are reviewed. An interdisciplinary comparison of these methods, drawing upon common sets of test problems from medicine and geophysical/enviromental sciences, is also addressed. This volume coherently summarizes work carried out in the field of theoretical signal and image processing. It focuses on non-linear and non-parametric models for time series as well as on adaptive methods in image processing.
Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis
Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.
2015-06-01
This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.
Forecasting the Reference Evapotranspiration Using Time Series Model
Directory of Open Access Journals (Sweden)
H. Zare Abyaneh
2016-10-01
Full Text Available Introduction: Reference evapotranspiration is one of the most important factors in irrigation timing and field management. Moreover, reference evapotranspiration forecasting can play a vital role in future developments. Therefore in this study, the seasonal autoregressive integrated moving average (ARIMA model was used to forecast the reference evapotranspiration time series in the Esfahan, Semnan, Shiraz, Kerman, and Yazd synoptic stations. Materials and Methods: In the present study in all stations (characteristics of the synoptic stations are given in Table 1, the meteorological data, including mean, maximum and minimum air temperature, relative humidity, dry-and wet-bulb temperature, dew-point temperature, wind speed, precipitation, air vapor pressure and sunshine hours were collected from the Islamic Republic of Iran Meteorological Organization (IRIMO for the 41 years from 1965 to 2005. The FAO Penman-Monteith equation was used to calculate the monthly reference evapotranspiration in the five synoptic stations and the evapotranspiration time series were formed. The unit root test was used to identify whether the time series was stationary, then using the Box-Jenkins method, seasonal ARIMA models were applied to the sample data. Table 1. The geographical location and climate conditions of the synoptic stations Station\tGeographical location\tAltitude (m\tMean air temperature (°C\tMean precipitation (mm\tClimate, according to the De Martonne index classification Longitude (E\tLatitude (N Annual\tMin. and Max. Esfahan\t51° 40'\t32° 37'\t1550.4\t16.36\t9.4-23.3\t122\tArid Semnan\t53° 33'\t35° 35'\t1130.8\t18.0\t12.4-23.8\t140\tArid Shiraz\t52° 36'\t29° 32'\t1484\t18.0\t10.2-25.9\t324\tSemi-arid Kerman\t56° 58'\t30° 15'\t1753.8\t15.6\t6.7-24.6\t142\tArid Yazd\t54° 17'\t31° 54'\t1237.2\t19.2\t11.8-26.0\t61\tArid Results and Discussion: The monthly meteorological data were used as input for the Ref-ET software and monthly reference
Quality Control Procedure Based on Partitioning of NMR Time Series
Directory of Open Access Journals (Sweden)
Michał Staniszewski
2018-03-01
Full Text Available The quality of the magnetic resonance spectroscopy (MRS depends on the stability of magnetic resonance (MR system performance and optimal hardware functioning, which ensure adequate levels of signal-to-noise ratios (SNR as well as good spectral resolution and minimal artifacts in the spectral data. MRS quality control (QC protocols and methodologies are based on phantom measurements that are repeated regularly. In this work, a signal partitioning algorithm based on a dynamic programming (DP method for QC assessment of the spectral data is described. The proposed algorithm allows detection of the change points—the abrupt variations in the time series data. The proposed QC method was tested using the simulated and real phantom data. Simulated data were randomly generated time series distorted by white noise. The real data were taken from the phantom quality control studies of the MRS scanner collected for four and a half years and analyzed by LCModel software. Along with the proposed algorithm, performance of various literature methods was evaluated for the predefined number of change points based on the error values calculated by subtracting the mean values calculated for the periods between the change-points from the original data points. The time series were checked using external software, a set of external methods and the proposed tool, and the obtained results were comparable. The application of dynamic programming in the analysis of the phantom MRS data is a novel approach to QC. The obtained results confirm that the presented change-point-detection tool can be used either for independent analysis of MRS time series (or any other or as a part of quality control.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
Directory of Open Access Journals (Sweden)
Jie Wang
2016-01-01
(ERNN, the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.
Appropriate use of the increment entropy for electrophysiological time series.
Liu, Xiaofeng; Wang, Xue; Zhou, Xu; Jiang, Aimin
2018-04-01
The increment entropy (IncrEn) is a new measure for quantifying the complexity of a time series. There are three critical parameters in the IncrEn calculation: N (length of the time series), m (dimensionality), and q (quantifying precision). However, the question of how to choose the most appropriate combination of IncrEn parameters for short datasets has not been extensively explored. The purpose of this research was to provide guidance on choosing suitable IncrEn parameters for short datasets by exploring the effects of varying the parameter values. We used simulated data, epileptic EEG data and cardiac interbeat (RR) data to investigate the effects of the parameters on the calculated IncrEn values. The results reveal that IncrEn is sensitive to changes in m, q and N for short datasets (N≤500). However, IncrEn reaches stability at a data length of N=1000 with m=2 and q=2, and for short datasets (N=100), it shows better relative consistency with 2≤m≤6 and 2≤q≤8 We suggest that the value of N should be no less than 100. To enable a clear distinction between different classes based on IncrEn, we recommend that m and q should take values between 2 and 4. With appropriate parameters, IncrEn enables the effective detection of complexity variations in physiological time series, suggesting that IncrEn should be useful for the analysis of physiological time series in clinical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Which DTW Method Applied to Marine Univariate Time Series Imputation
Phan , Thi-Thu-Hong; Caillault , Émilie; Lefebvre , Alain; Bigand , André
2017-01-01
International audience; Missing data are ubiquitous in any domains of applied sciences. Processing datasets containing missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Therefore, the aim of this paper is to build a framework for filling missing values in univariate time series and to perform a comparison of different similarity metrics used for the imputation task. This allows to suggest the most suitable methods for the imp...
Time series regression model for infectious disease and weather.
Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro
2015-10-01
Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Analyses of GIMMS NDVI Time Series in Kogi State, Nigeria
Palka, Jessica; Wessollek, Christine; Karrasch, Pierre
2017-10-01
The value of remote sensing data is particularly evident where an areal monitoring is needed to provide information on the earth's surface development. The use of temporal high resolution time series data allows for detecting short-term changes. In Kogi State in Nigeria different vegetation types can be found. As the major population in this region is living in rural communities with crop farming the existing vegetation is slowly being altered. The expansion of agricultural land causes loss of natural vegetation, especially in the regions close to the rivers which are suitable for crop production. With regard to these facts, two questions can be dealt with covering different aspects of the development of vegetation in the Kogi state, the determination and evaluation of the general development of the vegetation in the study area (trend estimation) and analyses on a short-term behavior of vegetation conditions, which can provide information about seasonal effects in vegetation development. For this purpose, the GIMMS-NDVI data set, provided by the NOAA, provides information on the normalized difference vegetation index (NDVI) in a geometric resolution of approx. 8 km. The temporal resolution of 15 days allows the already described analyses. For the presented analysis data for the period 1981-2012 (31 years) were used. The implemented workflow mainly applies methods of time series analysis. The results show that in addition to the classical seasonal development, artefacts of different vegetation periods (several NDVI maxima) can be found in the data. The trend component of the time series shows a consistently positive development in the entire study area considering the full investigation period of 31 years. However, the results also show that this development has not been continuous and a simple linear modeling of the NDVI increase is only possible to a limited extent. For this reason, the trend modeling was extended by procedures for detecting structural breaks in
Identification of neutral biochemical network models from time series data
Directory of Open Access Journals (Sweden)
Maia Marco
2009-05-01
Full Text Available Abstract Background The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. Results In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. Conclusion The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.
Identification of neutral biochemical network models from time series data.
Vilela, Marco; Vinga, Susana; Maia, Marco A Grivet Mattoso; Voit, Eberhard O; Almeida, Jonas S
2009-05-05
The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.
Time series analysis of diverse extreme phenomena: universal features
Eftaxias, K.; Balasis, G.
2012-04-01
The field of study of complex systems holds that the dynamics of complex systems are founded on universal principles that may used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We suggest that earthquake, epileptic seizures, solar flares, and magnetic storms dynamics can be analyzed within similar mathematical frameworks. A central property of aforementioned extreme events generation is the occurrence of coherent large-scale collective behavior with very rich structure, resulting from repeated nonlinear interactions among the corresponding constituents. Consequently, we apply the Tsallis nonextensive statistical mechanics as it proves an appropriate framework in order to investigate universal principles of their generation. First, we examine the data in terms of Tsallis entropy aiming to discover common "pathological" symptoms of transition to a significant shock. By monitoring the temporal evolution of the degree of organization in time series we observe similar distinctive features revealing significant reduction of complexity during their emergence. Second, a model for earthquake dynamics coming from a nonextensive Tsallis formalism, starting from first principles, has been recently introduced. This approach leads to an energy distribution function (Gutenberg-Richter type law) for the magnitude distribution of earthquakes, providing an excellent fit to seismicities generated in various large geographic areas usually identified as seismic regions. We show that this function is able to describe the energy distribution (with similar non-extensive q-parameter) of solar flares, magnetic storms, epileptic and earthquake shocks. The above mentioned evidence of a universal statistical behavior suggests the possibility of a common approach for studying space weather, earthquakes and epileptic seizures.
Predicting long-term catchment nutrient export: the use of nonlinear time series models
Valent, Peter; Howden, Nicholas J. K.; Szolgay, Jan; Komornikova, Magda
2010-05-01
After the Second World War the nitrate concentrations in European water bodies changed significantly as the result of increased nitrogen fertilizer use and changes in land use. However, in the last decades, as a consequence of the implementation of nitrate-reducing measures in Europe, the nitrate concentrations in water bodies slowly decrease. This causes that the mean and variance of the observed time series also changes with time (nonstationarity and heteroscedascity). In order to detect changes and properly describe the behaviour of such time series by time series analysis, linear models (such as autoregressive (AR), moving average (MA) and autoregressive moving average models (ARMA)), are no more suitable. Time series with sudden changes in statistical characteristics can cause various problems in the calibration of traditional water quality models and thus give biased predictions. Proper statistical analysis of these non-stationary and heteroscedastic time series with the aim of detecting and subsequently explaining the variations in their statistical characteristics requires the use of nonlinear time series models. This information can be then used to improve the model building and calibration of conceptual water quality model or to select right calibration periods in order to produce reliable predictions. The objective of this contribution is to analyze two long time series of nitrate concentrations of the rivers Ouse and Stour with advanced nonlinear statistical modelling techniques and compare their performance with traditional linear models of the ARMA class in order to identify changes in the time series characteristics. The time series were analysed with nonlinear models with multiple regimes represented by self-exciting threshold autoregressive (SETAR) and Markov-switching models (MSW). The analysis showed that, based on the value of residual sum of squares (RSS) in both datasets, SETAR and MSW models described the time-series better than models of the
Generation and prediction of time series by a neural network
International Nuclear Information System (INIS)
Eisenstein, E.; Kanter, I.; Kessler, D.A.; Kinzel, W.
