WorldWideScience

Sample records for time resonances explosions

  1. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  2. O Wave Interactions: Explosive Resonant Triads and Critical Layers.

    Science.gov (United States)

    Mahoney, Daniel J.

    This thesis considers the phenomenon of explosive resonant triads in weakly nonlinear, dispersive wave systems. These are nearly linear waves with slowly varying amplitudes which become unbounded in finite time. It is shown that such interactions are much stronger than previously thought. These waves can be thought of as a nonlinear instability, in the sense that a weakly nonlinear perturbation to some system grows to such magnitudes that the behavior of the system is governed by strongly nonlinear effects. This may occur for systems which are linearly or neutrally stable. This is contrasted with previous resolutions of this problem, which treated such perturbations as being large amplitude, nearly linear waves. Analytical and numerical evidence is presented to support these claims. These waves represent a potentially important effect in a variety of physical systems, most notably plasma physics. Attention here is turned to their occurrence in fluid mechanics. Here previous work is extended to include flow systems with continuously varying basic velocities and densities. Many of the problems encountered here will be found to be of a singular nature themselves, and the techniques for analyzing these difficulties will be developed. This will involve the concept of a critical layer in a fluid, a level at which a wave phase speed equals the unperturbed fluid velocity in the direction of propagation. Examples of such waves in this context will be presented. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  3. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  4. Transit time for resonant tunneling

    International Nuclear Information System (INIS)

    Garcia Calderon, G.; Rubio, A.

    1990-09-01

    This work considers properties of the partial widths in one dimensional elastic resonant tunneling in order to propose a transit-time τ tr = (h/2π)/Γ n T res ) where Γ n is the elastic width and T res the transmission coefficient at resonance energy. This time is interpreted as an average over the resonance energy width. It is shown that the tunneling current density integrated across a sharp resonance is inversely proportional to τ tr . This transit time may be much larger than the values predicted by other definitions. (author). 20 refs

  5. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  6. Real-time change detection for countering improvised explosive devices

    NARCIS (Netherlands)

    Wouw, van de D.W.J.M.; Rens, van K.; Lint, van R.H.; Jaspers, Egbert; With, de P.H.N.; Loce, R.P.; Saber, E.

    2014-01-01

    We explore an automatic real-time change detection system to assist military personnel during transport and surveillance, by detection changes in the environment with respect to a previous operation. Such changes may indicate the presence of Improvised Explosive Devices (IEDs), which can then be

  7. Variation of explosive force at different times of day

    Directory of Open Access Journals (Sweden)

    R Pereira

    2011-03-01

    Full Text Available AIM: The purpose of this study was to compare the explosive force and electromyographic (EMG activity at three different times of the day. METHODS: Thirty healthy subjects took part in the study, and carried out two maximum isometric voluntary knee extensions to measure explosive force, through contractile impulse (CI and rate of force development (RFD, and myoelectric signals from quadriceps muscles in the following periods: 07:30-09:30, 13:30-15:30 and 19:30-21:30 (called morning, afternoon and night respectively, on three non-consecutive days. RESULTS: The body temperature was lower in the morning than in the afternoon and night periods. The explosive force, evaluated through contractile impulse (CI and rate of force development (RFD, was greater at night than in the morning, without differences in the myoelectric signal. CONCLUSION: The ability to produce explosive force varies throughout different times of the day without variation in muscular recruitment, indicating that peripheral and not neural mechanisms could be responsible for this variation.

  8. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-01-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported

  9. Evolution of repetitive explosive instabilities in space and time

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1984-01-01

    A nonlinear rate equation describing nonlinear, explosive type interaction of waves in plasmas is studied, assuming that amplitude saturation occurs due to nonlinear frequency shifts. Emphasis is put on the space dependence of the solution caused by the assumption of a given initial amplitude distribution in space. An analysis is given of the problem of repetitive peaks governed by the nonlinear rate equation for the time development of the amplitudes of plasma waves and by a Lorentzian shape distribution of the initial amplitudes. For the one-dimensional case, the peaks developed by explosive instability move in the direction of lower initial amplitude values, and the speed and the repetition rate of the peaks are determined. The possible forms of equilibria for the nonlinear rate equation in the explosive case are also studied, including, in addition to the quadratic nonlinearity, diffusion and linear damping effects. A solution to the nonlinear rate equation including diffusion is also given for the case where the quadratic nonlinearity represents recombination. (Auth.)

