2006-12-01
as the fundamental unit of time in the International System of Units. It was defined as ( Metrologia , 1968) “the duration of 9 192 631 770 periods of...atomic time equivalent to the second of ET in principle. The Comité Consultatif pour la Définition de la Seconde (CCDS) of the CIPM recommended...with the definition of the second, the unit of time of the Inter- national System of Units” ( Metrologia , 1971). The CCDS (BIPM Com. Cons. Déf. Seconde
The Time Scale of Recombination Rate Evolution in Great Apes
Stevison, Laurie S.; Woerner, August E.; Kidd, Jeffrey M.; Kelley, Joanna L.; Veeramah, Krishna R.; McManus, Kimberly F.; Bustamante, Carlos D.; Hammer, Michael F.; Wall, Jeffrey D.
2016-01-01
Abstract We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471–475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10–15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives. PMID:26671457
Directory of Open Access Journals (Sweden)
Y. Kawada
2007-10-01
Full Text Available We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.
Climate change-driven cliff and beach evolution at decadal to centennial time scales
Erikson, Li; O'Neill, Andrea; Barnard, Patrick; Vitousek, Sean; Limber, Patrick
2017-01-01
Here we develop a computationally efficient method that evolves cross-shore profiles of sand beaches with or without cliffs along natural and urban coastal environments and across expansive geographic areas at decadal to centennial time-scales driven by 21st century climate change projections. The model requires projected sea level rise rates, extrema of nearshore wave conditions, bluff recession and shoreline change rates, and cross-shore profiles representing present-day conditions. The model is applied to the ~470-km long coast of the Southern California Bight, USA, using recently available projected nearshore waves and bluff recession and shoreline change rates. The results indicate that eroded cliff material, from unarmored cliffs, contribute 11% to 26% to the total sediment budget. Historical beach nourishment rates will need to increase by more than 30% for a 0.25 m sea level rise (~2044) and by at least 75% by the year 2100 for a 1 m sea level rise, if evolution of the shoreline is to keep pace with rising sea levels.
DEFF Research Database (Denmark)
Gonzalez, Brett Christopher
) caves, and the interstitium, recovering six monophyletic clades within Aphroditiformia: Acoetidae, Aphroditidae, Eulepethidae, Iphionidae, Polynoidae, and Sigalionidae (inclusive of the former ‘Pisionidae’ and ‘Pholoidae’), respectively. Tracing of morphological character evolution showed a high degree...... of adaptability and convergent evolution between relatively closely related scale worms. While some morphological and behavioral modifications in cave polynoids reflected troglomorphism, other modifications like eye loss were found to stem from a common ancestor inhabiting the deep sea, further corroborating...... the deep sea ancestry of scale worm cave fauna. In conclusion, while morphological characterization across Aphroditiformia appears deceptively easy due to the presence of elytra, convergent evolution during multiple early radiations across wide ranging habitats have confounded our ability to reconstruct...
Yuan, Naiming; Xoplaki, Elena; Zhu, Congwen; Luterbacher, Juerg
2016-06-01
In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on multi-time scales and over different periods. To illustrate their properties, we used two climatological examples: i) Global Sea Level (GSL) versus North Atlantic Oscillation (NAO); and ii) Summer Rainfall over Yangtze River (SRYR) versus previous winter Pacific Decadal Oscillation (PDO). We find significant correlations between GSL and NAO on time scales of 60 to 140 years, but the correlations are non-significant between 1865-1875. As for SRYR and PDO, significant correlations are found on time scales of 30 to 35 years, but the correlations are more pronounced during the recent 30 years. By combining TDCCA/TDPCCA and DCCA/DPCCA, we proposed a new correlation-detection system, which compared to traditional methods, can objectively show how two time series are related (on which time scale, during which time period). These are important not only for diagnosis of complex system, but also for better designs of prediction models. Therefore, the new methods offer new opportunities for applications in natural sciences, such as ecology, economy, sociology and other research fields.
Real-Time Atomic Scale Imaging of Nanostructural Evolution in Aluminum Alloys
Malladi, S.K.; Xu, X.; van Huis, M.A.; Tichelaar, F.D.; Batenburg, K.J.; Yücelen, E.; Dubiel, B.; Czyrska-Filemonowicz, A.; Zandbergen, H.W.
2014-01-01
We present a new approach to study the three- dimensional compositional and structural evolution of metal alloys during heat treatments such as commonly used for improving overall material properties. It relies on in situ heating in a high-resolution scanning transmission electron microscope (STEM).
Directory of Open Access Journals (Sweden)
O. V. Mingalev
2011-01-01
Full Text Available Dynamics of magnetic field-aligned small-scale irregularities in the electron concentration, existing in the F-layer ionospheric plasma, is investigated with the help of a mathematical model. The plasma is assumed to be a rarefied compound consisting of electrons and positive ions and being in a strong, external magnetic field. In the applied model, kinetic processes in the plasma are simulated by using the Vlasov-Poisson system of equations. The system of equations is numerically solved applying a macroparticle method. The time evolution of a plasma irregularity, having initial cross-section dimension commensurable with a Debye length, is simulated during the period sufficient for the irregularity to decay completely. The results of simulation indicate that the small-scale irregularity, created initially in the F-region ionosphere, decays accomplishing periodic damped vibrations, with the process being collisionless.
Evolution and scaling of atrioventricular conduction time in mammals. [Pt. 1
Meijler, F.L.; Strackee, J.
2006-01-01
Scaling can be defined as the adjustment of a structure, a function, or an organ to the size of the mammalian body. An example is the size of the heart in relation to the size of the body. The duration of the PR interval on the electrocardiogram (atrioventricular delay) in relation to the size of
Goldhaber, Martin B.; Mills, Christopher T.; Mushet, David M.; McCleskey, R. Blaine; Rover, Jennifer
2016-01-01
One hundred sixty-seven Prairie Pothole lakes, ponds and wetlands (largely lakes) previously analyzed chemically during the late 1960’s and early to mid-1970’s were resampled and reanalyzed in 2011–2012. The two sampling periods differed climatically. The earlier sampling took place during normal to slightly dry conditions, whereas the latter occurred during and immediately following exceptionally wet conditions. As reported previously in Mushet et al. (2015), the dominant effect was expansion of the area of these lakes and dilution of their major ions. However, within that context, there were significant differences in the evolutionary pathways of major ions. To establish these pathways, we employed the inverse modeling computer code NetpathXL. This code takes the initial and final lake composition and, using mass balance constrained by the composition of diluting waters, and input and output of phases, calculates plausible geochemical evolution pathways. Despite the fact that in most cases major ions decreased, a subset of the lakes had an increase in SO42−. This distinction is significant because SO42− is the dominant anion in a majority of Prairie Pothole Region wetlands and lakes. For lakes with decreasing SO42−, the proportion of original lake water required for mass balance was subordinate to rainwater and/or overland flow. In contrast, lakes with increasing SO42− between the two sampling episodes tended to be dominated by original lake water. This suite of lakes tended to be smaller and have lower initial SO42−concentrations such that inputs of sulfur from dissolution of the minerals gypsum or pyrite had a significant impact on the final sulfur concentration given the lower dilution factors. Thus, our study provides context for how Prairie Pothole Region water bodies evolve geochemically as climate changes. Because wetland geochemistry in turn controls the ecology of these water bodies, this research contributes to the prediction of the
Long time-scale fluctuations in the evolution of the Earth
Energy Technology Data Exchange (ETDEWEB)
McCrea, W H [Sussex Univ., Brighton (UK). Astronomy Centre
1981-02-18
Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed.
Long time-scale fluctuations in the evolution of the Earth
International Nuclear Information System (INIS)
McCrea, W.H.
1981-01-01
Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed. (U.K.)
International Nuclear Information System (INIS)
Boateng, A.A.; Mtui, P.L.
2012-01-01
A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The Eulerarian-Eulerian multiphase model system described herein is a fluidized bed of sand externally heated to a predetermined temperature prior to introduction of agricultural biomass. We predict the spontaneous emergence of pyrolysis vapors, char and non-condensable (permanent) gases and confirm the observation that the kinetics are fast and that bio-oil vapor evolution is accomplished in a few seconds, and occupying two-thirds of the spatial volume of the reactor as widely reported in the open literature. The model could be advantageous in the virtual design of fast pyrolysis reactors and their optimization to meet economic scales required for distributed or satellite units. - Highlights: ► We model the evolution of pyrolysis products in a fluidized bed via CFD. ► We predict the spontaneous emergence of pyrolysis products. ► We confirm the experimental observation that the kinetics are fast. ► And that bio-oil vapor evolution is accomplished in a few seconds. ► The model is advantageous in the virtual design of fast pyrolysis reactors.
International Nuclear Information System (INIS)
Vayron, Romain; Mathieu, Vincent; Haiat, Guillaume; Matsukawa, Mami; Tsubota, Ryo; Barthel, Etienne
2014-01-01
The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of elastic properties of newly formed bone tissue as a function of healing time. To do so, nanoindentation and micro-Brillouin scattering techniques are coupled following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 µm from the cortical bone surface, leading to an initially empty cavity. Two rabbits were sacrificed after 7 and 13 weeks of healing time. The histological analyses allow us to distinguish mature and newly formed bone tissue. The bone mechanical properties were measured in mature and newly formed bone tissue. Analysis of variance and Tukey–Kramer tests reveals a significant effect of healing time on the indentation modulus and ultrasonic velocities of bone tissue. The results show that bone mass density increases by 12.2% (2.2% respectively) between newly formed bone at 7 weeks (13 weeks respectively) and mature bone. The dependence of bone properties on healing time may be explained by the evolution of bone microstructure and mineralization. (paper)
Park, Young-Joon; Andleigh, Vaibhav K.; Thompson, Carl V.
1999-04-01
An electromigration model is developed to simulate the reliability of Al and Al-Cu interconnects. A polynomial expression for the free energy of solution by Murray [Int. Met. Rev. 30, 211 (1985)] was used to calculate the chemical potential for Al and Cu while the diffusivities were defined based on a Cu-trapping model by Rosenberg [J. Vac. Sci. Technol. 9, 263 (1972)]. The effects of Cu on stress evolution and lifetime were investigated in all-bamboo and near-bamboo stud-to-stud structures. In addition, the significance of the effect of mechanical stress on the diffusivity of both Al and Cu was determined in all-bamboo and near-bamboo lines. The void nucleation and growth process was simulated in 200 μm, stud-to-stud lines. Current density scaling behavior for void-nucleation-limited failure and void-growth-limited failure modes was simulated in long, stud-to-stud lines. Current density exponents of both n=2 for void nucleation and n=1 for void growth failure modes were found in both pure Al and Al-Cu lines. Limitations of the most widely used current density scaling law (Black's equation) in the analysis of the reliability of stud-to-stud lines are discussed. By modifying the input materials properties used in this model (when they are known), this model can be adapted to predict the reliability of other interconnect materials such as pure Cu and Cu alloys.
Factorizing the time evolution operator
International Nuclear Information System (INIS)
Garcia Quijas, P C; Arevalo Aguilar, L M
2007-01-01
There is a widespread belief in the quantum physical community, and textbooks used to teach quantum mechanics, that it is a difficult task to apply the time evolution operator e itH-hat/h on an initial wavefunction. Because the Hamiltonian operator is, generally, the sum of two operators, then it is not possible to apply the time evolution operator on an initial wavefunction ψ(x, 0), for it implies using terms like (a-hat + b-hat). A possible solution is to factorize the time evolution operator and then apply successively the individual exponential operator on the initial wavefunction. However, the exponential operator does not directly factorize, i.e. e a-hat+b-hat ≠ e a-hat e b-hat . In this study we present a useful procedure for factorizing the time evolution operator when the argument of the exponential is a sum of two operators, which obey specific commutation relations. Then, we apply the exponential operator as an evolution operator for the case of elementary unidimensional potentials, like a particle subject to a constant force and a harmonic oscillator. Also, we discuss an apparent paradox concerning the time evolution operator and non-spreading wave packets addressed previously in the literature
Kuehn, Christian
2015-01-01
This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.
Time evolution in quantum cosmology
International Nuclear Information System (INIS)
Lawrie, Ian D.
2011-01-01
A commonly adopted relational account of time evolution in generally covariant systems, and more specifically in quantum cosmology, is argued to be unsatisfactory, insofar as it describes evolution relative to observed readings of a clock that does not exist as a bona fide observable object. A modified strategy is proposed, in which evolution relative to the proper time that elapses along the worldline of a specific observer can be described through the introduction of a ''test clock,'' regarded as internal to, and hence unobservable by, that observer. This strategy is worked out in detail in the case of a homogeneous cosmology, in the context of both a conventional Schroedinger quantization scheme, and a 'polymer' quantization scheme of the kind inspired by loop quantum gravity. Particular attention is given to limitations placed on the observability of time evolution by the requirement that a test clock should contribute only a negligible energy to the Hamiltonian constraint. It is found that suitable compromises are available, in which the clock energy is reasonably small, while Dirac observables are reasonably sharply defined.
TMD Evolution at Moderate Hard Scales
Energy Technology Data Exchange (ETDEWEB)
Rogers, Ted [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Collins, John C. [Pennsylvania State Univ., University Park, PA (United States)
2016-01-01
We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.
Denman, Kenneth L.; Abbott, Mark R.
1994-01-01
We have selected square subareas (110 km on a side) from coastal zone color scanner (CZCS) and advanced very high resolution radiometer (AVHRR) images for 1981 in the California Current region off northern California for which we could identify sequences of cloud-free data over periods of days to weeks. We applied a two-dimensional fast Fourier transformation to images after median filtering, (x, y) plane removal, and cosine tapering. We formed autospectra and coherence spectra as functions of a scalar wavenumber. Coherence estimates between pairs of images were plotted against time separation between images for several wide wavenumber bands to provide a temporal lagged coherence function. The temporal rate of loss of correlation (decorrelation time scale) in surface patterns provides a measure of the rate of pattern change or evolution as a function of spatial dimension. We found that patterns evolved (or lost correlation) approximately twice as rapidly in upwelling jets as in the 'quieter' regions between jets. The rapid evolution of pigment patterns (lifetime of about 1 week or less for scales of 50-100 km) ought to hinder biomass transfer to zooplankton predators compared with phytoplankton patches that persist for longer times. We found no significant differences between the statistics of CZCS and AVHRR images (spectral shape or rate of decorrelation). In addition, in two of the three areas studied, the peak correlation between AVHRR and CZCS images from the same area occurred at zero lag, indicating that the patterns evolved simutaneously. In the third area, maximum coherence between thermal and pigment patterns occurred when pigment images lagged thermal images by 1-2 days, mirroring the expected lag of high pigment behind low temperatures (and high nutrients) in recently upwelled water. We conclude that in dynamic areas such as coastal upwelling systems, the phytoplankton cells (identified by pigment color patterns) behave largely as passive scalars at the
On the evolution of cluster scaling relations
International Nuclear Information System (INIS)
Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud
2013-01-01
Understanding the evolution of scaling relations between the observable properties of clusters and their total mass is key to realizing their potential as cosmological probes. In this study, we investigate whether the evolution of cluster scaling relations is affected by the spurious evolution of mass caused by the evolving reference density with respect to which halo masses are defined (pseudo-evolution). We use the relation between mass, M, and velocity dispersion, σ, as a test case, and show that the deviation from the M-σ relation of cluster-sized halos caused by pseudo-evolution is smaller than 10% for a wide range of mass definitions. The reason for this small impact is a tight relation between the velocity dispersion and mass profiles, σ(
Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.
2017-12-01
Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.
Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.
2012-12-01
Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data
Black-hole universe: time evolution.
Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi
2013-10-18
Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.
Malakhova, Valentina V.; Eliseev, Alexey V.
2017-10-01
Climate warming may lead to degradation of the subsea permafrost developed during Pleistocene glaciations and release methane from the hydrates, which are stored in this permafrost. It is important to quantify time scales at which this release is plausible. While, in principle, such time scale might be inferred from paleoarchives, this is hampered by considerable uncertainty associated with paleodata. In the present paper, to reduce such uncertainty, one-dimensional simulations with a model for thermal state of subsea sediments forced by the data obtained from the ice core reconstructions are performed. It is shown that heat propagates in the sediments with a time scale of ∼ 10-20 kyr. This time scale is longer than the present interglacial and is determined by the time needed for heat penetration in the unfrozen part of thick sediments. We highlight also that timings of shelf exposure during oceanic regressions and flooding during transgressions are important for simulating thermal state of the sediments and methane hydrates stability zone (HSZ). These timings should be resolved with respect to the contemporary shelf depth (SD). During glacial cycles, the temperature at the top of the sediments is a major driver for moving the HSZ vertical boundaries irrespective of SD. In turn, pressure due to oceanic water is additionally important for SD ≥ 50 m. Thus, oceanic transgressions and regressions do not instantly determine onsets of HSZ and/or its disappearance. Finally, impact of initial conditions in the subsea sediments is lost after ∼ 100 kyr. Our results are moderately sensitive to intensity of geothermal heat flux.
Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.
2012-01-01
This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam
Dynamic inequalities on time scales
Agarwal, Ravi; Saker, Samir
2014-01-01
This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
Evolution of scaling emergence in large-scale spatial epidemic spreading.
Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan
2011-01-01
Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
MAEROS, Multicomponent Aerosol Time Evolution
International Nuclear Information System (INIS)
1991-01-01
1 - Description of program or function: MAEROS calculates aerosol composition and mass concentration as a function of particle size and time. The processes that may be considered are coagulation due to Brownian motion, gravity, and turbulence; particle deposition due to gravitational settling, diffusion, and thermophoresis; particle growth due to condensation of a gas, typically water vapor, and time-varying sources of particles of different sizes and chemical compositions. 2 - Method of solution: The numerical technique used is based upon dividing the particle size domain into m sections and imposing the condition of mass conservation for each chemical component for the processes considered. Aerosol mass concentrations are grouped into sections (i.e., size classes) for which an average composition is determined. For m sections, a set of 2m(m+2) sectional coefficients must be calculated before integrating in time. These coefficients are determined from the basic coagulation, condensation, and deposition coefficients. Since the sectional coefficients depend on the physical properties of the containment chamber (e.g., temperature, pressure, chamber volume, and deposition surface area), they will generally need to be recalculated for a particular application. However, for a given containment chamber, the sectional coefficients will probably vary only with temperature and pressure. Consequently, the code has been developed so that sectional coefficients are stored at a user-specified upper and lower bound for both temperature and pressure, and linear interpolation is used to determine the appropriate sectional coefficients for a given temperature and pressure. A Runge-Kutta-Fehlberg method is used to integrate in time. 3 - Restrictions on the complexity of the problem - Maxima of: 20 sections, 8 components, 50 rows for plotting, 101 columns for plotting. MAEROS is limited to geometrically spaced sections in particle mass (i.e., v(m+1).GE.2v(m) is the largest particle
A laboratory scale fundamental time?
International Nuclear Information System (INIS)
Mendes, R.V.
2012-01-01
The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)
Time evolution of wave packets on nanostructures
International Nuclear Information System (INIS)
Prunele, E de
2005-01-01
Time evolution of wave packets on nanostructures is studied on the basis of a three-dimensional solvable model with singular interactions (de Prunele 1997 J. Phys. A: Math. Gen. 30 7831). In particular, methods and tools are provided to determine time independent upper bounds for the overlap of the normalized time-dependent wave packet with the time independent normalized wave packet concentrated at an arbitrarily chosen vertex of the nanosystem. The set of upper bounds referring to all initial positions of the wave packet and all overlaps are summarized in a matrix. The analytical formulation allows a detailed study for arbitrary geometrical configurations. Time evolution on truncated quasicrystalline systems has been found to be site selective, depending on the position of the initial wave packet
International Nuclear Information System (INIS)
Aschwanden, Markus J.; Zhang, Jie; Liu, Kai
2013-01-01
We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D 2 ), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities v max ) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)∝L –3 , N(A)∝A –2 , N(V)∝V –5/3 , N(T)∝T –2 , and D 2 = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κ∝L 0.94±0.01 and the three-parameter scaling law L∝κ T 0.1 , which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs)
Reference results for time-like evolution up to
Bertone, Valerio; Carrazza, Stefano; Nocera, Emanuele R.
2015-03-01
We present high-precision numerical results for time-like Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution in the factorisation scheme, for the first time up to next-to-next-to-leading order accuracy in quantum chromodynamics. First, we scrutinise the analytical expressions of the splitting functions available in the literature, in both x and N space, and check their mutual consistency. Second, we implement time-like evolution in two publicly available, entirely independent and conceptually different numerical codes, in x and N space respectively: the already existing APFEL code, which has been updated with time-like evolution, and the new MELA code, which has been specifically developed to perform the study in this work. Third, by means of a model for fragmentation functions, we provide results for the evolution in different factorisation schemes, for different ratios between renormalisation and factorisation scales and at different final scales. Our results are collected in the format of benchmark tables, which could be used as a reference for global determinations of fragmentation functions in the future.
Nonlinear evolution of large-scale structure in the universe
International Nuclear Information System (INIS)
Frenk, C.S.; White, S.D.M.; Davis, M.
1983-01-01
Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r 0 = 5.1; its expected value in a neutrino dominated universe is 4(Ωh) -1 (H 0 = 100h km s -1 Mpc -1 ). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Lyα absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with Ω<1
Time-evolution problem in Regge calculus
International Nuclear Information System (INIS)
Sorkin, R.
1975-01-01
The simplectic approximation to Einstein's equations (''Regge calculus'') is derived by considering the net to be actually a (singular) Riemannian manifold. Specific nets for open and closed spaces are introduced in terms of which one can formulate the general time-evolution problem, which thereby reduces to the repeated solution of finite sets of coupled nonlinear (algebraic) equations. The initial-value problem is also formulated in simplectic terms
Summary of papers on predicting aggregated-scale coastal evolution
Hulscher, Suzanne J.M.H.
2003-01-01
Coastal evolution puts many questions, both to coastal engineers as well as to scientists. The project PACE (Predicting Aggregated-Scale Coastal Evolution) is a successful project in which they both meet. This paper puts the overview papers of the project into perspective and highlights the results.
Time evolution of tokamak states with flow
International Nuclear Information System (INIS)
Kerner, W.; Weitzner, H.
1985-12-01
The general dissipative Braginskii single-fluid model is applied to simulate tokamak transport. An expansion with respect to epsilon = (ω/sub i/tau/sub i/) -1 , the factor by which perpendicular and parallel transport coefficients differ, yields a numerically tractable scheme. The resulting 1-1/2 D procedure requires computation of 2D toroidal equilibria with flow together with the solution of a system of ordinary 1D flux-averaged equations for the time evolution of the profiles. 13 refs
TIME EVOLUTION OF WOUTHUYSEN-FIELD COUPLING
International Nuclear Information System (INIS)
Roy, Ishani; Shu Chiwang; Xu Wen; Fang Lizhi; Qiu Jingmei
2009-01-01
We study the Wouthuysen-Field (W-F) coupling at early universe with numerical solutions of the integrodifferential equation describing the kinetics of photons undergoing resonant scattering. The numerical solver is developed based on the weighted essentially nonoscillatory (WENO) scheme for the Boltzmann-like integrodifferential equation. This method has perfectly passed the tests of the analytic solution and conservation property of the resonant scattering equation. We focus on the time evolution of the Wouthuysen-Field (W-F) coupling in relation to the 21 cm emission and absorption at the epoch of reionization. We especially pay attention to the formation of the local Boltzmann distribution, e -(ν-ν 0 )/kT , of photon frequency spectrum around resonant frequency ν 0 within width ν l , i.e., |ν - ν 0 | ≤ ν l . We show that a local Boltzmann distribution will be formed if photons with frequency ∼ν 0 have undergone a 10,000 or more times of scattering, which corresponds to the order of 10 3 yr for neutral hydrogen density of the concordance ΛCDM model. The time evolution of the shape and width of the local Boltzmann distribution actually do not depend on the details of atomic recoil, photon sources, or initial conditions very much. However, the intensity of photon flux at the local Boltzmann distribution is substantially time dependent. The timescale of approaching the saturated intensity can be as long as 10 5 -10 6 yr for typical parameters of the ΛCDM model. The intensity of the local Boltzmann distribution at time less than 10 5 yr is significantly lower than that of the saturation state. Therefore, it may not be always reasonable to assume that the deviation of the spin temperature of 21 cm energy states from cosmic background temperature is mainly due to the W-F coupling if first stars or their emission/absorption regions evolved with a timescale equal to or less than Myr.
Time evolution of Wikipedia network ranking
Eom, Young-Ho; Frahm, Klaus M.; Benczúr, András; Shepelyansky, Dima L.
2013-12-01
We study the time evolution of ranking and spectral properties of the Google matrix of English Wikipedia hyperlink network during years 2003-2011. The statistical properties of ranking of Wikipedia articles via PageRank and CheiRank probabilities, as well as the matrix spectrum, are shown to be stabilized for 2007-2011. A special emphasis is done on ranking of Wikipedia personalities and universities. We show that PageRank selection is dominated by politicians while 2DRank, which combines PageRank and CheiRank, gives more accent on personalities of arts. The Wikipedia PageRank of universities recovers 80% of top universities of Shanghai ranking during the considered time period.
Evidence for a scaling solution in cosmic-string evolution
International Nuclear Information System (INIS)
Bennett, D.P.; Bouchet, F.R.
1988-01-01
We study, by means of numerical simulations, the most fundamental issue of cosmic-string evolution: the existence of a scaling solution. We find strong evidence that a scaling solution does indeed exist. This justifies the main assumption on which the cosmic-string theories of galaxy formation are based. Our main conclusion coincides with that of Albrecht and Turok in previous work, but our results are not consistent with theirs. In fact, our results indicate that the details of string evolution are very different from the standard dogma
Numerical Modeling of Large-Scale Rocky Coastline Evolution
Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.
2008-12-01
Seventy-five percent of the world's ocean coastline is rocky. On large scales (i.e. greater than a kilometer), many intertwined processes drive rocky coastline evolution, including coastal erosion and sediment transport, tectonics, antecedent topography, and variations in sea cliff lithology. In areas such as California, an additional aspect of rocky coastline evolution involves submarine canyons that cut across the continental shelf and extend into the nearshore zone. These types of canyons intercept alongshore sediment transport and flush sand to abyssal depths during periodic turbidity currents, thereby delineating coastal sediment transport pathways and affecting shoreline evolution over large spatial and time scales. How tectonic, sediment transport, and canyon processes interact with inherited topographic and lithologic settings to shape rocky coastlines remains an unanswered, and largely unexplored, question. We will present numerical model results of rocky coastline evolution that starts with an immature fractal coastline. The initial shape is modified by headland erosion, wave-driven alongshore sediment transport, and submarine canyon placement. Our previous model results have shown that, as expected, an initial sediment-free irregularly shaped rocky coastline with homogeneous lithology will undergo smoothing in response to wave attack; headlands erode and mobile sediment is swept into bays, forming isolated pocket beaches. As this diffusive process continues, pocket beaches coalesce, and a continuous sediment transport pathway results. However, when a randomly placed submarine canyon is introduced to the system as a sediment sink, the end results are wholly different: sediment cover is reduced, which in turn increases weathering and erosion rates and causes the entire shoreline to move landward more rapidly. The canyon's alongshore position also affects coastline morphology. When placed offshore of a headland, the submarine canyon captures local sediment
The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts
Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei
2017-11-01
In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24 h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.
Estimates of expansion time scales
International Nuclear Information System (INIS)
Jones, E.M.
1979-01-01
Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure
Stochastic time scale for the Universe
International Nuclear Information System (INIS)
Szydlowski, M.; Golda, Z.
1986-01-01
An intrinsic time scale is naturally defined within stochastic gradient dynamical systems. It should be interpreted as a ''relaxation time'' to a local potential minimum after the system has been randomly perturbed. It is shown that for a flat Friedman-like cosmological model this time scale is of order of the age of the Universe. 7 refs. (author)
Time scale in quasifission reactions
Energy Technology Data Exchange (ETDEWEB)
Back, B.B.; Paul, P.; Nestler, J. [and others
1995-08-01
The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.
Atomic scale modeling of defect production and microstructure evolution in irradiated metals
Energy Technology Data Exchange (ETDEWEB)
Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y. [Lawrence Livermore National Lab., CA (United States)] [and others
1997-04-01
Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitial clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.
Atomic scale modeling of defect production and microstructure evolution in irradiated metals
International Nuclear Information System (INIS)
Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y.
1997-01-01
Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitial clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000's of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in αFe during irradiation at 600 K
Some nonlinear dynamic inequalities on time scales
Indian Academy of Sciences (India)
In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous and discrete analysis. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales. Recently, there has been much research activity concerning the new theory. For example, we ...
Multiple time scale methods in tokamak magnetohydrodynamics
International Nuclear Information System (INIS)
Jardin, S.C.
1984-01-01
Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B 2 /2μ 0 , which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed
Uniform Statistical Convergence on Time Scales
Directory of Open Access Journals (Sweden)
Yavuz Altin
2014-01-01
Full Text Available We will introduce the concept of m- and (λ,m-uniform density of a set and m- and (λ,m-uniform statistical convergence on an arbitrary time scale. However, we will define m-uniform Cauchy function on a time scale. Furthermore, some relations about these new notions are also obtained.
Time Scale in Least Square Method
Directory of Open Access Journals (Sweden)
Özgür Yeniay
2014-01-01
Full Text Available Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.
Shvarts, Dov
2017-10-01
Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRT =αRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.
Hardy type inequalities on time scales
Agarwal, Ravi P; Saker, Samir H
2016-01-01
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and...
Steffensen's Integral Inequality on Time Scales
Directory of Open Access Journals (Sweden)
Ozkan Umut Mutlu
2007-01-01
Full Text Available We establish generalizations of Steffensen's integral inequality on time scales via the diamond- dynamic integral, which is defined as a linear combination of the delta and nabla integrals.
JY1 time scale: a new Kalman-filter time scale designed at NIST
International Nuclear Information System (INIS)
Yao, Jian; Parker, Thomas E; Levine, Judah
2017-01-01
We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e. time error, frequency error, or frequency drift error) automatically. These features make the JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 time scale deviates from the UTC by less than ±5 ns for ∼100 d, when the time scale is initially aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs fountain, it can maintain the time with little error even if the Cs fountain stops working for tens of days. This can be helpful when we do not have a continuously operated fountain or when the continuously operated fountain accidentally stops, or when optical clocks run occasionally. (paper)
Mouse Activity across Time Scales: Fractal Scenarios
Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.
2014-01-01
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better
The evolution of streams in a time-dependent potential
Buist, Hans J. T.; Helmi, Amina
2015-01-01
We study the evolution of streams in a time-dependent spherical gravitational potential. Our goal is to establish what are the imprints of this time evolution on the properties of streams as well as their observability. To this end, we have performed a suite of test-particle experiments for a host
Time evolution of distribution functions in dissipative environments
International Nuclear Information System (INIS)
Hu Li-Yun; Chen Fei; Wang Zi-Sheng; Fan Hong-Yi
2011-01-01
By introducing the thermal entangled state representation, we investigate the time evolution of distribution functions in the dissipative channels by bridging the relation between the initial distribution function and the any time distribution function. We find that most of them are expressed as such integrations over the Laguerre—Gaussian function. Furthermore, as applications, we derive the time evolution of photon-counting distribution by bridging the relation between the initial distribution function and the any time photon-counting distribution, and the time evolution of R-function characteristic of nonclassicality depth. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Complex Langevin simulation of real time quantum evolution
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Kripfganz, J.
1986-07-01
Complex Langevin methods are used to study the time evolution of quantum mechanical wave packets. We do not need any Feynman ε regularization for the numerical evaluation of the double time path integral. (author)
Time evolution of damage in thermally induced creep rupture
Yoshioka, N.; Kun, F.; Ito, N.
2012-01-01
. We compare analytic results obtained in the mean-field limit to the computer simulations of localized load redistribution to reveal the effect of the range of interaction on the time evolution. Focusing on the waiting times between consecutive bursts
Coastal Foredune Evolution, Part 2: Modeling Approaches for Meso-Scale Morphologic Evolution
2017-03-01
for Meso-Scale Morphologic Evolution by Margaret L. Palmsten1, Katherine L. Brodie2, and Nicholas J. Spore2 PURPOSE: This Coastal and Hydraulics ...managers because foredunes provide ecosystem services and can reduce storm damages to coastal infrastructure, both of which increase the resiliency...MS 2 U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Duck, NC ERDC/CHL CHETN-II-57 March 2017 2 models of
Multivariable dynamic calculus on time scales
Bohner, Martin
2016-01-01
This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.
Time scales in tidal disruption events
Directory of Open Access Journals (Sweden)
Krolik J.
2012-12-01
Full Text Available We explore the temporal structure of tidal disruption events pointing out the corresponding transitions in the lightcurves of the thermal accretion disk and of the jet emerging from such events. The hydrodynamic time scale of the disrupted star is the minimal time scale of building up the accretion disk and the jet and it sets a limit on the rise time. This suggest that Swift J1644+57, that shows several flares with a rise time as short as a few hundred seconds could not have arisen from a tidal disruption of a main sequence star whose hydrodynamic time is a few hours. The disrupted object must have been a white dwarf. A second important time scale is the Eddington time in which the accretion rate changes form super to sub Eddington. It is possible that such a transition was observed in the light curve of Swift J2058+05. If correct this provides interesting constraints on the parameters of the system.
The Evolution of the Wechsler Memory Scale: A Selective Review.
Kent, Phillip
2013-02-27
In clinical use since 1940, the Wechsler Memory Scale was formally introduced to the psychological community in 1945. By 1946, it ranked 90th out of the 100 most frequently used psychological tests. By 1969, it was the 19th most used psychological test and the 2nd most used test of memory. By 1982, it was the 12th most used test and the most used memory test-a popularity it continues to enjoy. The present article will briefly trace the origin of the Wechsler Memory Scale and examine its evolution across the revisions that appeared in 1987, 1997, and 2009. Issues with norming and standardization, as well as reliability and validity, will be summarized. It is argued that the test continues to have several serious shortcomings, including a lack of anchoring in an explicit neuroanatomical theory of memory and an underlying factor structure that appears to have changed little despite changes in the manifest structure and content of the test.
Rooting human parechovirus evolution in time
Directory of Open Access Journals (Sweden)
Benschop Kimberley
2009-07-01
Full Text Available Abstract Background The Picornaviridae family contains a number of important pathogenic viruses, among which the recently reclassified human parechoviruses (HPeVs. These viruses are widespread and can be grouped in several types. Understanding the evolutionary history of HPeV could answer questions such as how long the circulating lineages last shared a common ancestor and how the evolution of this viral species is shaped by its population dynamics. Using both strict and relaxed clock Bayesian phylogenetics we investigated 1 the substitutions rates of the structural P1 and capsid VP1 regions and 2 evolutionary timescale of currently circulating HPeV lineages. Results Our estimates reveal that human parechoviruses exhibit high substitution rates for both structural P1 and capsid VP1 regions, respectively 2.21 × 10-3 (0.48 – 4.21 × 10-3 and 2.79 × 10-3 (2.05 – 3.66 × 10-3 substitutions per site per year. These are within the range estimated for other picornaviruses. By employing a constant population size coalescent prior, the date of the most recent common ancestor was estimated to be at around 1600 (1427–1733. In addition, by looking at the frequency of synonymous and non-synonymous substitutions within the VP1 gene we show that purifying selection constitutes the dominating evolutionary force leading to strong amino acid conservation. Conclusion In conclusion, our estimates provide a timescale for the evolution of HPeVs and suggest that genetic diversity of current circulating HPeV types has arisen about 400 years ago.
Time evolution of morphology in mechanically alloyed Fe-Cu
Wille, Catharina Gabriele
2011-05-01
Being widely accessible as well as already utilised in many applications, Fe-Cu acts as an ideal binary model alloy to elaborate the enforced nonequilibrium enhanced solubility in such a solution system that shows a limited regime of miscibility and characterised by a large positive heat of mixing. In addition to the detailed analysis of ball milled Fe-Cu powders by means of Atom Probe Tomography (APT), site specific structural analysis has been performed in this study using Transmission Electron Microscopy (TEM).In this contribution results on powders with low Cu concentrations (2.5-10 at%) are presented. Combining a ductile element (Cu, fcc) and a brittle one (Fe, bcc), striking differences in morphology were expected and found on all length-scales, depending on the mixing ratio of the two elements. However, not only could the atomic mixing of Fe and Cu be evaluated, but also the distribution of impurities, mostly stemming from the fabrication procedure. The combination of APT and TEM enables a correlation between the structural evolution and the chemical mixing during the milling process. For the first time, a clear distinction can be drawn between the morphological evolution at the surface and in the interior of the powder particles. This became possible owing to the site specific sample preparation of TEM lamellae by Focussed Ion Beam (FIB). Surprisingly, the texture arising from the ball milling process can directly be related to the classical rolling texture of cold rolled Fe. In addition, full homogeneity can be achieved even on the nano-scale for this material as shown by APT, resulting in an extended miscibility region in comparison to the equilibrium phase diagram. Grain sizes were determined by means of XRD and TEM. The strain corrected XRD results are in very good agreement with the values derived by TEM, both confirming a truly nanocrystalline structure. © 2011 Elsevier B.V.
The Second Noether Theorem on Time Scales
Directory of Open Access Journals (Sweden)
Agnieszka B. Malinowska
2013-01-01
Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.
Structure of Student Time Management Scale (STMS)
Balamurugan, M.
2013-01-01
With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…
Some Nonlinear Dynamic Inequalities on Time Scales
Indian Academy of Sciences (India)
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential ...
Regional scale analysis of the altimetric stream network evolution
Directory of Open Access Journals (Sweden)
T. Ghizzoni
2006-01-01
Full Text Available Floods result from the limited carrying capacity of stream channels when compared to the discharge peak value. The transit of flood waves - with the associated erosion and sedimentation processes - often modifies local stream geometry. In some cases this results in a reduction of the stream carrying capacity, and consequently in an enhancement of the flooding risk. A mathematical model for the prediction of potential altimetric stream network evolution due to erosion and sedimentation processes is here formalized. It works at the regional scale, identifying the tendency of river segments to sedimentation, stability, or erosion. The model builds on geomorphologic concepts, and derives its parameters from extensive surveys. As a case study, tendencies of rivers pertaining to the Valle d'Aosta region are analyzed. Some validation is provided both at regional and local scales of analysis. Local validation is performed both through a mathematical model able to simulate the temporal evolution of the stream profile, and through comparison of the prediction with ante and post-event river surveys, where available. Overall results are strongly encouraging. Possible use of the information derived from the model in the context of flood and landslide hazard mitigation is briefly discussed.
