WorldWideScience

Sample records for time scale radiological

  1. International scaling of nuclear and radiological events

    International Nuclear Information System (INIS)

    Wang Yuhui; Wang Haidan

    2014-01-01

    Scales are inherent forms of measurement used in daily life, just like Celsius or Fahrenheit scales for temperature and Richter for scale for earthquakes. Jointly developed by the IAEA and OECD/NEA in 1990, the purpose of International Nuclear and Radiological Event Scale (INES) is to help nuclear and radiation safety authorities and the nuclear industry worldwide to rate nuclear and radiological events and to communicate their safety significance to the general public, the media and the technical community. INES was initially used to classify events at nuclear power plants only. It was subsequently extended to rate events associated with the transport, storage and use of radioactive material and radiation sources, from those occurring at nuclear facilities to those associated with industrial use. Since its inception, it has been adopted in 69 countries. Events are classified on the scale at seven levels: Levels 1-3 are called 'incidents' and Levels 4-7 'accidents'. The scale is designed so that the severity of an event is about ten times greater for each increase in level on the scale. Events without safety significance are called 'deviations' and are classified Below Scale/Level 0. INES classifies nuclear and radiological accidents and incidents by considering three areas of impact: People and the Environment; Radiological Barriers and Control; Defence-in-Depth. By now, two nuclear accidents were on the highest level of the scale: Chernobyl and Fukumashi. (authors)

  2. RSVP radiology

    International Nuclear Information System (INIS)

    Kirks, D.R.; Chaffee, D.J.

    1990-01-01

    This paper develops a relative scale of value for pediatric radiology (RSVPR). Neither the HCFA/ACA Relative Value Scale nor the Workload Measurement System developed by Health and Welfare Canada specifically addressed pediatric radiologic examinations. Technical and professional charges for examinations at Children's Hospital Medical Center were reviewed and compared with time and cost analysis. A scale was developed with chest radiography (PA and lateral views) assigned a value of 1. After review by pediatric radiologic technologists, radiologic administrators, pediatric radiologists, and chairs of departments of children's hospitals, this proposed scale was modified to reflect more accurately relative value components of pediatric radiologic and imaging examinations

  3. Proposed classification scale for radiological incidents and accidents

    International Nuclear Information System (INIS)

    2003-04-01

    The scale proposed in this report is intended to facilitate communication concerning the severity of incidents and accidents involving the exposure of human beings to ionising radiations. Like the INES, it comprises eight levels of severity and uses the same terms (accident, incident, anomaly, serious and major) for keeping the public and the media informed. In a radiological protection context, the severity of an event is considered as being directly proportional to the risk run by an individual (the probability of developing fatal or non-fatal health effects) following exposure to ionising radiation in an incident or accident situation. However for society, other factors have to be taken into account to determine severity. The severity scale proposed is therefore based on assessment of the individual radiological risk. A severity level corresponding to exposure of a member of the public in an incident or accident situation is determined on the basis of risk assessment concepts and methods derived from international consensus on dose/effect relationships for both stochastic and deterministic effects. The severity of all the possible exposure situations - worker exposure, collective exposure, potential exposure - is determined using a system of weighting in relation to situations involving members of the public. In the case of this scale, to indicate the severity of an event, it is proposed to make use of the most penalizing level of severity, comparing: - the severity associated with the probability of occurrence of deterministic effects and the severity associated with the probability of occurrence of stochastic effects, when the event gives rise to both types of risk; - the severity for members of the public and the severity for exposed workers, when both categories of individuals are involved; - the severity on the proposed radiological protection scale and that obtained using the INES, when radiological protection and nuclear safety aspects are associated with

  4. Multiple time scale dynamics

    CERN Document Server

    Kuehn, Christian

    2015-01-01

    This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form.  The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this  book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective. 

  5. A TWO-STAGE MODEL OF RADIOLOGICAL INSPECTION: SPENDING TIME

    International Nuclear Information System (INIS)

    BROWN, W.S.

    2000-01-01

    The paper describes a model that visually portrays radiological survey performance as basic parameters (surveyor efficiency and criteria, duration of pause, and probe speed) are varied; field and laboratory tests provided typical parameter values. The model is used to illustrate how practical constraints on the time allotted to the task can affect radiological inspection performance. Similar analyses are applicable to a variety of other tasks (airport baggage inspection, and certain types of non-destructive testing) with similar characteristics and constraints

  6. Radiology

    International Nuclear Information System (INIS)

    Bigot, J.M.; Moreau, J.F.; Nahum, H.; Bellet, M.

    1990-01-01

    The 17th International Congress of Radiology was conducted in two separate scientific sessions, one for radiodiagnosis and one for radiation oncology. Topics covered are: Radiobiology -radioprotection; imaging and data processing; contrast media; MRI; nuclear medicine; radiology and disasters; radiology of tropical diseases; cardiovascular radiology; interventional radiology; imaging of trauma; imaging of chest, gastro-intestinal tract, breast and genito-urinary tract; imaging in gynecology;imaging in oncology; bone and joint radiology; head and neck-radiology; neuro-radiology. (H.W.). refs.; fig.; tabs

  7. Radiology

    International Nuclear Information System (INIS)

    Edholm, P.R.

    1990-01-01

    This is a report describing diagnostic techniques used in radiology. It describes the equipment necessary for, and the operation of a radiological department. Also is described the standard methods used in radiodiagnosis. (K.A.E.)

  8. Evolution of Time Scales

    Science.gov (United States)

    2006-12-01

    as the fundamental unit of time in the International System of Units. It was defined as ( Metrologia , 1968) “the duration of 9 192 631 770 periods of...atomic time equivalent to the second of ET in principle. The Comité Consultatif pour la Définition de la Seconde (CCDS) of the CIPM recommended...with the definition of the second, the unit of time of the Inter- national System of Units” ( Metrologia , 1971). The CCDS (BIPM Com. Cons. Déf. Seconde

  9. Development of a real-time radiological dose assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil

    1997-07-01

    A radiological dose assessment system named FADAS has been developed. This system is necessary to estimated the radiological consequences against a nuclear accident. Mass-consistent wind field module was adopted for the generation of wind field over the whole domain using the several measured wind data. Random-walk dispersion module is used for the calculation of the distribution of radionuclides in the atmosphere. And volume-equivalent numerical integration method has been developed for the assessment of external gamma exposure given from a randomly distributed radioactive materials and a dose data library has been made for rapid calculation. Field tracer experiments have been carried out for the purpose of analyzing the site-specific meteorological characteristics and increasing the accuracy of wind field generation and atmospheric dispersion module of FADAS. At first, field tracer experiment was carried out over flat terrain covered with rice fields using the gas samplers which were designed and manufactured by the staffs of KAERI. The sampled gas was analyzed using gas chromatograph. SODAR and airsonde were used to measure the upper wind. Korean emergency preparedness system CARE was integrated at Kori 4 nuclear power plants in 1995. One of the main functions of CARE is to estimate the radiological dose. The developed real-time dose assessment system FADAS was adopted in CARE as a tool for the radiological dose assessment. (author). 79 refs., 52 tabs., 94 figs.

  10. On the Geologic Time Scale

    NARCIS (Netherlands)

    Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.

    2012-01-01

    This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam

  11. Dynamic inequalities on time scales

    CERN Document Server

    Agarwal, Ravi; Saker, Samir

    2014-01-01

    This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.

  12. Time analysis for optimization of radiology workflow in conventional radiology during RIS-PACS-integration

    Science.gov (United States)

    Falkensammer, Peter; Soegner, Peter I.; zur Nedden, Dieter

    2002-05-01

    The integration of RIS-PACS systems in radiology units are intended to reduce time consumption in radiology workflow and thus to increase radiologist productivity. Along with the RIS-PACS integration at the University Hospital Innsbruck we analyzed workflow from patient admission to release of final reports before implementation. The follow up study after six months of the implementation is currently in work. In this study we compared chest to skeletal x-ray examinations in 969 patients before the implementation. Drawing the admission-to-release-of-final-report period showed a two-peak diagram with the first peak corresponding to a release of final results on the same day and the second peak to a release on the following day. In the chest x-ray group, 57% were released the same day (mean value 4:02 hours) and 43% the next day (mean value 21:47 hours). Looking at the skeletal x-rays 40% were released the same day (mean value 3:58 hours) and 60% were released the next day (mean value 21:05 hours). Summarizing the results we should say, that the average chest x-ray requires less time than an skeletal x-ray, due to the fact that a greater percentage of reports is released the same day. The most important result is, that the most time consuming workstep is the exchange of data media between radiologist and secretary with at least 5 hours.

  13. Radiology

    International Nuclear Information System (INIS)

    Sykora, A.

    2006-01-01

    In this text-book basic knowledge about radiology, biomedical diagnostic methods (radiography, computer tomography), nuclear medicine and safety and radiation protection of personnel on the radiodiagnostic place of work are presented

  14. A presentation system for just-in-time learning in radiology.

    Science.gov (United States)

    Kahn, Charles E; Santos, Amadeu; Thao, Cheng; Rock, Jayson J; Nagy, Paul G; Ehlers, Kevin C

    2007-03-01

    There is growing interest in bringing medical educational materials to the point of care. We sought to develop a system for just-in-time learning in radiology. A database of 34 learning modules was derived from previously published journal articles. Learning objectives were specified for each module, and multiple-choice test items were created. A web-based system-called TEMPO-was developed to allow radiologists to select and view the learning modules. Web services were used to exchange clinical context information between TEMPO and the simulated radiology work station. Preliminary evaluation was conducted using the System Usability Scale (SUS) questionnaire. TEMPO identified learning modules that were relevant to the age, sex, imaging modality, and body part or organ system of the patient being viewed by the radiologist on the simulated clinical work station. Users expressed a high degree of satisfaction with the system's design and user interface. TEMPO enables just-in-time learning in radiology, and can be extended to create a fully functional learning management system for point-of-care learning in radiology.

  15. Radiology

    International Nuclear Information System (INIS)

    Meyers, M.A.

    1989-01-01

    This paper reports on disease processes originating within the alimentary tract, may extend through the extraperitoneal spaces, and abnormalities primarily arising within other extraperitoneal sites may significantly affect the bowel. Symptoms and signs may be obscure, delayed, or nonspecific, and the area is generally not accessible to auscultation, palpation, or percussion. Radiologic evaluation thus plays a critical role

  16. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  17. A laboratory scale fundamental time?

    International Nuclear Information System (INIS)

    Mendes, R.V.

    2012-01-01

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  18. Radiology

    International Nuclear Information System (INIS)

    Lissner, J.

    1985-01-01

    Diagnostic radiology is still the foremost of all innovative medical disciplines. This has many advantages but also some handicaps, e.g. the siting problem of medical equipment whose clinical potential is not fully known. This applies in particular to nuclear spin tomography, where the Laender governments and the Scientific Council seen to agree that all universities should have the appropriate equipment as soon as possible in order to intensify interdisciplinary research. Formerly, in the case of computerized tomography, there was less readiness. As a result, the siting of CT equipment is less organically structured. A special handicap of innovative fields is the problem of training and advanced training. The Chamber of Medicine and the Association of Doctors Participating in the Health Insurance Plan have issued regulations aimed at a better standardisation in this field. (orig.) [de

  19. 24/7 pediatric radiology attending coverage: times are changing

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, James S. [Feinberg School of Medicine at Northwestern University, Department of Medical Imaging, Ann and Robert H. Lurie Children' s Hospital of Chicago, IL (United States); Thakrar, Kiran H. [University of Chicago Pritzker School of Medicine, Body Imaging, NorthShore University HealthSystem, Chicago, IL (United States)

    2017-06-15

    The job of the pediatric radiologist long ago ceased to be an 8-to-5 role. Many practices have adopted evening shifts of in-house attending radiologists to cover the busy evening activity. With the ever-increasing role of imaging in clinical decisions and patient management, there is a need - if not a demand - to further extend attending pediatric radiology coverage. In this article, we discuss the needs and justification for extending pediatric radiology coverage at a tertiary-care children's hospital. We also describe the approach we took toward implementing 24/7 attending in-house coverage of pediatric radiology. (orig.)

  20. The International Nuclear and Radiological Event Scale (INES): 20 Years of Nuclear Communication

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: Today, the International Atomic Energy Agency (IAEA) and the OECD Nuclear Energy Agency (NEA) are celebrating the 20th anniversary of the International Nuclear and Radiological Event Scale (INES). Jointly developed by the IAEA and the NEA in 1990, in the aftermath of the Chernobyl accident, the purpose of INES is to help nuclear and radiation safety authorities and the nuclear industry worldwide to rate nuclear and radiological events and to communicate their safety significance to the general public, the media and the technical community. INES has often been compared to other scales used to measure physical properties such as temperature - the Celsius, Kelvin or Fahrenheit scales - or rate events such as earthquakes - the Richter scale. Like these scales, INES also has a sound technical background and can be easily understood. INES was initially used to classify events at nuclear power plants only. It was subsequently extended to rate events occurring in any nuclear facility and during the transport of radioactive material, thus also covering events related to the overexposure of workers. Since 2008, INES has been extended to any event associated with the transport, storage and use of radioactive material and radiation sources, from those occurring at nuclear facilities to those associated with industrial use. More generally, INES has also become a crucial nuclear communications tool. Since its inception, it has been adopted in 69 countries, and an increasing number of countries have expressed their interest in using INES and have designated INES national officers. Over the years, national nuclear safety authorities have made growing use of INES, while the public and the media have become more familiar with the scale and its significance. This is where the true success of INES stands, having helped to foster transparency and provide a better understanding of nuclear-related events and activities. For a full description of the International Nuclear and

  1. Potential time savings to radiology department personnel in a PACS-based environment

    Science.gov (United States)

    Saarinen, Allan O.; Wilson, M. C.; Iverson, Scott C.; Loop, John W.

    1990-08-01

    A purported benefit of digital imaging and archiving of radiographic procedures is the presumption of time savings to radiologists, radiology technologists, and radiology departmentpersonnel involved with processingfilms and managing theflimfile room. As part of the University of Washington's evaluation of Picture Archiving and Communication Systems (PACS)for the U.S. Army Medical Research and Development Command, a study was performed which evaluated the current operationalpractices of the film-based radiology department at the University of Washington Medical Center (UWMC). Industrial engineering time and motion studies were conducted to document the length of time requiredforfilm processing in various modalities, the proportion of the total exam time usedforfilm processing, the amount of time radiologists spent searchingfor and looking at images, and the amount of time file room personnel spent collating reports, making loans, updatingfilm jacket information, and purging files. This evaluation showed that better than one-half of the tasks in the file room may be eliminated with PACS and radiologists may save easily 10 percent of the time they spend reading films by no longer having to searchforfilms. Radiology technologists may also save as much as 10 percent of their time with PACS, although this estimate is subject to significant patient mix aberrations and measurement error. Given that the UWMC radiology department operates efficiently, similar improvements are forecast for other radiology departments and larger improvements areforecastfor less efficient departments.

  2. Time Is Not on Our Side: How Radiology Practices Should Manage Customer Queues.

    Science.gov (United States)

    Loving, Vilert A; Ellis, Richard L; Rippee, Robert; Steele, Joseph R; Schomer, Donald F; Shoemaker, Stowe

    2017-11-01

    As health care shifts toward patient-centered care, wait times have received increasing scrutiny as an important metric for patient satisfaction. Long queues form when radiology practices inefficiently service their customers, leading to customer dissatisfaction and a lower perception of value. This article describes a four-step framework for radiology practices to resolve problematic queues: (1) analyze factors contributing to queue formation; (2) improve processes to reduce service times; (3) reduce variability; (4) address the psychology of queues. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Novel real-time 3D radiological mapping solution for ALARA maximization, D and D assessments and radiological management

    Energy Technology Data Exchange (ETDEWEB)

    Dubart, Philippe; Hautot, Felix [AREVA Group, 1 route de la Noue, Gif sur Yvette (France); Morichi, Massimo; Abou-Khalil, Roger [AREVA Group, Tour AREVA-1, place Jean Millier, Paris (France)

    2015-07-01

    Good management of dismantling and decontamination (D and D) operations and activities is requiring safety, time saving and perfect radiological knowledge of the contaminated environment as well as optimization for personnel dose and minimization of waste volume. In the same time, Fukushima accident has imposed a stretch to the nuclear measurement operational approach requiring in such emergency situation: fast deployment and intervention, quick analysis and fast scenario definition. AREVA, as return of experience from his activities carried out at Fukushima and D and D sites has developed a novel multi-sensor solution as part of his D and D research, approach and method, a system with real-time 3D photo-realistic spatial radiation distribution cartography of contaminated premises. The system may be hand-held or mounted on a mobile device (robot, drone, e.g). In this paper, we will present our current development based on a SLAM technology (Simultaneous Localization And Mapping) and integrated sensors and detectors allowing simultaneous topographic and radiological (dose rate and/or spectroscopy) data acquisitions. This enabling technology permits 3D gamma activity cartography in real-time. (authors)

  4. Novel real-time 3D radiological mapping solution for ALARA maximization, D and D assessments and radiological management

    International Nuclear Information System (INIS)

    Dubart, Philippe; Hautot, Felix; Morichi, Massimo; Abou-Khalil, Roger

    2015-01-01

    Good management of dismantling and decontamination (D and D) operations and activities is requiring safety, time saving and perfect radiological knowledge of the contaminated environment as well as optimization for personnel dose and minimization of waste volume. In the same time, Fukushima accident has imposed a stretch to the nuclear measurement operational approach requiring in such emergency situation: fast deployment and intervention, quick analysis and fast scenario definition. AREVA, as return of experience from his activities carried out at Fukushima and D and D sites has developed a novel multi-sensor solution as part of his D and D research, approach and method, a system with real-time 3D photo-realistic spatial radiation distribution cartography of contaminated premises. The system may be hand-held or mounted on a mobile device (robot, drone, e.g). In this paper, we will present our current development based on a SLAM technology (Simultaneous Localization And Mapping) and integrated sensors and detectors allowing simultaneous topographic and radiological (dose rate and/or spectroscopy) data acquisitions. This enabling technology permits 3D gamma activity cartography in real-time. (authors)

  5. Real-Time Electronic Dashboard Technology and Its Use to Improve Pediatric Radiology Workflow.

    Science.gov (United States)

    Shailam, Randheer; Botwin, Ariel; Stout, Markus; Gee, Michael S

    The purpose of our study was to create a real-time electronic dashboard in the pediatric radiology reading room providing a visual display of updated information regarding scheduled and in-progress radiology examinations that could help radiologists to improve clinical workflow and efficiency. To accomplish this, a script was set up to automatically send real-time HL7 messages from the radiology information system (Epic Systems, Verona, WI) to an Iguana Interface engine, with relevant data regarding examinations stored in an SQL Server database for visual display on the dashboard. Implementation of an electronic dashboard in the reading room of a pediatric radiology academic practice has led to several improvements in clinical workflow, including decreasing the time interval for radiologist protocol entry for computed tomography or magnetic resonance imaging examinations as well as fewer telephone calls related to unprotocoled examinations. Other advantages include enhanced ability of radiologists to anticipate and attend to examinations requiring radiologist monitoring or scanning, as well as to work with technologists and operations managers to optimize scheduling in radiology resources. We foresee increased utilization of electronic dashboard technology in the future as a method to improve radiology workflow and quality of patient care. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Estimates of expansion time scales

    International Nuclear Information System (INIS)

    Jones, E.M.

    1979-01-01

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure

  7. Stochastic time scale for the Universe

    International Nuclear Information System (INIS)

    Szydlowski, M.; Golda, Z.

    1986-01-01

    An intrinsic time scale is naturally defined within stochastic gradient dynamical systems. It should be interpreted as a ''relaxation time'' to a local potential minimum after the system has been randomly perturbed. It is shown that for a flat Friedman-like cosmological model this time scale is of order of the age of the Universe. 7 refs. (author)

  8. A real-time haptic interface for interventional radiology procedures.

    Science.gov (United States)

    Moix, Thomas; Ilic, Dejan; Fracheboud, Blaise; Zoethout, Jurjen; Bleuler, Hannes

    2005-01-01

    Interventional Radiology (IR) is a minimally-invasive surgery technique (MIS) where guidewires and catheters are steered in the vascular system under X-ray imaging. In order to perform these procedures, a radiologist has to be correctly trained to master hand-eye coordination, instrument manipulation and procedure protocols. This paper proposes a computer-assisted training environment dedicated to IR. The system is composed of a virtual reality (VR) simulation of the anatomy of the patient linked to a robotic interface providing haptic force feedback.The paper focuses on the requirements, design and prototyping of a specific part of the haptic interface dedicated to catheters. Translational tracking and force feedback on the catheter is provided by two cylinders forming a friction drive arrangement. The whole friction can be set in rotation with an additional motor providing torque feedback. A force and a torque sensor are integrated in the cylinders for direct measurement on the catheter enabling disturbance cancellation with a close-loop force control strategy.

  9. Comparison of time-oriented cost accounting catalogs to control a Departement of Radiology

    International Nuclear Information System (INIS)

    Hacklaender, T.; Mertens, H.; Cramer, B.M.

    2005-01-01

    Purpose: Within a hospital, the radiology department has taken over the role of a cost center. Cost accounting can be applied to analyze the cost for the performance of services. By assigning the expenditures of resources to the service, the cash value can directly be distributed to the costs of equipment, material and rooms. Time-oriented catalogs of services are predefined to calculate the number of the employees for a radiology department. Using our own survey of time data, we examined whether such catalogs correctly represent the time consumed in a radiology department. Only services relevant for the turnover were compared. Materials and Methods: For 96 primary radiological services defined by the score-oriented German fee catalog for physicians (Gebuehrenordnung fuer Aerzte), a ranking list was made for the annual procedures in descending frequency order. According to the Pareto principle, the 11 services with the highest frequency were chosen and the time consumed for the technical and medical services was collected over a period of 2 months. This survey was compared with the time-oriented catalogs TARMED and EBM 2000plus. Results: The included 11 relevant radiological services represented 80.3% of the annual procedures of our radiology department. When comparing the technical services between the time-oriented catalogs and our own survey, TARMED gives a better description of the time consumed in 7 of the 11 services and EMB 2000plus in 3 services. When comparing the medical services, TARMED gives a better description of the time consumed in 6 of the 11 services and EBM 2000plus in 4 services. When averaging all the radiological services, TARMED overestimates the current number of physicians necessary for primary reading by a factor of 10.0% and EBM 2000plus by a factor of 2.6%. Conclusion: As to the time spent on performing the relevant radiological services. TARMED is slightly superior to describe the radiology department of a hospital than EBM 2000plus

  10. Radiology-led Follow-up System for IVC Filters: Effects on Retrieval Rates and Times

    International Nuclear Information System (INIS)

    Lee, L.; Taylor, J.; Munneke, G.; Morgan, R.; Belli, A.-M.

    2012-01-01

    Purpose: Successful IVC filter retrieval rates fall with time. Serious complications have been reported following attempts to remove filters after 3–18 months. Failed retrieval may be associated with adverse clinical sequelae. This study explored whether retrieval rates are improved if interventional radiologists organize patient follow-up, rather than relying on the referring clinicians. Methods: Proactive follow-up of patients who undergo filter placement was implemented in May 2008. At the time of filter placement, a report was issued to the referring consultant notifying them of the advised timeframe for filter retrieval. Clinicians were contacted to arrange retrieval within 30 days. We compared this with our practice for the preceding year. Results: The numbers of filters inserted during the two time periods was similar, as were the numbers of retrieval attempts and the time scale at which they occurred. The rate of successful retrievals increased but not significantly. The major changes were better documentation of filter types and better clinical follow-up. After the change in practice, only one patient was lost to follow-up compared with six the preceding year. Conclusions: Although there was no significant improvement in retrieval rates, the proactive, radiology-led approach improved follow-up and documentation, ensuring that a clinical decision was made about how long the filter was required and whether retrieval should be attempted and ensuring that patients were not lost to follow-up.

  11. Time scale in quasifission reactions

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Paul, P.; Nestler, J. [and others

    1995-08-01

    The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.

  12. Data Integrated System for the control to the security information and radiological protection to national scale

    International Nuclear Information System (INIS)

    Valdes Ramos, M.; Domenech Nieves, H.; Jova Sed, L.

    1998-01-01

    RASSYN was developed to maintain upgraded the national registrations that store the data that allow to the regulatory organ to exercise its function give control and supervision. On the other hand the system serves tool for the emission authorizations, licenses, permits and it facilitates the task inspection. The system notices on time situations that require attention and it values and it correlates the information with view to obtain the national at grade radiological situation or give a territory

  13. Applying Systems Engineering Reduces Radiology Transport Cycle Times in the Emergency Department

    Science.gov (United States)

    White, Benjamin A.; Yun, Brian J.; Lev, Michael H.; Raja, Ali S.

    2017-01-01

    Introduction Emergency department (ED) crowding is widespread, and can result in care delays, medical errors, increased costs, and decreased patient satisfaction. Simultaneously, while capacity constraints on EDs are worsening, contributing factors such as patient volume and inpatient bed capacity are often outside the influence of ED administrators. Therefore, systems engineering approaches that improve throughput and reduce waste may hold the most readily available gains. Decreasing radiology turnaround times improves ED patient throughput and decreases patient waiting time. We sought to investigate the impact of systems engineering science targeting ED radiology transport delays and determine the most effective techniques. Methods This prospective, before-and-after analysis of radiology process flow improvements in an academic hospital ED was exempt from institutional review board review as a quality improvement initiative. We hypothesized that reorganization of radiology transport would improve radiology cycle time and reduce waste. The intervention included systems engineering science-based reorganization of ED radiology transport processes, largely using Lean methodologies, and adding no resources. The primary outcome was average transport time between study order and complete time. All patients presenting between 8/2013–3/2016 and requiring plain film imaging were included. We analyzed electronic medical record data using Microsoft Excel and SAS version 9.4, and we used a two-sample t-test to compare data from the pre- and post-intervention periods. Results Following the intervention, average transport time decreased significantly and sustainably. Average radiology transport time was 28.7 ± 4.2 minutes during the three months pre-intervention. It was reduced by 15% in the first three months (4.4 minutes [95% confidence interval [CI] 1.5–7.3]; to 24.3 ± 3.3 min, P=0.021), 19% in the following six months (5.4 minutes, 95% CI [2.7–8.2]; to 23.3 ± 3

  14. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-11-01

    INES, the International Nuclear and Radiological Event Scale, was developed in 1990 by experts convened by the IAEA and the OECD Nuclear Energy Agency with the aim of communicating the safety significance of events. This edition of the INES User?s Manual is designed to facilitate the task of those who are required to rate the safety significance of events using the scale. It includes additional guidance and clarifications, and provides examples and comments on the continued use of INES. With this new edition, it is anticipated that INES will be widely used by Member States and become the worldwide scale for putting into proper perspective the safety significance of any event associated with the transport, storage and use of radioactive material and radiation sources, whether or not the event occurs at a facility.

  15. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    INES, the International Nuclear and Radiological Event Scale, was developed in 1990 by experts convened by the IAEA and the OECD Nuclear Energy Agency with the aim of communicating the safety significance of events. This edition of the INES User's Manual is designed to facilitate the task of those who are required to rate the safety significance of events using the scale. It includes additional guidance and clarifications, and provides examples and comments on the continued use of INES. With this new edition, it is anticipated that INES will be widely used by Member States and become the worldwide scale for putting into proper perspective the safety significance of any event associated with the transport, storage and use of radioactive material and radiation sources, whether or not the event occurs at a facility.

  16. Some nonlinear dynamic inequalities on time scales

    Indian Academy of Sciences (India)

    In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous and discrete analysis. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales. Recently, there has been much research activity concerning the new theory. For example, we ...

  17. Multiple time scale methods in tokamak magnetohydrodynamics

    International Nuclear Information System (INIS)

    Jardin, S.C.

    1984-01-01

    Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B 2 /2μ 0 , which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed

  18. Uniform Statistical Convergence on Time Scales

    Directory of Open Access Journals (Sweden)

    Yavuz Altin

    2014-01-01

    Full Text Available We will introduce the concept of m- and (λ,m-uniform density of a set and m- and (λ,m-uniform statistical convergence on an arbitrary time scale. However, we will define m-uniform Cauchy function on a time scale. Furthermore, some relations about these new notions are also obtained.

  19. Time Scale in Least Square Method

    Directory of Open Access Journals (Sweden)

    Özgür Yeniay

    2014-01-01

    Full Text Available Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.

  20. Hardy type inequalities on time scales

    CERN Document Server

    Agarwal, Ravi P; Saker, Samir H

    2016-01-01

    The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and...

  1. Steffensen's Integral Inequality on Time Scales

    Directory of Open Access Journals (Sweden)

    Ozkan Umut Mutlu

    2007-01-01

    Full Text Available We establish generalizations of Steffensen's integral inequality on time scales via the diamond- dynamic integral, which is defined as a linear combination of the delta and nabla integrals.

  2. JY1 time scale: a new Kalman-filter time scale designed at NIST

    International Nuclear Information System (INIS)

    Yao, Jian; Parker, Thomas E; Levine, Judah

    2017-01-01

    We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e. time error, frequency error, or frequency drift error) automatically. These features make the JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 time scale deviates from the UTC by less than  ±5 ns for ∼100 d, when the time scale is initially aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs fountain, it can maintain the time with little error even if the Cs fountain stops working for tens of days. This can be helpful when we do not have a continuously operated fountain or when the continuously operated fountain accidentally stops, or when optical clocks run occasionally. (paper)

  3. Mouse Activity across Time Scales: Fractal Scenarios

    Science.gov (United States)

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  4. Patient throughput times for orthopedic outpatients in a department of radiology: results of an interdisciplinary quality management program

    International Nuclear Information System (INIS)

    Hodler, J.; Zanetti, M.; Strehle, J.; Gerber, C.; Schilling, J.

    1999-01-01

    The purpose of this project was to employ quality management methods in order to decrease throughput times for orthopedic outpatients sent to the department of radiology. The following intervals were measured at the onset of the study and after 6 and 12 months: (a) between arrivals at outpatient clinic and radiology counter; (b) between arrival at radiology counter and time of last radiograph; and (c) between time of last radiograph and radiology report printing time. After the initial measurement, numerous changes were initiated both in radiology and in orthopedic surgery. The mean interval between arrival at the outpatient clinic and in radiology decreased by one third from 60 min during the first measurement to 40 (p < 0.001) and 41 min during the second and third measurement. The proportion of patients with total radiology times of more than 30 min decreased from 41 to 29 % between the first and third measurements (p < 0.001). The corresponding results for radiology times of more than 45 min were 17 and 11 % (p = 0.03). A standard type of quality management program can be employed successfully in order to reduce radiology throughput times for orthopedic outpatients. (orig.)

  5. Intervention of the army health service in the case of radiological accident in peace time

    International Nuclear Information System (INIS)

    Curet, P.M.; Croq, M.

    2001-01-01

    The Army Health Service has conceived an organisation and has at its disposal the means necessary to answer the consequences of an accident having a radiological type in peace time in the military field. Its intervention area can be extended to the civil medium at the public authorities demand to give assistance. (N.C.)

  6. Radiological assessment of petroleum pipe scale waste streams from dry rattling operations - 16323

    International Nuclear Information System (INIS)

    Hamilton, Ian S.; Arno, Matthew G.; Fruchtnicht, Erich H.; Berry, Robert O.

    2009-01-01

    Petroleum pipe scale consists of inorganic solids, such as barium sulfate. These solids can precipitate out of brine solutions that are pumped out of oil wells as part of normal oil field operations. The precipitates can nucleate on down hole pipe walls, causing the buildup of hard scales in some tubular in a pipe string, while leaving others virtually untouched. Once the scale buildup is sufficient to restrict flow in the string significantly, the tubular are removed from service. Once removed, tubular are transported to storage yards for storage, subsequent inspection, and possible recycling. Many of the tubular are never returned to service, either because the threads were too damaged, pipe walls too thin, or the scale buildup too thick. Historically, the tubular refurbishment industry used primarily one of two processes, either a high-pressure water lance or a dry, abrasive 'rattling' process to ream pipes free of scale buildup. The dry rattling process was primarily for touching up new pipes that have rusted slightly during storage; however, pipes with varying levels of scale were reamed, leaving only a thin coating of scale on the inner diameter, and then returned to service. Chemically, radium is an analog for barium, and radium is present in parts-per-million quantities in the brines produced from downhole pumping operations. Thus, some of the scales contain radium salts. When the radium-bearing scales are reamed with a dry process there is the possibility of generating radioactive aerosols, as well as bulk waste materials. At Texas A and M University, and under the university's radioactive materials broad scope license, an outdoor laboratory was constructed and operated with dry rattling equipment restored to the 'as was' condition typical of historical pipe cleaning yards. A battery of measurements were obtained to determine the radiological and aerodynamic properties of scale-waste products liberated from the inner surfaces of a variety of tubular

  7. Unmanned airborne system in real-time radiological monitoring

    International Nuclear Information System (INIS)

    Zafrir, H.; Pernick, A.; Yaffe, U.; Grushka, A.

    1993-01-01

    The unmanned airborne vehicle (UAV) platform, equipped with an appropriate payload and capable of carrying a variety of modular sensors, is an effective tool for real-time control of environmental disasters of different types (e.g. nuclear or chemical accidents). The suggested payloads consist of a miniaturised self-collimating nuclear spectrometry sensor and electro-optical sensors for day and night imagery. The system provides means of both real-time field data acquisition in an endangered environment and on-line hazard assessment computation from the down link raw data. All the processing, including flight planning using an expert system, is performed by a dedicated microcomputer located in a Mobile Ground Control Station (MGCS) situated outside the hazardous area. The UAV equipment is part of a system designed especially for the critically important early phase of emergency response. Decisions by the Emergency Response Manager (ERM) are also based on the ability to estimate the potential dose to individuals and the mitigation of dose when protection measures are implemented. (author)

  8. Integrated biodosimetry in large scale radiological events. Opportunities for civil military co-operation

    International Nuclear Information System (INIS)

    Port, M.; Eder, S.F.; Lamkowski, A.; Majewski, M.; Abend, M.

    2016-01-01

    Radiological events like large scale radiological or nuclear accidents, terroristic attacks with radionuclide dispersal devices require rapid and precise medical classification (''triage'') and medical management of a large number of patients. Estimates on the absorbed dose and in particular predictions of the radiation induced health effects are mandatory for optimized allocation of limited medical resources and initiation of patient centred treatment. Among the German Armed Forces Medical Services the Bundeswehr Institute of Radiobiology offers a wide range of tools for the purpose of medical management to cope with different scenarios. The forward deployable mobile Medical Task Force has access to state of the art methodologies summarized into approaches such as physical dosimetry (including mobile gammaspectroscopy), clinical ''dosimetry'' (prodromi, H-Modul) and different means of biological dosimetry (e.g. dicentrics, high throughput gene expression techniques, gamma-H2AX). The integration of these different approaches enables trained physicians of the Medical Task Force to assess individual health injuries as well as prognostic evaluation, considering modern treatment options. To enhance the capacity of single institutions, networking has been recognized as an important emergency response strategy. The capabilities of physical, biological and clinical ''dosimetry'' approaches spanning from low up to high radiation exposures will be discussed. Furthermore civil military opportunities for combined efforts will be demonstrated.

  9. Event classification related to overflow of solvent containing uranium according to the INES scale (International Nuclear and Radiological Event Scale)

    International Nuclear Information System (INIS)

    Dourado, Eneida R.G.; Assis, Juliana T. de; Lage, Ricardo F.; Lopes, Karina B.

    2013-01-01

    This paper aims to frame the event overflow organic solvent rich in uranium, from a decanter of ore beneficiation plant, caused by the fall in the supply of electricity, according to the criteria established by the International Nuclear Event Scale and radiological (INES), facilitating the understanding of the occurrence and communication with the public regarding the radiation safety aspects involved. With the fall of electricity, routine procedures in situations of installation stop were performed, however, due to operational failure, the valve on the transfer line liquor was not closed. Thus, the mixer continued being fed with liquor, that led the consequent leakage of solvent loaded with uranium. It reached the drainage system, and the box of rainwater harvesting of the plant. However, immediately after the detection of the event, corrective actions were initiated and the overflow was contained. Regulatory agencies followed the removal of the solvent and on the results of the analysis of environmental monitoring, found that the event did not provide exposure to workers or any other impact. Therefore, comparing the characteristics of the event and the guidelines proposed by the INES scale, it is concluded that the classification of the event is below scale/level 0, confirming the absence of risk to the local population, workers and the environment

  10. Multivariable dynamic calculus on time scales

    CERN Document Server

    Bohner, Martin

    2016-01-01

    This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.

  11. Time scales in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Krolik J.

    2012-12-01

    Full Text Available We explore the temporal structure of tidal disruption events pointing out the corresponding transitions in the lightcurves of the thermal accretion disk and of the jet emerging from such events. The hydrodynamic time scale of the disrupted star is the minimal time scale of building up the accretion disk and the jet and it sets a limit on the rise time. This suggest that Swift J1644+57, that shows several flares with a rise time as short as a few hundred seconds could not have arisen from a tidal disruption of a main sequence star whose hydrodynamic time is a few hours. The disrupted object must have been a white dwarf. A second important time scale is the Eddington time in which the accretion rate changes form super to sub Eddington. It is possible that such a transition was observed in the light curve of Swift J2058+05. If correct this provides interesting constraints on the parameters of the system.

  12. The Second Noether Theorem on Time Scales

    Directory of Open Access Journals (Sweden)

    Agnieszka B. Malinowska

    2013-01-01

    Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.

  13. Structure of Student Time Management Scale (STMS)

    Science.gov (United States)

    Balamurugan, M.

    2013-01-01

    With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…

  14. Some Nonlinear Dynamic Inequalities on Time Scales

    Indian Academy of Sciences (India)

    The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential ...

  15. Prepopulated radiology report templates: a prospective analysis of error rate and turnaround time.

    Science.gov (United States)

    Hawkins, C M; Hall, S; Hardin, J; Salisbury, S; Towbin, A J

    2012-08-01

    Current speech recognition software allows exam-specific standard reports to be prepopulated into the dictation field based on the radiology information system procedure code. While it is thought that prepopulating reports can decrease the time required to dictate a study and the overall number of errors in the final report, this hypothesis has not been studied in a clinical setting. A prospective study was performed. During the first week, radiologists dictated all studies using prepopulated standard reports. During the second week, all studies were dictated after prepopulated reports had been disabled. Final radiology reports were evaluated for 11 different types of errors. Each error within a report was classified individually. The median time required to dictate an exam was compared between the 2 weeks. There were 12,387 reports dictated during the study, of which, 1,173 randomly distributed reports were analyzed for errors. There was no difference in the number of errors per report between the 2 weeks; however, radiologists overwhelmingly preferred using a standard report both weeks. Grammatical errors were by far the most common error type, followed by missense errors and errors of omission. There was no significant difference in the median dictation time when comparing studies performed each week. The use of prepopulated reports does not alone affect the error rate or dictation time of radiology reports. While it is a useful feature for radiologists, it must be coupled with other strategies in order to decrease errors.