  10. Time-resolved explosion of intense-laser-heated clusters.

    Science.gov (United States)

    Kim, K Y; Alexeev, I; Parra, E; Milchberg, H M

    2003-01-17

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  11. Time-resolved explosion of intense-laser-heated clusters

    International Nuclear Information System (INIS)

    Kim, K.Y.; Alexeev, I.; Parra, E.; Milchberg, H.M.

    2003-01-01

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  12. High Explosive Radiological Dispersion Device: Time and Distance Multiscale Study

    International Nuclear Information System (INIS)

    Sharon, A.; Sattinger, I.; Halevy, D.; Banaim, P.; Yaar, I.; Krantz, L.

    2014-01-01

    A wide range of explosion tests imitates different explosive RDD scenarios were conducted and aimed at increasing the preparedness for possible terrorism events, where radioactive (RA) materials disperse via an explosive charge. About 20 atmospheric dispersion tests were conducted using6-8 Ci of 99mTc which were coupled to TNT charges within the range of 0.2525 kg. Tests performed above different typical urban ground surfaces (in order to study the surface effect on the activity ground deposition pattern due to different in particles size distribution). We have used an efficient aerosolizing devices, means that most of the RA particles were initially created within the size of fine aerosols, mostly respirable. Ground activity measurements were performed both, around the dispersion point and up to few hundred meters downwind. Micrometeorology parameters (wind intensity and direction, potential temperature, relative humidity, solar radiation and atmospheric stability) were collected allowing comparisons topredictions of existing atmospheric dispersion models’1. Based on the experimental results, new model parameterizations were performed. Improvements in the models’ predictions were achieved and a set of thumb rules for first responders was formulated. This paper describes the project objectives, some of the experimental setups and results obtained. Post detonation nuclear forensic considerations can be made based upon results achieved

  13. Time-resolved dynamics of nanosecond laser-induced phase explosion

    International Nuclear Information System (INIS)

    Porneala, Cristian; Willis, David A

    2009-01-01

    Visualization of Nd : YAG laser ablation of aluminium targets was performed by a shadowgraph apparatus capable of imaging the dynamics of ablation with nanosecond time resolution. Direct observations of vaporization, explosive phase change and shock waves were obtained. The influence of vaporization and phase explosion on shock wave velocity was directly measured. A significant increase in the shock wave velocity was observed at the onset of phase explosion. However, the shock wave behaviour followed the form of a Taylor-Sedov spherical shock below and above the explosive phase change threshold. The jump in the shock wave velocity above phase explosion threshold is attributed to the release of stored enthalpy in the superheated liquid surface. The energy released during phase explosion was estimated by fitting the transient shock wave position to the Taylor scaling rules. Results of temperature calculations indicate that the vapour temperature at the phase explosion threshold is slightly higher than the critical temperature at the early stages of the shock wave formation. The shock wave pressure nearly doubled when transitioning from normal vaporization to phase explosion.

  14. Time dependent resonating Hartree-Bogoliubov theory

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Fukutome, Hideo.

    1989-01-01

    Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)

  15. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  16. Insights into explosion dynamics at Stromboli in 2009 from ash samples collected in real-time

    Science.gov (United States)

    Taddeucci, J.; Lautze, N.; Andronico, D.; D'Auria, L.; Niemeijer, A.; Houghton, B.; Scarlato, P.