Evolution in space and time of two interacting intensities
International Nuclear Information System (INIS)
Wilhelmsson, H.
1977-01-01
The basic nonlinear coupled equations describing the interaction between two intensities (or two populations) are discussed. Analytic solutions are deduced for the evolution in space and time of initially given perturbations of the equilibrium intensities. (Auth.)
Time evolution of gibbs states for an anharmonic lattice
Energy Technology Data Exchange (ETDEWEB)
Marchioro, C; Pellegrinotti, A; Suhov, Y [Camerino Univ. (Italy). Istituto di Matematica; Pulvirenti, M [L' Aquila Univ. (Italy). Istituto di Matematica; Rome Univ. (Italy). Istituto di Matematica)
1979-01-01
In this paper we study the time evolution of a regular class of states of an infinite classical system of anharmonic oscillators. The conditional probabilities are investigated and an explicit form for these is given.
Time evolution of gibbs states for an anharmonic lattice
International Nuclear Information System (INIS)
Marchioro, C.; Pellegrinotti, A.; Suhov, Y.; Pulvirenti, M.; Rome Univ.
1979-01-01
In this paper we study the time evolution of a regular class of states of an infinite classical system of anharmonic oscillators. The conditional probabilities are investigated and an explicit form for these is given. (orig.) [de
Time evolution of the quark-gluon plasma
International Nuclear Information System (INIS)
Cooper, F.; New Hampshire Univ., Durham, NH
1993-01-01
We review progress in our understanding the production and time evolution of the quark gluon plasma starting with boost invariant initial conditions in a filed theory model based on the Schwinger mechanism of particle production via tunneling
PERFORMANCE EVALUATION: LITERATURE REVIEW AND TIME EVOLUTION.
Directory of Open Access Journals (Sweden)
Pintea Mirela-Oana
2012-07-01
Full Text Available Performance evaluation of an economic entity requires approaching several criteria, such as industry and economic entity type, managerial and entrepreneurial strategy, competitive environment, human and material resources available, using a system of appropriate performance indicators for this purpose.The exigencies of communication occurred on the growing number of phenomena that marked the global economy in recent decades (internationalization and relocation of business crises and turmoil in financial markets, demand performance measurement to be made in a comprehensive way by financial and non-financial criteria. Indicators are measures of performance used by management to measure, report and improve performance of the economic entity. The relationship between indicators and management is ensured by the existence of performance measurement systems. Studies to date indicate that economic entities using balanced performance measurement systems as a key management tool registered superior performance compared to entities not using such systems. This study attempts to address the issue of performance evaluation by presenting opinions of different authors concerning the process of performance measurement and to present, after revising the literature, the evolution of the performance evaluation systems. We tried to do this literature review because sustainable development and, therefore, globalization require new standards of performance that exceeds the economic field, both for domestic companies as well as international ones. So, these standards should be integrated into corporate strategy development to ensure sustainability of activities undertaken by harmonizing the economic, social and environmental objectives. To assess the performance of economic entities it is required that performance evaluation to be done with a balanced multidimensional system, including both financial ratios and non-financial indicators in order to reduce the limits of
Time-space noncommutativity: quantised evolutions
International Nuclear Information System (INIS)
Balachandran, Aiyalam P.; Govindarajan, Thupil R.; Teotonio-Sobrinho, Paulo; Martins, Andrey Gomes
2004-01-01
In previous work, we developed quantum physics on the Moyal plane with time-space noncommutativity, basing ourselves on the work of Doplicher et al. Here we extend it to certain noncommutative versions of the cylinder, R 3 and Rx S 3 . In all these models, only discrete time translations are possible, a result known before in the first two cases. One striking consequence of quantised time translations is that even though a time independent hamiltonian is an observable, in scattering processes, it is conserved only modulo 2π/θ, where θ is the noncommutative parameter. (In contrast, on a one-dimensional periodic lattice of lattice spacing a and length L = Na, only momentum mod 2π/L is observable (and can be conserved).) Suggestions for further study of this effect are made. Scattering theory is formulated and an approach to quantum field theory is outlined. (author)
Special Issue on Time Scale Algorithms
2008-01-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 IOP PUBLISHING METROLOGIA Metrologia 45 (2008) doi:10.1088/0026-1394/45/6/E01...special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the...scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation’s high
Current relaxation time scales in toroidal plasmas
International Nuclear Information System (INIS)
Mikkelsen, D.R.
1987-02-01
An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given
Liquidity crises on different time scales
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Space-time evolution of cataclasis in carbonate fault zones
Ferraro, Francesco; Grieco, Donato Stefano; Agosta, Fabrizio; Prosser, Giacomo
2018-05-01
The present contribution focuses on the micro-mechanisms associated to cataclasis of both calcite- and dolomite-rich fault rocks. This work combines field and laboratory data of carbonate fault cores currently exposed in central and southern Italy. By first deciphering the main fault rock textures, their spatial distribution, crosscutting relationships and multi-scale dimensional properties, the relative timing of Intragranular Extensional Fracturing (IEF), chipping, and localized shear is inferred. IEF was predominant within already fractured carbonates, forming coarse and angular rock fragments, and likely lasted for a longer period within the dolomitic fault rocks. Chipping occurred in both lithologies, and was activated by grain rolling forming minute, sub-rounded survivor grains embedded in a powder-like carbonate matrix. The largest fault zones, which crosscut either limestones or dolostones, were subjected to localized shear and, eventually, to flash temperature increase which caused thermal decomposition of calcite within narrow (cm-thick) slip zones. Results are organized in a synoptic panel including the main dimensional properties of survivor grains. Finally, a conceptual model of the time-dependent evolution of cataclastic deformation in carbonate rocks is proposed.
Chaos and unpredictability in evolution of cooperation in continuous time
You, Taekho; Kwon, Minji; Jo, Hang-Hyun; Jung, Woo-Sung; Baek, Seung Ki
2017-12-01
Cooperators benefit others with paying costs. Evolution of cooperation crucially depends on the cost-benefit ratio of cooperation, denoted as c . In this work, we investigate the infinitely repeated prisoner's dilemma for various values of c with four of the representative memory-one strategies, i.e., unconditional cooperation, unconditional defection, tit-for-tat, and win-stay-lose-shift. We consider replicator dynamics which deterministically describes how the fraction of each strategy evolves over time in an infinite-sized well-mixed population in the presence of implementation error and mutation among the four strategies. Our finding is that this three-dimensional continuous-time dynamics exhibits chaos through a bifurcation sequence similar to that of a logistic map as c varies. If mutation occurs with rate μ ≪1 , the position of the bifurcation sequence on the c axis is numerically found to scale as μ0.1, and such sensitivity to μ suggests that mutation may have nonperturbative effects on evolutionary paths. It demonstrates how the microscopic randomness of the mutation process can be amplified to macroscopic unpredictability by evolutionary dynamics.
Multidimensional scaling of musical time estimations.
Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel
2011-06-01
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.
THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME
Energy Technology Data Exchange (ETDEWEB)
Kewley, Lisa J.; Dopita, Michael A.; Sutherland, Ralph [Research School for Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dave, Romeel [Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Yuan, Tiantian [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Allen, Mark [Observatoire de Strasbourg, UMR 7550, Strasbourg 67000 (France); Groves, Brent, E-mail: kewley@mso.anu.edu.au [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)
2013-09-10
We use the chemical evolution predictions of cosmological hydrodynamic simulations with our latest theoretical stellar population synthesis, photoionization, and shock models to predict the strong line evolution of ensembles of galaxies from z = 3 to the present day. In this paper, we focus on the brightest optical emission-line ratios, [N II]/H{alpha} and [O III]/H{beta}. We use the optical diagnostic Baldwin-Phillips-Terlevich (BPT) diagram as a tool for investigating the spectral properties of ensembles of active galaxies. We use four redshift windows chosen to exploit new near-infrared multi-object spectrographs. We predict how the BPT diagram will appear in these four redshift windows given different sets of assumptions. We show that the position of star-forming galaxies on the BPT diagram traces the interstellar medium conditions and radiation field in galaxies at a given redshift. Galaxies containing active galactic nucleus (AGN) form a mixing sequence with purely star-forming galaxies. This mixing sequence may change dramatically with cosmic time, due to the metallicity sensitivity of the optical emission-lines. Furthermore, the position of the mixing sequence may probe metallicity gradients in galaxies as a function of redshift, depending on the size of the AGN narrow-line region. We apply our latest slow shock models for gas shocked by galactic-scale winds. We show that at high redshift, galactic wind shocks are clearly separated from AGN in line ratio space. Instead, shocks from galactic winds mimic high metallicity starburst galaxies. We discuss our models in the context of future large near-infrared spectroscopic surveys.
uncertain dynamic systems on time scales
Directory of Open Access Journals (Sweden)
V. Lakshmikantham
1995-01-01
Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.
Time-Scale Invariant Audio Data Embedding
Directory of Open Access Journals (Sweden)
Mansour Mohamed F
2003-01-01
Full Text Available We propose a novel algorithm for high-quality data embedding in audio. The algorithm is based on changing the relative length of the middle segment between two successive maximum and minimum peaks to embed data. Spline interpolation is used to change the lengths. To ensure smooth monotonic behavior between peaks, a hybrid orthogonal and nonorthogonal wavelet decomposition is used prior to data embedding. The possible data embedding rates are between 20 and 30 bps. However, for practical purposes, we use repetition codes, and the effective embedding data rate is around 5 bps. The algorithm is invariant after time-scale modification, time shift, and time cropping. It gives high-quality output and is robust to mp3 compression.
Time evolution of laser-induced breakdown spectrometry of lead
International Nuclear Information System (INIS)
Li Zhongwen; Zhang Jianhui
2011-01-01
The plasma have been generated by a pulsed Nd: YAG laser at the fundamental wavelength of 1.06 μm ablating a metal lead target in air at atmospheric pressure, and the time resolved emission spectra were gotten. Time evolution of electron temperatures were measured according to the wavelength and relative intensity of spectra; then the electron densities were obtained from the Stark broadening of Pb-line; the time evolution of electron temperatures and electron densities along the direction plumbing the target surface were imaged. The analysis of results showed that electron temperature averaged to 14500 K, electron densities up to 10 17 cm -3 . The characteristics of time evolution of electron temperature and electron density were qualitatively explained from the aspect of generation mechanism of laser-induced plasmas. (authors)
A model for AGN variability on multiple time-scales
Sartori, Lia F.; Schawinski, Kevin; Trakhtenbrot, Benny; Caplar, Neven; Treister, Ezequiel; Koss, Michael J.; Urry, C. Megan; Zhang, C. E.
2018-05-01
We present a framework to link and describe active galactic nuclei (AGN) variability on a wide range of time-scales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different time-scales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEdd) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEdd distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different time-scales, therefore providing new insights into AGN variability and black hole growth phenomena.
Quantum time evolution of a closed Friedmann model
Hinterleitner, F
2002-01-01
We consider a quantized dust-filled closed Friedmann universe in Ashtekar-type variables. Due to the presence of matter, the 'timelessness problem' of quantum gravity can be solved in this case by using the following approach to the Hamiltonian operator. 1. The arising Wheeler-DeWitt equation appears as an eigenvalue equation for discrete values of the total mass. 2. Its gravitational part is considered as the generator of the time evolution of geometry. 3. Superpositions of different eigenfunctions with time behaviour governed by the corresponding eigenvalues of mass are admitted. Following these lines, a time evolution with a correct classical limit is obtained.
Time-dependent weak values and their intrinsic phases of evolution
International Nuclear Information System (INIS)
Parks, A D
2008-01-01
The equation of motion for a time-dependent weak value of a quantum-mechanical observable is known to contain a complex valued energy factor (the weak energy of evolution) that is defined by the dynamics of the pre-selected and post-selected states which specify the observable's weak value. In this paper, the mechanism responsible for the creation of this energy is identified and it is shown that the cumulative effect over time of this energy is manifested as dynamical phases and pure geometric phases (the intrinsic phases of evolution) which govern the evolution of the weak value during its measurement process. These phases are simply related to a Pancharatnam phase and Fubini-Study metric distance defined by the Hilbert space evolution of the associated pre-selected and post-selected states. A characterization of time-dependent weak value evolution as Pancharatnam phase angle rotations and Fubini-Study distance scalings of a vector in the Argand plane is discussed as an application of this relationship. The theory of weak values is also reviewed and simple 'gedanken experiments' are used to illustrate both the time-independent and the time-dependent versions of the theory. It is noted that the direct experimental observation of the weak energy of evolution would strongly support the time-symmetric paradigm of quantum mechanics and it is suggested that weak value equations of motion represent a new category of nonlocal equations of motion
Time evolution and use of multiple times in the N-body problem
International Nuclear Information System (INIS)
McGuire, J.H.; Godunov, A.L.
2003-01-01
Under certain conditions it is possible to describe time evolution using different times for different particles. Use of multiple times is optional in the independent particle approximation, where interparticle interactions are removed, and the N-particle evolution operator factors into N single-particle evolution operators. In this limit one may use either a single time, with a single energy-time Fourier transform, or N different times with a different energy-time transform for each particle. The use of different times for different particles is fully justified when coherence between single-particle amplitudes is lost, e.g., if relatively strong randomly fluctuating residual fields influence each particle independently. However, when spatial correlation is present the use of multiple times is not feasible, even when the evolution of the particles is uncorrelated in time. Some calculations in simple atomic systems with and without spatial and temporal correlation between different electrons are included
A storm-time plasmasphere evolution study using data assimilation
Nikoukar, R.; Bust, G. S.; Bishop, R. L.; Coster, A. J.; Lemon, C.; Turner, D. L.; Roeder, J. L.
2017-12-01
In this work, we study the evolution of the Earth's plasmasphere during geomagnetic active periods using the Plasmasphere Data Assimilation (PDA) model. The total electron content (TEC) measurements from an extensive network of global ground-based GPS receivers as well as GPS receivers on-board Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites and Communications/Navigation Outage Forecasting System (C/NOFS) satellite are ingested into the model. Global Core Plasma model, which is an empirical plasmasphere model, is utilized as the background model. Based on the 3D-VAR optimization, the PDA assimilative model benefits from incorporation of regularization techniques to prevent non-physical altitudinal variation in density estimates due to the limited-angle observational geometry. This work focuses on the plasmapause location, plasmasphere erosion time scales and refilling rates during the main and recovery phases of geomagnetic storms as estimated from the PDA 3-dimensional global maps of electron density in the ionosphere/plasmasphere. The comparison between the PDA results with in-situ density measurements from THEMIS and Van Allen Probes, and the RCM-E first-principle model will be also presented.
Time rescaling and pattern formation in biological evolution.
Igamberdiev, Abir U
2014-09-01
Biological evolution is analyzed as a process of continuous measurement in which biosystems interpret themselves in the environment resulting in changes of both. This leads to rescaling of internal time (heterochrony) followed by spatial reconstructions of morphology (heterotopy). The logical precondition of evolution is the incompleteness of biosystem's internal description, while the physical precondition is the uncertainty of quantum measurement. The process of evolution is based on perpetual changes in interpretation of information in the changing world. In this interpretation the external biospheric gradients are used for establishment of new features of organization. It is concluded that biological evolution involves the anticipatory epigenetic changes in the interpretation of genetic symbolism which cannot generally be forecasted but can provide canalization of structural transformations defined by the existing organization and leading to predictable patterns of form generation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Evolution of Quantum Systems from Microscopic to Macroscopic Scales
International Nuclear Information System (INIS)
Ovchinnikov, Sergey Y.; Macek, Joseph H.; Sternberg, James S.; Lee, Teck-Ghee; Schultz, David R.
2009-01-01
Even though the static properties of quantum systems have been known since the early days of quantum mechanics, accurate simulation of the dynamical break-up or ionization remains a theoretical challenge despite our complete knowledge of the relevant interactions. Simulations are challenging because of highly oscillatory exponential phase factors in the electronic wave function and the infinitesimally small values of the continuum components of electronic probability density at large times after the collision. The approach we recently developed, the regularized time-dependent Schroedinger equation method, has addressed these difficulties by removing the diverging phase factors and transforming the time-dependent Schroedinger equation to an expanding space. The evolution of the electronic wave function was followed to internuclear distances of R = 100,000 a.u. or 5 microns, which is of the order of the diameter of a human hair. Our calculations also revealed unexpected presence of free vortices in the electronic wave function. The discovered vortices also bring new light on the mechanism of transferring of the angular momentum from an external to internal motion. The connection between the observable momentum distribution and the time-dependent wave function implies that vortices in the wave function at large times are imaged in the momentum distribution.
Time evolution of the wave equation using rapid expansion method
Pestana, Reynam C.; Stoffa, Paul L.
2010-01-01
Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.
Time evolution of the wave equation using rapid expansion method
Pestana, Reynam C.
2010-07-01
Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.
The evolution of a horizontal scale for oscillatory magnetoconvection
Energy Technology Data Exchange (ETDEWEB)
Murphy, J O [Monash Univ., Clayton (Australia). Dept. of Mathematics; Lopez, J M [Aeronautical Research Labs., Port Melbourne (Australia). Aerodynamics Div.
1989-01-01
Oscillatory convective motions have been observed in the umbrae of sunspots and, in the past, the linear theory of overstability has been used for sunspot models. Here a non-linear model for oscillatory convection has been used to investigate the possibility of a preferred horizontal cell size for these motions, in the presence of a magnetic field. The integration forward in time, from the conductive state, of the non-linear multimode equations governing magnetoconvection when the magnetic Prandtl number is less than one portrays a complex interaction between the evolving magnetic and vertical velocity horizontal scales. Preferred horizontal scales for the convective cells have been established by identifying the modes that substantially contribute to the overall convective heat transport. All other modes, although initially perturbed, in time essentially decay to zero through self interaction. 8 refs., 5 figs.
Diffusion equations and the time evolution of foreign exchange rates
Energy Technology Data Exchange (ETDEWEB)
Figueiredo, Annibal; Castro, Marcio T. de [Institute of Physics, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Fonseca, Regina C.B. da [Department of Mathematics, Instituto Federal de Goiás, Goiânia GO 74055-110 (Brazil); Gleria, Iram, E-mail: iram@fis.ufal.br [Institute of Physics, Federal University of Alagoas, Brazil, Maceió AL 57072-900 (Brazil)
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Diffusion equations and the time evolution of foreign exchange rates
Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Diffusion equations and the time evolution of foreign exchange rates
International Nuclear Information System (INIS)
Figueiredo, Annibal; Castro, Marcio T. de; Fonseca, Regina C.B. da; Gleria, Iram
2013-01-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Time evolution of multiple quantum coherences in NMR
International Nuclear Information System (INIS)
Sanchez, Claudia M.; Pastawski, Horacio M.; Levstein, Patricia R.
2007-01-01
In multiple quantum NMR, individual spins become correlated with one another over time through their dipolar couplings. In this way, the usual Zeeman selection rule can be overcome and forbidden transitions can be excited. Experimentally, these multiple quantum coherences (MQC) are formed by the application of appropriate sequences of radio frequency pulses that force the spins to act collectively. 1 H spin coherences of even order up to 16 were excited in a polycrystalline sample of ferrocene (C 5 H 5 ) 2 Fe and up to 32 in adamantane (C 10 H 16 ) and their evolutions studied in different conditions: (a) under the natural dipolar Hamiltonian, H ZZ (free evolution) and with H ZZ canceled out by (b) time reversion or (c) with the MREV8 sequence. The results show that when canceling H ZZ the coherences decay with characteristic times (τ c ∼200 μs), which are more than one order of magnitude longer than those under free evolution (τ c ∼10 μs). In addition, it is observed that with both MREV8 and time reversion sequences, the higher the order of the coherence (larger number of correlated spins) the faster the speed of degradation, as it happens during the evolution with H ZZ . In both systems, it is observed that the sequence of time reversion of the dipolar Hamiltonian preserves coherences for longer times than MREV8
Computer simulation of the time evolution of a quenched model alloy in the nucleation region
International Nuclear Information System (INIS)
Marro, J.; Lebowitz, J.L.; Kalos, M.H.
1979-01-01
The time evolution of the structure function and of the cluster (or grain) distribution following quenching in a model binary alloy with a small concentration of minority atoms is obtained from computer simulations. The structure function S-bar (k,t) obeys a simple scaling relation, S-bar (k,t) = K -3 F (k/K) with K (t) proportional t/sup -a/, a approx. = 0.25, during the latter and larger part of the evolution. During the same period, the mean cluster size grows approximately linearly with time
EON: software for long time simulations of atomic scale systems
Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme
2014-07-01
The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.
EDITORIAL: Special issue on time scale algorithms
Matsakis, Demetrios; Tavella, Patrizia
2008-12-01
This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than
Time evolution as refining, coarse graining and entangling
International Nuclear Information System (INIS)
Dittrich, Bianca; Steinhaus, Sebastian
2014-01-01
We argue that refining, coarse graining and entangling operators can be obtained from time evolution operators. This applies in particular to geometric theories, such as spin foams. We point out that this provides a construction principle for the physical vacuum in quantum gravity theories and more generally allows construction of a (cylindrically) consistent continuum limit of the theory. (paper)
Time evolution as refining, coarse graining and entangling
Dittrich, Bianca; Steinhaus, Sebastian
2014-12-01
We argue that refining, coarse graining and entangling operators can be obtained from time evolution operators. This applies in particular to geometric theories, such as spin foams. We point out that this provides a construction principle for the physical vacuum in quantum gravity theories and more generally allows construction of a (cylindrically) consistent continuum limit of the theory.
The evolution of rhythm cognition: Timing in music and speech
Ravignani, A.; Honing, H.; Kotz, S.A.
This editorial serves a number of purposes. First, it aims at summarizing and discussing 33 accepted contributions to the special issue ‘The evolution of rhythm cognition: Timing in music and speech’. The major focus of the issue is the cognitive neuroscience of rhythm, intended as a neurobehavioral
Evolution in Many-Sheeted Space-time
Pitkänen, Matti
2010-01-01
The topics of the article has been restricted to those, which seem to represent the most well-established ideas about evolution in many-sheeted space-time. a) Basic facts about and TGD based model for pre-biotic evolution are discussed. b) A model for the ATP-ADP process based on DNA as topological quantum computer vision, the identification of universal metabolic energy quanta in terms of zero point kinetic energies, and the notion of remote metabolism is discussed. c) A model f...
Quantum universe on extremely small space-time scales
International Nuclear Information System (INIS)
Kuzmichev, V.E.; Kuzmichev, V.V.
2010-01-01
The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.
Overcoming misconceptions in quantum mechanics with the time evolution operator
International Nuclear Information System (INIS)
Garcia Quijas, P C; Arevalo Aguilar, L M
2007-01-01
Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary states. In this paper, we argue that a possible way to remove these is to solve the Schroedinger equation using the evolution operator method (EOM), and stress the fact that to find stationary states is only the first step in solving that equation. The EOM consists in solving the Schroedinger equation by direct integration, i.e. Ψ(x, t) = U(t)Ψ(x, 0), where U(t)=e -itH-hat/h is the time evolution operator, and Ψ(x, 0) is the initial state. We apply the evolution operator method in the case of the harmonic oscillator
Directory of Open Access Journals (Sweden)
Nishida Mutsumi
2007-10-01
Full Text Available Abstract Background Cichlid fishes in Lake Tanganyika exhibit remarkable diversity in their feeding habits. Among them, seven species in the genus Perissodus are known for their unique feeding habit of scale eating with specialized feeding morphology and behaviour. Although the origin of the scale-eating habit has long been questioned, its evolutionary process is still unknown. In the present study, we conducted interspecific phylogenetic analyses for all nine known species in the tribe Perissodini (seven Perissodus and two Haplotaxodon species using amplified fragment length polymorphism (AFLP analyses of the nuclear DNA. On the basis of the resultant phylogenetic frameworks, the evolution of their feeding habits was traced using data from analyses of stomach contents, habitat depths, and observations of oral jaw tooth morphology. Results AFLP analyses resolved the phylogenetic relationships of the Perissodini, strongly supporting monophyly for each species. The character reconstruction of feeding ecology based on the AFLP tree suggested that scale eating evolved from general carnivorous feeding to highly specialized scale eating. Furthermore, scale eating is suggested to have evolved in deepwater habitats in the lake. Oral jaw tooth shape was also estimated to have diverged in step with specialization for scale eating. Conclusion The present evolutionary analyses of feeding ecology and morphology based on the obtained phylogenetic tree demonstrate for the first time the evolutionary process leading from generalised to highly specialized scale eating, with diversification in feeding morphology and behaviour among species.
Evolution of grain structure in nickel oxide scales
International Nuclear Information System (INIS)
Atkinson, H.V.
1987-01-01
In systems such as the oxidation of nickel, in which grain-boundary diffusion in the oxide can control the rate of oxidation, understanding of the factors governing the grain structure is of importance. High-purity mechanically polished polycrystalline nickel was oxidized at 700 0 C, 800 0 C, and 1000 0 C for times up to 20 hr in 1 atm O 2 . The scale microstructures were examined by parallel and transverse cross section transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Texture coefficients were found by x-ray diffraction (XRD). Each grain in the transverse section grain boundary networks was systematically analyzed for width parallel to the Ni-NiO interface and perpendicular length, for boundary radius of curvature and for number of sides. The variation of these parameters with depth in the scale was examined. In particular, grains were increasingly columnar (i.e., with ratio of grain length to width > 1) at higher temperatures and longer times. Columnar grain boundaries tended to be fairly static; the columnar grain width was less than the rate controlling grain size predicted from the oxidation rate. The mean boundary curvature per grain provided a guide to the tendency for grain growth, except in the region of the Ni-NiO interface, where the boundaries were thought to be pinned
Time evolution of damage in thermally induced creep rupture
Yoshioka, N.
2012-01-01
We investigate the time evolution of a bundle of fibers subject to a constant external load. Breaking events are initiated by thermally induced stress fluctuations followed by load redistribution which subsequently leads to an avalanche of breakings. We compare analytic results obtained in the mean-field limit to the computer simulations of localized load redistribution to reveal the effect of the range of interaction on the time evolution. Focusing on the waiting times between consecutive bursts we show that the time evolution has two distinct forms: at high load values the breaking process continuously accelerates towards macroscopic failure, however, for low loads and high enough temperatures the acceleration is preceded by a slow-down. Analyzing the structural entropy and the location of consecutive bursts we show that in the presence of stress concentration the early acceleration is the consequence of damage localization. The distribution of waiting times has a power law form with an exponent switching between 1 and 2 as the load and temperature are varied.
arXiv GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations
Ghiglieri, J.
2017-05-23
Starting from operator equations of motion and making arguments based on a separation of time scales, a set of equations is derived which govern the non-equilibrium time evolution of a GeV-scale sterile neutrino density matrix and active lepton number densities at temperatures T > 130 GeV. The density matrix possesses generation and helicity indices; we demonstrate how helicity permits for a classification of various sources for leptogenesis. The coefficients parametrizing the equations are determined to leading order in Standard Model couplings, accounting for the LPM resummation of 1+n 2+n scatterings and for all 2 2 scatterings. The regime in which sphaleron processes gradually decouple so that baryon plus lepton number becomes a separate non-equilibrium variable is also considered.
Reference results for time-like evolution up to O(α_s"3)
International Nuclear Information System (INIS)
Bertone, Valerio; Carrazza, Stefano; Nocera, Emanuele R.
2015-01-01
We present high-precision numerical results for time-like Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution in the (MS)-bar factorisation scheme, for the first time up to next-to-next-to-leading order accuracy in quantum chromodynamics. First, we scrutinise the analytical expressions of the splitting functions available in the literature, in both x and N space, and check their mutual consistency. Second, we implement time-like evolution in two publicly available, entirely independent and conceptually different numerical codes, in x and N space respectively: the already existing APFEL code, which has been updated with time-like evolution, and the new MELA code, which has been specifically developed to perform the study in this work. Third, by means of a model for fragmentation functions, we provide results for the evolution in different factorisation schemes, for different ratios between renormalisation and factorisation scales and at different final scales. Our results are collected in the format of benchmark tables, which could be used as a reference for global determinations of fragmentation functions in the future.
QCD jet evolution at high and low scales
Energy Technology Data Exchange (ETDEWEB)
Winter, Jan-Christopher
2008-07-01
emission characteristics has been developed and implemented for the production and evolution of jets in the soft and collinear QCD emission phase space. Special emphasis has been devoted to a novel treatment of parton radiation off incoming strong particles. The model yields very reasonable results, in particular in comparison to data. Importantly, for inclusive QCD jet production measured by the Tevatron experiments, predictions are presented for the first time achieved with a colour-dipole shower. - An improved phenomenological hadronization model has been proposed based on the formation and decay of hadronic clusters out of shower final-state partons into primary hadrons. Its feasibility has been demonstrated by means of a first successful case-study implementation for electron-positron collisions into light quarks. Eventually the model is used as the basis for the construction of a cluster hadronization in SHERPA. (orig.)
QCD jet evolution at high and low scales
International Nuclear Information System (INIS)
Winter, Jan-Christopher
2008-01-01
emission characteristics has been developed and implemented for the production and evolution of jets in the soft and collinear QCD emission phase space. Special emphasis has been devoted to a novel treatment of parton radiation off incoming strong particles. The model yields very reasonable results, in particular in comparison to data. Importantly, for inclusive QCD jet production measured by the Tevatron experiments, predictions are presented for the first time achieved with a colour-dipole shower. - An improved phenomenological hadronization model has been proposed based on the formation and decay of hadronic clusters out of shower final-state partons into primary hadrons. Its feasibility has been demonstrated by means of a first successful case-study implementation for electron-positron collisions into light quarks. Eventually the model is used as the basis for the construction of a cluster hadronization in SHERPA. (orig.)
A Novel Multiple-Time Scale Integrator for the Hybrid Monte Carlo Algorithm
International Nuclear Information System (INIS)
Kamleh, Waseem
2011-01-01
Hybrid Monte Carlo simulations that implement the fermion action using multiple terms are commonly used. By the nature of their formulation they involve multiple integration time scales in the evolution of the system through simulation time. These different scales are usually dealt with by the Sexton-Weingarten nested leapfrog integrator. In this scheme the choice of time scales is somewhat restricted as each time step must be an exact multiple of the next smallest scale in the sequence. A novel generalisation of the nested leapfrog integrator is introduced which allows for far greater flexibility in the choice of time scales, as each scale now must only be an exact multiple of the smallest step size.
Time evolution of a system of two alpha particles
International Nuclear Information System (INIS)
Baye, D.; Herschkowitz, D.
1996-01-01
Motivated by interpretations of a broad structure at 32.5 MeV in the 12 C( 12 C, 12 C(0 + 2 )) 12 C(0 + 2 ) doubly inelastic scattering cross sections in terms of linear chains of α particles, we study in a microscopic model with an exact account of antisymmetrization the time evolution of a system of two α clusters. The evolution of the system is obtained from a time-dependent variational principle and visualized with matter densities. Even in the most favourable case, an initial two-cluster structure completely disappears in less than 2.10 -22 s. This result casts doubts on the observability of longer α chains. (orig.)
Finite-element time evolution operator for the anharmonic oscillator
Milton, Kimball A.
1995-01-01
The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.
The Evolution of the Large-Scale ISM: Bubbles, Superbubbles and Non-Equilibrium Ionization
de Avillez, M. A.; Breitschwerdt, D.
2010-12-01
The ISM, powered by SNe, is turbulent and permeated by a magnetic field (with a mean and a turbulent component). It constitutes a frothy medium that is mostly out of equilibrium and is ram pressure dominated on most of the temperature ranges, except for T 106K, where magnetic and thermal pressures dominate, respectively. Such lack of equilibrium is also imposed by the feedback of the radiative processes into the ISM flow. Many models of the ISM or isolated phenomena, such as bubbles, superbubbles, clouds evolution, etc., take for granted that the flow is in the so-called collisional ionization equilibrium (CIE). However, recombination time scales of most of the ions below 106 K are longer than the cooling time scale. This implies that the recombination lags behind and the plasma is overionized while it cools. As a consequence cooling deviates from CIE. This has severe implications on the evolution of the ISM flow and its ionization structure. Here, besides reviewing several models of the ISM, including bubbles and superbubbles, the validity of the CIE approximation is discussed, and a presentation of recent developments in modeling the ISM by taking into account the time-dependent ionization structure of the flow in a full-blown numerical 3D high resolution simulation is presented.
Tecnatom's operation system interfaces and their evolution in time
International Nuclear Information System (INIS)
Trueba, Pedro
1998-01-01
The author comments the evolution of operation system interfaces produced by the Tecnatom Company, notably for the support in the construction of the Spanish nuclear power plants. A system can typically be divided into a data acquisition system, a central processing system, and a graphical system. The author discusses and comments the main functional applications which are: real time data displays, data analysis functions, and other utilities (file management, data storing, file reloading)
THE EVOLUTION OF BLACK HOLE SCALING RELATIONS IN GALAXY MERGERS
International Nuclear Information System (INIS)
Johansson, Peter H.; Burkert, Andreas; Naab, Thorsten
2009-01-01
We study the evolution of black holes (BHs) on the M BH -σ and M BH -M bulge planes as a function of time in disk galaxies undergoing mergers. We begin the simulations with the progenitor BH masses being initially below (Δlog M BH,i ∼ -2), on (Δlog M BH,i ∼ 0), and above (Δlog M BH,i ∼ 0.5) the observed local relations. The final relations are rapidly established after the final coalescence of the galaxies and their BHs. Progenitors with low initial gas fractions (f gas = 0.2) starting below the relations evolve onto the relations (Δlog M BH,f ∼ -0.18), progenitors on the relations stay there (Δlog M BH,f ∼ 0), and finally progenitors above the relations evolve toward the relations, but still remain above them (Δlog M BH,f ∼ 0.35). Mergers in which the progenitors have high initial gas fractions (f gas = 0.8) evolve above the relations in all cases (Δlog M BH,f ∼ 0.5). We find that the initial gas fraction is the prime source of scatter in the observed relations, dominating over the scatter arising from the evolutionary stage of the merger remnants. The fact that BHs starting above the relations do not evolve onto the relations indicates that our simulations rule out the scenario in which overmassive BHs evolve onto the relations through gas-rich mergers. By implication our simulations thus disfavor the picture in which supermassive BHs develop significantly before their parent bulges.
Numerical approaches to time evolution of complex quantum systems
International Nuclear Information System (INIS)
Fehske, Holger; Schleede, Jens; Schubert, Gerald; Wellein, Gerhard; Filinov, Vladimir S.; Bishop, Alan R.
2009-01-01
We examine several numerical techniques for the calculation of the dynamics of quantum systems. In particular, we single out an iterative method which is based on expanding the time evolution operator into a finite series of Chebyshev polynomials. The Chebyshev approach benefits from two advantages over the standard time-integration Crank-Nicholson scheme: speedup and efficiency. Potential competitors are semiclassical methods such as the Wigner-Moyal or quantum tomographic approaches. We outline the basic concepts of these techniques and benchmark their performance against the Chebyshev approach by monitoring the time evolution of a Gaussian wave packet in restricted one-dimensional (1D) geometries. Thereby the focus is on tunnelling processes and the motion in anharmonic potentials. Finally we apply the prominent Chebyshev technique to two highly non-trivial problems of current interest: (i) the injection of a particle in a disordered 2D graphene nanoribbon and (ii) the spatiotemporal evolution of polaron states in finite quantum systems. Here, depending on the disorder/electron-phonon coupling strength and the device dimensions, we observe transmission or localisation of the matter wave.
Almost Automorphic Functions on the Quantum Time Scale and Applications
Directory of Open Access Journals (Sweden)
Yongkun Li
2017-01-01
Full Text Available We first propose two types of concepts of almost automorphic functions on the quantum time scale. Secondly, we study some basic properties of almost automorphic functions on the quantum time scale. Then, we introduce a transformation between functions defined on the quantum time scale and functions defined on the set of generalized integer numbers; by using this transformation we give equivalent definitions of almost automorphic functions on the quantum time scale; following the idea of the transformation, we also give a concept of almost automorphic functions on more general time scales that can unify the concepts of almost automorphic functions on almost periodic time scales and on the quantum time scale. Finally, as an application of our results, we establish the existence of almost automorphic solutions of linear and semilinear dynamic equations on the quantum time scale.
Massless scalar field in de Sitter spacetime: unitary quantum time evolution
International Nuclear Information System (INIS)
Cortez, Jerónimo; Blas, Daniel Martín-de; Marugán, Guillermo A Mena; Velhinho, José M
2013-01-01
We prove that, under the standard conformal scaling, a free scalar field in de Sitter spacetime admits an O(4)-invariant Fock quantization such that time evolution is unitarily implemented. Since this applies in particular to the massless case, this result disproves previous claims in the literature. We discuss the relationship between this quantization with unitary dynamics and the family of O(4)-invariant Hadamard states given by Allen and Folacci, as well as with the Bunch–Davies vacuum. (paper)
Random sampling of evolution time space and Fourier transform processing
International Nuclear Information System (INIS)
Kazimierczuk, Krzysztof; Zawadzka, Anna; Kozminski, Wiktor; Zhukov, Igor
2006-01-01
Application of Fourier Transform for processing 3D NMR spectra with random sampling of evolution time space is presented. The 2D FT is calculated for pairs of frequencies, instead of conventional sequence of one-dimensional transforms. Signal to noise ratios and linewidths for different random distributions were investigated by simulations and experiments. The experimental examples include 3D HNCA, HNCACB and 15 N-edited NOESY-HSQC spectra of 13 C 15 N labeled ubiquitin sample. Obtained results revealed general applicability of proposed method and the significant improvement of resolution in comparison with conventional spectra recorded in the same time
Time evolution of pore system in lime - Pozzolana composites
Doleželová, Magdaléna; Čáchová, Monika; Scheinherrová, Lenka; Keppert, Martin
2017-11-01
The lime - pozzolana mortars and plasters are used in restoration works on building cultural heritage but these materials are also following the trend of energy - efficient solutions in civil engineering. Porosity and pore size distribution is one of crucial parameters influencing engineering properties of porous materials. The pore size distribution of lime based system is changing in time due to chemical processes occurring in the material. The present paper describes time evolution of pore system in lime - pozzolana composites; the obtained results are useful in prediction of performance of lime - pozzolana systems in building structures.