  16. A Low-Cost, Real-Time Network for Radiological Monitoring Around Nuclear Facilities

    International Nuclear Information System (INIS)

    Bertoldo, N A

    2004-01-01

    A low-cost, real-time radiological sensor network for emergency response has been developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the site perimeter to continuously monitor radiological conditions as part of LLNL's comprehensive environment/safety/health protection program. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors transmit measurement data back to a central command center (CCC) computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio- and computer- based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. This system provides a low-cost real-time radiation monitoring solution that is easily converted to incorporate both a hard-wired interior perimeter with strategically positioned wireless secondary and tertiary concentric remote locations. These wireless stations would be configured with solar voltaic panels that provide current to recharge batteries and power the sensors and radio transceivers. These platforms would supply data transmission at a range of up to 95 km from a single transceiver location. As necessary, using radio transceivers in repeater mode can extend the transmission range. The RTRAM network as it is presently configured at LLNL has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions. With the proposed

  17. Changes in the American Interventional Radiology Literature: Comparison over a 10-Year Time Period

    International Nuclear Information System (INIS)

    Ray, Charles E.; Gupta, Rajan; Blackwell, John

    2006-01-01

    Purpose. To determine the changes that occurred regarding interventional radiologic research in the major American radiology journals between 1992-1993 and 2002-2003. Methods. Articles published in three major American radiology journals (Journal of Vascular and Interventional Radiology, American Journal of Roentgenology, and Radiology) during two distinct 24-month time periods (1992-1993 and 2002-2003) were evaluated. All articles judged to be pertinent to the interventional radiologic community were included. Investigations included in journal subheadings other than 'interventional' or 'vascular radiology' were included if the emphasis of the article was on a vascular imaging modality or peripheral intervention. Exclusions included: case reports, technical reports, letters to the editor, breast interventions, and primary neurointerventions. Data were collected regarding the affiliations of the primary author (nationality, hospital type, department); primary category of interest of the investigation; funding information; and study design variables. Two-by-two chi-squared statistical analyses were performed comparing the variables from the early and late data sets. Results. A total of 405 articles met the inclusion criteria for the early data set (1992-1993); 488 articles met the inclusion criteria for the late data set (2002-2003). Variables that demonstrated a statistically significant decrease from the early data set to the late data set included: articles in which the primary author was from a department of radiology (91.1% vs. 86.3%; p < 0.025); articles written by a primary author who was American (69.4% vs. 44.6%; p < 0.001); and articles with a primary category of investigation that had a nonvascular intervention focus (22.7% vs. 11.9%; p < 0.001). Variables that demonstrated a statistically significant increase from the early data set to the late data set included primary authors from Western Europe (18.0% vs. 30.1%; p < 0.001) and Asia (6.6% vs. 18.4%; p

  18. Nanoscopic designs of radiological protection in environmental scale for the Fukushima nuclear accident: Strategy by dispersion, dissolution, and filtration

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2016-01-01

    Highlights: • New kind of radiological protection concept is introduced. • The shielding concept is accompanied with the water spray system. • The solubility of radioactive material could be used for protection. • Practical method is suggested. • The system is variable by the random number quantities. - Abstract: The environmental defense system in the nuclear power plants (NPPs) is investigated in the aspect of the environmental scale incorporated with atmospheric and marine sectors. The object is to find the radiological protection protocol in the environmental scale which is different from the conventional three kinds of radiological protection principles. Conventional laboratory based principles are not applicable in the mass failure accident such as the case of Fukushima disaster. This newly introduced protocol has many useful applications for the nature treatment oriented methods where the atmospheric protection of dispersion and dissolution is performed first and the filtration of seawater would follow. The maximum and minimum values in fan velocity are about 7.5 m/s and 5.3 m/s respectively. For the spray system, the mole fractions by the water spray are shown where maximum and minimum values are 6.57 × 10 −17 and 8.84 × 10 −19 moles respectively. The maximum and minimum values of discharged values in filtration are 99.4 and 1.3 square velocity (m/s), respectively. The total and general radiological protection concept is suggested in the nanoscopic molecular scale performance.

  19. The German Radiological Society and the protagonists of radiology during the time of National Socialism. State of research, explanation attempts, desiderata and research prospects

    International Nuclear Information System (INIS)

    Schmidt, M.; Winzen, T.; Gross, D.

    2015-01-01

    The intention of the authors is the recognition and critical analysis of efforts to study the history of the German Radiological Society during the time of National Socialism from 1933 to 1945 with the goal of determining existing desiderata and identifying the resulting research prospects. There is a need to study concrete individual biographies of radiologists (members of the German Radiological Society, perpetrators, and victims) and their careers before and after 1945 as well as the importance of the interdisciplinarity of the discipline and the lack of institutional involvement during the ''Third Reich''. Moreover, the comparatively difficult starting situation of the study of the history of the German Radiological Society is discussed.

  20. The radiological impact of radionuclides dispersed on a regional and global scale: Methods for assessment and their application

    International Nuclear Information System (INIS)

    1985-01-01

    The basic features of models, developed to assess the radiological impact of radionuclides that become dispersed on a regional or global scale, have been reviewed. Particular attention has been given to identifying the important processes that need to be modelled in order to make a reliable estimate of the radiological impact, rather than attempting to judge which models are the most appropriate. Judgements on the latter will be sensitive to the particular application; in some cases a very simple approach may be sufficient, whereas in others a more rigorous analysis may be necessary. Two aspects are important in assessing the radiological impact: these are the exposure of critical groups, and the collective dose in the exposed population

  1. Special Issue on Time Scale Algorithms

    Science.gov (United States)

    2008-01-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 IOP PUBLISHING METROLOGIA Metrologia 45 (2008) doi:10.1088/0026-1394/45/6/E01...special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the...scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation’s high

  2. Current relaxation time scales in toroidal plasmas

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given

  3. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition

    International Nuclear Information System (INIS)

    2009-05-01

    The International Nuclear and Radiological Event Scale is used for promptly and consistently communicating to the public the safety significance of events associated with sources of radiation. It covers a wide spectrum of practices, including industrial use such as radiography, use of radiation sources in hospitals, activities at nuclear facilities, and the transport of radioactive material. By putting events from all these practices into a proper perspective, use of INES can facilitate a common understanding between the technical community, the media and the public. The scale was developed in 1990 by international experts convened by the IAEA and the OECD Nuclear Energy Agency (OECD/NEA). It originally reflected the experience gained from the use of similar scales in France and Japan as well as consideration of possible scales in several countries. Since then, the IAEA has managed its development in cooperation with the OECD/NEA and with the support of more than 60 designated National Officers who officially represent the INES member States in the biennial technical meeting of INES. Initially the scale was applied to classify events at nuclear power plants, and then was extended and adapted to enable it to be applied to all installations associated with the civil nuclear industry. More recently, it has been extended and adapted further to meet the growing need for communication of the significance of all events associated with the transport, storage and use of radioactive material and radiation sources. This revised manual brings together the guidance for all uses into a single document. Events are classified on the scale at seven levels: Levels 4-7 are termed 'accidents' and Levels 1-3 'incidents'. Events without safety significance are classified as 'Below Scale/Level 0'. Events that have no safety relevance with respect to radiation or nuclear safety are not classified on the scale. For communication of events to the public, a distinct phrase has been

  4. Liquidity crises on different time scales

    Science.gov (United States)

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  5. Multidimensional scaling of musical time estimations.

    Science.gov (United States)

    Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel

    2011-06-01

    The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.

  6. uncertain dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    V. Lakshmikantham

    1995-01-01

    Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.

  7. Time-Scale Invariant Audio Data Embedding

    Directory of Open Access Journals (Sweden)

    Mansour Mohamed F

    2003-01-01

    Full Text Available We propose a novel algorithm for high-quality data embedding in audio. The algorithm is based on changing the relative length of the middle segment between two successive maximum and minimum peaks to embed data. Spline interpolation is used to change the lengths. To ensure smooth monotonic behavior between peaks, a hybrid orthogonal and nonorthogonal wavelet decomposition is used prior to data embedding. The possible data embedding rates are between 20 and 30 bps. However, for practical purposes, we use repetition codes, and the effective embedding data rate is around 5 bps. The algorithm is invariant after time-scale modification, time shift, and time cropping. It gives high-quality output and is robust to mp3 compression.

  8. Event classification related to overflow of solvent containing uranium according to the INES scale (International Nuclear and Radiological Event Scale); Classificacao do evento de transbordamento de solvente contendo uranio segundo a escala INES (International Nuclear and Radiological Event Scale)

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Eneida R.G.; Assis, Juliana T. de; Lage, Ricardo F., E-mail: cneida@inb.gov.br, E-mail: julianateixeira@inb.gov.br, E-mail: rlage@inb.gov.br [lndustrias Nucleares do Brasil S/A (CLISE.P/INB), Rio de Janeiro, RJ (Brazil). Coordenacao de Licenciamento Nuclear e Ambiental, Saude e Seguranca; Lopes, Karina B., E-mail: karina@inb.gov.br [lndustrias Nucleares do Brasil S/A (CPRAD/INB), Rio de Janeiro, RJ (Brazil). Coordenacao de Protecao Radiologica

    2013-11-01

    This paper aims to frame the event overflow organic solvent rich in uranium, from a decanter of ore beneficiation plant, caused by the fall in the supply of electricity, according to the criteria established by the International Nuclear Event Scale and radiological (INES), facilitating the understanding of the occurrence and communication with the public regarding the radiation safety aspects involved. With the fall of electricity, routine procedures in situations of installation stop were performed, however, due to operational failure, the valve on the transfer line liquor was not closed. Thus, the mixer continued being fed with liquor, that led the consequent leakage of solvent loaded with uranium. It reached the drainage system, and the box of rainwater harvesting of the plant. However, immediately after the detection of the event, corrective actions were initiated and the overflow was contained. Regulatory agencies followed the removal of the solvent and on the results of the analysis of environmental monitoring, found that the event did not provide exposure to workers or any other impact. Therefore, comparing the characteristics of the event and the guidelines proposed by the INES scale, it is concluded that the classification of the event is below scale/level 0, confirming the absence of risk to the local population, workers and the environment.

  9. Augmenting the impact of technology adoption with financial incentive to improve radiology report signature times.

    Science.gov (United States)

    Andriole, Katherine P; Prevedello, Luciano M; Dufault, Allen; Pezeshk, Parham; Bransfield, Robert; Hanson, Richard; Doubilet, Peter M; Seltzer, Steven E; Khorasani, Ramin

    2010-03-01

    Radiology report signature time (ST) can be a substantial component of total report turnaround time. Poor turnaround time resulting from lengthy ST can adversely affect patient care. The combination of technology adoption with financial incentive was evaluated to determine if ST improvement can be augmented and sustained. This prospective study was performed at a 751-bed, urban, tertiary care adult teaching hospital. Test-site imaging volume approximated 48,000 examinations per month. The radiology department has 100 trainees and 124 attending radiologists serving multiple institutions. Over a study period of 4 years and 4 months, three interventions focused on radiologist signature performance were implemented: 1) a notification paging application that alerted radiologists when reports were ready for signature, 2) a picture archiving and communications systems (PACS)-integrated speech recognition report generation system, and 3) a departmental financial incentive to reward radiologists semiannually for ST performance. Signature time was compared before and after the interventions. Wilcoxon and linear regression statistical analyses were used to assess the significance of trends. Technology adoption (paging plus speech recognition) reduced median ST from >5 to 24 to 15 to 18 hours (P financial incentive further improved 80th-percentile ST to 4 to 8 hours (P Technology interventions coupled with financial incentive can result in synergistic and sustainable improvement in radiologist report-signing behavior. The addition of a financial incentive leads to better performance than that achievable through technology alone.

  10. Delay times between harvesting or collection of food products and consumption for use in radiological assessments

    International Nuclear Information System (INIS)

    Jones, A L; Sherwood, J C

    2009-01-01

    From a radiological protection point of view, the inclusion of delay times when carrying out assessments of dose from consumption of foods should be considered. A review of delay times has been carried out to update a report published in 1983, to take account of changes and modernisations in industrial food processes, together with changes in diet and popularity of different foods in the United Kingdom. The new review considered more foods and data for existing foods have been reconsidered to check whether manufacturing processes or procedures have changed the shelf-life of any products. For some foods there have been changes made to the recommended delay times because of changes in manufacture or handling of the fresh foodstuff. A discussion is also included on the appropriate use of delay times in dose assessments.

  11. The deployment of an innovative real-time radiological soil characterization system

    International Nuclear Information System (INIS)

    Allen, David; Danahy, Raymond; Laird, Gregory; Seiller, Dale; White, Joan; Janke, Robert

    2000-01-01

    Fluor Fernald Inc., in conjunction with partners from Argonne National Laboratory, the Department of Energy's Environmental Measurements Laboratory, and Idaho National Engineering and Environmental Laboratory, has developed a program for characterizing radiological contaminants in soil in real time. The soil characterization system in use at the Fernald Environmental Management Project (FEMP) for over three years combines gamma ray spectrometry equipment with other technologies to produce a system that can scan large areas of ground and produce color coded maps which display quantitative information regarding isotopic contamination patterns. Software running on a battery powered lap-top computer, is used to control acquisition of gamma spectral data to link the spectral Information with precise detector position measurements from Global Positioning System (GPS) satellites, and to control transmission of data to a central station or van via a wireless Ethernet link where Surfer6 mapping software is used to produce maps showing the position and amount of each target analyte. Either sodium iodide (NaI) gamma ray detectors mounted on three different vehicles for mobile measurements or stationary tripod-mounted hyper-pure germanium (HPGe) detectors can be used in this system to radiologically characterize soil. The operational and performance characteristics, as well as the strengths and limitations of each of these units, will be described. The isotopic information generated by this system can be made available to remediation project mangers within an hour after the completion of a scan to aid in determination of excavation footprints, segregation of contaminated soil and verification of contamination removal. The immediate availability of radiological characterization data made possible by this real-time scanning system has allowed Fluor Fernald to accelerate remediation schedules and reduce costs by avoiding excavation delays and expensive and time consuming

  12. EDITORIAL: Special issue on time scale algorithms

    Science.gov (United States)

    Matsakis, Demetrios; Tavella, Patrizia

    2008-12-01

    This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than

  13. Real-time meteorological data flow in support of TVA's radiological emergency plan

    International Nuclear Information System (INIS)

    Hunter, C.H.; Pittman, D.E.; Malo, J.E.

    1985-01-01

    The Tennessee Valley Authority (TVA) presently operates two nuclear power plants - Browns Ferry (3 units) and Sequoyah (2 units). Two additional plants are under construction. These are Watts Bar scheduled for commercial operation later this year, and Bellefonte (2 units), scheduled for operation near the end of the decade. Under regulations promulgated under 10 CFR Part 50, TVA has developed a Radiological Emergency Plan (REP) to facilitate assessment of the effects of a radiological accident at any of the operational plants. As part of the REP, TVA has developed a system for collecting, displaying, and reviewing, and disseminating real-time meteorological information collected at the nuclear plant sites. The flow of this information must be reliable and continuous so that prompt, informed decisions are possible. This system has been designed using guidance provided in applicable Nuclear Regulatory Commission (NRC) documents, most notably Supplement 1 to NUREG-0737 and Regularoty Guide (R.G.) 1.23. This paper presents a brief description of the REP meteorological support. Meteorological support for nuclear plant emergency preparedness at TVA nuclear plants has been provided for several years. The system has undergone numerous changes during this time, reflecting changes in regulatory guidance and experience gained in implementing the system through numerous drills and exercises. A brief discussion of some of this experience is also presented

  14. Development of a Real-time Hand Dose Monitor for Personnel in Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, N.; Nakaoka, H.; Haruta, R.; Murakami, Y.; Kubo, T.; Maeda, T.; Kusama, T

    2001-07-01

    Medical procedures denoted as interventional radiology require operation near an X ray beam, which brings high dose exposures to the operators' hands. For the effectual control of their extremity doses, a prototype of a real-time wrist dosemeter has been developed, hand dose monitor (HDM), based on a single silicon detector. Experiments were performed to test its response to diagnostic X rays. The HDM was highly sensitive and showed a linear response down to doses of a few tens of microsieverts. Though dose rate, energy and angular dependence of the response were observed in some extreme conditions, the HDM was proved to be of practical use if it was appropriately calibrated. Since an HDM enables personnel to check their hand doses on a real-time basis, it would enable medical staff to control the exposure themselves. (author)

  15. Radiological survey of landscapes in a scale 1 : 500 to 1 : 5000

    International Nuclear Information System (INIS)

    Ganzha, D.D.; Nazarov, O.B.; Sploshnoj, B.M.

    2008-01-01

    The method of implementation of radiological survey, which includes providing a spatial basis, forming of a survey network, implementation of measuring of radiation and not radiation parameters of landscapes, is offered. The examples of application are resulted in the conditions of the Chernobyl exclusion on man-caused, urbanized and other functional landscapes

  16. Measuring and managing radiologist workload: measuring radiologist reporting times using data from a Radiology Information System

    International Nuclear Information System (INIS)

    Cowan, Ian A.; MacDonald, Sharon L.S.; Floyd, Richard A.

    2013-01-01

    Historically, there has been no objective method of measuring the time required for radiologists to produce reports during normal work. We have created a technique for semi-automated measurement of radiologist reporting time, and through it produced a robust set of absolute time requirements and relative value units for consultant reporting of diagnostic examinations in our hospital. A large sample of reporting times, recorded automatically by the Radiology Information System (COMRAD, Software Innovations, Christchurch, New Zealand) along with the description of each examination being reported, was placed in a database. Analysis was confined to diagnostic reporting by consultant radiologists. A spreadsheet was produced, listing the total number and the frequency of reporting times of each distinct examination. Outliers with exceptionally long report times (more than 10min for plain radiography, 30min for ultrasound, or 60min for CT or MRI with some exceptions) were culled; this removed 9.5% of the total. Complex CTs requiring separate workstation time were assigned times by consensus. The median time for the remainder of each sample was the assigned absolute reporting time in minutes and seconds. Relative value units were calculated using the reporting time for a single view department chest X-ray of 1min 38s including verifying a report made using speech recognition software. A schedule of absolute and relative values, based on over 179,000 reports, forms Table 2 of this paper. The technique provides a schedule of reporting times with reduced subjective input, which is more robust than existing systems for measuring reporting time.

  17. Improving Emergency Department radiology transportation time: a successful implementation of lean methodology.

    Science.gov (United States)

    Hitti, Eveline A; El-Eid, Ghada R; Tamim, Hani; Saleh, Rana; Saliba, Miriam; Naffaa, Lena

    2017-09-05

    Emergency Department overcrowding has become a global problem and a growing safety and quality concern. Radiology and laboratory turnaround time, ED boarding and increased ED visits are some of the factors that contribute to ED overcrowding. Lean methods have been used in the ED to address multiple flow challenges from improving door-to-doctor time to reducing length of stay. The objective of this study is to determine the effectiveness of using Lean management methods on improving Emergency Department transportation times for plain radiography. We performed a before and after study at an academic urban Emergency Department with 49,000 annual visits after implementing a Lean driven intervention. The primary outcome was mean radiology transportation turnaround time (TAT). Secondary outcomes included overall study turnaround time from order processing to preliminary report time as well as ED length of stay. All ED patients undergoing plain radiography 6 months pre-intervention were compared to all ED patients undergoing plain radiography 6 months post-intervention after a 1 month washout period. Post intervention there was a statistically significant decrease in the mean transportation TAT (mean ± SD: 9.87 min ± 15.05 versus 22.89 min ± 22.05, respectively, p-value <0.0001). In addition, it was found that 71.6% of patients in the post-intervention had transportation TAT ≤ 10 min, as compared to 32.3% in the pre-intervention period, p-value <0.0001, with narrower interquartile ranges in the post-intervention period. Similarly, the "study processing to preliminary report time" and the length of stay were lower in the post-intervention as compared to the pre-intervention, (52.50 min ± 35.43 versus 54.04 min ± 34.72, p-value = 0.02 and 3.65 h ± 5.17 versus 4.57 h ± 10.43, p < 0.0001, respectively), in spite of an increase in the time it took to elease a preliminary report in the post-intervention period. Using Lean change management

  18. Almost Automorphic Functions on the Quantum Time Scale and Applications

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2017-01-01

    Full Text Available We first propose two types of concepts of almost automorphic functions on the quantum time scale. Secondly, we study some basic properties of almost automorphic functions on the quantum time scale. Then, we introduce a transformation between functions defined on the quantum time scale and functions defined on the set of generalized integer numbers; by using this transformation we give equivalent definitions of almost automorphic functions on the quantum time scale; following the idea of the transformation, we also give a concept of almost automorphic functions on more general time scales that can unify the concepts of almost automorphic functions on almost periodic time scales and on the quantum time scale. Finally, as an application of our results, we establish the existence of almost automorphic solutions of linear and semilinear dynamic equations on the quantum time scale.

  19. Radiological Monitoring Equipment For Real-Time Quantification Of Area Contamination In Soils And Facility Decommissioning

    International Nuclear Information System (INIS)

    M. V. Carpenter; Jay A. Roach; John R Giles; Lyle G. Roybal

    2005-01-01

    The environmental restoration industry offers several systems that perform scan-type characterization of radiologically contaminated areas. The Idaho National Laboratory (INL) has developed and deployed a suite of field systems that rapidly scan, characterize, and analyze radiological contamination in surface soils. The base system consists of a detector, such as sodium iodide (NaI) spectrometers, a global positioning system (GPS), and an integrated user-friendly computer interface. This mobile concept was initially developed to provide precertification analyses of soils contaminated with uranium, thorium, and radium at the Fernald Closure Project, near Cincinnati, Ohio. INL has expanded the functionality of this basic system to create a suite of integrated field-deployable analytical systems. Using its engineering and radiation measurement expertise, aided by computer hardware and software support, INL has streamlined the data acquisition and analysis process to provide real-time information presented on wireless screens and in the form of coverage maps immediately available to field technicians. In addition, custom software offers a user-friendly interface with user-selectable alarm levels and automated data quality monitoring functions that validate the data. This system is deployed from various platforms, depending on the nature of the survey. The deployment platforms include a small all-terrain vehicle used to survey large, relatively flat areas, a hand-pushed unit for areas where maneuverability is important, an excavator-mounted system used to scan pits and trenches where personnel access is restricted, and backpack- mounted systems to survey rocky shoreline features and other physical settings that preclude vehicle-based deployment. Variants of the base system include sealed proportional counters for measuring actinides (i.e., plutonium-238 and americium-241) in building demolitions, soil areas, roadbeds, and process line routes at the Miamisburg Closure

  20. A Quaternary Geomagnetic Instability Time Scale

    Science.gov (United States)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  1. Development of a real-time extremity dose monitor for personnel in interventional radiology

    International Nuclear Information System (INIS)

    Ban, Nobuhiko; Kusama, Tomoko; Adachi, Akiko

    2000-01-01

    Protection of personnel in interventional radiology is one of the most important issues of radiological protection in medicine. Fluoroscopically guided interventional procedures require the operation near X-ray beam, which brings a considerable hand exposure to the operators. For the purpose of effectual control of their extremity doses, we have developed a real-time extremity dose monitor which is worn on a strap around the wrist. The monitor consists of a silicon semiconductor detector, thin lithium battery and a waterproof frame with a four-digit LED display. Experiment was carried out to examine a response of the monitor to diagnostic X-rays. A practical test was also performed to evaluate usability in the actual interventional procedures. In the experiment, the extremity dose monitor was placed on an arm phantom and exposed to diagnostic X-rays. Readings of the monitor were compared to those of Capintec PS-033 shallow chamber. The monitor was highly sensitive to diagnostic X-rays. It showed a linear response down to doses of a few tens of microsieverts. For high dose-rate exposure, however, a slight decrease in the response was observed, about 10% of counting loss for 80 kV, 40 mA X-ray at one meter from the focus. With regard to energy dependence, variation was within 20% for 60 to 100 kV X-rays. The monitor showed a good angular response in general, except lateral geometry facing the far side from a detector center. In the practical test, hand exposures of medical staff were measured with the extremity dose monitor. They were also asked to fill in a questionnaire regarding size and weight of the monitor, clarity of the display and usefulness. The subjects consisted of physicians, technicians and nurses who engaged in angiography, PTCD, CT-biopsy, barium enema and so on. The readings of the monitor were less than 1 mSv in most cases while 93 mSv was recorded in an extreme case due to direct-beam exposure. In some cases, TLD rings were used together with the

  2. Development of a real-time extremity dose monitor for personnel in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Nobuhiko; Kusama, Tomoko [Oita University of Nursing and Health Sciences, Oita (Japan); Adachi, Akiko [Oita Medical University, Oita (JP)] [and others

    2000-05-01

    Protection of personnel in interventional radiology is one of the most important issues of radiological protection in medicine. Fluoroscopically guided interventional procedures require the operation near X-ray beam, which brings a considerable hand exposure to the operators. For the purpose of effectual control of their extremity doses, we have developed a real-time extremity dose monitor which is worn on a strap around the wrist. The monitor consists of a silicon semiconductor detector, thin lithium battery and a waterproof frame with a four-digit LED display. Experiment was carried out to examine a response of the monitor to diagnostic X-rays. A practical test was also performed to evaluate usability in the actual interventional procedures. In the experiment, the extremity dose monitor was placed on an arm phantom and exposed to diagnostic X-rays. Readings of the monitor were compared to those of Capintec PS-033 shallow chamber. The monitor was highly sensitive to diagnostic X-rays. It showed a linear response down to doses of a few tens of microsieverts. For high dose-rate exposure, however, a slight decrease in the response was observed, about 10% of counting loss for 80 kV, 40 mA X-ray at one meter from the focus. With regard to energy dependence, variation was within 20% for 60 to 100 kV X-rays. The monitor showed a good angular response in general, except lateral geometry facing the far side from a detector center. In the practical test, hand exposures of medical staff were measured with the extremity dose monitor. They were also asked to fill in a questionnaire regarding size and weight of the monitor, clarity of the display and usefulness. The subjects consisted of physicians, technicians and nurses who engaged in angiography, PTCD, CT-biopsy, barium enema and so on. The readings of the monitor were less than 1 mSv in most cases while 93 mSv was recorded in an extreme case due to direct-beam exposure. In some cases, TLD rings were used together with the

  3. Radiological anatomy - evaluation of integrative education in radiology.

    Science.gov (United States)

    Dettmer, S; Schmiedl, A; Meyer, S; Giesemann, A; Pabst, R; Weidemann, J; Wacker, F K; Kirchhoff, T

    2013-09-01

    Evaluation and analysis of the integrative course "Radiological Anatomy" established since 2007 at the Medical School Hannover (MHH) in comparison with conventional education. Anatomy and radiology are usually taught separately with a considerable time lag. Interdisciplinary teaching of these associated subjects seems logical for several reasons. Therefore, the integrative course "Radiological Anatomy" was established in the second year of medical education, combining these two closely related subjects. This interdisciplinary course was retrospectively evaluated by consideration of a student questionnaire and staff observations. The advantages and disadvantages of integrative teaching in medical education are discussed. The course ratings were excellent (median 1; mean 1.3 on a scale of 1 to 6). This is significantly (p radiology increased during the course (88 %). According to the students' suggestions the course was enhanced by a visitation in the Department of Radiology and the additional topic central nervous system. Integrative teaching of anatomy and radiology was well received by the students. Both, anatomical and radiological comprehension and the motivation to learn were improved. However, it should be considered, that the amount of work and time required by the teaching staff is considerably increased compared to traditional teaching. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Development of real-time radiation exposure dosimetry system using synthetic ruby for interventional radiology

    International Nuclear Information System (INIS)

    Hosokai, Yoshiyuki; Win, Thet Pe; Muroi, Kenzo; Matsumoto, Kenki; Takahashi, Kaito; Usui, Akihito; Saito, Haruo; Kozakai, Masataka

    2017-01-01

    Interventional radiology (IVR) tends to involve long procedures, consequently delivering high radiation doses to the patient. Radiation-induced injuries that occur because of the effect of the high radiation doses are a considerable problem for those performing IVR. For example, skin injuries can include skin erythema if the skin is exposed to radiation doses beyond the threshold level of 2 Gy. One of the reasons for this type of injury is that the local skin dose cannot be monitored in real time. Although there are systems employed to measure the exposure dose, some do not work in real time (such as thermoluminescence dosimeters and fluorescent glass dosimeters), while certain real-time measurement systems that enter the field of view (such as patient skin dosimeters and dosimeters using a nontoxic phosphor) interfere with IVR. However, synthetic ruby has been shown to emit light in response to radiation. The luminous wavelength is 693 nm. It is possible to monitor the radiation dose by detecting the emitted light. However, small synthetic rubies emit a tiny amount of light that is difficult to detect using common systems such as photodiodes. A large enough synthetic ruby to increase the quantity of emitted light would however enter the field of view and interfere with the IVR procedure. Additionally, although a photodiode system could reduce the system size, the data is susceptible to effects from the X-rays and outside temperature. Therefore, use of a sensitive photon counting system as used in nuclear medicine could potentially have a beneficial effect in detecting the weak light signal. A real-time radiation exposure dosimetry system for use in IVR should be sufficiently sensitive, not interfere with the IVR procedure, and ideally have the possibility of development into a system that can provide simultaneous multipoint measurements. This article discusses the development of a realtime radiation exposure dosimetry system for use in IVR that employs a small

  5. Radiological optimization

    International Nuclear Information System (INIS)

    Zeevaert, T.

    1998-01-01

    Radiological optimization is one of the basic principles in each radiation-protection system and it is a basic requirement in the safety standards for radiation protection in the European Communities. The objectives of the research, performed in this field at the Belgian Nuclear Research Centre SCK-CEN, are: (1) to implement the ALARA principles in activities with radiological consequences; (2) to develop methodologies for optimization techniques in decision-aiding; (3) to optimize radiological assessment models by validation and intercomparison; (4) to improve methods to assess in real time the radiological hazards in the environment in case of an accident; (5) to develop methods and programmes to assist decision-makers during a nuclear emergency; (6) to support the policy of radioactive waste management authorities in the field of radiation protection; (7) to investigate existing software programmes in the domain of multi criteria analysis. The main achievements for 1997 are given

  6. Optimization aspects of the ARAC real-time radiological emergency response system

    International Nuclear Information System (INIS)

    Taylor, S.S.; Sullivan, T.J.

    1985-07-01

    The Atmospheric Release Advisory Capability (ARAC) project at the Lawrence Livermore National Laboratory responds to radiological emergencies throughout the Continental United States. Using complex three-dimensional dispersion models to account for the effects of complex meteorology and regional terrain, ARAC simulates the release of radioactive materials and provides dispersion, deposition, and dose calculations that are displayed over local geographic features for use by authorities at the accident/release site. ARAC's response is ensured by a software system that (1) makes optimal use of dispersion models, (2) minimizes the time required to provide projections, and (3) maximizes the fault-tolerance of the system. In this paper we describe ARAC's goals and functionality and the costs associated with its development and use. Specifically, we address optimizations in ARAC notifications, meteorological data collection, the determination of site- and problem-specific parameters, the generation of site-specific topography and geography, the running of models, and the distribution of ARAC products. We also discuss the backup features employed to ensure ARAC's ability to respond

  7. Speed scaling for weighted flow time

    NARCIS (Netherlands)

    Bansal, N.; Pruhs, K.R.; Stein, C.

    2007-01-01

    In addition to the traditional goal of efficiently managing time and space, many computers now need to efficiently manage power usage. For example, Intel's SpeedStep and AMD's PowerNOW technologies allow the Windows XP operating system to dynamically change the speed of the processor to prolong

  8. Long-time data storage: relevant time scales

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    2011-01-01

    Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is

  9. Time scale of random sequential adsorption.

    Science.gov (United States)

    Erban, Radek; Chapman, S Jonathan

    2007-04-01

    A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is presented. The model combines two important features of the adsorption process: (i) The kinetics of the chemical reaction between adsorbing molecules and the surface and (ii) geometrical constraints on the surface made by molecules which are already adsorbed. The process (i) is modeled in a diffusion-driven context, i.e., the conditional probability of adsorbing a molecule provided that the molecule hits the surface is related to the macroscopic surface reaction rate. The geometrical constraint (ii) is modeled using random sequential adsorption (RSA), which is the sequential addition of molecules at random positions on a surface; one attempt to attach a molecule is made per one RSA simulation time step. By coupling RSA with the diffusion of molecules in the solution above the surface the RSA simulation time step is related to the real physical time. The method is illustrated on a model of chemisorption of reactive polymers to a virus surface.

  10. Comparative evaluation of image quality in computed radiology systems using imaging plates with different usage time

    International Nuclear Information System (INIS)

    Lazzaro, M.V.; Luz, R.M. da; Capaverde, A.S.; Silva, A.M. Marques da

    2015-01-01

    Computed Radiology (CR) systems use imaging plates (IPs) for latent image acquisition. Taking into account the quality control (QC) of these systems, imaging plates usage time is undetermined. Different recommendations and publications on the subject suggest tests to evaluate these systems. The objective of this study is to compare the image quality of IPs of a CR system, in a mammography service, considering the usage time and consistency of assessments. 8 IPs were used divided into two groups: the first group included 4 IPs with 3 years of use (Group A); the second group consisted of 4 new IPs with no previous exposure (Group B). The tests used to assess the IP's quality were: Uniformity, Differential Signal to Noise Ratio (SDNR), Ghost Effect and Figure of Merit (FOM). Statistical results show that the proposed tests are shown efficient in assessing the conditions of image quality obtained in CR systems in mammography and can be used as determining factors for the replacement of IP's. Moreover, comparing the two sets of IP, results led to the replacement of all the set of IP’s with 3 years of use. This work demonstrates the importance of an efficient quality control, not only with regard to the quality of IP's used, but in the acquisition system as a whole. From this work, these tests will be conducted on an annual basis, already targeting as future work, monitoring the wear of IP's Group B and the creation of a baseline for analysis and future replacements. (author)

  11. Nuclear disassembly time scales using space time correlations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Bilwes, B.; Cosmo, F. [Strasbourg-1 Univ., 67 (France); Galin, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); and others

    1996-09-01

    The lifetime, {tau}, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by `proximity` effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author). 2 refs.

  12. Nuclear disassembly time scales using space time correlations

    International Nuclear Information System (INIS)

    Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R.; Galin, J.; and others.

    1996-01-01

    The lifetime, τ, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by 'proximity' effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author)

  13. Relaxation Processes and Time Scale Transformation.

    Science.gov (United States)

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O

  14. Long-Time Data Storage: Relevant Time Scales

    Directory of Open Access Journals (Sweden)

    Miko C. Elwenspoek

    2011-02-01

    Full Text Available Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habitable for complex life is about half a billion years. A system retrieved within the next million years will be read by beings very closely related to Homo sapiens. During this time the surface of the earth will change making it risky to place a small number of large memory systems on earth; the option to place it on the moon might be more favorable. For much longer timescales both options do not seem feasible because of geological processes on the earth and the flux of small meteorites to the moon.

  15. Biodosimetry versus physical dosimetry for emergency dose assessment following large-scale radiological exposures

    International Nuclear Information System (INIS)

    McKeever, S.W.S.; Sholom, S.

    2016-01-01

    Existing data on intercomparisons involving biodosimetry or physical dosimetry methods are analyzed and the results interpreted regarding their efficacy in triage in emergency dosimetry following mass casualty radiological events. The biodosimetry technique examined is dicentric chromosome aberrations (DCA). The physical dosimetry techniques include electron paramagnetic resonance (EPR) of biological material (teeth) and physical material (smartphone screen glass), and optically stimulated luminescence (OSL) of electronic components (surface mount resistors) from mobile phones. Issues relating to calibration and interpretation of the data are discussed. An important conclusion of the analysis is that more research is critically needed to interpret the efficacy of the various methods. Included in this needed research are intercomparisons of the various methods in controlled experiments and the need to harmonize protocols. - Highlights: • Utility of bio- and physical dosimetry methods for emergency dosimetry triage. • Analysis of intercomparison data for different bio- and physical dosimetry methods. • The percentage of false positives and false negatives for a simulated IND event. • More research, especially intercomparisons, is required to reduce uncertainties.

  16. Radionuclide radiology

    International Nuclear Information System (INIS)

    Scarsbrook, A.F.; Graham, R.N.J.; Perriss, R.W.; Bradley, K.M.

    2006-01-01

    This is the fourth in a series of short reviews of internet-based radiological educational resources, and will focus on radionuclide radiology and nuclear medicine. What follows is a list of carefully selected websites to save time in searching them out. Most of the sites cater for trainee or non-specialist radiologists, but may also be of interest to specialists for use in teaching. This article may be particularly useful to radiologists interested in the rapidly expanding field of positron emission tomography computed tomography (PET-CT). Hyperlinks are available in the electronic version of this article and were all active at the time of going to press (February 2006)

  17. Bounds of Certain Dynamic Inequalities on Time Scales

    Directory of Open Access Journals (Sweden)

    Deepak B. Pachpatte

    2014-10-01

    Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.

  18. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  19. Visual Simultaneous Localization And Mapping (VSLAM) methods applied to indoor 3D topographical and radiological mapping in real-time

    Science.gov (United States)

    Hautot, Felix; Dubart, Philippe; Bacri, Charles-Olivier; Chagneau, Benjamin; Abou-Khalil, Roger

    2017-09-01

    New developments in the field of robotics and computer vision enables to merge sensors to allow fast realtime localization of radiological measurements in the space/volume with near-real time radioactive sources identification and characterization. These capabilities lead nuclear investigations to a more efficient way for operators' dosimetry evaluation, intervention scenarii and risks mitigation and simulations, such as accidents in unknown potentially contaminated areas or during dismantling operations

  20. Time scales of supercooled water and implications for reversible polyamorphism

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-09-01

    Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.

  1. Time scales of tunneling decay of a localized state

    International Nuclear Information System (INIS)

    Ban, Yue; Muga, J. G.; Sherman, E. Ya.; Buettiker, M.

    2010-01-01

    Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observing diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.

  2. Anismus, Physiology, Radiology: Is It Time for Some Pragmatism? A Comparative Study of Radiological and Anorectal Physiology Findings in Patients With Anismus.

    Science.gov (United States)

    Pisano, Umberto; Irvine, Lesley; Szczachor, Justina; Jawad, Ahsin; MacLeod, Andrew; Lim, Michael

    2016-10-01

    Anismus is a functional disorder featuring obstructive symptoms and paradoxical contractions of the pelvic floor. This study aims to establish diagnosis agreement between physiology and radiology, associate anismus with morphological outlet obstruction, and explore the role of sphincteric pressure and rectal volumes in the radiological diagnosis of anismus. Consecutive patients were evaluated by using magnetic resonance imaging proctography/fluoroscopic defecography and anorectal physiology. Morphological radiological features were associated with physiology tests. A categorical analysis was performed using the chi-square test, and agreement was assessed via the kappa coefficient. A Mann-Whitney test was used to assess rectal volumes and sphincterial pressure distributions between groups of patients. A P-value of Anismus was seen radiologically and physiologically in 18 (41.8%) and 12 patients (27.9%), respectively. The agreement between modalities was 0.298 (P = 0.04). Using physiology as a reference, radiology had positive and negative predictive values of 44% and 84%, respectively. Rectoceles, cystoceles, enteroceles and pathological pelvic floor descent were not physiologically predictive of animus (P > 0.05). The sphincterial straining pressure was 71 mmHg in the anismus group versus 12 mmHg. Radiology was likely to identify anismus when the straining pressure exceeded 50% of the resting pressure (P = 0.08). Radiological techniques detect pelvic morphological abnormalities, but lead to overdiagnoses of anismus. No proctographic pathological feature predicts anismus reliably. A stronger pelvic floor paradoxical contraction is associated with a greater likelihood of detection by proctography.

  3. Soil moisture memory at sub-monthly time scales

    Science.gov (United States)

    Mccoll, K. A.; Entekhabi, D.

    2017-12-01

    For soil moisture-climate feedbacks to occur, the soil moisture storage must have `memory' of past atmospheric anomalies. Quantifying soil moisture memory is, therefore, essential for mapping and characterizing land-atmosphere interactions globally. Most previous studies estimate soil moisture memory using metrics based on the autocorrelation function of the soil moisture time series (e.g., the e-folding autocorrelation time scale). This approach was first justified by Delworth and Manabe (1988) on the assumption that monthly soil moisture time series can be modelled as red noise. While this is a reasonable model for monthly soil moisture averages, at sub-monthly scales, the model is insufficient due to the highly non-Gaussian behavior of the precipitation forcing. Recent studies have shown that significant soil moisture-climate feedbacks appear to occur at sub-monthly time scales. Therefore, alternative metrics are required for defining and estimating soil moisture memory at these shorter time scales. In this study, we introduce metrics, based on the positive and negative increments of the soil moisture time series, that can be used to estimate soil moisture memory at sub-monthly time scales. The positive increments metric corresponds to a rapid drainage time scale. The negative increments metric represents a slower drying time scale that is most relevant to the study of land-atmosphere interactions. We show that autocorrelation-based metrics mix the two time scales, confounding physical interpretation. The new metrics are used to estimate soil moisture memory at sub-monthly scales from in-situ and satellite observations of soil moisture. Reference: Delworth, Thomas L., and Syukuro Manabe. "The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate." Journal of Climate 1, no. 5 (May 1, 1988): 523-47. doi:10.1175/1520-0442(1988)0012.0.CO;2.