    2012-04-01

    Rapid characterization of tephra during explosive eruptions can provide valuable insights into eruptive mechanisms, also integrating other monitoring systems. Here we reveal a perspective on Stromboli's conduit processes by linking ash textures to geophysical estimates of eruption parameters of observed explosions. A three day campaign at Stromboli was undertaken by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) in October 2009. At this time activity was moderately intense, with an average 4 to 5, both ash-rich and ash-poor, explosions per hour at each the SW and NE vents. A total of fifteen ash samples were collected in real time. We used binocular and scanning electron microscopes to analyze the components, grain size and morphology distributions, and surface chemistry of ash particles within eight selected samples. In addition, the INGV monitoring network provided visual, thermal, and seismic information on the explosions that generated the sampled ash. In each sample, the proportion of fluidal, glassy sideromelane (as opposed to blocky, microcrystalline tachylite plus lithics), the degree of "chemical freshness" (as opposed to chemical alteration), and the average size of particles appear to correlate directly with the maximum height and the seismic amplitude of the corresponding explosion, and inversely correlate with the amount of ash erupted, as estimated by monitoring videos. These observations suggest that more violent explosions (i.e., those driven by the release of larger and more pressurized gas volumes) produce ash via the fragmentation of hotter, more fluid magma, while weaker ones mostly erupt ash-sized particles derived by the fragmentation of colder magma and incorporation of conduit wall debris. The formation of fluidal ash particles (up to Pele's hairs) requires aerodynamic deformation of a relatively low-viscosity magma, in agreement with the strong acceleration imposed upon fragmented magma clots by the rapid expansion of

  17. Time-Dependent Moment Tensors of the First Four Source Physics Experiments (SPE) Explosions

    Science.gov (United States)

    Yang, X.

    2015-12-01

    We use mainly vertical-component geophone data within 2 km from the epicenter to invert for time-dependent moment tensors of the first four SPE explosions: SPE-1, SPE-2, SPE-3 and SPE-4Prime. We employ a one-dimensional (1D) velocity model developed from P- and Rg-wave travel times for Green's function calculations. The attenuation structure of the model is developed from P- and Rg-wave amplitudes. We select data for the inversion based on the criterion that they show consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, diagonal components of the moment tensors are well constrained. Nevertheless, the moment tensors, particularly their isotropic components, provide reasonable estimates of the long-period source amplitudes as well as estimates of corner frequencies, albeit with larger uncertainties. The estimated corner frequencies, however, are consistent with estimates from ratios of seismogram spectra from different explosions. These long-period source amplitudes and corner frequencies cannot be fit by classical P-wave explosion source models. The results motivate the development of new P-wave source models suitable for these chemical explosions. To that end, we fit inverted moment-tensor spectra by modifying the classical explosion model using regressions of estimated source parameters. Although the number of data points used in the regression is small, the approach suggests a way for the new-model development when more data are collected.

  18. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  19. Enhanced detection of explosives by turn-on resonance Raman upon host-guest complexation in solution and the solid state

    DEFF Research Database (Denmark)

    Witlicki, Edward H.; Bähring, Steffen; Johnsen, Carsten

    2017-01-01

    complexation occur via a mechanism of resonance between the 785 nm laser line and the strongly absorbing charge-transfer chromophore arising from the complex between electron-donating TTF-C[4]P and electron-accepting nitroaromatic explosives. The addition of chloride forms the Cl-·TTF-C[4]P complex resetting......The recognition of nitroaromatic explosives by a tetrakis-tetrathiafulvalene-calix[4]pyrrole receptor (TTF-C[4]P) yields a "turn on" and fingerprinting response in the resonance Raman scattering observed in solution and the solid state. Intensity changes in nitro vibrations with analyte...

  20. Dielectric Sensing of Toxic and Explosive Chemicals via Impedance Spectroscopy and Plasmonic Resonance

    Science.gov (United States)

    2017-05-07

    who thoroughly characterized the rapid decontamination of chemical warfare agents VX, soman (GD) and distilled mustard gas (HD)18. The work shows...Joshua J. Phillips, Jennifer R. Soliz, and Adam J. Hauser, “XMCD and Impedance Analysis of Fe2O3 Nanoparticles for Explosive and Chemical Warfare ...Virender K Sharma,"Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate (VI)/(III) composite" Journal of hazardous

  1. Supernovae Ia in 2017: a long time delay from merger/accretion to explosion

    Science.gov (United States)