1995-01-01
Generation and prediction of time series are analyzed for the case of a bit generator: a perceptron where in each time step the input units are shifted one bit to the right with the state of the leftmost input unit set equal to the output unit in the previous time step. The long-time dynamical behavior of the bit generator consists of cycles whose typical period scales polynomially with the size of the network and whose spatial structure is periodic with a typical finite wavelength. The generalization error on a cycle is zero for a finite training set, and global dynamical behaviors can also be learned in a finite time. Hence, a projection of a rule can be learned in a finite time
Acute ischaemic stroke prediction from physiological time series patterns
Directory of Open Access Journals (Sweden)
Qing Zhang,
2013-05-01
Full Text Available BackgroundStroke is one of the major diseases with human mortality. Recent clinical research has indicated that early changes in common physiological variables represent a potential therapeutic target, thus the manipulation of these variables may eventually yield an effective way to optimise stroke recovery.AimsWe examined correlations between physiological parameters of patients during the first 48 hours after a stroke, and their stroke outcomes after 3 months. We wanted to discover physiological determinants that could be used to improve health outcomes by supporting the medical decisions that need to be made early on a patient’s stroke experience.Method We applied regression-based machine learning techniques to build a prediction algorithm that can forecast 3-month outcomes from initial physiological time series data during the first 48 hours after stroke. In our method, not only did we use statistical characteristics as traditional prediction features, but also we adopted trend patterns of time series data as new key features.ResultsWe tested our prediction method on a real physiological data set of stroke patients. The experiment results revealed an average high precision rate: 90%. We also tested prediction methods only considering statistical characteristics of physiological data, and concluded an average precision rate: 71%.ConclusionWe demonstrated that using trend pattern features in prediction methods improved the accuracy of stroke outcome prediction. Therefore, trend patterns of physiological time series data have an important role in the early treatment of patients with acute ischaemic stroke.
Time series analysis for psychological research: examining and forecasting change.
Jebb, Andrew T; Tay, Louis; Wang, Wei; Huang, Qiming
2015-01-01
Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials.
Toward automatic time-series forecasting using neural networks.
Yan, Weizhong
2012-07-01
Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.
Modeling financial time series with S-plus
Zivot, Eric
2003-01-01
The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics This is the first book to show the power of S-PLUS for the analysis of time series data It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department at the University of Washington, and is co-director of the nascent Professional Master's Program in Computational Finance He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the He...
Time series analysis for psychological research: examining and forecasting change
Jebb, Andrew T.; Tay, Louis; Wang, Wei; Huang, Qiming
2015-01-01
Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials. PMID:26106341
Reconstruction of network topology using status-time-series data
Pandey, Pradumn Kumar; Badarla, Venkataramana
2018-01-01
Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.
Spectral Unmixing Analysis of Time Series Landsat 8 Images
Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.
2018-05-01
Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.
Clustering Multivariate Time Series Using Hidden Markov Models
Directory of Open Access Journals (Sweden)
Shima Ghassempour
2014-03-01
Full Text Available In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs, where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers.
Cross-sample entropy of foreign exchange time series
Liu, Li-Zhi; Qian, Xi-Yuan; Lu, Heng-Yao
2010-11-01
The correlation of foreign exchange rates in currency markets is investigated based on the empirical data of DKK/USD, NOK/USD, CAD/USD, JPY/USD, KRW/USD, SGD/USD, THB/USD and TWD/USD for a period from 1995 to 2002. Cross-SampEn (cross-sample entropy) method is used to compare the returns of every two exchange rate time series to assess their degree of asynchrony. The calculation method of confidence interval of SampEn is extended and applied to cross-SampEn. The cross-SampEn and its confidence interval for every two of the exchange rate time series in periods 1995-1998 (before the Asian currency crisis) and 1999-2002 (after the Asian currency crisis) are calculated. The results show that the cross-SampEn of every two of these exchange rates becomes higher after the Asian currency crisis, indicating a higher asynchrony between the exchange rates. Especially for Singapore, Thailand and Taiwan, the cross-SampEn values after the Asian currency crisis are significantly higher than those before the Asian currency crisis. Comparison with the correlation coefficient shows that cross-SampEn is superior to describe the correlation between time series.
Detection of chaotic determinism in time series from randomly forced maps
DEFF Research Database (Denmark)
Chon, K H; Kanters, J K; Cohen, R J
1997-01-01
Time series from biological system often display fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". Despite this effort, it has been difficult to establish the presence of cha...... series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data....
Forecasting long memory time series under a break in persistence
DEFF Research Database (Denmark)
Heinen, Florian; Sibbertsen, Philipp; Kruse, Robinson
We consider the problem of forecasting time series with long memory when the memory parameter is subject to a structural break. By means of a large-scale Monte Carlo study we show that ignoring such a change in persistence leads to substantially reduced forecasting precision. The strength...... of this effect depends on whether the memory parameter is increasing or decreasing over time. A comparison of six forecasting strategies allows us to conclude that pre-testing for a change in persistence is highly recommendable in our setting. In addition we provide an empirical example which underlines...
Extracting the relevant delays in time series modelling
DEFF Research Database (Denmark)
Goutte, Cyril
1997-01-01
selection, and more precisely stepwise forward selection. The method is compared to other forward selection schemes, as well as to a nonparametric tests aimed at estimating the embedding dimension of time series. The final application extends these results to the efficient estimation of FIR filters on some......In this contribution, we suggest a convenient way to use generalisation error to extract the relevant delays from a time-varying process, i.e. the delays that lead to the best prediction performance. We design a generalisation-based algorithm that takes its inspiration from traditional variable...