A Quaternary Geomagnetic Instability Time Scale
Singer, B. S.
2013-12-01
Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought
Mitra, Aditi
2012-12-28
A renormalization group approach is used to show that a one-dimensional system of bosons subject to a lattice quench exhibits a finite-time dynamical phase transition where an order parameter within a light cone increases as a nonanalytic function of time after a critical time. Such a transition is also found for a simultaneous lattice and interaction quench where the effective scaling dimension of the lattice becomes time dependent, crucially affecting the time evolution of the system. Explicit results are presented for the time evolution of the boson interaction parameter and the order parameter for the dynamical transition as well as for more general quenches.
Time evolution of quenched state and correlation to glassy effects
International Nuclear Information System (INIS)
Kilic, K.; Kilic, A.; Altinkok, A.; Yetis, H.; Cetin, O.; Durust, Y.
2005-01-01
In this work, dynamic changes generated by the driving current were studied in superconducting bulk polycrystalline YBCO sample via transport relaxation measurements (V-t curves). The evolution of nonlinear V-t curves was interpreted in terms of the formation of resistive and nonresistive flow channels and the spatial reorganization of the transport current in a multiply connected network of weak-link structure. The dynamic re-organization of driving current could cause an enhancement or suppression in the superconducting order parameter due to the magnitude of the driving current and coupling strength of weak-link structure along with the chemical and anisotropic states of the sample as the time proceeds. A nonzero voltage decaying with time, correlated to the quenched state, was recorded when the magnitude of initial driving current is reduced to a finite value. It was found that, after sufficiently long waiting time, the evolution of the quenched state could result in a superconducting state, depending on the magnitude of the driving current and temperature. We showed that the decays in voltage over time are consistent with an exponential time dependence which is related to the glassy state. Further, the effect of doping of organic material Bis dimethyl-glyoximato Copper (II) to YBCO could be monitored apparently via the comparison of the V-t curves corresponding to doped and undoped YBCO samples
Time evolution of dissolved oxygen and redox conditions in a HLW repository
International Nuclear Information System (INIS)
Wersin, P.; Spahiu, K.; Bruno, J.
1994-02-01
The evolution of oxygen in a HLW repository has been studied using presently available geochemical background information. The important processes affecting oxygen migration in the near-field include diffusion and oxidation of pyrite and dissolved Fe(II). The evaluation of time scales of oxygen decrease is carried out with 1. an analytical approach involving the coupling of diffusion and chemical reaction, 2. a numerical geochemical approach involving the application of a newly developed diffusion-extended version of the STEADYQL code. Both approaches yield consistent rates of oxygen decrease and indicate that oxidation of pyrite impurities in the clay is the dominant process. The results obtained fRom geochemical modelling are interpreted in terms of evolution of redox conditions. Moreover, a sensitivity analysis of the major geochemical and physical parameters is performed. These results indicate that the uncertainties associated with reactive pyrite surface area impose the overall uncertainties of prediction of time scales. Thus, the obtained time of decrease to 1% of initial O 2 concentrations range between 7 and 290 years. The elapsed time at which the transition to anoxic conditions occurs is estimated to be within the same time range. Additional experimental information on redox sensitive impurities in the envisioned buffer and backfill material would further constrain the evaluated time scales. 41 refs
Discovering significant evolution patterns from satellite image time series.
Petitjean, François; Masseglia, Florent; Gançarski, Pierre; Forestier, Germain
2011-12-01
Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the location, which complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes as well as short term ones, whenever the change may start and end. However, applying FSPM methods to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain's constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS mining framework that enables discovery of these patterns despite these constraints and characteristics. Our proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on 35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution behaviors.
Unitarity and the time evolution of quantum mechanical states
International Nuclear Information System (INIS)
Kabir, P.K.; Pilaftsis, A.
1996-01-01
The basic requirement that, in quantum theory, the time evolution of any state is determined by the action of a unitary operator, is shown to be the underlying cause for certain open-quote open-quote exact close-quote close-quote results that have recently been reported about the time dependence of transition rates in quantum theory. Departures from exponential decay, including the open-quote open-quote quantum Zeno effect,close-quote close-quote as well as a theorem by Khalfin about the ratio of reciprocal transition rates, are shown to follow directly from such considerations. At sufficiently short times, unitarity requires that reciprocity must hold, independent of whether T invariance is valid. If T invariance does not hold, unitarity restricts the form of possible time dependence of reciprocity ratios. copyright 1996 The American Physical Society
On the time evolution operator for time-dependent quadratic Hamiltonians
International Nuclear Information System (INIS)
Fernandez, F.M.
1989-01-01
The Schroedinger equation with a time-dependent quadratic Hamiltonian is investigated. The time-evolution operator is written as a product of exponential operators determined by the Heisenberg equations of motion. This product operator is shown to be global in the occupation number representation when the Hamiltonian is Hermitian. The success of some physical applications of the product-form representation is explained
Time evolution of gamma rays from supernova remnants
Gaggero, Daniele; Zandanel, Fabio; Cristofari, Pierre; Gabici, Stefano
2018-04-01
We present a systematic phenomenological study focused on the time evolution of the non-thermal radiation - from radio waves to gamma rays - emitted by typical supernova remnants via hadronic and leptonic mechanisms, for two classes of progenitors: thermonuclear and core-collapse. To this aim, we develop a numerical tool designed to model the evolution of the cosmic ray spectrum inside a supernova remnant, and compute the associated multi-wavelength emission. We demonstrate the potential of this tool in the context of future population studies based on large collection of high-energy gamma-ray data. We discuss and explore the relevant parameter space involved in the problem, and focus in particular on their impact on the maximum energy of accelerated particles, in order to study the effectiveness and duration of the PeVatron phase. We outline the crucial role of the ambient medium through which the shock propagates during the remnant evolution. In particular, we point out the role of dense clumps in creating a significant hardening in the hadronic gamma-ray spectrum.
Time evolution of absorption process in nonlinear metallic photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Singh, Mahi R.; Hatef, Ali [Department of Physics and Astronomy, University of Western Ontario, London (Canada)
2009-05-15
The time evolution of the absorption coefficient in metallic photonic crystals has been studied numerically. These crystals are made from metallic spheres which are arranged periodically in air. The refractive index of the metallic spheres depends on the plasma frequency. Probe and pump fields are applied to monitor the absorption process. Ensembles of three-level particles are embedded in the crystal. Nanoparticles are interacting with the metallic crystals via the electron-photon interaction. It is found that when the resonance states lie away from the band edges system goes to transparent state. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Time evolution of plasma potential in pulsed operation of ECRIS
International Nuclear Information System (INIS)
Tarvainen, O.; Koivisto, H.; Ropponen, T.; Toivanen, V.; Higurashi, Y.; Nakagawa, T.
2012-01-01
The time evolution of plasma potential has been measured with a retarding field analyzer in pulsed operation mode with electron cyclotron resonance ion sources at JYFL and RIKEN. Three different ion sources with microwave frequencies ranging from 6.4 to 18 GHz were employed for the experiments. The plasma potential was observed to increase 10-75 % during the Pre-glow and 10-30 % during the afterglow compared to steady state. The paper is followed by the slides of the presentation. (authors)
Space and time evolution of two nonlinearly coupled variables
International Nuclear Information System (INIS)
Obayashi, H.; Totsuji, H.; Wilhelmsson, H.
1976-12-01
The system of two coupled linear differential equations are studied assuming that the coupling terms are proportional to the product of the dependent variables, representing e.g. intensities or populations. It is furthermore assumed that these variables experience different linear dissipation or growth. The derivations account for space as well as time dependence of the variables. It is found that certain particular solutions can be obtained to this system, whereas a full solution in space and time as an initial value problem is outside the scope of the present paper. The system has a nonlinear equilibrium solution for which the nonlinear coupling terms balance the terms of linear dissipation. The case of space and time evolution of a small perturbation of the nonlinear equilibrium state, given the initial one-dimensional spatial distribution of the perturbation, is also considered in some detail. (auth.)
Time evolution of primordial magnetic fields and present day extragalactic magnetism
International Nuclear Information System (INIS)
Saveliev, Andrey
2014-05-01
The topic of the present thesis is the time evolution of Primordial Magnetic Fields which have been generated in the Early Universe. Assuming this so-called Cosmological Scenario of magnetogenesis to be true, it is shown in the following that this would account for the present day Extragalactic Magnetic Fields. This is particularly important in light of recent gamma ray observations which are used to derive a lower limit for the corresponding magnetic field strength, even though also an alternative approach, claiming instead that these observations are due to interactions with the Intergalactic Medium, is possible and will be tested here with Monte Carlo simulations. In order to describe the aforementioned evolution of Primordial Magnetic Fields, a set of general Master Equations for the spectral magnetic, kinetic and helical components of the system are derived and then solved numerically for the Early Universe. This semianalytical method allows it to perform a full quantitative study for the time development of the power spectra, in particular by fully taking into account the backreaction of the turbulent medium onto the magnetic fields. Applying the formalism to non-helical Primordial Magnetic Fields created on some characteristic length measure, it is shown that on large scales L their spectrum 5 builds up a slope which behaves as B∝L -(5)/(2) and governs the evolution of the coherence (or integral) scale. In addition, the claim of equipartition between the magnetic and the kinetic energy is found to be true. Extending the analysis to helical magnetic fields, it is observed that the time evolution changes dramatically, hence confirming quantitatively that an Inverse Cascade, i.e. an efficient transport of energy from small to large scales, as predicted in previous works, indeed does take place.
Microstructural evolution at multiple scales during plastic deformation
DEFF Research Database (Denmark)
Winther, Grethe
During plastic deformation metals develop microstructures which may be analysed on several scales, e.g. bulk textures, the scale of individual grains, intragranular phenomena in the form of orientation spreads as well as dislocation patterning by formation of dislocation boundaries in metals of m......, which is backed up by experimental data [McCabe et al. 2004; Wei et al., 2011; Hong, Huang, & Winther, 2013]. The current state of understanding as well as the major challenges are discusse....
Multi-Scale Modeling of Microstructural Evolution in Structural Metallic Systems
Zhao, Lei
Metallic alloys are a widely used class of structural materials, and the mechanical properties of these alloys are strongly dependent on the microstructure. Therefore, the scientific design of metallic materials with superior mechanical properties requires the understanding of the microstructural evolution. Computational models and simulations offer a number of advantages over experimental techniques in the prediction of microstructural evolution, because they can allow studies of microstructural evolution in situ, i.e., while the material is mechanically loaded (meso-scale simulations), and bring atomic-level insights into the microstructure (atomistic simulations). In this thesis, we applied a multi-scale modeling approach to study the microstructural evolution in several metallic systems, including polycrystalline materials and metallic glasses (MGs). Specifically, for polycrystalline materials, we developed a coupled finite element model that combines phase field method and crystal plasticity theory to study the plasticity effect on grain boundary (GB) migration. Our model is not only coupled strongly (i.e., we include plastic driving force on GB migration directly) and concurrently (i.e., coupled equations are solved simultaneously), but also it qualitatively captures such phenomena as the dislocation absorption by mobile GBs. The developed model provides a tool to study the microstructural evolution in plastically deformed metals and alloys. For MGs, we used molecular dynamics (MD) simulations to investigate the nucleation kinetics in the primary crystallization in Al-Sm system. We calculated the time-temperature-transformation curves for low Sm concentrations, from which the strong suppressing effect of Sm solute on Al nucleation and its influencing mechanism are revealed. Also, through the comparative analysis of both Al attachment and Al diffusion in MGs, it has been found that the nucleation kinetics is controlled by interfacial attachment of Al, and that
International Nuclear Information System (INIS)
Bonifacio, R.; Milan Univ.
1983-05-01
We show that a proper coarse-grained description of time evolution leads to a finite difference equation with step tau for the density operator. This implies state reduction to the diagonal form in the energy representation and a quasi ergodic behaviour of quantum mechanical ensemble averages. An intrinsic time-energy relation tauΔE>=(h/2π)/2 is proposed, and its equivalence to a time quantization is discussed. (author)
International Nuclear Information System (INIS)
Scott, G G; Brenner, C M; Clarke, R J; Green, J S; Heathcote, R I; Rusby, D R; McKenna, P; Neely, D; Bagnoud, V; Zielbauer, B; Gonzalez-Izquierdo, B; Powell, H W
2017-01-01
It is shown for the first time that the spatial and temporal distribution of laser accelerated protons can be used as a diagnostic of Weibel instability presence and evolution in the rear surface scale lengths of a solid density target. Numerical modelling shows that when a fast electron beam is injected into a decreasing density gradient on the target rear side, a magnetic instability is seeded with an evolution which is strongly dependent on the density scale length. This is manifested in the acceleration of a filamented proton beam, where the degree of filamentation is also found to be dependent on the target rear scale length. Furthermore, the energy dependent spatial distribution of the accelerated proton beam is shown to provide information on the instability evolution on the picosecond timescale over which the protons are accelerated. Experimentally, this is investigated by using a controlled prepulse to introduce a target rear scale length, which is varied by altering the time delay with respect to the main pulse, and similar trends are measured. This work is particularly pertinent to applications using laser pulse durations of tens of picoseconds, or where a micron level density scale length is present on the rear of a solid target, such as proton-driven fast ignition, as the resultant instability may affect the uniformity of fuel energy coupling. (paper)
Molybdenite Mineral Evolution: A Study Of Trace Elements Through Time
McMillan, M. M.; Downs, R. T.; Stein, H. J.; Zimmerman, A.; Beitscher, B. A.; Sverjensky, D. A.; Papineau, D.; Armstrong, J. T.; Hazen, R. M.
2010-12-01
Mineral evolution explores changes through time in Earth’s near-surface mineralogy, including diversity of species, relative abundances of species, and compositional ranges of major, minor and trace elements. Such studies elucidate the co-evolution of the geosphere and biosphere. Accordingly, we investigated trace and minor elements in molybdenite (MoS2) with known ages from 3 billion years to recent. Molybdenite, the commonest mineral of Mo, may prove to be a useful case study as a consequence of its presence in Earth’s early history, the effects of oxidation on Mo mobility, and the possible role of Mo mineral coevolution with biology via its role in the nitrogen fixation enzyme nitrogenase. We employed ICPMS, SEM and electron microprobe analyses to detect trace and minor elements. We detected significant amounts of Mn and Cu (~100 ppm) and greater amounts of Fe, W, and Re (to ~4000 ppm). Molybdenites commonly contain micro inclusions, resulting in local concentrations in otherwise homogeneous samples. Inhomogeneities in Fe, Zn and Sn concentrations, for example, point to the presence of pyrite, sphalerite and cassiterite inclusions, respectively. Analyses examined as a function of time reveal that samples containing significant concentrations (>200 ppm, compared to average values < 100 ppm) of W and Re formed primarily within the last billion years. These trends may reflect changes in the mobility of W and Re in oxic hydrothermal fluids at shallow crustal conditions following the Great Oxidation Event.
Speed scaling for weighted flow time
Bansal, N.; Pruhs, K.R.; Stein, C.
2007-01-01
In addition to the traditional goal of efficiently managing time and space, many computers now need to efficiently manage power usage. For example, Intel's SpeedStep and AMD's PowerNOW technologies allow the Windows XP operating system to dynamically change the speed of the processor to prolong
Long-time data storage: relevant time scales
Elwenspoek, Michael Curt
2011-01-01
Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is
Elastic Multi-scale Mechanisms: Computation and Biological Evolution.
Diaz Ochoa, Juan G
2018-01-01
Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.
Information-sharing tendency on Twitter and time evolution of tweeting
Kwon, H. W.; Kim, H. S.; Lee, K.; Choi, M. Y.
2013-03-01
While topics on Twitter may be categorized according to their predictability and sustainability, some topics have characteristics depending on the time scale. Here we propose a good measure for the transition of sustainability, which we call the information-sharing tendency, and find that the unpredictability on Twitter is provoked by the exposure of Twitter users to external environments, e.g., mass media and other social network services. In addition, it is demonstrated that the numbers of articles and comments on on-line newspapers serve as plausible measures of exposure. From such measures of exposure, the time evolution of tweeting can be described, when the information-sharing tendency is known.
Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio
2010-11-01
The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the
Deformation-induced microstructural evolution at grain scale
DEFF Research Database (Denmark)
Winther, Grethe
During plastic deformation metals develop microstructures which may be analysed on several scales,spanning from crystallographic textures averaged over the entire sample to the scale of individualgrains. Even within individual grains, intragranular phenomena in the form of orientation gradients...... aswell as dislocation patterning by formation of dislocation boundaries occur. Experimental data andassociated data analysis at the grain scale and below will be presented to illustrate our current level ofunderstanding. The basis for the analysis is the crystallographic orientation of the grain as well...... is presented for both fcc and bcc materials inseveral deformation modes, demonstrating a clear grain orientation dependence [Huang & Winther,2007]. This dependence has its origin in a dependence on the slip systems [Winther & Huang, 2007].This further implies that the dislocations in the boundaries come from...
Time scale of random sequential adsorption.
Erban, Radek; Chapman, S Jonathan
2007-04-01
A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is presented. The model combines two important features of the adsorption process: (i) The kinetics of the chemical reaction between adsorbing molecules and the surface and (ii) geometrical constraints on the surface made by molecules which are already adsorbed. The process (i) is modeled in a diffusion-driven context, i.e., the conditional probability of adsorbing a molecule provided that the molecule hits the surface is related to the macroscopic surface reaction rate. The geometrical constraint (ii) is modeled using random sequential adsorption (RSA), which is the sequential addition of molecules at random positions on a surface; one attempt to attach a molecule is made per one RSA simulation time step. By coupling RSA with the diffusion of molecules in the solution above the surface the RSA simulation time step is related to the real physical time. The method is illustrated on a model of chemisorption of reactive polymers to a virus surface.
Tipping the scales: Evolution of the allometric slope independent of average trait size.
Stillwell, R Craig; Shingleton, Alexander W; Dworkin, Ian; Frankino, W Anthony
2016-02-01
The scaling of body parts is central to the expression of morphology across body sizes and to the generation of morphological diversity within and among species. Although patterns of scaling-relationship evolution have been well documented for over one hundred years, little is known regarding how selection acts to generate these patterns. In part, this is because it is unclear the extent to which the elements of log-linear scaling relationships-the intercept or mean trait size and the slope-can evolve independently. Here, using the wing-body size scaling relationship in Drosophila melanogaster as an empirical model, we use artificial selection to demonstrate that the slope of a morphological scaling relationship between an organ (the wing) and body size can evolve independently of mean organ or body size. We discuss our findings in the context of how selection likely operates on morphological scaling relationships in nature, the developmental basis for evolved changes in scaling, and the general approach of using individual-based selection experiments to study the expression and evolution of morphological scaling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Nuclear disassembly time scales using space time correlations
Energy Technology Data Exchange (ETDEWEB)
Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Bilwes, B.; Cosmo, F. [Strasbourg-1 Univ., 67 (France); Galin, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); and others
1996-09-01
The lifetime, {tau}, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by `proximity` effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author). 2 refs.
Nuclear disassembly time scales using space time correlations
International Nuclear Information System (INIS)
Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R.; Galin, J.; and others.
1996-01-01
The lifetime, τ, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by 'proximity' effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author)
Relaxation Processes and Time Scale Transformation.
1982-03-01
the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O
Long-Time Data Storage: Relevant Time Scales
Directory of Open Access Journals (Sweden)
Miko C. Elwenspoek
2011-02-01
Full Text Available Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habitable for complex life is about half a billion years. A system retrieved within the next million years will be read by beings very closely related to Homo sapiens. During this time the surface of the earth will change making it risky to place a small number of large memory systems on earth; the option to place it on the moon might be more favorable. For much longer timescales both options do not seem feasible because of geological processes on the earth and the flux of small meteorites to the moon.
The evolution of real-time control systems at JET
Energy Technology Data Exchange (ETDEWEB)
Goodyear, A.; Dorling, S.; Felton, R
2001-07-01
Real-time feedback control of the JET experiment is based upon a collection of diagnostics providing signals which are processed by various controllers that manipulate actuator parameters for plasma current, shape and heating. The real-time data network (RTDN) connects the diagnostic, controller and actuator systems to form a flexible feedback and protection system for plasma monitoring and control. The controllers are mainly VME systems based on the Motorola 680X0 (68K) processor with some computationally intensive systems utilising Texas Instruments TMS320C40 (C40) digital signal processors (DSP), though lately there has been a move towards PowerPC 750 based processors. The majority of 68K VME systems use VxWorks, a hard real time operating system. There is an ongoing requirement to improve the efficiency of the real-time control systems at JET. This is driven by a desire to either add more input signals, reduce the feedback cycle time or increase algorithm complexity. New technology has a major role to play in the upgrade of the real-time control systems but the novel redeployment of existing equipment can also be used to enhance performance. This paper examines the configuration of existing systems, both hardware and software, and how new technology can be gradually integrated without jeopardising the current functionality. The adoption of Asynchronous Transfer Mode (ATM) as the connection medium for the RTDN is key to the evolutional development of the control systems. The ATM network is extremely flexible to configure and benefits from low message latency and deterministic delivery time, essential properties for a real-time network. (author)
Emergence, evolution and scaling of online social networks.
Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng
2014-01-01
Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.
Emergence, evolution and scaling of online social networks.
Directory of Open Access Journals (Sweden)
Le-Zhi Wang
Full Text Available Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.
Quantum dynamical time evolutions as stochastic flows on phase space
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Guerra, F.; Sirigue, M.; Sirigue-Collin, M.
1984-01-01
We are mainly interested in describing the time development of the Wigner functions by means of stochastic processes. In the second section we recall the main properties of the Wigner functions as well as those of their Fourier transform. In the next one we derive the evolution equation of these functions for a class of Hamiltonians and we give a probabilistic expression for the solution of these equations by means of a stochastic flow in phase space which reminds of the classical flows. In the last section we remark that the previously defined flow can be extended to the bounded continuous functions on phase space and that this flow conserves the cone generated by the Wigner functions. (orig./HSI)
Time evolution of artificial plasma cloud in atmospheric environment
International Nuclear Information System (INIS)
Lu Qiming; Yang Weihong; Liu Wandong
2004-01-01
By analyzing the time evolution of artificial plasma cloud in the high altitude of atmospheric environment, the authors found that there are two zones, an exponential attenuation zone and a linearly attenuating zone, existing in the spatial distribution of electron density of the artificial plasma clouds. The plasma generator's particle flux density only contributes to the exponential attenuation zone, and has no effect on the linear attenuation zone. The average electron density in the linear attenuation zone is about 10 -5 of neutral particle density, and can diffuse over a wider area. The conclusion will supply some valuable references to the research of electromagnetic wave and artificial plasma interaction, the plasma invisibleness research of missile and special aerocraft, and the design of artificial plasma source. (authors)
Nonconvex evolution inclusions generated by time-dependent subdifferential operators
Directory of Open Access Journals (Sweden)
Kate Arseni-Benou
1999-01-01
Full Text Available We consider nonlinear nonconvex evolution inclusions driven by time-varying subdifferentials ∂ϕ(t,x without assuming that ϕ(t,. is of compact type. We show the existence of extremal solutions and then we prove a strong relaxation theorem. Moreover, we show that under a Lipschitz condition on the orientor field, the solution set of the nonconvex problem is path-connected in C(T,H. These results are applied to nonlinear feedback control systems to derive nonlinear infinite dimensional versions of the bang-bang principle. The abstract results are illustrated by two examples of nonlinear parabolic problems and an example of a differential variational inequality.
Probabilistic models of population evolution scaling limits, genealogies and interactions
Pardoux, Étienne
2016-01-01
This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications. Étienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtai...
Multi-scale evolution of a derecho-producing MCS
Bernardet, Ligia Ribeiro
1997-12-01
In this dissertation we address one type of severe weather: strong straight-line winds. In particular, we focus on derechos, a type of wind storm caused by a convective system and characterized by its long duration and by the large area it covers. One interesting characteristic of these storms is that they develop at night, on the cold side of a thermal boundary. This region is not characterized by large convective instability. In fact, surface parcels are generally stable with respect to vertical displacements. To gain understanding of the physical processes involved in these storms, we focused on the case of a MCS that developed in eastern Colorado on 12-13 May, 1985. The system formed in the afternoon, was active until early morning, and caused strong winds during the night. A multi-scale full physics simulation of this case was performed using a non-hydrostatic mesoscale model. Four telescopically nested grids covering from the synoptic scale down to cloud scale circulations were used. A Lagrangian model was used to follow trajectories of parcels that took part in the updraft and in the downdraft, and balance of forces were computed along the trajectories. Our results show that the synoptic and mesoscale environment of the storm largely influences convective organization and cloud-scale circulations. During the day, when the boundary layer is well mixed, the source of air for the clouds is located within the boundary layer. At night, when the boundary layer becomes stable, the source of air shifts to the top of the boundary layer. It is composed of warm, moist air that is brought by the nocturnal low-level jet. The downdraft structure also changes from day to night. During the day, parcels acquire negative buoyancy because of cooling due to evaporation and melting. As they sink, they remain colder than the environment, and end up at the surface constituting the cold pool. During the night, downdrafts are stronger, generating the strong surface winds. The most
Bounds of Certain Dynamic Inequalities on Time Scales
Directory of Open Access Journals (Sweden)
Deepak B. Pachpatte
2014-10-01
Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.
Temperature dependence of fluctuation time scales in spin glasses
DEFF Research Database (Denmark)
Kenning, Gregory G.; Bowen, J.; Sibani, Paolo
2010-01-01
Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...
Clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint?
Krabbenhoft, Trevor J; Turner, Thomas F
2014-01-01
Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman's r = -0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species' capacity to respond to ongoing environmental change.
Basin scale permeability and thermal evolution of a magmatic hydrothermal system
Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.
2013-12-01
Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids
Time scales of supercooled water and implications for reversible polyamorphism
Limmer, David T.; Chandler, David
2015-09-01
Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.
Time scales of tunneling decay of a localized state
International Nuclear Information System (INIS)
Ban, Yue; Muga, J. G.; Sherman, E. Ya.; Buettiker, M.
2010-01-01
Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observing diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.
Emergence of fractal scale-free networks from stochastic evolution on the Cayley tree
Energy Technology Data Exchange (ETDEWEB)
Chełminiak, Przemysław, E-mail: geronimo@amu.edu.pl
2013-11-29
An unexpected recognition of fractal topology in some real-world scale-free networks has evoked again an interest in the mechanisms stimulating their evolution. To explain this phenomenon a few models of a deterministic construction as well as a probabilistic growth controlled by a tunable parameter have been proposed so far. A quite different approach based on the fully stochastic evolution of the fractal scale-free networks presented in this Letter counterpoises these former ideas. It is argued that the diffusive evolution of the network on the Cayley tree shapes its fractality, self-similarity and the branching number criticality without any control parameter. The last attribute of the scale-free network is an intrinsic property of the skeleton, a special type of spanning tree which determines its fractality.
International Nuclear Information System (INIS)
Calabrese, Pasquale; Hagendorf, Christian; Doussal, Pierre Le
2008-01-01
We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain wall. We generalize the path integral imaginary time approach that together with boundary conformal field theory allows us to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic κ for boundary conditions corresponding to stochastic Loewner evolution. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state
Time-Domain Studies as a Probe of Stellar Evolution
Miller, Adam Andrew
This dissertation focuses on the use of time-domain techniques to discover and characterize these rare astrophysical gems, while also addressing some gaps in our understanding of the earliest and latest stages of stellar evolution. The observational studies presented herein can be grouped into three parts: (i) the study of stellar death (supernovae); (ii) the study of stellar birth; and (iii) the use of modern machine-learning algorithms to discover and classify variable sources. I present observations of supernova (SN) 2006gy, the most luminous SN ever at the time of discovery, and the even-more luminous SN 2008es. Together, these two supernovae (SNe) demonstrate that core-collapse SNe can be significantly more luminous than thermonuclear type Ia SNe, and that there are multiple channels for producing these brilliant core-collapse explosions. For SN 2006gy I show that the progenitor star experienced violent, eruptive mass loss on multiple occasions during the centuries prior to explosion, a scenario that was completely unexpected within the cannon of massive-star evolution theory. I also present observations of SN 2008iy, one of the most unusual SNe ever discovered. Typical SNe take ≲3 weeks to reach peak luminosity; SN 2008iy exhibited a slow and steady rise for ˜400 days before reaching maximum brightness. The best explanation for such behavior is that the progenitor of SN 2008iy experienced an episodic phase of mass loss ˜100 yr prior to explosion. The three SNe detailed in this dissertation have altered our understanding of massive-star mass loss, namely, these SNe provide distinct evidence that post-main sequence mass loss, for at least some massive stars, occurs in sporatic fits, rather than being steady. They also demonstrate that core collapse is not restricted to the red supergiant and Wolf-Rayet stages of stellar evolution as theory predicted. Instead, some massive stars explode while in a luminous blue variable-like state. I also present
Soil moisture memory at sub-monthly time scales
Mccoll, K. A.; Entekhabi, D.
2017-12-01
For soil moisture-climate feedbacks to occur, the soil moisture storage must have `memory' of past atmospheric anomalies. Quantifying soil moisture memory is, therefore, essential for mapping and characterizing land-atmosphere interactions globally. Most previous studies estimate soil moisture memory using metrics based on the autocorrelation function of the soil moisture time series (e.g., the e-folding autocorrelation time scale). This approach was first justified by Delworth and Manabe (1988) on the assumption that monthly soil moisture time series can be modelled as red noise. While this is a reasonable model for monthly soil moisture averages, at sub-monthly scales, the model is insufficient due to the highly non-Gaussian behavior of the precipitation forcing. Recent studies have shown that significant soil moisture-climate feedbacks appear to occur at sub-monthly time scales. Therefore, alternative metrics are required for defining and estimating soil moisture memory at these shorter time scales. In this study, we introduce metrics, based on the positive and negative increments of the soil moisture time series, that can be used to estimate soil moisture memory at sub-monthly time scales. The positive increments metric corresponds to a rapid drainage time scale. The negative increments metric represents a slower drying time scale that is most relevant to the study of land-atmosphere interactions. We show that autocorrelation-based metrics mix the two time scales, confounding physical interpretation. The new metrics are used to estimate soil moisture memory at sub-monthly scales from in-situ and satellite observations of soil moisture. Reference: Delworth, Thomas L., and Syukuro Manabe. "The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate." Journal of Climate 1, no. 5 (May 1, 1988): 523-47. doi:10.1175/1520-0442(1988)0012.0.CO;2.
Quasiperiodicity in time evolution of the Bloch vector under the thermal Jaynes-Cummings model
Azuma, Hiroo; Ban, Masashi
2014-07-01
We study a quasiperiodic structure in the time evolution of the Bloch vector, whose dynamics is governed by the thermal Jaynes-Cummings model (JCM). Putting the two-level atom into a certain pure state and the cavity field into a mixed state in thermal equilibrium at initial time, we let the whole system evolve according to the JCM Hamiltonian. During this time evolution, motion of the Bloch vector seems to be in disorder. Because of the thermal photon distribution, both a norm and a direction of the Bloch vector change hard at random. In this paper, taking a different viewpoint compared with ones that we have been used to, we investigate quasiperiodicity of the Bloch vector’s trajectories. Introducing the concept of the quasiperiodic motion, we can explain the confused behaviour of the system as an intermediate state between periodic and chaotic motions. More specifically, we discuss the following two facts: (1) If we adjust the time interval Δt properly, figures consisting of plotted dots at the constant time interval acquire scale invariance under replacement of Δt by sΔt, where s(>1) is an arbitrary real but not transcendental number. (2) We can compute values of the time variable t, which let |Sz(t)| (the absolute value of the z-component of the Bloch vector) be very small, with the Diophantine approximation (a rational approximation of an irrational number).
Space-time evolution of electron cascades in diamond
International Nuclear Information System (INIS)
Ziaja, Beata; Szoeke, Abraham; Spoel, David van der; Hajdu, Janos
2002-01-01
The impact of a primary electron initiates a cascade of secondary electrons in solids, and these cascades play a significant role in the dynamics of ionization. Here we describe model calculations to follow the spatiotemporal evolution of secondary electron cascades in diamond. The band structure of the insulator has been explicitly incorporated into the calculations as it affects ionizations from the valence band. A Monte Carlo model was constructed to describe the path of electrons following the impact of a single electron of energy E∼250 eV. This energy is similar to the energy of an Auger electron from carbon. Two limiting cases were considered: the case in which electrons transmit energy to the lattice, and the case where no such energy transfer is permitted. The results show the evolution of the secondary electron cascades in terms of the number of electrons liberated, the spatial distribution of these electrons, and the energy distribution among the electrons as a function of time. The predicted ionization rates (∼5-13 electrons in 100 fs) lie within the limits given by experiments and phenomenological models. Calculation of the local electron density and the corresponding Debye length shows that the latter is systematically larger than the radius of the electron cloud, and it increases exponentially with the radial size of the cascade. This means that the long-range Coulomb field is not shielded within this cloud, and the electron gas generated does not represent a plasma in a single impact cascade triggered by an electron of E∼250 eV energy. This is important as it justifies the independent-electron approximation used in the model. At 1 fs, the (average) spatial distribution of secondary electrons is anisotropic with the electron cloud elongated in the direction of the primary impact. The maximal radius of the cascade is about 50 A at this time. At 10 fs the cascade has a maximal radius of ∼70 A, and is already dominated by low-energy electrons
Statistical evolution of quiet-Sun small-scale magnetic features using Sunrise observations
Anusha, L. S.; Solanki, S. K.; Hirzberger, J.; Feller, A.
2017-02-01
The evolution of small magnetic features in quiet regions of the Sun provides a unique window for probing solar magneto-convection. Here we analyze small-scale magnetic features in the quiet Sun, using the high resolution, seeing-free observations from the Sunrise balloon borne solar observatory. Our aim is to understand the contribution of different physical processes, such as splitting, merging, emergence and cancellation of magnetic fields to the rearrangement, addition and removal of magnetic flux in the photosphere. We have employed a statistical approach for the analysis and the evolution studies are carried out using a feature-tracking technique. In this paper we provide a detailed description of the feature-tracking algorithm that we have newly developed and we present the results of a statistical study of several physical quantities. The results on the fractions of the flux in the emergence, appearance, splitting, merging, disappearance and cancellation qualitatively agrees with other recent studies. To summarize, the total flux gained in unipolar appearance is an order of magnitude larger than the total flux gained in emergence. On the other hand, the bipolar cancellation contributes nearly an equal amount to the loss of magnetic flux as unipolar disappearance. The total flux lost in cancellation is nearly six to eight times larger than the total flux gained in emergence. One big difference between our study and previous similar studies is that, thanks to the higher spatial resolution of Sunrise, we can track features with fluxes as low as 9 × 1014 Mx. This flux is nearly an order of magnitude lower than the smallest fluxes of the features tracked in the highest resolution previous studies based on Hinode data. The area and flux of the magnetic features follow power-law type distribution, while the lifetimes show either power-law or exponential type distribution depending on the exact definitions used to define various birth and death events. We have
Nonlinearities in Drug Release Process from Polymeric Microparticles: Long-Time-Scale Behaviour
Directory of Open Access Journals (Sweden)
Elena Simona Bacaita
2012-01-01
Full Text Available A theoretical model of the drug release process from polymeric microparticles (a particular type of polymer matrix, through dispersive fractal approximation of motion, is built. As a result, the drug release process takes place through cnoidal oscillations modes of a normalized concentration field. This indicates that, in the case of long-time-scale evolutions, the drug particles assemble in a lattice of nonlinear oscillators occur macroscopically, through variations of drug concentration. The model is validated by experimental results.
Liquidity spillover in international stock markets through distinct time scales.
Righi, Marcelo Brutti; Vieira, Kelmara Mendes
2014-01-01
This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.
The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art
Pellicer, Julio; Amparo Gilabert, M.; Lopez-Baeza, Ernesto
1999-07-01
A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day. It is shown that in the temperature interval between the melting point of ice and the boiling point of water, the Celsius and Kelvin scales, both born centigrade by definition and actually become so afterwards by experimental determination as well, are not so any longer, either by definition or by experimental determination.
Posttraumatic Maladaptive Beliefs Scale: Evolution of the Personal Beliefs and Reactions Scale
Vogt, Dawne S.; Shipherd, Jillian C.; Resick, Patricia A.
2012-01-01
The Posttraumatic Maladaptive Beliefs Scale (PMBS) was developed to measure maladaptive beliefs about current life circumstances that may occur following trauma exposure. This scale assesses maladaptive beliefs within three domains: (a) Threat of Harm, (b) Self-Worth and Judgment, and (c) Reliability and Trustworthiness of Others. Items for the…
NATO Advanced Study Institute on Evolution from Cellular to Social Scales
Skjeltorp, Arne T
2008-01-01
Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary behavior of highly interacting man-made systems, in areas such as communications and transport, which permeate the modern world. The same applies to the evolution of human networks such as social, political and financial systems, where technology has tended to vastly increase both the complexity and speed of interaction, whic...
AFSC/ABL: Ugashik sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 b?? 2002) collected from adult sockeye salmon returning to Ugashik River were retrieved from the Alaska Department of Fish and...
AFSC/ABL: Naknek sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 2002) collected from adult sockeye salmon returning to Naknek River were retrieved from the Alaska Department of Fish and Game....
An extended Halanay inequality of integral type on time scales
Directory of Open Access Journals (Sweden)
Boqun Ou
2015-07-01
Full Text Available In this paper, we obtain a Halanay-type inequality of integral type on time scales which improves and extends some earlier results for both the continuous and discrete cases. Several illustrative examples are also given.