    Soker, Noam

    2018-04-01

    I use recent observational and theoretical studies of type Ia supernovae (SNe Ia) to further constrain the viable SN Ia scenarios and to argue that there must be a substantial time delay between the end of the merger of the white dwarf (WD) with a companion or the end of mass accretion on to the WD and its terminal explosion. This merger/accretion to explosion delay (MED) is required to allow the binary system to lead to a more or less spherical explosion and to prevent a pre-explosion ionizing radiation. Considering these recent results and the required MED, I conclude that the core degenerate scenario is somewhat more favorable over the other scenarios, followed by the double degenerate scenario. Although the single degenerate scenario is viable as well, it is less likely to account for common (normal) SN Ia. As all scenarios require substantial MED, the MED has turned from a disadvantage of the core degenerate scenario to a challenge that theory should overcome. I hope that the requirement for a MED will stimulate the discussion of the different SN Ia scenarios and the comparison of the scenarios to each other.

  2. The Effects of Creatine Supplementation on Explosive Performance and Optimal Individual Postactivation Potentiation Time

    Directory of Open Access Journals (Sweden)

    Chia-Chi Wang

    2016-03-01

    Full Text Available Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05. The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05. There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance.

  3. Imprints of explosion conditions on late-time spectra of type Ia supernovae

    Science.gov (United States)

    Diamond, Tiara R.

    Type Ia supernovae (SNe Ia) play a vital role in the discrimination of different cosmological models. These events have been shown to be standardizable based on properties of their light curves during the early-time photospheric phase. However, the distribution of types of progenitor system, the explosion trigger, and the physics of the explosion are still an active topic of discussion. The details of the progenitors and explosion may provide insight into the variation seen in Type Ia supernova light curves and spectra, and therefore, allow for additional methods of standardization among the group. Late-time near-infrared spectral observations for SNe Ia show numerous strong emission features of forbidden line transitions of cobalt and iron, tracing the central distribution of iron-group burning products. As the spectrum ages, the cobalt features fade as expected from the decay of 56Co to 56Fe. This work will show that the strong and isolated [Fe II] emission line at 1.644 mum provides a unique tool to analyze near-infrared spectra of SNe Ia. Several new methods of analysis will be demonstrated to determine some of the initial conditions of the system. The initial central density, rhoc, and the extent of mixing in the central regions of the explosion have signatures in the line profiles of late-time spectra. An embedded magnetic field, B, of the white dwarf can be determined using the evolution of the lines profiles. Currently magnetic field effects are not included in the hydrodynamics and radiation transport of simulations of SNe Ia. Normalization of spectra to the 1.644 mum line allows separation of features produced by stable versus unstable isotopes of iron group elements. Implications for potential progenitor systems, explosion mechanisms, and the origins and morphology of magnetic fields in SNe Ia, in addition to limitations of the method, are discussed. Observations of the late-time near-infrared emission spectrum at multiple epochs allow for the first ever

  4. Time-domain study of tectonic strain-release effects on seismic waves from underground nuclear explosions

    International Nuclear Information System (INIS)

    Nakanishi, K.K.; Sherman, N.W.

    1982-09-01

    Tectonic strain release affects both the amplitude and phase of seismic waves from underground nuclear explosions. Surface wave magnitudes are strongly affected by the component of tectonic strain release in the explosion. Amplitudes and radiation patterns of surface waves from explosions with even small tectonic components change magnitudes significantly and show a strong dependence on receiver locations. A thrust-slip source superimposed on an isotropic explosion can explain observed reversals in waveform at different azimuths and phase delays between normal and reversed Rayleigh waves. The mechanism of this reversal is due to the phase relationship between reasonable explosion and tectonic release sources. Spallation or an unusual source time function are not required. The observations of Shagan River events imply thrust-slip motion along faults in a northwest-southeast direction, which is consistent with regional tectonics

  5. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  6. ONE-DIMENSIONAL TIME TO EXPLOSION (THERMAL SENSITIVITY) TESTS ON PETN, PBX-9407, LX-10, AND LX-17

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Strout, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ellsworth, Fred Ellsworth [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to thermal explosion, threshold thermal explosion temperature, and determine the kinetic parameters of thermal decomposition of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the results of our recent ODTX experiments on PETN powder, PBX-9407 pressed part, LX-10 pressed part, LX-17 pressed part and compares the test data that were obtained decades ago with the older version of ODTX system. Test results show the thermal sensitivity of various materials tested in the following order: PETN> PBX-9407 > LX-10 > LX-17.