Time series analysis of wind speed using VAR and the generalized impulse response technique
Energy Technology Data Exchange (ETDEWEB)
Ewing, Bradley T. [Area of Information Systems and Quantitative Sciences, Rawls College of Business and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX 79409-2101 (United States); Kruse, Jamie Brown [Center for Natural Hazard Research, East Carolina University, Greenville, NC (United States); Schroeder, John L. [Department of Geosciences and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Smith, Douglas A. [Department of Civil Engineering and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States)
2007-03-15
This research examines the interdependence in time series wind speed data measured in the same location at four different heights. A multiple-equation system known as a vector autoregression is proposed for characterizing the time series dynamics of wind. Additionally, the recently developed method of generalized impulse response analysis provides insight into the cross-effects of the wind series and their responses to shocks. Findings are based on analysis of contemporaneous wind speed time histories taken at 13, 33, 70 and 160 ft above ground level with a sampling rate of 10 Hz. The results indicate that wind speeds measured at 70 ft was the most variable. Further, the turbulence persisted longer at the 70-ft measurement than at the other heights. The greatest interdependence is observed at 13 ft. Gusts at 160 ft led to the greatest persistence to an 'own' shock and led to greatest persistence in the responses of the other wind series. (author)
A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis
Gruszczynski, Maciej; Klos, Anna; Bogusz, Janusz
2018-04-01
For the first time, we introduced the probabilistic principal component analysis (pPCA) regarding the spatio-temporal filtering of Global Navigation Satellite System (GNSS) position time series to estimate and remove Common Mode Error (CME) without the interpolation of missing values. We used data from the International GNSS Service (IGS) stations which contributed to the latest International Terrestrial Reference Frame (ITRF2014). The efficiency of the proposed algorithm was tested on the simulated incomplete time series, then CME was estimated for a set of 25 stations located in Central Europe. The newly applied pPCA was compared with previously used algorithms, which showed that this method is capable of resolving the problem of proper spatio-temporal filtering of GNSS time series characterized by different observation time span. We showed, that filtering can be carried out with pPCA method when there exist two time series in the dataset having less than 100 common epoch of observations. The 1st Principal Component (PC) explained more than 36% of the total variance represented by time series residuals' (series with deterministic model removed), what compared to the other PCs variances (less than 8%) means that common signals are significant in GNSS residuals. A clear improvement in the spectral indices of the power-law noise was noticed for the Up component, which is reflected by an average shift towards white noise from - 0.98 to - 0.67 (30%). We observed a significant average reduction in the accuracy of stations' velocity estimated for filtered residuals by 35, 28 and 69% for the North, East, and Up components, respectively. CME series were also subjected to analysis in the context of environmental mass loading influences of the filtering results. Subtraction of the environmental loading models from GNSS residuals provides to reduction of the estimated CME variance by 20 and 65% for horizontal and vertical components, respectively.
On statistical inference in time series analysis of the evolution of road safety.
Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora
2013-11-01
Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Deriving crop calendar using NDVI time-series
Patel, J. H.; Oza, M. P.
2014-11-01
Agricultural intensification is defined in terms as cropping intensity, which is the numbers of crops (single, double and triple) per year in a unit cropland area. Information about crop calendar (i.e. number of crops in a parcel of land and their planting & harvesting dates and date of peak vegetative stage) is essential for proper management of agriculture. Remote sensing sensors provide a regular, consistent and reliable measurement of vegetation response at various growth stages of crop. Therefore it is ideally suited for monitoring purpose. The spectral response of vegetation, as measured by the Normalized Difference Vegetation Index (NDVI) and its profiles, can provide a new dimension for describing vegetation growth cycle. The analysis based on values of NDVI at regular time interval provides useful information about various crop growth stages and performance of crop in a season. However, the NDVI data series has considerable amount of local fluctuation in time domain and needs to be smoothed so that dominant seasonal behavior is enhanced. Based on temporal analysis of smoothed NDVI series, it is possible to extract number of crop cycles per year and their crop calendar. In the present study, a methodology is developed to extract key elements of crop growth cycle (i.e. number of crops per year and their planting - peak - harvesting dates). This is illustrated by analysing MODIS-NDVI data series of one agricultural year (from June 2012 to May 2013) over Gujarat. Such an analysis is very useful for analysing dynamics of kharif and rabi crops.
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
Assessing Coupling Dynamics from an Ensemble of Time Series
Directory of Open Access Journals (Sweden)
Germán Gómez-Herrero
2015-04-01
Full Text Available Finding interdependency relations between time series provides valuable knowledge about the processes that generated the signals. Information theory sets a natural framework for important classes of statistical dependencies. However, a reliable estimation from information-theoretic functionals is hampered when the dependency to be assessed is brief or evolves in time. Here, we show that these limitations can be partly alleviated when we have access to an ensemble of independent repetitions of the time series. In particular, we gear a data-efficient estimator of probability densities to make use of the full structure of trial-based measures. By doing so, we can obtain time-resolved estimates for a family of entropy combinations (including mutual information, transfer entropy and their conditional counterparts, which are more accurate than the simple average of individual estimates over trials. We show with simulated and real data generated by coupled electronic circuits that the proposed approach allows one to recover the time-resolved dynamics of the coupling between different subsystems.
Time series analysis of the behavior of brazilian natural rubber
Directory of Open Access Journals (Sweden)
Antônio Donizette de Oliveira
2009-03-01
Full Text Available The natural rubber is a non-wood product obtained of the coagulation of some lattices of forest species, being Hevea brasiliensis the main one. Native from the Amazon Region, this species was already known by the Indians before the discovery of America. The natural rubber became a product globally valued due to its multiple applications in the economy, being its almost perfect substitute the synthetic rubber derived from the petroleum. Similarly to what happens with other countless products the forecast of future prices of the natural rubber has been object of many studies. The use of models of forecast of univariate timeseries stands out as the more accurate and useful to reduce the uncertainty in the economic decision making process. This studyanalyzed the historical series of prices of the Brazilian natural rubber (R$/kg, in the Jan/99 - Jun/2006 period, in order tocharacterize the rubber price behavior in the domestic market; estimated a model for the time series of monthly natural rubberprices; and foresaw the domestic prices of the natural rubber, in the Jul/2006 - Jun/2007 period, based on the estimated models.The studied models were the ones belonging to the ARIMA family. The main results were: the domestic market of the natural rubberis expanding due to the growth of the world economy; among the adjusted models, the ARIMA (1,1,1 model provided the bestadjustment of the time series of prices of the natural rubber (R$/kg; the prognosis accomplished for the series supplied statistically adequate fittings.