  4. Development of a Real-Time Radiological Area Monitoring Network for Emergency Response at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Bertoldo, N; Hunter, S; Fertig, R; Laguna, G; MacQueen, D

    2004-01-01

    A real-time radiological sensor network for emergency response was developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the LLNL Livermore site perimeter to continuously monitor for a radiological condition resulting from a terrorist threat to site security and the health and safety of LLNL personnel. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These loW--power sensors are supported by a central command center (CCC) and transmit measurement data back to the CCC computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio and computer based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. The RTRAM network has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions

  5. Liquidity spillover in international stock markets through distinct time scales.

    Science.gov (United States)

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.

  6. AFSC/ABL: Ugashik sockeye salmon scale time series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 b?? 2002) collected from adult sockeye salmon returning to Ugashik River were retrieved from the Alaska Department of Fish and...

  7. AFSC/ABL: Naknek sockeye salmon scale time series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 2002) collected from adult sockeye salmon returning to Naknek River were retrieved from the Alaska Department of Fish and Game....

  8. An extended Halanay inequality of integral type on time scales

    Directory of Open Access Journals (Sweden)

    Boqun Ou

    2015-07-01

    Full Text Available In this paper, we obtain a Halanay-type inequality of integral type on time scales which improves and extends some earlier results for both the continuous and discrete cases. Several illustrative examples are also given.

  9. Multiple dynamical time-scales in networks with hierarchically

    Indian Academy of Sciences (India)

    Modular networks; hierarchical organization; synchronization. ... we show that such a topological structure gives rise to characteristic time-scale separation ... This suggests a possible functional role of such mesoscopic organization principle in ...

  10. Large Deviations for Two-Time-Scale Diffusions, with Delays

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2010-01-01

    We consider the problem of large deviations for a two-time-scale reflected diffusion process, possibly with delays in the dynamical terms. The Dupuis-Ellis weak convergence approach is used. It is perhaps the most intuitive and simplest for the problems of concern. The results have applications to the problem of approximating optimal controls for two-time-scale systems via use of the averaged equation.

  11. Some New Inequalities of Opial's Type on Time Scales

    Directory of Open Access Journals (Sweden)

    Samir H. Saker

    2012-01-01

    Full Text Available We will prove some new dynamic inequalities of Opial's type on time scales. The results not only extend some results in the literature but also improve some of them. Some continuous and discrete inequalities are derived from the main results as special cases. The results can be applied on the study of distribution of generalized zeros of half-linear dynamic equations on time scales.

  12. Scale-dependent intrinsic entropies of complex time series.

    Science.gov (United States)

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).

  13. Radiology today

    International Nuclear Information System (INIS)

    Donner, M.W.; Heuck, F.H.W.

    1981-01-01

    The book encompasses the proceedings of a postgraduate course held in Salzburg in June 1980. 230 radiologists from 17 countries discussed here the important and practical advances of diagnostic radiology, nuclear medicine and ultrasound as they contribute to gastrointestinal, urologic, skeletal, cardiovascular, pediatric, and neuroradiology. The book contains 55 single contributions of different authors to the following main themes: Cardiovascular, Radiology, pulmonary radiology, gastrointestinal radiology, urinary tract radiology, skeletal radiology, mammography, lymphography, ultrasound, ENT radiology, and neuroradiology. (orig./MG)

  14. Research on classification of nuclear and radiological accident from IAEA threat category with estimation of INES scale

    International Nuclear Information System (INIS)

    Cha, Seok Ki; Kim, Siu

    2017-01-01

    As there is increasing use of nuclear energy and radiation while information on nuclear related accidents are accumulated, international interest in nuclear and radiation incidents is increasing rapidly. Because of the specificity of nuclear energy and radiation, the damage caused by such accidents will be spread to the larger area around the accident point due to the radiation and cause biological damage and mental-psychological damage. The purpose of this study is to categorize historical incidents using the Threat Category concept described in the publication of IAEA Safety Guide GS-G-2.1. In addition to categorizing actual events and accidents into Threat Categories, causes of occurrences, the type of radioactive source which leads to the main threats, the type of radiation exposure, and the type of patient are organized in detail. As a result of the analysis of representative historical cases, most accident cases caused by 'Nuclear Energy-Related Business Operator' correspond to 1 (Anomaly) ~ 4 (Accident with Local Consequences) in the INES Scale by IAEA. From the some accident cases, while the radiological damage can be seen to be local, but it can be seen that the possibility of 6 (Serious Accident) can not be absolutely excluded.

  15. Research on classification of nuclear and radiological accident from IAEA threat category with estimation of INES scale

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seok Ki [Dept. of Nuclear engineering, Univ of SeJong, Seoul (Korea, Republic of); Kim, Siu [Korea Nuclear International Cooperation Foundation, Daejeon (Korea, Republic of)

    2017-04-15

    As there is increasing use of nuclear energy and radiation while information on nuclear related accidents are accumulated, international interest in nuclear and radiation incidents is increasing rapidly. Because of the specificity of nuclear energy and radiation, the damage caused by such accidents will be spread to the larger area around the accident point due to the radiation and cause biological damage and mental-psychological damage. The purpose of this study is to categorize historical incidents using the Threat Category concept described in the publication of IAEA Safety Guide GS-G-2.1. In addition to categorizing actual events and accidents into Threat Categories, causes of occurrences, the type of radioactive source which leads to the main threats, the type of radiation exposure, and the type of patient are organized in detail. As a result of the analysis of representative historical cases, most accident cases caused by 'Nuclear Energy-Related Business Operator' correspond to 1 (Anomaly) ~ 4 (Accident with Local Consequences) in the INES Scale by IAEA. From the some accident cases, while the radiological damage can be seen to be local, but it can be seen that the possibility of 6 (Serious Accident) can not be absolutely excluded.

  16. Russian national time scale long-term stability

    Science.gov (United States)

    Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.

    1994-05-01

    The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.

  17. Wind power impacts and electricity storage - a time scale perspective

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Meibom, Peter

    2012-01-01

    Integrating large amounts of wind power in energy systems poses balancing challenges due to the variable and only partly predictable nature of wind. The challenges cover different time scales from intra-hour, intra-day/day-ahead to several days and seasonal level. Along with flexible electricity...... demand options, various electricity storage technologies are being discussed as candidates for contributing to large-scale wind power integration and these also differ in terms of the time scales at which they can operate. In this paper, using the case of Western Denmark in 2025 with an expected 57% wind...... power penetration, wind power impacts on different time scales are analysed. Results show consecutive negative and high net load period lengths indicating a significant potential for flexibility measures capable of charging/activating demand and discharging/inactivating demand in periods of 1 h to one...

  18. Study of the radiological impact of small-scale mining activities at Dunkwa-On-Offin in the Central Region, Ghana

    International Nuclear Information System (INIS)

    Marfo, E.

    2014-07-01

    Small-scale (and artisanal) mining has been defined differently around the world. However, in Ghana, small-scale (gold) mining is defined as mining (gold) by any method not involving substantial expenditure by an individual or group of persons not exceeding nine in number or by a co-operative society made up of ten or more persons. The activities in the mining sector have increased in recent times and as at 2008, a total of 212 mining companies were awarded mining leases and exploration rights. These mining operations consequently turn out large volumes of solid and liquid wastes in the form of waste dams; slime dams, tailings dams, which could contain elevated levels of NORM. Small-scale mining activities pollute rivers and streams nearby that serve as sources of drinking water for communities downstream. These activities are common in the study area. The general aim of the studies is to assess the radiological exposure to members of the general public living in Dunkwa community and its surrounding communities due to NORMS as a result of the small-scale mining activities. Direct gamma spectrometry and iMatic P-F Gas-less Automatic Gross Alpha/Beta counter was used to determine the concentration of naturally occurring radionuclides 226 Ra, 232 Th and 40 K, and gross alpha and gross beta activity concentration respectively in the soil and 0water samples. The mean values of the gross-α and gross-β activity concentrations in the water sources were 0.002±0.001 Bq/L and 0.029±0.0I6 Bq/L respectively which are also below the WHO recommended guideline values for drinking water. The gross-α and gross-β activity concentrations of most soil samples in the study area are below the activity concentration of the control sample. The mean activity concentrations measured for 226 Ra ( 238 U) 232 Th and 40 K in the soil sample were 25.4±11.1, 29.4±15.6 and 225.9±93.8 Bq/kg respectively. For the water samples the mean activity concentrations were 4.7±1.5, 2.7 ±0.4, 53.9

  19. Microsecond time-scale kinetics of transient biochemical reactions

    NARCIS (Netherlands)

    Mitic, S.; Strampraad, M.J.F.; Hagen, W.R.; de Vries, S.

    2017-01-01

    To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs

  20. Time-Scale and Time-Frequency Analyses of Irregularly Sampled Astronomical Time Series

    Directory of Open Access Journals (Sweden)

    S. Roques

    2005-09-01

    Full Text Available We evaluate the quality of spectral restoration in the case of irregular sampled signals in astronomy. We study in details a time-scale method leading to a global wavelet spectrum comparable to the Fourier period, and a time-frequency matching pursuit allowing us to identify the frequencies and to control the error propagation. In both cases, the signals are first resampled with a linear interpolation. Both results are compared with those obtained using Lomb's periodogram and using the weighted waveletZ-transform developed in astronomy for unevenly sampled variable stars observations. These approaches are applied to simulations and to light variations of four variable stars. This leads to the conclusion that the matching pursuit is more efficient for recovering the spectral contents of a pulsating star, even with a preliminary resampling. In particular, the results are almost independent of the quality of the initial irregular sampling.

  1. Full-scale and time-scale heating experiments at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, Michael; California Univ., Berkeley

    1978-01-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  2. Hydrodynamic time scales for intense laser-heated clusters

    International Nuclear Information System (INIS)

    Parra, Enrique; Alexeev, Ilya; Fan, Jingyun; Kim, Kiong Y.; McNaught, Stuart J.; Milchberg, Howard M.

    2003-01-01

    Measurements are presented of x-ray (>1.5 keV) and extreme ultraviolet (EUV, λ equal to 2-44 nm) emission from argon clusters irradiated with constant-energy (50 mJ), variable-width laser pulses ranging from 100 fs to 10 ns. The results for clusters can be understood in terms of two time scales: a short time scale for optimal resonant absorption at the critical-density layer in the expanding plasma, and a longer time scale for the plasma to drop below critical density. We present a one-dimensional hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical-density plasma layer. These simulations explain the dependence of generation efficiency on laser pulse width

  3. Scaling properties in time-varying networks with memory

    Science.gov (United States)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  4. Ignition in net for different energy confinement time scalings

    International Nuclear Information System (INIS)

    Johner, J.; Prevot, F.

    1988-06-01

    A zero-dimensional profile dependent model is used to assess the feasibility of ignition in the extended version of NET. Five recent scalings for the energy confinement time (Goldston, Kaye All, Kaye Big, Shimomura-Odajima, Rebut-Lallia) are compared in the frame of two different scenarii, i.e., H-mode with a flat density profile or L-mode with a peaked density profile. For the flat density H-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the peaked density L-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the two Kaye's scalings, ignition is forbidden in H-mode even with the peaked density profile. For the Rebut-Lallia scaling, ignition is allowed in L-mode even with the flat density profile

  5. Deviations from uniform power law scaling in nonstationary time series

    Science.gov (United States)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  6. Physics in space-time with scale-dependent metrics

    Science.gov (United States)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  7. Length and time scales of atmospheric moisture recycling

    Directory of Open Access Journals (Sweden)

    R. J. van der Ent

    2011-03-01

    Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.

  8. Proposed classification scale for radiological incidents and accidents; Elaboration d'une echelle de classement des incidents et accidents radiologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-15

    The scale proposed in this report is intended to facilitate communication concerning the severity of incidents and accidents involving the exposure of human beings to ionising radiations. Like the INES, it comprises eight levels of severity and uses the same terms (accident, incident, anomaly, serious and major) for keeping the public and the media informed. In a radiological protection context, the severity of an event is considered as being directly proportional to the risk run by an individual (the probability of developing fatal or non-fatal health effects) following exposure to ionising radiation in an incident or accident situation. However for society, other factors have to be taken into account to determine severity. The severity scale proposed is therefore based on assessment of the individual radiological risk. A severity level corresponding to exposure of a member of the public in an incident or accident situation is determined on the basis of risk assessment concepts and methods derived from international consensus on dose/effect relationships for both stochastic and deterministic effects. The severity of all the possible exposure situations - worker exposure, collective exposure, potential exposure - is determined using a system of weighting in relation to situations involving members of the public. In the case of this scale, to indicate the severity of an event, it is proposed to make use of the most penalizing level of severity, comparing: - the severity associated with the probability of occurrence of deterministic effects and the severity associated with the probability of occurrence of stochastic effects, when the event gives rise to both types of risk; - the severity for members of the public and the severity for exposed workers, when both categories of individuals are involved; - the severity on the proposed radiological protection scale and that obtained using the INES, when radiological protection and nuclear safety aspects are associated with

  9. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    Science.gov (United States)

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  10. Fractional dynamic calculus and fractional dynamic equations on time scales

    CERN Document Server

    Georgiev, Svetlin G

    2018-01-01

    Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations.  Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .

  11. Time-dependent scaling patterns in high frequency financial data

    Science.gov (United States)

    Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso

    2016-10-01

    We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.

  12. Evaluation of scaling invariance embedded in short time series.

    Directory of Open Access Journals (Sweden)

    Xue Pan

    Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  13. Evaluation of scaling invariance embedded in short time series.

    Science.gov (United States)

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  14. The effectiveness of service delivery initiatives at improving patients' waiting times in clinical radiology departments: a systematic review.

    Science.gov (United States)

    Olisemeke, B; Chen, Y F; Hemming, K; Girling, A

    2014-12-01

    We reviewed the literature for the impact of service delivery initiatives (SDIs) on patients' waiting times within radiology departments. We searched MEDLINE, EMBASE, CINAHL, INSPEC and The Cochrane Library for relevant articles published between 1995 and February, 2013. The Cochrane EPOC risk of bias tool was used to assess the risk of bias on studies that met specified design criteria. Fifty-seven studies met the inclusion criteria. The types of SDI implemented included extended scope practice (ESP, three studies), quality management (12 studies), productivity-enhancing technologies (PETs, 29 studies), multiple interventions (11 studies), outsourcing and pay-for-performance (one study each). The uncontrolled pre- and post-intervention and the post-intervention designs were used in 54 (95%) of the studies. The reporting quality was poor: many of the studies did not test and/or report the statistical significance of their results. The studies were highly heterogeneous, therefore meta-analysis was inappropriate. The following type of SDIs showed promising results: extended scope practice; quality management methodologies including Six Sigma, Lean methodology, and continuous quality improvement; productivity-enhancing technologies including speech recognition reporting, teleradiology and computerised physician order entry systems. We have suggested improved study design and the mapping of the definitions of patient waiting times in radiology to generic timelines as a starting point for moving towards a situation where it becomes less restrictive to compare and/or pool the results of future studies in a meta-analysis.

  15. Radiological safety system based on real-time tritium-in-air monitoring in room and effluents

    Energy Technology Data Exchange (ETDEWEB)

    Bidica, N.; Sofalca, N.; Balteanu, O.; Stefan, I. [National Institute of Cryogenics and Isotopes Technologies, Ramnicu Valcea (Romania)

    2006-07-01

    The conceptual design of the radiological safety system based on real time-in-air monitoring in room and effluents is intended to provide the maximum achievable safety level, basing no the ALARA concept. the capabilities of this system are not only to inform any time personnel about tritium in air concentration level, but it will be able to: initiate the shut down procedure and drain off the plant, as well to start the Air cleaning System when the tritium-in-air concentration exceed pre-established threshold; estimate tritium effective dose rate before starting an activity into the monitored area, or during this activity, or soon as the activity was finished; estimate tritium effective dose and instantly record and update individual effective doses, using a special computer application called 'dose record'; lock access into the radiological area for individuals when tritium dose rate in the monitoring area will exceed the pre-established thresholds, or when any individual dose data provided by 'dose records' application ask for, or for other protection consideration; calculate the total tritium activity released to the environment (per day, week, or month). (N.C.)

  16. Radiological safety system based on real-time tritium-in-air monitoring in room and effluents

    International Nuclear Information System (INIS)

    Bidica, N.; Sofalca, N.; Balteanu, O.; Stefan, I.

    2006-01-01

    The conceptual design of the radiological safety system based on real time-in-air monitoring in room and effluents is intended to provide the maximum achievable safety level, basing no the ALARA concept. the capabilities of this system are not only to inform any time personnel about tritium in air concentration level, but it will be able to: initiate the shut down procedure and drain off the plant, as well to start the Air cleaning System when the tritium-in-air concentration exceed pre-established threshold; estimate tritium effective dose rate before starting an activity into the monitored area, or during this activity, or soon as the activity was finished; estimate tritium effective dose and instantly record and update individual effective doses, using a special computer application called 'dose record'; lock access into the radiological area for individuals when tritium dose rate in the monitoring area will exceed the pre-established thresholds, or when any individual dose data provided by 'dose records' application ask for, or for other protection consideration; calculate the total tritium activity released to the environment (per day, week, or month). (N.C.)

  17. Nonlinear triple-point problems on time scales

    Directory of Open Access Journals (Sweden)

    Douglas R. Anderson

    2004-04-01

    Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0

  18. Dynamics symmetries of Hamiltonian system on time scales

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  19. Clinical-Radiological Parameters Improve the Prediction of the Thrombolysis Time Window by Both MRI Signal Intensities and DWI-FLAIR Mismatch.

    Science.gov (United States)

    Madai, Vince Istvan; Wood, Carla N; Galinovic, Ivana; Grittner, Ulrike; Piper, Sophie K; Revankar, Gajanan S; Martin, Steve Z; Zaro-Weber, Olivier; Moeller-Hartmann, Walter; von Samson-Himmelstjerna, Federico C; Heiss, Wolf-Dieter; Ebinger, Martin; Fiebach, Jochen B; Sobesky, Jan

    2016-01-01

    With regard to acute stroke, patients with unknown time from stroke onset are not eligible for thrombolysis. Quantitative diffusion weighted imaging (DWI) and fluid attenuated inversion recovery (FLAIR) MRI relative signal intensity (rSI) biomarkers have been introduced to predict eligibility for thrombolysis, but have shown heterogeneous results in the past. In the present work, we investigated whether the inclusion of easily obtainable clinical-radiological parameters would improve the prediction of the thrombolysis time window by rSIs and compared their performance to the visual DWI-FLAIR mismatch. In a retrospective study, patients from 2 centers with proven stroke with onset value/mean value of the unaffected hemisphere). Additionally, the visual DWI-FLAIR mismatch was evaluated. Prediction of the thrombolysis time window was evaluated by the area-under-the-curve (AUC) derived from receiver operating characteristic (ROC) curve analysis. Factors such as the association of age, National Institutes of Health Stroke Scale, MRI field strength, lesion size, vessel occlusion and Wahlund-Score with rSI were investigated and the models were adjusted and stratified accordingly. In 82 patients, the unadjusted rSI measures DWI-mean and -SD showed the highest AUCs (AUC 0.86-0.87). Adjustment for clinical-radiological covariates significantly improved the performance of FLAIR-mean (0.91) and DWI-SD (0.91). The best prediction results based on the AUC were found for the final stratified and adjusted models of DWI-SD (0.94) and FLAIR-mean (0.96) and a multivariable DWI-FLAIR model (0.95). The adjusted visual DWI-FLAIR mismatch did not perform in a significantly worse manner (0.89). ADC-rSIs showed fair performance in all models. Quantitative DWI and FLAIR MRI biomarkers as well as the visual DWI-FLAIR mismatch provide excellent prediction of eligibility for thrombolysis in acute stroke, when easily obtainable clinical-radiological parameters are included in the prediction

  20. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    International Nuclear Information System (INIS)

    Fulea, D.; Cosma, C.

    2006-01-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several methods which

  1. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    Energy Technology Data Exchange (ETDEWEB)

    Fulea, D [Institute of Public Health ' Prof.Dr.Iuliu Moldovan' , Cluj-Napoca (Romania); Cosma, C [Babes-Bolyai Univ., Faculty of Physics, Cluj-Napoca (Romania)

    2006-07-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several methods which

  2. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    Energy Technology Data Exchange (ETDEWEB)

    Fulea, D. [Institute of Public Health ' Prof.Dr.Iuliu Moldovan' , Cluj-Napoca (Romania); Cosma, C. [Babes-Bolyai Univ., Faculty of Physics, Cluj-Napoca (Romania)

    2006-07-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several

  3. Cognitive componets of speech at different time scales

    DEFF Research Database (Denmark)

    Feng, Ling; Hansen, Lars Kai

    2007-01-01

    Cognitive component analysis (COCA) is defined as unsupervised grouping of data leading to a group structure well aligned with that resulting from human cognitive activity. We focus here on speech at different time scales looking for possible hidden ‘cognitive structure’. Statistical regularities...

  4. Development of the Free Time Motivation Scale for Adolescents.

    Science.gov (United States)

    Baldwin, Cheryl K.; Caldwell, Linda L.

    2003-01-01

    Developed a self-report measure of adolescent free time motivation based in self-determination theory, using data from 634 seventh graders. The scale measured five forms of motivation (amotivation, external, introjected, identified, and intrinsic motivation). Examination of each of the subscales indicated minimally acceptable levels of fit. The…

  5. Vibration amplitude rule study for rotor under large time scale

    International Nuclear Information System (INIS)

    Yang Xuan; Zuo Jianli; Duan Changcheng

    2014-01-01

    The rotor is an important part of the rotating machinery; its vibration performance is one of the important factors affecting the service life. This paper presents both theoretical analyses and experimental demonstrations of the vibration rule of the rotor under large time scales. The rule can be used for the service life estimation of the rotor. (authors)

  6. Multiple time scales of adaptation in auditory cortex neurons.

    Science.gov (United States)

    Ulanovsky, Nachum; Las, Liora; Farkas, Dina; Nelken, Israel

    2004-11-17

    Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could be a correlate of auditory sensory memory at the level of single A1 neurons. Here we studied adaptation in A1 neurons, using three different probabilistic designs. We showed that SSA has several time scales concurrently, spanning many orders of magnitude, from hundreds of milliseconds to tens of seconds. Similar time scales are known for the auditory memory span of humans, as measured both psychophysically and using evoked potentials. A simple model, with linear dependence on both short-term and long-term stimulus history, provided a good fit to A1 responses. Auditory thalamus neurons did not show SSA, and their responses were poorly fitted by the same model. In addition, SSA increased the proportion of failures in the responses of A1 neurons to the adapting stimulus. Finally, SSA caused a bias in the neuronal responses to unbiased stimuli, enhancing the responses to eccentric stimuli. Therefore, we propose that a major function of SSA in A1 neurons is to encode auditory sensory memory on multiple time scales. This SSA might play a role in stream segregation and in binding of auditory objects over many time scales, a property that is crucial for processing of natural auditory scenes in cats and of speech and music in humans.

  7. Visual simultaneous localization and mapping (VSLAM) methods applied to indoor 3D topographical and radiological mapping in real-time

    International Nuclear Information System (INIS)

    Hautot, F.; Dubart, P.; Chagneau, B.; Bacri, C.O.; Abou-Khalil, R.

    2017-01-01

    New developments in the field of robotics and computer vision enable to merge sensors to allow fast real-time localization of radiological measurements in the space/volume with near real-time radioactive sources identification and characterization. These capabilities lead nuclear investigations to a more efficient way for operators' dosimetry evaluation, intervention scenarios and risks mitigation and simulations, such as accidents in unknown potentially contaminated areas or during dismantling operations. This paper will present new progresses in merging RGB-D camera based on SLAM (Simultaneous Localization and Mapping) systems and nuclear measurement in motion methods in order to detect, locate, and evaluate the activity of radioactive sources in 3-dimensions

  8. THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales

    Science.gov (United States)

    Howard, Marc W.; Eichenbaum, Howard

    2014-01-01

    A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126

  9. SU-D-209-03: Radiation Dose Reduction Using Real-Time Image Processing in Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kanal, K; Moirano, J; Zamora, D; Stewart, B [University Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: To characterize changes in radiation dose after introducing a new real-time image processing technology in interventional radiology systems. Methods: Interventional radiology (IR) procedures are increasingly complex, at times requiring substantial time and radiation dose. The risk of inducing tissue reactions as well as long-term stochastic effects such as radiation-induced cancer is not trivial. To reduce this risk, IR systems are increasingly equipped with dose reduction technologies.Recently, ClarityIQ (Philips Healthcare) technology was installed in our existing neuroradiology IR (NIR) and vascular IR (VIR) suites respectively. ClarityIQ includes real-time image processing that reduces noise/artifacts, enhances images, and sharpens edges while also reducing radiation dose rates. We reviewed 412 NIR (175 pre- and 237 post-ClarityIQ) procedures and 329 VIR (156 preand 173 post-ClarityIQ) procedures performed at our institution pre- and post-ClarityIQ implementation. NIR procedures were primarily classified as interventional or diagnostic. VIR procedures included drain port, drain placement, tube change, mesenteric, and implanted venous procedures. Air Kerma (AK in units of mGy) was documented for all the cases using a commercial radiation exposure management system. Results: When considering all NIR procedures, median AK decreased from 1194 mGy to 561 mGy. When considering all VIR procedures, median AK decreased from 49 to 14 mGy. Both NIR and VIR exhibited a decrease in AK exceeding 50% after ClarityIQ implementation, a statistically significant (p<0.05) difference. Of the 5 most common VIR procedures, all median AK values decreased, but significance (p<0.05) was only reached in venous access (N=53), angio mesenteric (N=41), and drain placement procedures (N=31). Conclusion: ClarityIQ can reduce dose significantly for both NIR and VIR procedures. Image quality was not assessed in conjunction with the dose reduction.

  10. Time scale algorithm: Definition of ensemble time and possible uses of the Kalman filter

    Science.gov (United States)

    Tavella, Patrizia; Thomas, Claudine

    1990-01-01

    The comparative study of two time scale algorithms, devised to satisfy different but related requirements, is presented. They are ALGOS(BIPM), producing the international reference TAI at the Bureau International des Poids et Mesures, and AT1(NIST), generating the real-time time scale AT1 at the National Institute of Standards and Technology. In each case, the time scale is a weighted average of clock readings, but the weight determination and the frequency prediction are different because they are adapted to different purposes. The possibility of using a mathematical tool, such as the Kalman filter, together with the definition of the time scale as a weighted average, is also analyzed. Results obtained by simulation are presented.

  11. Time scale controversy: Accurate orbital calibration of the early Paleogene

    Science.gov (United States)

    Roehl, U.; Westerhold, T.; Laskar, J.

    2012-12-01

    Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to 54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 ± 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 ± 0.05 Ma for the early Eocene ash -17, and 65.250 ± 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radioisotopic geochronology is much more challenging than previously thought.

  12. Decoding the Mobility and Time Scales of Protein Loops.

    Science.gov (United States)

    Gu, Yina; Li, Da-Wei; Brüschweiler, Rafael

    2015-03-10

    The flexible nature of protein loops and the time scales of their dynamics are critical for many biologically important events at the molecular level, such as protein interaction and recognition processes. In order to obtain a predictive understanding of the dynamic properties of loops, 500 ns molecular dynamics (MD) computer simulations of 38 different proteins were performed and validated using NMR chemical shifts. A total of 169 loops were analyzed and classified into three types, namely fast loops with correlation times Web server (http://spin.ccic.ohio-state.edu/index.php/loop). The results demonstrate that loop dynamics with their time scales can be predicted rapidly with reasonable accuracy, which will allow the screening of average protein structures to help better understand the various roles loops can play in the context of protein-protein interactions and binding.

  13. Human learning: Power laws or multiple characteristic time scales?

    Directory of Open Access Journals (Sweden)

    Gottfried Mayer-Kress

    2006-09-01

    Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice – within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.

  14. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  15. Multi-Scale Dissemination of Time Series Data

    DEFF Research Database (Denmark)

    Guo, Qingsong; Zhou, Yongluan; Su, Li

    2013-01-01

    In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time...

  16. Cardiothoracic radiology

    International Nuclear Information System (INIS)

    Scarsbrook, A.F.; Graham, R.N.J.; Perriss, R.W.

    2005-01-01

    A wealth of cardiothoracic websites exist on the internet. What follows is a list of the higher quality resources currently available which should save you time searching them out for yourself. Many of the sites listed cater for undergraduates and trainee or non-specialist radiologists, nevertheless these may also be of interest to specialists in thoracic radiology, particularly for use in teaching. Hyperlinks are available in the electronic version of this article and were all active at the time of going to press (April 2005)

  17. A model for AGN variability on multiple time-scales

    Science.gov (United States)

    Sartori, Lia F.; Schawinski, Kevin; Trakhtenbrot, Benny; Caplar, Neven; Treister, Ezequiel; Koss, Michael J.; Urry, C. Megan; Zhang, C. E.

    2018-05-01

    We present a framework to link and describe active galactic nuclei (AGN) variability on a wide range of time-scales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different time-scales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEdd) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEdd distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different time-scales, therefore providing new insights into AGN variability and black hole growth phenomena.

  18. Optimizing Travel Time to Outpatient Interventional Radiology Procedures in a Multi-Site Hospital System Using a Google Maps Application.

    Science.gov (United States)

    Mandel, Jacob E; Morel-Ovalle, Louis; Boas, Franz E; Ziv, Etay; Yarmohammadi, Hooman; Deipolyi, Amy; Mohabir, Heeralall R; Erinjeri, Joseph P

    2018-02-20

    The purpose of this study is to determine whether a custom Google Maps application can optimize site selection when scheduling outpatient interventional radiology (IR) procedures within a multi-site hospital system. The Google Maps for Business Application Programming Interface (API) was used to develop an internal web application that uses real-time traffic data to determine estimated travel time (ETT; minutes) and estimated travel distance (ETD; miles) from a patient's home to each a nearby IR facility in our hospital system. Hypothetical patient home addresses based on the 33 cities comprising our institution's catchment area were used to determine the optimal IR site for hypothetical patients traveling from each city based on real-time traffic conditions. For 10/33 (30%) cities, there was discordance between the optimal IR site based on ETT and the optimal IR site based on ETD at non-rush hour time or rush hour time. By choosing to travel to an IR site based on ETT rather than ETD, patients from discordant cities were predicted to save an average of 7.29 min during non-rush hour (p = 0.03), and 28.80 min during rush hour (p travel time when more than one location providing IR procedures is available within the same hospital system.

  19. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    Science.gov (United States)

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  20. Time scale of diffusion in molecular and cellular biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2014-01-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)

  1. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  2. HMC algorithm with multiple time scale integration and mass preconditioning

    Science.gov (United States)

    Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.

    2006-01-01

    We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.

  3. Nonlinear MHD dynamics of tokamak plasmas on multiple time scales

    International Nuclear Information System (INIS)

    Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.

    2003-01-01

    Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)

  4. The length and time scales of water's glass transitions

    Science.gov (United States)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  5. The length and time scales of water's glass transitions.

    Science.gov (United States)

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  6. The fission time scale measured with an atomic clock

    NARCIS (Netherlands)

    Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK

    2003-01-01

    We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range

  7. A study on the radiation and environmental safety -Development of a real-time radiological dose assessment system-

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Heui; Lee, Yung Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The real-time dose assessment system under development has been updated and the technology for tracer experiment has been established. The calculation of external gamma dose is the most difficult and time-consuming part of the dose calculations. The characteristics of external gamma exposure have been investigated and the method for reducing the calculation time has been devised. The internal exposure via the ingestion of the contaminated foodstuffs is one of the important pathways to the total radiological exposure. In the emergency, it is necessary to take an action such like food ban to protect the internal exposure. An algorithm for the interface between the real-time system and the food chain model has been provided. The second field tracer experiment over flat terrain has been carried out on a plain in Iksan city in Junrabook-Do. Sequential tracer sampler which can be sampled the tracer gas over arbitrary 12 time interval has been designed and manufactured. SF{sub 6} has been used as the tracer gas and the sampled gas has been analysed by gas-chromatographer. 55 figs, 32 tabs, 65 refs. (Author).

  8. Diffusion time scales and accretion in the sun

    International Nuclear Information System (INIS)

    Michaud, G.

    1977-01-01

    It is thought that surface abundances in the Sun could be due largely to accretion either of comets or grains, and it has been suggested that if surface convection zones were smaller than is usually indicated by model calculations, accretion would be especially important. Unless the zone immediately below the surface convection zone is sufficiently stable for diffusion to be important, other transport processes, such as turbulence and meridional circulation, more efficient than diffusion, will tend to homogenise the Sun. Diffusion is the slowest of the transport processes and will become important when other transport processes become inoperative. Using diffusion theory the minimum mass of the convection zone can be determined in order that transport processes at the bottom of the zone are not to influence abundances in the convection zone. If diffusion time scales are shorter than the life of the star (Sun) diffusion will modify the abundances in the convection zone. The mass in the convection zone for which diffusion time scales are equal to the life of the star on the main sequence then determines the minimum mass in the convection zone that justifies neglect of transport processes at the bottom of the convection zone. It is calculated here that, for the Sun, this mass is between 3 x 10 -3 and 10 -2 solar mass, and a general explosion is derived for the diffusion time scale as a function of the mass of the convection zone. (U.K.)

  9. Backpropagation and ordered derivatives in the time scales calculus.

    Science.gov (United States)

    Seiffertt, John; Wunsch, Donald C

    2010-08-01

    Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research.

  10. Atomistic simulations of graphite etching at realistic time scales.

    Science.gov (United States)

    Aussems, D U B; Bal, K M; Morgan, T W; van de Sanden, M C M; Neyts, E C

    2017-10-01

    Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼10 20 m -2 s -1 . The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.

  11. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  12. Quantum universe on extremely small space-time scales

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2010-01-01

    The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.

  13. Scale and time dependence of serial correlations in word-length time series of written texts

    Science.gov (United States)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  14. A hierarchy of time-scales and the brain.

    Science.gov (United States)

    Kiebel, Stefan J; Daunizeau, Jean; Friston, Karl J

    2008-11-01

    In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.

  15. A hierarchy of time-scales and the brain.

    Directory of Open Access Journals (Sweden)

    Stefan J Kiebel

    2008-11-01

    Full Text Available In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.

  16. Decay of surface nanostructures via long-time-scale dynamics

    International Nuclear Information System (INIS)

    Voter, A.F.; Stanciu, N.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool

  17. Time scaling internal state predictive control of a solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.N. [DEE-FCT/UNL, Caparica (Portugal); Rato, L.M. [INESC-ID/University, Evora (Portugal); Lemos, J.M. [INESC-ID/IST, Lisboa (Portugal)

    2003-12-01

    The control of a distributed collector solar field is addressed in this work, exploiting the plant's transport characteristic. The plant is modeled by a hyperbolic type partial differential equation (PDE) where the transport speed is the manipulated flow, i.e. the controller output. The model has an external distributed source, which is the solar radiation captured along the collector, approximated to depend only of time. From the solution of the PDE, a linear discrete state space model is obtained by using time-scaling and the redefinition of the control input. This method allows overcoming the dependency of the time constants with the operating point. A model-based predictive adaptive controller is derived with the internal temperature distribution estimated with a state observer. Experimental results at the solar power plant are presented, illustrating the advantages of the approach under consideration. (author)

  18. An approach for estimating the radiological significance of a hypothetical major nuclear accident over long distance transboundary scales

    Energy Technology Data Exchange (ETDEWEB)

    Mitrakos, D., E-mail: dimitris.mitrakos@eeae.gr; Potiriadis, C.; Housiadas, C.

    2016-04-15

    Highlights: • Actions may be warranted after a major nuclear accident even at long distances. • Distance may not be the decisive parameter for longer term radiological impact. • Remote impact may vary orders of magnitude depending on the meteorological conditions. • The potential impact can be assessed using computationally inexpensive calculations. - Abstract: After the Fukushima accident important initiatives were taken in European level to enhance the nuclear safety level of the existing and planned nuclear reactors, such as the so-called nuclear “stress-tests” and the amendment of the Nuclear Safety Directive. A recent work of HERCA and WENRA focused on the need for a more consistent and harmonized response in a transboundary context in case of a hypothetical major nuclear accident in Europe. Such an accident, although very improbable, cannot be totally excluded and so, should be considered in emergency preparedness arrangements among the various European countries. In case of a hypothetical severe Fukushima-like accident in Europe, the role of the neighboring countries may be important, since the authorities should be able to provide information and advice to the government and the public, but also can contribute to the overall assessment of the situation be their own means. In this work we assess the radiological significance of a hypothetical major nuclear accident for distances longer than 300 km that are not typically covered by the internationally accepted emergency planning zones. The approach is simple and computationally inexpensive, since it is based on the calculation of only a few release scenarios at dates selected within a whole year on the basis of bounding the deposition levels at long distances in relation to the occurrence of precipitation. From the calculated results it is evident that distance is not the only decisive parameter in estimating the potential radiological significance of a severe nuclear accident. The hypothetical

  19. Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    BRIGMON, ROBINL.

    2004-06-07

    In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of the select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may

  20. Scintigraphic determination of gastrointestinal transit times. A comparison with breath hydrogen and radiologic methods

    DEFF Research Database (Denmark)

    Madsen, J L; Larsen, N E; Hilsted, J

    1991-01-01

    A scintigraphic method for determination of gastrointestinal transit times was compared with the breath hydrogen test and a multiple-bolus, single-radiograph technique. A close temporal association was found between the caecal appearance of radioactivity and the onset of breath hydrogen excretion...... the breath hydrogen concentration profiles....

  1. Radiological English

    Energy Technology Data Exchange (ETDEWEB)

    Ribes, R. [Hospital Reina Sofia, Cordoba (Spain). Servicio de Radiologia; Ros, P.R. [Harvard Medical School, Boston, MA (United States). Div. of Radiology

    2007-07-01

    The book is an introductory book to radiological English on the basis that there are a lot of radiologists, radiology residents, radiology nurses, radiology students, and radiographers worldwide whose English level is indeterminate because their reading skills are much higher than their fluency. It is intended to help those health care professionals who need English for their work but do not speak English on a day-to-day basis. (orig.)

  2. Radiological English

    International Nuclear Information System (INIS)

    Ribes, R.; Ros, P.R.

    2007-01-01

    The book is an introductory book to radiological English on the basis that there are a lot of radiologists, radiology residents, radiology nurses, radiology students, and radiographers worldwide whose English level is indeterminate because their reading skills are much higher than their fluency. It is intended to help those health care professionals who need English for their work but do not speak English on a day-to-day basis. (orig.)

  3. Multiple time-scale methods in particle simulations of plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1985-01-01

    This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling

  4. Continent-scale global change attribution in European birds - combining annual and decadal time scales

    DEFF Research Database (Denmark)

    Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper

    2016-01-01

    foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we...... on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach......Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader...

  5. Cross-Scale Modelling of Subduction from Minute to Million of Years Time Scale

    Science.gov (United States)

    Sobolev, S. V.; Muldashev, I. A.

    2015-12-01

    Subduction is an essentially multi-scale process with time-scales spanning from geological to earthquake scale with the seismic cycle in-between. Modelling of such process constitutes one of the largest challenges in geodynamic modelling today.Here we present a cross-scale thermomechanical model capable of simulating the entire subduction process from rupture (1 min) to geological time (millions of years) that employs elasticity, mineral-physics-constrained non-linear transient viscous rheology and rate-and-state friction plasticity. The model generates spontaneous earthquake sequences. The adaptive time-step algorithm recognizes moment of instability and drops the integration time step to its minimum value of 40 sec during the earthquake. The time step is then gradually increased to its maximal value of 5 yr, following decreasing displacement rates during the postseismic relaxation. Efficient implementation of numerical techniques allows long-term simulations with total time of millions of years. This technique allows to follow in details deformation process during the entire seismic cycle and multiple seismic cycles. We observe various deformation patterns during modelled seismic cycle that are consistent with surface GPS observations and demonstrate that, contrary to the conventional ideas, the postseismic deformation may be controlled by viscoelastic relaxation in the mantle wedge, starting within only a few hours after the great (M>9) earthquakes. Interestingly, in our model an average slip velocity at the fault closely follows hyperbolic decay law. In natural observations, such deformation is interpreted as an afterslip, while in our model it is caused by the viscoelastic relaxation of mantle wedge with viscosity strongly varying with time. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-year time range. We will also present results of the modeling of deformation of the

  6. Fine Scale Baleen Whale Behavior Observed Via Tagging Over Daily Time Scales

    Science.gov (United States)

    2014-09-30

    system to do a comparison between the two. While at Wildlife Computers, I also asked for and they kindly provided a small change in how their MK10...cetacean behavior at intermediate daily time scales. Recent efforts to assess the impacts of sound on marine mammals and to estimate foraging ...efficiency have called for the need to measure daily activity budgets to quantify how much of each day an individual devotes to foraging , resting

  7. Superconducting fluctuations and characteristic time scales in amorphous WSi

    Science.gov (United States)

    Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas

    2018-05-01

    We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.