  7. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  8. Waking the undead: Implications of a soft explosive model for the timing of placental mammal diversification.

    Science.gov (United States)

    Springer, Mark S; Emerling, Christopher A; Meredith, Robert W; Janečka, Jan E; Eizirik, Eduardo; Murphy, William J

    2017-01-01

    The explosive, long fuse, and short fuse models represent competing hypotheses for the timing of placental mammal diversification. Support for the explosive model, which posits both interordinal and intraordinal diversification after the KPg mass extinction, derives from morphological cladistic studies that place Cretaceous eutherians outside of crown Placentalia. By contrast, most molecular studies favor the long fuse model wherein interordinal cladogenesis occurred in the Cretaceous followed by intraordinal cladogenesis after the KPg boundary. Phillips (2016) proposed a soft explosive model that allows for the emergence of a few lineages (Xenarthra, Afrotheria, Euarchontoglires, Laurasiatheria) in the Cretaceous, but otherwise agrees with the explosive model in positing the majority of interordinal diversification after the KPg mass extinction. Phillips (2016) argues that rate transference errors associated with large body size and long lifespan have inflated previous estimates of interordinal divergence times, and further suggests that most interordinal divergences are positioned after the KPg boundary when rate transference errors are avoided through the elimination of calibrations in large-bodied and/or long lifespan clades. Here, we show that rate transference errors can also occur in the opposite direction and drag forward estimated divergence dates when calibrations in large-bodied/long lifespan clades are omitted. This dragging forward effect results in the occurrence of more than half a billion years of 'zombie lineages' on Phillips' preferred timetree. By contrast with ghost lineages, which are a logical byproduct of an incomplete fossil record, zombie lineages occur when estimated divergence dates are younger than the minimum age of the oldest crown fossils. We also present the results of new timetree analyses that address the rate transference problem highlighted by Phillips (2016) by deleting taxa that exceed thresholds for body size and lifespan

  9. Dwell-time effect on the synthesis of a nano-structured material in water by using Ni wire explosion

    International Nuclear Information System (INIS)

    Eom, Gyu Sub; Kwon, Hyeok Jung; Cho, Yong Sub; Paek, Kwang Hyun; Joo, Won Tae

    2014-01-01

    Nickel nano-structured materials are synthesized by using a wire explosion in water. Based on an analysis of each step of the wire explosion, we propose insufficient energy deposition before a plasma restrike as the cause for the inclusion of coarse particles in the wire-explosion product. We confirmed that more energy, in excess of 30%, could be deposited by increasing the dwell time, which resulted from a compression of vapor by the surrounding water and from suppression of plasma restrikes. Because of an increased energy loss into the surrounding water, the specific energy increased by two-fold compared to a gas atmosphere. The synthesized nano-structured nickel showed a uniform particle size of 20 nm with a few coarse particles that were mainly metallic nickel with a little oxide and hydroxide phases. The possibility for large-volume production through a continuous explosion of 300 shots was confirmed.

  10. Direct analysis in real time mass spectrometry of potential by-products from homemade nitrate ester explosive synthesis.

    Science.gov (United States)

    Sisco, Edward; Forbes, Thomas P

    2016-04-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were observed in the mass spectral responses of these compounds. A global optimum temperature of 350 °C for the by-products investigated here enabled single nanogram to sub nanogram trace detection. Matrix effects were examined through a series of mixtures containing one or more compounds (sugar alcohol precursors, by-products, and/or explosives) across a range of mass loadings. The explosives MS responses experienced competitive ionization in the presence of all by-products. The magnitude of this influence corresponded to both the degree of by-product nitration and the relative mass loading of the by-product to the explosive. This work provides a characterization of potential by-products from homemade nitrate ester synthesis, including matrix effects and potential challenges that might arise from the trace detection of homemade explosives (HMEs) containing impurities. Detection and understanding of HME impurities and complex mixtures may provide valuable information for the screening and sourcing of homemade nitrate ester explosives. Published by Elsevier B.V.