Razavi, Saman; Vogel, Richard
2018-02-01
Prewhitening, the process of eliminating or reducing short-term stochastic persistence to enable detection of deterministic change, has been extensively applied to time series analysis of a range of geophysical variables. Despite the controversy around its utility, methodologies for prewhitening time series continue to be a critical feature of a variety of analyses including: trend detection of hydroclimatic variables and reconstruction of climate and/or hydrology through proxy records such as tree rings. With a focus on the latter, this paper presents a generalized approach to exploring the impact of a wide range of stochastic structures of short- and long-term persistence on the variability of hydroclimatic time series. Through this approach, we examine the impact of prewhitening on the inferred variability of time series across time scales. We document how a focus on prewhitened, residual time series can be misleading, as it can drastically distort (or remove) the structure of variability across time scales. Through examples with actual data, we show how such loss of information in prewhitened time series of tree rings (so-called "residual chronologies") can lead to the underestimation of extreme conditions in climate and hydrology, particularly droughts, reconstructed for centuries preceding the historical period.
State-space prediction model for chaotic time series
Alparslan, A. K.; Sayar, M.; Atilgan, A. R.
1998-08-01
A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.
Mehdizadeh, Sina; Sanjari, Mohammad Ali
2017-11-07
This study aimed to determine the effect of added noise, filtering and time series length on the largest Lyapunov exponent (LyE) value calculated for time series obtained from a passive dynamic walker. The simplest passive dynamic walker model comprising of two massless legs connected by a frictionless hinge joint at the hip was adopted to generate walking time series. The generated time series was used to construct a state space with the embedding dimension of 3 and time delay of 100 samples. The LyE was calculated as the exponential rate of divergence of neighboring trajectories of the state space using Rosenstein's algorithm. To determine the effect of noise on LyE values, seven levels of Gaussian white noise (SNR=55-25dB with 5dB steps) were added to the time series. In addition, the filtering was performed using a range of cutoff frequencies from 3Hz to 19Hz with 2Hz steps. The LyE was calculated for both noise-free and noisy time series with different lengths of 6, 50, 100 and 150 strides. Results demonstrated a high percent error in the presence of noise for LyE. Therefore, these observations suggest that Rosenstein's algorithm might not perform well in the presence of added experimental noise. Furthermore, findings indicated that at least 50 walking strides are required to calculate LyE to account for the effect of noise. Finally, observations support that a conservative filtering of the time series with a high cutoff frequency might be more appropriate prior to calculating LyE. Copyright © 2017 Elsevier Ltd. All rights reserved.
Discovering significant evolution patterns from satellite image time series.
Petitjean, François; Masseglia, Florent; Gançarski, Pierre; Forestier, Germain
2011-12-01
Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the location, which complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes as well as short term ones, whenever the change may start and end. However, applying FSPM methods to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain's constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS mining framework that enables discovery of these patterns despite these constraints and characteristics. Our proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on 35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution behaviors.
Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool
McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall
2008-01-01
The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify
Weighted statistical parameters for irregularly sampled time series
Rimoldini, Lorenzo
2014-01-01
Unevenly spaced time series are common in astronomy because of the day-night cycle, weather conditions, dependence on the source position in the sky, allocated telescope time and corrupt measurements, for example, or inherent to the scanning law of satellites like Hipparcos and the forthcoming Gaia. Irregular sampling often causes clumps of measurements and gaps with no data which can severely disrupt the values of estimators. This paper aims at improving the accuracy of common statistical parameters when linear interpolation (in time or phase) can be considered an acceptable approximation of a deterministic signal. A pragmatic solution is formulated in terms of a simple weighting scheme, adapting to the sampling density and noise level, applicable to large data volumes at minimal computational cost. Tests on time series from the Hipparcos periodic catalogue led to significant improvements in the overall accuracy and precision of the estimators with respect to the unweighted counterparts and those weighted by inverse-squared uncertainties. Automated classification procedures employing statistical parameters weighted by the suggested scheme confirmed the benefits of the improved input attributes. The classification of eclipsing binaries, Mira, RR Lyrae, Delta Cephei and Alpha2 Canum Venaticorum stars employing exclusively weighted descriptive statistics achieved an overall accuracy of 92 per cent, about 6 per cent higher than with unweighted estimators.
Detecting switching and intermittent causalities in time series
Zanin, Massimiliano; Papo, David
2017-04-01
During the last decade, complex network representations have emerged as a powerful instrument for describing the cross-talk between different brain regions both at rest and as subjects are carrying out cognitive tasks, in healthy brains and neurological pathologies. The transient nature of such cross-talk has nevertheless by and large been neglected, mainly due to the inherent limitations of some metrics, e.g., causality ones, which require a long time series in order to yield statistically significant results. Here, we present a methodology to account for intermittent causal coupling in neural activity, based on the identification of non-overlapping windows within the original time series in which the causality is strongest. The result is a less coarse-grained assessment of the time-varying properties of brain interactions, which can be used to create a high temporal resolution time-varying network. We apply the proposed methodology to the analysis of the brain activity of control subjects and alcoholic patients performing an image recognition task. Our results show that short-lived, intermittent, local-scale causality is better at discriminating both groups than global network metrics. These results highlight the importance of the transient nature of brain activity, at least under some pathological conditions.
N. Mamingi (Nlandu); M.E. Wuyts (Marc)
1986-01-01
textabstractTo the economist, time series constitute key data sources for empirical analysis. This is especially true for macroeconomic analysis, which relies virtually exclusively on observations of macroeconomic aggregates as they evolve over time.