Multiple dynamical time-scales in networks with hierarchically
Indian Academy of Sciences (India)
Modular networks; hierarchical organization; synchronization. ... we show that such a topological structure gives rise to characteristic time-scale separation ... This suggests a possible functional role of such mesoscopic organization principle in ...
Ozone time scale decomposition and trend assessment from surface observations
Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi
2017-04-01
Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological
Large Deviations for Two-Time-Scale Diffusions, with Delays
International Nuclear Information System (INIS)
Kushner, Harold J.
2010-01-01
We consider the problem of large deviations for a two-time-scale reflected diffusion process, possibly with delays in the dynamical terms. The Dupuis-Ellis weak convergence approach is used. It is perhaps the most intuitive and simplest for the problems of concern. The results have applications to the problem of approximating optimal controls for two-time-scale systems via use of the averaged equation.
Some New Inequalities of Opial's Type on Time Scales
Directory of Open Access Journals (Sweden)
Samir H. Saker
2012-01-01
Full Text Available We will prove some new dynamic inequalities of Opial's type on time scales. The results not only extend some results in the literature but also improve some of them. Some continuous and discrete inequalities are derived from the main results as special cases. The results can be applied on the study of distribution of generalized zeros of half-linear dynamic equations on time scales.
Collective Landmarks for Deep Time: A New Tool for Evolution Education
Delgado, Cesar
2014-01-01
Evolution is a fundamental, organising concept in biology, yet there is widespread resistance to evolution among US students and there are rising creationist challenges in Europe. Resistance to evolution is linked to lack of understanding of the age of the Earth. An understanding of deep time is thus essential for effective biology education.…
Scale-dependent intrinsic entropies of complex time series.
Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E
2016-04-13
Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).
Network modularity reveals critical scales for connectivity in ecology and evolution
Fletcher, Robert J.; Revell, Andre; Reichert, Brian E.; Kitchens, Wiley M.; Dixon, J.; Austin, James D.
2013-01-01
For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.
Russian national time scale long-term stability
Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.
1994-05-01
The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.
Wind power impacts and electricity storage - a time scale perspective
DEFF Research Database (Denmark)
Hedegaard, Karsten; Meibom, Peter
2012-01-01
Integrating large amounts of wind power in energy systems poses balancing challenges due to the variable and only partly predictable nature of wind. The challenges cover different time scales from intra-hour, intra-day/day-ahead to several days and seasonal level. Along with flexible electricity...... demand options, various electricity storage technologies are being discussed as candidates for contributing to large-scale wind power integration and these also differ in terms of the time scales at which they can operate. In this paper, using the case of Western Denmark in 2025 with an expected 57% wind...... power penetration, wind power impacts on different time scales are analysed. Results show consecutive negative and high net load period lengths indicating a significant potential for flexibility measures capable of charging/activating demand and discharging/inactivating demand in periods of 1 h to one...
Microsecond time-scale kinetics of transient biochemical reactions
Mitic, S.; Strampraad, M.J.F.; Hagen, W.R.; de Vries, S.
2017-01-01
To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs
Time-Scale and Time-Frequency Analyses of Irregularly Sampled Astronomical Time Series
Directory of Open Access Journals (Sweden)
S. Roques
2005-09-01
Full Text Available We evaluate the quality of spectral restoration in the case of irregular sampled signals in astronomy. We study in details a time-scale method leading to a global wavelet spectrum comparable to the Fourier period, and a time-frequency matching pursuit allowing us to identify the frequencies and to control the error propagation. In both cases, the signals are first resampled with a linear interpolation. Both results are compared with those obtained using Lomb's periodogram and using the weighted waveletZ-transform developed in astronomy for unevenly sampled variable stars observations. These approaches are applied to simulations and to light variations of four variable stars. This leads to the conclusion that the matching pursuit is more efficient for recovering the spectral contents of a pulsating star, even with a preliminary resampling. In particular, the results are almost independent of the quality of the initial irregular sampling.
Time evolution of linearized gauge field fluctuations on a real-time lattice
Energy Technology Data Exchange (ETDEWEB)
Kurkela, A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Stavanger, Faculty of Science and Technology, Stavanger (Norway); Lappi, T. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); University of Helsinki, Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Peuron, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland)
2016-12-15
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law. (orig.)
Time evolution of linearized gauge field fluctuations on a real-time lattice
Kurkela, Aleksi; Peuron, Jarkko
2016-01-01
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.
Full-scale and time-scale heating experiments at Stripa: preliminary results
International Nuclear Information System (INIS)
Cook, N.G.W.; Hood, Michael; California Univ., Berkeley
1978-01-01
Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground
Hydrodynamic time scales for intense laser-heated clusters
International Nuclear Information System (INIS)
Parra, Enrique; Alexeev, Ilya; Fan, Jingyun; Kim, Kiong Y.; McNaught, Stuart J.; Milchberg, Howard M.
2003-01-01
Measurements are presented of x-ray (>1.5 keV) and extreme ultraviolet (EUV, λ equal to 2-44 nm) emission from argon clusters irradiated with constant-energy (50 mJ), variable-width laser pulses ranging from 100 fs to 10 ns. The results for clusters can be understood in terms of two time scales: a short time scale for optimal resonant absorption at the critical-density layer in the expanding plasma, and a longer time scale for the plasma to drop below critical density. We present a one-dimensional hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical-density plasma layer. These simulations explain the dependence of generation efficiency on laser pulse width
Scaling properties in time-varying networks with memory
Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong
2015-12-01
The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R. [Department of Science, Campus of Bijar, University of Kurdistan,Bijar (Iran, Islamic Republic of); Sepehri, A. [Faculty of Physics, Shahid Bahonar University,P.O. Box 76175, Kerman (Iran, Islamic Republic of)
2015-03-16
In this paper, we consider the stability of cylindrical wormholes during evolution of universe from inflation to late time acceleration epochs. We show that there are two types of cylindrical wormholes. The first type is produced at the corresponding point where k black F-strings are transited to BIon configuration. This wormhole transfers energy from extra dimensions into our universe, causes inflation, loses it’s energy and vanishes. The second type of cylindrical wormhole is created by a tachyonic potential and causes a new phase of acceleration. We show that wormhole parameters grow faster than the scale factor in this era, overtake it at ripping time and lead to the destruction of universe at big rip singularity.
Time evolution studies of laser induced chemical changes in InAs nanowire using Raman spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Pal, Suparna; Aggarwal, R.; Kumari Gupta, Vandna; Ingale, Alka [Laser Physics Application Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India)
2014-07-07
We report the study of time evolution of chemical changes on the surface of an InAs nanowire (NW) on laser irradiation in different power density regime, using Raman spectroscopy for a time span of 8–16 min. Mixture of metastable oxides like InAsO{sub 4,} As{sub 2}O{sub 3} are formed upon oxidation, which are reflected as sharp Raman peaks at ∼240–254 and 180–200 cm{sup −1}. Evidence of removal of arsenic layer by layer is also observed at higher power density. Position controlled laser induced chemical modification on a nanometer scale, without changing the core of the NW, can be useful for NW based device fabrication.
Time Evolution of the Excimer State of a Conjugated Polymer Laser
Directory of Open Access Journals (Sweden)
Wafa Musa Mujamammi
2017-11-01
Full Text Available An excited dimer is an important complex formed in nano- or pico-second time scales in many photophysics and photochemistry applications. The spectral and temporal profile of the excimer state of a laser from a new conjugated polymer, namely, poly (9,9-dioctylfluorenyl-2,7-diyl (PFO, under several concentrations in benzene were investigated. These solutions were optically pumped by intense pulsed third-harmonic Nd:YAG laser (355-nm to obtain the amplified spontaneous emission (ASE spectra of a monomer and an excimer with bandwidths of 6 and 7 nm, respectively. The monomer and excimer ASEs were dependent on the PFO concentration, pump power, and temperature. Employing a sophisticated picosecond spectrometer, the time evolution of the excimer state of this polymer, which is over 400 ps, can be monitored.
Ignition in net for different energy confinement time scalings
International Nuclear Information System (INIS)
Johner, J.; Prevot, F.
1988-06-01
A zero-dimensional profile dependent model is used to assess the feasibility of ignition in the extended version of NET. Five recent scalings for the energy confinement time (Goldston, Kaye All, Kaye Big, Shimomura-Odajima, Rebut-Lallia) are compared in the frame of two different scenarii, i.e., H-mode with a flat density profile or L-mode with a peaked density profile. For the flat density H-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the peaked density L-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the two Kaye's scalings, ignition is forbidden in H-mode even with the peaked density profile. For the Rebut-Lallia scaling, ignition is allowed in L-mode even with the flat density profile
Deviations from uniform power law scaling in nonstationary time series
Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.
1997-01-01
A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.
Physics in space-time with scale-dependent metrics
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.
Length and time scales of atmospheric moisture recycling
Directory of Open Access Journals (Sweden)
R. J. van der Ent
2011-03-01
Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.
Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations
International Nuclear Information System (INIS)
Lonsdale, C.J.; Hacking, P.B.
1989-01-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Fractional dynamic calculus and fractional dynamic equations on time scales
Georgiev, Svetlin G
2018-01-01
Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .
Time-dependent scaling patterns in high frequency financial data
Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso
2016-10-01
We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.
Computation of a long-time evolution in a Schroedinger system
International Nuclear Information System (INIS)
Girard, R.; Kroeger, H.; Labelle, P.; Bajzer, Z.
1988-01-01
We compare different techniques for the computation of a long-time evolution and the S matrix in a Schroedinger system. As an application we consider a two-nucleon system interacting via the Yamaguchi potential. We suggest computation of the time evolution for a very short time using Pade approximants, the long-time evolution being obtained by iterative squaring. Within the technique of strong approximation of Moller wave operators (SAM) we compare our calculation with computation of the time evolution in the eigenrepresentation of the Hamiltonian and with the standard Lippmann-Schwinger solution for the S matrix. We find numerical agreement between these alternative methods for time-evolution computation up to half the number of digits of internal machine precision, and fairly rapid convergence of both techniques towards the Lippmann-Schwinger solution
Evaluation of scaling invariance embedded in short time series.
Directory of Open Access Journals (Sweden)
Xue Pan
Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Evaluation of scaling invariance embedded in short time series.
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Bioclim Deliverable D7: continuous climate evolution scenarios over western Europe (1000 km scale)
International Nuclear Information System (INIS)
2003-01-01
The overall aim of BIOCLIM is to assess the possible long term impacts due to climate change on the safety of radioactive waste repositories in deep formations. This aim is addressed through the following specific objectives: - Development of practical and innovative strategies for representing sequential climatic changes to the geosphere-biosphere system for existing sites over central Europe, addressing the timescale of one million years, which is relevant to the geological disposal of radioactive waste. - Exploration and evaluation of the potential effects of climate change on the nature of the biosphere systems used to assess the environmental impact. - Dissemination of information on the new methodologies and the results obtained from the project among the international waste management community for use in performance assessments of potential or planned radioactive waste repositories. A key point of the project is therefore to develop strategies for representing sequential long-term climatic changes by addressing time scales of relevance to geological disposal of solid radioactive wastes. The integrated strategy, which first step is described in this deliverable (D7), consists of building an integrated, dynamic climate model, to represent all the known important mechanisms for long term climatic variations. The time-dependent results will then be interpreted in terms of regional climate using rule-based and statistical down-scaling approaches. Therefore, the continuous simulation of the climate evolution of the next 200 000 years selected for study is a major objective of the BIOCLIM project. This requires models that account for the simultaneous evolution of the atmosphere, biosphere, land-ice and the ocean. To be able to perform several 200 000-yearlong transient climate simulations, the models have to include all these components, but also need to be simple enough to run fast. Therefore, climate models of intermediate complexity have been chosen to
A multiple-time-scale approach to the control of ITBs on JET
Energy Technology Data Exchange (ETDEWEB)
Laborde, L.; Mazon, D.; Moreau, D. [EURATOM-CEA Association (DSM-DRFC), CEA Cadarache, 13 - Saint Paul lez Durance (France); Moreau, D. [Culham Science Centre, EFDA-JET, Abingdon, OX (United Kingdom); Ariola, M. [EURATOM/ENEA/CREATE Association, Univ. Napoli Federico II, Napoli (Italy); Cordoliani, V. [Ecole Polytechnique, 91 - Palaiseau (France); Tala, T. [EURATOM-Tekes Association, VTT Processes (Finland)
2005-07-01
The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)
A multiple-time-scale approach to the control of ITBs on JET
International Nuclear Information System (INIS)
Laborde, L.; Mazon, D.; Moreau, D.; Moreau, D.; Ariola, M.; Cordoliani, V.; Tala, T.
2005-01-01
The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)
Nonlinear triple-point problems on time scales
Directory of Open Access Journals (Sweden)
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Dynamics symmetries of Hamiltonian system on time scales
Energy Technology Data Exchange (ETDEWEB)
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Statistical behavior of time dynamics evolution of HIV infection
González, Ramón E. R.; Santos, Iury A. X.; Nunes, Marcos G. P.; de Oliveira, Viviane M.; Barbosa, Anderson L. R.
2017-09-01
We use the tools of the random matrix theory (RMT) to investigate the statistical behavior of the evolution of human immunodeficiency virus (HIV) infection. By means of the nearest-neighbor spacing distribution we have identified four distinct regimes of the evolution of HIV infection. We verified that at the beginning of the so-called clinical latency phase the concentration of infected cells grows slowly and evolves in a correlated way. This regime is followed by another one in which the correlation is lost and that in turn leads the system to a regime in which the increase of infected cells is faster and correlated. In the final phase, the one in which acquired immunodeficiency syndrome (AIDS) is stablished, the system presents maximum correlation as demonstrated by GOE distribution.
Firework Model: Time Dependent Spectral Evolution of GRB
Barbiellini, Guido; Longo, Francesco; Ghirlanda, G.; Celotti, A.; Bosnjak, Z.
2004-09-01
The energetics of the long duration GRB phenomenon is compared with models of a rotating BH in a strong magnetic field generated by an accreting torus. The GRB energy emission is attributed to magnetic field vacuum breakdown that gives origin to a e +/- fireball. Its subsequent evolution is hypothesized in analogy with the in-flight decay of an elementary particle. An anisotropy in the fireball propagation is thus naturally produced. The recent discovery in some GRB of an initial phase characterized by a thermal spectrum could be interpreted as the photon emission of the fireball photosphere when it becomes transparent. In particular, the temporal evolution of the emission can be explained as the effect of a radiative deceleration of the out-moving ejecta.
Large scale geometry and evolution of a universe with radiation pressure and cosmological constant
Coquereaux, Robert; Coquereaux, Robert; Grossmann, Alex
2000-01-01
In view of new experimental results that strongly suggest a non-zero cosmological constant, it becomes interesting to revisit the Friedmann-Lemaitre model of evolution of a universe with cosmological constant and radiation pressure. In this paper, we discuss the explicit solutions for that model, and perform numerical explorations for reasonable values of cosmological parameters. We also analyse the behaviour of redshifts in such models and the description of ``very large scale geometrical features'' when analysed by distant observers.
Siege-shield and scale armour. Reciprocal predominance and common evolution
Backer, Fabrice De
2011-01-01
As it appears on the earliest depictions of military materials, Early Dynastic people used a huge shield during the sieges of cities, in order to protect their archers shooting at the defenders. In the meantime, the neck, chest and sides of these besieging soldiers were protected with the primitive models of the scale-armour. The shield has seen a fascinating evolution in the ancient Near East as a defensive armour, dominating the light, thin armour for centuries. Then, the spoked-wh...
Evolution for our time: a theory of legal memetics
Simon Deakin
2002-01-01
The purpose of this paper is to explore the significance for legal thought of recent developments in evolutionary theory which are associated with the notion of 'memetics'. 'Memetics' aims to account for processes of cultural transmission and change using a version of the 'genetic metaphor'. This is the idea that patterns of cultural evolution are closely analogous to those which occur in the natural world as a result of the interaction between genes, organisms and environments. At a further,...
Temme, A.J.A.M.; Veldkamp, A.
2009-01-01
Landscapes evolve in complex, non-linear ways over Quaternary timespans. Integrated geomorphological field studies usually yield plausible hypotheses about timing and impact of process activity. Landscape Evolution Models (LEMs) have the potential to test and falsify these landscape evolution
Satisfaction with nursing care in drug users: the evolution of a scale.
Seabra, Paulo Rosário Carvalho; Sá, Luis Octávio; Amendoeira, José Joaquim Penedos; Ribeiro, Ana Leonor
2017-07-13
To identify the degree of satisfaction with nursing care, the significant variables and contribute to the evolution of the scale. Descriptive, correlational, cross study, with 180 drug users. Data collected using the scale called "Satisfaction of users with the Nursing Health Center26", between February and December 2012 in three treatment units in the region of Lisbon and Vale do Tejo, Portugal. Users indicated 83.3% satisfaction. The dimension "Information individualization" was the most marked (98.5%). The more stability in the programs, abstinence from stimulants and benzodiazepines and more nursing interventions, the greater the satisfaction. Better working conditions, specializing in mental health, younger ages and less experience of nurses also contributed to satisfaction. Four items of the scale were extracted, assuming new SUCECS22 designation. Satisfaction was high, influenced by structural variables of users, nurses and working conditions. The scale has proved suitable for assessment in this population.
Differential scaling patterns of vertebrae and the evolution of neck length in mammals.
Arnold, Patrick; Amson, Eli; Fischer, Martin S
2017-06-01
Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Time evolution of K{sup o}-K{sup -o} system in spectral formulation
Energy Technology Data Exchange (ETDEWEB)
Nowakowski, M. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1996-02-01
The time evolution of the K{sup o} - K{sup -o} system is reanalyzed in the language of certain spectral function whose Fourier transforms give the time dependent survival and transition amplitudes. Approximating the spectral function by an one-pole ansatz the paper gives insight into limitation of the validity of one-pole approximation, not only for small/large time scales, but also for intermediate times where new effects, albeit small, are possible. It will be shown that the same validity restrictions apply to the known formulae of Weisskopf-Wigner approximation as well. The present analysis can also be applied to the effect of vacuum regeneration of K{sub L} and K{sub S}, a possibility pointed out by Khalfin. As a result of this possibility new contributions to the well known oscillatory terms will enter the time dependent transition probabilities. These new terms are not associated with small-large time behaviour of the amplitudes and therefore their magnitude is a priori unknown. It will be shown that the order of magnitude of this new effect is very small and, in principle, its exact determination lies outside the scope of the one-pole ansatz.
Cognitive componets of speech at different time scales
DEFF Research Database (Denmark)
Feng, Ling; Hansen, Lars Kai
2007-01-01
Cognitive component analysis (COCA) is defined as unsupervised grouping of data leading to a group structure well aligned with that resulting from human cognitive activity. We focus here on speech at different time scales looking for possible hidden ‘cognitive structure’. Statistical regularities...
Development of the Free Time Motivation Scale for Adolescents.
Baldwin, Cheryl K.; Caldwell, Linda L.
2003-01-01
Developed a self-report measure of adolescent free time motivation based in self-determination theory, using data from 634 seventh graders. The scale measured five forms of motivation (amotivation, external, introjected, identified, and intrinsic motivation). Examination of each of the subscales indicated minimally acceptable levels of fit. The…
Vibration amplitude rule study for rotor under large time scale
International Nuclear Information System (INIS)
Yang Xuan; Zuo Jianli; Duan Changcheng
2014-01-01
The rotor is an important part of the rotating machinery; its vibration performance is one of the important factors affecting the service life. This paper presents both theoretical analyses and experimental demonstrations of the vibration rule of the rotor under large time scales. The rule can be used for the service life estimation of the rotor. (authors)
Multiple time scales of adaptation in auditory cortex neurons.
Ulanovsky, Nachum; Las, Liora; Farkas, Dina; Nelken, Israel
2004-11-17
Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could be a correlate of auditory sensory memory at the level of single A1 neurons. Here we studied adaptation in A1 neurons, using three different probabilistic designs. We showed that SSA has several time scales concurrently, spanning many orders of magnitude, from hundreds of milliseconds to tens of seconds. Similar time scales are known for the auditory memory span of humans, as measured both psychophysically and using evoked potentials. A simple model, with linear dependence on both short-term and long-term stimulus history, provided a good fit to A1 responses. Auditory thalamus neurons did not show SSA, and their responses were poorly fitted by the same model. In addition, SSA increased the proportion of failures in the responses of A1 neurons to the adapting stimulus. Finally, SSA caused a bias in the neuronal responses to unbiased stimuli, enhancing the responses to eccentric stimuli. Therefore, we propose that a major function of SSA in A1 neurons is to encode auditory sensory memory on multiple time scales. This SSA might play a role in stream segregation and in binding of auditory objects over many time scales, a property that is crucial for processing of natural auditory scenes in cats and of speech and music in humans.
THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales
Howard, Marc W.; Eichenbaum, Howard
2014-01-01
A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126
Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics
Beatrici, Carine P.; de Almeida, Rita M. C.; Brunnet, Leonardo G.
2017-03-01
Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as td /d +2 when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account finite-size corrections. The results are compared with active matter model simulations and experiments available in the literature. To investigate the role played by different mechanisms we considered different hypotheses describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that (i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed certainly have deep implications in biological evolution as a selection mechanism.
The evolution of international cooperation up to the present time
International Nuclear Information System (INIS)
Goldschmidt, Bertrand
1978-01-01
This paper delivered at the Symposium organised on the XXth anniservary of the OECD Nuclear Energy Agency recalls the historical background of nuclear cooperation which went through three stages : European collaboration, U.S. isolationist policy and finally, openness. Cooperation took place at three levels: bilateral and multilateral technical cooperation; creation of joint multinational undertakings; trade relations. The paper then examines three particular areas which illustrate the evolution of international nuclear cooperation, i.e., organisation of the uranium market, uranium enrichment and the International Nuclear Fuel Cycle Evaluation. (NEA) [fr
Time scale algorithm: Definition of ensemble time and possible uses of the Kalman filter
Tavella, Patrizia; Thomas, Claudine
1990-01-01
The comparative study of two time scale algorithms, devised to satisfy different but related requirements, is presented. They are ALGOS(BIPM), producing the international reference TAI at the Bureau International des Poids et Mesures, and AT1(NIST), generating the real-time time scale AT1 at the National Institute of Standards and Technology. In each case, the time scale is a weighted average of clock readings, but the weight determination and the frequency prediction are different because they are adapted to different purposes. The possibility of using a mathematical tool, such as the Kalman filter, together with the definition of the time scale as a weighted average, is also analyzed. Results obtained by simulation are presented.
Time evolution and emission factors of aerosol particles from day and night time savannah fires
Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri
2013-04-01
The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the
Time-sliced perturbation theory for large scale structure I: general formalism
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)
2016-07-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.
Time scale controversy: Accurate orbital calibration of the early Paleogene
Roehl, U.; Westerhold, T.; Laskar, J.
2012-12-01
Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to 54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 ± 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 ± 0.05 Ma for the early Eocene ash -17, and 65.250 ± 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radioisotopic geochronology is much more challenging than previously thought.
Decoding the Mobility and Time Scales of Protein Loops.
Gu, Yina; Li, Da-Wei; Brüschweiler, Rafael
2015-03-10
The flexible nature of protein loops and the time scales of their dynamics are critical for many biologically important events at the molecular level, such as protein interaction and recognition processes. In order to obtain a predictive understanding of the dynamic properties of loops, 500 ns molecular dynamics (MD) computer simulations of 38 different proteins were performed and validated using NMR chemical shifts. A total of 169 loops were analyzed and classified into three types, namely fast loops with correlation times Web server (http://spin.ccic.ohio-state.edu/index.php/loop). The results demonstrate that loop dynamics with their time scales can be predicted rapidly with reasonable accuracy, which will allow the screening of average protein structures to help better understand the various roles loops can play in the context of protein-protein interactions and binding.
Human learning: Power laws or multiple characteristic time scales?
Directory of Open Access Journals (Sweden)
Gottfried Mayer-Kress
2006-09-01
Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.
Real-time simulation of large-scale floods
Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.
2016-08-01
According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.
Multi-Scale Dissemination of Time Series Data
DEFF Research Database (Denmark)
Guo, Qingsong; Zhou, Yongluan; Su, Li
2013-01-01
In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time...
Geometry and time scales of self-consistent orbits in a modified SU(2) model
International Nuclear Information System (INIS)
Jezek, D.M.; Hernandez, E.S.; Solari, H.G.
1986-01-01
We investigate the time-dependent Hartree-Fock flow pattern of a two-level many fermion system interacting via a two-body interaction which does not preserve the parity symmetry of standard SU(2) models. The geometrical features of the time-dependent Hartree-Fock energy surface are analyzed and a phase instability is clearly recognized. The time evolution of one-body observables along self-consistent and exact trajectories are examined together with the overlaps between both orbits. Typical time scales for the determinantal motion can be set and the validity of the time-dependent Hartree-Fock approach in the various regions of quasispin phase space is discussed
Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism
Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-01-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...
Kinematic morphology of large-scale structure: evolution from potential to rotational flow
International Nuclear Information System (INIS)
Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.
2014-01-01
As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.
Kinematic morphology of large-scale structure: evolution from potential to rotational flow
Energy Technology Data Exchange (ETDEWEB)
Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)
2014-09-20
As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.
Punctuated equilibrium in the large-scale evolution of programming languages†
Valverde, Sergi; Solé, Ricard V.
2015-01-01
The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. PMID:25994298
Punctuated equilibrium in the large-scale evolution of programming languages.
Valverde, Sergi; Solé, Ricard V
2015-06-06
The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A
2015-06-08
The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
MMS Observations of the Evolution of Ion-Scale Flux Transfer Events
Zhao, C.; Russell, C. T.; Strangeway, R. J.; Paterson, W.; Petrinec, S.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; Fischer, D.; Gershman, D. J.; Giles, B. L.; Le, G.; Nakamura, R.; Plaschke, F.; Slavin, J. A.; Torbert, R. B.
2017-12-01
Flux transfer events are key processes in the solar wind-magnetosphere interaction. Previously, the observed flux transfer events have had scale sizes of 10,000 km radius in the cross-section and connect about 2 MWb magnetic flux from solar wind to the terrestrial magnetosphere. Recently, from the high-temporal resolution MMS magnetic field data, many ion-scale FTEs have been found. These FTEs contains only about 2 kWb magnetic flux and are believed to be in an early stage of FTE evolution. With the help of the well-calibrated MMS data, we are also able to determine the velocity profile and forces within the FTE events. We find that some ion-scale FTEs are expanding as we expect, but there are also contracting FTEs. We examine the differences between the two classes of FTEs and their differences with the larger previously studied class of FTE.
Real time neutronic evolution CNE (Embalse nuclear power plant)
International Nuclear Information System (INIS)
Notari, C.; Waldman, R.M.
1993-01-01
The simulator of the Embalse nuclear power plant uses a Point Reactor Model(PRM) for the neutronic evolution calculation. As this model is not conservative for transients produced by the sudden or localized reactivity insertion in big cores, it is convenient to use spatial models in these cases. In this report we show the results obtained using a nodal model (codes NODOS-TIEMPO). This model has been fitted against a more exact solution for the neutron flux and delayed neutron precursors. This has been done for the reactor at full power with nominal values for the reactivity control devices (liquid zones and adjusters rods). Transients corresponding to the global variation of the liquid zones and to the insertion of fresh fuel in some channels are shown. The results are compared with calculations made with the quasi-static model of the PUMA code. (author). 1 ref
King, Adam C; Newell, Karl M
2015-10-01
The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.
Proper-time resolution function for measurement of time evolution of B mesons at the KEK B-Factory
International Nuclear Information System (INIS)
Tajima, H.; Aihara, H.; Higuchi, T.; Kawai, H.; Nakadaira, T.; Tanaka, J.; Tomura, T.; Yokoyama, M.; Hazumi, M.; Sakai, Y.; Sumisawa, K.; Kawasaki, T.
2004-01-01
The proper-time resolution function for the measurement of the time evolution of B mesons with the Belle detector at KEKB is studied in detail. The obtained resolution function is applied to the measurement of B meson lifetimes, the B0B-bar 0 oscillation frequency and time-dependent CP asymmetries
Time scale of diffusion in molecular and cellular biology
International Nuclear Information System (INIS)
Holcman, D; Schuss, Z
2014-01-01
Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)
Time scale of diffusion in molecular and cellular biology
Holcman, D.; Schuss, Z.
2014-05-01
Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.
Bao, Rima; Wu, Zhikui; Li, Hao; Wang, Fang; Miao, Xinyang; Feng, Chengjing
2017-01-01
The study of fluid inclusion is one of the important means to understanding the evolution of mineral crystals, and can therefore provide original information of mineral evolution. In the process of evolution, outside factors such as temperature and pressure, directly affect the number and size of inclusions, and thus are related to the properties of crystals. In this paper, terahertz time-domain spectroscopy (THz-TDS) was used to detect sodium sulfate crystals with different growth temperatures, and absorption coefficient spectra of the samples were obtained. It is suggested that the evolution of sodium sulfate could be divided into two stages, and 80°C was the turning point. X-ray diffraction (XRD) and polarizing microscopy were used to support this conclusion. The research showed that THz-TDS could characterize the evolution of mineral crystals, and it had a unique advantage in terms of crystal evolution.
HMC algorithm with multiple time scale integration and mass preconditioning
Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.
2006-01-01
We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.
Nonlinear MHD dynamics of tokamak plasmas on multiple time scales
International Nuclear Information System (INIS)
Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.
2003-01-01
Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)
The length and time scales of water's glass transitions
Limmer, David T.
2014-06-01
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
The length and time scales of water's glass transitions.
Limmer, David T
2014-06-07
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
The fission time scale measured with an atomic clock
Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK
2003-01-01
We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range
Evolution of scaling behaviors embedded in sentence series from A Story of the Stone.
Directory of Open Access Journals (Sweden)
Yue Yang
Full Text Available The novel entitled A Story of the Stone provides us precise details of life and social structure of the 18th century China. Its writing lasted a long duration of about 10 years, in which the author's habit may change significantly. It had been published anonymously up to the beginning of the 20th century, which left a mystery of the author's attribution. In the present work we focus our attention on scaling behavior embedded in the sentence series from this novel, hope to find how the ideas are organized from single sentences to the whole text. Especially we are interested in the evolution of scale invariance to monitor the changes of the author's language habit and to find some clues on the author's attribution. The sentence series are separated into a total of 69 non-overlapping segments with a length of 500 sentences each. The correlation dependent balanced estimation of diffusion entropy (cBEDE is employed to evaluate the scaling behaviors embedded in the short segments. It is found that the total, the part attributed currently to Xueqin Cao (X-part, and the other part attributed to E Gao (E-part, display scale invariance in a large scale up to 103 sentences, while their scaling exponents are almost identical. All the segments behave scale invariant in considerable wide scales, most of which reach one third of the length. In the curve of scaling exponent versus segment number, the X-part has rich patterns with averagely larger values, while the E-part has a U-shape with a significant low bottom. This finding is a new clue to support the attribution of the E-part to E Gao.
International Nuclear Information System (INIS)
Lin Min; Wang Gang; Chen Tianlun
2007-01-01
A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA) scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.
Decadal-scale Evolution of Sediment Flux in the Aulne Estuary
Moskalski, S. M.; Deschamps, A.; Floc'h, F.; Verney, R.; Piete, H.; Fromant, G.; Delacourt, C.
2013-12-01
Estuarine sediment transport processes have the potential to evolve over time in response to alterations in various factors both internal and external to the estuary, such as sediment supply, river discharge, tidal forcing, or changes to bathymetry. Changes in sediment transport can affect many estuarine processes (e.g. budgets of sediment-adsorbed contaminants or nutrients) and ecosystem services, such as aquaculture, primary production and the need to dredge shipping channels. Most studies of decadal-scale changes in estuaries focus on geomorphology or bathymetry, or are performed using models calibrated by a limited set of observational studies. Because of the potential for sediment flux to both affect and be affected by geomorphology and bathymetry, observational studies oriented to sediment flux evolution are needed. This study focuses on two intensive observational studies separated by 30 years to quantify change in suspended sediment concentration (SSC) in the Aulne river, a shallow macrotidal estuary in western Brittany. Moored and vessel-mounted acoustic Doppler current profilers and YSIs were deployed over a three-week period in the winter of 2013 to examine hydrodynamic and sediment transport processes. The results of the modern study were compared to a 1977 investigation of currents, suspended sediment concentration, and erosion/deposition. The 1977 study found that SSC during spring tide and average river discharge was less than 30 mg/L near the mouth and above 300 mg/L landward, with near-bottom concentrations in the turbidity maximum zone occasionally greater than 1000 mg/L. SSC was highest during low tide and remained elevated throughout, in the upstream part of the estuary. Sediment deposition was stronger after flood tide due to a longer slack period, which implies landward sediment transport in the estuary. In the 2013 study, near-bottom SSC during spring tide and average river discharge was also highest during low tide, but SSC was above 1000 mg
Diffusion time scales and accretion in the sun
International Nuclear Information System (INIS)
Michaud, G.
1977-01-01
It is thought that surface abundances in the Sun could be due largely to accretion either of comets or grains, and it has been suggested that if surface convection zones were smaller than is usually indicated by model calculations, accretion would be especially important. Unless the zone immediately below the surface convection zone is sufficiently stable for diffusion to be important, other transport processes, such as turbulence and meridional circulation, more efficient than diffusion, will tend to homogenise the Sun. Diffusion is the slowest of the transport processes and will become important when other transport processes become inoperative. Using diffusion theory the minimum mass of the convection zone can be determined in order that transport processes at the bottom of the zone are not to influence abundances in the convection zone. If diffusion time scales are shorter than the life of the star (Sun) diffusion will modify the abundances in the convection zone. The mass in the convection zone for which diffusion time scales are equal to the life of the star on the main sequence then determines the minimum mass in the convection zone that justifies neglect of transport processes at the bottom of the convection zone. It is calculated here that, for the Sun, this mass is between 3 x 10 -3 and 10 -2 solar mass, and a general explosion is derived for the diffusion time scale as a function of the mass of the convection zone. (U.K.)
Backpropagation and ordered derivatives in the time scales calculus.
Seiffertt, John; Wunsch, Donald C
2010-08-01
Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research.
Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy
2018-06-01
The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.
Liu, Xueyong; An, Haizhong; Huang, Shupei; Wen, Shaobo
2017-01-01
Aiming to investigate the evolution of mean and volatility spillovers between oil and stock markets in the time and frequency dimensions, we employed WTI crude oil prices, the S&P 500 (USA) index and the MICEX index (Russia) for the period Jan. 2003-Dec. 2014 as sample data. We first applied a wavelet-based GARCH-BEKK method to examine the spillover features in frequency dimension. To consider the evolution of spillover effects in time dimension at multiple-scales, we then divided the full sample period into three sub-periods, pre-crisis period, crisis period, and post-crisis period. The results indicate that spillover effects vary across wavelet scales in terms of strength and direction. By analysis the time-varying linkage, we found the different evolution features of spillover effects between the Oil-US stock market and Oil-Russia stock market. The spillover relationship between oil and US stock market is shifting to short-term while the spillover relationship between oil and Russia stock market is changing to all time scales. That result implies that the linkage between oil and US stock market is weakening in the long-term, and the linkage between oil and Russia stock market is getting close in all time scales. This may explain the phenomenon that the US stock index and the Russia stock index showed the opposite trend with the falling of oil price in the post-crisis period.
Atomistic simulations of graphite etching at realistic time scales.
Aussems, D U B; Bal, K M; Morgan, T W; van de Sanden, M C M; Neyts, E C
2017-10-01
Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼10 20 m -2 s -1 . The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
Stability theory for dynamic equations on time scales
Martynyuk, Anatoly A
2016-01-01
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...
Siege-shield and scale armour. Reciprocal predominance and common evolution
Backer, Fabrice De
2011-01-01
As it appears on the earliest depictions of military materials, Early Dynastic people used a huge shield during the sieges of cities, in order to protect their archers shooting at the defenders. In the meantime, the neck, chest and sides of these besieging soldiers were protected with the primitive models of the scale-armour. The shield has seen a fascinating evolution in the ancient Near East as a defensive armour, dominating the light, thin armour for centuries. Then, the spoked-wheel chari...
On the time evolution of holographic n-partite information
International Nuclear Information System (INIS)
Alishahiha, Mohsen; Mozaffar, M. Reza Mohammadi; Tanhayi, Mohammad Reza
2015-01-01
We study various scaling behaviors of n-partite information during a process of thermalization for n disjoint system consisting of n parallel strips whose widths are much larger than the separation between them. By making use of the holographic description for entanglement entropy we explore holographic description of the n-partite information by which we show that it has a definite sign: it is positive for even n and negative for odd n. This might thought of as an intrinsic property of a field theory which has gravity dual.
Scale and time dependence of serial correlations in word-length time series of written texts
Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.
2014-11-01
This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.
Time evolution of the Wigner function in the entangled-state representation
International Nuclear Information System (INIS)
Fan Hongyi
2002-01-01
For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule for entangled Wigner functions is also obtained
From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation.
Moen, Daniel; Morlon, Hélène
2014-05-01
What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a "deep-time" adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an "early burst" in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations.
Kushnick, Geoff; Hanowell, Ben; Kim, Jun-Hong; Langstieh, Banrida; Magnano, Vittorio; Oláh, Katalin
2015-06-01
Maternal care decision rules should evolve responsiveness to factors impinging on the fitness pay-offs of care. Because the caretaking environments common in industrialized and small-scale societies vary in predictable ways, we hypothesize that heuristics guiding maternal behaviour will also differ between these two types of populations. We used a factorial vignette experiment to elicit third-party judgements about likely caretaking decisions of a hypothetical mother and her child when various fitness-relevant factors (maternal age and access to resources, and offspring age, sex and quality) were varied systematically in seven populations-three industrialized and four small-scale. Despite considerable variation in responses, we found that three of five main effects, and the two severity effects, exhibited statistically significant industrialized/ small-scale population differences. All differences could be explained as adaptive solutions to industrialized versus small-scale caretaking environments. Further, we found gradients in the relationship between the population-specific estimates and national-level socio-economic indicators, further implicating important aspects of the variation in industrialized and small-scale caretaking environments in shaping heuristics. Although there is mounting evidence for a genetic component to human maternal behaviour, there is no current evidence for interpopulation variation in candidate genes. We nonetheless suggest that heuristics guiding maternal behaviour in diverse societies emerge via convergent evolution in response to similar selective pressures.