  11. Real-time detection and characterization of nuclear explosion using broadband analyses of regional seismic stations

    Science.gov (United States)

    Prastowo, T.; Madlazim

    2018-01-01

    This preliminary study aims to propose a new method of real-time detection and characterization of nuclear explosions by analyzing broadband seismic waveforms acquired from a network of regional seismic stations. Signal identification generated by a nuclear test was differentiated from natural sources of either earthquakes or other natural seismo-tectonic events by verifying crucial parameters, namely source depth, type of first motion, and P-wave domination of the broadband seismic wavesunder consideration. We examined and analyzed a recently hypothetical nuclear test performed by the North Koreangovernment that occurred on September 3, 2017 as a vital point to study. From spectral analyses, we found that the source of corresponding signals associated with detonations of the latest underground nuclear test was at a much shallower depth below the surface relatively compared with that of natural earthquakes, the suspected nuclear explosions produced compressional waves with radially directed outward from the source for their first motions, and the waves were only dominated by P-components. The results are then discussed in the context of potential uses of the proposed methodology for human-induced disaster early warning system and/or the need of rapid response purposes for minimizing the disaster risks.

  12. Resonant ULF absorption in storm time conditions

    Directory of Open Access Journals (Sweden)

    Badin V.I.

    2017-03-01

    Full Text Available The work deals with ULF radar observations of the high-latitude ionosphere. Doppler data from the Norwegian STARE instrument are analyzed for the moderate magnetic storm observed on December 31, 1999 – January 01, 2000. Upon averaging the Doppler signals along radar beams, the spectral power of signals is determined for each beam as a function of frequency ranging from 1 to 10 mHz. Sharp drops (about 10 dB of spectral powers with frequency are found for all radar beams. A variational analysis of spectral powers is carried out by least squares, with power drops being modeled by stepwise profiles constructed of mean spectral powers preceding and succeeding the drops. Using this variational analysis, the frequency of the power drop is determined for each radar beam. Being averaged over all beams, this frequency is 4.8±0.5 mHz. The results obtained are interpreted as resonant absorption of ultra-low-frequency (ULF waves occurring on eigenfrequencies of magnetic field lines over wave propagation from the magnetopause deep into the magnetosphere.

  13. Rapid detection of sugar alcohol precursors and corresponding nitrate ester explosives using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Sisco, Edward; Forbes, Thomas P

    2015-04-21

    This work highlights the rapid detection of nitrate ester explosives and their sugar alcohol precursors by direct analysis in real time mass spectrometry (DART-MS) using an off-axis geometry. Demonstration of the effect of various parameters, such as ion polarity and in-source collision induced dissociation (CID) on the detection of these compounds is presented. Sensitivity of sugar alcohols and nitrate ester explosives was found to be greatest in negative ion mode with sensitivities ranging from hundreds of picograms to hundreds of nanograms, depending on the characteristics of the particular molecule. Altering the in-source CID potential allowed for acquisition of characteristic molecular ion spectra as well as fragmentation spectra. Additional studies were completed to identify the role of different experimental parameters on the sensitivity for these compounds. Variables that were examined included the DART gas stream temperature, the presence of a related compound (i.e., the effect of a precursor on the detection of a nitrate ester explosive), incorporation of dopant species and the role of the analysis surface. It was determined that each variable affected the response and detection of both sugar alcohols and the corresponding nitrate ester explosives. From this work, a rapid and sensitive method for the detection of individual sugar alcohols and corresponding nitrate ester explosives, or mixtures of the two, has been developed, providing a useful tool in the real-world identification of homemade explosives.

  14. Low-frequency electromagnetic measurements as a zero-time discriminant of nuclear and chemical explosions - OSI research final report

    International Nuclear Information System (INIS)

    Sweeney, J.J.