  8. A Review of Time-Scale Modification of Music Signals

    Directory of Open Access Journals (Sweden)

    Jonathan Driedger

    2016-02-01

    Full Text Available Time-scale modification (TSM is the task of speeding up or slowing down an audio signal’s playback speed without changing its pitch. In digital music production, TSM has become an indispensable tool, which is nowadays integrated in a wide range of music production software. Music signals are diverse—they comprise harmonic, percussive, and transient components, among others. Because of this wide range of acoustic and musical characteristics, there is no single TSM method that can cope with all kinds of audio signals equally well. Our main objective is to foster a better understanding of the capabilities and limitations of TSM procedures. To this end, we review fundamental TSM methods, discuss typical challenges, and indicate potential solutions that combine different strategies. In particular, we discuss a fusion approach that involves recent techniques for harmonic-percussive separation along with time-domain and frequency-domain TSM procedures.

  9. Scale invariance in chaotic time series: Classical and quantum examples

    Science.gov (United States)

    Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro

    Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.

  10. Adaptation and learning: characteristic time scales of performance dynamics.

    Science.gov (United States)

    Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh

    2009-12-01

    A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.

  11. [Fluoroscopy dose reduction of computed tomography guided chest interventional radiology using real-time iterative reconstruction].

    Science.gov (United States)

    Hasegawa, Hiroaki; Mihara, Yoshiyuki; Ino, Kenji; Sato, Jiro

    2014-11-01

    The purpose of this study was to evaluate the radiation dose reduction to patients and radiologists in computed tomography (CT) guided examinations for the thoracic region using CT fluoroscopy. Image quality evaluation of the real-time filtered back-projection (RT-FBP) images and the real-time adaptive iterative dose reduction (RT-AIDR) images was carried out on noise and artifacts that were considered to affect the CT fluoroscopy. The image standard deviation was improved in the fluoroscopy setting with less than 30 mA on 120 kV. With regard to the evaluation of artifact visibility and the amount generated by the needle attached to the chest phantom, there was no significant difference between the RT-FBP images with 120 kV, 20 mA and the RT-AIDR images with low-dose conditions (greater than 80 kV, 30 mA and less than 120 kV, 20 mA). The results suggest that it is possible to reduce the radiation dose by approximately 34% at the maximum using RT-AIDR while maintaining image quality equivalent to the RT-FBP images with 120 V, 20 mA.

  12. Deep-time moles: art and archiving for an uncertain radiological future

    Science.gov (United States)

    Griffiths, Dave; Illingworth, Samuel; Girling, Matt

    2017-04-01

    This paper will present Deep Field [UnclearZine], a 2016 art-science project conducted at Mol and Dessel, two neighbouring rural villages co-existing with sites for planned geological nuclear-waste disposal in eastern Belgium. Dave Griffiths produced a microfiche publication that probes and narrates the scientific testing and politics of decision-making surrounding controversial ONDRAF-NIRAS (Belgian National Agency for Radioactive Waste and Enriched Fissile Materials) projects - at CatA, a tumulus for encasing low-level waste, and HADES, a lab investigating the feasibility and safety-case for deep-time geo-burial of high-level waste in clay strata. Griffiths' field work used qualitative and experiential methods such as ethnographic interviews with state scientists and independent monitoring groups, photographic derive, and sound recording, to sense a wider Anthropogenic narrative of energy production, mineral extraction and terrorist threat. Data were then remixed through narrative responses by scientist-poet Dr Sam Illingworth (Manchester Metropolitan University) and DIY-comix artist Matt Girling. Through experimenting with archaic analogue film technology, Griffiths collaged and miniaturised content to produce an edition of microfiches that have been distributed to zine libraries internationally. This subcultural format attempts to translate the past, present and future history of the repositories as folkloric sites of conflict, complexity and unknowing, for the benefit of a far-future readership. The paper will discuss the contemporary context of epistemological uncertainty around the survival and reception of crucial nuclear-security information in the face of inevitable material, linguistic and political ruination. We suggest that place-markers, as monumental semiotic warnings to the future, along with digital archives, might also be augmented by decentralised analogue fragments that promote ongoing memorialisation of nuclear-heritage sites through

  13. Radiology fundamentals

    CERN Document Server

    Singh, Harjit

    2011-01-01

    ""Radiology Fundamentals"" is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imag

  14. Radiological transportation emergency response training course funding and timing in the southern states

    International Nuclear Information System (INIS)

    1991-10-01

    The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under section 180(c) of the Nuclear Waste Policy Amendments Act. Under section 180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs

  15. Radiological effects

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Environmental monitoring in the vicinity of the Calvert Cliffs Nuclear Power Plant has been shown the radiation dose to the public from plant operation to be quite small. Calculations from the reported release rates yield 0.2 mrem whole body dose and 0.6 mrem skin dose for the calendar quarter of maximum release. Radioactivity discharges to the Chesapeake Bay have resulted in detectable concentrations of /sup 110m/Ag, 58 Co, and 60 Co in sediments and shellfish. The area yielding samples with detectable concentrations of plant effluents extends for roughly six miles up and down the western shore, with maximum values found at the plant discharge area. The radiation dose to an individual eating 29 doz oysters and 15 doz crabs (5 kg of each) taken from the plant discharge area would be about 4/1000 mrem whole body dose and 0.2 mrem gastrointestinal tract dose (about 0.007% and 0.5% of the applicable guidelines, respectively.) Comparison of these power plant-induced doses with the fluctuations in natural radiation dose already experienced by the public indicates that the power plant effects are insignificant. The natural variations are tens of times greater than the maximum doses resulting from Calvert Cliffs Power Plant. Although operations to date provide an insufficient basis to predict radiological impact of the Calvert Cliffs Plant over its operational lifetime, available data indicate that the plant should continue to operate with insignificant radiological impact, well within all applicable guidelines

  16. The Time Scale of Recombination Rate Evolution in Great Apes

    Science.gov (United States)

    Stevison, Laurie S.; Woerner, August E.; Kidd, Jeffrey M.; Kelley, Joanna L.; Veeramah, Krishna R.; McManus, Kimberly F.; Bustamante, Carlos D.; Hammer, Michael F.; Wall, Jeffrey D.

    2016-01-01

    Abstract We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471–475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10–15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives. PMID:26671457

  17. Impact of a PACS/RIS-integrated speech recognition system on radiology reporting time and report availability

    International Nuclear Information System (INIS)

    Trumm, C.G.; Glaser, C.; Paasche, V.; Kuettner, B.; Francke, M.; Nissen-Meyer, S.; Reiser, M.; Crispin, A.; Popp, P.

    2006-01-01

    Purpose: Quantification of the impact of a PACS/RIS-integrated speech recognition system (SRS) on the time expenditure for radiology reporting and on hospital-wide report availability (RA) in a university institution. Material and Methods: In a prospective pilot study, the following parameters were assessed for 669 radiographic examinations (CR): 1. time requirement per report dictation (TED: dictation time (s)/number of images [examination] x number of words [report]) with either a combination of PACS/tape-based dictation (TD: analog dictation device/minicassette/transcription) or PACS/RIS/speech recognition system (RR: remote recognition/transcription and OR: online recognition/self-correction by radiologist), respectively, and 2. the Report Turnaround Time (RTT) as the time interval from the entry of the first image into the PACS to the available RIS/HIS report. Two equal time periods were chosen retrospectively from the RIS database: 11/2002-2/2003 (only TD) and 11/2003-2/2004 (only RR or OR with speech recognition system [SRS]). The midterm (≥24 h, 24 h intervals) and short-term (< 24 h, 1 h intervals), RA after examination completion were calculated for all modalities and for Cr, CT, MR and XA/DS separately. The relative increase in the mid-term RA (RIMRA: related to total number of examinations in each time period) and increase in the short-term RA (ISRA: ratio of available reports during the 1st to 24th hour) were calculated. Results: Prospectively, there was a significant difference between TD/RR/OR (n=151/257/261) regarding mean TED (0.44/0.54/0.62 s [per word and image]) and mean RTT (10.47/6.65/1.27 h), respectively. Retrospectively, 37 898/39 680 reports were computed from the RIS database for the time periods of 11/2002-2/2003 and 11/2003-2/2004. For CR/CT there was a shift of the short-term RA to the first 6 hours after examination completion (mean cumulative RA 20% higher) with a more than three-fold increase in the total number of available

  18. Radiological safety system based on real-time tritium-in-air monitoring indoors and in effluents

    International Nuclear Information System (INIS)

    Bidica, N.; Sofalca, N; Balteanu, O.; Srefan, I.

    2006-01-01

    Exposure to tritium is an important health hazard in any tritium processing facility so that implementing a real-time tritium monitoring system is necessary for its operation in safety conditions. The tritium processing facility operators need to be informed at any time about the in-air tritium concentration indoors or in the stack effluents, in order to detect immediately any leaks in tritium containments, or any releases inside the buildings or to the environment. This information is very important for adopting if necessary protection measures and correcting actions as quickly as possible. In this paper we describe an improved real-time tritium monitoring system designed for the Heavy Water Detritiation Pilot Plant of National Institute for Cryogenics and Isotopes Separation, Rm. Valcea, Romania. The design of the Radiological Safety System implemented for the ICIT Water Detritiation Pilot Plant is intended to provide the maximum safety level based on the ALARA concept. The main functions of tritium monitoring system are: - monitoring the working areas and gaseous effluents by determination of the tritium-in-air activity concentration; - local and remote data display; - assessing of environment dose equivalent rates and dose equivalents in the working environment (for personnel exposure control and work planning); - assessing the total tritium activity released to the environment through ventilation exhaust stack; - safety functions, i.e., local and remote, locking/unlocking personnel access, process shut-down in emergency conditions and start of the air cleaning systems. With all these features our tritium monitoring system is really a safety system adequate for personnel and environmental protection. (authors)

  19. Radiology illustrated. Pediatric radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-One (ed.) [Seoul National Univ. College of Medicine (Korea, Republic of). Dept. of Radiology

    2014-11-01

    Depicts characteristic imaging findings of common and uncommon diseases in the pediatric age group. Will serve as an ideal diagnostic reference in daily practice. Offers an excellent teaching aid, with numerous high-quality illustrations. This case-based atlas presents images depicting the findings typically observed when imaging a variety of common and uncommon diseases in the pediatric age group. The cases are organized according to anatomic region, covering disorders of the brain, spinal cord, head and neck, chest, cardiovascular system, gastrointestinal system, genitourinary system, and musculoskeletal system. Cases are presented in a form resembling teaching files, and the images are accompanied by concise informative text. The goal is to provide a diagnostic reference suitable for use in daily routine by both practicing radiologists and radiology residents or fellows. The atlas will also serve as a teaching aide and a study resource, and will offer pediatricians and surgeons guidance on the clinical applications of pediatric imaging.

  20. Neural Computations in a Dynamical System with Multiple Time Scales.

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.

  1. Time-scales of stellar rotational variability and starspot diagnostics

    Science.gov (United States)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-01-01

    The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.

  2. BOX-COX REGRESSION METHOD IN TIME SCALING

    Directory of Open Access Journals (Sweden)

    ATİLLA GÖKTAŞ

    2013-06-01

    Full Text Available Box-Cox regression method with λj, for j = 1, 2, ..., k, power transformation can be used when dependent variable and error term of the linear regression model do not satisfy the continuity and normality assumptions. The situation obtaining the smallest mean square error  when optimum power λj, transformation for j = 1, 2, ..., k, of Y has been discussed. Box-Cox regression method is especially appropriate to adjust existence skewness or heteroscedasticity of error terms for a nonlinear functional relationship between dependent and explanatory variables. In this study, the advantage and disadvantage use of Box-Cox regression method have been discussed in differentiation and differantial analysis of time scale concept.

  3. Prewhitening of hydroclimatic time series? Implications for inferred change and variability across time scales

    Science.gov (United States)

    Razavi, Saman; Vogel, Richard

    2018-02-01

    Prewhitening, the process of eliminating or reducing short-term stochastic persistence to enable detection of deterministic change, has been extensively applied to time series analysis of a range of geophysical variables. Despite the controversy around its utility, methodologies for prewhitening time series continue to be a critical feature of a variety of analyses including: trend detection of hydroclimatic variables and reconstruction of climate and/or hydrology through proxy records such as tree rings. With a focus on the latter, this paper presents a generalized approach to exploring the impact of a wide range of stochastic structures of short- and long-term persistence on the variability of hydroclimatic time series. Through this approach, we examine the impact of prewhitening on the inferred variability of time series across time scales. We document how a focus on prewhitened, residual time series can be misleading, as it can drastically distort (or remove) the structure of variability across time scales. Through examples with actual data, we show how such loss of information in prewhitened time series of tree rings (so-called "residual chronologies") can lead to the underestimation of extreme conditions in climate and hydrology, particularly droughts, reconstructed for centuries preceding the historical period.

  4. Inverse modelling for real-time estimation of radiological consequences in the early stage of an accidental radioactivity release.

    Science.gov (United States)

    Pecha, Petr; Šmídl, Václav

    2016-11-01

    A stepwise sequential assimilation algorithm is proposed based on an optimisation approach for recursive parameter estimation and tracking of radioactive plume propagation in the early stage of a radiation accident. Predictions of the radiological situation in each time step of the plume propagation are driven by an existing short-term meteorological forecast and the assimilation procedure manipulates the model parameters to match the observations incoming concurrently from the terrain. Mathematically, the task is a typical ill-posed inverse problem of estimating the parameters of the release. The proposed method is designated as a stepwise re-estimation of the source term release dynamics and an improvement of several input model parameters. It results in a more precise determination of the adversely affected areas in the terrain. The nonlinear least-squares regression methodology is applied for estimation of the unknowns. The fast and adequately accurate segmented Gaussian plume model (SGPM) is used in the first stage of direct (forward) modelling. The subsequent inverse procedure infers (re-estimates) the values of important model parameters from the actual observations. Accuracy and sensitivity of the proposed method for real-time forecasting of the accident propagation is studied. First, a twin experiment generating noiseless simulated "artificial" observations is studied to verify the minimisation algorithm. Second, the impact of the measurement noise on the re-estimated source release rate is examined. In addition, the presented method can be used as a proposal for more advanced statistical techniques using, e.g., importance sampling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Information management system for the control of the data of the safety and radiological protection on a national scale

    International Nuclear Information System (INIS)

    Valdes Ramos, Maryzury; Prendes Alonso, Miguel; Arnau Fernadez, Alma

    2005-01-01

    The Center for Radiation Protection and Hygiene (CPHR) and the National Center for Nuclear Safety (CNSN), have been working in the last years in the design and improvement of a computing tool that allows the management of all the important information, which should be controlled by the Regulatory Authority. The results obtained with the design and implementation of the Integrated System of Data (RASSYN) for the management of the National Regulatory Authority's information in the country are shown in this paper. The software allows an efficient management of the information related to several regulatory aspects such as: the radiation sources in the national territory; the practices associated to the sources; the personnel associated to the practices and their doses; the instruments for the measurement; the waste management; the radiological events; the conditions and requirements of the given authorizations and the inspections results

  6. The pace of aging: Intrinsic time scales in demography

    Directory of Open Access Journals (Sweden)

    Tomasz Wrycza

    2014-05-01

    Full Text Available Background: The pace of aging is a concept that captures the time-related aspect of aging. It formalizesthe idea of a characteristic life span or intrinsic population time scale. In the rapidly developing field of comparative biodemography, measures that account for inter-speciesdifferences in life span are needed to compare how species age. Objective: We aim to provide a mathematical foundation for the concept of pace. We derive desiredmathematical properties of pace measures and suggest candidates which satisfy these properties. Subsequently, we introduce the concept of pace-standardization, which reveals differences in demographic quantities that are not due to pace. Examples and consequences are discussed. Conclusions: Mean life span (i.e., life expectancy from birth or from maturity is intuitively appealing,theoretically justified, and the most appropriate measure of pace. Pace-standardizationprovides a serviceable method for comparative aging studies to explore differences indemographic patterns of aging across species, and it may considerably alter conclusionsabout the strength of aging.

  7. Integrated biodosimetry in large scale radiological events. Opportunities for civil military co-operation; Integrierte Biodosimetrie bei radiologischen Grossschadensereignissen. Moeglichkeiten fuer zivil-militaerische Zusammenarbeit

    Energy Technology Data Exchange (ETDEWEB)

    Port, M.; Eder, S.F.; Lamkowski, A.; Majewski, M.; Abend, M. [Institut fuer Radiobiologie der Bundeswehr, Muenchen (Germany)

    2016-07-01

    Radiological events like large scale radiological or nuclear accidents, terroristic attacks with radionuclide dispersal devices require rapid and precise medical classification (''triage'') and medical management of a large number of patients. Estimates on the absorbed dose and in particular predictions of the radiation induced health effects are mandatory for optimized allocation of limited medical resources and initiation of patient centred treatment. Among the German Armed Forces Medical Services the Bundeswehr Institute of Radiobiology offers a wide range of tools for the purpose of medical management to cope with different scenarios. The forward deployable mobile Medical Task Force has access to state of the art methodologies summarized into approaches such as physical dosimetry (including mobile gammaspectroscopy), clinical ''dosimetry'' (prodromi, H-Modul) and different means of biological dosimetry (e.g. dicentrics, high throughput gene expression techniques, gamma-H2AX). The integration of these different approaches enables trained physicians of the Medical Task Force to assess individual health injuries as well as prognostic evaluation, considering modern treatment options. To enhance the capacity of single institutions, networking has been recognized as an important emergency response strategy. The capabilities of physical, biological and clinical ''dosimetry'' approaches spanning from low up to high radiation exposures will be discussed. Furthermore civil military opportunities for combined efforts will be demonstrated.

  8. Digital radiology

    International Nuclear Information System (INIS)

    Dallas, W.J.

    1990-01-01

    Radiology is vital to the life-saving efforts of surgeons and other physicians, but precious time can be lost generating the images and transferring them to and from the operating room. Furthermore, hospitals are straining under the task of storing and managing the deluge of diagnostic films produced every year. A 300-bed hospital generates about 1 gigabyte (8 x 10 9 bits) of picture information every day and is legally bound to hold it for three to seven years--30 years in the case of silicosis or black lung disease, illnesses that may have relevance to future lawsuits. Consequently, hospital warehouses are filling with x-ray film and written reports that are important for analysis of patient histories, for comparison between patients, and for analyzing the progress of disease. Yet only a fraction of the information's potential is being used because access is so complicated. What is more, films are easily lost, erasing valuable medical histories

  9. Imaging and radiology

    Science.gov (United States)

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...

  10. Chronicle of pediatric radiology

    International Nuclear Information System (INIS)

    Benz-Bohm, Gabriele; Richter, Ernst

    2012-01-01

    The chronicle of pediatric radiology covers the following issues: Development of pediatric radiology in Germany (BRD, DDR, pediatric radiological accommodations); development of pediatric radiology in the Netherlands (chronology and pediatric radiological accommodations); development of pediatric radiology in Austria (chronology and pediatric radiological accommodations); development of pediatric radiology in Switzerland (chronology and pediatric radiological accommodations).

  11. A comparison of the time required by radiologists for the preparation of clinico-radiological meetings when film and PACS are used

    International Nuclear Information System (INIS)

    Weatherburn, G.; Bryan, S.; Cousins, C.

    2000-01-01

    The hypothesis was that when a hospital-wide Picture Archive and Communications System (PACS) is used, preparation for clinico-radiological meetings is faster, and more images are available, than when a conventional film system is used. This paper reports a study which compared the preparation time by radiologists when film was used with the time for the same activity when a hospital-wide PACS was used at Hammersmith Hospital for the preparation of the respiratory medicine and hepato-biliary meetings. It was found that when PACS was used the time per patient to prepare for the respiratory medicine session was reduced by 11.1 min and that similarly, 16 min per patient was saved in the preparation of the hepato-biliary sessions. The number of images which were unavailable for the session was reduced when PACS was in operation, but this reduction was not shown to be statistically significant. The introduction of PACS at Hammersmith Hospital has significantly reduced the time spent by radiologists in preparing for the two clinico-radiological sessions studied and, if this is extended to the other numerous sessions held each week, contributes to a considerable saving of staff time within the radiology department. (orig.)

  12. Ozone time scale decomposition and trend assessment from surface observations

    Science.gov (United States)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological

  13. Review of Tropical-Extratropical Teleconnections on Intraseasonal Time Scales

    Science.gov (United States)

    Stan, Cristiana; Straus, David M.; Frederiksen, Jorgen S.; Lin, Hai; Maloney, Eric D.; Schumacher, Courtney

    2017-12-01

    The interactions and teleconnections between the tropical and midlatitude regions on intraseasonal time scales are an important modulator of tropical and extratropical circulation anomalies and their associated weather patterns. These interactions arise due to the impact of the tropics on the extratropics, the impact of the midlatitudes on the tropics, and two-way interactions between the regions. Observational evidence, as well as theoretical studies with models of complexity ranging from the linear barotropic framework to intricate Earth system models, suggest the involvement of a myriad of processes and mechanisms in generating and maintaining these interconnections. At this stage, our understanding of these teleconnections is primarily a collection of concepts; a comprehensive theoretical framework has yet to be established. These intraseasonal teleconnections are increasingly recognized as an untapped source of potential subseasonal predictability. However, the complexity and diversity of mechanisms associated with these teleconnections, along with the lack of a conceptual framework to relate them, prevent this potential predictability from being translated into realized forecast skill. This review synthesizes our progress in understanding the observed characteristics of intraseasonal tropical-extratropical interactions and their associated mechanisms, identifies the significant gaps in this understanding, and recommends new research endeavors to address the remaining challenges.

  14. Dental radiology

    International Nuclear Information System (INIS)

    Bhaskar, S.N.

    1982-01-01

    The book presents the radiological manifestations of the maxillodental region in a suitable manner for fast detection and correct diagnosing of diseases of the teeth, soft tissue, and jaws. Classification therefore is made according to the radiological manifestations of the diseases and not according to etiology. (orig./MG) [de

  15. Time-scales for runoff and erosion estimates, with implications for spatial scaling

    Science.gov (United States)

    Kirkby, M. J.; Irvine, B. J.; Dalen, E. N.

    2009-04-01

    Using rainfall data at high temporal resolution, runoff may be estimated for every bucket-tip, or for aggregated hourly or daily periods. Although there is no doubt that finer resolution gives substantially better estimates, many models make use of coarser time steps because these data are more widely available. This paper makes comparisons between runoff estimates based on infiltration measurements used with high resolution rainfall data for SE Spain and theoretical work on improving the time resolution in the PESERA model from daily to hourly values, for areas where these are available. For a small plot at fine temporal scale, runoff responds to bursts of intense rainfall which, for the Guadalentin catchment, typically lasts for about 30 minutes. However, when a larger area is considered, the large and unstructured variability in infiltration capacity produces an aggregate runoff that differs substantially from estimates using average infiltration parameters (in the Green-Ampt equation). When these estimates are compared with estimates based on rainfall for aggregated hourly or daily periods, using a simpler infiltration model, it can be seen that there a substantial scatter, as expected, but that suitable parameterisation can provide reasonable average estimates. Similar conclusions may be drawn for erosion estimates, assuming that sediment transport is proportional to a power of runoff discharge.. The spatial implications of these estimates can be made explicit with fine time resolution, showing that, with observed low overland flow velocities, only a small fraction of the hillside is generally able to deliver runoff to the nearest channel before rainfall intensity drops and runoff re-infiltrates. For coarser time resolutions, this has to be parameterised as a delivery ratio, and we show that how this ratio can be rationally estimated from rainfall characteristics.

  16. Laenderyggens degeneration og radiologi

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig

    2006-01-01

    Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi......Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP...... and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP...

  17. Nonequilibrium Physics at Short Time Scales: Formation of Correlations

    International Nuclear Information System (INIS)

    Peliti, L

    2005-01-01

    It is a happy situation when similar concepts and theoretical techniques can be applied to widely different physical systems because of a deep similarity in the situations being studied. The book illustrates this well; it focuses on the description of correlations in quantum systems out of equilibrium at very short time scales, prompted by experiments with short laser pulses in semiconductors, and in complex reactions in heavy nuclei. In both cases the experiments are characterized by nonlinear dynamics and by strong correlations out of equilibrium. In some systems there are also important finite-size effects. The book comprises several independent contributions of moderate length, and I sometimes felt that a more intensive effort in cross-coordination of the different contributions could have been of help. It is divided almost equally between theory and experiment. In the theoretical part, there is a thorough discussion both of the kinematic aspects (description of correlations) and the dynamical ones (evaluation of correlations). The experimental part is naturally divided according to the nature of the system: the interaction of pulsed lasers with matter on the one hand, and the correlations in finite-size systems (nanoparticles and nuclei) on the other. There is also a discussion on the dynamics of superconductors, a subject currently of great interest. Although an effort has been made to keep each contribution self-contained, I must admit that reading level is uneven. However, there are a number of thorough and stimulating contributions that make this book a useful introduction to the topic at the level of graduate students or researchers acquainted with quantum statistical mechanics. (book review)

  18. EON: software for long time simulations of atomic scale systems

    Science.gov (United States)

    Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme

    2014-07-01

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.

  19. Real-time fluoroscopic needle guidance in the interventional radiology suite using navigational software for percutaneous bone biopsies in children

    Energy Technology Data Exchange (ETDEWEB)

    Shellikeri, Sphoorti; Srinivasan, Abhay; Krishnamurthy, Ganesh; Vatsky, Seth; Zhu, Xiaowei; Keller, Marc S.; Cahill, Anne Marie [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Setser, Randolph M. [Siemens Medical Solutions USA, Inc., Hoffman Estates, IL (United States); Hwang, Tiffany J. [University of Southern California, Keck School of Medicine, Los Angeles, CA (United States); Girard, Erin [Siemens Medical Solutions USA, Inc., Princeton, NJ (United States)

    2017-07-15

    Navigational software provides real-time fluoroscopic needle guidance for percutaneous procedures in the Interventional Radiology (IR) suite. We describe our experience with navigational software for pediatric percutaneous bone biopsies in the IR suite and compare technical success, diagnostic accuracy, radiation dose and procedure time with that of CT-guided biopsies. Pediatric bone biopsies performed using navigational software (Syngo iGuide, Siemens Healthcare) from 2011 to 2016 were prospectively included and anatomically matched CT-guided bone biopsies from 2008 to 2016 were retrospectively reviewed with institutional review board approval. C-arm CT protocols used for navigational software-assisted cases included institution-developed low-dose (0.1/0.17 μGy/projection), regular-dose (0.36 μGy/projection), or a combination of low-dose/regular-dose protocols. Estimated effective radiation dose and procedure times were compared between software-assisted and CT-guided biopsies. Twenty-six patients (15 male; mean age: 10 years) underwent software-assisted biopsies (15 pelvic, 7 lumbar and 4 lower extremity) and 33 patients (13 male; mean age: 9 years) underwent CT-guided biopsies (22 pelvic, 7 lumbar and 4 lower extremity). Both modality biopsies resulted in a 100% technical success rate. Twenty-five of 26 (96%) software-assisted and 29/33 (88%) CT-guided biopsies were diagnostic. Overall, the effective radiation dose was significantly lower in software-assisted than CT-guided cases (3.0±3.4 vs. 6.6±7.7 mSv, P=0.02). The effective dose difference was most dramatic in software-assisted cases using low-dose C-arm CT (1.2±1.8 vs. 6.6±7.7 mSv, P=0.001) or combined low-dose/regular-dose C-arm CT (1.9±2.4 vs. 6.6±7.7 mSv, P=0.04), whereas effective dose was comparable in software-assisted cases using regular-dose C-arm CT (6.0±3.5 vs. 6.6±7.7 mSv, P=0.7). Mean procedure time was significantly lower for software-assisted cases (91±54 vs. 141±68 min, P=0

  20. Handbook of radiologic procedures

    International Nuclear Information System (INIS)

    Hedgcock, M.

    1986-01-01

    This book is organized around radiologic procedures with each discussed from the points of view of: indications, contraindications, materials, method of procedures and complications. Covered in this book are: emergency radiology chest radiology, bone radiology, gastrointestinal radiology, GU radiology, pediatric radiology, computerized tomography, neuroradiology, visceral and peripheral angiography, cardiovascular radiology, nuclear medicine, lymphangiography, and mammography

  1. A Group Simulation of the Development of the Geologic Time Scale.

    Science.gov (United States)

    Bennington, J. Bret

    2000-01-01

    Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)

  2. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    International Nuclear Information System (INIS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-01-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  3. Entangled time in flocking: Multi-time-scale interaction reveals emergence of inherent noise.

    Science.gov (United States)

    Niizato, Takayuki; Murakami, Hisashi

    2018-01-01

    Collective behaviors that seem highly ordered and result in collective alignment, such as schooling by fish and flocking by birds, arise from seamless shuffling (such as super-diffusion) and bustling inside groups (such as Lévy walks). However, such noisy behavior inside groups appears to preclude the collective behavior: intuitively, we expect that noisy behavior would lead to the group being destabilized and broken into small sub groups, and high alignment seems to preclude shuffling of neighbors. Although statistical modeling approaches with extrinsic noise, such as the maximum entropy approach, have provided some reasonable descriptions, they ignore the cognitive perspective of the individuals. In this paper, we try to explain how the group tendency, that is, high alignment, and highly noisy individual behavior can coexist in a single framework. The key aspect of our approach is multi-time-scale interaction emerging from the existence of an interaction radius that reflects short-term and long-term predictions. This multi-time-scale interaction is a natural extension of the attraction and alignment concept in many flocking models. When we apply this method in a two-dimensional model, various flocking behaviors, such as swarming, milling, and schooling, emerge. The approach also explains the appearance of super-diffusion, the Lévy walk in groups, and local equilibria. At the end of this paper, we discuss future developments, including extending our model to three dimensions.

  4. Radiological assessment and optimization

    International Nuclear Information System (INIS)

    Zeevaert, T.; Sohier, A.

    1998-01-01

    The objectives of SCK-CEN's research in the field of radiological assessment and optimization are (1) to implement ALARA principles in activities with radiological consequences; (2) to develop methodologies for radiological optimization in decision-aiding; (3) to improve methods to assess in real time the radiological hazards in the environment in case of an accident; (4) to develop methods and programmes to assist decision-makers during a nuclear emergency; (5) to support the policy of radioactive waste management authorities in the field of radiation protection; (6) to investigate computer codes in the area of multi criteria analysis; (7) to organise courses on off-site emergency response to nuclear accidents. Main achievements in these areas for 1997 are summarised

  5. Ergonomics in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, N. [Department of Radiology, University Hospital of Wales, Cardiff (United Kingdom)], E-mail: nimitgoyal@doctors.org.uk; Jain, N.; Rachapalli, V. [Department of Radiology, University Hospital of Wales, Cardiff (United Kingdom)

    2009-02-15

    The use of computers is increasing in every field of medicine, especially radiology. Filmless radiology departments, speech recognition software, electronic request forms and teleradiology are some of the recent developments that have substantially increased the amount of time a radiologist spends in front of a computer monitor. Computers are also needed for searching literature on the internet, communicating via e-mails, and preparing for lectures and presentations. It is well known that regular computer users can suffer musculoskeletal injuries due to repetitive stress. The role of ergonomics in radiology is to ensure that working conditions are optimized in order to avoid injury and fatigue. Adequate workplace ergonomics can go a long way in increasing productivity, efficiency, and job satisfaction. We review the current literature pertaining to the role of ergonomics in modern-day radiology especially with the development of picture archiving and communication systems (PACS) workstations.

  6. Ergonomics in radiology

    International Nuclear Information System (INIS)

    Goyal, N.; Jain, N.; Rachapalli, V.

    2009-01-01

    The use of computers is increasing in every field of medicine, especially radiology. Filmless radiology departments, speech recognition software, electronic request forms and teleradiology are some of the recent developments that have substantially increased the amount of time a radiologist spends in front of a computer monitor. Computers are also needed for searching literature on the internet, communicating via e-mails, and preparing for lectures and presentations. It is well known that regular computer users can suffer musculoskeletal injuries due to repetitive stress. The role of ergonomics in radiology is to ensure that working conditions are optimized in order to avoid injury and fatigue. Adequate workplace ergonomics can go a long way in increasing productivity, efficiency, and job satisfaction. We review the current literature pertaining to the role of ergonomics in modern-day radiology especially with the development of picture archiving and communication systems (PACS) workstations

  7. MEMO radiology

    International Nuclear Information System (INIS)

    Wagner-Manslau, C.

    1989-01-01

    This radiology volume is a concise handbook of imaging techniques, nuclear medicine, and radiation therapy, albeit that the main emphasis is on classic radiology. It offers, for instance, a survey of radiological findings for the most frequent pathological conditions, many overviews of differential diagnosis, a glossary of the technical bases of radiology and so forth. The contents are divided into the following chapters: Physical and biological bases; skeleton; thorax with the subdivisions lungs, heart, mediastinum, and pleura; gastrointestinal tract with the subsections esophagus, small and large intestine; liver; biliary tract; pancreas; retroperitoneal space; kidney; suprarenal glands; bladder; blood vessels, lymph nodes, spleen; mammary glands; female genitals; prostate and scrotum, epididymis and seminal vesicle. (orig./MG) With 23 figs [de

  8. Radiological hazards

    International Nuclear Information System (INIS)

    Hamilton, M.

    1984-01-01

    The work of the (United Kingdom) National Radiological Protection Board is discussed. The following topics are mentioned: relative contributions to genetically significant doses of radiation from various sources; radon gas in non-coal mines and in dwelling houses; effects of radiation accidents; radioactive waste disposal; radiological protection of the patient in medicine; microwaves, infrared radiation and cataracts; guidance notes for use with forthcoming Ionising Radiations Regulations; training courses; personal dosimetry service; work related to European Communities. (U.K.)

  9. Is the timing of radiological intervention and treatment day associated with economic outcomes in DRG-financed health care systems: a case study.

    Science.gov (United States)

    Napierala, Christoph; Boes, Stefan

    2017-02-28

    In 2012, Switzerland has introduced a diagnosis related group (DRG) system for hospital financing to increase the efficiency and transparency of hospital services and to reduce costs. However, little is known about the efficiency of specific processes within hospitals. The objective of this study is to describe the relationship between timing of radiological interventions, in particular scan and treatment day, and the length of stay (LOS) compliance in a hospital. This is a cross-sectional observational study based on administrative records of all DRG cases in a Swiss university hospital in 2013, enriched by data from the radiology information system and accounting details. The data are analysed using descriptive statistics and regression methods. Radiology and related treatment on a weekend is associated with a higher LOS compliance of approximately 22.12% (pDRG and attempts to explain how this is linked to standardised operating procedures. Our results have implications regarding potential cost savings in hospital care through alignment of care processes, infrastructure planning and guidance of patient flows.

  10. Changes in channel morphology over human time scales [Chapter 32

    Science.gov (United States)

    John M. Buffington

    2012-01-01

    Rivers are exposed to changing environmental conditions over multiple spatial and temporal scales, with the imposed environmental conditions and response potential of the river modulated to varying degrees by human activity and our exploitation of natural resources. Watershed features that control river morphology include topography (valley slope and channel...

  11. Length and time scales of atmospheric moisture recycling

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.

    2011-01-01

    It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to

  12. Full-scale and time-scale heating experiments at Stripa: preliminary results. Technical project report No. 11

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, M.

    1978-12-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  13. Pediatric interventional radiology clinic - how are we doing?

    International Nuclear Information System (INIS)

    Rubenstein, Jonathan; Zettel, Julie C.; Lee, Eric; Cote, Michelle; Aziza, Albert; Connolly, Bairbre L.

    2016-01-01

    Development of a pediatric interventional radiology clinic is a necessary component of providing a pediatric interventional radiology service. Patient satisfaction is important when providing efficient, high-quality care. To analyze the care provided by a pediatric interventional radiology clinic from the perspective of efficiency and parent satisfaction, so as to identify areas for improvement. The prospective study was both quantitative and qualitative. The quantitative component measured clinic efficiency (waiting times, duration of clinic visit, nurse/physician time allocation and assessments performed; n = 91). The qualitative component assessed parental satisfaction with their experience with the pediatric interventional radiology clinic, using a questionnaire (5-point Likert scale) and optional free text section for feedback (n = 80). Questions explored the family's perception of relevance of information provided, consent process and overall satisfaction with their pediatric interventional radiology clinic experience. Families waited a mean of 11 and 10 min to meet the physician and nurse, respectively. Nurses and physicians spent a mean of 28 and 21 min with the families, respectively. The average duration of the pediatric interventional radiology clinic consultation was 56 min. Of 80 survey participants, 83% were satisfied with their experience and 94% said they believed providing consent before the day of the procedure was helpful. Only 5% of respondents were not satisfied with the time-efficiency of the interventional radiology clinic. Results show the majority of patients/parents are very satisfied with the pediatric interventional radiology clinic visit. The efficiency of the pediatric interventional radiology clinic is satisfactory; however, adherence to stricter scheduling can be improved. (orig.)

  14. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    Energy Technology Data Exchange (ETDEWEB)

    Braswell, B.H. Jr.

    1996-12-01

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.

  15. Digital imaging in diagnostic radiology

    International Nuclear Information System (INIS)

    Newell, J.D. Jr.; Kelsey, C.A.

    1990-01-01

    This monograph on digital imaging provides a basic overview of this field at the present time. This paper covers clinical application, including subtraction angiography; chest radiology; genitourinary, gastrointestinal, and breast radiology; and teleradiology. The chest section also includes an explanation of multiple beam equalization radiography. The remaining chapters discuss some of the technical aspects of digital radiology. It includes the basic technology of digital radiography, image compression, and reconstruction information on the economics of digital radiography

  16. Dynamics at Intermediate Time Scales and Management of Ecological Populations

    Science.gov (United States)

    2017-05-10

    thinking about the importance of transients is to recognize the importance of serial autocorrelation in time of forcing terms over realistic ecological time...rich areas helps produce divergent home range responses bet - ween individuals from difference age classes. This model has broad applications for

  17. Grasping Deep Time with Scaled Space in Personal Environs

    DEFF Research Database (Denmark)

    Jacobsen, B. H.

    2014-01-01

    of modern man, the age of dinosaurs ended at 650 m and the Big Bang is 137 km away. This choice obviously makes mental calculations easy, and all of time fits inside a geographical area of moderate size and so helps the citizen gain ownership to this learning tool and hence to time. The idea was tested...

  18. What can happen after lung transplantation and the importance of the time since transplantation: radiological review of post-transplantation complications.

    Science.gov (United States)

    Daimiel Naranjo, I; Alonso Charterina, S

    2016-01-01

    Lung transplantation is the best treatment option in the final stages of diseases such as cystic fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease, or idiopathic pulmonary fibrosis. Better surgical techniques and advances in immunosuppressor treatments have increased survival in lung transplant recipients, making longer follow-up necessary because complications can occur at any time after transplantation. For practical purposes, complications can be classified as early (those that normally occur within two months after transplantation), late (those that normally occur more than two months after transplantation), or time-independent (those that can occur at any time after transplantation). Many complications have nonspecific clinical and radiological manifestations, so the time factor is key to narrow the differential diagnosis. Imaging can guide interventional procedures and can detect complications early. This article aims to describe and illustrate the complications that can occur after lung transplantation from the clinical and radiological viewpoints so that they can be detected as early as possible. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Radiological engineering evaluation of the delay time line air scrubber located at the Clinton P. Anderson Meson Physics Facility (LAMPF)

    International Nuclear Information System (INIS)

    Huneycutt, S.E.

    1996-05-01

    The purpose of this study was to determine the effects of the addition of an air scrubber to an already existing delay line and whether it would scrub 11 CO 2 . There were three main objectives of this study. The first objective was to determine the scrubbing efficiency of the scrubber. The scrubbing efficiency was then used to predict the dose rates in the scrubber area and compare those values with measurements from radiological surveys. The third objective was to determine if the shield blocks were effective in reducing the dose rates in the scrubber area. The activities were measured before and during scrubber operation and this information was used to calculate the scrubbing efficiency and the efficiency of 11 CO 2 removal was determined to be around 50%. Microshield was then used to predict dose rates and compared those values with measurements from radiological surveys. This was also used to determine the that the shield blocks around the scrubber were effective in reducing the dose rates from the radiation field produced by the radionuclides in the scrubber

  20. Radiological protection

    International Nuclear Information System (INIS)

    Azorin N, J.; Azorin V, J. C.