Ngan, Chun-Kit
2013-01-01
Making decisions over multivariate time series is an important topic which has gained significant interest in the past decade. A time series is a sequence of data points which are measured and ordered over uniform time intervals. A multivariate time series is a set of multiple, related time series in a particular domain in which domain experts…
YAOPBM-II: extension to higher degrees and to shorter time series
Energy Technology Data Exchange (ETDEWEB)
Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)], E-mail: skorzennik@cfa.harvard.edu
2008-10-15
In 2005, I presented a new fitting methodology (Yet AnOther Peak Bagging Method -YAOPBM), derived for very-long time series (2088-day-long) and applied it to low degree modes, {iota} {<=} 25. That very-long time series was also sub-divided into shorter segments (728-day-long) that were each fitted over the same range of degrees, to estimate changes with solar activity levels. I present here the extension of this method in several 'directions': a) to substantially higher degrees ({iota} {<=} 125); b) to shorter time series (364- and 182-day-long); and c) to additional 728-day-long segments, covering now some 10 years of observations. I discuss issues with the fitting, namely the leakage matrix, and the f- and p1 mode at very low frequencies, and I present some of the characteristics of the observed temporal changes.
An Illustration of Generalised Arma (garma) Time Series Modeling of Forest Area in Malaysia
Pillai, Thulasyammal Ramiah; Shitan, Mahendran
Forestry is the art and science of managing forests, tree plantations, and related natural resources. The main goal of forestry is to create and implement systems that allow forests to continue a sustainable provision of environmental supplies and services. Forest area is land under natural or planted stands of trees, whether productive or not. Forest area of Malaysia has been observed over the years and it can be modeled using time series models. A new class of GARMA models have been introduced in the time series literature to reveal some hidden features in time series data. For these models to be used widely in practice, we illustrate the fitting of GARMA (1, 1; 1, δ) model to the Annual Forest Area data of Malaysia which has been observed from 1987 to 2008. The estimation of the model was done using Hannan-Rissanen Algorithm, Whittle's Estimation and Maximum Likelihood Estimation.
Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.
1993-01-01
Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.
The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure
Euá n, Carolina; Ombao, Hernando; Ortega, Joaquí n
2018-01-01
We present a new method for time series clustering which we call the Hierarchical Spectral Merger (HSM) method. This procedure is based on the spectral theory of time series and identifies series that share similar oscillations or waveforms
Directory of Open Access Journals (Sweden)
Dennis A Dean
Full Text Available We present a novel approach for analyzing biological time-series data using a context-free language (CFL representation that allows the extraction and quantification of important features from the time-series. This representation results in Hierarchically AdaPtive (HAP analysis, a suite of multiple complementary techniques that enable rapid analysis of data and does not require the user to set parameters. HAP analysis generates hierarchically organized parameter distributions that allow multi-scale components of the time-series to be quantified and includes a data analysis pipeline that applies recursive analyses to generate hierarchically organized results that extend traditional outcome measures such as pharmacokinetics and inter-pulse interval. Pulsicons, a novel text-based time-series representation also derived from the CFL approach, are introduced as an objective qualitative comparison nomenclature. We apply HAP to the analysis of 24 hours of frequently sampled pulsatile cortisol hormone data, which has known analysis challenges, from 14 healthy women. HAP analysis generated results in seconds and produced dozens of figures for each participant. The results quantify the observed qualitative features of cortisol data as a series of pulse clusters, each consisting of one or more embedded pulses, and identify two ultradian phenotypes in this dataset. HAP analysis is designed to be robust to individual differences and to missing data and may be applied to other pulsatile hormones. Future work can extend HAP analysis to other time-series data types, including oscillatory and other periodic physiological signals.
Permutation entropy of finite-length white-noise time series.
Little, Douglas J; Kane, Deb M
2016-08-01
Permutation entropy (PE) is commonly used to discriminate complex structure from white noise in a time series. While the PE of white noise is well understood in the long time-series limit, analysis in the general case is currently lacking. Here the expectation value and variance of white-noise PE are derived as functions of the number of ordinal pattern trials, N, and the embedding dimension, D. It is demonstrated that the probability distribution of the white-noise PE converges to a χ^{2} distribution with D!-1 degrees of freedom as N becomes large. It is further demonstrated that the PE variance for an arbitrary time series can be estimated as the variance of a related metric, the Kullback-Leibler entropy (KLE), allowing the qualitative N≫D! condition to be recast as a quantitative estimate of the N required to achieve a desired PE calculation precision. Application of this theory to statistical inference is demonstrated in the case of an experimentally obtained noise series, where the probability of obtaining the observed PE value was calculated assuming a white-noise time series. Standard statistical inference can be used to draw conclusions whether the white-noise null hypothesis can be accepted or rejected. This methodology can be applied to other null hypotheses, such as discriminating whether two time series are generated from different complex system states.
Characterizability of metabolic pathway systems from time series data.
Voit, Eberhard O
2013-12-01
Over the past decade, the biomathematical community has devoted substantial effort to the complicated challenge of estimating parameter values for biological systems models. An even more difficult issue is the characterization of functional forms for the processes that govern these systems. Most parameter estimation approaches tacitly assume that these forms are known or can be assumed with some validity. However, this assumption is not always true. The recently proposed method of Dynamic Flux Estimation (DFE) addresses this problem in a genuinely novel fashion for metabolic pathway systems. Specifically, DFE allows the characterization of fluxes within such systems through an analysis of metabolic time series data. Its main drawback is the fact that DFE can only directly be applied if the pathway system contains as many metabolites as unknown fluxes. This situation is unfortunately rare. To overcome this roadblock, earlier work in this field had proposed strategies for augmenting the set of unknown fluxes with independent kinetic information, which however is not always available. Employing Moore-Penrose pseudo-inverse methods of linear algebra, the present article discusses an approach for characterizing fluxes from metabolic time series data that is applicable even if the pathway system is underdetermined and contains more fluxes than metabolites. Intriguingly, this approach is independent of a specific modeling framework and unaffected by noise in the experimental time series data. The results reveal whether any fluxes may be characterized and, if so, which subset is characterizable. They also help with the identification of fluxes that, if they could be determined independently, would allow the application of DFE. Copyright © 2013 Elsevier Inc. All rights reserved.