Time Evolution of Selected Actinides in TRIGA MARK-II Fuel
International Nuclear Information System (INIS)
Usang, M.D.; Naim Shauqi Hamzah; Mohamad Hairie Rabir
2011-01-01
Study is made on the evolution of several actinides capable of undergoing fission or breeding available on the Malaysian Nuclear Agency (MNA) TRIGA MARK-II fuel. Population distribution of burned fuel in the MNA reactor is determined with a model developed using WIMS. This model simulates fuel conditions in the hottest position in the reactor, thus the location where most of the burn up occurs. Theoretical basis of these nuclide time evolution are explored and compared with the population obtained from our models. Good agreements are found for the theoretical time evolution and the population of Uranium-235, Uranium-236, Uranium-238 and Plutonium-239. (author)
A hierarchy of time-scales and the brain.
Kiebel, Stefan J; Daunizeau, Jean; Friston, Karl J
2008-11-01
In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.
A hierarchy of time-scales and the brain.
Directory of Open Access Journals (Sweden)
Stefan J Kiebel
2008-11-01
Full Text Available In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.
Decay of surface nanostructures via long-time-scale dynamics
International Nuclear Information System (INIS)
Voter, A.F.; Stanciu, N.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool
Time scaling internal state predictive control of a solar plant
Energy Technology Data Exchange (ETDEWEB)
Silva, R.N. [DEE-FCT/UNL, Caparica (Portugal); Rato, L.M. [INESC-ID/University, Evora (Portugal); Lemos, J.M. [INESC-ID/IST, Lisboa (Portugal)
2003-12-01
The control of a distributed collector solar field is addressed in this work, exploiting the plant's transport characteristic. The plant is modeled by a hyperbolic type partial differential equation (PDE) where the transport speed is the manipulated flow, i.e. the controller output. The model has an external distributed source, which is the solar radiation captured along the collector, approximated to depend only of time. From the solution of the PDE, a linear discrete state space model is obtained by using time-scaling and the redefinition of the control input. This method allows overcoming the dependency of the time constants with the operating point. A model-based predictive adaptive controller is derived with the internal temperature distribution estimated with a state observer. Experimental results at the solar power plant are presented, illustrating the advantages of the approach under consideration. (author)
Time evolution of predictability of epidemics on networks
Holme, Petter; Takaguchi, Taro
2015-04-01
Epidemic outbreaks of new pathogens, or known pathogens in new populations, cause a great deal of fear because they are hard to predict. For theoretical models of disease spreading, on the other hand, quantities characterizing the outbreak converge to deterministic functions of time. Our goal in this paper is to shed some light on this apparent discrepancy. We measure the diversity of (and, thus, the predictability of) outbreak sizes and extinction times as functions of time given different scenarios of the amount of information available. Under the assumption of perfect information—i.e., knowing the state of each individual with respect to the disease—the predictability decreases exponentially, or faster, with time. The decay is slowest for intermediate values of the per-contact transmission probability. With a weaker assumption on the information available, assuming that we know only the fraction of currently infectious, recovered, or susceptible individuals, the predictability also decreases exponentially most of the time. There are, however, some peculiar regions in this scenario where the predictability decreases. In other words, to predict its final size with a given accuracy, we would need increasingly more information about the outbreak.
WRF simulation of a severe hailstorm over Baramati: a study into the space-time evolution
Murthy, B. S.; Latha, R.; Madhuparna, H.
2018-04-01
Space-time evolution of a severe hailstorm occurred over the western India as revealed by WRF-ARW simulations are presented. We simulated a specific event centered over Baramati (18.15°N, 74.58°E, 537 m AMSL) on March 9, 2014. A physical mechanism, proposed as a conceptual model, signifies the role of multiple convective cells organizing through outflows leading to a cold frontal type flow, in the presence of a low over the northern Arabian Sea, propagates from NW to SE triggering deep convection and precipitation. A `U' shaped cold pool encircled by a converging boundary forms to the north of Baramati due to precipitation behind the moisture convergence line with strong updrafts ( 15 ms-1) leading to convective clouds extending up to 8 km in a narrow region of 30 km. The outflows from the convective clouds merge with the opposing southerly or southwesterly winds from the Arabian Sea and southerly or southeasterly winds from the Bay of Bengal resulting in moisture convergence (maximum 80 × 10-3 g kg-1 s-1). The vertical profile of the area-averaged moisture convergence over the cold pool shows strong convergence above 850 hPa and divergence near the surface indicating elevated convection. Radar reflectivity (50-60 dBZ) and vertical component of vorticity maximum ( 0.01-0.14 s-1) are observed along the convergence zone. Stratiform clouds ahead of the squall line and parallel wind flow at 850 hPa and nearly perpendicular flow at higher levels relative to squall line as evidenced by relatively low and wide-spread reflectivity suggests that organizational mode of squall line may be categorized as `Mixed Mode' type where northern part can be a parallel stratiform while the southern part resembles with a leading stratiform. Simulated rainfall (grid scale 27 km) leads the observed rainfall by 1 h while its magnitude is 2 times of the observed rainfall (grid scale 100 km) derived from Kalpana-1. Thus, this study indicates that under synoptically favorable conditions
Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar
2017-11-01
Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.
Evolution of Management Thought in the Medieval Times.
Sharma, C. L.
The medieval times witnessed progress toward the growth of larger and more complex organizations and the application of increasingly sophisticated management techniques. Feudalism contributed the concept of decentralization. The concepts evolved by the Catholic Church can scarcely be improved on and are very much pertinent to the management of…
Soliton solutions of some nonlinear evolution equations with time ...
Indian Academy of Sciences (India)
Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...
Large-scale transportation network congestion evolution prediction using deep learning theory.
Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai
2015-01-01
Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.
Large-scale transportation network congestion evolution prediction using deep learning theory.
Directory of Open Access Journals (Sweden)
Xiaolei Ma
Full Text Available Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS and Internet of Things (IoT, transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.
Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A
2016-01-29
Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Khalil, Nagi
2018-04-01
The homogeneous cooling state (HCS) of a granular gas described by the inelastic Boltzmann equation is reconsidered. As usual, particles are taken as inelastic hard disks or spheres, but now the coefficient of normal restitution α is allowed to take negative values , which is a simple way of modeling more complicated inelastic interactions. The distribution function of the HCS is studied at the long-time limit, as well as intermediate times. At the long-time limit, the relevant information of the HCS is given by a scaling distribution function , where the time dependence occurs through a dimensionless velocity c. For , remains close to the Gaussian distribution in the thermal region, its cumulants and exponential tails being well described by the first Sonine approximation. In contrast, for , the distribution function becomes multimodal, its maxima located at , and its observable tails algebraic. The latter is a consequence of an unbalanced relaxation–dissipation competition, and is analytically demonstrated for , thanks to a reduction of the Boltzmann equation to a Fokker–Plank-like equation. Finally, a generalized scaling solution to the Boltzmann equation is also found . Apart from the time dependence occurring through the dimensionless velocity, depends on time through a new parameter β measuring the departure of the HCS from its long-time limit. It is shown that describes the time evolution of the HCS for almost all times. The relevance of the new scaling is also discussed.
Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent
2015-04-01
Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system
Ribal, A.; Stiassnie, M.; Babanin, A.; Young, I.
2012-04-01
The instability of two-dimensional wave-fields and its subsequent evolution in time are studied by means of the Alber equation for narrow-banded random surface-waves in deep water subject to inhomogeneous disturbances. A linear partial differential equation (PDE) is obtained after applying an inhomogeneous disturbance to the Alber's equation and based on the solution of this PDE, the instability of the ocean wave surface is studied for a JONSWAP spectrum, which is a realistic ocean spectrum with variable directional spreading and steepness. The steepness of the JONSWAP spectrum depends on γ and α which are the peak-enhancement factor and energy scale of the spectrum respectively and it is found that instability depends on the directional spreading, α and γ. Specifically, if the instability stops due to the directional spreading, increase of the steepness by increasing α or γ can reactivate it. This result is in qualitative agreement with the recent large-scale experiment and new theoretical results. In the instability area of α-γ plane, a long-time evolution has been simulated by integrating Alber's equation numerically and recurrent evolution is obtained which is the stochastic counterpart of the Fermi-Pasta-Ulam recurrence obtained for the cubic Schrödinger equation.
Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.
2018-04-01
We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.
Multiple time-scale methods in particle simulations of plasmas
International Nuclear Information System (INIS)
Cohen, B.I.
1985-01-01
This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling
DEFF Research Database (Denmark)
Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper
2016-01-01
foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we...... on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach......Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader...
International Nuclear Information System (INIS)
Keanini, R.G.
2011-01-01
Research highlights: → Systematic approach for physically probing nonlinear and random evolution problems. → Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. → Organization of near-molecular scale vorticity mediated by hydrodynamic modes. → Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the
Cross-Scale Modelling of Subduction from Minute to Million of Years Time Scale
Sobolev, S. V.; Muldashev, I. A.
2015-12-01
Subduction is an essentially multi-scale process with time-scales spanning from geological to earthquake scale with the seismic cycle in-between. Modelling of such process constitutes one of the largest challenges in geodynamic modelling today.Here we present a cross-scale thermomechanical model capable of simulating the entire subduction process from rupture (1 min) to geological time (millions of years) that employs elasticity, mineral-physics-constrained non-linear transient viscous rheology and rate-and-state friction plasticity. The model generates spontaneous earthquake sequences. The adaptive time-step algorithm recognizes moment of instability and drops the integration time step to its minimum value of 40 sec during the earthquake. The time step is then gradually increased to its maximal value of 5 yr, following decreasing displacement rates during the postseismic relaxation. Efficient implementation of numerical techniques allows long-term simulations with total time of millions of years. This technique allows to follow in details deformation process during the entire seismic cycle and multiple seismic cycles. We observe various deformation patterns during modelled seismic cycle that are consistent with surface GPS observations and demonstrate that, contrary to the conventional ideas, the postseismic deformation may be controlled by viscoelastic relaxation in the mantle wedge, starting within only a few hours after the great (M>9) earthquakes. Interestingly, in our model an average slip velocity at the fault closely follows hyperbolic decay law. In natural observations, such deformation is interpreted as an afterslip, while in our model it is caused by the viscoelastic relaxation of mantle wedge with viscosity strongly varying with time. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-year time range. We will also present results of the modeling of deformation of the
The evolution of Greek fauna since classical times
Directory of Open Access Journals (Sweden)
Konstantinos Sidiropoulos
2017-02-01
Full Text Available This article concerns the Greek fauna of classical and late antiquity and changes up to the present day. The main sources for the fauna of antiquity are historical, geographical and zoological texts, as well as descriptions from travellers who visited Greece. The study of the texts of classical and late antiquity was based on the following classical authors: Xenophon, Aristotle, Aristophanes Byzantios, Pliny, Dio Chrysostom, Plutarch, Pausanias and Aelian. Some species that were present in the Greek fauna of classical and late antiquity, such as the lion and the leopard, are today extinct in Greece, whereas some other species that are now common, such as the cat, the chicken and the peacock, were introduced about that time or a little earlier from other regions. Some other species that are also common today, such as the wild rabbit and the pheasant, were unknown at that time, as they appeared later in Greece from other areas.
Performances and recent evolutions of EMSC Real Time Information services
Mazet-Roux, G.; Godey, S.; Bossu, R.
2009-04-01
The EMSC (http://www.emsc-csem.org) operates Real Time Earthquake Information services for the public and the scientific community which aim at providing rapid and reliable information on the seismic-ity of the Euro-Mediterranean region and on significant earthquakes worldwide. These services are based on parametric data rapidly provided by 66 seismological networks which are automatically merged and processed at EMSC. A web page which is updated every minute displays a list and a map of the latest earthquakes as well as additional information like location maps, moment tensors solutions or past regional seismicity. Since 2004, the performances and the popularity of these services have dramatically increased. The number of messages received from the contributors and the number of published events have been multiplied by 2 since 2004 and by 1.6 since 2005 respectively. The web traffic and the numbers of users of the Earthquake Notification Service (ENS) have been multiplied by 15 and 7 respectively. In terms of performances of the ENS, the median dissemination time for Euro-Med events is minutes in 2008. In order to further improve its performances and especially the speed and robustness of the reception of real time data, EMSC has recently implemented a software named QWIDS (Quake Watch Information Distribution System) which provides a quick and robust data exchange system through permanent TCP connections. At the difference with emails that can sometimes be delayed or lost, QWIDS is an actual real time communication system that ensures the data delivery. In terms of hardware, EMSC imple-mented a high availability, dynamic load balancing, redundant and scalable web servers infrastructure, composed of two SUN T2000 and one F5 BIG-IP switch. This will allow coping with constantly increas-ing web traffic and the occurrence of huge peaks of traffic after widely felt earthquakes.
Fine Scale Baleen Whale Behavior Observed Via Tagging Over Daily Time Scales
2014-09-30
system to do a comparison between the two. While at Wildlife Computers, I also asked for and they kindly provided a small change in how their MK10...cetacean behavior at intermediate daily time scales. Recent efforts to assess the impacts of sound on marine mammals and to estimate foraging ...efficiency have called for the need to measure daily activity budgets to quantify how much of each day an individual devotes to foraging , resting
Huang, Shiping
2017-11-13
The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.
Enhancements and Evolution of the Real Time Mission Monitor
Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.
2008-12-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and
Reservoir computer predictions for the Three Meter magnetic field time evolution
Perevalov, A.; Rojas, R.; Lathrop, D. P.; Shani, I.; Hunt, B. R.
2017-12-01
The source of the Earth's magnetic field is the turbulent flow of liquid metal in the outer core. Our experiment's goal is to create Earth-like dynamo, to explore the mechanisms and to understand the dynamics of the magnetic and velocity fields. Since it is a complicated system, predictions of the magnetic field is a challenging problem. We present results of mimicking the three Meter experiment by a reservoir computer deep learning algorithm. The experiment is a three-meter diameter outer sphere and a one-meter diameter inner sphere with the gap filled with liquid sodium. The spheres can rotate up to 4 and 14 Hz respectively, giving a Reynolds number near to 108. Two external electromagnets apply magnetic fields, while an array of 31 external and 2 internal Hall sensors measure the resulting induced fields. We use this magnetic probe data to train a reservoir computer to predict the 3M time evolution and mimic waves in the experiment. Surprisingly accurate predictions can be made for several magnetic dipole time scales. This shows that such a complicated MHD system's behavior can be predicted. We gratefully acknowledge support from NSF EAR-1417148.
Time evolution of tropospheric ozone and its radiative forcing
International Nuclear Information System (INIS)
Berntsen, Terje K.; Isaksen, Ivar S.A.; Myhre, Gunnar; Stordal, Frode
1999-01-01
The overview presents results from studies of ozone concentrations from pre industrial time and up to the end of the 20th century. Different models and also a global 3-D chemistry transport model have been used. Experiments have been performed for 1850, 1900, 1950, 1960, 1970, 1980 and 1990. The radiative forcing increases with increasing ozone levels and has been steadily increasing. It has escalated towards the end of the century. Comparative evaluations with project results and external results are presented. Connections to other greenhouse gases are mentioned
Superconducting fluctuations and characteristic time scales in amorphous WSi
Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas
2018-05-01
We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.
A Review of Time-Scale Modification of Music Signals
Directory of Open Access Journals (Sweden)
Jonathan Driedger
2016-02-01
Full Text Available Time-scale modification (TSM is the task of speeding up or slowing down an audio signal’s playback speed without changing its pitch. In digital music production, TSM has become an indispensable tool, which is nowadays integrated in a wide range of music production software. Music signals are diverse—they comprise harmonic, percussive, and transient components, among others. Because of this wide range of acoustic and musical characteristics, there is no single TSM method that can cope with all kinds of audio signals equally well. Our main objective is to foster a better understanding of the capabilities and limitations of TSM procedures. To this end, we review fundamental TSM methods, discuss typical challenges, and indicate potential solutions that combine different strategies. In particular, we discuss a fusion approach that involves recent techniques for harmonic-percussive separation along with time-domain and frequency-domain TSM procedures.
Intensive time series data exploitation: the Multi-sensor Evolution Analysis (MEA) platform
Mantovani, Simone; Natali, Stefano; Folegani, Marco; Scremin, Alessandro
2014-05-01
The monitoring of the temporal evolution of natural phenomena must be performed in order to ensure their correct description and to allow improvements in modelling and forecast capabilities. This assumption, that is obvious for ground-based measurements, has not always been true for data collected through space-based platforms: except for geostationary satellites and sensors, that allow providing a very effective monitoring of phenomena with geometric scale from regional to global; smaller phenomena (with characteristic dimension lower than few kilometres) have been monitored with instruments that could collect data only with a time interval in the order of several days; bi-temporal techniques have been the most used ones for years, in order to characterise temporal changes and try identifying specific phenomena. The more the number of flying sensor has grown and their performance improved, the more their capability of monitoring natural phenomena at a smaller geographic scale has grown: we can now count on tenth of years of remotely sensed data, collected by hundreds of sensors that are now accessible from a wide users' community, and the techniques for data processing have to be adapted to move toward a data intensive exploitation. Starting from 2008, the European Space Agency has initiated the development of the Multi-sensor Evolution Analysis (MEA) platform (https://mea.eo.esa.int), whose first aim was to permit the access and exploitation of long term remotely sensed satellite data from different platforms: 15 years of global (A)ATSR data together with 5 years of regional AVNIR-2 data were loaded into the system and were used, through a web-based graphic user interface, for land cover change analysis. The MEA data availability has grown during years integrating multi-disciplinary data that feature spatial and temporal dimensions: so far tenths of Terabytes of data in the land and atmosphere domains are available and can be visualized and exploited, keeping the
Time in Redox Adaptation Processes: From Evolution to Hormesis
Directory of Open Access Journals (Sweden)
Mireille M. J. P. E. Sthijns
2016-09-01
Full Text Available Life on Earth has to adapt to the ever changing environment. For example, due to introduction of oxygen in the atmosphere, an antioxidant network evolved to cope with the exposure to oxygen. The adaptive mechanisms of the antioxidant network, specifically the glutathione (GSH system, are reviewed with a special focus on the time. The quickest adaptive response to oxidative stress is direct enzyme modification, increasing the GSH levels or activating the GSH-dependent protective enzymes. After several hours, a hormetic response is seen at the transcriptional level by up-regulating Nrf2-mediated expression of enzymes involved in GSH synthesis. In the long run, adaptations occur at the epigenetic and genomic level; for example, the ability to synthesize GSH by phototrophic bacteria. Apparently, in an adaptive hormetic response not only the dose or the compound, but also time, should be considered. This is essential for targeted interventions aimed to prevent diseases by successfully coping with changes in the environment e.g., oxidative stress.
Real-time evolution of quenched quantum systems
Energy Technology Data Exchange (ETDEWEB)
Moeckel, Michael
2009-06-24
Detailed geometries in heterostructures allow for nonequilibrium transport measurements in correlated systems, pump-probe experiments for time-resolved study of many-body relaxation in molecules and solids and ultracold atom gases loaded onto optical lattices for high control of system parameters in real time. In all of these fields of research the nonequilibrium properties of a Fermi liquid can be relevant. A first approach to their understanding is the main content of this thesis. At the beginning I collect a variety of nonequilibrium phenomena and introduce to basic questions and concepts for their study. The key observation of this thesis, namely a characteristic mismatch of expectation values in equilibrium and nonequilibrium, is first illustrated for the squeezed oscillator. Afterwards, these observations are generalized to a larger class of one-particle models. Then the nonequilibrium behavior of a Fermi liquid is examined by analyzing the Fermi liquid phase of the Hubbard model in more than one dimension. After a sudden switch-on of a weak two-particle interaction to the noninteracting Fermi gas the relaxation of the many-body system is observed. For this purpose, the flow equation transformation is implemented for the Hubbard Hamiltonian. Then the discussion of the momentum distribution function and of the kinetic energy displays a three-step relaxation behavior of the Fermi liquid from the initial perturbation until thermalization is reached. In order to extend the study of sudden switching to arbitrary switching processes the calculation is repeated using the Keldysh perturbation theory. (orig.)
Time Evolution of Sublingual Microcirculatory Changes in Recreational Marathon Runners
Arstikyte, Justina; Vaitkaitiene, Egle; Vaitkaitis, Dinas
2017-01-01
We aimed to evaluate changes in sublingual microcirculation induced by a marathon race. Thirteen healthy male controls and 13 male marathon runners volunteered for the study. We performed sublingual microcirculation, using a Cytocam-IDF device (Braedius Medical, Huizen, Netherlands), and systemic hemodynamic measurements four times: 24 hours prior to their participation in the Kaunas Marathon (distance: 41.2 km), directly after finishing the marathon, 24 hours after the marathon, and one week after the marathon. The marathon runners exhibited a higher functional capillary density (FCD) and total vascular density of small vessels at the first visit compared with the controls. Overall, we did not find any changes in sublingual microcirculation of the marathon runners at any of the other visits. However, in a subgroup of marathon runners with a decreased FCD compared to the subgroup with increased FCD, the subgroup with decreased FCD had shorter running time (190.37 ± 30.2 versus 221.80 ± 23.4 min, p = 0.045), ingested less fluids (907 ± 615 versus 1950 ± 488 mL, p = 0.007) during the race, and lost much more weight (−2.4 ± 1.3 versus −1.0 ± 0.8 kg, p = 0.041). Recreational marathon running is not associated with an alteration of sublingual microcirculation. However, faster running and dehydration may be crucial for further impairing microcirculation. PMID:28828386
Evolution of the Interstellar Gas Fraction Over Cosmic Time
Wiklind, Tommy; CANDELS
2018-01-01
Galaxies evolve by transforming gas into stars. The gas is acquired through accretion and mergers and is a highly intricate process where feed-back processes play an important role. Directly measuring the gas content in distant galaxies is, however, both complicated and time consuming. A direct observations involves either observing neutral hydrogen using the 21cm line or observing the molecular gas component using tracer molecules such as CO. The former method is impeded by man-made radio interference, and the latter is time consuming even with sensitive instruments such s ALMA. An indirect method is to observe the Raleigh-Jeans part of the dust SED and from this infer the gas mass. Here we present the results from a project using ALMA to measure the RJ part of the dust SED in a carefully selected sample of 70 galaxies at redshifts z=2-5. The galaxies are selected solely based on their redshift and stellar mass and therefore represents an unbiased sample. The stellar masses are selected using the MEAM method and thus the sample corresponds to progenitors of a z=0 galaxy of a particular stellar mass. Preliminary results show that the average gas fraction increases with redshift over the range z=2-3 in accordance with theoretical models, but at z≥4 the observed gas fraction is lower.
Real-time evolution of quenched quantum systems
International Nuclear Information System (INIS)
Moeckel, Michael
2009-01-01
Detailed geometries in heterostructures allow for nonequilibrium transport measurements in correlated systems, pump-probe experiments for time-resolved study of many-body relaxation in molecules and solids and ultracold atom gases loaded onto optical lattices for high control of system parameters in real time. In all of these fields of research the nonequilibrium properties of a Fermi liquid can be relevant. A first approach to their understanding is the main content of this thesis. At the beginning I collect a variety of nonequilibrium phenomena and introduce to basic questions and concepts for their study. The key observation of this thesis, namely a characteristic mismatch of expectation values in equilibrium and nonequilibrium, is first illustrated for the squeezed oscillator. Afterwards, these observations are generalized to a larger class of one-particle models. Then the nonequilibrium behavior of a Fermi liquid is examined by analyzing the Fermi liquid phase of the Hubbard model in more than one dimension. After a sudden switch-on of a weak two-particle interaction to the noninteracting Fermi gas the relaxation of the many-body system is observed. For this purpose, the flow equation transformation is implemented for the Hubbard Hamiltonian. Then the discussion of the momentum distribution function and of the kinetic energy displays a three-step relaxation behavior of the Fermi liquid from the initial perturbation until thermalization is reached. In order to extend the study of sudden switching to arbitrary switching processes the calculation is repeated using the Keldysh perturbation theory. (orig.)
Time Evolution of Sublingual Microcirculatory Changes in Recreational Marathon Runners.
Pranskunas, Andrius; Arstikyte, Justina; Pranskuniene, Zivile; Bernatoniene, Jurga; Kiudulaite, Inga; Vaitkaitiene, Egle; Vaitkaitis, Dinas; Brazaitis, Marius
2017-01-01
We aimed to evaluate changes in sublingual microcirculation induced by a marathon race. Thirteen healthy male controls and 13 male marathon runners volunteered for the study. We performed sublingual microcirculation, using a Cytocam-IDF device (Braedius Medical, Huizen, Netherlands), and systemic hemodynamic measurements four times: 24 hours prior to their participation in the Kaunas Marathon (distance: 41.2 km), directly after finishing the marathon, 24 hours after the marathon, and one week after the marathon. The marathon runners exhibited a higher functional capillary density (FCD) and total vascular density of small vessels at the first visit compared with the controls. Overall, we did not find any changes in sublingual microcirculation of the marathon runners at any of the other visits. However, in a subgroup of marathon runners with a decreased FCD compared to the subgroup with increased FCD, the subgroup with decreased FCD had shorter running time (190.37 ± 30.2 versus 221.80 ± 23.4 min, p = 0.045), ingested less fluids (907 ± 615 versus 1950 ± 488 mL, p = 0.007) during the race, and lost much more weight (-2.4 ± 1.3 versus -1.0 ± 0.8 kg, p = 0.041). Recreational marathon running is not associated with an alteration of sublingual microcirculation. However, faster running and dehydration may be crucial for further impairing microcirculation.
Time Evolution of Sublingual Microcirculatory Changes in Recreational Marathon Runners
Directory of Open Access Journals (Sweden)
Andrius Pranskunas
2017-01-01
Full Text Available We aimed to evaluate changes in sublingual microcirculation induced by a marathon race. Thirteen healthy male controls and 13 male marathon runners volunteered for the study. We performed sublingual microcirculation, using a Cytocam-IDF device (Braedius Medical, Huizen, Netherlands, and systemic hemodynamic measurements four times: 24 hours prior to their participation in the Kaunas Marathon (distance: 41.2 km, directly after finishing the marathon, 24 hours after the marathon, and one week after the marathon. The marathon runners exhibited a higher functional capillary density (FCD and total vascular density of small vessels at the first visit compared with the controls. Overall, we did not find any changes in sublingual microcirculation of the marathon runners at any of the other visits. However, in a subgroup of marathon runners with a decreased FCD compared to the subgroup with increased FCD, the subgroup with decreased FCD had shorter running time (190.37±30.2 versus 221.80±23.4 min, p=0.045, ingested less fluids (907±615 versus 1950±488 mL, p=0.007 during the race, and lost much more weight (-2.4±1.3 versus -1.0±0.8 kg, p=0.041. Recreational marathon running is not associated with an alteration of sublingual microcirculation. However, faster running and dehydration may be crucial for further impairing microcirculation.
Scale invariance in chaotic time series: Classical and quantum examples
Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro
Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.
Adaptation and learning: characteristic time scales of performance dynamics.
Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh
2009-12-01
A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.
An analysis of on time evolution of landslide
Tsai, Chienwei; Lien, Huipang
2017-04-01
In recent years, the extreme hydrological phenomenon in Taiwan is obvious. Because the increase of heavy rainfall frequency has resulted in severe landslide disaster, the watershed management is very important and how to make the most effective governance within the limited funds is the key point. In recent years many scholars to develop empirical models said that virtually rainfall factors exist and as long as rainfall conditions are met the minimum requirements of the model, landslide will occur. However, rainfall is one of the elements to the landslide, but not the only one element. Rainfall, geology and earthquake all contributed to the landslide as well. Preliminary research found that many landslides occur at the same location constantly and after repeating landslide, the slope had the characteristic of landslide immunity over time, even if the rainfall exceeded the standard, the landslide could not be triggered in the near term. This study investigated the surface conditions of slope that occur repeated landslide. It is difficult to be the basis of subsequent anti-disaster if making rainfall is the only condition to contribute to the landslide. This study analyzes 50 landslides in 2004 2013. Repeated landslide is defined as existed landslide in satellite images of reference period which it's bare area is shrinking or disappearing gradually but the restoration occur landslide again in some period time. The statistical analysis of the study found that 96% of landslide has repeated landslide and on average repeated landslide occurs 3.4 years in 10 years by one year as the unit. The highest of repeated landslide happened in 2010. It would presume that Typhoon Morakot in 2010 brought torrential rain which suffered southern mountain areas severely so the areas occurred repeated landslide.
Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time
Pinsky, Malin L.
2016-12-15
The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.
Probabilistic eruption forecasting at short and long time scales
Marzocchi, Warner; Bebbington, Mark S.
2012-10-01
Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.
AUTHOR|(SzGeCERN)756497; The ATLAS collaboration; Garcia Garcia, Pedro Javier; Vandelli, Wainer; Froening, Holger
2017-01-01
Data acquisition systems for large-scale high-energy physics experiments have to handle hundreds of gigabytes per second of data, and are typically realized as specialized data centers that connect a very large number of front-end electronics devices to an event detection and storage system. The design of such systems is often based on many assumptions, small-scale experiments and a substantial amount of over-provisioning. In this work, we introduce a discrete event-based simulation tool that models the data flow of the current ATLAS data acquisition system, with the main goal to be accurate with regard to the main operational characteristics. We measure buffer occupancy counting the number of elements in buffers, resource utilization measuring output bandwidth and counting the number of active processing units, and their time evolution by comparing data over many consecutive and small periods of time. We perform studies on the error of simulation when comparing the results to a large amount of real-world ope...
AUTHOR|(SzGeCERN)756497; The ATLAS collaboration; Garcia Garcia, Pedro Javier; Vandelli, Wainer; Froening, Holger
2017-01-01
Data acquisition systems for large-scale high-energy physics experiments have to handle hundreds of gigabytes per second of data, and are typically implemented as specialized data centers that connect a very large number of front-end electronics devices to an event detection and storage system. The design of such systems is often based on many assumptions, small-scale experiments and a substantial amount of over-provisioning. In this paper, we introduce a discrete event-based simulation tool that models the dataflow of the current ATLAS data acquisition system, with the main goal to be accurate with regard to the main operational characteristics. We measure buffer occupancy counting the number of elements in buffers; resource utilization measuring output bandwidth and counting the number of active processing units, and their time evolution by comparing data over many consecutive and small periods of time. We perform studies on the error in simulation when comparing the results to a large amount of real-world ...
Long Time Evolution of Populations under Selection and Vanishing Mutations
Raoul, Gaël
2011-02-08
In this paper, we consider a long time and vanishing mutations limit of an integro-differential model describing the evolution of a population structured with respect to a continuous phenotypic trait. We show that the asymptotic population is a steady-state of the evolution equation without mutations, and satisfies an evolutionary stability condition. © 2011 Springer Science+Business Media B.V.
Long Time Evolution of Populations under Selection and Vanishing Mutations
Raoul, Gaë l
2011-01-01
In this paper, we consider a long time and vanishing mutations limit of an integro-differential model describing the evolution of a population structured with respect to a continuous phenotypic trait. We show that the asymptotic population is a steady-state of the evolution equation without mutations, and satisfies an evolutionary stability condition. © 2011 Springer Science+Business Media B.V.
Time-evolution of the entropy of fluctuations in some biological systems as investigated by NMR
International Nuclear Information System (INIS)
Lenk, R.
1979-01-01
A simple expression for the entropy of fluctuations has been developed, using the tunnelling-effect model. This gives the possibility to estimate the changes and evolution of entropy in non-crystalline and biological samples by NMR investigations. On the other hand, the oscillatory character of the time-evolution of some properties, experimentally found in the investigated samples of plants, is interpreted in terms of the generalized master equation with an exponential memory function. (Auth.)
CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution
Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo
2012-02-01
CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.
The march of time and the "evolution" of change
Directory of Open Access Journals (Sweden)
C. L. Van Tonder
2004-10-01
Full Text Available Change and organisational change are some of the most discussed topics of our time. Yet despite this, reported success rates for major organisational change initiatives remain exceptionally poor. Part of the problem is that contemporary change management practices assume a stable, unidimensional concept of organisational change. By contrast an analysis of organisational and systems thinking over the past five decades or so reveals an evolving concept of organisation and consequently invalidates the assumption of organisational change as a stable unidimensional concept. The evolving character of organisational change and its implications for change management practices are briefly indicated. Opsomming Verandering en organisasieverandering is van die mees besproke onderwerpe van ons tyd. Ten spyte hiervan bly die gerapporteerde sukseskoers vir primêre organisasieveranderingsinisiatiewe buitengewoon swak. Deel van die probleem is daarin geleë dat kontemporêre veranderingsbestuurspraktyke die aanname maak dat organisasieverandering ’n stabiele, een-dimensionele konsep is. In stryd hiermee toon ’n ontleding van organisasieen sisteemdenke oor die afgelope vyf of so dekades egter ’n ontwikkelende konsep van organisasie wat gevolglik die aanname van ’n stabiele en een-dimensionele organisasieveranderingskonsep ongeldig verklaar. Die ontwikkelende karakter van organisasieverandering en die implikasies daarvan vir veranderingsbestuurspraktyke word kortliks aangedui.
Evolution of repetitive explosive instabilities in space and time
International Nuclear Information System (INIS)
Wilhelmsson, H.
1984-01-01
A nonlinear rate equation describing nonlinear, explosive type interaction of waves in plasmas is studied, assuming that amplitude saturation occurs due to nonlinear frequency shifts. Emphasis is put on the space dependence of the solution caused by the assumption of a given initial amplitude distribution in space. An analysis is given of the problem of repetitive peaks governed by the nonlinear rate equation for the time development of the amplitudes of plasma waves and by a Lorentzian shape distribution of the initial amplitudes. For the one-dimensional case, the peaks developed by explosive instability move in the direction of lower initial amplitude values, and the speed and the repetition rate of the peaks are determined. The possible forms of equilibria for the nonlinear rate equation in the explosive case are also studied, including, in addition to the quadratic nonlinearity, diffusion and linear damping effects. A solution to the nonlinear rate equation including diffusion is also given for the case where the quadratic nonlinearity represents recombination. (Auth.)
2013-01-01
As the interconnectivity between humans through technical devices is becoming ubiquitous, the next step is already in the making: ambient intelligence, i.e. smart (technical) environments, which will eventually play the same active role in communication as the human players, leading to a co-evolution in all domains where real-time communication is essential. This topical volume, based on the findings of the Socionical European research project, gives equal attention to two highly relevant domains of applications: transport, specifically traffic, dynamics from the viewpoint of a socio-technical interaction and evacuation scenarios for large-scale emergency situations. Care was taken to investigate as much as possible the limits of scalability and to combine the modeling using complex systems science approaches with relevant data analysis.
Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U-Ser; Lin, Hao-Wu
2015-09-04
The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.
Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U.-Ser; Lin, Hao-Wu
2015-09-01
The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.
Dependency structure and scaling properties of financial time series are related.
Morales, Raffaello; Di Matteo, T; Aste, Tomaso
2014-04-04
We report evidence of a deep interplay between cross-correlations hierarchical properties and multifractality of New York Stock Exchange daily stock returns. The degree of multifractality displayed by different stocks is found to be positively correlated to their depth in the hierarchy of cross-correlations. We propose a dynamical model that reproduces this observation along with an array of other empirical properties. The structure of this model is such that the hierarchical structure of heterogeneous risks plays a crucial role in the time evolution of the correlation matrix, providing an interpretation to the mechanism behind the interplay between cross-correlation and multifractality in financial markets, where the degree of multifractality of stocks is associated to their hierarchical positioning in the cross-correlation structure. Empirical observations reported in this paper present a new perspective towards the merging of univariate multi scaling and multivariate cross-correlation properties of financial time series.
Non-monotonicity and divergent time scale in Axelrod model dynamics
Vazquez, F.; Redner, S.
2007-04-01
We study the evolution of the Axelrod model for cultural diversity, a prototypical non-equilibrium process that exhibits rich dynamics and a dynamic phase transition between diversity and an inactive state. We consider a simple version of the model in which each individual possesses two features that can assume q possibilities. Within a mean-field description in which each individual has just a few interaction partners, we find a phase transition at a critical value qc between an active, diverse state for q < qc and a frozen state. For q lesssim qc, the density of active links is non-monotonic in time and the asymptotic approach to the steady state is controlled by a time scale that diverges as (q-qc)-1/2.
Zhou, Hua; Su, Yang; Wang, Rong; Zhu, Yong; Shen, Huiping; Pu, Tao; Wu, Chuanxin; Zhao, Jiyong; Zhang, Baofu; Xu, Zhiyong
2017-10-01
Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.
On the time-scales of magmatism at island-arc volcanoes.
Turner, S P
2002-12-15
Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less.
Mahabot, Marie-Myriam; Pennober, Gwenaelle; Suanez, Serge; Troadec, Roland; Delacourt, Christophe
2017-04-01
Global change introduce a lot of uncertainties concerning future trajectory of beaches by directly or indirectly modifying major driving factors. An improved understanding of the past shoreline evolution may help for anticipate future coastline response. However, in tropical environment, studies concerning carbonate beaches dynamics are scarce compared to open sandy beaches. Consequently, coral reef protected beaches morphological adjustment is still poorly understood and long-term evolution rate are poorly quantified in these specific environment. In this context, La Reunion Island, insular department of France located in Indian Ocean, constitute a favoured laboratory. This high volcanic island possesses 25 km of carbonate beaches which experience hydrodynamic forcing specific from tropical environment: cyclonic swell during summer and long period swell during winter. Because of degraded coral reef health and high anthropogenic pressure, 50% of the beaches are in erosion since 1970s. Beach survey has been conducted since 1990s by scientist and are now encompassed as pilot site within a French observatory network which guarantee long-term survey with high resolution observational techniques. Thus, La Reunion Island is one of the rare carbonate beach to be surveyed since 20 years. This study aims to examined and quantify beach response at decadal scale on carbonate sandy beaches of Reunion Island. The study focus on 12 km of beaches from Cap Champagne to the Passe de Trois-Bassins. The analyze of 15 beach profile data originated from historical and DGPS beach topographic data confirm long term trend to erosion. Sediment lost varies between 0.5 and 2 m3.yr-1 since 1998. However longshore current have led to accretion of some part of beach compartment with rate of 0.7 to 1.6 m3.yr-1. Wave climate was examined from in-situ measurement over 15 years and show that extreme waves associated with tropical cyclones and long period swell play a major role in beach dynamics
Neural Computations in a Dynamical System with Multiple Time Scales.