    2010-01-01

    This work is directed to all those people related with the exercise of the radiological protection and has the purpose of providing them a base of knowledge in this discipline so that they can make decisions documented on technical and scientist factors for the protection of the personnel occupationally exposed, the people in general and the environment during the work with ionizing radiations. Before de lack of a text on this matter, this work seeks to cover the specific necessities of our country, providing a solid presentation of the radiological protection, included the bases of the radiations physics, the detection and radiation dosimetry, the radiobiology, the normative and operational procedures associates, the radioactive wastes, the emergencies and the transport of the radioactive material through the medical and industrial applications of the radiations, making emphasis in the relative particular aspects to the radiological protection in Mexico. The book have 16 chapters and with the purpose of supplementing the given information, are included at the end four appendixes: 1) the radioactive waste management in Mexico, 2-3) the Mexican official standards related with the radiological protection, 4) a terms glossary used in radiological protection. We hope this book will be of utility for those people that work in the investigation and the applications of the ionizing radiations. (Author)

  1. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    Administrator

    Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, ... by processes operating on a multiplicity of length .... real time. The design and interpretation of femto- second experiments has required considerable ...

  2. [Construction of the Time Management Scale and examination of the influence of time management on psychological stress response].

    Science.gov (United States)

    Imura, Tomoya; Takamura, Masahiro; Okazaki, Yoshihiro; Tokunaga, Satoko

    2016-10-01

    We developed a scale to measure time management and assessed its reliability and validity. We then used this scale to examine the impact of time management on psychological stress response. In Study 1-1, we developed the scale and assessed its internal consistency and criterion-related validity. Findings from a factor analysis revealed three elements of time management, “time estimation,” “time utilization,” and “taking each moment as it comes.” In Study 1-2, we assessed the scale’s test-retest reliability. In Study 1-3, we assessed the validity of the constructed scale. The results indicate that the time management scale has good reliability and validity. In Study 2, we performed a covariance structural analysis to verify our model that hypothesized that time management influences perceived control of time and psychological stress response, and perceived control of time influences psychological stress response. The results showed that time estimation increases the perceived control of time, which in turn decreases stress response. However, we also found that taking each moment as it comes reduces perceived control of time, which in turn increases stress response.

  3. Finite-Time Stability of Large-Scale Systems with Interval Time-Varying Delay in Interconnection

    Directory of Open Access Journals (Sweden)

    T. La-inchua

    2017-01-01

    Full Text Available We investigate finite-time stability of a class of nonlinear large-scale systems with interval time-varying delays in interconnection. Time-delay functions are continuous but not necessarily differentiable. Based on Lyapunov stability theory and new integral bounding technique, finite-time stability of large-scale systems with interval time-varying delays in interconnection is derived. The finite-time stability criteria are delays-dependent and are given in terms of linear matrix inequalities which can be solved by various available algorithms. Numerical examples are given to illustrate effectiveness of the proposed method.

  4. Emergency radiology

    International Nuclear Information System (INIS)

    Keats, T.E.

    1986-01-01

    This book is the German, translated version of the original published in 1984 in the U.S.A., entitled 'Emergency Radiology'. The publication for the most part is made up as an atlas of the radiological images presenting the findings required for assessment of the emergency cases and their first treatment. The test parts' function is to explain the images and give the necessary information. The material is arranged in seven sections dealing with the skull, the facial part of the skull, the spine, thorax, abdominal region, the pelvis and the hip, and the limbs. With 690 figs [de

  5. Postoperative radiology

    International Nuclear Information System (INIS)

    Burhenne, H.J.

    1989-01-01

    This paper reports on the importance of postoperative radiology. Most surgical procedures on the alimentary tract are successful, but postoperative complications remain a common occurrence. The radiologist must be familiar with a large variety of possible surgical complications, because it is this specialty that is most commonly called on to render a definitive diagnosis. The decision for reoperation, for instance, is usually based on results from radiologic imaging techniques. These now include ultrasonography, CT scanning, needle biopsy, and interventional techniques in addition to contrast studies and nuclear medicine investigation

  6. Perception of short time scale intervals in a hypnotic virtuoso

    NARCIS (Netherlands)

    Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari

    2012-01-01

    Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration

  7. Dynamic modelling of heavy metals - time scales and target loads

    NARCIS (Netherlands)

    Posch, M.; Vries, de W.

    2009-01-01

    Over the past decade steady-state methods have been developed to assess critical loads of metals avoiding long-term risks in view of food quality and eco-toxicological effects on organisms in soils and surface waters. However, dynamic models are needed to estimate the times involved in attaining a

  8. Time Scales in the JPL and CfA Ephemerides

    Science.gov (United States)

    Standish, E. M.

    1998-01-01

    Over the past decades, the IAU has repeatedly attempted to correct its definition of the basic fundamental argument used in the emphemerides. Finally, they have defined a time system which is physically possible, according to the accepted standard theory of gravitation.

  9. Coherent spectroscopies on ultrashort time and length scales

    Directory of Open Access Journals (Sweden)

    Schneider C.

    2013-03-01

    Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.

  10. Does expressive timing in music performance scale proportionally with tempo?

    NARCIS (Netherlands)

    Desain, P.; Honing, H.

    1994-01-01

    Evidence is presented that expressive timing in music is not relationally invariant with global tempo. Our results stem from an analysis of repeated performances of Beethoven's variations on a Paisiello theme. Recordings were made of two pianists playing the pieces at three tempi. In contrast with

  11. Decision-making in crisis situation at the Cea Saclay by the real-time cartography of radiological consequences

    International Nuclear Information System (INIS)

    Comte, N.; Bourgeois, L.

    2001-01-01

    The S.P.R of Saclay has developed a computer system based around three modules: term sources calculation, transfers and radiological consequences in the installation based on a compartment model for the first one; dispersion and impact on environment based on a model with Doury type Gaussian fits with dose coefficients coming from the European directive 96/29, from the ICRP 71 and Kocher for the second one; cartography with the help of a geographical information system including road map background, a Saclay center plan with environment monitoring stations and the measurements points P.P.I. ( first intervention plan) on which are superposed the panache diffusion cone and the isodoses curves. (N.C.)

  12. Real-time assessment of exposure dose to workers in radiological environments during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok; Jeong, SeongYoung; Lee, JungJun; Song, HaeSang; Lee, SangWha; Son, BongKi

    2014-01-01

    Highlights: • The method of exposure dose assessment to workers during decommissioning of nuclear facilities. • The environments of simulation were designed under a virtual reality. • To assess exposure dose to workers, human model was developed within a virtual reality. - Abstract: This objective of this paper is to develop a method to simulate and assess the exposure dose to workers during decommissioning of nuclear facilities. To simulate several scenarios, decommissioning environments were designed using virtual reality. To assess exposure dose to workers, a human model was also developed using virtual reality. The exposure dose was measured and assessed under the principle of ALARA in accordance with radiological environmental change. This method will make it possible to plan for the exposure dose to workers during decommissioning of nuclear facilities

  13. Modelling financial markets with agents competing on different time scales and with different amount of information

    Science.gov (United States)

    Wohlmuth, Johannes; Andersen, Jørgen Vitting

    2006-05-01

    We use agent-based models to study the competition among investors who use trading strategies with different amount of information and with different time scales. We find that mixing agents that trade on the same time scale but with different amount of information has a stabilizing impact on the large and extreme fluctuations of the market. Traders with the most information are found to be more likely to arbitrage traders who use less information in the decision making. On the other hand, introducing investors who act on two different time scales has a destabilizing effect on the large and extreme price movements, increasing the volatility of the market. Closeness in time scale used in the decision making is found to facilitate the creation of local trends. The larger the overlap in commonly shared information the more the traders in a mixed system with different time scales are found to profit from the presence of traders acting at another time scale than themselves.

  14. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  15. Qualitative aspects of Volterra integro-dynamic system on time scales

    Directory of Open Access Journals (Sweden)

    Vasile Lupulescu

    2013-01-01

    Full Text Available This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize at time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for discrete case are obtained.

  16. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.

    Science.gov (United States)

    Buhusi, Catalin V; Oprisan, Sorinel A

    2013-05-01

    In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A Study on Time-Scales Ratio and Turbulent Prandtl Number in Ducts of Industrial Applications

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2006-01-01

    is solved using a two-equation heat flux model. The computed results compare satisfactory with the available experimental data. The time-scale ratio R is defined as the ratio between the dynamic time-scale (k/ε) and the scalar time-scale(0.5θθ/εθ). Based on existing DNS data and calculations in this work...... of heat exchangers for various applications area....

  18. Time scales of solar microwave bursts and scenarios of flare enregy release

    International Nuclear Information System (INIS)

    Krueger, A.; Kliem, B.; Hildebrandt, J.

    1989-01-01

    Based on earlier observational evidence that characteristic time scales of different solar microwave burst types are distributed over a wide range (10 -3 -10 4 sec), different mechanisms of energy release have been considered to account for the impulsive flux increase (time scale 3 sec). Among different competing processes the coalescence instability is found to be a promising candidate to combine sufficiently short time scales with substantial energy release. (author). 20 refs.; 1 fig

  19. Radiological protection in interventional radiology

    International Nuclear Information System (INIS)

    Padovani, R.

    2001-01-01

    Interventional radiology (IR) reduces the need for many traditional interventions, particularly surgery, so reducing the discomfort and risk for patients compared with traditional systems. IR procedures are frequently performed by non-radiologist physicians, often without the proper radiological equipment and sufficient knowledge of radiation protection. Levels of doses to patients and staff in IR vary enormously. A poor correlation exists between patient and staff dose, and large variations of dose are reported for the same procedure. The occurrence of deterministic effects in patients is another peculiar aspect of IR owing to the potentially high skin doses of some procedures. The paper reviews the use of IR and the radiological protection of patients and staff, and examines the need for new standards for IR equipment and the training of personnel. (author)

  20. Long time scale simulation of a grain boundary in copper

    DEFF Research Database (Denmark)

    Pedersen, A.; Henkelman, G.; Schiøtz, Jakob

    2009-01-01

    A general, twisted and tilted, grain boundary in copper has been simulated using the adaptive kinetic Monte Carlo method to study the atomistic structure of the non-crystalline region and the mechanism of annealing events that occur at low temperature. The simulated time interval spanned 67 mu s...... was also observed. In the final low-energy configurations, the thickness of the region separating the crystalline grains corresponds to just one atomic layer, in good agreement with reported experimental observations. The simulated system consists of 1307 atoms and atomic interactions were described using...

  1. Pediatric radiology

    International Nuclear Information System (INIS)

    Benz-Bohm, G.

    1997-01-01

    Pediatric radiology is an important subsection of diagnostic radiology involving specific difficulties, but unfortunately is quite too often neglected as a subject of further education and training. The book therefore is not intended for specialists in the field, but for radiologists wishing to plunge deeper into the matter of pediatric radiology and to acquire a sound, basic knowledge and information about well-proven modalities, the resulting diagnostic images, and interpretation of results. The book is a compact guide and a helpful source of reference and information required for every-day work, or in special cases. With patients who are babies or children, the challenges are different. The book offers all the information needed, including important experience from pediatric hospital units that may be helpful in diagnostic evaluation, information about specific dissimilarities in anatomy and physiology which affect the imaging results, hints for radiology planning and performance, as well as information about the various techniques and their indication and achievements. The book presents a wide spectrum of informative and annotated images. (orig./CB) [de

  2. Radiologic considerations

    International Nuclear Information System (INIS)

    Judge, L.O.

    1987-01-01

    An increasing variety of imaging modalities as well as refinements of interventional techniques have led to a resurgence of radiologic interest and participation in urolithiasis management. Judicious selection of the diagnostic examination, close monitoring during the procedure, consultation with urologic colleagues, and a careful regard for radiation safety guidelines define the role of the radiologist in renal stone disease

  3. Radiology's value chain.

    Science.gov (United States)

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  4. Global Exponential Stability of Delayed Cohen-Grossberg BAM Neural Networks with Impulses on Time Scales

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2009-01-01

    Full Text Available Based on the theory of calculus on time scales, the homeomorphism theory, Lyapunov functional method, and some analysis techniques, sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of the equilibrium point of Cohen-Grossberg bidirectional associative memory (BAM neural networks with distributed delays and impulses on time scales. This is the first time applying the time-scale calculus theory to unify the discrete-time and continuous-time Cohen-Grossberg BAM neural network with impulses under the same framework.

  5. A Novel Multiple-Time Scale Integrator for the Hybrid Monte Carlo Algorithm

    International Nuclear Information System (INIS)

    Kamleh, Waseem

    2011-01-01

    Hybrid Monte Carlo simulations that implement the fermion action using multiple terms are commonly used. By the nature of their formulation they involve multiple integration time scales in the evolution of the system through simulation time. These different scales are usually dealt with by the Sexton-Weingarten nested leapfrog integrator. In this scheme the choice of time scales is somewhat restricted as each time step must be an exact multiple of the next smallest scale in the sequence. A novel generalisation of the nested leapfrog integrator is introduced which allows for far greater flexibility in the choice of time scales, as each scale now must only be an exact multiple of the smallest step size.

  6. Time scales and the problem of radioactive waste

    International Nuclear Information System (INIS)

    Goble, R.L.

    1984-01-01

    The author argues that decisions about future nuclear development can be made essentially independent of waste management considerations for the next 20 years. His arguments are based on five propositions: 1 Risks and costs of storing spent fuel or high-level waste and transuranics are lower than other directly comparable risks and costs of operating a reactor. 2 Storage of mill tailings is the most serious long-term waste problem; it is not serious enough to rule out the use of nuclear power. 3 There are compelling reasons for beginning to implement a waste management program now. 4 It is important to separate the problem of providing temporary storage from that of finding permanent repositories. 5 A prudent waste management strategy, by 2000, will have identified and evaluated more than enough repository space for the waste generated by that time, independent of the decision made about nuclear futures. 13 references, 4 figures, 4 tables

  7. RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE

    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin

    2014-01-01

    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A

  8. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    Science.gov (United States)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  9. Gastrointestinal and hepatobiliary radiology

    International Nuclear Information System (INIS)

    Graham, R.N.J.; Perriss, R.W.; Scarsbrook, A.F.

    2006-01-01

    This is the fifth in the series of short reviews of internet-based radiological learning resources and will focus on gastrointestinal (GI) and hepatobiliary radiology. Below are details of a few of the higher quality resources currently available. Most of the sites cater for medical students and trainee or non-specialist radiologists, but may be also be of interest to specialists, especially for use in teaching. Hyperlinks are available in the electronic version of this article and were all active at the time of going to press (May 2006)

  10. Genitourinary and breast radiology

    International Nuclear Information System (INIS)

    Perriss, R.W.; Graham, R.N.J.; Scarsbrook, A.F.

    2006-01-01

    This is the sixth in a series of short reviews of internet-based radiological learning resources and will focus on genitourinary (GU) and breast radiology. Below are details of a few of the higher quality resources currently available. Most of the sites cater for medical students and trainee or non-specialist radiologists, but may be also be of interest to specialists, especially for use in teaching. Hyperlinks are available in the electronic version of this article and were all active at the time of going to press (July 2006)

  11. Neural Computations in a Dynamical System with Multiple Time Scales

    Directory of Open Access Journals (Sweden)

    Yuanyuan Mi

    2016-09-01

    Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.

  12. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time

    KAUST Repository

    Pinsky, Malin L.

    2016-12-15

    The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.

  13. Updating the planetary time scale: focus on Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  14. Science at the Time-scale of the Electron

    Science.gov (United States)

    Murnane, Margaret

    2010-03-01

    Replace this text with your abstract Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources, with attosecond pulse durations, at very short wavelengths even in the hard x-ray region of the spectrum at wavelengths movie of how electron orbitals in a molecule change shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. [4pt] [1] T. Popmintchev et al., ``Phase matched upconversion of coherent ultrafast laser light into the soft and hard x-ray regions of the spectrum'', PNAS 106, 10516 (2009). [0pt] [2] C. LaOVorakiat et al., ``Ultrafast Soft X-Ray Magneto-Optics at the M-edge Using a Tabletop High-Harmonic Source'', Physical Review Letters 103, 257402 (2009). [0pt] [3] M. Siemens et al. ``Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams'', Nature Materials 9, 26 (2010). [0pt] [4] K. Raines et al., ``Three-dimensional structure determination from a single view,'' Nature 463, 214 (2010). [0pt] [5] W. Li et al., ``Time-resolved Probing of Dynamics in Polyatomic Molecules using High Harmonic Generation'', Science 322, 1207 (2008).

  15. Probabilistic eruption forecasting at short and long time scales

    Science.gov (United States)

    Marzocchi, Warner; Bebbington, Mark S.

    2012-10-01

    Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.

  16. Biochemical recovery time scales in elderly patients with osteomalacia

    Science.gov (United States)

    Allen, S C; Raut, S

    2004-01-01

    Osteomalacia is not rare in the UK and climatically similar countries, particularly in elderly people and those of Asian descent. Overt clinical osteomalacia is usually treated with a loading dose of vitamin D, followed by a regular supplement. However, little is known of the time taken to reach a stable biochemical state after starting treatment. Such information would shed light on the duration of the bone remineralization phase and guide decisions on the length of follow-up. To address this we conducted a 2-year follow-up study of 42 patients (35 female, mean age 80.8 years) with biopsy proven osteomalacia treated with a standard replacement regimen and general nutritional support. Although normocalcaemia was attained within 4 weeks the mean values continued to rise, to a mid-range plateau at 52 weeks. The phosphate and alkaline phosphatase values also took at least a year to reach a stable mean, with a slight further trend towards the mid-range for the entire 104 weeks. The mean serum albumin also rose throughout the first 52 weeks, indicating an effective response to the general nutritional support measures. Our observations suggest that the dynamic relationship between calcium, phosphate and bone requires at least a year, and probably longer, to reach an equilibrium after treatment for osteomalacia in elderly patients. The findings emphasize the need for close medical and social follow-up in this clinical context. PMID:15520146

  17. Status of the Real-time On-line Decision Support (RODOS) system for off-site emergency management after nuclear and radiological accidents

    International Nuclear Information System (INIS)

    Raskov, W.; Ehrhardt, J.; Landman, C.; Pasler-Sauer, J.

    2006-01-01

    Under the auspices of its EURATOM Research Framework Programmes, the European Commission (EC) has supported the development of the comprehensive decision support system RODOS (Real-time On-line Decision Support) for off-site emergency management after nuclear accidents for more than a decade. Many national research programmes, research institutes and industrial collaborators contributed to the project, in particular the German Ministry of Environment, Nature Conservation and Reactor Safety (B MU). The RODOS system can be applied to accidental releases into the atmosphere and various aquatic environments within and across Europe. It provides coherent support before, during and after such a release to assist analysis of the situation and decision making about short and long-term countermeasures for mitigating the consequences with respect to health, the environment, and the economy. Appropriate interfaces exist with local and national radiological monitoring data systems, meteorological measurements and forecasts, and for the adaptation to local, regional and national conditions in Europe. Within the European Integrated Project EURANOS of the sixth Framework Programme, the RODOS system is being enhanced, among others, for radiological emergencies such as dirty bombs attacks, transport accidents and satellite crashes by extensions of the nuclide list, the source term characteristics and the atmospheric dispersion model

  18. Fission time-scale from the measurement of pre-scission light ...

    Indian Academy of Sciences (India)

    and hence can only probe a part of the fission time distribution. .... with the conclusion of recent fission time-scale measurements using the fission probability ... using the statistical model code JOANNE2 suitably modified to include the GDR ...

  19. Measures of spike train synchrony for data with multiple time scales

    NARCIS (Netherlands)

    Satuvuori, Eero; Mulansky, Mario; Bozanic, Nebojsa; Malvestio, Irene; Zeldenrust, Fleur; Lenk, Kerstin; Kreuz, Thomas

    2017-01-01

    Background Measures of spike train synchrony are widely used in both experimental and computational neuroscience. Time-scale independent and parameter-free measures, such as the ISI-distance, the SPIKE-distance and SPIKE-synchronization, are preferable to time scale parametric measures, since by

  20. 42 CFR 482.26 - Condition of participation: Radiologic services.

    Science.gov (United States)

    2010-10-01

    ... radiologic services, particularly ionizing radiology procedures, must be free from hazards for patients and... qualified full-time, part-time, or consulting radiologist must supervise the ionizing radiology services and... osteopathy who is qualified by education and experience in radiology. (2) Only personnel designated as...

  1. Chest radiology

    International Nuclear Information System (INIS)

    Reed, J.C.

    1990-01-01

    This book is a reference in plain chest film diagnosis provides a thorough background in the differential diagnosis of 22 of the most common radiologic patterns of chest disease. Each chapter is introduced with problem cases and a set of questions, followed by a tabular listing of the appropriate differential considerations. The book emphasizes plain films, CT and some MR scans are integrated to demonstrate how these modalities enhance the work of a case

  2. Radiological protection report 2016

    International Nuclear Information System (INIS)

    2017-06-01

    on the basis of international recommendations. ENSI uses inspections and comparative measurements to ensure that the necessary calibrated radiological protection measurement equipment is available and that it is used for its intended purpose in order to determine correct values. For this purpose, it operates a test centre accredited to ISO 17025. The network operated by ENSI for automatically monitoring the dose rate in the vicinity of nuclear power plants measures dose rates in the vicinity of nuclear power stations all year round and 24 hours a day. The 10-minute, hourly and daily mean rates measured can be viewed on ENSI's web site in real time. This monitoring network serves to secure evidence for the authorities and in dealings with the public. No local increases in dose rates that could be attributed to discharges from nuclear power plants were detected in the reporting year. Sporadic, locally high measurements are due to fluctuations in natural background radiation, e.g. after rainfall. The programme JRODOS (Java-based Realtime Online DecisiOn Support system) has been used since the beginning of 2016 to model atmospheric spread and calculate the dose, should an event occur. JRODOS allows the direct use of 3D weather forecast data from the COSMO-1 model routinely used by MeteoSwiss with a grid size of 1 km. The COSMO-1 model supplies forecasts stretching up to 24 hours into the future with high spatial and temporal resolution. In order to reflect the small scale structure of the Swiss countryside and that of southern Germany, JRODOS uses the very high resolution elevation model from the Swiss Federal Office of Topography. This means that together with the aerial radiometric equipment, there are invaluable, precise instruments available at all times for making current assessments (diagnoses) as well as forecasts of the radiological situation. In the reporting year, all thresholds contained in the Federal Ordinance on radiation protection were met. There

  3. A Dynamical System Approach Explaining the Process of Development by Introducing Different Time-scales.

    Science.gov (United States)

    Hashemi Kamangar, Somayeh Sadat; Moradimanesh, Zahra; Mokhtari, Setareh; Bakouie, Fatemeh

    2018-06-11

    A developmental process can be described as changes through time within a complex dynamic system. The self-organized changes and emergent behaviour during development can be described and modeled as a dynamical system. We propose a dynamical system approach to answer the main question in human cognitive development i.e. the changes during development happens continuously or in discontinuous stages. Within this approach there is a concept; the size of time scales, which can be used to address the aforementioned question. We introduce a framework, by considering the concept of time-scale, in which "fast" and "slow" is defined by the size of time-scales. According to our suggested model, the overall pattern of development can be seen as one continuous function, with different time-scales in different time intervals.

  4. Analysis of the Radiology Reports from Radiology Clinics

    International Nuclear Information System (INIS)

    Kim, Eun Jin; Kwack, Kyu Sung; Cho, Jae Hyun; Jang, Eun Ho

    2009-01-01

    The purpose of this study was to investigate the form and content of the radiology reports from radiology clinics in Korea. One hundred and sixty six radiology reports from 49 radiology clinics were collected, and these reports were referred to the academic tertiary medical center from March 2008 to February 2009. These included reports for CT (n = 18), MRI (n = 146) and examinations not specified (n = 2). Each report was evaluated for the presence of required contents (demographics, technical information, findings, conclusion, the name, license number and signature of the radiologist and the referring facility). These requirements were based on the guideline of the American College of Radiology and the previous research. The name of the patient, the gender, the body part, the type of examination, the time of examination and the conclusion, the name of the radiologist and the name of facility were well recorded in over 90% of the radiology reports. However, the identification number of the patient, the referring facility, the referring physician, the use of contrast material, the clinical information, the time of dictation, the signature of the radiologist and the license number of the radiologist were poorly recorded (less than 50%). The optimal format of a radiology report should be established for reliable and valid communication with clinicians

  5. Diagnostic radiology 1987

    International Nuclear Information System (INIS)

    Margulis, A.R.; Gooding, C.A.

    1987-01-01

    This is the latest version of the continuing education course on diagnostic radiology given yearly by the Department of Radiology at the University of California, San Francisco. The lectures are grouped into sections on gastrointestinal radiology, mammography, uroradiology, magnetic resonance, hepatobiliary radiology, pediatric radiology, ultrasound, interventional radiology, chest radiology, nuclear medicine, cardiovascular radiology, and skeletal radiology. Each section contains four to eight topics. Each of these consists of text that represents highlights in narrative form, selected illustrations, and a short bibliography. The presentation gives a general idea of what points were made in the lecture

  6. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  7. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.

    Science.gov (United States)

    Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter

    2011-10-13

    A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.

  8. Off-Policy Reinforcement Learning: Optimal Operational Control for Two-Time-Scale Industrial Processes.

    Science.gov (United States)

    Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu

    2017-12-01

    Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.

  9. Pediatric radiology

    International Nuclear Information System (INIS)

    Silverman, F.N.

    1982-01-01

    A literature review with 186 references of diagnostic pediatric radiology, a speciality restricted to an age group rather than to an organ system or technique of examination, is presented. In the present chapter topics follow the basic organ system divisions with discussions of special techniques within these divisions. The diagnosis of congenital malformations, infectious diseases and neoplasms are a few of the topics discussed for the head and neck region, the vertebrae, the cardiovascular system, the respiratory system, the gastrointestinal tract, the urinary tract, and the skeleton

  10. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    OpenAIRE

    S Safinaz; A V Ravi Kumar

    2017-01-01

    In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames t...

  11. Radiologic Monitoring of Faculty and Staff in an Electrophysiology Lab Using a Real-Time Dose Monitoring System

    Science.gov (United States)

    Chardenet, Kathleen A.

    2016-01-01

    Purpose: A real-time dose management system was used to determine if radiation exposure levels would decrease when providers were privy to their real-time radiation exposure levels. Six aggregate categories of providers were first blinded (phase 1) and subsequently made aware of their radiation exposure levels during electrophysiology procedures…

  12. Time scale defined by the fractal structure of the price fluctuations in foreign exchange markets

    Science.gov (United States)

    Kumagai, Yoshiaki

    2010-04-01

    In this contribution, a new time scale named C-fluctuation time is defined by price fluctuations observed at a given resolution. The intraday fractal structures and the relations of the three time scales: real time (physical time), tick time and C-fluctuation time, in foreign exchange markets are analyzed. The data set used is trading prices of foreign exchange rates; US dollar (USD)/Japanese yen (JPY), USD/Euro (EUR), and EUR/JPY. The accuracy of the data is one minute and data within a minute are recorded in order of transaction. The series of instantaneous velocity of C-fluctuation time flowing are exponentially distributed for small C when they are measured by real time and for tiny C when they are measured by tick time. When the market is volatile, for larger C, the series of instantaneous velocity are exponentially distributed.

  13. The German Radiological Society and the protagonists of radiology during the time of National Socialism. State of research, explanation attempts, desiderata and research prospects; Die Deutsche Roentgengesellschaft und die Protagonisten der Radiologie in der Zeit des Nationalsozialismus. Forschungsstand, Erklaerungsansaetze, Desiderate und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.; Winzen, T.; Gross, D. [RWTH Aachen University Medical School, Aachen (Germany). Inst. of the History, Theory and Ethics of Medicine

    2015-06-15

    The intention of the authors is the recognition and critical analysis of efforts to study the history of the German Radiological Society during the time of National Socialism from 1933 to 1945 with the goal of determining existing desiderata and identifying the resulting research prospects. There is a need to study concrete individual biographies of radiologists (members of the German Radiological Society, perpetrators, and victims) and their careers before and after 1945 as well as the importance of the interdisciplinarity of the discipline and the lack of institutional involvement during the ''Third Reich''. Moreover, the comparatively difficult starting situation of the study of the history of the German Radiological Society is discussed.

  14. Pediatric radiology

    International Nuclear Information System (INIS)

    Kirkpatrick, J.A. Jr.

    1985-01-01

    Computed tomography has made possible the excellent and basic work having to do with the characteristics of the trachea, its caliber, shape, and length in children. Another group of articles has to do with interventional pediatric radiology. This year there were a number of articles of which only a sample is included, dealing with therapeutic procedures involving drainage of abscesses, angioplasty, nephrostomy, therapeutic embolization, and the removal of esophageal foreign bodies. Obviously, there is no reason to think that techniques developed for the adult may not be applicable to the infant or child; also, there is no reason to believe that processes peculiar to the child should not be amenable to intervention, for instance, use of embolization of hepatic hemangioma and transluminal balloon valvuloplasty for pulmonary valvular stenosis. Among the reports and reviews, the author would add that sonography remains a basic imaging technique in pediatric radiology and each year its application broadens. For example, there is an excellent article having to do with sonography of the neonatal and infant hip and evaluation of the inferior vena cava and the gallbladder. Nuclear medicine continues to play a significant role in diagnosis, which is featured in two articles concerned with problems of the hip

  15. Radiological malpractice

    International Nuclear Information System (INIS)

    Bauer, G.

    1987-01-01

    As medico-legal statistics show, compared with other branches of medicine, cases of liability of the radiologist or his assistants are relatively rare. The duty to exercise due care as set out in Paragraph 6 of the Austrian penal code or Paragraph 276 of the German civil code, respectively, provide a basic rule of law also for radiology. Due to the risk inherent in the investigation method, incidents in angiography cannot be totally excluded. Therefore, it is of utmost importance that all steps be taken with regard to staff, equipment and drugs to be able to deal with any complications and incidents that may arise. The courts of law require the employer to produce strongest exonerating evidence to prove that the duty to exercise due care in the selection and supervision of the assistants has been duly fulfilled. For the practical execution of radiological investigations of the digestive tract, also the RTA is responsible; her liability when performing an irrigoscopy is particularly great, as perforation of the intestine is often lethal. The introduction of the rectal tube into the vagina by mistake, with resultant injury or death of the patient, will regularly lead to conviction under penal law. (orig.) [de

  16. Bridging time scales in cellular decision making with a stochastic bistable switch

    Directory of Open Access Journals (Sweden)

    Waldherr Steffen

    2010-08-01

    Full Text Available Abstract Background Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. Some of these transformations act over a very long time scale on the cell population level, up to the entire lifespan of the organism. Results In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Conclusions Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.

  17. Data warehousing technologies for large-scale and right-time data

    DEFF Research Database (Denmark)

    Xiufeng, Liu

    heterogeneous sources into a central data warehouse (DW) by Extract-Transform-Load (ETL) at regular time intervals, e.g., monthly, weekly, or daily. But now, it becomes challenging for large-scale data, and hard to meet the near real-time/right-time business decisions. This thesis considers some...

  18. Broadband Structural Dynamics: Understanding the Impulse-Response of Structures Across Multiple Length and Time Scales

    Science.gov (United States)

    2010-08-18

    Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform  mtP

  19. Characteristic time scales for diffusion processes through layers and across interfaces

    Science.gov (United States)

    Carr, Elliot J.

    2018-04-01

    This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.

  20. Time-scale invariances in preseismic electromagnetic radiation, magnetization and damage evolution of rocks

    Directory of Open Access Journals (Sweden)

    Y. Kawada

    2007-10-01

    Full Text Available We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.

  1. Multiple time scale analysis of pressure oscillations in solid rocket motors

    Science.gov (United States)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  2. OSCILLATION CRITERIA FOR A FOURTH ORDER SUBLINEAR DYNAMIC EQUATION ON TIME SCALE

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Some new criteria for the oscillation of a fourth order sublinear and/or linear dynamic equation on time scale are established. Our results are new for the corresponding fourth order differential equations as well as difference equations.

  3. Multiple Positive Symmetric Solutions to p-Laplacian Dynamic Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    You-Hui Su

    2009-01-01

    two examples are given to illustrate the main results and their differences. These results are even new for the special cases of continuous and discrete equations, as well as in the general time-scale setting.

  4. Multiple time scales in modeling the incidence of infections acquired in intensive care units

    Directory of Open Access Journals (Sweden)

    Martin Wolkewitz

    2016-09-01

    Full Text Available Abstract Background When patients are admitted to an intensive care unit (ICU their risk of getting an infection will be highly depend on the length of stay at-risk in the ICU. In addition, risk of infection is likely to vary over calendar time as a result of fluctuations in the prevalence of the pathogen on the ward. Hence risk of infection is expected to depend on two time scales (time in ICU and calendar time as well as competing events (discharge or death and their spatial location. The purpose of this paper is to develop and apply appropriate statistical models for the risk of ICU-acquired infection accounting for multiple time scales, competing risks and the spatial clustering of the data. Methods A multi-center data base from a Spanish surveillance network was used to study the occurrence of an infection due to Methicillin-resistant Staphylococcus aureus (MRSA. The analysis included 84,843 patient admissions between January 2006 and December 2011 from 81 ICUs. Stratified Cox models were used to study multiple time scales while accounting for spatial clustering of the data (patients within ICUs and for death or discharge as competing events for MRSA infection. Results Both time scales, time in ICU and calendar time, are highly associated with the MRSA hazard rate and cumulative risk. When using only one basic time scale, the interpretation and magnitude of several patient-individual risk factors differed. Risk factors concerning the severity of illness were more pronounced when using only calendar time. These differences disappeared when using both time scales simultaneously. Conclusions The time-dependent dynamics of infections is complex and should be studied with models allowing for multiple time scales. For patient individual risk-factors we recommend stratified Cox regression models for competing events with ICU time as the basic time scale and calendar time as a covariate. The inclusion of calendar time and stratification by ICU

  5. Radiologic placement of Hickman catheters

    International Nuclear Information System (INIS)

    Robertson, L.J.; Mauro, M.A.; Jaques, P.F.

    1988-01-01

    Hickman catheter inserter has previously been predominantly accomplished surgically by means of venous cutdown or percutaneous placement in the operating room. The authors describe their method and results for 55 consecutive percutaneous placements of Hickman catheters in the interventional radiology suite. Complication rates were comparable to those for surgical techniques. Radiologic placement resulted in increased convenience, decreased time and cost of insertion, and super fluoroscopic control of catheter placement and any special manipulations. Modern angiographic materials provide safer access to the subclavian vein than traditional methods. The authors conclude that radiologic placement of Hickman catheters offers significant advantages over traditional surgical placement

  6. Time Scale Inequalities of the Ostrowski Type for Functions Differentiable on the Coordinates

    Directory of Open Access Journals (Sweden)

    Eze R. Nwaeze

    2018-01-01

    Full Text Available In 2016, some inequalities of the Ostrowski type for functions (of two variables differentiable on the coordinates were established. In this paper, we extend these results to an arbitrary time scale by means of a parameter λ∈0,1. The aforementioned results are regained for the case when the time scale T=R. Besides extension, our results are employed to the continuous and discrete calculus to get some new inequalities in this direction.

  7. Bounds of Double Integral Dynamic Inequalities in Two Independent Variables on Time Scales

    Directory of Open Access Journals (Sweden)

    S. H. Saker

    2011-01-01

    Full Text Available Our aim in this paper is to establish some explicit bounds of the unknown function in a certain class of nonlinear dynamic inequalities in two independent variables on time scales which are unbounded above. These on the one hand generalize and on the other hand furnish a handy tool for the study of qualitative as well as quantitative properties of solutions of partial dynamic equations on time scales. Some examples are considered to demonstrate the applications of the results.

  8. Procedures in diagnostic radiology

    International Nuclear Information System (INIS)

    Doyle, T.; Hare, W.S.C.; Thomson, K.; Tess, B.

    1989-01-01

    This book outlines the various procedures necessary for the successful practice of diagnostic radiology. Topics covered are: general principles, imaging of the urinary and gastrointestinal tracts, vascular radiology, arthrography, and miscellaneous diagnostic radiologic procedures

  9. Antipersistent dynamics in short time scale variability of self-potential signals

    Directory of Open Access Journals (Sweden)

    M. Ragosta

    2000-06-01

    Full Text Available Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram, a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal fluctuations are characterised by two time scale ranges in which self-potential variability appears to follow slightly different dynamical behaviours. Results point to the presence of fractal, non stationary features expressing a long term correlation with scaling coefficients which are the clue of stabilising mechanisms. In the scale ranges in which the series show scale invariant behaviour, self-potentials evolve like fractional Brownian motions with anticorrelated increments typical of processes regulated by negative feedback mechanisms (antipersistence. On scales below about 6 h the strength of such an antipersistence appears to be slightly greater than that observed on larger time scales where the fluctuations are less efficiently stabilised.

  10. Breath-hold times in patients undergoing radiological examinations. Comparison of expiration and inspiration with and without hyperventilation

    International Nuclear Information System (INIS)

    Groell, R.; Schaffler, G.J.; Schloffer, S.

    2001-01-01

    Background. Breath-holding is necessary for imaging studies of the thorax and abdomen using computed tomography, magnetic resonance imaging or ultrasound examinations. The purpose of this study was to compare the breath-hold times in expiration and inspiration and to evaluate the effects of hyperventilation. Patients and methods. Thirty patients and 19 healthy volunteers participated in this study after informed consent was obtained in all. The breath-hold times were measured in expiration and inspiration before and after hyperventilation. Results. The mean breath-hold times in expiration (patients: 24±9 sec, volunteers: 27±7 sec) were significantly shorter than those in inspiration (patients: 41±20 sec, p<0.001; volunteers: 62±18 sec, p<0.001). Additional hyperventilation resulted in a significant increase (range: 40-60%, p≤0.005) of the mean breathhold times either in expiration and in inspiration and for both patients and volunteers. Conclusions. Although breath-holding in expiration is recommended for various imaging studies particularly of the thorax and of the abdomen, suspending respiration in inspiration enables the patient a considerable longer breath-hold time. (author)

  11. Cycles, scaling and crossover phenomenon in length of the day (LOD) time series

    Science.gov (United States)

    Telesca, Luciano

    2007-06-01

    The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.

  12. Impact of sequential disorder on the scaling behavior of airplane boarding time

    Science.gov (United States)

    Baek, Yongjoo; Ha, Meesoon; Jeong, Hawoong

    2013-05-01

    Airplane boarding process is an example where disorder properties of the system are relevant to the emergence of universality classes. Based on a simple model, we present a systematic analysis of finite-size effects in boarding time, and propose a comprehensive view of the role of sequential disorder in the scaling behavior of boarding time against the plane size. Using numerical simulations and mathematical arguments, we find how the scaling behavior depends on the number of seat columns and the range of sequential disorder. Our results show that new scaling exponents can arise as disorder is localized to varying extents.

  13. Understanding relationships among ecosystem services across spatial scales and over time

    Science.gov (United States)

    Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.

    2018-05-01

    Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic

  14. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts

    Science.gov (United States)

    Vea, Isabelle M.; Grimaldi, David A.

    2016-01-01

    The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228–273], and of the neococcoids 60 million years later [210–165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous. PMID:27000526

  15. The role of topography on catchment‐scale water residence time

    Science.gov (United States)

    McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.

    2005-01-01

    The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined topographic controls on residence time for seven catchments (0.085–62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment‐scale water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 organization (i.e., topography) rather than basin area controls catchment‐scale transport. Results from this study may provide a framework for describing scale‐invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first‐order control on base flow residence time.

  16. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    International Nuclear Information System (INIS)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-01-01

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  17. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  18. Radiology research in mainland China in the past 10 years: a survey of original articles published in Radiology and European Radiology.