JTSA: an open source framework for time series abstractions.
Sacchi, Lucia; Capozzi, Davide; Bellazzi, Riccardo; Larizza, Cristiana
2015-10-01
The evaluation of the clinical status of a patient is frequently based on the temporal evolution of some parameters, making the detection of temporal patterns a priority in data analysis. Temporal abstraction (TA) is a methodology widely used in medical reasoning for summarizing and abstracting longitudinal data. This paper describes JTSA (Java Time Series Abstractor), a framework including a library of algorithms for time series preprocessing and abstraction and an engine to execute a workflow for temporal data processing. The JTSA framework is grounded on a comprehensive ontology that models temporal data processing both from the data storage and the abstraction computation perspective. The JTSA framework is designed to allow users to build their own analysis workflows by combining different algorithms. Thanks to the modular structure of a workflow, simple to highly complex patterns can be detected. The JTSA framework has been developed in Java 1.7 and is distributed under GPL as a jar file. JTSA provides: a collection of algorithms to perform temporal abstraction and preprocessing of time series, a framework for defining and executing data analysis workflows based on these algorithms, and a GUI for workflow prototyping and testing. The whole JTSA project relies on a formal model of the data types and of the algorithms included in the library. This model is the basis for the design and implementation of the software application. Taking into account this formalized structure, the user can easily extend the JTSA framework by adding new algorithms. Results are shown in the context of the EU project MOSAIC to extract relevant patterns from data coming related to the long term monitoring of diabetic patients. The proof that JTSA is a versatile tool to be adapted to different needs is given by its possible uses, both as a standalone tool for data summarization and as a module to be embedded into other architectures to select specific phenotypes based on TAs in a large
Time series analysis of brain regional volume by MR image
International Nuclear Information System (INIS)
Tanaka, Mika; Tarusawa, Ayaka; Nihei, Mitsuyo; Fukami, Tadanori; Yuasa, Tetsuya; Wu, Jin; Ishiwata, Kiichi; Ishii, Kenji
2010-01-01
The present study proposed a methodology of time series analysis of volumes of frontal, parietal, temporal and occipital lobes and cerebellum because such volumetric reports along the process of individual's aging have been scarcely presented. Subjects analyzed were brain images of 2 healthy males and 18 females of av. age of 69.0 y, of which T1-weighted 3D SPGR (spoiled gradient recalled in the steady state) acquisitions with a GE SIGNA EXCITE HD 1.5T machine were conducted for 4 times in the time series of 42-50 months. The image size was 256 x 256 x (86-124) voxels with digitization level 16 bits. As the template for the regions, the standard gray matter atlas (icbn452 a tlas p robability g ray) and its labeled one (icbn.Labels), provided by UCLA Laboratory of Neuro Imaging, were used for individual's standardization. Segmentation, normalization and coregistration were performed with the MR imaging software SPM8 (Statistic Parametric Mapping 8). Volumes of regions were calculated as their voxel ratio to the whole brain voxel in percent. It was found that the regional volumes decreased with aging in all above lobes examined and cerebellum in average percent per year of -0.11, -0.07, -0.04, -0.02, and -0.03, respectively. The procedure for calculation of the regional volumes, which has been manually operated hitherto, can be automatically conducted for the individual brain using the standard atlases above. (T.T.)
Artificial neural networks applied to forecasting time series.
Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar
2011-04-01
This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.
On the maximum-entropy/autoregressive modeling of time series
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
GPS time series at Campi Flegrei caldera (2000-2013
Directory of Open Access Journals (Sweden)
Prospero De Martino
2014-05-01
Full Text Available The Campi Flegrei caldera is an active volcanic system associated to a high volcanic risk, and represents a well known and peculiar example of ground deformations (bradyseism, characterized by intense uplift periods, followed by subsidence phases with some episodic superimposed mini-uplifts. Ground deformation is an important volcanic precursor, and, its continuous monitoring, is one of the main tool for short time forecast of eruptive activity. This paper provides an overview of the continuous GPS monitoring of the Campi Flegrei caldera from January 2000 to July 2013, including network operations, data recording and processing, and data products. In this period the GPS time series allowed continuous and accurate tracking of ground deformation of the area. Seven main uplift episodes were detected, and during each uplift period, the recurrent horizontal displacement pattern, radial from the “caldera center”, suggests no significant change in deformation source geometry and location occurs. The complete archive of GPS time series at Campi Flegrei area is reported in the Supplementary materials. These data can be usefull for the scientific community in improving the research on Campi Flegrei caldera dynamic and hazard assessment.