Mi, Yuanyuan; Lin, Xiaohan; Wu, Si
2016-01-01
Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.
Recurrence relations and time evolution in the three-dimensional Sawada model
International Nuclear Information System (INIS)
Lee, M.H.; Hong, J.
1984-01-01
Time-dependent behavior of the three-dimensional Sawada model is obtained by a method of recurrence relations. Exactly calculated quantities are the time evolution of the density-fluctuation operator and its random force. As an application, their linear coefficients, the relaxation and memory functions are used to obtain certain dynamic quantities, e.g., the mobility
Time-scales of stellar rotational variability and starspot diagnostics
Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.
2018-01-01
The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.
BOX-COX REGRESSION METHOD IN TIME SCALING
Directory of Open Access Journals (Sweden)
ATİLLA GÖKTAŞ
2013-06-01
Full Text Available Box-Cox regression method with λj, for j = 1, 2, ..., k, power transformation can be used when dependent variable and error term of the linear regression model do not satisfy the continuity and normality assumptions. The situation obtaining the smallest mean square error when optimum power λj, transformation for j = 1, 2, ..., k, of Y has been discussed. Box-Cox regression method is especially appropriate to adjust existence skewness or heteroscedasticity of error terms for a nonlinear functional relationship between dependent and explanatory variables. In this study, the advantage and disadvantage use of Box-Cox regression method have been discussed in differentiation and differantial analysis of time scale concept.
The Updated BaSTI Stellar Evolution Models and Isochrones. I. Solar-scaled Calculations
DEFF Research Database (Denmark)
Hidalgo, Sebastian L.; Pietrinferni, Adriano; Cassisi, Santi
2018-01-01
We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction...... to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been...... calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site....
Razavi, Saman; Vogel, Richard
2018-02-01
Prewhitening, the process of eliminating or reducing short-term stochastic persistence to enable detection of deterministic change, has been extensively applied to time series analysis of a range of geophysical variables. Despite the controversy around its utility, methodologies for prewhitening time series continue to be a critical feature of a variety of analyses including: trend detection of hydroclimatic variables and reconstruction of climate and/or hydrology through proxy records such as tree rings. With a focus on the latter, this paper presents a generalized approach to exploring the impact of a wide range of stochastic structures of short- and long-term persistence on the variability of hydroclimatic time series. Through this approach, we examine the impact of prewhitening on the inferred variability of time series across time scales. We document how a focus on prewhitened, residual time series can be misleading, as it can drastically distort (or remove) the structure of variability across time scales. Through examples with actual data, we show how such loss of information in prewhitened time series of tree rings (so-called "residual chronologies") can lead to the underestimation of extreme conditions in climate and hydrology, particularly droughts, reconstructed for centuries preceding the historical period.
Imprints of the large-scale structure on AGN formation and evolution
Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem
2018-04-01
Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.
Impact of time and space evolution of ion tracks in nonvolatile memory cells approaching nanoscale
International Nuclear Information System (INIS)
Cellere, G.; Paccagnella, A.; Murat, M.; Barak, J.; Akkerman, A.; Harboe-Sorensen, R.; Virtanen, A.; Visconti, A.; Bonanomi, M.
2010-01-01
Swift heavy ions impacting on matter lose energy through the creation of dense tracks of charges. The study of the space and time evolution of energy exchange allows understanding the single event effects behavior in advanced microelectronic devices. In particular, the shrinking of minimum feature size of most advanced memory devices makes them very interesting test vehicles to study these effects since the device and the track dimensions are comparable; hence, measured effects are directly correlated with the time and space evolution of the energy release. In this work we are studying the time and space evolution of ion tracks by using advanced non volatile memories and Monte Carlo simulations. Experimental results are very well explained by the theoretical calculations.
Truong, N.; Rasia, E.; Mazzotta, P.; Planelles, S.; Biffi, V.; Fabjan, D.; Beck, A. M.; Borgani, S.; Dolag, K.; Gaspari, M.; Granato, G. L.; Murante, G.; Ragone-Figueroa, C.; Steinborn, L. K.
2018-03-01
We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YX. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500 > 1014 M⊙E(z)-1, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z ˜ 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z = 2 are 10 per cent lower with respect to z = 0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z = 0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YX is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.
Evolution of - and Core-Dominated Lava Flows Using Scaling Analysis
Castruccio, A.; Rust, A.; Sparks, R. S.
2010-12-01
We investigated the front evolution of simple lava flows on a slope using scaling arguments. For the retarding force acting against gravity, we analyzed three different cases: a flow controlled by a Newtonian viscosity, a flow controlled by the yield strength of a diffusively growing crust and a flow controlled by its core yield strength. These models were tested using previously published data of front evolution and volume discharge of 10 lava flow eruptions from 6 different volcanoes. Our analysis suggests that for basaltic eruptions with high effusion rate and low crystal content, (Hawaiian eruptions), the best fit of the data is with a Newtonian viscosity. For basaltic eruptions with lower effusion rates (Etna eruptions) or long duration andesitic eruptions (Lonquimay eruption, Chile) the flow is controlled by the yield strength of a growing crust. Finally, for very high crystalline lavas (Colima, Santiaguito) the flow is controlled by its core yield strength. The order of magnitude of the viscosities from our analysis is in the same range as previous studies using field measurements on the same lavas. The yield strength values for the growing crust and core of the flow are similar and with an order of magnitude of 10^5 Pa. This number is similar to yield strength values found in lava domes by different authors. The consistency of yield strength ~10^5 Pa is because larger stresses cause fracturing of very crystalline magma, which drastically reduces its effective strength. Furthermore, we used a 2-D analysis of a Bingham fluid flow on a slope to conclude that, for lower yield strength values, the flow is controlled mainly by its plastic viscosity and the lava can be effectively modelled as Newtonian. Our analysis provides a simple tool to evaluate the main controlling forces in the evolution of a lava flow, as well as the magnitude of its rheological properties, for eruptions of different compositions and conditions and may be useful to predict the evolution of
Directory of Open Access Journals (Sweden)
Guoliang Li
2017-01-01
Full Text Available We study the order acceptance and scheduling (OAS problem with time-dependent earliness-tardiness penalties in a single agile earth observation satellite environment where orders are defined by their release dates, available processing time windows ranging from earliest start date to deadline, processing times, due dates, sequence-dependent setup times, and revenues. The objective is to maximise total revenue, where the revenue from an order is a piecewise linear function of its earliness and tardiness with reference to its due date. We formulate this problem as a mixed integer linear programming model and develop a novel hybrid differential evolution (DE algorithm under self-adaptation framework to solve this problem. Compared with classical DE, hybrid DE employs two mutation operations, scaling factor adaptation and crossover probability adaptation. Computational tests indicate that the proposed algorithm outperforms classical DE in addition to two other variants of DE.
Development of efficient time-evolution method based on three-term recurrence relation
International Nuclear Information System (INIS)
Akama, Tomoko; Kobayashi, Osamu; Nanbu, Shinkoh
2015-01-01
The advantage of the real-time (RT) propagation method is a direct solution of the time-dependent Schrödinger equation which describes frequency properties as well as all dynamics of a molecular system composed of electrons and nuclei in quantum physics and chemistry. Its applications have been limited by computational feasibility, as the evaluation of the time-evolution operator is computationally demanding. In this article, a new efficient time-evolution method based on the three-term recurrence relation (3TRR) was proposed to reduce the time-consuming numerical procedure. The basic formula of this approach was derived by introducing a transformation of the operator using the arcsine function. Since this operator transformation causes transformation of time, we derived the relation between original and transformed time. The formula was adapted to assess the performance of the RT time-dependent Hartree-Fock (RT-TDHF) method and the time-dependent density functional theory. Compared to the commonly used fourth-order Runge-Kutta method, our new approach decreased computational time of the RT-TDHF calculation by about factor of four, showing the 3TRR formula to be an efficient time-evolution method for reducing computational cost
The pace of aging: Intrinsic time scales in demography
Directory of Open Access Journals (Sweden)
Tomasz Wrycza
2014-05-01
Full Text Available Background: The pace of aging is a concept that captures the time-related aspect of aging. It formalizesthe idea of a characteristic life span or intrinsic population time scale. In the rapidly developing field of comparative biodemography, measures that account for inter-speciesdifferences in life span are needed to compare how species age. Objective: We aim to provide a mathematical foundation for the concept of pace. We derive desiredmathematical properties of pace measures and suggest candidates which satisfy these properties. Subsequently, we introduce the concept of pace-standardization, which reveals differences in demographic quantities that are not due to pace. Examples and consequences are discussed. Conclusions: Mean life span (i.e., life expectancy from birth or from maturity is intuitively appealing,theoretically justified, and the most appropriate measure of pace. Pace-standardizationprovides a serviceable method for comparative aging studies to explore differences indemographic patterns of aging across species, and it may considerably alter conclusionsabout the strength of aging.
Gurzadyan, V. G.; Kocharyan, A. A.
2015-07-01
The recently developed method (Paper 1) enabling one to investigate the evolution of dynamical systems with an accuracy not dependent on time is developed further. The classes of dynamical systems which can be studied by that method are much extended, now including systems that are: (1) non-Hamiltonian, conservative; (2) Hamiltonian with time-dependent perturbation; (3) non-conservative (with dissipation). These systems cover various types of N-body gravitating systems of astrophysical and cosmological interest, such as the orbital evolution of planets, minor planets, artificial satellites due to tidal, non-tidal perturbations and thermal thrust, evolving close binary stellar systems, and the dynamics of accretion disks.
Non unitarity effects in the time evolution of one body observables
International Nuclear Information System (INIS)
Nemes, M.C.; Toledo Piza, A.F.R. de
1982-01-01
We present a formal derivation of the exact dynamics of the one body density matrix. Its essential ingredients are shown to be: a) a mean field unitary time evolution, b) irreducible non unitary corrections to it (collision effects) and c) the time evolution of initial state correlations (which contributes to both a) and b). The qualitative importance of collision effects to the expectation value of one body operators is discussed and a quantitative study is carried out within the framework of an exactly soluble model, the non unitary contributions vary from 10% to over 100%
Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution
Wang, L.; Cardenas, M. B.
2017-12-01
Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self
International Nuclear Information System (INIS)
Ohnishi, Teruaki
2002-01-01
The characteristics of an interacting multi-particle system in natural sciences can form a useful model for the evolution of public attitudes and opinions, provided that each particle corresponds to one individual. A simulation model which uses a multi-particle system to represent society was developed. By using this model, the time evolution of the public attitudes to nuclear energy were investigated. The nuclear attitude of an individual was assumed to be influenced by three factors: a uniform information environment, mutual interactions between members of the public, and spontaneous recovery of the original attitude with time. Also the time-evolution of the socio-psychological position of members of the public was assumed to be given by a Langevin-type equation. Various attributes of individuals obtained by public opinion surveys together with data on the secular variation of availability of nuclear information were used as the input. By numerically solving the simultaneous differential equations for the system of a 1000 particles, the time behavior of Japanese public opinion regarding the promotion of nuclear generation was investigated. It was found from this calculation that the public aversion to nuclear energy is catastrophically aggravated with every large-scale nuclear accident, that the opinions of individual members of the public as to the value of nuclear energy were gradually attracted to a few views with time, and that the unification of such views occurred with the Chernobyl accident as a promoter. It also became clear that the public attitude at a particular time is governed by the information environment over several years immediately prior to that time
Pérez, Lara F.; Nielsen, Tove; Knutz, Paul C.; Kuijpers, Antoon; Damm, Volkmar
2018-04-01
The continental shelf of central-east Greenland is shaped by several glacially carved transverse troughs that form the oceanward extension of the major fjord systems. The evolution of these troughs through time, and their relation with the large-scale glaciation of the Northern Hemisphere, is poorly understood. In this study seismostratigraphic analyses have been carried out to determine the morphological and structural development of this important sector of the East Greenland glaciated margin. The age of major stratigraphic discontinuities has been constrained by a direct tie to ODP site 987 drilled in the Greenland Sea basin plain off Scoresby Sund fan system. The areal distribution and internal facies of the identified seismic units reveal the large-scale depositional pattern formed by ice-streams draining a major part of the central-east Greenland ice sheet. Initial sedimentation along the margin was, however, mainly controlled by tectonic processes related to the margin construction, continental uplift, and fluvial processes. From late Miocene to present, progradational and erosional patterns point to repeated glacial advances across the shelf. The evolution of depo-centres suggests that ice sheet advances over the continental shelf have occurred since late Miocene, about 2 Myr earlier than previously assumed. This cross-shelf glaciation is more pronounced during late Miocene and early Pliocene along Blosseville Kyst and around the Pliocene/Pleistocene boundary off Scoresby Sund; indicating a northward migration of the glacial advance. The two main periods of glaciation were separated by a major retreat of the ice sheet to an inland position during middle Pliocene. Mounded-wavy deposits interpreted as current-related deposits suggest the presence of changing along-slope current dynamics in concert with the development of the modern North Atlantic oceanographic pattern.
From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation.
Directory of Open Access Journals (Sweden)
Daniel Moen
2014-05-01
Full Text Available What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a "deep-time" adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an "early burst" in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations.
International Nuclear Information System (INIS)
Li Tianduo; Xiao Gang; Di Yuming; Han Feng; Qiu Xiaoling
1999-01-01
The γ energy spectrum is expanded in allied energy-frequency space. By the different characterization of the evolution of wavelet transform modulus maxima across scales between energy spectrum and noise, the algorithm for removing the noise from γ energy spectrum by analyzing the evolution of the wavelet transform maxima across scales is presented. The results show, in contrast to the methods in energy space or in frequency space, the method has the advantages that the peak of energy spectrum can be indicated accurately and the energy spectrum can be reconstructed with a good approximation
Titius--Bode law and the possibility of recent large-scale evolution in the solar system
International Nuclear Information System (INIS)
Neito, M.M.
1974-01-01
Although it is by no means clear that the Titius--Bode law of planetary distances is indeed a ''law'' (even though there are enticing indications), it is proposed that if one assumes that the law is a ''law'' and that the planets obey it, then this argues against recent large-scale evolution in the solar system. Put another way: one can believe in the Titius--Bode law or in recent large-scale evolution or in neither of them. But it appears difficult to believe in both of them
The Small-Scale Structure of the Magellanic Stream as a Foundation for Galaxy Evolution
Directory of Open Access Journals (Sweden)
Nigra, L.
2010-06-01
Full Text Available The Magellanic Stream (MS is the nearest example of agaseous trail formed by interacting galaxies. While the substantial gas masses in these kinds of circumgalactic structures are postulated to represent important sources of fuel for future star formation, the mechanisms whereby this material might be accreted back into galaxies remain unclear. Recent neutral hydrogen (HI observations have demonstrated that the northern portion of the MS, which probably has been interacting with the Milky Way's hot gaseous halo for close to 1000~Myr, has a larger spatial extent than previously recognized, while also containing significant amounts of small-scale structure. After a brief consideration of the large-scale kinematics of the MS as traced by the recently-discovered extension of the MS, we explore the aging process of the MS gas through the operation of various hydrodynamic instabilities and interstellar turbulence. This in turn leads to consideration of processes whereby MS material survives as cool gas, and yet also evidently fails to form stars.Parallels between the MS and extragalactic tidal features are briefly discussed with an emphasis on steps toward establishing what the MS reveals about the critical role of local processes in determining the evolution of these kinds of systems.
Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene
Raimbourg, Hugues; Famin, Vincent; Palazzin, Giulia; Yamaguchi, Asuka; Augier, Romain
2017-07-01
To decipher the Miocene evolution of the Shimanto belt of southwestern Japan, structural and paleothermal studies were carried out in the western area of Shikoku Island. All units constituting the belt, both in its Cretaceous and Tertiary domains, are in average strongly dipping to the NW or SE, while shortening directions deduced from fault kinematics are consistently orientated NNW-SSE. Peak paleotemperatures estimated with Raman spectra of organic matter increase strongly across the southern, Tertiary portion of the belt, in tandem with the development of a steeply dipping metamorphic cleavage. Near the southern tip of Ashizuri Peninsula, the unconformity between accreted strata and fore-arc basin, present along the whole belt, corresponds to a large paleotemperature gap, supporting the occurrence of a major collision in Early Miocene. This tectonic event occurred before the magmatic event that affected the whole belt at 15 Ma. The associated shortening was accommodated in two opposite modes, either localized on regional-scale faults such as the Nobeoka Tectonic Line in Kyushu or distributed through the whole belt as in Shikoku. The reappraisal of this collision leads to reinterpret large-scale seismic refraction profiles of the margins, where the unit underlying the modern accretionary prism is now attributed to an older package of deformed and accreted sedimentary units belonging to the Shimanto belt. When integrated into reconstructions of Philippine Sea Plate motion, the collision corresponds to the oblique collision of a paleo Izu-Bonin-Mariana Arc with Japan in Early Miocene.
Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos
Shapiro, Paul R.
1991-01-01
Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.
The small-scale structure of the Magellanic stream as a foundation for galaxy evolution
Directory of Open Access Journals (Sweden)
Stanimirović S.
2010-01-01
Full Text Available The Magellanic Stream (MS is the nearest example of a gaseous trail formed by interacting galaxies. While the substantial gas masses in these kinds of circumgalactic structures are postulated to represent important sources of fuel for future star formation, the mechanisms whereby this material might be accreted back into galaxies remain unclear. Recent neutral hydrogen (HI observations have demonstrated that the northern portion of the MS, which probably has been interacting with the Milky Way's hot gaseous halo for close to 1000 Myr, has a larger spatial extent than previously recognized, while also containing significant amounts of small-scale structure. After a brief consideration of the large-scale kinematics of the MS as traced by the recently-discovered extension of the MS, we explore the aging process of the MS gas through the operation of various hydrodynamic instabilities and interstellar turbulence. This in turn leads to consideration of processes whereby MS material survives as cool gas, and yet also evidently fails to form stars. Parallels between the MS and extragalactic tidal features are brie'y discussed with an emphasis on steps toward establishing what the MS reveals about the critical role of local processes in determining the evolution of these kinds of systems.
Towards a High-resolution Time Scale for the Early Devonian
Dekkers, M. J.; da Silva, A. C.
2017-12-01
High-resolution time scales are crucial to understand Earth's history in detail. The construction of a robust geological time scale, however, inevitably becomes increasingly harder further back in time. Uncertainties associated with anchor radiometric ages increase in size, not speaking of the mere presence of suitable datable strata. However, durations of stages can be tightly constrained by making use of cyclic expressions in sediments, an approach that revolutionized the Cenozoic time scale. When precisely determined durations are stitched together, ultimately, a very precise time scale is the result. For the Mesozoic and Paleozoic an astronomical solution as a tuning target is not available but the dominant periods of eccentricity, obliquity and precession are reasonably well constrained for the entire Phanerozoic which enables their detection by means of spectral analysis. Eccentricity is time-invariant and is used as the prime building block. Here we focus on the Early Devonian, on its lowermost three stages: the Lochkovian, Pragian and Emsian. The uncertainties on the Devonian stage boundaries are currently in the order of several millions of years. The preservation of climatic cycles in diagenetically or even anchimetamorphically affected successions, however, is essential. The fit of spectral peak ratios with those calculated for orbital cycles, is classically used as a strong argument for a preserved climatic signal. Here we use primarily the low field magnetic susceptibility (MS) as proxy parameter, supported by gamma-ray spectrometry to test for consistency. Continuous Wavelet Transform, Evolutive Harmonic Analysis, Multitaper Method, and Average Spectral Misfit are used to reach an optimal astronomical interpretation. We report on classic Early Devonian sections from the Czech Republic: the Pozar-CS (Lochkovian and Pragian), Pod Barrandovem (Pragian and Lower Emsian), and Zlichov (Middle-Upper Emsian). Also a Middle-Upper Emsian section from the US
Model based analysis of the time scales associated to pump start-ups
Energy Technology Data Exchange (ETDEWEB)
Dazin, Antoine, E-mail: antoine.dazin@lille.ensam.fr [Arts et métiers ParisTech/LML Laboratory UMR CNRS 8107, 8 bld Louis XIV, 59046 Lille cedex (France); Caignaert, Guy [Arts et métiers ParisTech/LML Laboratory UMR CNRS 8107, 8 bld Louis XIV, 59046 Lille cedex (France); Dauphin-Tanguy, Geneviève, E-mail: genevieve.dauphin-tanguy@ec-lille.fr [Univ Lille Nord de France, Ecole Centrale de Lille/CRISTAL UMR CNRS 9189, BP 48, 59651, Villeneuve d’Ascq cedex F 59000 (France)
2015-11-15
Highlights: • A dynamic model of a hydraulic system has been built. • Three periods in a pump start-up have been identified. • The time scales of each period have been estimated. • The parameters affecting the rapidity of a pump start-up have been explored. - Abstract: The paper refers to a non dimensional analysis of the behaviour of a hydraulic system during pump fast start-ups. The system is composed of a radial flow pump and its suction and delivery pipes. It is modelled using the bond graph methodology. The prediction of the model is validated by comparison to experimental results. An analysis of the time evolution of the terms acting on the total pump pressure is proposed. It allows for a decomposition of the start-up into three consecutive periods. The time scales associated with these periods are estimated. The effects of parameters (angular acceleration, final rotation speed, pipe length and resistance) affecting the start-up rapidity are then explored.
Two-time scale subordination in physical processes with long-term memory
International Nuclear Information System (INIS)
Stanislavsky, Aleksander; Weron, Karina
2008-01-01
We describe dynamical processes in continuous media with a long-term memory. Our consideration is based on a stochastic subordination idea and concerns two physical examples in detail. First we study a temporal evolution of the species concentration in a trapping reaction in which a diffusing reactant is surrounded by a sea of randomly moving traps. The analysis uses the random-variable formalism of anomalous diffusive processes. We find that the empirical trapping-reaction law, according to which the reactant concentration decreases in time as a product of an exponential and a stretched exponential function, can be explained by a two-time scale subordination of random processes. Another example is connected with a state equation for continuous media with memory. If the pressure and the density of a medium are subordinated in two different random processes, then the ordinary state equation becomes fractional with two-time scales. This allows one to arrive at the Bagley-Torvik type of state equation
Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice
Directory of Open Access Journals (Sweden)
Kurkela Aleksi
2018-01-01
Full Text Available Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Above the Debye scale the classical Yang-Mills (CYM theory can be matched smoothly to kinetic theory. First we study the limits of the quasiparticle picture of the CYM fields by determining the plasmon mass of the system using 3 different methods. Then we argue that one needs a numerical calculation of a system of classical gauge fields and small linearized fluctuations, which correspond to quantum fluctuations, in a way that keeps the separation between the two manifest. We demonstrate and test an implementation of an algorithm with the linearized fluctuation showing that the linearization indeed works and that the Gauss’s law is conserved.
Long time scale plasma dynamics driven by the double tearing mode in reversed shear plasmas
International Nuclear Information System (INIS)
Ishii, Y.; Azumi, M.; Kishimoto, Y.; Leboeuf, J.N.
2003-01-01
The new nonlinear destabilization process is found in the nonlinear phase of the double tearing mode (DTM) by using the reduced MHD equations in a helical symmetry. The nonlinear destabilization causes the abrupt growth of DTM and subsequent collapse after long time scale evolution in the Rutherford-type regime. The nonlinear growth of the DTM is suddenly triggered, when the triangular deformation of magnetic islands with sharp current point at the x-point around the outer rational surface exceeds a certain value. Such structure deformation is accelerated during the nonlinear growth phase. Decreasing the resistivity increases the sharpness of the triangularity and the spontaneous growth rate in the abrupt growth phase is almost independent on the resistivity. Current point formation is also confirmed in the multi-helicity simulation, where the magnetic fields become stochastic between two rational surfaces. (author)
Long time scale plasma dynamics driven by the double tearing mode in reversed shear plasmas
International Nuclear Information System (INIS)
Ishii, Yasutomo; Azumi, M.; Kishimoto, Y.
2003-01-01
The new nonlinear destabilization process is found in the nonlinear phase of the double tearing mode(DTM) by using the reduced MHD equations in a helical symmetry. The nonlinear destabilization causes the abrupt growth of DTM and subsequent collapse after long time scale evolution in the Rutherford-type regime. The nonlinear growth of the DTM is suddenly triggered, when the triangular deformation of magnetic islands with sharp current point at the x-point around the outer rational surface exceeds a certain value. Such structure deformation is accelerated during the nonlinear growth phase. Decreasing the resistivity increases the sharpness of the triangularity and the spontaneous growth rate in the abrupt growth phase is almost independent on the resistivity. Current point formation is also confirmed in the multi-helicity simulation, where the magnetic fields become stochastic between two rational surfaces. (author)
Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice
Kurkela, Aleksi; Lappi, Tuomas; Peuron, Jarkko
2018-03-01
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Above the Debye scale the classical Yang-Mills (CYM) theory can be matched smoothly to kinetic theory. First we study the limits of the quasiparticle picture of the CYM fields by determining the plasmon mass of the system using 3 different methods. Then we argue that one needs a numerical calculation of a system of classical gauge fields and small linearized fluctuations, which correspond to quantum fluctuations, in a way that keeps the separation between the two manifest. We demonstrate and test an implementation of an algorithm with the linearized fluctuation showing that the linearization indeed works and that the Gauss's law is conserved.
Time scales of critical events around the Cretaceous-Paleogene boundary.
Renne, Paul R; Deino, Alan L; Hilgen, Frederik J; Kuiper, Klaudia F; Mark, Darren F; Mitchell, William S; Morgan, Leah E; Mundil, Roland; Smit, Jan
2013-02-08
Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present (40)Ar/(39)Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmospheric carbon cycle at the boundary likely lasted less than 5000 years, exhibiting a recovery time scale two to three orders of magnitude shorter than that of the major ocean basins. Low-diversity mammalian fauna in the western Williston Basin persisted for as little as 20,000 years after the impact. The Chicxulub impact likely triggered a state shift of ecosystems already under near-critical stress.
Estimating dust distances to Type Ia supernovae from colour excess time evolution
Bulla, M.; Goobar, A.; Amanullah, R.; Feindt, U.; Ferretti, R.
2018-01-01
We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time evolution of the light-curve shape and especially of the colour excess E(B - V) places strong constraints on the distance between dust and the supernova. We apply our approach to two highly reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(B - V) and from this derive a distance of 27.5^{+9.0}_{-4.9} or 22.1^{+6.0}_{-3.8} pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(B - V) consistent with dust at distances larger than ∼50 and 38 pc for LMC- and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.
International Nuclear Information System (INIS)
Hosseinkhani, H.; Modarres, M.
2011-01-01
To overcome the complexity of generalized two hard scale (k t ,μ) evolution equation, well known as the Ciafaloni, Catani, Fiorani and Marchesini (CCFM) evolution equations, and calculate the unintegrated parton distribution functions (UPDF), Kimber, Martin and Ryskin (KMR) proposed a procedure based on (i) the inclusion of single-scale (μ) only at the last step of evolution and (ii) the angular ordering constraint (AOC) on the DGLAP terms (the DGLAP collinear approximation), to bring the second scale, k t into the UPDF evolution equations. In this work we intend to use the MSTW2008 (Martin et al.) parton distribution functions (PDF) and try to calculate UPDF for various values of x (the longitudinal fraction of parton momentum), μ (the probe scale) and k t (the parton transverse momentum) to see the general behavior of three-dimensional UPDF at the NLO level up to the LHC working energy scales (μ 2 ). It is shown that there exits some pronounced peaks for the three-dimensional UPDF(f a (x,k t )) with respect to the two variables x and k t at various energies (μ). These peaks get larger and move to larger values of k t , as the energy (μ) is increased. We hope these peaks could be detected in the LHC experiments at CERN and other laboratories in the less exclusive processes.
Introducing time delay in the evolution of new technology: the case study of nanotechnology
Georgalis, Evangelos E.; Aifantis, Elias C.
2013-12-01
Starting with Feynman's "There's Plenty of Room at the Bottom" prophetic lecture at Caltech in the 1960s, the term "nanotechnology" was first coined in the scientific literature in the 1980s. This was followed by the unprecedented growth in the corresponding scientific field in 2000 due to the financial incentive provided by President Clinton in the US, followed up by similar efforts in Europe, Japan, China and Russia. Today, nanotechnology has become a driving force for economic development, with applications in all fields of engineering, information technology, transport and energy, as well as biology and medicine. Thus, it is important to forecast its future growth and evolution on the basis of two different criteria: (1) the government and private capital invested in related activities, and (2) the number of scientific publications and popular articles dedicated to this field. This article aims to extract forecasts on the evolution of nanotechnology, using the standard logistic equation that result in familiar sigmoid curves, as well as to explore the effect of time delay on its evolution. Time delay is commonly known from previous biological and ecological models, in which time lag is either already known or can be experimentally measured. In contrast, in the case of a new technology, we must first define the method for determining time delay and then interpret its existence and role. Then we describe the implications that time delay may have on the stability of the sigmoidal behavior of nanotechnology evolution and on the related oscillations that may appear.
Thermal evolution and small scale structure of Sommerfeld enhanced dark matter
International Nuclear Information System (INIS)
Aarssen, Laura Gusta van den
2013-04-01
Although the existence of Dark Matter (DM) has been confirmed by many independent observations on various scales, its nature still remains a mystery. Leading candidates for the cold, non-baryonic DM are Weakly Interacting Massive Particles (WIMPs), that are well motivated from particle physics and naturally explain the observed relic density by their thermal production mechanism. In this thesis we focus on a particular class of WIMP models in which the Sommerfeld effect has to be taken into account. This is a quantum mechanical phenomenon that can significantly enhance the annihilation cross section in the non-relativistic limit. To describe the non-perturbative effect, we use a non-relativistic effective field theory derived from the full quantum field theory. We include a detailed discussion of the calculation for the righthanded sneutrino, which is the superpartner of the neutrino and a viable DM candidate. The Sommerfeld enhancement can have a profound influence on the thermal evolution of the DM, which can no longer be described by the standard scenario. We introduce a framework to correctly take this effect into account and apply it to a simple leptophilic DM model. A new era of annihilations can decrease the DM density even after usual freeze-out, and in some cases where the Sommerfeld enhancement is especially large, even continue until after matter-radiation equality. The effect on the asymptotic WIMP temperature, which can be directly related to a small scale cutoff in the matter density fluctuations, causes the mass of the smallest gravitationally bound objects to be larger than expected from standard calculations. Furthermore we study the effect of velocity dependent DM self-scattering in relation to the small scale structure formation. Numerical simulations of ΛCDM have shown a remarkable agreement with the large scale structure of the Universe. However, the simulations are in tension with observed abundances, inner densities and velocity profiles of
Thermal evolution and small scale structure of Sommerfeld enhanced dark matter
Energy Technology Data Exchange (ETDEWEB)
Aarssen, Laura Gusta van den
2013-04-15
Although the existence of Dark Matter (DM) has been confirmed by many independent observations on various scales, its nature still remains a mystery. Leading candidates for the cold, non-baryonic DM are Weakly Interacting Massive Particles (WIMPs), that are well motivated from particle physics and naturally explain the observed relic density by their thermal production mechanism. In this thesis we focus on a particular class of WIMP models in which the Sommerfeld effect has to be taken into account. This is a quantum mechanical phenomenon that can significantly enhance the annihilation cross section in the non-relativistic limit. To describe the non-perturbative effect, we use a non-relativistic effective field theory derived from the full quantum field theory. We include a detailed discussion of the calculation for the righthanded sneutrino, which is the superpartner of the neutrino and a viable DM candidate. The Sommerfeld enhancement can have a profound influence on the thermal evolution of the DM, which can no longer be described by the standard scenario. We introduce a framework to correctly take this effect into account and apply it to a simple leptophilic DM model. A new era of annihilations can decrease the DM density even after usual freeze-out, and in some cases where the Sommerfeld enhancement is especially large, even continue until after matter-radiation equality. The effect on the asymptotic WIMP temperature, which can be directly related to a small scale cutoff in the matter density fluctuations, causes the mass of the smallest gravitationally bound objects to be larger than expected from standard calculations. Furthermore we study the effect of velocity dependent DM self-scattering in relation to the small scale structure formation. Numerical simulations of {Lambda}CDM have shown a remarkable agreement with the large scale structure of the Universe. However, the simulations are in tension with observed abundances, inner densities and velocity
Thermal Time Evolution of Non-Flaring Active Regions Determined by SDO/AIA
Wright, Paul James; Hannah, Iain; Viall, Nicholeen; MacKinnon, Alexander; Ireland, Jack; Bradshaw, Stephen
2017-08-01
We present the pixel-level time evolution of DEM maps from SDO/AIA data using two different methods (Hannah et al. 2012; Cheung et al. 2015). These sets of Differential Emission Measure (DEM) maps allow us to determine the slopes of the DEM throughout non-flaring structures, and investigate how this changes with time, a crucial parameter in terms of how these flux tubes are being heated. We present this analysis on both real and synthetic data allowing us to understand how robustly we can recover the thermal time evolution. As this analysis also produces the time series in different temperature bands we can further investigate the underlying heating mechanisms by applying a variety of techniques to probe the frequency and nature of the heating, such as time-lag analysis (Viall & Klimchuck 2012; 2016), power spectrum analysis (Ireland et al. 2015), and Local Intermittency Measure (Dinkelaker & MacKinnon 2013a,b).
Time evolution of tunneling in a thermal medium: Environment-driven excited tunneling
International Nuclear Information System (INIS)
Matsumoto, Sh.; Yoshimura, M.
2004-01-01
Time evolution of tunneling phenomena proceeding in a thermal medium is studied using a standard model of environmental interaction. A semiclassical probability formula for the particle motion in a metastable state of a one-dimensional system put in a thermal medium is combined with the formula of the quantum penetration factor through a potential barrier to derive the tunneling rate in the medium. The effect of environment, its influence on time evolution in particular, is clarified in our real-time formalism. A nonlinear resonance effect is shown to enhance the tunneling rate at finite times of order 2/η, with η the friction coefficient unless η is too small. In the linear approximation this effect has relevance to the parametric resonance. This effect enhances the possibility of early termination of the cosmological phase transition much prior to the typical Hubble time
Review of Tropical-Extratropical Teleconnections on Intraseasonal Time Scales
Stan, Cristiana; Straus, David M.; Frederiksen, Jorgen S.; Lin, Hai; Maloney, Eric D.; Schumacher, Courtney
2017-12-01
The interactions and teleconnections between the tropical and midlatitude regions on intraseasonal time scales are an important modulator of tropical and extratropical circulation anomalies and their associated weather patterns. These interactions arise due to the impact of the tropics on the extratropics, the impact of the midlatitudes on the tropics, and two-way interactions between the regions. Observational evidence, as well as theoretical studies with models of complexity ranging from the linear barotropic framework to intricate Earth system models, suggest the involvement of a myriad of processes and mechanisms in generating and maintaining these interconnections. At this stage, our understanding of these teleconnections is primarily a collection of concepts; a comprehensive theoretical framework has yet to be established. These intraseasonal teleconnections are increasingly recognized as an untapped source of potential subseasonal predictability. However, the complexity and diversity of mechanisms associated with these teleconnections, along with the lack of a conceptual framework to relate them, prevent this potential predictability from being translated into realized forecast skill. This review synthesizes our progress in understanding the observed characteristics of intraseasonal tropical-extratropical interactions and their associated mechanisms, identifies the significant gaps in this understanding, and recommends new research endeavors to address the remaining challenges.
International Nuclear Information System (INIS)
Ngayam Happy, R.
2010-01-01
In this work, we have improved a diffusion model for point defects (vacancies and self-interstitials) by introducing hetero-interstitials. The model has been used to simulate by Kinetic Monte Carlo (KMC) the formation of solute rich clusters that are observed experimentally in irradiated ferritic model alloys of type Fe - CuMnNiSiP - C.Electronic structure calculations have been used to characterize the interactions between self-interstitials and all solute atoms, and also carbon. P interacts with vacancies and strongly with self-interstitials. Mn also interacts with self-interstitials to form mixed dumbbells. C, with occupies octahedral sites, interacts strongly with vacancies and less with self-interstitials. Binding and migration energies, as well as others atomic scale properties, obtained by ab initio calculations, have been used as parameters for the KMC code. Firstly, these parameters have been optimized over isochronal annealing experiments, in the literature, of binary alloys that have been electron-irradiated. Isochronal annealing simulations, by reproducing experimental results, have allowed us to link each mechanism to a single evolution of the resistivity during annealing. Moreover, solubility limits of all the elements have been determined by Metropolis Monte Carlo. Secondly, we have simulated the evolution at 300 C of the microstructure under irradiation of different alloys of increasing complexity: pure Fe, binary alloys, ternaries, quaternaries, and finally complex alloys which compositions are close to those of pressure vessel steels. The results show that the model globally reproduces all the experimental tendencies, what has led us to propose mechanisms to explain the behaviours observed. (author)
Nano-scale chemical evolution in a proton-and neutron-irradiated Zr alloy
Energy Technology Data Exchange (ETDEWEB)
Harte, Allan, E-mail: allan.harte@manchester.ac.uk [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Topping, M.; Frankel, P. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Jädernäs, D. [Studsvik Nuclear AB, SE 611 82, Nyköping (Sweden); Romero, J. [Westinghouse Electric Company, Columbia, SC (United States); Hallstadius, L. [Westinghouse Electric Sweden AB, SE 72163 Västerås (Sweden); Darby, E.C. [Rolls Royce Plc., Nuclear Materials, Derby (United Kingdom); Preuss, M. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)
2017-04-15
Proton-and neutron-irradiated Zircaloy-2 are compared in terms of the nano-scale chemical evolution within second phase particles (SPPs) Zr(Fe,Cr){sub 2} and Zr{sub 2}(Fe,Ni). This is accomplished through ultra-high spatial resolution scanning transmission electron microscopy and the use of energy-dispersive X-ray spectroscopic methods. Fe-depletion is observed from both SPP types after irradiation with both irradiative species, but is heterogeneous in the case of Zr(Fe,Cr){sub 2}, predominantly from the edge region, and homogeneously in the case of Zr{sub 2}(Fe,Ni). Further, there is evidence of a delay in the dissolution of the Zr{sub 2}(Fe,Ni) SPP with respect to the Zr(Fe,Cr){sub 2}. As such, SPP dissolution results in matrix supersaturation with solute under both irradiative species and proton irradiation is considered well suited to emulate the effects of neutron irradiation in this context. The mechanisms of solute redistribution processes from SPPs and the consequences for irradiation-induced growth phenomena are discussed. - Highlights: •Protons emulate the effects of neutron irradiation in the evolution of chemistry and morphology of second phase particles. •Detailed energy-dispersive X-ray spectroscopy reveals heterogeneity in Zr-Fe-Cr SPPs both before and after irradiation. •Zr-Fe-Ni SPPs are delayed in irradiation-induced dissolution due to their better self-solubility with respect to Zr-Fe-Cr.
Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.
2017-12-01
Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.
Numerical study of the time evolution of a wave packet in quantum mechanics
International Nuclear Information System (INIS)
Segura, J.; Fernandez de Cordoba, P.
1993-01-01
We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)
Time evolution of the drop size distribution for liquid-liquid dispersion in an agitated tank
Czech Academy of Sciences Publication Activity Database
Šulc, R.; Kysela, Bohuš; Ditl, P.
2018-01-01
Roč. 72, č. 3 (2018), s. 543-553 ISSN 0366-6352 R&D Projects: GA ČR GA16-20175S Institutional support: RVO:67985874 Keywords : liquid–liquid dispersion * drop breakup * drop size distribution * time evolution Subject RIV: BK - Fluid Dynamics Impact factor: 1.258, year: 2016
Time evolution of negative binomial optical field in a diffusion channel
International Nuclear Information System (INIS)
Liu Tang-Kun; Wu Pan-Pan; Shan Chuan-Jia; Liu Ji-Bing; Fan Hong-Yi
2015-01-01
We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition. (paper)
International Nuclear Information System (INIS)
Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.
1985-01-01
We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)
Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales
Ren, Zhiyong
2011-03-15
The variable biocatalyst density in a microbial fuel cell (MFC) anode biofilm is a unique feature of MFCs relative to other electrochemical systems, yet performance characterizations of MFCs typically involve analyses at electrochemically relevant time scales that are insufficient to account for these variable biocatalyst effects. This study investigated the electrochemical performance and the development of anode biofilm architecture under different external loadings, with duplicate acetate-fed singlechamber MFCs stabilized at each resistance for microbially relevant time scales. Power density curves from these steady-state reactors generally showed comparable profiles despite the fact that anode biofilm architectures and communities varied considerably, showing that steady-state biofilm differences had little influence on electrochemical performance until the steady-state external loading was much larger than the reactor internal resistance. Filamentous bacteria were dominant on the anodes under high external resistances (1000 and 5000 Ω), while more diverse rod-shaped cells formed dense biofilms under lower resistances (10, 50, and 265 Ω). Anode charge transfer resistance decreased with decreasing fixed external resistances, but was consistently 2 orders of magnitude higher than the resistance at the cathode. Cell counting showed an inverse exponential correlation between cell numbers and external resistances. This direct link ofMFCanode biofilm evolution with external resistance and electricity production offers several operational strategies for system optimization. © 2011 American Chemical Society.
Interactive exploration of large-scale time-varying data using dynamic tracking graphs
Widanagamaachchi, W.
2012-10-01
Exploring and analyzing the temporal evolution of features in large-scale time-varying datasets is a common problem in many areas of science and engineering. One natural representation of such data is tracking graphs, i.e., constrained graph layouts that use one spatial dimension to indicate time and show the "tracks" of each feature as it evolves, merges or disappears. However, for practical data sets creating the corresponding optimal graph layouts that minimize the number of intersections can take hours to compute with existing techniques. Furthermore, the resulting graphs are often unmanageably large and complex even with an ideal layout. Finally, due to the cost of the layout, changing the feature definition, e.g. by changing an iso-value, or analyzing properly adjusted sub-graphs is infeasible. To address these challenges, this paper presents a new framework that couples hierarchical feature definitions with progressive graph layout algorithms to provide an interactive exploration of dynamically constructed tracking graphs. Our system enables users to change feature definitions on-the-fly and filter features using arbitrary attributes while providing an interactive view of the resulting tracking graphs. Furthermore, the graph display is integrated into a linked view system that provides a traditional 3D view of the current set of features and allows a cross-linked selection to enable a fully flexible spatio-temporal exploration of data. We demonstrate the utility of our approach with several large-scale scientific simulations from combustion science. © 2012 IEEE.
Martins, C J A P
2016-01-01
This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects – cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.
Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco
2017-04-01
Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is
Time-scales for runoff and erosion estimates, with implications for spatial scaling
Kirkby, M. J.; Irvine, B. J.; Dalen, E. N.
2009-04-01
Using rainfall data at high temporal resolution, runoff may be estimated for every bucket-tip, or for aggregated hourly or daily periods. Although there is no doubt that finer resolution gives substantially better estimates, many models make use of coarser time steps because these data are more widely available. This paper makes comparisons between runoff estimates based on infiltration measurements used with high resolution rainfall data for SE Spain and theoretical work on improving the time resolution in the PESERA model from daily to hourly values, for areas where these are available. For a small plot at fine temporal scale, runoff responds to bursts of intense rainfall which, for the Guadalentin catchment, typically lasts for about 30 minutes. However, when a larger area is considered, the large and unstructured variability in infiltration capacity produces an aggregate runoff that differs substantially from estimates using average infiltration parameters (in the Green-Ampt equation). When these estimates are compared with estimates based on rainfall for aggregated hourly or daily periods, using a simpler infiltration model, it can be seen that there a substantial scatter, as expected, but that suitable parameterisation can provide reasonable average estimates. Similar conclusions may be drawn for erosion estimates, assuming that sediment transport is proportional to a power of runoff discharge.. The spatial implications of these estimates can be made explicit with fine time resolution, showing that, with observed low overland flow velocities, only a small fraction of the hillside is generally able to deliver runoff to the nearest channel before rainfall intensity drops and runoff re-infiltrates. For coarser time resolutions, this has to be parameterised as a delivery ratio, and we show that how this ratio can be rationally estimated from rainfall characteristics.
DEFF Research Database (Denmark)
Utrilla, José; O'Brien, Edward J.; Chen, Ke
2016-01-01
Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive laboratory evolution (ALE) allows for such mutations to be found and characterized in the context of clear se...
A new surface-process model for landscape evolution at a mountain belt scale
Willett, Sean D.; Braun, Jean; Herman, Frederic
2010-05-01
We present a new surface process model designed for modeling surface erosion and mass transport at an orogenic scale. Modeling surface processes at a large-scale is difficult because surface geomorphic processes are frequently described at the scale of a few meters, and such resolution cannot be represented in orogen-scale models operating over hundreds of square kilometers. We circumvent this problem by implementing a hybrid numerical -- analytical model. Like many previous models, the model is based on a numerical fluvial network represented by a series of nodes linked by model rivers in a descending network, with fluvial incision and sediment transport defined by laws operating on this network. However we only represent the largest rivers in the landscape by nodes in this model. Low-order rivers and water divides between large rivers are determined from analytical solutions assuming steady-state conditions with respect to the local river channel. The analytical solution includes the same fluvial incision law as the large rivers and a channel head with a specified size and mean slope. This permits a precise representation of the position of water divides between river basins. This is a key characteristic in landscape evolution as divide migration provides a positive feedback between river incision and a consequent increase in drainage area. The analytical solution also provides an explicit criterion for river capture, which occurs once a water divide migrates to its neighboring channel. This algorithm avoids the artificial network organization that often results from meshing and remeshing algorithms in numerical models. We demonstrate the use of this model with several simple examples including uniform uplift of a block, simultaneous uplift and shortening of a block, and a model involving strike slip faulting. We find a strong dependence on initial condition, but also a surprisingly strong dependence on channel head height parameters. Low channel heads, as
Directory of Open Access Journals (Sweden)
Matti Michael Rothbart
Full Text Available In Europe, several species of crickets are available commercially as pet food. Here we investigated the calling song and phonotactic selectivity for sound patterns on the short and long time scales for one such a cricket, Gryllus spec., available as "Gryllus assimilis", the Steppengrille, originally from Ecuador. The calling song consisted of short chirps (2-3 pulses, carrier frequency: 5.0 kHz emitted with a pulse period of 30.2 ms and chirp rate of 0.43 per second. Females exhibited high selectivity on both time scales. The preference for pulse period peaked at 33 ms which was higher then the pulse period produced by males. Two consecutive pulses per chirp at the correct pulse period were already sufficient for positive phonotaxis. The preference for the chirp pattern was limited by selectivity for small chirp duty cycles and for chirp periods between 200 ms and 500 ms. The long chirp period of the songs of males was unattractive to females. On both time scales a mismatch between the song signal of the males and the preference of females was observed. The variability of song parameters as quantified by the coefficient of variation was below 50% for all temporal measures. Hence, there was not a strong indication for directional selection on song parameters by females which could account for the observed mismatch. The divergence of the chirp period and female preference may originate from a founder effect, when the Steppengrille was cultured. Alternatively the mismatch was a result of selection pressures exerted by commercial breeders on low singing activity, to satisfy customers with softly singing crickets. In the latter case the prominent divergence between male song and female preference was the result of domestication and may serve as an example of rapid evolution of song traits in acoustic communication systems.
Nonequilibrium Physics at Short Time Scales: Formation of Correlations
International Nuclear Information System (INIS)
Peliti, L
2005-01-01
It is a happy situation when similar concepts and theoretical techniques can be applied to widely different physical systems because of a deep similarity in the situations being studied. The book illustrates this well; it focuses on the description of correlations in quantum systems out of equilibrium at very short time scales, prompted by experiments with short laser pulses in semiconductors, and in complex reactions in heavy nuclei. In both cases the experiments are characterized by nonlinear dynamics and by strong correlations out of equilibrium. In some systems there are also important finite-size effects. The book comprises several independent contributions of moderate length, and I sometimes felt that a more intensive effort in cross-coordination of the different contributions could have been of help. It is divided almost equally between theory and experiment. In the theoretical part, there is a thorough discussion both of the kinematic aspects (description of correlations) and the dynamical ones (evaluation of correlations). The experimental part is naturally divided according to the nature of the system: the interaction of pulsed lasers with matter on the one hand, and the correlations in finite-size systems (nanoparticles and nuclei) on the other. There is also a discussion on the dynamics of superconductors, a subject currently of great interest. Although an effort has been made to keep each contribution self-contained, I must admit that reading level is uneven. However, there are a number of thorough and stimulating contributions that make this book a useful introduction to the topic at the level of graduate students or researchers acquainted with quantum statistical mechanics. (book review)
Blackstone, Neil; Radzvilavicius, Arunas
2015-01-01
Roughly 1.5–2.0 Gya, the eukaryotic cell evolved from an endosymbiosis of an archaeal host and proteobacterial symbionts. The timing of this endosymbiosis relative to the evolution of eukaryotic features remains subject to considerable debate, yet the evolutionary process itself constrains the timing of these events. Endosymbiosis entailed levels-of-selection conflicts, and mechanisms of conflict mediation had to evolve for eukaryogenesis to proceed. The initial mechanisms of conflict mediati...
Time-variable stress transfer across a megathrust from seismic to Wilson cycle scale
Rosenau, Matthias; Angiboust, Samuel; Moreno, Marcos; Schurr, Bernd; Oncken, Onno
2013-04-01
During the lifetime of a convergent plate margin stress transfer across the plate interface (a megathrust) can be expected to vary at multiple timescales. At short time scales (years to decades), a subduction megathrust interface appears coupled (accumulating shear stress) at shallow depth (seismogenic zone proportional to effective normal load but also to relative shear stress. For areas of near complete stress drop locking might systematically decrease over the interseismic period from >80-95 % shortly after an earthquake to backslip at significant fractions of plate convergence rate (non-volcanic tremor and slow slip below the seismogenic zone represent short term episodes of metamorphic fluid infiltration into the shallow megathrust. A megathrust fault valve mechanism clocked by the greatest earthquakes then accounts for cyclic fluid pressure build up and drainage at sub-seismic cycle scale. As pore pressure dynamics are controlled primarily by permeability which in turn is controlled by structure and material properties, then more long term coupling transients associated with structural evolution of the plate margin can be implied. Fluid controlled transients might interfere with transients and secular trends resulting from changes in material strength and plate tectonic forces over the Wilson cycle resulting in a multispectral stress-transfer pattern associated with convergent margin evolution. Because of the viscous damping effect of the underlying asthenosphere, however, only longterm transients (periods >1-10 ka) are transmitted into the engaged plates. We therefore speculate that the multispectral nature of stress transfer across a megathrust filtered through the asthenosphere explains transient fault activity in some intraplate settings.
Lv, Yunyun; Kawasaki, Kazuhiko; Li, Jia; Li, Yanping; Bian, Chao; Huang, Yu; You, Xinxin; Shi, Qiong
2017-11-16
The family of secretory calcium-binding phosphoproteins (SCPPs) have been considered vital to skeletal tissue mineralization. However, most previous SCPP studies focused on phylogenetically distant animals but not on those closely related species. Here we provide novel insights into the coevolution of SCPP genes and fish scales in 10 species from Otophysi . According to their scale phenotypes, these fishes can be divided into three groups, i.e., scaled, sparsely scaled, and scaleless. We identified homologous SCPP genes in the genomes of these species and revealed an absence of some SCPP members in some genomes, suggesting an uneven evolutionary history of SCPP genes in fishes. In addition, most of these SCPP genes, with the exception of SPP1 , individually form one or two gene cluster(s) on each corresponding genome. Furthermore, we constructed phylogenetic trees using maximum likelihood method to estimate their evolution. The phylogenetic topology mostly supports two subclasses in some species, such as Cyprinus carpio , Sinocyclocheilus anshuiensis , S. grahamin , and S. rhinocerous , but not in the other examined fishes. By comparing the gene structures of recently reported candidate genes, SCPP1 and SCPP5 , for determining scale phenotypes, we found that the hypothesis is suitable for Astyanax mexicanus , but denied by S. anshuiensis , even though they are both sparsely scaled for cave adaptation. Thus, we conclude that, although different fish species display similar scale phenotypes, the underlying genetic changes however might be diverse. In summary, this paper accelerates the recognition of the SCPP family in teleosts for potential scale evolution.
International Nuclear Information System (INIS)
Vincent, E.
2006-12-01
In this work, we have developed a model of point defect (vacancies and interstitials) diffusion whose aim is to simulate by kinetic Monte Carlo (KMC) the formation of solute rich clusters observed experimentally in irradiated FeCuNiMnSi model alloys and in pressure vessel steels. Electronic structure calculations have been used to characterize the interactions between point defects and the different solute atoms. Each of these solute atoms establishes an attractive bond with the vacancy. As for Mn, which is the element which has the weakest bond with the vacancy, it establishes more favourable bonds with interstitials. Binding energies, migration energies as well as other atomic scale properties, determined by ab initio calculations, have led to a parameter set for the KMC code. Firstly, these parameters have been optimised on thermal ageing experiments realised on the FeCu binary alloy and on complex alloys, described in the literature. The vacancy diffusion thermal annealing simulations show that when a vacancy is available, all the solutes migrate and form clusters, in agreement with the observed experimental tendencies. Secondly, to simulate the microstructural evolution under irradiation, we have introduced interstitials in the KMC code. Their presence leads to a more efficient transport of Mn. The first simulations of electron and neutron irradiations show that the model results are globally qualitatively coherent with the experimentally observed tendencies. (author)
Multi-particle correlations and KNO scaling in the medium-induced jet evolution
Energy Technology Data Exchange (ETDEWEB)
Escobedo, Miguel A.; Iancu, Edmond [Institut de physique théorique, Université Paris Saclay, CNRS, CEA,F-91191 Gif-sur-Yvette (France)
2016-12-20
We study the gluon distribution produced via successive medium-induced branchings by an energetic jet propagating through a weakly-coupled quark-gluon plasma. We show that under suitable approximations the evolution of the jet can be described as a classical stochastic process, which is exactly solvable. For this process, we construct exact analytic solutions for all the n-point correlation functions (the n-body densities in the space of energy). The corresponding results for the one-point and the two-point functions were already known, but those for the higher-point functions are new. These results demonstrate strong correlations associated with the existence of common ancestors in the branching process. By integrating these n-point functions over the gluon energies, we deduce the mean gluon multiplicity 〈N〉 as well as the higher moments 〈N{sup p}〉 with p≥2. We find that the multiplicities of the soft gluons are parametrically large and show a remarkable regularity, known as Koba-Nielsen-Olesen (KNO) scaling: the reduced moments 〈N{sup p}〉/〈N〉{sup p} are pure numbers, independent of any of the physical parameters of the problem. We recognize a special negative binomial distribution which is characterized by large statistical fluctuations. These predictions can be tested in Pb+Pb collisions at the LHC, via event-by-event measurements of the di-jet asymmetry.
Evolution of atomic-scale surface structures during ion bombardment: A fractal simulation
International Nuclear Information System (INIS)
Shaheen, M.A.; Ruzic, D.N.
1993-01-01
Surfaces of interest in microelectronics have been shown to exhibit fractal topographies on the atomic scale. A model utilizing self-similar fractals to simulate surface roughness has been added to the ion bombardment code TRIM. The model has successfully predicted experimental sputtering yields of low energy (less then 1000 eV) Ar on Si and D on C using experimentally determined fractal dimensions. Under ion bombardment the fractal surface structures evolve as the atoms in the collision cascade are displaced or sputtered. These atoms have been tracked and the evolution of the surface in steps of one monolayer of flux has been determined. The Ar--Si system has been studied for incidence energies of 100 and 500 eV, and incidence angles of 0 degree, 30 degree, and 60 degree. As expected, normally incident ion bombardment tends to reduce the roughness of the surface, whereas large angle ion bombardment increases the degree of surface roughness. Of particular interest though, the surfaces are still locally self-similar fractals after ion bombardment and a steady state fractal dimension is reached, except at large angles of incidence
Evolution of matter and energy on a cosmic and planetary scale
Taube, M
1985-01-01
My intention in this book is to describe in simple language, using a minimum of mathematics but a maximum of numerical values, the most important developments of science dealing with matter and energy on cosmic and global scales. In the conventional literature all of these findings are distributed among books and journals on physics, astronomy, chemistry, geology, biology, energy, engineering, and the environmental sciences. The main purpose here is to attempt to give a unified description of Nature from the elementary particles to the Universe as a whole. This is used as a basis for analysing the future development of mankind. The future evolution of the Universe, galaxies, stars, and planets gives some hope for the destiny of mankind. The problem of matter and energy flow on the Earth appears soluble even for the distant future. There seems to be no reason why a long period of human development on this planet should not be possible. The book has been prepared based on my lectures at the Warsaw University fr...
The Updated BaSTI Stellar Evolution Models and Isochrones. I. Solar-scaled Calculations
Hidalgo, Sebastian L.; Pietrinferni, Adriano; Cassisi, Santi; Salaris, Maurizio; Mucciarelli, Alessio; Savino, Alessandro; Aparicio, Antonio; Silva Aguirre, Victor; Verma, Kuldeep
2018-04-01
We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction opacities, a few nuclear reaction rates, bolometric corrections, and the treatment of the overshooting efficiency for shrinking convective cores. The new model calculations cover a mass range between 0.1 and 15 M ⊙, 22 initial chemical compositions between [Fe/H] = ‑3.20 and +0.45, with helium to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site.
The long-range correlation and evolution law of centennial-scale temperatures in Northeast China.
Zheng, Xiaohui; Lian, Yi; Wang, Qiguang
2018-01-01
This paper applies the detrended fluctuation analysis (DFA) method to investigate the long-range correlation of monthly mean temperatures from three typical measurement stations at Harbin, Changchun, and Shenyang in Northeast China from 1909 to 2014. The results reveal the memory characteristics of the climate system in this region. By comparing the temperatures from different time periods and investigating the variations of its scaling exponents at the three stations during these different time periods, we found that the monthly mean temperature has long-range correlation, which indicates that the temperature in Northeast China has long-term memory and good predictability. The monthly time series of temperatures over the past 106 years also shows good long-range correlation characteristics. These characteristics are also obviously observed in the annual mean temperature time series. Finally, we separated the centennial-length temperature time series into two time periods. These results reveal that the long-range correlations at the Harbin station over these two time periods have large variations, whereas no obvious variations are observed at the other two stations. This indicates that warming affects the regional climate system's predictability differently at different time periods. The research results can provide a quantitative reference point for regional climate predictability assessment and future climate model evaluation.
A Group Simulation of the Development of the Geologic Time Scale.
Bennington, J. Bret
2000-01-01
Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)
Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.
Heyl, Markus; Vojta, Matthias
2014-10-31
One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.
Time scales in evolutionary game on adaptive networks
Energy Technology Data Exchange (ETDEWEB)
Cong, Rui, E-mail: congrui0000@126.com [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wu, Te; Qiu, Yuan-Ying [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wang, Long [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing (China)
2014-02-01
Most previous studies concerning spatial games have assumed strategy updating occurs with a fixed ratio relative to interactions. We here set up a coevolutionary model to investigate how different ratio affects the evolution of cooperation on adaptive networks. Simulation results demonstrate that cooperation can be significantly enhanced under our rewiring mechanism, especially with slower natural selection. Meanwhile, slower selection induces larger network heterogeneity. Strong selection contracts the parameter area where cooperation thrives. Therefore, cooperation prevails whenever individuals are offered enough chances to adapt to the environment. Robustness of the results has been checked under rewiring cost or varied networks.
Estimating the time evolution of NMR systems via a quantum-speed-limit-like expression
Villamizar, D. V.; Duzzioni, E. I.; Leal, A. C. S.; Auccaise, R.
2018-05-01
Finding the solutions of the equations that describe the dynamics of a given physical system is crucial in order to obtain important information about its evolution. However, by using estimation theory, it is possible to obtain, under certain limitations, some information on its dynamics. The quantum-speed-limit (QSL) theory was originally used to estimate the shortest time in which a Hamiltonian drives an initial state to a final one for a given fidelity. Using the QSL theory in a slightly different way, we are able to estimate the running time of a given quantum process. For that purpose, we impose the saturation of the Anandan-Aharonov bound in a rotating frame of reference where the state of the system travels slower than in the original frame (laboratory frame). Through this procedure it is possible to estimate the actual evolution time in the laboratory frame of reference with good accuracy when compared to previous methods. Our method is tested successfully to predict the time spent in the evolution of nuclear spins 1/2 and 3/2 in NMR systems. We find that the estimated time according to our method is better than previous approaches by up to four orders of magnitude. One disadvantage of our method is that we need to solve a number of transcendental equations, which increases with the system dimension and parameter discretization used to solve such equations numerically.
Phylogenetic rate shifts in feeding time during the evolution of Homo.
Organ, Chris; Nunn, Charles L; Machanda, Zarin; Wrangham, Richard W
2011-08-30
Unique among animals, humans eat a diet rich in cooked and nonthermally processed food. The ancestors of modern humans who invented food processing (including cooking) gained critical advantages in survival and fitness through increased caloric intake. However, the time and manner in which food processing became biologically significant are uncertain. Here, we assess the inferred evolutionary consequences of food processing in the human lineage by applying a Bayesian phylogenetic outlier test to a comparative dataset of feeding time in humans and nonhuman primates. We find that modern humans spend an order of magnitude less time feeding than predicted by phylogeny and body mass (4.7% vs. predicted 48% of daily activity). This result suggests that a substantial evolutionary rate change in feeding time occurred along the human branch after the human-chimpanzee split. Along this same branch, Homo erectus shows a marked reduction in molar size that is followed by a gradual, although erratic, decline in H. sapiens. We show that reduction in molar size in early Homo (H. habilis and H. rudolfensis) is explicable by phylogeny and body size alone. By contrast, the change in molar size to H. erectus, H. neanderthalensis, and H. sapiens cannot be explained by the rate of craniodental and body size evolution. Together, our results indicate that the behaviorally driven adaptations of food processing (reduced feeding time and molar size) originated after the evolution of Homo but before or concurrent with the evolution of H. erectus, which was around 1.9 Mya.
International Nuclear Information System (INIS)
Salar Elahi, A; Ghoranneviss, M
2010-01-01
An attempt is made to investigate the time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak. For this purpose, four magnetic pickup coils were designed, constructed and installed on the outer surface of the IR-T1 and then the Shafranov parameter (asymmetry factor) was obtained from them. On the other hand, also a diamagnetic loop was designed and installed on IR-T1 and poloidal beta was determined from it. Therefore, the internal inductance and effective edge safety factor were measured. Also, the time evolution of the energy confinement time was measured using the diamagnetic loop. Experimental results on IR-T1 show that the maximum energy confinement time (which corresponds to minimum collisions, minimum microinstabilities and minimum transport) is at low values of the effective edge safety factor (2.5 eff (a) i <0.72). The results obtained are in agreement with those obtained with the theoretical approach [1-5].
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
International Nuclear Information System (INIS)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2016-01-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Entangled time in flocking: Multi-time-scale interaction reveals emergence of inherent noise.
Niizato, Takayuki; Murakami, Hisashi
2018-01-01
Collective behaviors that seem highly ordered and result in collective alignment, such as schooling by fish and flocking by birds, arise from seamless shuffling (such as super-diffusion) and bustling inside groups (such as Lévy walks). However, such noisy behavior inside groups appears to preclude the collective behavior: intuitively, we expect that noisy behavior would lead to the group being destabilized and broken into small sub groups, and high alignment seems to preclude shuffling of neighbors. Although statistical modeling approaches with extrinsic noise, such as the maximum entropy approach, have provided some reasonable descriptions, they ignore the cognitive perspective of the individuals. In this paper, we try to explain how the group tendency, that is, high alignment, and highly noisy individual behavior can coexist in a single framework. The key aspect of our approach is multi-time-scale interaction emerging from the existence of an interaction radius that reflects short-term and long-term predictions. This multi-time-scale interaction is a natural extension of the attraction and alignment concept in many flocking models. When we apply this method in a two-dimensional model, various flocking behaviors, such as swarming, milling, and schooling, emerge. The approach also explains the appearance of super-diffusion, the Lévy walk in groups, and local equilibria. At the end of this paper, we discuss future developments, including extending our model to three dimensions.
The continous spectrum and the time evolution of propagating disturbances in toroidal geometry
International Nuclear Information System (INIS)
Almeida Ferreira, A.C. de
1982-01-01
It is shown that the continuous spectrum of shear-Alfven waves and slow magnetoacoustic waves can be obtained from the asymptotic solutions of the ordinary differential equations that describe the ideal low frequency, large toroidal number modes. Because of the periodicities of the equilibrium, a multiple scale averaging method is required to perform the asymptotic analysis. By using a specific equilibrium solution, analytical expressions for the local dispersion relation, that spcifies the location of the resonant layers, are given in the vicinity of the axis. The temporal evolution of stable pertubations on the basis of the global characteristics of the normal eigenmodes is discussed briefly. (Author) [pt
Stoekl, Alexander; Dorfi, Ernst
2014-05-01
In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual
On the Time Evolution of Gamma-Ray Burst Pulses: A Self-Consistent Description.
Ryde; Svensson
2000-01-20
For the first time, the consequences of combining two well-established empirical relations that describe different aspects of the spectral evolution of observed gamma-ray burst (GRB) pulses are explored. These empirical relations are (1) the hardness-intensity correlation and (2) the hardness-photon fluence correlation. From these we find a self-consistent, quantitative, and compact description for the temporal evolution of pulse decay phases within a GRB light curve. In particular, we show that in the case in which the two empirical relations are both valid, the instantaneous photon flux (intensity) must behave as 1&solm0;&parl0;1+t&solm0;tau&parr0;, where tau is a time constant that can be expressed in terms of the parameters of the two empirical relations. The time evolution is fully defined by two initial constants and two parameters. We study a complete sample of 83 bright GRB pulses observed by the Compton Gamma-Ray Observatory and identify a major subgroup of GRB pulses ( approximately 45%) which satisfy the spectral-temporal behavior described above. In particular, the decay phase follows a reciprocal law in time. It is unclear what physics causes such a decay phase.
Realization of a unique time evolution unitary operator in Klein Gordon theory
International Nuclear Information System (INIS)
Balasubramanian, T.S.; Bhatia, S.Kr.
1986-01-01
The scattering theory for the Klein Gordon equation, with time-dependent potential and in a non-static space-time, is considered. Using the Klein Gordon equation formulated in the Hilbert space L 2 (R 3 ) and the Einstein's relativistic equation in the space L 2 (R 3 ,dx) and establishing the equivalence of the vacuum states of their linearized forms in the Hilbert space L 2 (R 3 ) with the help of unique symmetric symplectic operator, the time evolution unitary operator U(t) has been fixed for the Klein Gordon eqution, incorporating either the positive or negative frequencies, in the infinite dimensional Hilbert space L 2 (R 3 ). (author)
Changes in channel morphology over human time scales [Chapter 32
John M. Buffington
2012-01-01
Rivers are exposed to changing environmental conditions over multiple spatial and temporal scales, with the imposed environmental conditions and response potential of the river modulated to varying degrees by human activity and our exploitation of natural resources. Watershed features that control river morphology include topography (valley slope and channel...
Length and time scales of atmospheric moisture recycling
Van der Ent, R.J.; Savenije, H.H.G.
2011-01-01
It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to
Directory of Open Access Journals (Sweden)
Adina J Renz
Full Text Available Cartilaginous fishes, divided into Holocephali (chimaeras and Elasmoblanchii (sharks, rays and skates, occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon.
International Nuclear Information System (INIS)
Cook, N.G.W.; Hood, M.
1978-12-01
Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground
Time evolution of a Gaussian class of quasi-distribution functions under quadratic Hamiltonian.
Ginzburg, D; Mann, A
2014-03-10
A Lie algebraic method for propagation of the Wigner quasi-distribution function (QDF) under quadratic Hamiltonian was presented by Zoubi and Ben-Aryeh. We show that the same method can be used in order to propagate a rather general class of QDFs, which we call the "Gaussian class." This class contains as special cases the well-known Wigner, Husimi, Glauber, and Kirkwood-Rihaczek QDFs. We present some examples of the calculation of the time evolution of those functions.
The population and decay evolution of a qubit under the time-convolutionless master equation
International Nuclear Information System (INIS)
Huang Jiang; Fang Mao-Fa; Liu Xiang
2012-01-01
We consider the population and decay of a qubit under the electromagnetic environment. Employing the time-convolutionless master equation, we investigate the Markovian and non-Markovian behaviour of the corresponding perturbation expansion. The Jaynes-Cummings model on resonance is investigated. Some figures clearly show the different evolution behaviours. The reasons are interpreted in the paper. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Czech Academy of Sciences Publication Activity Database
Fiala, Zdeněk
2015-01-01
Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1
Time evolution of the eddy viscosity in two-dimensional navier-stokes flow
Chaves; Gama
2000-02-01
The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy viscosity to positive values before relaxation due to viscous term occurs.
Wu, Ya; Wang, Yanxin
2014-05-01
A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.
Baroclinic wave configurations evolution at European scale in the period 1948-2013
Carbunaru, Daniel; Burcea, Sorin; Carbunaru, Felicia
2016-04-01
The main aim of the study was to investigate the dynamic characteristics of synoptic configurations at European scale and especially in south-eastern part of Europe for the period 1948-2013. Using the empirical orthogonal functions analysis, simultaneously applied to daily average geopotential field at different pressure levels (200 hPa, 300 hPa, 500 hPa and 850 hPa) during warm (April-September) and cold (October-March) seasons, on a synoptic spatial domain centered on Europe (-27.5o lon V to 45o lon E and 32.5o lat N to 72.5o lat N), the main mode of oscillation characteristic to vertical shift of mean baroclinic waves was obtained. The analysis independently applied on 66 years showed that the first eigenvectors in warms periods describe about 60% of the data and in cold season 40% of the data for each year. In comparison secondary eigenvectors describe up to 20% and 10% of the data. Thus, the analysis was focused on the complex evolution of the first eigenvector in 66 years, during the summer period. On average, this eigenvector describes a small vertical phase shift in the west part of the domain and a large one in the eastern part. Because the spatial extent of the considered synoptic domain incorporates in the west part AMO (Atlantic Multidecadal Oscillation) and NAO (North Atlantic Oscillation) oscillations, and in the north part being sensitive to AO (Arctic Oscillation) oscillation, these three oscillations were considered as modulating dynamic factors at hemispherical scale. The preliminary results show that in the summer seasons AMO and NAO oscillations modulated vertical phase shift of baroclinic wave in the west of the area (Northwestern Europe), and the relationship between AO and NAO oscillations modulated vertical phase shift in the southeast area (Southeast Europe). Second, it was shown the way in which this vertical phase shift modulates the overall behavior of cyclonic activity, particularly in Southeastern Europe. This work has been developed
Normal modes and time evolution of a holographic superconductor after a quantum quench
International Nuclear Information System (INIS)
Gao, Xin; García-García, Antonio M.; Zeng, Hua Bi; Zhang, Hai-Qing
2014-01-01
We employ holographic techniques to investigate the dynamics of the order parameter of a strongly coupled superconductor after a perturbation that drives the system out of equilibrium. The gravity dual that we employ is the AdS_5 Soliton background at zero temperature. We first analyze the normal modes associated to the superconducting order parameter which are purely real since the background has no horizon. We then study the full time evolution of the order parameter after a quench. For sufficiently a weak and slow perturbation we show that the order parameter undergoes simple undamped oscillations in time with a frequency that agrees with the lowest normal model computed previously. This is expected as the soliton background has no horizon and therefore, at least in the probe and large N limits considered, the system will never return to equilibrium. For stronger and more abrupt perturbations higher normal modes are excited and the pattern of oscillations becomes increasingly intricate. We identify a range of parameters for which the time evolution of the order parameter become quasi chaotic. The details of the chaotic evolution depend on the type of perturbation used. Therefore it is plausible to expect that it is possible to engineer a perturbation that leads to the almost complete destruction of the oscillating pattern and consequently to quasi equilibration induced by superposition of modes with different frequencies
Global terrestrial biogeochemistry: Perturbations, interactions, and time scales
Energy Technology Data Exchange (ETDEWEB)
Braswell, B.H. Jr.
1996-12-01
Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.
Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori
2018-05-01
We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.
Energy Technology Data Exchange (ETDEWEB)
Priolisi, Ornella, E-mail: ornella.priolisi@depretto.gov.it [ITIS “De Pretto” (Italy); Fabrizi, Alberto, E-mail: fabrizi@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Deon, Giovanna, E-mail: giovanna.deon@depretto-vi.it [ITIS “De Pretto” (Italy); Bonollo, Franco, E-mail: bonollo@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Cattini, Stefano, E-mail: stefano.cattini@unimore.it [University of Modena and Reggio Emilia, Department of Engineering Enzo Ferrari (Italy)
2016-01-15
In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.
Dynamics at Intermediate Time Scales and Management of Ecological Populations
2017-05-10
thinking about the importance of transients is to recognize the importance of serial autocorrelation in time of forcing terms over realistic ecological time...rich areas helps produce divergent home range responses bet - ween individuals from difference age classes. This model has broad applications for
Grasping Deep Time with Scaled Space in Personal Environs
DEFF Research Database (Denmark)
Jacobsen, B. H.
2014-01-01
of modern man, the age of dinosaurs ended at 650 m and the Big Bang is 137 km away. This choice obviously makes mental calculations easy, and all of time fits inside a geographical area of moderate size and so helps the citizen gain ownership to this learning tool and hence to time. The idea was tested...
Lie symmetry analysis and conservation laws for the time fractional fourth-order evolution equation
Directory of Open Access Journals (Sweden)
Wang Li
2017-06-01
Full Text Available In this paper, we study Lie symmetry analysis and conservation laws for the time fractional nonlinear fourth-order evolution equation. Using the method of Lie point symmetry, we provide the associated vector fields, and derive the similarity reductions of the equation, respectively. The method can be applied wisely and efficiently to get the reduced fractional ordinary differential equations based on the similarity reductions. Finally, by using the nonlinear self-adjointness method and Riemann-Liouville time-fractional derivative operator as well as Euler-Lagrange operator, the conservation laws of the equation are obtained.
Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation
Energy Technology Data Exchange (ETDEWEB)
Lopez-Aleman, Ramon [Physical Sciences Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931 (Puerto Rico); Khanna, Gaurav [Natural Science Division, Long Island University, Southampton, NY 11968 (United States); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States)
2003-07-21
We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction.
Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation
International Nuclear Information System (INIS)
Lopez-Aleman, Ramon; Khanna, Gaurav; Pullin, Jorge
2003-01-01
We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction
Evolution of matter and energy on a cosmic and planetary scale
International Nuclear Information System (INIS)
Taube, M.
1985-01-01
This book covers the following topics: matter and energy; the interplay of elementary particles and elementary forces; the universe; how is it observed here and now; its past and possible future; the origin and nuclear evolution of matter; chemical evolution and the evolution of life; the cosmic phenomena; the eternal cycle of matter on the earth; the flow of energy on the earth; the biosphere; the coupling of matter and the flow of free energy; is the future development of mankind on this planet possible, and the distant future of mankind: terrestrial or cosmic
TSURTSUMIA, Mamuka
2011-01-01
Byzantine technology was part of the military technology that existed in vast areas of Eurasia; hence study of the armament of its neighbours is important.The purpose of the present paper is to add new data about Byzantium’s Caucasian neighbour (namely, Georgia). Besides that, it also includes certain views about the stages of the evolution and provenance of splint (scale and lamellar) armour. This paper also attempts to clarify the difference between banded and linear suits of lamellar armou...