    Science.gov (United States)

    Zhang, Long Jiang; Wang, Yun Fei; Yang, Zhen Lu; Schoepf, U Joseph; Xu, Jiaqian; Lu, Guang Ming; Li, Enzhong

    2017-10-01

    To evaluate the features and trends of Radiology research in Mainland China through bibliometric analysis of the original articles published in Radiology and European Radiology (ER) between 2006 and 2015. We reviewed the original articles published in Radiology and ER between 2006 and 2015. The following information was abstracted: imaging subspecialty, imaging technique(s) used, research type, sample size, study design, statistical analysis, study results, funding declarations, international collaborations, number of authors, department and province of the first author. All variables were examined longitudinally over time. Radiology research in Mainland China saw a substantial increase in original research articles published, especially in the last 5 years (P Radiology research, neuroradiology, vascular/interventional Radiology, and abdominal Radiology were the most productive fields; MR imaging was the most used modality, and a distinct geographic provenience was observed for articles published in Radiology and ER. Radiology research in Mainland China has seen substantial growth in the past 5 years with neuroradiology, vascular/interventional Radiology, and abdominal Radiology as the most productive fields. MR imaging is the most used modality. Article provenience shows a distinct geographical pattern. • Radiology research in Mainland China saw a substantial increase. • Neuroradiology, vascular/interventional Radiology, and abdominal Radiology are the most productive fields. • MRI is the most used modality in Mainland China's Radiology research. • Guangdong, Shanghai, and Beijing are the most productive provinces.

  19. Fractional Sobolev’s Spaces on Time Scales via Conformable Fractional Calculus and Their Application to a Fractional Differential Equation on Time Scales

    Directory of Open Access Journals (Sweden)

    Yanning Wang

    2016-01-01

    Full Text Available Using conformable fractional calculus on time scales, we first introduce fractional Sobolev spaces on time scales, characterize them, and define weak conformable fractional derivatives. Second, we prove the equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, uniform convexity, and compactness of some imbeddings, which can be regarded as a novelty item. Then, as an application, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for a p-Laplacian conformable fractional differential equation boundary value problem on time scale T:  Tα(Tαup-2Tα(u(t=∇F(σ(t,u(σ(t, Δ-a.e.  t∈a,bTκ2, u(a-u(b=0, Tα(u(a-Tα(u(b=0, where Tα(u(t denotes the conformable fractional derivative of u of order α at t, σ is the forward jump operator, a,b∈T,  01, and F:[0,T]T×RN→R. By establishing a proper variational setting, we obtain three existence results. Finally, we present two examples to illustrate the feasibility and effectiveness of the existence results.

  20. Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model

    Science.gov (United States)

    Lvov, Yuri V.; Onorato, Miguel

    2018-04-01

    We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.

  1. Radiological problems in Kazakhstan

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Lukashenko, S.N.

    2001-01-01

    Kazakhstan historical development and available mineral resources have pre-determined a scale of radiological problems in the state. Kazakhstan keeps leading positions in the world in explored uranium resources and hydrocarbon raw. More than five hundred nuclear explosions were performed in various regions of Kazakhstan. There is necessity to carry out remediation actions at the former test sites of Kazakhstan, especially at the Semipalatinsk test-site (STS). But because of the high cost of such actions it should be expedient to carry out them only in case of emergency and inclusion of the former test sites lands to the national economic activity, as in general, under conditions of competent policy of inhabitants, STS doesn't represent a hazard. At the same time, we ought not to lose an invaluable scientific material of test-sites. It is necessary to keep some areas of Semipalatinsk test-site as a rarities, reflected the important stages of the human evolution. Test-sites should be considered as world laboratory for studies of artificial radionuclides behaviour in natural medium. Illustrations of radiation-hazardous objects, of used technologies and procedures, under the Kazakhstan Republic instance, show that main power industries lead to the common increase of radioactivity materials in human environment. Mankind certainly will become aware of fact that industrial activities, under the current level of science and technologies development, will lead to the common increase of radioactivity materials in human environment. Solving of radioecological problems is possible only when people review their approach to a radioactivity, as a whole. Not only specialists involved in this field, but also all local population have to know rules of radiation safety and how reasonable manage with radioactive materials

  2. Docritfab: A program to assess the radiological impact in accidental emissions of a nuclear fuel factory in real time; Docritfab: Un programa para evaluar en tiempo real el impacto radiologico en emisiones accidentales de una fabrica de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. G.; Ortiz, D.; Lopez, J.

    2014-07-01

    Docrit is a program developed for the manufacture of fuels of oxides of uranium Juzbado allowing an estimate in real time of the radiological impact in the case of accidental emissions from gaseous effluents (emissions of aerosols of UO{sub 2} and criticality accidents).

  3. Diagnostic accuracy of the Barr and Blethyn radiological scoring systems for childhood constipation assessed using colonic transit time as the gold standard

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Claire R.; Wylie, Anna B.Z.; Adams, Charlotte [Royal Victoria Infirmary, Department of Paediatric Surgery, Newcastle upon Tyne (United Kingdom); Lee, Richard E. [Royal Victoria Infirmary, Department of Radiology, Newcastle upon Tyne (United Kingdom); Jaffray, Bruce [University of Newcastle upon Tyne, School of Clinical Medical Sciences (Child Health), Sir James Spence Institute, Newcastle upon Tyne (United Kingdom)

    2009-07-15

    Constipation is a common childhood symptom and abdominal radiography is advocated in diagnosis and management. To assess the reproducibility and diagnostic accuracy of the Barr and Blethyn systems for quantifying constipation on abdominal radiographs in children. Radiographs were scored by three observers of increasing radiological experience (student, junior doctor, consultant). Abdominal radiographs produced during measurement of colonic transit time (CTT) were classified as constipated or normal based on the value of the transit time, and were scored using both systems by observers blinded to the CTT. Abdominal radiographs obtained in children for reasons other than constipation were classed as normal and similarly scored. Reproducibility was measured using the kappa statistic. Diagnostic accuracy was measured using the area under the curve (AUC) for the receiver operator characteristic (ROC) curve. Using either system, scores were higher for constipated children (P<0.01). The consultant produced higher scores than the other observers (P<0.01). Interobserver reproducibility was moderate with the best kappa value only 0.48. The best correlation between score and CTT was 0.51 (junior doctor scores). Diagnostic accuracy of the scores was only moderate, with the largest AUC for a ROC curve of 0.84 for the consultant using the Barr score. Scoring of abdominal radiographs in the assessment of childhood constipation should be abandoned because it is dependent on the experience of the observer, is poorly reproducible, and does not accurately discriminate between constipated children and children without constipation. (orig.)

  4. Diagnostic accuracy of the Barr and Blethyn radiological scoring systems for childhood constipation assessed using colonic transit time as the gold standard

    International Nuclear Information System (INIS)

    Jackson, Claire R.; Wylie, Anna B.Z.; Adams, Charlotte; Lee, Richard E.; Jaffray, Bruce

    2009-01-01

    Constipation is a common childhood symptom and abdominal radiography is advocated in diagnosis and management. To assess the reproducibility and diagnostic accuracy of the Barr and Blethyn systems for quantifying constipation on abdominal radiographs in children. Radiographs were scored by three observers of increasing radiological experience (student, junior doctor, consultant). Abdominal radiographs produced during measurement of colonic transit time (CTT) were classified as constipated or normal based on the value of the transit time, and were scored using both systems by observers blinded to the CTT. Abdominal radiographs obtained in children for reasons other than constipation were classed as normal and similarly scored. Reproducibility was measured using the kappa statistic. Diagnostic accuracy was measured using the area under the curve (AUC) for the receiver operator characteristic (ROC) curve. Using either system, scores were higher for constipated children (P<0.01). The consultant produced higher scores than the other observers (P<0.01). Interobserver reproducibility was moderate with the best kappa value only 0.48. The best correlation between score and CTT was 0.51 (junior doctor scores). Diagnostic accuracy of the scores was only moderate, with the largest AUC for a ROC curve of 0.84 for the consultant using the Barr score. Scoring of abdominal radiographs in the assessment of childhood constipation should be abandoned because it is dependent on the experience of the observer, is poorly reproducible, and does not accurately discriminate between constipated children and children without constipation. (orig.)

  5. Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data

    Directory of Open Access Journals (Sweden)

    Heiko Balzter

    2015-03-01

    Full Text Available Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v is provided. The results show that the temporal scales of the current climate (1960–2014 are different from the long-term average (1850–1960. For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the

  6. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    Science.gov (United States)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  7. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations

    Science.gov (United States)

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-01

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  8. Urban Freight Management with Stochastic Time-Dependent Travel Times and Application to Large-Scale Transportation Networks

    Directory of Open Access Journals (Sweden)

    Shichao Sun

    2015-01-01

    Full Text Available This paper addressed the vehicle routing problem (VRP in large-scale urban transportation networks with stochastic time-dependent (STD travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes in a STD network was solved through a robust approach without requiring the probability distributions of link travel times. Based on that, the proposed STD-VRP model can be converted into solving a normal time-dependent VRP (TD-VRP, and algorithms for such TD-VRPs can also be introduced to obtain the solution. Numerical experiments were conducted to address STD-VRPTW of practical sizes on a real world urban network, demonstrated here on the road network of Shenzhen, China. The stochastic time-dependent link travel times of the network were calibrated by historical floating car data. A route construction algorithm was applied to solve the STD problem in 4 delivery scenarios efficiently. The computational results showed that the proposed STD-VRPTW model can improve the level of customer service by satisfying the time-window constraint under any circumstances. The improvement can be very significant especially for large-scale network delivery tasks with no more increase in cost and environmental impacts.

  9. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales

    Science.gov (United States)

    James W. Kirchner; Robert C. Finkel; Clifford S. Riebe; Darryl E. Granger; James L. Clayton; John G. King; Walter F. Megahan

    2001-01-01

    We used cosmogenic 10Be to measure erosion rates over 10 k.y. time scales at 32 Idaho mountain catchments, ranging from small experimental watersheds (0.2 km2) to large river basins (35 000 km2). These long-term sediment yields are, on average, 17 times higher than stream sediment fluxes measured over...

  10. Multi-time, multi-scale correlation functions in turbulence and in turbulent models

    NARCIS (Netherlands)

    Biferale, L.; Boffetta, G.; Celani, A.; Toschi, F.

    1999-01-01

    A multifractal-like representation for multi-time, multi-scale velocity correlation in turbulence and dynamical turbulent models is proposed. The importance of subleading contributions to time correlations is highlighted. The fulfillment of the dynamical constraints due to the equations of motion is

  11. Mixing and flushing time scales in the Azhikode Estuary, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Revichandran, C.; Pylee, A.

    Flushing time scales of the Azhikode Estuary, Kerala, India showed pronounced dry season and wet season signals as well as large inter-annual variation. Cumulative flushing time of the estuary varies from 4.8 tide cycles in April to 1.22 tide cycles...

  12. Time Scale Analysis of Interest Rate Spreads and Output Using Wavelets

    Directory of Open Access Journals (Sweden)

    Marco Gallegati

    2013-04-01

    Full Text Available This paper adds to the literature on the information content of different spreads for real activity by explicitly taking into account the time scale relationship between a variety of monetary and financial indicators (real interest rate, term and credit spreads and output growth. By means of wavelet-based exploratory data analysis we obtain richer results relative to the aggregate analysis by identifying the dominant scales of variation in the data and the scales and location at which structural breaks have occurred. Moreover, using the “double residuals” regression analysis on a scale-by-scale basis, we find that changes in the spread in several markets have different information content for output at different time frames. This is consistent with the idea that allowing for different time scales of variation in the data can provide a fruitful understanding of the complex dynamics of economic relationships between variables with non-stationary or transient components, certainly richer than those obtained using standard time domain methods.

  13. Projective synchronization of time-varying delayed neural network with adaptive scaling factors

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Banerjee, Santo

    2013-01-01

    Highlights: • Projective synchronization in coupled delayed neural chaotic systems with modulated delay time is introduced. • An adaptive rule for the scaling factors is introduced. • This scheme is highly applicable in secure communication. -- Abstract: In this work, the projective synchronization between two continuous time delayed neural systems with time varying delay is investigated. A sufficient condition for synchronization for the coupled systems with modulated delay is presented analytically with the help of the Krasovskii–Lyapunov approach. The effect of adaptive scaling factors on synchronization are also studied in details. Numerical simulations verify the effectiveness of the analytic results

  14. Time scales of the stick–slip dynamics of the peeling of an adhesive tape

    Science.gov (United States)

    Mishra, Nachiketa; Parida, Nigam Chandra; Raha, Soumyendu

    2015-01-01

    The stick–slip dynamics of the peeling of an adhesive tape is characterized by bifurcations that have been experimentally well studied. In this work, we investigate the time scale in which the the stick–slips happen leading to the bifurcations. This is fundamental to understanding the triboluminescence and acoustic emissions associated with the bifurcations. We establish a relationship between the time scale of the bifurcations and the inherent mathematical structure of the peeling dynamics by studying a characteristic time quantity associated with the dynamics. PMID:25663802

  15. Radiologic protection in dental radiology

    International Nuclear Information System (INIS)

    Pacheco Jimenez, R.E.; Bermudez Jimenez, L.A.

    2000-01-01

    With this work and employing the radioprotection criterion, the authors pretend to minimize the risks associated to this practice; without losing the quality of the radiologic image. Odontology should perform the following criterions: 1. Justification: all operation of practice that implies exposition to radiations, should be reweighed, through an analysis of risks versus benefits, with the purpose to assure, that the total detriment will be small, compared to resultant benefit of this activity. 2. Optimization: all of the exposures should be maintained as low as reasonable possible, considering the social and economic factors. 3. Dose limit: any dose limit system should be considered as a top condition, nota as an admissible level. (S. Grainger)

  16. The development and application of an integrated radiological risk assessment procedure using time-dependent probabilistic risk analysis

    International Nuclear Information System (INIS)

    Laurens, J.M.; Thompson, B.G.J.; Sumerling, T.J.

    1990-01-01

    During the past decade, the UKDoE has funded the development of an integrated assessment procedure centred around probabilistic risk analysis (p.r.a.) using Monte Carlo simulation techniques to account for the effects of parameter value uncertainty, including those associated with temporal changes in the environment over a postclosure period of about one million years. The influence of these changes can now be incorporated explicitly into the p.r.a. simulator VANDAL (Variability ANalysis of Disposal ALternatives) briefly described here. Although a full statistically converged time-dependent p.r.a. will not be demonstrated until the current Dry Run 3 trial is complete, illustrative examples are given showing the ability of VANDAL to represent spatially complex groundwater and repository systems evolving under the influence of climatic change. 18 refs., 10 figs., 1 tab

  17. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.

    Science.gov (United States)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-01

    Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The economics of interventional radiology

    International Nuclear Information System (INIS)

    Price, G.W.

    1988-01-01

    At a time when policy makers and regulators are scheming to reduce the costs and utilization of medical services, interventional radiology is poised for growth. Part of this potential for growth is based on wider acceptance of the procedures performed by interventional radiologists. A second factor in the growth potential is the relative value in cost of these procedures compared with alternative therapies. The author presents a discussion of the differences in the relative value of these procedures when performed by physicians of different specialties. This paper reviews the status of the economic climate in the health care delivery system and the role and potential growth of interventional radiology. This includes a review of current data on the utilization of interventional radiology procedures in the Medicare program. This overview includes a discussion of the initiatives of the federal government which directly impact interventional radiology

  19. A multiple-time-scale approach to the control of ITBs on JET

    Energy Technology Data Exchange (ETDEWEB)

    Laborde, L.; Mazon, D.; Moreau, D. [EURATOM-CEA Association (DSM-DRFC), CEA Cadarache, 13 - Saint Paul lez Durance (France); Moreau, D. [Culham Science Centre, EFDA-JET, Abingdon, OX (United Kingdom); Ariola, M. [EURATOM/ENEA/CREATE Association, Univ. Napoli Federico II, Napoli (Italy); Cordoliani, V. [Ecole Polytechnique, 91 - Palaiseau (France); Tala, T. [EURATOM-Tekes Association, VTT Processes (Finland)

    2005-07-01

    The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)

  20. A multiple-time-scale approach to the control of ITBs on JET

    International Nuclear Information System (INIS)

    Laborde, L.; Mazon, D.; Moreau, D.; Moreau, D.; Ariola, M.; Cordoliani, V.; Tala, T.

    2005-01-01

    The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)

  1. Scaling of the first-passage time of biased diffusion on hierarchical comb structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-12-01

    Biased diffusion on hierarchical comb structures is studied within an exact renormalization group scheme. The scaling exponents of the moments of the first-passage time for random walks are obtained. It is found that the scaling properties of the diffusion depend only on the direction of bias. In this particular case, the presence of bias may give rise to a new multifractality. (author). 7 refs, 2 figs

  2. Antipersistent dynamics in short time scale variability of self-potential signals

    OpenAIRE

    Cuomo, V.; Lanfredi, M.; Lapenna, V.; Macchiato, M.; Ragosta, M.; Telesca, L.

    2000-01-01

    Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram), a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal...

  3. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period

    DEFF Research Database (Denmark)

    Blunier, T; Brook, E J

    2001-01-01

    A precise relative chronology for Greenland and West Antarctic paleotemperature is extended to 90,000 years ago, based on correlation of atmospheric methane records from the Greenland Ice Sheet Project 2 and Byrd ice cores. Over this period, the onset of seven major millennial-scale warmings in A....... This pattern provides further evidence for the operation of a "bipolar see-saw" in air temperatures and an oceanic teleconnection between the hemispheres on millennial time scales....

  4. Ambulatory phlebectomy at radiologic outpatient clinic

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chang Jin; Kang, Sung Gwon; Choi, Sang Il [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Lee, Whal; Chung, Jin Wook; Park, Jae Hyung [Seoul National University, Medical College, Seoul (Korea, Republic of)

    2007-03-15

    To evaluate safety, efficacy, and patient's satisfaction of an ambulatory phlebectomy, performed at a radiology outpatient clinic. Between 2003 and 2006, an ambulatory phlebectomy was performed in 12 patients. Endovenous radiofrequency ablation was performed through a venotomy. The venotomy was ligated after RF ablation, and the ambulatory phlebectomy was performed. The patients visited the radiology outpatient clinic one day, one week, and 2 months after the procedure. The improvement in the clinical symptoms, cosmetic change in varicosity, and the procedure related complications were evaluated. The patient's satisfaction was evaluated using a 5-grade scale. RF ablation through a venotomy was performed successfully in all 12 patients. On average, 4.5 incisions were made, and 12.5 cm of varicosity had been removed. The mean procedure time was one hour and forty minutes. The complications of the ambulatory phlebectomy were bruising in one patient, and skin pigmentation in another. The complications associated with RF ablation were a hard palpable vein in 7 patients, numbness in 7 patients, and skin pigmentation along the vein in 2 patients. Follow-up duplex sonography was performed at 2 months after the procedure, showed complete occlusion in all 12 patients. The clinical symptoms had improved in 11 patients, and the varicosity disappeared cosmetically in 11 patients. An ambulatory phlebectomy, combined with RF ablation of the greater saphenous vein, can be performed safely and effectively at a radiology outpatient clinic.

  5. Ambulatory phlebectomy at radiologic outpatient clinic

    International Nuclear Information System (INIS)

    Yoon, Chang Jin; Kang, Sung Gwon; Choi, Sang Il; Lee, Whal; Chung, Jin Wook; Park, Jae Hyung

    2007-01-01

    To evaluate safety, efficacy, and patient's satisfaction of an ambulatory phlebectomy, performed at a radiology outpatient clinic. Between 2003 and 2006, an ambulatory phlebectomy was performed in 12 patients. Endovenous radiofrequency ablation was performed through a venotomy. The venotomy was ligated after RF ablation, and the ambulatory phlebectomy was performed. The patients visited the radiology outpatient clinic one day, one week, and 2 months after the procedure. The improvement in the clinical symptoms, cosmetic change in varicosity, and the procedure related complications were evaluated. The patient's satisfaction was evaluated using a 5-grade scale. RF ablation through a venotomy was performed successfully in all 12 patients. On average, 4.5 incisions were made, and 12.5 cm of varicosity had been removed. The mean procedure time was one hour and forty minutes. The complications of the ambulatory phlebectomy were bruising in one patient, and skin pigmentation in another. The complications associated with RF ablation were a hard palpable vein in 7 patients, numbness in 7 patients, and skin pigmentation along the vein in 2 patients. Follow-up duplex sonography was performed at 2 months after the procedure, showed complete occlusion in all 12 patients. The clinical symptoms had improved in 11 patients, and the varicosity disappeared cosmetically in 11 patients. An ambulatory phlebectomy, combined with RF ablation of the greater saphenous vein, can be performed safely and effectively at a radiology outpatient clinic

  6. Radiological safety system based on real-time tritium-in-air monitoring indoor and in effluents

    International Nuclear Information System (INIS)

    Bidica, Nicolae; Sofalca, Nicolae; Balteanu, Ovidiu-Ioan; Stefan, Ioana-Iuliana

    2007-01-01

    In this paper we describe an improved real-time tritium monitoring system designed for Heavy Water Detritiation Pilot Plant of National Institute for Cryogenics and Isotopes Separation, Rm. Valcea, Romania. The system consists of three fixed tritium-in-air monitors which measure continuously tritium-in-air concentration (in both species: vapour and gas) in working areas and gaseous effluents. Portable tritium monitors with ionization chamber, and tritium-in-air collector combined with liquid scintillation counter method are also used to supplement fixed instrument measurements. The main functions of tritium monitoring system are: to measure tritium-in air concentration in working areas and gaseous effluents; to alarm the personnel if tritium concentration thresholds are exceeded; to integrate tritium activity released to the environment during a week and to cut off normal ventilation when the activity threshold is exceeded and start the air cleaning system. Now, several especial functions have been added, so that by using appropriate conversion factors, the tritium monitoring system is able to estimate the effective dose rate before starting an activity into the monitored area, during this activity, or soon as the activity was finished. Another new function has been added by coupling tritium-in-air monitoring system with control access system. This is very useful for quick estimation of tritium doses. For routine dosimetric survey, one the internal dose for individuals by measuring tritium in urine is estimated. With all these features our tritium monitoring system is really a safety system for personnel and for environment. (authors)

  7. Radiological and geophysical changes around the Fukushima Daiichi Nuclear Power Plant since the accident to the present time

    Science.gov (United States)

    Kolotkov, Gennady

    2013-04-01

    Detailed analysis of accidental released of radioactive material from Fukushima Daiichi nuclear power plant has shown that long-lived radionuclides add considerable support for intensity of ion formation. Based on the results of airborne monitoring by MEXT and DOE (total surface deposition of Cs134 and Cs137 inside 80 km zone of Fukushima Daiichi NPP) it has been calculated the spatial distribution of the intensity of ion formation and atmospheric electric conductivity. The evidence of plutonium in the Fukushima radioactive trace allows calculates the concentration of small, intermediate and large ions. The results show the excess of these parameters by several orders of magnitude since the accident to the present time. For example the concentration of small air ion in the area of Chernobyl is 7±2?102 cm-3, the Fukushima Daiichi NPP ones is 1.3?106 cm-3. The difference in the atmospheric bipolar electric conductivity is about 24 fS/m between the Chernobyl and the Fukushima Daiichi ones. The evaluation technique was used after Chernobyl disaster allows to make an analysis of ecological, hygiene requirements and other problems into the troposphere and on the soil intensity of ion formation in the area of Fukushima Daiichi nuclear power plant. The standard ion air differ by four orders of magnitude in the case for Fukushima Daiichi ones. Comparative study of the radiophysical characteristics of the atmosphere with the analogous ones in Chernobyl and application of identification of various types of the air pollution is discussed.

  8. An alcator-like confinement time scaling law derived from buckingham's PI theorem

    International Nuclear Information System (INIS)

    Roth, J.R.

    1983-01-01

    The unsatisfactory state of understanding of particle transport and confinement in tokamaks is well known. The best available theory, neoclassical transport, predicts a confinement time which scales as the square of the magnetic field, and inversely as the number density. Until recently, the best available phenomenological scaling law was the Alcator scaling law. This scaling law has recently been supplanted by the neoAlcator scaling law. Both of these expressions are unsatisfactory, because they not only are unsupported by any physical theory, but also their numerical constants are dimensional, suggesting that additional physical parameters need to be accounted for. A more firmly based scaling law can be derived from Buckingham's pi theorem. We adopt the particle confinement time as the dependent variable (derived dimension), and as independent variables (fundamental dimensions) we use the plasma volume, the average ion charge density, the ion current on the limiter, and the magnetic induction. From Buckingham's pi theorem, we obtain an equation which correctly predicts the absence of magnetic induction dependence, and the direct dependence on the ion density. The dependence on the product of the major radius and the plasma radius is intermediate between the original and neoAlcator scaling laws, and may be consistent with the data if the ion kinetic temperature and limiter area were accounted for

  9. Theoretical restrictions on longest implicit time scales in Markov state models of biomolecular dynamics

    Science.gov (United States)

    Sinitskiy, Anton V.; Pande, Vijay S.

    2018-01-01

    Markov state models (MSMs) have been widely used to analyze computer simulations of various biomolecular systems. They can capture conformational transitions much slower than an average or maximal length of a single molecular dynamics (MD) trajectory from the set of trajectories used to build the MSM. A rule of thumb claiming that the slowest implicit time scale captured by an MSM should be comparable by the order of magnitude to the aggregate duration of all MD trajectories used to build this MSM has been known in the field. However, this rule has never been formally proved. In this work, we present analytical results for the slowest time scale in several types of MSMs, supporting the above rule. We conclude that the slowest implicit time scale equals the product of the aggregate sampling and four factors that quantify: (1) how much statistics on the conformational transitions corresponding to the longest implicit time scale is available, (2) how good the sampling of the destination Markov state is, (3) the gain in statistics from using a sliding window for counting transitions between Markov states, and (4) a bias in the estimate of the implicit time scale arising from finite sampling of the conformational transitions. We demonstrate that in many practically important cases all these four factors are on the order of unity, and we analyze possible scenarios that could lead to their significant deviation from unity. Overall, we provide for the first time analytical results on the slowest time scales captured by MSMs. These results can guide further practical applications of MSMs to biomolecular dynamics and allow for higher computational efficiency of simulations.

  10. Current radiology. Volume 5

    International Nuclear Information System (INIS)

    Wilson, G.H.; Hanafee, W.N.

    1984-01-01

    This book contains 10 selections. They are: Nuclear Magnetic Resonance Imaging, Interventional Vascular Radiology, Genitourinary Radiology, Skeletal Radiology, Digital Subtraction Angiography, Neuroradiology, Computed Tomographic Evaluation of Degenerative Diseases of the Lumbar Spine, The Lung, Otolaringology and Opthalmology, and Pediatric Radiology: Cranial, Facial, Cervical, Vertebral, and Appendicular

  11. Expanding the functionality of speech recognition in radiology: creating a real-time methodology for measurement and analysis of occupational stress and fatigue.

    Science.gov (United States)

    Reiner, Bruce I

    2013-02-01

    While occupational stress and fatigue have been well described throughout medicine, the radiology community is particularly susceptible due to declining reimbursements, heightened demands for service deliverables, and increasing exam volume and complexity. The resulting occupational stress can be variable in nature and dependent upon a number of intrinsic and extrinsic stressors. Intrinsic stressors largely account for inter-radiologist stress variability and relate to unique attributes of the radiologist such as personality, emotional state, education/training, and experience. Extrinsic stressors may account for intra-radiologist stress variability and include cumulative workload and task complexity. The creation of personalized stress profiles creates a mechanism for accounting for both inter- and intra-radiologist stress variability, which is essential in creating customizable stress intervention strategies. One viable option for real-time occupational stress measurement is voice stress analysis, which can be directly implemented through existing speech recognition technology and has been proven to be effective in stress measurement and analysis outside of medicine. This technology operates by detecting stress in the acoustic properties of speech through a number of different variables including duration, glottis source factors, pitch distribution, spectral structure, and intensity. The correlation of these speech derived stress measures with outcomes data can be used to determine the user-specific inflection point at which stress becomes detrimental to clinical performance.

  12. Radiologic protection in pediatric radiology: ICRP recommendations

    International Nuclear Information System (INIS)

    Sanchez, Ramon; Khong, Pek-Lan; Ringertz, Hans

    2013-01-01

    ICRP has provided an updated overview of radiation protection principles in pediatric radiology. The authors recommend that staff, radiologists, medical physicists and vendors involved in pediatric radiology read this document. For conventional radiography, the report gives advice on patient positioning, immobilization, shielding and appropriate exposure conditions. It describes extensively the use of pulsed fluoroscopy, the importance of limiting fluoroscopy time, and how shielding and geometry must be used to avoid unnecessary radiation to the patient and operator. Furthermore, the use of fluoroscopy in interventional procedures with emphasis on dose reduction to patients and staff is discussed in light of the increasing frequency, complexity and length ofthe procedures. CT is the main reason that medical imaging in several developed countries is the highest annual per capita effective radiation dose from man-made sources. The ICRP report gives extensive descriptions of how CT protocols can be optimized to minimize radiation exposure in pediatric patients. The importance of balancing image quality with acceptable noise in pediatric imaging and the controversies regarding the use of protective shielding in CT are also discussed.

  13. Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file.

    Science.gov (United States)

    Do, Bao H; Wu, Andrew; Biswal, Sandip; Kamaya, Aya; Rubin, Daniel L

    2010-11-01

    Storing and retrieving radiology cases is an important activity for education and clinical research, but this process can be time-consuming. In the process of structuring reports and images into organized teaching files, incidental pathologic conditions not pertinent to the primary teaching point can be omitted, as when a user saves images of an aortic dissection case but disregards the incidental osteoid osteoma. An alternate strategy for identifying teaching cases is text search of reports in radiology information systems (RIS), but retrieved reports are unstructured, teaching-related content is not highlighted, and patient identifying information is not removed. Furthermore, searching unstructured reports requires sophisticated retrieval methods to achieve useful results. An open-source, RadLex(®)-compatible teaching file solution called RADTF, which uses natural language processing (NLP) methods to process radiology reports, was developed to create a searchable teaching resource from the RIS and the picture archiving and communication system (PACS). The NLP system extracts and de-identifies teaching-relevant statements from full reports to generate a stand-alone database, thus converting existing RIS archives into an on-demand source of teaching material. Using RADTF, the authors generated a semantic search-enabled, Web-based radiology archive containing over 700,000 cases with millions of images. RADTF combines a compact representation of the teaching-relevant content in radiology reports and a versatile search engine with the scale of the entire RIS-PACS collection of case material. ©RSNA, 2010

  14. Radiological Control Manual

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  15. Radiological Control Manual

    International Nuclear Information System (INIS)

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records

  16. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    Science.gov (United States)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  17. Analysis of passive scalar advection in parallel shear flows: Sorting of modes at intermediate time scales

    Science.gov (United States)

    Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio

    2010-11-01

    The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the

  18. New time scale based k-epsilon model for near-wall turbulence

    Science.gov (United States)

    Yang, Z.; Shih, T. H.

    1993-01-01

    A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.

  19. Integrative teaching in Radiology. A survey

    International Nuclear Information System (INIS)

    Dettmer, S.; Weidemann, J.; Wacker, F.; Fischer, V.

    2015-01-01

    To survey integrative teaching in radiology at German universities. A questionnaire about radiological education was sent electronically to all 37 chairpersons of university radiology departments in Germany. The questions included the course type, teaching methods, concept, perception, and advantages and disadvantages of integrative teaching. Statistical analysis was performed with nonparametric statistics and chi-square test. The survey was considered representative with a return rate of 68%. Integrative teaching is established at 4/5 of all departments. Integrative teaching is well accepted with an acceptance rate that is significantly higher in so-called 'Modellstudiengaengen' (model courses of study) (100%) compared to conventional courses of study (72%). The advantages of integrative teaching include linking of content (92%) and preparation for interdisciplinary work (76%). The disadvantages include high effort (75%) and time (67%) for organization. Furthermore, there is a risk that basic radiological facts and knowledge cannot be conveyed and that the visibility of radiology as an independent discipline is lost. Conventional radiological teaching has a similarly high acceptance (84%) compared to integrative courses (76%). Integrative teaching has a high acceptance among chairpersons in radiology in Germany despite the greater effort. A good interdisciplinary collaboration is essential for integrative teaching and at the same time this can be conveyed to the students. However, the visibility of radiology as a discipline and the possibility to cover basic radiological content must be ensured. Therefore, both conventional courses and integrative teaching seems reasonable, especially in cross-disciplinary subjects such as radiology.

  20. Scale-invariant Green-Kubo relation for time-averaged diffusivity

    Science.gov (United States)

    Meyer, Philipp; Barkai, Eli; Kantz, Holger

    2017-12-01

    In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.

  1. Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test

    Science.gov (United States)

    Nielsen, Tanner; Williams, B.; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.

  2. Radiological Evaluation Standards in the Radiology Department of Shahid Beheshti Hospital (RAH) YASUJ Based on Radiology standards in 92

    OpenAIRE

    A َKalantari; SAM Khosravani

    2014-01-01

    Background & aim: Radiology personnel’s working in terms of performance and safety is one of the most important functions in order to increase the quality and quantity. This study aimed to evaluate the radiological standards in Shahid Beheshti Hospital of Yasuj, Iran, in 2013. Methods: The present cross-sectional study was based on a 118 randomly selected graphs and the ranking list, with full knowledge of the standards in radiology was performed two times. Data were analyzed using descri...

  3. Time scales of magma transport and mixing at Kīlauea Volcano, Hawai’i

    OpenAIRE

    Rae, Auriol S.P.; Edmonds, Marie; Maclennan, John; Morgan, Daniel; Houghton, Bruce; Hartley, Margaret E.; Sides, Isobel

    2016-01-01

    Modeling of volcanic processes is limited by a lack of knowledge of the time scales of storage, mixing, and final ascent of magmas into the shallowest portions of volcanic plumbing systems immediately prior to eruption. It is impossible to measure these time scales directly; however, micro-analytical techniques provide indirect estimates based on the extent of diffusion of species through melts and crystals. We use diffusion in olivine phenocrysts from the A.D. 1959 Kīlauea Iki (Hawai‘i, USA)...

  4. Doubly stochastic Poisson process models for precipitation at fine time-scales

    Science.gov (United States)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  5. Time scale of scour around a pile in combined waves and current

    DEFF Research Database (Denmark)

    Petersen, Thor Ugelvig; Sumer, B. Mutlu; Fredsøe, Jørgen

    The time scale of the scour process around a circular vertical pile is studied in combined waves and current. A series of tests were carried out in a flume with pile diameters 40 mm and 75 mm, in both steady current, waves and combined waves and current. In the combined wave and current flow regime...... the waves and the current were co-directional. All the tests were conducted in the live bed regime. The time scale of scour in combined waves and current is governed by three parameters, namely the current-velocity-to-wave-velocity ratio (Ucw), the Keulegan–Carpenter number (KC) and Shields parameter (Θw...

  6. Rapid-mixing studies on the time-scale of radiation damage in cells

    International Nuclear Information System (INIS)

    Adams, G.E.; Michael, B.D.; Asquith, J.C.; Shenoy, M.A.; Watts, M.E.; Whillans, D.W.

    1975-01-01

    Rapid mixing studies were performed to determine the time scale of radiation damage in cells. There is evidence that the sensitizing effects of oxygen and other chemical dose-modifying agents on the response of cells to ionizing radiation involve fast free-radical processes. Fast response technique studies in bacterial systems have shown that extremely fast processes occur when the bacteria are exposed to oxygen or other dose-modifying agents during irradiation. The time scales observed were consistent with the involvement of fast free-radical reactions in the expression of these effects

  7. New Bounds of Ostrowski–Gruss Type Inequality for (k + 1 Points on Time Scales

    Directory of Open Access Journals (Sweden)

    Eze R. Nwaeze

    2017-11-01

    Full Text Available The aim of this paper is to present three new bounds of the Ostrowski--Gr\\"uss type inequality for points $x_0,x_1,x_2,\\cdots,x_k$ on time scales. Our results generalize result of Ng\\^o and Liu, and extend results of Ujevi\\'c to time scales with $(k+1$ points. We apply our results to the continuous, discrete, and quantum calculus to obtain many new interesting inequalities. An example is also considered. The estimates obtained in this paper will be very useful in numerical integration especially for the continuous case.

  8. Time-dependent approach to collisional ionization using exterior complex scaling

    International Nuclear Information System (INIS)

    McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.

    2002-01-01

    We present a time-dependent formulation of the exterior complex scaling method that has previously been used to treat electron-impact ionization of the hydrogen atom accurately at low energies. The time-dependent approach solves a driven Schroedinger equation, and scales more favorably with the number of electrons than the original formulation. The method is demonstrated in calculations for breakup processes in two dimensions (2D) and three dimensions for systems involving short-range potentials and in 2D for electron-impact ionization in the Temkin-Poet model for electron-hydrogen atom collisions

  9. Deep Learning in Radiology.

    Science.gov (United States)

    McBee, Morgan P; Awan, Omer A; Colucci, Andrew T; Ghobadi, Comeron W; Kadom, Nadja; Kansagra, Akash P; Tridandapani, Srini; Auffermann, William F

    2018-03-29

    As radiology is inherently a data-driven specialty, it is especially conducive to utilizing data processing techniques. One such technique, deep learning (DL), has become a remarkably powerful tool for image processing in recent years. In this work, the Association of University Radiologists Radiology Research Alliance Task Force on Deep Learning provides an overview of DL for the radiologist. This article aims to present an overview of DL in a manner that is understandable to radiologists; to examine past, present, and future applications; as well as to evaluate how radiologists may benefit from this remarkable new tool. We describe several areas within radiology in which DL techniques are having the most significant impact: lesion or disease detection, classification, quantification, and segmentation. The legal and ethical hurdles to implementation are also discussed. By taking advantage of this powerful tool, radiologists can become increasingly more accurate in their interpretations with fewer errors and spend more time to focus on patient care. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  11. Training in radiological protection

    International Nuclear Information System (INIS)

    Medina G, E.

    2014-08-01

    In the Peru, according to the current regulations, people that work with ionizing radiations should have an authorization (individual license), which is granted by the Technical Office of the National Authority that is the technical body of the Instituto Peruano de Energia Nuclear (IPEN) manager of the control of ionizing radiations in the country. The individual license is obtained after the applicant fulfills the requested requirements, as having safety knowledge and radiological protection. Since its founding in 1972, the Centro Superior de Estudios Nucleares (CSEN) of the IPEN has carried out diverse training courses in order to that people can work in a safe way with ionizing radiations in medicine, industry and research, until the year 2013 have been organized 2231 courses that have allowed the training of 26213 people. The courses are organized according to the specific work that is carried out with radiations (medical radio-diagnostic, dental radiology, nuclear medicine, radiotherapy, industrial radiography, nuclear meters, logging while drilling, etc.). In their majority the courses are directed to people that will make use of radiations for first time, but refresher courses are also granted in the topic. The CSEN also carries out the Master degree programs highlighting the Second Professional Specialization in Radiological Protection carried out from the year 2004 with the support of the National University of Engineering. To the present has been carried out 2 programs and there is other being developed. In this work is shown the historical evolution of the radiological protection courses as well as the important thing that they are to work in a safe way in the country. (Author)

  12. Time-sliced perturbation theory for large scale structure I: general formalism

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  13. Influence of the time scale on the construction of financial networks.

    Science.gov (United States)

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-09-30

    In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.

  14. Resolution, Scales and Predictability: Is High Resolution Detrimental To Predictability At Extended Forecast Times?

    Science.gov (United States)

    Mesinger, F.

    The traditional views hold that high-resolution limited area models (LAMs) down- scale large-scale lateral boundary information, and that predictability of small scales is short. Inspection of various rms fits/errors has contributed to these views. It would follow that the skill of LAMs should visibly deteriorate compared to that of their driver models at more extended forecast times. The limited area Eta Model at NCEP has an additional handicap of being driven by LBCs of the previous Avn global model run, at 0000 and 1200 UTC estimated to amount to about an 8 h loss in accuracy. This should make its relative skill compared to that of the Avn deteriorate even faster. These views are challenged by various Eta results including rms fits to raobs out to 84 h. It is argued that it is the largest scales that contribute the most to the skill of the Eta relative to that of the Avn.