Estimation of dynamic flux profiles from metabolic time series data
Directory of Open Access Journals (Sweden)
Chou I-Chun
2012-07-01
Full Text Available Abstract Background Advances in modern high-throughput techniques of molecular biology have enabled top-down approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among them is the recent method of dynamic flux estimation (DFE, which uses such data not only for parameter estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and information. However, such supplementations incur their own limitations. In particular, assumptions must be made regarding the functional forms of some processes and detailed kinetic information must be available, in addition to the time series data. Results The authors propose here a systematic approach that supplements DFE and overcomes some of its shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series data are available, the approach allows the determination of a subset of fluxes that enables the subsequent applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces cerevisiae. Conclusions The results demonstrate that the proposed method successfully complements DFE under various situations and without a priori assumptions regarding the model representation. The proposed method also permits an examination of whether at all, to what degree, or within what range the available time series data can be validly represented in a particular functional format of
Chaotic time series analysis in economics: Balance and perspectives
International Nuclear Information System (INIS)
Faggini, Marisa
2014-01-01
The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area
Ensemble Deep Learning for Biomedical Time Series Classification
Directory of Open Access Journals (Sweden)
Lin-peng Jin
2016-01-01
Full Text Available Ensemble learning has been proved to improve the generalization ability effectively in both theory and practice. In this paper, we briefly outline the current status of research on it first. Then, a new deep neural network-based ensemble method that integrates filtering views, local views, distorted views, explicit training, implicit training, subview prediction, and Simple Average is proposed for biomedical time series classification. Finally, we validate its effectiveness on the Chinese Cardiovascular Disease Database containing a large number of electrocardiogram recordings. The experimental results show that the proposed method has certain advantages compared to some well-known ensemble methods, such as Bagging and AdaBoost.
Disease management with ARIMA model in time series.
Sato, Renato Cesar
2013-01-01
The evaluation of infectious and noninfectious disease management can be done through the use of a time series analysis. In this study, we expect to measure the results and prevent intervention effects on the disease. Clinical studies have benefited from the use of these techniques, particularly for the wide applicability of the ARIMA model. This study briefly presents the process of using the ARIMA model. This analytical tool offers a great contribution for researchers and healthcare managers in the evaluation of healthcare interventions in specific populations.
A Suspicious Action Detection System Considering Time Series
Kozuka, Noriaki; Kimura, Koji; Hagiwara, Masafumi
The paper proposes a new system that can detect suspicious actions such as a car break-in and surroundings in an open space parking, based on image processing. The proposed system focuses on three points of “order”, “time”, and “location” of human actions. The proposed system has the following features: it 1) deals time series data flow, 2) estimates human actions and the location, 3) extracts suspicious action detection rules automatically, 4) detects suspicious actions using the suspicious score. We carried out experiments using real image sequences. As a result, we obtained about 7.8% higher estimation rate than the conventional system.
Real coded genetic algorithm for fuzzy time series prediction
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Quality Quandaries- Time Series Model Selection and Parsimony
DEFF Research Database (Denmark)
Bisgaard, Søren; Kulahci, Murat
2009-01-01
Some of the issues involved in selecting adequate models for time series data are discussed using an example concerning the number of users of an Internet server. The process of selecting an appropriate model is subjective and requires experience and judgment. The authors believe an important...... consideration in model selection should be parameter parsimony. They favor the use of parsimonious mixed ARMA models, noting that research has shown that a model building strategy that considers only autoregressive representations will lead to non-parsimonious models and to loss of forecasting accuracy....
Chaotic time series analysis in economics: Balance and perspectives
Energy Technology Data Exchange (ETDEWEB)
Faggini, Marisa, E-mail: mfaggini@unisa.it [Dipartimento di Scienze Economiche e Statistiche, Università di Salerno, Fisciano 84084 (Italy)
2014-12-15
The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area.
SaaS Platform for Time Series Data Handling
Oplachko, Ekaterina; Rykunov, Stanislav; Ustinin, Mikhail
2018-02-01
The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a "Software as a Service" model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data.
Time series ARIMA models for daily price of palm oil
Ariff, Noratiqah Mohd; Zamhawari, Nor Hashimah; Bakar, Mohd Aftar Abu
2015-02-01
Palm oil is deemed as one of the most important commodity that forms the economic backbone of Malaysia. Modeling and forecasting the daily price of palm oil is of great interest for Malaysia's economic growth. In this study, time series ARIMA models are used to fit the daily price of palm oil. The Akaike Infromation Criterion (AIC), Akaike Infromation Criterion with a correction for finite sample sizes (AICc) and Bayesian Information Criterion (BIC) are used to compare between different ARIMA models being considered. It is found that ARIMA(1,2,1) model is suitable for daily price of crude palm oil in Malaysia for the year 2010 to 2012.
Real Rainfall Time Series for Storm Sewer Design
DEFF Research Database (Denmark)
Larsen, Torben
The paper describes a simulation method for the design of retention storages, overflows etc. in storm sewer systems. The method is based on computer simulation with real rainfall time series as input ans with the aply of a simple transfer model of the ARMA-type (autoregressiv moving average model......) as the model of the storm sewer system. The output of the simulation is the frequency distribution of the peak flow, overflow volume etc. from the overflow or retention storage. The parameters in the transfer model is found either from rainfall/runoff measurements in the catchment or from one or a few...
Centrality measures in temporal networks with time series analysis
Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun
2017-05-01
The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.
Marken, John P; Halleran, Andrew D; Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C; Golino, Caroline A; Kemper, Peter; Saha, Margaret S
2016-01-01
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.
Kriging Methodology and Its Development in Forecasting Econometric Time Series
Directory of Open Access Journals (Sweden)
Andrej Gajdoš
2017-03-01
Full Text Available One of the approaches for forecasting future values of a time series or unknown spatial data is kriging. The main objective of the paper is to introduce a general scheme of kriging in forecasting econometric time series using a family of linear regression time series models (shortly named as FDSLRM which apply regression not only to a trend but also to a random component of the observed time series. Simultaneously performing a Monte Carlo simulation study with a real electricity consumption dataset in the R computational langure and environment, we investigate the well-known problem of “negative” estimates of variance components when kriging predictions fail. Our following theoretical analysis, including also the modern apparatus of advanced multivariate statistics, gives us the formulation and proof of a general theorem about the explicit form of moments (up to sixth order for a Gaussian time series observation. This result provides a basis for further theoretical and computational research in the kriging methodology development.
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.
Directory of Open Access Journals (Sweden)
John P Marken
Full Text Available Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.