Identification of time-varying nonlinear systems using differential evolution algorithm
DEFF Research Database (Denmark)
Perisic, Nevena; Green, Peter L; Worden, Keith
2013-01-01
(DE) algorithm for the identification of time-varying systems. DE is an evolutionary optimisation method developed to perform direct search in a continuous space without requiring any derivative estimation. DE is modified so that the objective function changes with time to account for the continuing......, thus identification of time-varying systems with nonlinearities can be a very challenging task. In order to avoid conventional least squares and gradient identification methods which require uni-modal and double differentiable objective functions, this work proposes a modified differential evolution...... inclusion of new data within an error metric. This paper presents results of identification of a time-varying SDOF system with Coulomb friction using simulated noise-free and noisy data for the case of time-varying friction coefficient, stiffness and damping. The obtained results are promising and the focus...
Computing the transport time scales of a stratified lake on the basis of Tonolli’s model
Directory of Open Access Journals (Sweden)
Marco Pilotti
2014-05-01
Full Text Available This paper deals with a simple model to evaluate the transport time scales in thermally stratified lakes that do not necessarily completely mix on a regular annual basis. The model is based on the formalization of an idea originally proposed in Italian by Tonolli in 1964, who presented a mass balance of the water initially stored within a lake, taking into account the known seasonal evolution of its thermal structure. The numerical solution of this mass balance provides an approximation to the water age distribution for the conceptualised lake, from which an upper bound to the typical time scales widely used in limnology can be obtained. After discussing the original test case considered by Tonolli, we apply the model to Lake Iseo, a deep lake located in the North of Italy, presenting the results obtained on the basis of a 30 year series of data.
Climate scenarios for Olkiluoto on a time-scale of 120,000 years
International Nuclear Information System (INIS)
Pimenoff, N.; Venaelaeinen, A.; Jaervinen, H.
2011-12-01
Posiva Oy is planning to dispose of spent nuclear fuel in a repository, to be constructed at a depth of 400 m in the crystalline bedrock at Olkiluoto, Finland. Planning the storage requires careful consideration of many aspects, including an assessment of long-term repository safety. For estimating possible climate states at Olkiluoto on a time-scale of 120,000 years, we analyze climate simulations of an Earth System Model of Intermediate Complexity (CLIMBER-2) coupled with an ice sheet model (SICOPOLIS). The simulations into the future clearly show that the onset of the next glaciation is strongly dependent on the Earth's orbital variations and the atmospheric CO 2 concentration. It is evident that due to global warming, the climate of the next centuries will be warmer and wetter than at present. Most likely, due to global warming and low variations in the Earth's orbit around the sun, the present interglacial will last for at least the next 30,000 years. Further, the future simulations showed that the insolation minima on the Northern Hemisphere 50,000-60,000 and 90,000-100,000 years after the present hold a potential for the onset of the next glaciation. Hence, on a time-scale of 120,000 years, one must take into account climate periods lasting several thousand years having the following features: an interglacial climate, a periglacial climate, a climate with an ice sheet margin near Olkiluoto, a glacial climate with an ice sheet covering Olkiluoto, and a climate with Olkiluoto being depressed below sea level after glaciation due to isostatic depression. Due to the uncertainties related to the evolution of the future climate, it is recommended the simulations into the far future to be used only qualitatively. Quantitative information about glacial climate is achieved from the reconstructions and simulations of the past climate. (orig.)
Climate scenarios for Olkiluoto on a time-scale of 100,000 years
International Nuclear Information System (INIS)
Pimenoff, N.; Venaelaeinen, A.; Jaervinen, H.
2011-01-01
Posiva Oy is planning to dispose of spent nuclear fuel in a repository, to be constructed at a depth of 400 m in the crystalline bedrock at Olkiluoto, Finland. Planning the storage requires careful consideration of many aspects, including an assessment of long-term repository safety. For estimating possible climate states at Olkiluoto on a time-scale of 100,000 years, we analyze climate simulations of an Earth System Model of Intermediate Complexity (CLIMBER-2) coupled with an ice sheet model (SICOPOLIS). The simulations into the future clearly show that the onset of the next glaciation is strongly dependent on the Earth's orbital variations and the atmospheric CO 2 concentration. It is evident that due to global warming, the climate of the next centuries will be warmer and wetter than at present. Most likely, due to global warming and low variations in the Earth's orbit around the sun, the present interglacial will last for at least the next 30,000 years. Further, the future simulations showed that the insolation minima on the Northern Hemisphere 50,000-60,000 and 90,000-100,000 years after the present hold a potential for the onset of the next glaciation. Hence, on a time-scale of 100,000 years, one must take into account climate periods lasting several thousand years having the following features: an interglacial climate, a periglacial climate, a climate with an ice sheet margin near Olkiluoto, a glacial climate with an ice sheet covering Olkiluoto, and a climate with Olkiluoto being depressed below sea level after glaciation due to isostatic depression. Due to the uncertainties related to the evolution of the future climate, it is recommended the simulations into the far future to be used only qualitatively. Quantitative information about glacial climate is achieved from the reconstructions and simulations of the past climate. (orig.)
Climate scenarios for Olkiluoto on a time-scale of 120,000 years
Energy Technology Data Exchange (ETDEWEB)
Pimenoff, N.; Venaelaeinen, A.; Jaervinen, H. [Finnish Meteorological Institute, Helsinki (Finland)
2011-12-15
Posiva Oy is planning to dispose of spent nuclear fuel in a repository, to be constructed at a depth of 400 m in the crystalline bedrock at Olkiluoto, Finland. Planning the storage requires careful consideration of many aspects, including an assessment of long-term repository safety. For estimating possible climate states at Olkiluoto on a time-scale of 120,000 years, we analyze climate simulations of an Earth System Model of Intermediate Complexity (CLIMBER-2) coupled with an ice sheet model (SICOPOLIS). The simulations into the future clearly show that the onset of the next glaciation is strongly dependent on the Earth's orbital variations and the atmospheric CO{sub 2} concentration. It is evident that due to global warming, the climate of the next centuries will be warmer and wetter than at present. Most likely, due to global warming and low variations in the Earth's orbit around the sun, the present interglacial will last for at least the next 30,000 years. Further, the future simulations showed that the insolation minima on the Northern Hemisphere 50,000-60,000 and 90,000-100,000 years after the present hold a potential for the onset of the next glaciation. Hence, on a time-scale of 120,000 years, one must take into account climate periods lasting several thousand years having the following features: an interglacial climate, a periglacial climate, a climate with an ice sheet margin near Olkiluoto, a glacial climate with an ice sheet covering Olkiluoto, and a climate with Olkiluoto being depressed below sea level after glaciation due to isostatic depression. Due to the uncertainties related to the evolution of the future climate, it is recommended the simulations into the far future to be used only qualitatively. Quantitative information about glacial climate is achieved from the reconstructions and simulations of the past climate. (orig.)
Children of time: the extended synthesis and major metaphors of evolution
Directory of Open Access Journals (Sweden)
Daniel R. Brooks
2012-12-01
Full Text Available It is time for an expansion and enrichment of evolutionary theory. The "back to the future" proposal contained herein is based on three postulates: 1 Neo-Darwinism is too impoverished for this task; 2 its predecessor, Darwinism, contained the necessary breadth of vision and metaphor to be the basis for an inclusive and unifying theory of biology; and 3 the necessary framework for this new stage in the evolution of evolutionary theory is largely in place. We make our case through the use of a number of metaphorical dualisms designed to help focus discussions toward a more cooperative and productive approach to the study of living systems. Along the way, we suggest a number of self-induced paradoxes in neo-Darwinian accounts of evolution that are resolved by our perspective.
Novel scenarios of early animal evolution--is it time to rewrite textbooks?
Dohrmann, Martin; Wörheide, Gert
2013-09-01
Understanding how important phenotypic, developmental, and genomic features of animals originated and evolved is essential for many fields of biological research, but such understanding depends on robust hypotheses about the phylogenetic interrelationships of the higher taxa to which the studied species belong. Molecular approaches to phylogenetics have proven able to revolutionize our knowledge of organismal evolution. However, with respect to the deepest splits in the metazoan Tree of Life-the relationships between Bilateria and the four non-bilaterian phyla (Porifera, Placozoa, Ctenophora, and Cnidaria)-no consensus has been reached yet, since a number of different, often contradictory, hypotheses with sometimes spectacular implications have been proposed in recent years. Here, we review the recent literature on the topic and contrast it with more classical perceptions based on analyses of morphological characters. We conclude that the time is not yet ripe to rewrite zoological textbooks and advocate a conservative approach when it comes to developing scenarios of the early evolution of animals.
Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin
2015-01-01
Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.
Gu, Xun; Wang, Yufeng; Gu, Jianying
2002-06-01
The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.
Interplay between multiple length and time scales in complex ...
Indian Academy of Sciences (India)
Administrator
Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, ... by processes operating on a multiplicity of length .... real time. The design and interpretation of femto- second experiments has required considerable ...
New insights about enzyme evolution from large scale studies of sequence and structure relationships
Babbitt, Patricia; Brown, SD; Babbitt, PC
2014-01-01
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfami
Band, Larry
2010-05-01
Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a
Imura, Tomoya; Takamura, Masahiro; Okazaki, Yoshihiro; Tokunaga, Satoko
2016-10-01
We developed a scale to measure time management and assessed its reliability and validity. We then used this scale to examine the impact of time management on psychological stress response. In Study 1-1, we developed the scale and assessed its internal consistency and criterion-related validity. Findings from a factor analysis revealed three elements of time management, “time estimation,” “time utilization,” and “taking each moment as it comes.” In Study 1-2, we assessed the scale’s test-retest reliability. In Study 1-3, we assessed the validity of the constructed scale. The results indicate that the time management scale has good reliability and validity. In Study 2, we performed a covariance structural analysis to verify our model that hypothesized that time management influences perceived control of time and psychological stress response, and perceived control of time influences psychological stress response. The results showed that time estimation increases the perceived control of time, which in turn decreases stress response. However, we also found that taking each moment as it comes reduces perceived control of time, which in turn increases stress response.
Finite-Time Stability of Large-Scale Systems with Interval Time-Varying Delay in Interconnection
Directory of Open Access Journals (Sweden)
T. La-inchua
2017-01-01
Full Text Available We investigate finite-time stability of a class of nonlinear large-scale systems with interval time-varying delays in interconnection. Time-delay functions are continuous but not necessarily differentiable. Based on Lyapunov stability theory and new integral bounding technique, finite-time stability of large-scale systems with interval time-varying delays in interconnection is derived. The finite-time stability criteria are delays-dependent and are given in terms of linear matrix inequalities which can be solved by various available algorithms. Numerical examples are given to illustrate effectiveness of the proposed method.
Space-time evolution of Gaussian wave packets through superlattices containing left-handed layers
Energy Technology Data Exchange (ETDEWEB)
Pereyra, P; Romero-Serrano, M [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico); Robledo-Martinez, A, E-mail: ppereyra@correo.azc.uam.m, E-mail: a.robledo@mailaps.or [Departamento de EnergIa, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico)
2009-05-01
We study the space-time evolution of Gaussian electromagnetic wave packets moving through (L/R){sup n} superlattices, containing alternating layers of left and right-handed materials. We show that the time spent by the wave packet moving through arbitrary (L/R){sup n} superlattices are well described by the phase time. We show that in the particular case where the thicknesses d{sub L,R} and indices n{sub l,r} of the layers satisfy the condition d{sub L}|n{sub L}| = d{sub R}n{sub R}, the usual band structure becomes a sequence of isolated and equidistant peaks with negative phase times.
Perception of short time scale intervals in a hypnotic virtuoso
Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari
2012-01-01
Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration
Dynamic modelling of heavy metals - time scales and target loads
Posch, M.; Vries, de W.
2009-01-01
Over the past decade steady-state methods have been developed to assess critical loads of metals avoiding long-term risks in view of food quality and eco-toxicological effects on organisms in soils and surface waters. However, dynamic models are needed to estimate the times involved in attaining a
Time Scales in the JPL and CfA Ephemerides
Standish, E. M.
1998-01-01
Over the past decades, the IAU has repeatedly attempted to correct its definition of the basic fundamental argument used in the emphemerides. Finally, they have defined a time system which is physically possible, according to the accepted standard theory of gravitation.
Coherent spectroscopies on ultrashort time and length scales
Directory of Open Access Journals (Sweden)
Schneider C.
2013-03-01
Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.
Does expressive timing in music performance scale proportionally with tempo?
Desain, P.; Honing, H.
1994-01-01
Evidence is presented that expressive timing in music is not relationally invariant with global tempo. Our results stem from an analysis of repeated performances of Beethoven's variations on a Paisiello theme. Recordings were made of two pianists playing the pieces at three tempi. In contrast with
Wohlmuth, Johannes; Andersen, Jørgen Vitting
2006-05-01
We use agent-based models to study the competition among investors who use trading strategies with different amount of information and with different time scales. We find that mixing agents that trade on the same time scale but with different amount of information has a stabilizing impact on the large and extreme fluctuations of the market. Traders with the most information are found to be more likely to arbitrage traders who use less information in the decision making. On the other hand, introducing investors who act on two different time scales has a destabilizing effect on the large and extreme price movements, increasing the volatility of the market. Closeness in time scale used in the decision making is found to facilitate the creation of local trends. The larger the overlap in commonly shared information the more the traders in a mixed system with different time scales are found to profit from the presence of traders acting at another time scale than themselves.
Structure and dating errors in the geologic time scale and periodicity in mass extinctions
Stothers, Richard B.
1989-01-01
Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.
Predictions of barrier island berm evolution in a time-varying storm climatology
Plant, Nathaniel G.; Flocks, James; Stockdon, Hilary F.; Long, Joseph W.; Guy, Kristy K.; Thompson, David M.; Cormier, Jamie M.; Smith, Christopher G.; Miselis, Jennifer L.; Dalyander, P. Soupy
2014-01-01
Low-lying barrier islands are ubiquitous features of the world's coastlines, and the processes responsible for their formation, maintenance, and destruction are related to the evolution of smaller, superimposed features including sand dunes, beach berms, and sandbars. The barrier island and its superimposed features interact with oceanographic forces (e.g., overwash) and exchange sediment with each other and other parts of the barrier island system. These interactions are modulated by changes in storminess. An opportunity to study these interactions resulted from the placement and subsequent evolution of a 2 m high sand berm constructed along the northern Chandeleur Islands, LA. We show that observed berm length evolution is well predicted by a model that was fit to the observations by estimating two parameters describing the rate of berm length change. The model evaluates the probability and duration of berm overwash to predict episodic berm erosion. A constant berm length change rate is also predicted that persists even when there is no overwash. The analysis is extended to a 16 year time series that includes both intraannual and interannual variability of overwash events. This analysis predicts that as many as 10 or as few as 1 day of overwash conditions would be expected each year. And an increase in berm elevation from 2 m to 3.5 m above mean sea level would reduce the expected frequency of overwash events from 4 to just 0.5 event-days per year. This approach can be applied to understanding barrier island and berm evolution at other locations using past and future storm climatologies.
Qualitative aspects of Volterra integro-dynamic system on time scales
Directory of Open Access Journals (Sweden)
Vasile Lupulescu
2013-01-01
Full Text Available This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize at time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for discrete case are obtained.
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.
Buhusi, Catalin V; Oprisan, Sorinel A
2013-05-01
In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. Copyright © 2013 Elsevier B.V. All rights reserved.
Zheng, Zhen-Yu; Li, Peng
2018-04-01
We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.
Directory of Open Access Journals (Sweden)
Lindenfors, Patrik
2015-12-01
Full Text Available We have carried out an empirical study of long-term change in European cookery to test if the development of this cultural phenomenon matches a general hypothesis about cultural evolution: that human cultural change is characterized by cumulativity. Data from seven cookery books, evenly spaced across time, the oldest one written in medieval times (~1200 and the most recent one dating from late modernity (1999, were compared. Ten recipes from each of the categories “poultry recipes”, “fish recipes” and “meat recipes” were arbitrarily selected from each cookery book by selecting the first ten recipes in each category, and the numbers (per recipe of steps, separate partial processes, methods, ingredients, semi-manufactured ingredients, compound semi-manufactured ingredients (defined as semi-manufactured ingredients containing no less than two raw products, and self-made semi-manufactured ingredients were counted. Regression analyses were used to quantitatively compare the cookery from different ages. We found a significant increase in the numbers (per recipe of steps, separate partial processes, methods, ingredients and semi-manufactured ingredients. These significant increases enabled us to identify the development of cookery as an example of the general trend of cumulativity in long-term cultural evolution. The number of self-made semi-manufactured ingredients per recipe, however, may have decreased somewhat over time, something which may reflect the cumulative characteristics of cultural evolution at the level of society, considering the accumulation of knowledge that is required to industrialize food production.
A Study on Time-Scales Ratio and Turbulent Prandtl Number in Ducts of Industrial Applications
DEFF Research Database (Denmark)
Rokni, Masoud
2006-01-01
is solved using a two-equation heat ﬂux model. The computed results compare satisfactory with the available experimental data. The time-scale ratio R is deﬁned as the ratio between the dynamic time-scale (k/ε) and the scalar time-scale(0.5θθ/εθ). Based on existing DNS data and calculations in this work...... of heat exchangers for various applications area....
Time scales of solar microwave bursts and scenarios of flare enregy release
International Nuclear Information System (INIS)
Krueger, A.; Kliem, B.; Hildebrandt, J.
1989-01-01
Based on earlier observational evidence that characteristic time scales of different solar microwave burst types are distributed over a wide range (10 -3 -10 4 sec), different mechanisms of energy release have been considered to account for the impulsive flux increase (time scale 3 sec). Among different competing processes the coalescence instability is found to be a promising candidate to combine sufficiently short time scales with substantial energy release. (author). 20 refs.; 1 fig
Time evolution of the mass exchange in grazing heavy-ion collisions
International Nuclear Information System (INIS)
Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.
1989-10-01
On the basis of a macroscopical approach to the description of two interpenetrating quantum objects, the equations of two-fluid hydrodynamics for the cohesion stage of deeply inelastic heavy-ion collisions are formulated. The elasticity of the ions is analyzed in peripheral mass exchange reactions at intermediate energies. The system of closed equations of Newtonian mechanics, which simultaneously describes the motion of the ions along classical trajectories as well as the mass time evolution during the interaction period are derived and solved. The role of mass exchange in the friction force is discussed. (author) 22 refs.; 2 figs
Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.
1993-01-01
Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.
Time evolution and decay of an excited atom in a weak electric field
International Nuclear Information System (INIS)
Wang, J.B.
1996-01-01
A Mathematica notebook for describing the time evolution and decay of the hydrogen n=2 states in the presence of a weak external electric field is presented. The work involves (1) solving a set of differential equations coupled by the Hamiltonian of the external electric field and (2) deriving a set of formulas for a complete description of the polarization state of the emitted photons. It is demonstrated how problems with such complexity can be treated with ease and in an error-free manner by using symbolic software such as Mathematica. copyright 1996 American Institute of Physics
Time evolution analysis of the electron distribution in Thomson/Compton back-scattering
International Nuclear Information System (INIS)
Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.
2013-01-01
We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed
A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback
Gwaltney, David A.; Dutton, Kenneth
2005-01-01
The design of an Evolvable Machine VHDL Core is presented, representing a discrete-time processing structure capable of supporting control system applications. This VHDL Core is implemented in an FPGA and is interfaced with an evolutionary algorithm implemented in firmware on a Digital Signal Processor (DSP) to create an evolvable system platform. The salient features of this architecture are presented. The capability to implement IIR filter structures is presented along with the results of the intrinsic evolution of a filter. The robustness of the evolved filter design is tested and its unique characteristics are described.
Schedule evolution during the life-time of the LHC project
Foraz, K; Gaillard, H; Hauviller, Claude; Weisz, S
2007-01-01
The Large Hadron Collider Project was approved by the CERN Council in December 1994. The CERN management opted from the beginning of the project for a very aggressive installation planning based on a just-in-time sequencing of all activities. This paper aims to draw how different factors (technical development, procurement, logistics and organization) have impacted on the schedule evolution through the lifetime of the project. It describes the cause effect analysis of the major rescheduling that occurred during the installation of the LHC and presents some general conclusions potentially applicable in other projects.
Evolution of perturbed dynamical systems: analytical computation with time independent accuracy
Energy Technology Data Exchange (ETDEWEB)
Gurzadyan, A.V. [Russian-Armenian (Slavonic) University, Department of Mathematics and Mathematical Modelling, Yerevan (Armenia); Kocharyan, A.A. [Monash University, School of Physics and Astronomy, Clayton (Australia)
2016-12-15
An analytical method for investigation of the evolution of dynamical systems with independent on time accuracy is developed for perturbed Hamiltonian systems. The error-free estimation using of computer algebra enables the application of the method to complex multi-dimensional Hamiltonian and dissipative systems. It also opens principal opportunities for the qualitative study of chaotic trajectories. The performance of the method is demonstrated on perturbed two-oscillator systems. It can be applied to various non-linear physical and astrophysical systems, e.g. to long-term planetary dynamics. (orig.)
PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions
Tacconi, L. J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N. M.; Lilly, S.; Lutz, D.; Wuyts, S.; Accurso, G.; Boissier, J.; Boone, F.; Bouché, N.; Bournaud, F.; Burkert, A.; Carollo, M.; Cooper, M.; Cox, P.; Feruglio, C.; Freundlich, J.; Herrera-Camus, R.; Juneau, S.; Lippa, M.; Naab, T.; Renzini, A.; Salome, P.; Sternberg, A.; Tadaki, K.; Übler, H.; Walter, F.; Weiner, B.; Weiss, A.
2018-02-01
This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M */M ⊙) = 9.0–11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10‑1.3 to 102.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z)‑0.6 × (δMS)‑0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (1+z{)}2.5× {(δ {MS})}0.52× {({M}* )}-0.36, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z. Based on observations of an IRAM Legacy Program carried out with the NOEMA, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain).
Long time scale simulation of a grain boundary in copper
DEFF Research Database (Denmark)
Pedersen, A.; Henkelman, G.; Schiøtz, Jakob
2009-01-01
A general, twisted and tilted, grain boundary in copper has been simulated using the adaptive kinetic Monte Carlo method to study the atomistic structure of the non-crystalline region and the mechanism of annealing events that occur at low temperature. The simulated time interval spanned 67 mu s...... was also observed. In the final low-energy configurations, the thickness of the region separating the crystalline grains corresponds to just one atomic layer, in good agreement with reported experimental observations. The simulated system consists of 1307 atoms and atomic interactions were described using...
Zhong, Bojian; Fong, Richard; Collins, Lesley J; McLenachan, Patricia A; Penny, David
2014-04-30
We report the chloroplast genomes of a tree fern (Dicksonia squarrosa) and a "fern ally" (Tmesipteris elongata), and show that the phylogeny of early land plants is basically as expected, and the estimates of divergence time are largely unaffected after removing the fastest evolving sites. The tree fern shows the major reduction in the rate of evolution, and there has been a major slowdown in the rate of mutation in both families of tree ferns. We suggest that this is related to a generation time effect; if there is a long time period between generations, then this is probably incompatible with a high mutation rate because otherwise nearly every propagule would probably have several lethal mutations. This effect will be especially strong in organisms that have large numbers of cell divisions between generations. This shows the necessity of going beyond phylogeny and integrating its study with other properties of organisms. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Imitation, genetic lineages, and time influenced the morphological evolution of the violin.
Chitwood, Daniel H
2014-01-01
Violin design has been in flux since the production of the first instruments in 16th century Italy. Numerous innovations have improved the acoustical properties and playability of violins. Yet, other attributes of the violin affect its performance less, and with fewer constraints, are potentially more sensitive to historical vagaries unrelated to quality. Although the coarse shape of violins is integral to their design, details of the body outline can vary without significantly compromising sound quality. What can violin shapes tell us about their makers and history, including the degree that luthiers have influenced each other and the evolution of complex morphologies over time? Here, I provide an analysis of morphological evolution in the violin family, sampling the body shapes of over 9,000 instruments over 400 years of history. Specific shape attributes, which discriminate instruments produced by different luthiers, strongly correlate with historical time. Linear discriminant analysis reveals luthiers who likely copied the outlines of their instruments from others, which historical accounts corroborate. Clustering of averaged violin shapes places luthiers into four major groups, demonstrating a handful of discrete shapes predominate in most instruments. Violin shapes originating from multi-generational luthier families tend to cluster together, and familial origin is a significant explanatory factor of violin shape. Together, the analysis of four centuries of violin shapes demonstrates not only the influence of history and time leading to the modern violin, but widespread imitation and the transmission of design by human relatedness.
Imitation, genetic lineages, and time influenced the morphological evolution of the violin.
Directory of Open Access Journals (Sweden)
Daniel H Chitwood
Full Text Available Violin design has been in flux since the production of the first instruments in 16th century Italy. Numerous innovations have improved the acoustical properties and playability of violins. Yet, other attributes of the violin affect its performance less, and with fewer constraints, are potentially more sensitive to historical vagaries unrelated to quality. Although the coarse shape of violins is integral to their design, details of the body outline can vary without significantly compromising sound quality. What can violin shapes tell us about their makers and history, including the degree that luthiers have influenced each other and the evolution of complex morphologies over time? Here, I provide an analysis of morphological evolution in the violin family, sampling the body shapes of over 9,000 instruments over 400 years of history. Specific shape attributes, which discriminate instruments produced by different luthiers, strongly correlate with historical time. Linear discriminant analysis reveals luthiers who likely copied the outlines of their instruments from others, which historical accounts corroborate. Clustering of averaged violin shapes places luthiers into four major groups, demonstrating a handful of discrete shapes predominate in most instruments. Violin shapes originating from multi-generational luthier families tend to cluster together, and familial origin is a significant explanatory factor of violin shape. Together, the analysis of four centuries of violin shapes demonstrates not only the influence of history and time leading to the modern violin, but widespread imitation and the transmission of design by human relatedness.
Global Precipitation Analyses at Time Scales of Monthly to 3-Hourly
Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)
2002-01-01
Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM (Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the Goodyear data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the Goodyear period. Monthly anomalies of precipitation are related to ENRON variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 degree latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based Based analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous OR observations and merges the various calibrated observations into a final, Baehr resolution map. This TRMM standard product will be available for the entire TRMM period (January Represent). A real-time version of this merged product is being produced and is available at 0.25 degree latitude-longitude resolution over the latitude range from 50 deg. N -50 deg. S. Examples will be shown, including its use in monitoring flood conditions.
Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.
2017-09-01
The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.
Comment on ‘Overcoming misconceptions in quantum mechanics with the time evolution operator’
International Nuclear Information System (INIS)
Toyama, F M; Nogami, Y
2013-01-01
In their paper ‘Overcoming misconceptions in quantum mechanics with the time evolution operator’, García Quijas and Arévalo Aguilar (2007 Eur. J. Phys. 28 147) examined the time-dependent wave function of a particle in the one-dimensional harmonic oscillator potential using two different methods. The two wave functions that the authors obtained through the methods have different analytical expressions. The authors showed numerically that the two wave functions lead to the same probability density. When the real parts of the wave functions are compared, however, they are different in their details. That was puzzling because both wave functions are supposed to be solutions of the same time-dependent Schrödinger equation with the same initial condition. We point out that the two wave functions are actually identical. We show this analytically. (letters and comments)
Time evolution of the vacuum - pair production in high intensity laser fields
Energy Technology Data Exchange (ETDEWEB)
Woellert, Anton; Bauke, Heiko; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)
2013-07-01
Interaction between the vacuum and high intensity lasers will lead to new possibilities in high-field physics. We present numerical ab initio studies for time evolution of the vacuum state into multiple pair states. The high intensity laser field of two counter-propagating beams is treated classically and in the non-perturbative regime (E{sub 0}/ω ∝ 1). In this regime, the time needed by an electron to become relativistic in presence of a static field E{sub 0} is of same order as the period of the laser field. Pair state probabilities as well as correlations are investigated in real-time depending on polarization and field strength.
Real time evolution at finite temperatures with operator space matrix product states
International Nuclear Information System (INIS)
Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine
2014-01-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)
Real time evolution at finite temperatures with operator space matrix product states
Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias
2014-07-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.
Brown, Shoshana D.; Babbitt, Patricia C.
2014-01-01
Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. PMID:25210038
Brown, Shoshana D; Babbitt, Patricia C
2014-10-31
Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Directory of Open Access Journals (Sweden)
Yongkun Li
2009-01-01
Full Text Available Based on the theory of calculus on time scales, the homeomorphism theory, Lyapunov functional method, and some analysis techniques, sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of the equilibrium point of Cohen-Grossberg bidirectional associative memory (BAM neural networks with distributed delays and impulses on time scales. This is the first time applying the time-scale calculus theory to unify the discrete-time and continuous-time Cohen-Grossberg BAM neural network with impulses under the same framework.
Time scales and the problem of radioactive waste
International Nuclear Information System (INIS)
Goble, R.L.
1984-01-01
The author argues that decisions about future nuclear development can be made essentially independent of waste management considerations for the next 20 years. His arguments are based on five propositions: 1 Risks and costs of storing spent fuel or high-level waste and transuranics are lower than other directly comparable risks and costs of operating a reactor. 2 Storage of mill tailings is the most serious long-term waste problem; it is not serious enough to rule out the use of nuclear power. 3 There are compelling reasons for beginning to implement a waste management program now. 4 It is important to separate the problem of providing temporary storage from that of finding permanent repositories. 5 A prudent waste management strategy, by 2000, will have identified and evaluated more than enough repository space for the waste generated by that time, independent of the decision made about nuclear futures. 13 references, 4 figures, 4 tables
Experimental palaeobiomechanics: What can engineering tell us about evolution in deep time?
Anderson, Philip
2016-04-01
What did Tyrannosaurus rex eat? This is the sort of question that immediately bombards any palaeontologist when interacting with the general public. Even among scientists, how extinct animals moved or fed is a major objective of the palaeobiological research agenda. The last decade has seen a sharp increase in the technology and experimental methods available for collecting biomechanical data, which has greatly improved out ability to examine the function of both live and extinct animals. With new technologies and methods come new pitfalls and opportunities. In this review, I address three aspects of experimental biomechanics that exemplify the challenges and opportunities it provides for addressing deep-time problems in palaeontology. 1) Interpretation: It has never been easier to acquire large amounts of high-quality biomechanical data on extinct animals. However, the lack of behavioural information means that interpreting this data can be problematic. We will never know precisely what a dinosaur ate, but we can explore what constraints there might have been on the mechanical function of its jaws. Palaeobiomechanics defines potential function and becomes especially effective when dealing with multiple examples. 2) Comparison: Understanding the potential function of one extinct animal is interesting; however, examining mechanical features across multiple taxa allows for a greater understanding of biomechanical variation. Comparative studies help identify common trends and underlying mechanical principles which can have long reaching influences on morphological evolution. 3) Evolution: The physical principles established through comparative biomechanical studies can be utilized in phylogenetic comparative methods in order to explore evolutionary morphology across clades. Comparative evolutionary biomechanics offers potential for exploring the evolution of functional systems in deep time utilizing experimental biomechanical data.
RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE
Directory of Open Access Journals (Sweden)
Yu. O. Kuzmin
2014-01-01
Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A
On the Distribution of Earthquake Interevent Times and the Impact of Spatial Scale
Hristopulos, Dionissios
2013-04-01
The distribution of earthquake interevent times is a subject that has attracted much attention in the statistical physics literature [1-3]. A recent paper proposes that the distribution of earthquake interevent times follows from the the interplay of the crustal strength distribution and the loading function (stress versus time) of the Earth's crust locally [4]. It was also shown that the Weibull distribution describes earthquake interevent times provided that the crustal strength also follows the Weibull distribution and that the loading function follows a power-law during the loading cycle. I will discuss the implications of this work and will present supporting evidence based on the analysis of data from seismic catalogs. I will also discuss the theoretical evidence in support of the Weibull distribution based on models of statistical physics [5]. Since other-than-Weibull interevent times distributions are not excluded in [4], I will illustrate the use of the Kolmogorov-Smirnov test in order to determine which probability distributions are not rejected by the data. Finally, we propose a modification of the Weibull distribution if the size of the system under investigation (i.e., the area over which the earthquake activity occurs) is finite with respect to a critical link size. keywords: hypothesis testing, modified Weibull, hazard rate, finite size References [1] Corral, A., 2004. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett., 9210) art. no. 108501. [2] Saichev, A., Sornette, D. 2007. Theory of earthquake recurrence times, J. Geophys. Res., Ser. B 112, B04313/1-26. [3] Touati, S., Naylor, M., Main, I.G., 2009. Origin and nonuniversality of the earthquake interevent time distribution Phys. Rev. Lett., 102 (16), art. no. 168501. [4] Hristopulos, D.T., 2003. Spartan Gibbs random field models for geostatistical applications, SIAM Jour. Sci. Comput., 24, 2125-2162. [5] I. Eliazar and J. Klafter, 2006
Salinization of aquifers at the regional scale by marine transgression: Time scales and processes
Armandine Les Landes, A.; Davy, P.; Aquilina, L.
2014-12-01
Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.
Neural Computations in a Dynamical System with Multiple Time Scales
Directory of Open Access Journals (Sweden)
Yuanyuan Mi
2016-09-01
Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.
Updating the planetary time scale: focus on Mars
Tanaka, Kenneth L.; Quantin-Nataf, Cathy
2013-01-01
Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.
Science at the Time-scale of the Electron
Murnane, Margaret
2010-03-01
Replace this text with your abstract Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources, with attosecond pulse durations, at very short wavelengths even in the hard x-ray region of the spectrum at wavelengths movie of how electron orbitals in a molecule change shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. [4pt] [1] T. Popmintchev et al., ``Phase matched upconversion of coherent ultrafast laser light into the soft and hard x-ray regions of the spectrum'', PNAS 106, 10516 (2009). [0pt] [2] C. LaOVorakiat et al., ``Ultrafast Soft X-Ray Magneto-Optics at the M-edge Using a Tabletop High-Harmonic Source'', Physical Review Letters 103, 257402 (2009). [0pt] [3] M. Siemens et al. ``Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams'', Nature Materials 9, 26 (2010). [0pt] [4] K. Raines et al., ``Three-dimensional structure determination from a single view,'' Nature 463, 214 (2010). [0pt] [5] W. Li et al., ``Time-resolved Probing of Dynamics in Polyatomic Molecules using High Harmonic Generation'', Science 322, 1207 (2008).
Biochemical recovery time scales in elderly patients with osteomalacia
Allen, S C; Raut, S
2004-01-01
Osteomalacia is not rare in the UK and climatically similar countries, particularly in elderly people and those of Asian descent. Overt clinical osteomalacia is usually treated with a loading dose of vitamin D, followed by a regular supplement. However, little is known of the time taken to reach a stable biochemical state after starting treatment. Such information would shed light on the duration of the bone remineralization phase and guide decisions on the length of follow-up. To address this we conducted a 2-year follow-up study of 42 patients (35 female, mean age 80.8 years) with biopsy proven osteomalacia treated with a standard replacement regimen and general nutritional support. Although normocalcaemia was attained within 4 weeks the mean values continued to rise, to a mid-range plateau at 52 weeks. The phosphate and alkaline phosphatase values also took at least a year to reach a stable mean, with a slight further trend towards the mid-range for the entire 104 weeks. The mean serum albumin also rose throughout the first 52 weeks, indicating an effective response to the general nutritional support measures. Our observations suggest that the dynamic relationship between calcium, phosphate and bone requires at least a year, and probably longer, to reach an equilibrium after treatment for osteomalacia in elderly patients. The findings emphasize the need for close medical and social follow-up in this clinical context. PMID:15520146
Directory of Open Access Journals (Sweden)
Y. Kawada
2007-01-01
Full Text Available Prior to large earthquakes (e.g. 1995 Kobe earthquake, Japan, an increase in the atmospheric radon concentration is observed, and this increase in the rate follows a power-law of the time-to-earthquake (time-to-failure. This phenomenon corresponds to the increase in the radon migration in crust and the exhalation into atmosphere. An irreversible thermodynamic model including time-scale invariance clarifies that the increases in the pressure of the advecting radon and permeability (hydraulic conductivity in the crustal rocks are caused by the temporal changes in the power-law of the crustal strain (or cumulative Benioff strain, which is associated with damage evolution such as microcracking or changing porosity. As the result, the radon flux and the atmospheric radon concentration can show a temporal power-law increase. The concentration of atmospheric radon can be used as a proxy for the seismic precursory processes associated with crustal dynamics.
Directory of Open Access Journals (Sweden)
Chaozhu Li
2015-01-01
Full Text Available Millennial-scale climate change in Asian monsoon region during MIS 3 has been studied using stalagmite, loess, and peat sediments. However, records from more materials are essential to further illustrate dynamics of these events. In the present study, a time-series of grain size covering 60–30 ka was reconstructed from lake sediments in the Yunnan Province, southwestern China. The time-series contains 14 obvious millennial-scale events during the period. On millennial-scale, the grain size record is generally consistent with mean stalagmite δ18O from Hulu Cave, grain size of Gulang loess sequence, Chinese Loess Plateau, and Greenland ice core δ18O. The results show that the millennial-scale variation was well compared with the Dansgaard-Oeschger (DO events, indicating that those global events were well documented in lake sediments in the Asian monsoon region. Because the grain size can be used as a proxy for water discharge, we suggest that signal of the DO events might be transmitted to lake evolution by Asian monsoon.
Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions
International Nuclear Information System (INIS)
Qiyang Hu; Shahram Sharafat; Nasr Ghoniem
2006-01-01
The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)
Riechers, Dominik A.; Bolatto, Alberto D.; Carilli, Chris; Casey, Caitlin M.; Decarli, Roberto; Murphy, Eric Joseph; Narayanan, Desika; Walter, Fabian; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group
2018-01-01
The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Imaging of the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts back to early cosmic epochs will reveal the physical processes responsible for star formation and black hole growth in galaxies over a broad range in redshifts. In the nearby universe, the ngVLA has the capability to survey the structure of the cold, star-forming interstellar medium at parsec-resolution out to the Virgo cluster. A range of molecular tracers will be accessible to map the motion, distribution, and physical and chemical state of the gas as it flows in from the outer disk, assembles into clouds, and experiences feedback due to star formation or accretion into central super-massive black holes. These investigations will crucially complement studies of the star formation and stellar mass histories with the Large UV/Optical/Infrared Surveyor and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.