  15. Mobile technology in radiology resident education.

    Science.gov (United States)

    Korbage, Aiham C; Bedi, Harprit S

    2012-06-01

    The authors hypothesized that ownership of a mobile electronic device would result in more time spent learning radiology. Current trends in radiology residents' studying habits, their use of electronic and printed radiology learning resources, and how much of the funds allotted to them are being used toward printed vs electronic education tools were assessed in this study. A survey study was conducted among radiology residents across the United States from June 13 to July 5, 2011. Program directors listed in the Association of Program Directors in Radiology e-mail list server received an e-mail asking for residents to participate in an online survey. The questionnaire consisted of 12 questions and assessed the type of institution, the levels of training of the respondents, and book funds allocated to residents. It also assessed the residents' study habits, access to portable devices, and use of printed and electronic radiology resources. Radiology residents are adopters of new technologies, with 74% owning smart phones and 37% owning tablet devices. Respondents spend nearly an equal amount of time learning radiology from printed textbooks as they do from electronic resources. Eighty-one percent of respondents believe that they would spend more time learning radiology if provided with tablet devices. There is considerable use of online and electronic resources and mobile devices among the current generation of radiology residents. Benefits, such as more study time, may be obtained by radiology programs that incorporate tablet devices into the education of their residents. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Radiological field survey problems and solutions

    International Nuclear Information System (INIS)

    Deming, E.J.; Boerner, A.J.

    1986-01-01

    Situations often arise during radiological field surveys which require the health physicist to improvise and/or make spot decisions. At times these situations can be humorous, but they can also present hazards more serious than normal radiological considerations. This presentation will depict various problematic situations encountered by Oak Ridge Associated Universities Radiological Site Assessment Program in the course of performing field environmental surveys. Detailing these potential hazards can alert other field survey groups to problems they may encounter

  17. Time-variable gravity potential components for optical clock comparisons and the definition of international time scales

    International Nuclear Information System (INIS)

    Voigt, C.; Denker, H.; Timmen, L.

    2016-01-01

    The latest generation of optical atomic clocks is approaching the level of one part in 10 18 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m 2 s -2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 10 18 . The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m 2 s -2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m 2 s -2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m 2 s -2 , while the range of the potential between specific laboratories is 0.3 and 1.1 m 2 s -2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10 -17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10 -18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage. (authors)

  18. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    1997-01-01

    This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical

  19. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    2002-01-01

    This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g

  20. Time-scale effects on the gain-loss asymmetry in stock indices

    Science.gov (United States)

    Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán

    2016-08-01

    The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.

  1. Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model

    Science.gov (United States)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2015-04-01

    One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1

  2. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    Science.gov (United States)

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  3. A Systematic Multi-Time Scale Solution for Regional Power Grid Operation

    Science.gov (United States)

    Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.

    2017-10-01

    Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.

  4. Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China

    Science.gov (United States)

    Zuo, Depeng; Cai, Siyang; Xu, Zongxue; Li, Fulin; Sun, Wenchao; Yang, Xiaojing; Kan, Guangyuan; Liu, Pin

    2018-01-01

    The temporal variations and spatial patterns of drought in Shandong Province of Eastern China were investigated by calculating the standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, 6-, 12-, and 24-month time scales. Monthly precipitation and air temperature time series during the period 1960-2012 were collected at 23 meteorological stations uniformly distributed over the region. The non-parametric Mann-Kendall test was used to explore the temporal trends of precipitation, air temperature, and the SPEI drought index. S-mode principal component analysis (PCA) was applied to identify the spatial patterns of drought. The results showed that an insignificant decreasing trend in annual total precipitation was detected at most stations, a significant increase of annual average air temperature occurred at all the 23 stations, and a significant decreasing trend in the SPEI was mainly detected at the coastal stations for all the time scales. The frequency of occurrence of extreme and severe drought at different time scales generally increased with decades; higher frequency and larger affected area of extreme and severe droughts occurred as the time scale increased, especially for the northwest of Shandong Province and Jiaodong peninsular. The spatial pattern of drought for SPEI-1 contains three regions: eastern Jiaodong Peninsular and northwestern and southern Shandong. As the time scale increased to 3, 6, and 12 months, the order of the three regions was transformed into another as northwestern Shandong, eastern Jiaodong Peninsular, and southern Shandong. For SPEI-24, the location identified by REOF1 was slightly shifted from northwestern Shandong to western Shandong, and REOF2 and REOF3 identified another two weak patterns in the south edge and north edge of Jiaodong Peninsular, respectively. The potential causes of drought and the impact of drought on agriculture in the study area have also been discussed. The temporal variations and spatial patterns

  5. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  6. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    Science.gov (United States)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  7. Sensitivity of the breastfeeding motivational measurement scale: a known group analysis of first time mothers.

    Science.gov (United States)

    Stockdale, Janine; Sinclair, Marlene; Kernohan, George; McCrum-Gardner, Evie; Keller, John

    2013-01-01

    Breastfeeding has immense public health value for mothers, babies, and society. But there is an undesirably large gap between the number of new mothers who undertake and persist in breastfeeding compared to what would be a preferred level of accomplishment. This gap is a reflection of the many obstacles, both physical and psychological, that confront new mothers. Previous research has illuminated many of these concerns, but research on this problem is limited in part by the unavailability of a research instrument that can measure the key differences between first-time mothers and experienced mothers, with regard to the challenges they face when breastfeeding and the instructional advice they require. An instrument was designed to measure motivational complexity associated with sustained breast feeding behaviour; the Breastfeeding Motivational Measurement Scale. It contains 51 self-report items (7 point Likert scale) that cluster into four categories related to perceived value of breast-feeding, confidence to succeed, factors that influence success or failure, and strength of intentions, or goal. However, this scale has not been validated in terms of its sensitivity to profile the motivation of new mothers and experienced mothers. This issue was investigated by having 202 breastfeeding mothers (100 first time mothers) fill out the scale. The analysis reported in this paper is a three factor solution consisting of value, midwife support, and expectancies for success that explained the characteristics of first time mothers as a known group. These results support the validity of the BMM scale as a diagnostic tool for research on first time mothers who are learning to breastfeed. Further research studies are required to further test the validity of the scale in additional subgroups.

  8. Evaluation of real-time operating system for small-scale embedded systems

    International Nuclear Information System (INIS)

    Dayang Norhayati Abang Jawawi; Rosbi Mamat

    1999-01-01

    In this paper, the performance of some real-time operating systems for small-scale embedded systems are evaluated based on some criteria. The evaluation is performed qualitatively and quantitatively. The evaluation results based on a case study on an engineering application will be presented. (author)

  9. Hardy inequality on time scales and its application to half-linear dynamic equations

    Directory of Open Access Journals (Sweden)

    Řehák Pavel

    2005-01-01

    Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.

  10. Modeling heat dominated electric breakdown in air, with adaptivity to electron or ion time scales

    NARCIS (Netherlands)

    Agnihotri, A.; Hundsdorfer, W.; Ebert, U.

    2017-01-01

    We model heat dominated electrical breakdown in air in a short planar gap. We couple the discharge dynamics in fluid approximation with the hydrodynamic motion of the air heated by the discharge. To be computationally efficient, we derive a reduced model on the ion time scale, and we switch between

  11. A limit set trichotomy for order-preserving systems on time scales

    Directory of Open Access Journals (Sweden)

    Christian Poetzsche

    2004-04-01

    Full Text Available In this paper we derive a limit set trichotomy for abstract order-preserving 2-parameter semiflows in normal cones of strongly ordered Banach spaces. Additionally, to provide an example, Muller's theorem is generalized to dynamic equations on arbitrary time scales and applied to a model from population dynamics.

  12. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary

    NARCIS (Netherlands)

    Hilgen, F.J.

    1991-01-01

    The early Pleistocene to late Pliocene astronormcally calibrated time scale of Shackleton et al. [1] and Hllgen [2] is extended to the Mlocene/Pllocene boundary This is done by correlating the detailed record of CaCO 3 cycles in the Trubl and the lower part of the overlying Narbone Formation

  13. Arctic energy budget in relation to sea ice variability on monthly-to-annual time scales

    NARCIS (Netherlands)

    Krikken, F.; Hazeleger, W.

    2015-01-01

    The large decrease in Arctic sea ice in recent years has triggered a strong interest in Arctic sea ice predictions on seasonal-to-decadal time scales. Hence, it is important to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. This study

  14. Fixation of competing strategies when interacting agents differ in the time scale of strategy updating

    NARCIS (Netherlands)

    Zhang, Jianlei; Weissing, Franz J.; Cao, Ming

    2016-01-01

    A commonly used assumption in evolutionary game theory is that natural selection acts on individuals in the same time scale; e.g., players use the same frequency to update their strategies. Variation in learning rates within populations suggests that evolutionary game theory may not necessarily be

  15. Time-scale effects in the interaction between a large and a small herbivore

    NARCIS (Netherlands)

    Kuijper, D. P. J.; Beek, P.; van Wieren, S.E.; Bakker, J. P.

    2008-01-01

    In the short term, grazing will mainly affect plant biomass and forage quality. However, grazing can affect plant species composition by accelerating or retarding succession at longer time-scales. Few studies concerning interactions among herbivores have taken the change in plant species composition

  16. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    Science.gov (United States)

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions.

  17. Time scales: from Nabla calculus to Delta calculus and vice versa via duality

    OpenAIRE

    Caputo, M. Cristina

    2009-01-01

    In this note we show how one can obtain results from the nabla calculus from results on the delta calculus and vice versa via a duality argument. We provide applications of the main results to the calculus of variations on time scales.

  18. A Visual Method of Time Scale Determination using a PC for Radio ...

    Indian Academy of Sciences (India)

    Abstract. Variability is one of the extremely observational properties. In the radio bands, variability is caused by the shock in the jet. In this case, emissions increase rapidly following an exponential curve, and then decrease rapidly also in an exponential curve. The variability time scale is important with regard to the physics ...

  19. Anti-control of chaos of single time-scale brushless DC motor.

    Science.gov (United States)

    Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng

    2006-09-15

    Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.

  20. Principal and nonprincipal solutions of symplectic dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    Ondrej Dosly

    2000-01-01

    Full Text Available We establish the concept of the principal and nonprincipal solution for the so-called symplectic dynamic systems on time scales. We also present a brief survey of the history of these concept for differential and difference equations.

  1. Development and Preliminary Validation of the Time Management for Exercise Scale

    Science.gov (United States)

    Hellsten, Laurie-ann M.; Rogers, W. Todd

    2009-01-01

    The purpose of this study was to collect preliminary validity evidence for a time management scale for exercise. An initial pool of 91 items was developed from existing literature. Ten exercise/health psychologists evaluated each of the items in terms of relevance and representativeness. Forty-nine items met all criteria. Exploratory factor…

  2. Towards a Unified Formulation of Dynamics and Thermodynamics I. From Microscopic to Macroscopic Time Scales

    Czech Academy of Sciences Publication Activity Database

    Durand, P.; Paidarová, Ivana

    2011-01-01

    Roč. 111, č. 2 (2011), s. 225-236 ISSN 0020-7608 R&D Projects: GA AV ČR IAA100400501; GA AV ČR IAA401870702 Institutional research plan: CEZ:AV0Z40400503 Keywords : Liouville equation * time scales * chemical kinetics and dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.357, year: 2011

  3. Assessment of the methods for determining net radiation at different time-scales of meteorological variables

    Directory of Open Access Journals (Sweden)

    Ni An

    2017-04-01

    Full Text Available When modeling the soil/atmosphere interaction, it is of paramount importance to determine the net radiation flux. There are two common calculation methods for this purpose. Method 1 relies on use of air temperature, while Method 2 relies on use of both air and soil temperatures. Nowadays, there has been no consensus on the application of these two methods. In this study, the half-hourly data of solar radiation recorded at an experimental embankment are used to calculate the net radiation and long-wave radiation at different time-scales (half-hourly, hourly, and daily using the two methods. The results show that, compared with Method 2 which has been widely adopted in agronomical, geotechnical and geo-environmental applications, Method 1 is more feasible for its simplicity and accuracy at shorter time-scale. Moreover, in case of longer time-scale, daily for instance, less variations of net radiation and long-wave radiation are obtained, suggesting that no detailed soil temperature variations can be obtained. In other words, shorter time-scales are preferred in determining net radiation flux.

  4. Global Stability of Complex-Valued Genetic Regulatory Networks with Delays on Time Scales

    Directory of Open Access Journals (Sweden)

    Wang Yajing

    2016-01-01

    Full Text Available In this paper, the global exponential stability of complex-valued genetic regulatory networks with delays is investigated. Besides presenting conditions guaranteeing the existence of a unique equilibrium pattern, its global exponential stability is discussed. Some numerical examples for different time scales.

  5. How the constants in Hille-Nehari theorems depend on time scales

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2006-01-01

    Roč. 2006, - (2006), s. 1-15 ISSN 1687-1839 R&D Pro jects: GA ČR(CZ) GA201/01/0079; GA ČR(CZ) GP201/01/P041 Institutional research plan: CEZ:AV0Z10190503 Keywords : dynamic equation * time scales * oscillation criteria Subject RIV: BA - General Mathematics

  6. Theoretical and Numerical Properties of a Gyrokinetic Plasma: Issues Related to Transport Time Scale Simulation

    International Nuclear Information System (INIS)

    Lee, W.W.

    2003-01-01

    Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers

  7. Time scales for spinodal decomposition in nuclear matter with pseudo-particle model

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-12-31

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudo-particle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed. (author) 12 refs.; 6 figs.; 1 tab.

  8. Time scales for spinodal decomposition in nuclear matter with pseudo-particle model

    International Nuclear Information System (INIS)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-01-01

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudo-particle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed. (author) 12 refs.; 6 figs.; 1 tab

  9. Time scales for spinodal decomposition in nuclear matter with pseudoparticle models

    International Nuclear Information System (INIS)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-01-01

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudoparticle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed

  10. Time scales for spinodal decomposition in nuclear matter with pseudoparticle models

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F. (Laboratoire de Physique Nucleaire CNRS/IN2P3, Universite de Nantes, 2, rue de la Houssiniere, 44072 Nantes (France))

    1993-08-01

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudoparticle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed.

  11. Non-Abelian Kubo formula and the multiple time-scale method

    International Nuclear Information System (INIS)

    Zhang, X.; Li, J.

    1996-01-01

    The non-Abelian Kubo formula is derived from the kinetic theory. That expression is compared with the one obtained using the eikonal for a Chern endash Simons theory. The multiple time-scale method is used to study the non-Abelian Kubo formula, and the damping rate for longitudinal color waves is computed. copyright 1996 Academic Press, Inc

  12. Crystal plasticity based modeling of time and scale dependent behavior of thin films

    NARCIS (Netherlands)

    Erturk, I.; Gao, K.; Bielen, J.A.; Dommelen, van J.A.W.; Geers, M.G.D.

    2013-01-01

    The micro and sub-micro scale dimensions of the components of modern high-tech products pose challenging engineering problems that require advanced tools to tackle them. An example hereof is time dependent strain recovery, here referred to as anelasticity, which is observed in metallic thin film

  13. Existence and global exponential stability of periodic solutions for n-dimensional neutral dynamic equations on time scales.

    Science.gov (United States)

    Li, Bing; Li, Yongkun; Zhang, Xuemei

    2016-01-01

    In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).

  14. The swan song in context: long-time-scale X-ray variability of NGC 4051

    Science.gov (United States)

    Uttley, P.; McHardy, I. M.; Papadakis, I. E.; Guainazzi, M.; Fruscione, A.

    1999-07-01

    On 1998 May 9-11, the highly variable, low-luminosity Seyfert 1 galaxy NGC 4051 was observed in an unusual low-flux state by BeppoSAX, RXTE and EUVE. We present fits of the 4-15keV RXTE spectrum and BeppoSAX MECS spectrum obtained during this observation, which are consistent with the interpretation that the source had switched off, leaving only the spectrum of pure reflection from distant cold matter. We place this result in context by showing the X-ray light curve of NGC 4051 obtained by our RXTE monitoring campaign over the past two and a half years, which shows that the low state lasted for ~150d before the May observations (implying that the reflecting material is >10^17cm from the continuum source) and forms part of a light curve showing distinct variations in long-term average flux over time-scales > months. We show that the long-time-scale component to X-ray variability is intrinsic to the primary continuum and is probably distinct from the variability at shorter time-scales. The long-time-scale component to variability maybe associated with variations in the accretion flow of matter on to the central black hole. As the source approaches the low state, the variability process becomes non-linear. NGC 4051 may represent a microcosm of all X-ray variability in radio-quiet active galactic nuclei (AGNs), displaying in a few years a variety of flux states and variability properties which more luminous AGNs may pass through on time-scales of decades to thousands of years.

  15. Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame

    Energy Technology Data Exchange (ETDEWEB)

    Stoellinger, Michael; Heinz, Stefan [Department of Mathematics, University of Wyoming, Laramie, WY (United States)

    2010-09-15

    Numerical simulation results obtained with a transported scalar probability density function (PDF) method are presented for a piloted turbulent premixed flame. The accuracy of the PDF method depends on the scalar mixing model and the scalar time scale model. Three widely used scalar mixing models are evaluated: the interaction by exchange with the mean (IEM) model, the modified Curl's coalescence/dispersion (CD) model and the Euclidean minimum spanning tree (EMST) model. The three scalar mixing models are combined with a simple model for the scalar time scale which assumes a constant C{sub {phi}}=12 value. A comparison of the simulation results with available measurements shows that only the EMST model calculates accurately the mean and variance of the reaction progress variable. An evaluation of the structure of the PDF's of the reaction progress variable predicted by the three scalar mixing models confirms this conclusion: the IEM and CD models predict an unrealistic shape of the PDF. Simulations using various C{sub {phi}} values ranging from 2 to 50 combined with the three scalar mixing models have been performed. The observed deficiencies of the IEM and CD models persisted for all C{sub {phi}} values considered. The value C{sub {phi}}=12 combined with the EMST model was found to be an optimal choice. To avoid the ad hoc choice for C{sub {phi}}, more sophisticated models for the scalar time scale have been used in simulations using the EMST model. A new model for the scalar time scale which is based on a linear blending between a model for flamelet combustion and a model for distributed combustion is developed. The new model has proven to be very promising as a scalar time scale model which can be applied from flamelet to distributed combustion. (author)

  16. Educational treasures in Radiology: The Radiology Olympics - striving for gold in Radiology education

    OpenAIRE

    Talanow, Roland

    2010-01-01

    This article focuses on Radiology Olympics (www.RadiologyOlympics.com) - a collaboration with the international Radiology community for Radiology education, Radiolopolis (www.Radiolopolis.com). The Radiology Olympics honour the movers and shakers in Radiology education and offer an easy to use platform for educating medical professionals based on Radiology cases.

  17. Robust scaling laws for energy confinement time, including radiated fraction, in Tokamaks

    Science.gov (United States)

    Murari, A.; Peluso, E.; Gaudio, P.; Gelfusa, M.

    2017-12-01

    In recent years, the limitations of scalings in power-law form that are obtained from traditional log regression have become increasingly evident in many fields of research. Given the wide gap in operational space between present-day and next-generation devices, robustness of the obtained models in guaranteeing reasonable extrapolability is a major issue. In this paper, a new technique, called symbolic regression, is reviewed, refined, and applied to the ITPA database for extracting scaling laws of the energy-confinement time at different radiated fraction levels. The main advantage of this new methodology is its ability to determine the most appropriate mathematical form of the scaling laws to model the available databases without the restriction of their having to be power laws. In a completely new development, this technique is combined with the concept of geodesic distance on Gaussian manifolds so as to take into account the error bars in the measurements and provide more reliable models. Robust scaling laws, including radiated fractions as regressor, have been found; they are not in power-law form, and are significantly better than the traditional scalings. These scaling laws, including radiated fractions, extrapolate quite differently to ITER, and therefore they require serious consideration. On the other hand, given the limitations of the existing databases, dedicated experimental investigations will have to be carried out to fully understand the impact of radiated fractions on the confinement in metallic machines and in the next generation of devices.

  18. Earth History databases and visualization - the TimeScale Creator system

    Science.gov (United States)

    Ogg, James; Lugowski, Adam; Gradstein, Felix

    2010-05-01

    The "TimeScale Creator" team (www.tscreator.org) and the Subcommission on Stratigraphic Information (stratigraphy.science.purdue.edu) of the International Commission on Stratigraphy (www.stratigraphy.org) has worked with numerous geoscientists and geological surveys to prepare reference datasets for global and regional stratigraphy. All events are currently calibrated to Geologic Time Scale 2004 (Gradstein et al., 2004, Cambridge Univ. Press) and Concise Geologic Time Scale (Ogg et al., 2008, Cambridge Univ. Press); but the array of intercalibrations enable dynamic adjustment to future numerical age scales and interpolation methods. The main "global" database contains over 25,000 events/zones from paleontology, geomagnetics, sea-level and sequence stratigraphy, igneous provinces, bolide impacts, plus several stable isotope curves and image sets. Several regional datasets are provided in conjunction with geological surveys, with numerical ages interpolated using a similar flexible inter-calibration procedure. For example, a joint program with Geoscience Australia has compiled an extensive Australian regional biostratigraphy and a full array of basin lithologic columns with each formation linked to public lexicons of all Proterozoic through Phanerozoic basins - nearly 500 columns of over 9,000 data lines plus hot-curser links to oil-gas reference wells. Other datapacks include New Zealand biostratigraphy and basin transects (ca. 200 columns), Russian biostratigraphy, British Isles regional stratigraphy, Gulf of Mexico biostratigraphy and lithostratigraphy, high-resolution Neogene stable isotope curves and ice-core data, human cultural episodes, and Circum-Arctic stratigraphy sets. The growing library of datasets is designed for viewing and chart-making in the free "TimeScale Creator" JAVA package. This visualization system produces a screen display of the user-selected time-span and the selected columns of geologic time scale information. The user can change the

  19. Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints

    Science.gov (United States)

    Cassandras, Christos G.; Zhuang, Shixin

    2005-11-01

    Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.

  20. Flow characteristics of a pilot-scale high temperature, short time pasteurizer.

    Science.gov (United States)

    Tomasula, P M; Kozempel, M F

    2004-09-01

    In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.

  1. Low-power operation using self-timed circuits and adaptive scaling of the supply voltage

    DEFF Research Database (Denmark)

    Nielsen, Lars Skovby; Niessen, C.; Sparsø, Jens

    1994-01-01

    Recent research has demonstrated that for certain types of applications like sampled audio systems, self-timed circuits can achieve very low power consumption, because unused circuit parts automatically turn into a stand-by mode. Additional savings may be obtained by combining the self......-timed circuits with a mechanism that adaptively adjusts the supply voltage to the smallest possible, while maintaining the performance requirements. This paper describes such a mechanism, analyzes the possible power savings, and presents a demonstrator chip that has been fabricated and tested. The idea...... of voltage scaling has been used previously in synchronous circuits, and the contributions of the present paper are: 1) the combination of supply scaling and self-timed circuitry which has some unique advantages, and 2) the thorough analysis of the power savings that are possible using this technique.>...

  2. Periodic Solution of Second-Order Hamiltonian Systems with a Change Sign Potential on Time Scales

    Directory of Open Access Journals (Sweden)

    You-Hui Su

    2009-01-01

    Full Text Available This paper is concerned with the second-order Hamiltonian system on time scales 𝕋 of the form uΔΔ(ρ(t+μb(t|u(t|μ−2u(t+∇¯H(t,u(t=0, Δ-a.e. t∈[0,T]𝕋 , u(0−u(T=uΔ(ρ(0−uΔ(ρ(T=0, where 0,T∈𝕋. By using the minimax methods in critical theory, an existence theorem of periodic solution for the above system is established. As an application, an example is given to illustrate the result. This is probably the first time the existence of periodic solutions for second-order Hamiltonian system on time scales has been studied by critical theory.

  3. Measuring parent time scarcity and fatigue as barriers to meal planning and preparation: quantitative scale development.

    Science.gov (United States)

    Storfer-Isser, Amy; Musher-Eizenman, Dara

    2013-03-01

    To examine the psychometric properties of 9 quantitative items that assess time scarcity and fatigue as parent barriers to planning and preparing meals for their children. A convenience sample of 342 parents of children aged 2-6 years completed a 20-minute online survey. Exploratory factor analysis was used to examine the factor structure and create summary scales. Internal consistency reliability and measures of construct and concurrent validity were assessed. Two scales were created based on the factor analysis: time and energy for meals and meal planning. Preliminary evidence suggests that both scales are reliable and valid. The time and energy for meals and meal planning scales can be completed quickly by busy and tired parents. As many children do not eat nutritious diets, a better understanding of the barriers that parents face is critical and may help inform interventions tailored to the needs of tired, busy parents. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  4. Radiological findings after gastrectomy

    Energy Technology Data Exchange (ETDEWEB)

    Riedl, P.; Polterauer, P.; Funovics, J.

    1980-06-01

    In 63 patients after total gastrectomy and reconstruction of the small bowel described by Beal-Longmire, Roux and Tomoda radiological findings were correlated with clinical symptoms. No correlation could be found between clinical symptoms of dumping and oesophagitis caused by reflux on one side and increased length of intestinal transit time, increased diameter of intestinal loops and gastro-oesophageal reflux on the other side. Enlarged blind loops after termino-lateral oesophago-jejunostomy and insufficient ligations (operation technique by Tomoda) were correlated with higher incidence of pains. Patients operated by the method of Beal-Longmire and Roux showed better results than those operated with the method of Tomoda.

  5. Laenderyggens degeneration og radiologi

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig

    2006-01-01

    Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi...... is cyclic: exacerbations relieved by asymptomatic periods. New imaging modalities, including the combination of MR imaging and multiplanar 3-D CT scans, have broadened our awareness of possible pain-generating degenerative processes of the lumbar spine other than disc degeneration....

  6. Effect of agitation time on nutrient distribution in full-scale CSTR biogas digesters.

    Science.gov (United States)

    Kress, Philipp; Nägele, Hans-Joachim; Oechsner, Hans; Ruile, Stephan

    2018-01-01

    The aim of this work was to study the impact of reduced mixing time in a full-scale CSTR biogas reactor from 10 to 5 and to 2min in half an hour on the distribution of DM, acetic acid and FOS/TAC as a measure to cut electricity consumption. The parameters in the digestate were unevenly distributed with the highest concentration measured at the point of feeding. By reducing mixing time, the FOS/TAC value increases by 16.6%. A reduced mixing time of 2min lead to an accumulation of 15% biogas in the digestate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modeling and Validating Time, Buffering, and Utilization of a Large-Scale, Real-Time Data Acquisition System

    CERN Document Server

    AUTHOR|(SzGeCERN)756497; The ATLAS collaboration; Garcia Garcia, Pedro Javier; Vandelli, Wainer; Froening, Holger

    2017-01-01

    Data acquisition systems for large-scale high-energy physics experiments have to handle hundreds of gigabytes per second of data, and are typically realized as specialized data centers that connect a very large number of front-end electronics devices to an event detection and storage system. The design of such systems is often based on many assumptions, small-scale experiments and a substantial amount of over-provisioning. In this work, we introduce a discrete event-based simulation tool that models the data flow of the current ATLAS data acquisition system, with the main goal to be accurate with regard to the main operational characteristics. We measure buffer occupancy counting the number of elements in buffers, resource utilization measuring output bandwidth and counting the number of active processing units, and their time evolution by comparing data over many consecutive and small periods of time. We perform studies on the error of simulation when comparing the results to a large amount of real-world ope...

  8. Modeling and Validating Time, Buffering, and Utilization of a Large-Scale, Real-Time Data Acquisition System

    CERN Document Server

    AUTHOR|(SzGeCERN)756497; The ATLAS collaboration; Garcia Garcia, Pedro Javier; Vandelli, Wainer; Froening, Holger

    2017-01-01

    Data acquisition systems for large-scale high-energy physics experiments have to handle hundreds of gigabytes per second of data, and are typically implemented as specialized data centers that connect a very large number of front-end electronics devices to an event detection and storage system. The design of such systems is often based on many assumptions, small-scale experiments and a substantial amount of over-provisioning. In this paper, we introduce a discrete event-based simulation tool that models the dataflow of the current ATLAS data acquisition system, with the main goal to be accurate with regard to the main operational characteristics. We measure buffer occupancy counting the number of elements in buffers; resource utilization measuring output bandwidth and counting the number of active processing units, and their time evolution by comparing data over many consecutive and small periods of time. We perform studies on the error in simulation when comparing the results to a large amount of real-world ...

  9. Time delay effects on large-scale MR damper based semi-active control strategies

    International Nuclear Information System (INIS)

    Cha, Y-J; Agrawal, A K; Dyke, S J

    2013-01-01

    This paper presents a detailed investigation on the robustness of large-scale 200 kN MR damper based semi-active control strategies in the presence of time delays in the control system. Although the effects of time delay on stability and performance degradation of an actively controlled system have been investigated extensively by many researchers, degradation in the performance of semi-active systems due to time delay has yet to be investigated. Since semi-active systems are inherently stable, instability problems due to time delay are unlikely to arise. This paper investigates the effects of time delay on the performance of a building with a large-scale MR damper, using numerical simulations of near- and far-field earthquakes. The MR damper is considered to be controlled by four different semi-active control algorithms, namely (i) clipped-optimal control (COC), (ii) decentralized output feedback polynomial control (DOFPC), (iii) Lyapunov control, and (iv) simple-passive control (SPC). It is observed that all controllers except for the COC are significantly robust with respect to time delay. On the other hand, the clipped-optimal controller should be integrated with a compensator to improve the performance in the presence of time delay. (paper)

  10. Management of a radiological emergency. Organization and operation

    International Nuclear Information System (INIS)

    Dubiau, Ph.

    2007-01-01

    After a recall of potential radiological emergency situations and their associated risks, this article describes the organization in France of the crisis management and its operation at the national and international scale: 1 - Nuclear or radiological emergency situations and their associated risks: inventory of ionising radiation sources, accidental situations, hazards; 2 - crisis organization in situation of radiological or nuclear emergency: organization at the local scale, organization at the national scale; 3 - management of emergency situations: accident at a facility, action circle, radiological emergency situations outside nuclear facilities, international management of crisis, situations that do not require the implementation of an emergency plan. (J.S.)

  11. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    Science.gov (United States)

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  12. Modeling and simulation of nuclear fuel in scenarios with long time scales

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Carlos E.; Bodmann, Bardo E.J., E-mail: eduardo.espinosa@ufrgs.br, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (DENUC/PROMEC/UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Nuclear. Programa de Pos Graduacao em Engenharia Mecanica

    2015-07-01

    Nuclear reactors play a key role in defining the energy matrix. A study by the Fraunhofer Society shows in different time scales for long periods of time the distribution of energy sources. Regardless of scale, the use of nuclear energy is practically constant. In these scenarios, the nuclear fuel behavior over time is of interest. For kinetics of long-term scales, changing the chemical composition of fuel is significant. Thus, it is appropriate to consider fission products called neutron poisons. Such products are of interest in the nuclear reactor, since they become parasitic neutron absorbers and result in long thermal heat sources. The objective of this work is to solve the kinetics system coupled to neutron poison products. To solve this system, we use similar ideas to the method of Adomian decomposition. Initially, one separates the system of equations as the sum of a linear part and a non-linear part in order to solve a recursive system. The nonlinearity is treated as Adomian polynomial. We present numerical results of the effects of changing the power of a reactor, scenarios such as start-up and shut-down. For these results we consider time dependent reactivity, such as linear reactivity, quadratic polynomial and oscillatory. With these results one can simulate the chemical composition of the fuel due to the reuse of the spent fuel in subsequent cycles. (author)

  13. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  14. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Science.gov (United States)

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  15. Modeling and simulation of nuclear fuel in scenarios with long time scales

    International Nuclear Information System (INIS)

    Espinosa, Carlos E.; Bodmann, Bardo E.J.

    2015-01-01

    Nuclear reactors play a key role in defining the energy matrix. A study by the Fraunhofer Society shows in different time scales for long periods of time the distribution of energy sources. Regardless of scale, the use of nuclear energy is practically constant. In these scenarios, the nuclear fuel behavior over time is of interest. For kinetics of long-term scales, changing the chemical composition of fuel is significant. Thus, it is appropriate to consider fission products called neutron poisons. Such products are of interest in the nuclear reactor, since they become parasitic neutron absorbers and result in long thermal heat sources. The objective of this work is to solve the kinetics system coupled to neutron poison products. To solve this system, we use similar ideas to the method of Adomian decomposition. Initially, one separates the system of equations as the sum of a linear part and a non-linear part in order to solve a recursive system. The nonlinearity is treated as Adomian polynomial. We present numerical results of the effects of changing the power of a reactor, scenarios such as start-up and shut-down. For these results we consider time dependent reactivity, such as linear reactivity, quadratic polynomial and oscillatory. With these results one can simulate the chemical composition of the fuel due to the reuse of the spent fuel in subsequent cycles. (author)

  16. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  17. On the time-scales of magmatism at island-arc volcanoes.

    Science.gov (United States)

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less.

  18. The Society for Radiological Protection - 40 years on from 1963

    International Nuclear Information System (INIS)

    Dunster, H John

    2003-01-01

    The Society for Radiological Protection was created in 1963 at a time when the structure of radiological protection in the United Kingdom was already well established. From its creation 40 years ago to the present, most of the features of British radiological protection stem from the recommendations of the International Commission on Radiological Protection. This review of the development of radiological protection has been produced to celebrate the 40 years of the Society's support of radiological protection, both in the United Kingdom and internationally. (review)

  19. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    S Safinaz

    2017-08-01

    Full Text Available In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames to high resolution frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed technique RemCNN (Reconstruction error minimization Convolution Neural Network shows that our model outperforms the existing technologies such as bicubic, bilinear, MCResNet and provide better reconstructed motioning images and video frames. The experimental results shows that our average PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is very high in contrast to other existing techniques. This results proves our proposed model real-time video scaling based on convolution neural network architecture’s high efficiency and better performance.

  20. Large-scale machine learning and evaluation platform for real-time traffic surveillance

    Science.gov (United States)

    Eichel, Justin A.; Mishra, Akshaya; Miller, Nicholas; Jankovic, Nicholas; Thomas, Mohan A.; Abbott, Tyler; Swanson, Douglas; Keller, Joel

    2016-09-01

    In traffic engineering, vehicle detectors are trained on limited datasets, resulting in poor accuracy when deployed in real-world surveillance applications. Annotating large-scale high-quality datasets is challenging. Typically, these datasets have limited diversity; they do not reflect the real-world operating environment. There is a need for a large-scale, cloud-based positive and negative mining process and a large-scale learning and evaluation system for the application of automatic traffic measurements and classification. The proposed positive and negative mining process addresses the quality of crowd sourced ground truth data through machine learning review and human feedback mechanisms. The proposed learning and evaluation system uses a distributed cloud computing framework to handle data-scaling issues associated with large numbers of samples and a high-dimensional feature space. The system is trained using AdaBoost on 1,000,000 Haar-like features extracted from 70,000 annotated video frames. The trained real-time vehicle detector achieves an accuracy of at least 95% for 1/2 and about 78% for 19/20 of the time when tested on ˜7,500,000 video frames. At the end of 2016, the dataset is expected to have over 1 billion annotated video frames.

  1. Geometry and time scales of self-consistent orbits in a modified SU(2) model

    International Nuclear Information System (INIS)

    Jezek, D.M.; Hernandez, E.S.; Solari, H.G.

    1986-01-01

    We investigate the time-dependent Hartree-Fock flow pattern of a two-level many fermion system interacting via a two-body interaction which does not preserve the parity symmetry of standard SU(2) models. The geometrical features of the time-dependent Hartree-Fock energy surface are analyzed and a phase instability is clearly recognized. The time evolution of one-body observables along self-consistent and exact trajectories are examined together with the overlaps between both orbits. Typical time scales for the determinantal motion can be set and the validity of the time-dependent Hartree-Fock approach in the various regions of quasispin phase space is discussed

  2. Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    CERN Document Server

    Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-01-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...

  3. Chaotic characteristic of electromagnetic radiation time series of coal or rock under different scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-Tang Liu; En-Lai Zhao; En-Yuan Wang; Jing Wang [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering

    2009-02-15

    Based on chaos theory, the chaotic characteristics of electromagnetic radiation time series of coal or rock under different loads was studied. The results show that the correlation of electromagnetic radiation time series of small-scale coal or rock and coal mine converges to a stable saturation value, which shows that these electromagnetic radiation time series have chaos characteristics. When there is danger of coal seam burst, the value of the saturation correlation dimension D{sub 2} of the electromagnetic radiation time series is bigger and it changes greatly; when there is no danger, its value is smaller and changes smoothly. The change of saturation correlation of electromagnetic radiation time series can be used to forecast coal or rock dynamic disasters. 11 refs., 4 figs.

  4. On the spot ethical decision-making in CBRN (chemical, biological, radiological or nuclear event) response: approaches to on the spot ethical decision-making for first responders to large-scale chemical incidents.

    Science.gov (United States)

    Rebera, Andrew P; Rafalowski, Chaim

    2014-09-01

    First responders to chemical, biological, radiological, or nuclear (CBRN) events face decisions having significant human consequences. Some operational decisions are supported by standard operating procedures, yet these may not suffice for ethical decisions. Responders will be forced to weigh their options, factoring-in contextual peculiarities; they will require guidance on how they can approach novel (indeed unique) ethical problems: they need strategies for "on the spot" ethical decision making. The primary aim of this paper is to examine how first responders should approach on the spot ethical decision-making amid the stress and uncertainty of a CBRN event. Drawing on the long-term professional CBRN experience of one of the authors, this paper sets out a series of practical ethical dilemmas potentially arising in the context of a large-scale chemical incident. We propose a broadly consequentialist approach to on the spot ethical decision-making, but one which incorporates ethical values and rights as "side-constraints".

  5. Towards a High-resolution Time Scale for the Early Devonian

    Science.gov (United States)

    Dekkers, M. J.; da Silva, A. C.

    2017-12-01

    High-resolution time scales are crucial to understand Earth's history in detail. The construction of a robust geological time scale, however, inevitably becomes increasingly harder further back in time. Uncertainties associated with anchor radiometric ages increase in size, not speaking of the mere presence of suitable datable strata. However, durations of stages can be tightly constrained by making use of cyclic expressions in sediments, an approach that revolutionized the Cenozoic time scale. When precisely determined durations are stitched together, ultimately, a very precise time scale is the result. For the Mesozoic and Paleozoic an astronomical solution as a tuning target is not available but the dominant periods of eccentricity, obliquity and precession are reasonably well constrained for the entire Phanerozoic which enables their detection by means of spectral analysis. Eccentricity is time-invariant and is used as the prime building block. Here we focus on the Early Devonian, on its lowermost three stages: the Lochkovian, Pragian and Emsian. The uncertainties on the Devonian stage boundaries are currently in the order of several millions of years. The preservation of climatic cycles in diagenetically or even anchimetamorphically affected successions, however, is essential. The fit of spectral peak ratios with those calculated for orbital cycles, is classically used as a strong argument for a preserved climatic signal. Here we use primarily the low field magnetic susceptibility (MS) as proxy parameter, supported by gamma-ray spectrometry to test for consistency. Continuous Wavelet Transform, Evolutive Harmonic Analysis, Multitaper Method, and Average Spectral Misfit are used to reach an optimal astronomical interpretation. We report on classic Early Devonian sections from the Czech Republic: the Pozar-CS (Lochkovian and Pragian), Pod Barrandovem (Pragian and Lower Emsian), and Zlichov (Middle-Upper Emsian). Also a Middle-Upper Emsian section from the US

  6. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    Science.gov (United States)

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.

  7. Radiology trainer. Musculoskeletal system

    International Nuclear Information System (INIS)

    Staebler, A.; Erlt-Wagner, B.

    2006-01-01

    This book enables students to simulate examinations. The Radiology Trainer series comprises the whole knowledge of radiology in the form of case studies for self-testing. It is based on the best-sorted German-language collection of radiological examinations of all organ regions. Step by step, radiological knowledge is trained in order to make diagnoses more efficient. The book series ensures optimal preparation for the final medical examinations and is also a valuable tool for practical training. (orig.)

  8. Radiological diagnostics in hyperparathyroidism

    International Nuclear Information System (INIS)

    Moedder, U.; Kuhn, F.P.; Gruetzner, G.

    1991-01-01

    The most important radiologically detectable effects of the primary and secondary hyperparathyroidism of the skeletal system and the periarticular soft tissue structures are presented. In the following sensitivity and specificity of radiological imaging - sonography, scintigraphy, computed tomography, magnetic resonance imaging, arteriography and selective venous sampling - in the preoperative diagnostic of the parathyroid adenomas are discussed. Therefore, radiological imaging can be omitted before primary surgery. It was only in secondary surgery that radiological process proved useful and a guide during surgical intervention. (orig.) [de

  9. Fission time-scale in experiments and in multiple initiation model

    Energy Technology Data Exchange (ETDEWEB)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2011-12-15

    Rate of fission for highly-excited nuclei is affected by the viscose character of the systemmotion in deformation coordinates as was reported for very heavy nuclei with Z{sub C} > 90. The long time-scale of fission can be described in a model of 'fission by diffusion' that includes an assumption of the overdamped diabatic motion. The fission-to-spallation ratio at intermediate proton energy could be influenced by the viscosity, as well. Within a novel approach of the present work, the cross examination of the fission probability, time-scales, and pre-fission neutron multiplicities is resulted in the consistent interpretation of a whole set of the observables. Earlier, different aspects could be reproduced in partial simulations without careful coordination.

  10. Introducing English and German versions of the Adolescent Time Attitude Scale.

    Science.gov (United States)

    Worrell, Frank C; Mello, Zena R; Buhl, Monika

    2013-08-01

    In this study, the authors report on the development of English and German versions of the Adolescent Time Attitude Scale (ATAS). The ATAS consists of six subscales assessing Past Positive, Past Negative, Present Positive, Present Negative, Future Positive, and Future Negative time attitudes. The authors describe the development of the scales and present data on the reliability and structural validity of ATAS scores in samples of American (N = 300) and German (N = 316) adolescents. Internal consistency estimates for scores on the English and German versions of the ATAS were in the .70 to .80 range. Confirmatory factor analyses indicated that a six-factor structure yielded the best fit for scores and that the scores were invariant across samples.

  11. Chaos anticontrol and synchronization of three time scales brushless DC motor system

    International Nuclear Information System (INIS)

    Ge Zhengming; Cheng Juiwen; Chen Yensheng

    2004-01-01

    Chaos anticontrol of three time scale brushless dc motors and chaos synchronization of different order systems are studied. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. By adding constant term, periodic square wave, the periodic triangle wave, the periodic sawtooth wave, and kx vertical bar x vertical bar term, to achieve anticontrol of chaotic or periodic systems, it is found that more chaotic phenomena of the system can be observed. Then, by coupled terms and linearization of error dynamics, we obtain the partial synchronization of two different order systems, i.e. brushless DC motor system and rate gyroscope system

  12. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    Science.gov (United States)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  13. Modes of correlated angular motion in live cells across three distinct time scales

    International Nuclear Information System (INIS)

    Harrison, Andrew W; Kenwright, David A; Woodman, Philip G; Allan, Victoria J; Waigh, Thomas A

    2013-01-01

    Particle tracking experiments with high speed digital microscopy yield the positions and trajectories of lipid droplets inside living cells. Angular correlation analysis shows that the lipid droplets have uncorrelated motion at short time scales (τ 10 ms, becomes persistent, indicating directed movement. The motion at all time scales is associated with the lipid droplets being tethered to and driven along the microtubule network. The point at which the angular correlation changes from anti-persistent to persistent motion corresponds to the cross over between sub-diffusive and super diffusive motion, as observed by mean square displacement analysis. Correct analysis of the angular correlations of the detector noise is found to be crucial in modelling the observed phenomena. (paper)

  14. Virtual water trade and time scales for loss of water sustainability: a comparative regional analysis.

    Science.gov (United States)

    Goswami, Prashant; Nishad, Shiv Narayan

    2015-03-20

    Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective.

  15. Past and future changes in streamflow in the U.S. Midwest: Bridging across time scales

    Science.gov (United States)

    Villarini, G.; Slater, L. J.; Salvi, K. A.

    2017-12-01

    Streamflows have increased notably across the U.S. Midwest over the past century, principally due to changes in precipitation and land use / land cover. Improving our understanding of the physical drivers that are responsible for the observed changes in discharge may enhance our capability of predicting and projecting these changes, and may have large implications for water resources management over this area. This study will highlight our efforts towards the statistical attribution of changes in discharge across the U.S. Midwest, with analyses performed at the seasonal scale from low to high flows. The main drivers of changing streamflows that we focus on are: urbanization, agricultural land cover, basin-averaged temperature, basin-averaged precipitation, and antecedent soil moisture. Building on the insights from this attribution, we will examine the potential predictability of streamflow across different time scales, with lead times ranging from seasonal to decadal, and discuss a potential path forward for engineering design for future conditions.

  16. Integrative teaching in radiology - a survey.

    Science.gov (United States)

    Dettmer, S; Weidemann, J; Fischer, V; Wacker, F K

    2015-04-01

    To survey integrative teaching in radiology at German universities. A questionnaire about radiological education was sent electronically to all 37 chairpersons of university radiology departments in Germany. The questions included the course type, teaching methods, concept, perception, and advantages and disadvantages of integrative teaching. Statistical analysis was performed with nonparametric statistics and chi-square test. The survey was considered representative with a return rate of 68 %. Integrative teaching is established at 4/5 of all departments. Integrative teaching is well accepted with an acceptance rate that is significantly higher in so-called "Modellstudiengängen" [model courses of study] (100 %) compared to conventional courses of study (72 %). The advantages of integrative teaching include linking of content (92 %) and preparation for interdisciplinary work (76 %). The disadvantages include high effort (75 %) and time (67 %) for organization. Furthermore, there is a risk that basic radiological facts and knowledge cannot be conveyed and that the visibility of radiology as an independent discipline is lost. Conventional radiological teaching has a similarly high acceptance (84 %) compared to integrative courses (76 %). Integrative teaching has a high acceptance among chairpersons in radiology in Germany despite the greater effort. A good interdisciplinary collaboration is essential for integrative teaching and at the same time this can be conveyed to the students. However, the visibility of radiology as a discipline and the possibility to cover basic radiological content must be ensured. Therefore, both conventional courses and integrative teaching seems reasonable, especially in cross-disciplinary subjects such as radiology. Both integrative teaching and conventional radiological teaching are highly accepted. The advantages include the linking of multidisciplinary content and the preparation for interdisciplinary cooperation

  17. A multi scale approximation solution for the time dependent Boltzmann-transport equation

    International Nuclear Information System (INIS)

    Merk, B.

    2004-03-01

    The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is

  18. Radiology systems architecture.

    Science.gov (United States)

    Deibel, S R; Greenes, R A

    1996-05-01

    This article focuses on the software requirements for enterprise integration in radiology. The needs of a future radiology systems architecture are examined, both at a concrete functional level and at an abstract system-properties level. A component-based approach to software development is described and is validated in the context of each of the abstract system requirements for future radiology computing environments.

  19. Influence of the Time Scale on the Construction of Financial Networks

    OpenAIRE

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-01-01

    BACKGROUND: In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. METHODOLOGY/PRINCIPAL FINDINGS: For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspon...

  20. A typology of time-scale mismatches and behavioral interventions to diagnose and solve conservation problems

    Science.gov (United States)

    Wilson, Robyn S.; Hardisty, David J.; Epanchin-Niell, Rebecca S.; Runge, Michael C.; Cottingham, Kathryn L.; Urban, Dean L.; Maguire, Lynn A.; Hastings, Alan; Mumby, Peter J.; Peters, Debra P.C.

    2016-01-01

    Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long-term inertia and short-term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management-decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers’ actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time-scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long-term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short-sighted behavior to make it less appealing. Additional application of these tools and long-term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.

  1. A typology of time-scale mismatches and behavioral interventions to diagnose and solve conservation problems.

    Science.gov (United States)

    Wilson, Robyn S; Hardisty, David J; Epanchin-Niell, Rebecca S; Runge, Michael C; Cottingham, Kathryn L; Urban, Dean L; Maguire, Lynn A; Hastings, Alan; Mumby, Peter J; Peters, Debra P C

    2016-02-01

    Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long-term inertia and short-term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management-decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers' actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time-scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long-term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short-sighted behavior to make it less appealing. Additional application of these tools and long-term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed. © 2015

  2. Correlated continuous-time random walks—scaling limits and Langevin picture

    International Nuclear Information System (INIS)

    Magdziarz, Marcin; Metzler, Ralf; Szczotka, Wladyslaw; Zebrowski, Piotr

    2012-01-01

    In this paper we analyze correlated continuous-time random walks introduced recently by Tejedor and Metzler (2010 J. Phys. A: Math. Theor. 43 082002). We obtain the Langevin equations associated with this process and the corresponding scaling limits of their solutions. We prove that the limit processes are self-similar and display anomalous dynamics. Moreover, we extend the model to include external forces. Our results are confirmed by Monte Carlo simulations

  3. Molecular dynamics on diffusive time scales from the phase-field-crystal equation.

    Science.gov (United States)

    Chan, Pak Yuen; Goldenfeld, Nigel; Dantzig, Jon

    2009-03-01

    We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and describes the motion of each of them. By solving the dynamical equation of the model, which is a partial differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales. To illustrate this approach, we calculate the two-point correlation function of a fluid.

  4. Nonlinearities in Drug Release Process from Polymeric Microparticles: Long-Time-Scale Behaviour

    Directory of Open Access Journals (Sweden)

    Elena Simona Bacaita

    2012-01-01

    Full Text Available A theoretical model of the drug release process from polymeric microparticles (a particular type of polymer matrix, through dispersive fractal approximation of motion, is built. As a result, the drug release process takes place through cnoidal oscillations modes of a normalized concentration field. This indicates that, in the case of long-time-scale evolutions, the drug particles assemble in a lattice of nonlinear oscillators occur macroscopically, through variations of drug concentration. The model is validated by experimental results.

  5. Chaos synchronization and parameter identification of three time scales brushless DC motor system

    International Nuclear Information System (INIS)

    Ge, Z.-M.; Cheng, J.-W.

    2005-01-01

    Chaotic anticontrol and chaos synchronization of brushless DC motor system are studied in this paper. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. Then, chaos synchronization of two identical systems via additional inputs and Lyapunov stability theory are studied. And further, the parameter of the system is traced via adaptive control and random optimization method

  6. Scaling of black silicon processing time by high repetition rate femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Nava Giorgio

    2013-11-01

    Full Text Available Surface texturing of silicon substrates is performed by femtosecond laser irradiation at high repetition rates. Various fabrication parameters are optimized in order to achieve very high absorptance in the visible region from the micro-structured silicon wafer as compared to the unstructured one. A 70-fold reduction of the processing time is demonstrated by increasing the laser repetition rate from 1 kHz to 200 kHz. Further scaling up to 1 MHz can be foreseen.

  7. Time scales of foam stability in shallow conduits: Insights from analogue experiments

    Science.gov (United States)

    Spina, L.; Scheu, B.; Cimarelli, C.; Arciniega-Ceballos, A.; Dingwell, D. B.

    2016-10-01

    Volcanic systems can exhibit periodical trends in degassing activity, characterized by a wide range of time scales. Understanding the dynamics that control such periodic behavior can provide a picture of the processes occurring in the feeding system. Toward this end, we analyzed the periodicity of outgassing in a series of decompression experiments performed on analogue material (argon-saturated silicone oil plus glass beads/fibers) scaled to serve as models of basaltic magma. To define the effects of liquid viscosity and crystal content on the time scale of outgassing, we investigated both: (1) pure liquid systems, at differing viscosities (100 and 1000 Pa s), and (2) particle-bearing suspensions (diluted and semidiluted). The results indicate that under dynamic conditions (e.g., decompressive bubble growth and fluid ascent within the conduit), the periodicity of foam disruption may be up to several orders of magnitude less than estimates based on the analysis of static conditions. This difference in foam disruption time scale is inferred to result from the contribution of bubble shear and bubble growth to inter-bubble film thinning. The presence of particles in the semidiluted regime is further linked to shorter bubble bursting times, likely resulting from contributions of the presence of a solid network and coalescence processes to the relative increase in bubble breakup rates. Finally, it is argued that these experiments represent a good analogue of gas-piston activity (i.e., the periodical rise-and-fall of a basaltic lava lake surface), implying a dominant role for shallow foam accumulation as a source process for these phenomena.

  8. Radiological Protection Science and Application

    International Nuclear Information System (INIS)

    Janssens, Augustin; ); Mossman, Ken; Morgan, Bill

    2016-01-01

    Since the discovery of radiation at the end of the 19. century, the health effects of exposure to radiation have been studied more than almost any other factor with potential effects on human health. The NEA has long been involved in discussions on the effects of radiation exposure, releasing two reports in 1994 and 2007 on radiological protection science. This report is the third in this state-of-the-art series, examining recent advances in the understanding of radiation risks and effects, particularly at low doses. It focuses on radiobiology and epidemiology, and also addresses the social science aspects of stakeholder involvement in radiological protection decision making. The report summarises the status of, and issues arising from, the application of the International System of Radiological Protection to different types of prevailing circumstances. Reports published by the NEA Committee on Radiation Protection and Public Health (CRPPH) in 1998 and 2007 provided an overview of the scientific knowledge available at that time, as well as the expected results from further research. They also discussed the policy implications that these results could have for the radiological protection system. The 2007 report highlighted challenges posed by developments in relation to medical exposure and by intentions to include the environment (i.e. non-human species), within the scope of the radiological protection system. It also addressed the need to be able to respond to a radiological terrorist attack. This report picks up on where the 1998 and 2007 reports left off, and addresses the state of the art in radiological prevention science and application today. It is divided into five chapters. Firstly, following broadly the structural topics from the 1998 and 2007 reports, the more purely scientific aspects of radiological protection are presented. These include cancer risk of low dose and dose rates, non-cancer effects and individual sensitivity. In view of the increasing

  9. Development of radiology in Mongolia

    International Nuclear Information System (INIS)

    Gonchigsuren, D.; Munkhbaatar, D.; Tuvshinjargal, D.; Onkhuudai, P.

    2007-01-01

    Full text: Radiology had been introduced in Mongolia by the establishment of the first X-Ray room at the First State Central Hospital in 1934. First radiologists in Mongolia were invited from the former Soviet Union; V. Sokolov, P. Omelchenko and others worked at the ''Burevestnik'' X-ray equipment of Russian production with high X-ray exposure and low capacity; they could perform only limited arts of Xray studies like fluoroscopy of thorax, stomach, esophagus and roentgenography of skull and extremities. The second X- ray equipment has been presented by the close friend of Lenin, the Director of People's Commissariat of Health Protection of the Soviet Union, Dr. N.A. Semashko; the present had been dedicated to the 10th Anniversary of Mongolian Health Care sector. During the military maneuvers at Khalkhin- Gol in 1939, several province hospitals and military hospitals had been supplied by the Xray equipment. During the period 1959-1960 all province hospitals, specialized hospitals had got X-ray unit. In 1955, Radii 226 had been used at first time in Mongolia for a treatment. In 1959, the State Radiological Clinic had been founded as a branch of X-ray cabinet of the First State Central Hospital. By the initiative of the absolvent of University of Leipzig, German Democratic Republic, Dr. P. Onkhuudai, Laboratory of Nuclear Medicine was established on 31 PstP March 1975 at the First State Central Hospital, which performed urography, thyroid and liver studies using Iod-131, Au-198, Hg-203 isotopes. In 1982, the gamma-camera and radio immunological equipment had been donated by the World Health Organization, and the Laboratory of Nuclear Medicine had been reorganized into Department of Nuclear Laboratory. Afterwards, in 1992 CT and SPECT diagnostics had been introduced at the First State Central Hospital, therefore new possibilities for high quality radiological diagnostic in Mongolia had been created. In 2007 the Siemens Magnetom 0.3 Tesla had been installed at the

  10. Implementation of a Radiological Safety Coach program

    Energy Technology Data Exchange (ETDEWEB)

    Konzen, K.K. [Safe Sites of Colorado, Golden, CO (United States). Rocky Flats Environmental Technology Site; Langsted, J.M. [M.H. Chew and Associates, Golden, CO (United States)

    1998-02-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

  11. Implementation of a Radiological Safety Coach program

    International Nuclear Information System (INIS)

    Konzen, K.K.

    1998-01-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets

  12. Measurement of 14C time scale of the rings of a tree by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Oda, Hirotaka; Furukawa, Michiaki; Yonenobu, Hitoshi; Ikeda, Akiko; Nakamura, Toshio.

    1996-01-01

    14 C time scale is different from a histrical data in order that it is calculated by assuming that the concentration of 14 C in the sample has not been changed by age. The object of this work is to make clear the errors in measurement of 14 C time scale of the ring of a tree known the tree age. The every year ring of a Hinoki in Kiso, 950 years old, was used as a sample. The most external ring is determined as 1923 years old on the basis of the dendrochronology. The rings after 1120 years were used as the samples. α-cellulose, the most stable component in the structural components of cell of tree, was prepared from each ring. About 8 mg of α-cellulose was reduced to graphite to be measured by the tandem thoron analytic meter. The results obtained showed that 14 C time scale was older than that of the histrical data in the twelfth and thirteenth century, but it was more new than that of the histrical data from the late seventeenth to the middle of eighteenth century. The results were agreement with that of Stuiver and Pearson (1933). (S.Y.)

  13. Effects of moonlight on the capturability of frugivorous phyllostomid bats (Chiroptera: Phyllostomidae at different time scales

    Directory of Open Access Journals (Sweden)

    Marco A. R. Mello

    2013-08-01

    Full Text Available Some bat species seem to be lunar phobic, i.e., they avoid flying in bright areas or during bright periods of the night; however, the evidence is still controversial. We think that part of this controversy comes from pooling data on bat captures and moonlight intensity according to broad categories, such as moon phases, which conceal the high variability among nights. Therefore, we used detailed, long-term field data on three phyllostomid bat species, in order to test the hypothesis of lunar phobia at two different time scales: 1 among nights, by pooling data of different nights according to moon phases and testing for differences in the distribution of captures; and 2 within a night, by analyzing the relationship between capturability and moonlight intensity (measured as illuminance in one-hour intervals for 29 individual nights. Although most captures of the studied bat species occurred in the first half of the night, their activity pattern varied largely among nights, and was not always unimodal as commonly assumed. At the larger time scale, all studied bat species showed evidence of lunar phobia, as they were more frequently captured on dark moon phases. Nevertheless, at the smaller time scale, only Carollia perspicillata (Linnaeus, 1758 was less frequently captured on brighter periods of the night. We propose that the unimodal activity pattern assumed for frugivorous phyllostomid bats may be an artifact of data organization, and that activity and lunar phobia are much more variable than previously assumed.

  14. Modeling and control of a large nuclear reactor. A three-time-scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Shimjith, S.R. [Indian Institute of Technology Bombay, Mumbai (India); Bhabha Atomic Research Centre, Mumbai (India); Tiwari, A.P. [Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhyay, B. [Indian Institute of Technology Bombay, Mumbai (India). IDP in Systems and Control Engineering

    2013-07-01

    Recent research on Modeling and Control of a Large Nuclear Reactor. Presents a three-time-scale approach. Written by leading experts in the field. Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.

  15. Timing of Formal Phase Safety Reviews for Large-Scale Integrated Hazard Analysis

    Science.gov (United States)

    Massie, Michael J.; Morris, A. Terry

    2010-01-01

    Integrated hazard analysis (IHA) is a process used to identify and control unacceptable risk. As such, it does not occur in a vacuum. IHA approaches must be tailored to fit the system being analyzed. Physical, resource, organizational and temporal constraints on large-scale integrated systems impose additional direct or derived requirements on the IHA. The timing and interaction between engineering and safety organizations can provide either benefits or hindrances to the overall end product. The traditional approach for formal phase safety review timing and content, which generally works well for small- to moderate-scale systems, does not work well for very large-scale integrated systems. This paper proposes a modified approach to timing and content of formal phase safety reviews for IHA. Details of the tailoring process for IHA will describe how to avoid temporary disconnects in major milestone reviews and how to maintain a cohesive end-to-end integration story particularly for systems where the integrator inherently has little to no insight into lower level systems. The proposal has the advantage of allowing the hazard analysis development process to occur as technical data normally matures.

  16. Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River

    Directory of Open Access Journals (Sweden)

    K. Chi

    2018-06-01

    Full Text Available Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mann–Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1 the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2 The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3 According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme.

  17. Incipient multiple fault diagnosis in real time with applications to large-scale systems

    International Nuclear Information System (INIS)

    Chung, H.Y.; Bien, Z.; Park, J.H.; Seon, P.H.

    1994-01-01

    By using a modified signed directed graph (SDG) together with the distributed artificial neutral networks and a knowledge-based system, a method of incipient multi-fault diagnosis is presented for large-scale physical systems with complex pipes and instrumentations such as valves, actuators, sensors, and controllers. The proposed method is designed so as to (1) make a real-time incipient fault diagnosis possible for large-scale systems, (2) perform the fault diagnosis not only in the steady-state case but also in the transient case as well by using a concept of fault propagation time, which is newly adopted in the SDG model, (3) provide with highly reliable diagnosis results and explanation capability of faults diagnosed as in an expert system, and (4) diagnose the pipe damage such as leaking, break, or throttling. This method is applied for diagnosis of a pressurizer in the Kori Nuclear Power Plant (NPP) unit 2 in Korea under a transient condition, and its result is reported to show satisfactory performance of the method for the incipient multi-fault diagnosis of such a large-scale system in a real-time manner

  18. A Real-Time Analysis Method for Pulse Rate Variability Based on Improved Basic Scale Entropy

    Directory of Open Access Journals (Sweden)

    Yongxin Chou

    2017-01-01

    Full Text Available Base scale entropy analysis (BSEA is a nonlinear method to analyze heart rate variability (HRV signal. However, the time consumption of BSEA is too long, and it is unknown whether the BSEA is suitable for analyzing pulse rate variability (PRV signal. Therefore, we proposed a method named sliding window iterative base scale entropy analysis (SWIBSEA by combining BSEA and sliding window iterative theory. The blood pressure signals of healthy young and old subjects are chosen from the authoritative international database MIT/PhysioNet/Fantasia to generate PRV signals as the experimental data. Then, the BSEA and the SWIBSEA are used to analyze the experimental data; the results show that the SWIBSEA reduces the time consumption and the buffer cache space while it gets the same entropy as BSEA. Meanwhile, the changes of base scale entropy (BSE for healthy young and old subjects are the same as that of HRV signal. Therefore, the SWIBSEA can be used for deriving some information from long-term and short-term PRV signals in real time, which has the potential for dynamic PRV signal analysis in some portable and wearable medical devices.

  19. Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions

    Science.gov (United States)

    Soltani, S. S.; Cvetkovic, V.; Destouni, G.

    2017-12-01

    The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow

  20. Virtual radiology rounds: adding value in the digital era

    Energy Technology Data Exchange (ETDEWEB)

    Fefferman, Nancy R.; Strubel, Naomi A.; Prithiani, Chandan; Chakravarti, Sujata; Caprio, Martha; Recht, Michael P. [New York University School of Medicine, Department of Radiology, New York, NY (United States)

    2016-11-15

    To preserve radiology rounds in the changing health care environment, we have introduced virtual radiology rounds, an initiative enabling clinicians to remotely review imaging studies with the radiologist. We describe our initial experience with virtual radiology rounds and referring provider impressions. Virtual radiology rounds, a web-based conference, use remote sharing of radiology workstations. Participants discuss imaging studies by speakerphone. Virtual radiology rounds were piloted with the Neonatal Intensive Care Unit (NICU) and the Congenital Cardiovascular Care Unit (CCVCU). Providers completed a survey assessing the perceived impact and overall value of virtual radiology rounds on patient care using a 10-point scale. Pediatric radiologists participating in virtual radiology rounds completed a survey assessing technical, educational and clinical aspects of this methodology. Sixteen providers responded to the survey; 9 NICU and 7 CCVCU staff (physicians, nurse practitioners and fellows). Virtual radiology rounds occurred 4-5 sessions/week with an average of 6.4 studies. Clinicians rated confidence in their own image interpretation with a 7.4 average rating for NICU and 7.5 average rating for CCVCU. Clinicians unanimously rated virtual radiology rounds as adding value. NICU staff preferred virtual radiology rounds to traditional rounds and CCVCU staff supported their new participation in virtual radiology rounds. Four of the five pediatric radiologists participating in virtual radiology rounds responded to the survey reporting virtual radiology rounds to be easy to facilitate (average rating: 9.3), to moderately impact interpretation of imaging studies (average rating: 6), and to provide substantial educational value for radiologists (average rating: 8.3). All pediatric radiologists felt strongly that virtual radiology rounds enable increased integration of the radiologist into the clinical care team (average rating: 8.8). Virtual radiology rounds are a

  1. Virtual radiology rounds: adding value in the digital era

    International Nuclear Information System (INIS)

    Fefferman, Nancy R.; Strubel, Naomi A.; Prithiani, Chandan; Chakravarti, Sujata; Caprio, Martha; Recht, Michael P.

    2016-01-01

    To preserve radiology rounds in the changing health care environment, we have introduced virtual radiology rounds, an initiative enabling clinicians to remotely review imaging studies with the radiologist. We describe our initial experience with virtual radiology rounds and referring provider impressions. Virtual radiology rounds, a web-based conference, use remote sharing of radiology workstations. Participants discuss imaging studies by speakerphone. Virtual radiology rounds were piloted with the Neonatal Intensive Care Unit (NICU) and the Congenital Cardiovascular Care Unit (CCVCU). Providers completed a survey assessing the perceived impact and overall value of virtual radiology rounds on patient care using a 10-point scale. Pediatric radiologists participating in virtual radiology rounds completed a survey assessing technical, educational and clinical aspects of this methodology. Sixteen providers responded to the survey; 9 NICU and 7 CCVCU staff (physicians, nurse practitioners and fellows). Virtual radiology rounds occurred 4-5 sessions/week with an average of 6.4 studies. Clinicians rated confidence in their own image interpretation with a 7.4 average rating for NICU and 7.5 average rating for CCVCU. Clinicians unanimously rated virtual radiology rounds as adding value. NICU staff preferred virtual radiology rounds to traditional rounds and CCVCU staff supported their new participation in virtual radiology rounds. Four of the five pediatric radiologists participating in virtual radiology rounds responded to the survey reporting virtual radiology rounds to be easy to facilitate (average rating: 9.3), to moderately impact interpretation of imaging studies (average rating: 6), and to provide substantial educational value for radiologists (average rating: 8.3). All pediatric radiologists felt strongly that virtual radiology rounds enable increased integration of the radiologist into the clinical care team (average rating: 8.8). Virtual radiology rounds are a

  2. A Bayesian method for construction of Markov models to describe dynamics on various time-scales.

    Science.gov (United States)

    Rains, Emily K; Andersen, Hans C

    2010-10-14

    The dynamics of many biological processes of interest, such as the folding of a protein, are slow and complicated enough that a single molecular dynamics simulation trajectory of the entire process is difficult to obtain in any reasonable amount of time. Moreover, one such simulation may not be sufficient to develop an understanding of the mechanism of the process, and multiple simulations may be necessary. One approach to circumvent this computational barrier is the use of Markov state models. These models are useful because they can be constructed using data from a large number of shorter simulations instead of a single long simulation. This paper presents a new Bayesian method for the construction of Markov models from simulation data. A Markov model is specified by (τ,P,T), where τ is the mesoscopic time step, P is a partition of configuration space into mesostates, and T is an N(P)×N(P) transition rate matrix for transitions between the mesostates in one mesoscopic time step, where N(P) is the number of mesostates in P. The method presented here is different from previous Bayesian methods in several ways. (1) The method uses Bayesian analysis to determine the partition as well as the transition probabilities. (2) The method allows the construction of a Markov model for any chosen mesoscopic time-scale τ. (3) It constructs Markov models for which the diagonal elements of T are all equal to or greater than 0.5. Such a model will be called a "consistent mesoscopic Markov model" (CMMM). Such models have important advantages for providing an understanding of the dynamics on a mesoscopic time-scale. The Bayesian method uses simulation data to find a posterior probability distribution for (P,T) for any chosen τ. This distribution can be regarded as the Bayesian probability that the kinetics observed in the atomistic simulation data on the mesoscopic time-scale τ was generated by the CMMM specified by (P,T). An optimization algorithm is used to find the most

  3. Precipitation Analysis at Fine Time Scales Using Multiple Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) in 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O"N-5O0S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  4. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guo-Jon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O0N-50"S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, includmg: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  5. Radiological protection in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, B

    1974-01-01

    Information that would allow an assessment of the standard of radiological protection in dentistry in the United Kingdom is sparse. The National Radiological Protection Board (previously the Radiological Protection Service) has provided a monitoring and advisory service to dentists for many years but very limited use has been made of this service. In a recent survey, 114 dentists were visited in representative practices in South East England and it was established that only 6.5% of dentists in general practice do not use radiography as an adjunct to their practice (Smith, 1969). In the 88 x-ray sets which were examined, 24% had less than the recommended thickness of aluminium filtration, while 25% had a fixed field size which was larger than necessary for dental radiography; in addition, 27% of the timers were found to have an error of greater than 20% in repetition of the pre-set exposure time. The exposure rate at the cone tip of a dental x-ray unit is generally in the range 1 to 4 R/s. A fault in the timer unit coupled with a failure on the part of the dentist to notice that x-rays are being generated (normally indicated by a red warning light) would rapidly lead to excessive exposure of the patient. Furthermore, a dentist continually holding films in the mouth of his patient would certainly incur a dose well in excess of the permissible hand dose, assuming anaverage work load for the x-ray equipment. Three case histories are given to illustrate the type of hazard that might arise from faulty equipment or bad operating technique.

  6. Renewal of radiological equipment.

    Science.gov (United States)

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  7. Tracking and visualization of space-time activities for a micro-scale flu transmission study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-07

    Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study

  8. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. American Society of Radiologic Technologists

    Science.gov (United States)

    ... 30 p.m. Mountain time, Monday-Friday Advertising Advertising Earn and Track CE ASRT Directed Reading Quizzes Track CE Credits ASRT Store Events and Conferences Featured CE Courses My Learning News and Research ASRT Journals and Magazines ASRT Newsletters Radiologic Technology ...

  10. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications

    OpenAIRE

    Xiao-Li Ding; Juan J. Nieto

    2018-01-01

    In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional stochast...

  11. Using Citizen Science Observations to Model Species Distributions Over Space, Through Time, and Across Scales

    Science.gov (United States)

    Kelling, S.

    2017-12-01

    The goal of Biodiversity research is to identify, explain, and predict why a species' distribution and abundance vary through time, space, and with features of the environment. Measuring these patterns and predicting their responses to change are not exercises in curiosity. Today, they are essential tasks for understanding the profound effects that humans have on earth's natural systems, and for developing science-based environmental policies. To gain insight about species' distribution patterns requires studying natural systems at appropriate scales, yet studies of ecological processes continue to be compromised by inadequate attention to scale issues. How spatial and temporal patterns in nature change with scale often reflects fundamental laws of physics, chemistry, or biology, and we can identify such basic, governing laws only by comparing patterns over a wide range of scales. This presentation will provide several examples that integrate bird observations made by volunteers, with NASA Earth Imagery using Big Data analysis techniques to analyze the temporal patterns of bird occurrence across scales—from hemisphere-wide views of bird distributions to the impact of powerful city lights on bird migration.

  12. Valuing Treatments for Parkinson Disease Incorporating Process Utility: Performance of Best-Worst Scaling, Time Trade-Off, and Visual Analogue Scales

    NARCIS (Netherlands)

    Weernink, Marieke Geertruida Maria; Groothuis-Oudshoorn, Catharina Gerarda Maria; IJzerman, Maarten Joost; van Til, Janine Astrid

    2016-01-01

    Objective The objective of this study was to compare treatment profiles including both health outcomes and process characteristics in Parkinson disease using best-worst scaling (BWS), time trade-off (TTO), and visual analogue scales (VAS). Methods From the model comprising of seven attributes with

  13. Radiological protection report 2012

    International Nuclear Information System (INIS)

    2013-06-01

    measurements. In addition, the Swiss Federal Office of Public Health publishes environmental monitoring data in its Annual Report. For the purpose of monitoring environmental radioactivity, ENSI operates a network that automatically monitors dose rates in the vicinity of nuclear power plants. The results are made available to the Swiss National Emergency Operations Centre, the Ministry of the Environment in Baden-Wuerttemberg and the European Radiological Data Exchange Platform. In 2012 emissions from Swiss nuclear facilities are similar to those in previous years and in the immediate vicinity of nuclear facilities the annual dose is less than 10μSv. However, the water-borne releases of radiation from the Muehleberg nuclear power station, unlike those at other nuclear facilities, continue to be so high that further remedial measures are required. In the field of dispersion, hourly simulations are calculated for all locations in the vicinity of a nuclear power station. They are based on current 3D wind speeds as provided by MeteoSwiss with a spatial resolution of 2 km. These calculations, together with the annual aero-radiometric test flights, are a valuable and precise tool that can be used at any time to analyse the current situation and forecast the development of radiation

  14. Expanding the Functionality of Speech Recognition in Radiology: Creating a Real-Time Methodology for Measurement and Analysis of Occupational Stress and Fatigue

    OpenAIRE

    Reiner, Bruce I.

    2012-01-01

    While occupational stress and fatigue have been well described throughout medicine, the radiology community is particularly susceptible due to declining reimbursements, heightened demands for service deliverables, and increasing exam volume and complexity. The resulting occupational stress can be variable in nature and dependent upon a number of intrinsic and extrinsic stressors. Intrinsic stressors largely account for inter-radiologist stress variability and relate to unique attributes of th...

  15. Radiology and fine art.

    Science.gov (United States)

    Marinković, Slobodan; Stošić-Opinćal, Tatjana; Tomić, Oliver

    2012-07-01

    The radiologic aesthetics of some body parts and internal organs have inspired certain artists to create specific works of art. Our aim was to describe the link between radiology and fine art. We explored 13,625 artworks in the literature produced by 2049 artists and found several thousand photographs in an online image search. The examination revealed 271 radiologic artworks (1.99%) created by 59 artists (2.88%) who mainly applied radiography, sonography, CT, and MRI. Some authors produced radiologic artistic photographs, and others used radiologic images to create artful compositions, specific sculptures, or digital works. Many radiologic artworks have symbolic, metaphoric, or conceptual connotations. Radiology is clearly becoming an original and important field of modern art.

  16. Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales.

    Science.gov (United States)

    Salmon, Loïc; Bouvignies, Guillaume; Markwick, Phineus; Blackledge, Martin

    2011-04-12

    A complete description of biomolecular activity requires an understanding of the nature and the role of protein conformational dynamics. In recent years, novel nuclear magnetic resonance-based techniques that provide hitherto inaccessible detail concerning biomolecular motions occurring on physiologically important time scales have emerged. Residual dipolar couplings (RDCs) provide precise information about time- and ensemble-averaged structural and dynamic processes with correlation times up to the millisecond and thereby encode key information for understanding biological activity. In this review, we present the application of two very different approaches to the quantitative description of protein motion using RDCs. The first is purely analytical, describing backbone dynamics in terms of diffusive motions of each peptide plane, using extensive statistical analysis to validate the proposed dynamic modes. The second is based on restraint-free accelerated molecular dynamics simulation, providing statistically sampled free energy-weighted ensembles that describe conformational fluctuations occurring on time scales from pico- to milliseconds, at atomic resolution. Remarkably, the results from these two approaches converge closely in terms of distribution and absolute amplitude of motions, suggesting that this kind of combination of analytical and numerical models is now capable of providing a unified description of protein conformational dynamics in solution.

  17. US stock market efficiency over weekly, monthly, quarterly and yearly time scales

    Science.gov (United States)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    In financial markets, the weak form of the efficient market hypothesis implies that price returns are serially uncorrelated sequences. In other words, prices should follow a random walk behavior. Recent developments in evolutionary economic theory (Lo, 2004) have tailored the concept of adaptive market hypothesis (AMH) by proposing that market efficiency is not an all-or-none concept, but rather market efficiency is a characteristic that varies continuously over time and across markets. Within the AMH framework, this work considers the Dow Jones Index Average (DJIA) for studying the deviations from the random walk behavior over time. It is found that the market efficiency also varies over different time scales, from weeks to years. The well-known detrended fluctuation analysis was used for the characterization of the serial correlations of the return sequences. The results from the empirical showed that interday and intraday returns are more serially correlated than overnight returns. Also, some insights in the presence of business cycles (e.g., Juglar and Kuznets) are provided in terms of time variations of the scaling exponent.

  18. Transport on intermediate time scales in flows with cat's eye patterns

    Science.gov (United States)

    Pöschke, Patrick; Sokolov, Igor M.; Zaks, Michael A.; Nepomnyashchy, Alexander A.

    2017-12-01

    We consider the advection-diffusion transport of tracers in a one-parameter family of plane periodic flows where the patterns of streamlines feature regions of confined circulation in the shape of "cat's eyes," separated by meandering jets with ballistic motion inside them. By varying the parameter, we proceed from the regular two-dimensional lattice of eddies without jets to the sinusoidally modulated shear flow without eddies. When a weak thermal noise is added, i.e., at large Péclet numbers, several intermediate time scales arise, with qualitatively and quantitatively different transport properties: depending on the parameter of the flow, the initial position of a tracer, and the aging time, motion of the tracers ranges from subdiffusive to superballistic. We report on results of extensive numerical simulations of the mean-squared displacement for different initial conditions in ordinary and aged situations. These results are compared with a theory based on a Lévy walk that describes the intermediate-time ballistic regime and gives a reasonable description of the behavior for a certain class of initial conditions. The interplay of the walk process with internal circulation dynamics in the trapped state results at intermediate time scales in nonmonotonic characteristics of aging not captured by the Lévy walk model.

  19. Neighborhood street scale elements, sedentary time and cardiometabolic risk factors in inactive ethnic minority women.

    Science.gov (United States)

    Lee, Rebecca E; Mama, Scherezade K; Adamus-Leach, Heather J

    2012-01-01

    Cardiometabolic risk factors such as obesity, excess percent body fat, high blood pressure, elevated resting heart rate and sedentary behavior have increased in recent decades due to changes in the environment and lifestyle. Neighborhood micro-environmental, street scale elements may contribute to health above and beyond individual characteristics of residents. To investigate the relationship between neighborhood street scale elements and cardiometabolic risk factors among inactive ethnic minority women. Women (N = 410) completed measures of BMI, percent body fat, blood pressure, resting heart rate, sedentary behavior and demographics. Trained field assessors completed the Pedestrian Environment Data Scan in participants' neighborhoods. Data were collected from 2006-2008. Multiple regression models were conducted in 2011 to estimate the effect of environmental factors on cardiometabolic risk factors. Adjusted regression models found an inverse association between sidewalk buffers and blood pressure, between traffic control devices and resting heart rate, and a positive association between presence of pedestrian crossing aids and BMI (psattractiveness and safety for walking and cycling were related to more time spent in a motor vehicle (psrelationships among micro-environmental, street scale elements that may confer important cardiometabolic benefits and risks for residents. Living in the most attractive and safe neighborhoods for physical activity may be associated with longer times spent sitting in the car.

  20. Neighborhood street scale elements, sedentary time and cardiometabolic risk factors in inactive ethnic minority women.

    Directory of Open Access Journals (Sweden)

    Rebecca E Lee

    Full Text Available Cardiometabolic risk factors such as obesity, excess percent body fat, high blood pressure, elevated resting heart rate and sedentary behavior have increased in recent decades due to changes in the environment and lifestyle. Neighborhood micro-environmental, street scale elements may contribute to health above and beyond individual characteristics of residents.To investigate the relationship between neighborhood street scale elements and cardiometabolic risk factors among inactive ethnic minority women.Women (N = 410 completed measures of BMI, percent body fat, blood pressure, resting heart rate, sedentary behavior and demographics. Trained field assessors completed the Pedestrian Environment Data Scan in participants' neighborhoods. Data were collected from 2006-2008. Multiple regression models were conducted in 2011 to estimate the effect of environmental factors on cardiometabolic risk factors.Adjusted regression models found an inverse association between sidewalk buffers and blood pressure, between traffic control devices and resting heart rate, and a positive association between presence of pedestrian crossing aids and BMI (ps<.05. Neighborhood attractiveness and safety for walking and cycling were related to more time spent in a motor vehicle (ps<.05.Findings suggest complex relationships among micro-environmental, street scale elements that may confer important cardiometabolic benefits and risks for residents. Living in the most attractive and safe neighborhoods for physical activity may be associated with longer times spent sitting in the car.