    1996-12-01

    This is the final report on a series of investigations of low frequency (1-40 Hz) electromagnetic signals produced by above ground and underground chemical explosions and their use for confidence building under the Comprehensive Test-Ban Treaty. I conclude that low frequency electromagnetic measurements can be a very powerful tool for zero-time discrimination of chemical and nuclear explosions for yields of 1 Kt or greater, provided that sensors can be placed within 1-2 km of the suspected detonation point in a tamper-proof, low noise environment. The report includes descriptions and analyses of low frequency electromagnetic measurements associated with chemical explosions carried out in a variety of settings (shallow borehole, open pit mining, underground mining). I examine cavity pressure data from the Non-Proliferation Experiment (underground chemical explosion) and present the hypothesis that electromagnetic signals produced by underground chemical explosions could be produced during rock fracturing. I also review low frequency electromagnetic data from underground nuclear explosions acquired by Lawrence Livermore National Laboratory during the late 1980s. (author)

  15. Parametric Resonance in a Time-Dependent Harmonic Oscillator

    Directory of Open Access Journals (Sweden)

    P. N. Nesterov

    2013-01-01

    Full Text Available In this paper, we study the phenomenon of appearance of new resonances in a timedependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schr¨odinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson’s fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator in which the parametric resonances, mentioned in the paper, may occur.

  16. Time-dependent scattering in resonance lines

    International Nuclear Information System (INIS)

    Kunasz, P.B.

    1983-01-01

    A numerical finite-difference method is presented for the problem of time-dependent line transfer in a finite slab in which material density is sufficiently low that the time of flight between scatterings greatly exceeds the relaxation time of the upper state of the scattering transition. The medium is assumed to scatter photons isotropically, with complete frequency redistribution. Numerical solutions are presented for a homogeneous, time-independent slab illuminated by an externally imposed radiation field which enters the slab at t = 0. Graphical results illustrate relaxation to steady state of trapped internal radiation, emergent energy, and emergent profiles. A review of the literature is also given in which the time-dependent line transfer problem is discussed in the context of recent analytical work

  17. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    Science.gov (United States)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  18. Real time explosive hazard information sensing, processing, and communication for autonomous operation

    Science.gov (United States)

    Versteeg, Roelof J; Few, Douglas A; Kinoshita, Robert A; Johnson, Doug; Linda, Ondrej

    2015-02-24

    Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

  19. Interactive Real-time Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Brix, Lau

    seeks to implement and assess existing reconstruction algorithms using multi-processors of modern graphics cards and many-core computer processors and to cover some of the potential clinical applications which might benefit from using an interactive real-time MRI system. First an off...

  20. Space-time energy concentration and the design of DT fusion micro-explosions

    International Nuclear Information System (INIS)

    Sahlin, H.L.; Brandenburg, J.E.

    1980-03-01

    As part of the effort to employ a plasma focus as a driver for fusion micro-explosions, many target concepts were explored and extensive imposion calculations have been carried out. Some of the basic principles of micro-explosion design are presented

  1. SLIFER measurement for explosive yield

    International Nuclear Information System (INIS)

    Bass, R.C.; Benjamin, B.C.; Miller, H.M.; Breding, D.R.

    1976-04-01

    This report describes the shorted location indicator by frequency of electrical resonance (SLIFER) system used at Sandia Laboratories for determination of explosive yield of under ground nuclear tests

  2. Time delayed K sup + N reactions and exotic baryon resonances

    CERN Document Server

    Kelkar, N G; Khemchandani, K P

    2003-01-01

    Evidence and hints, from both the theoretical and experimental sides, of exotic baryon resonances with B = S, have been with us for the last 30 years. The poor status of the general acceptance of these Z* resonances is partly due to the prejudice against penta-quark baryons and partly due to the opinion that a proof of the existence of exotic states must be rigorous. This can refer to the quality and amount of data gathered, and also to the analytical methods applied in the study of these resonances. It then seems mandatory that all possibilities and aspects be exploited. We do that by analysing the time delay in K sup + N scattering, encountering clear signals of the exotic Z* resonances close to the pole values found in partial wave analyses.

  3. Time-delayed feedback control of coherence resonance chimeras

    Science.gov (United States)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  4. Explosive magnetorotational instability in Keplerian disks

    Energy Technology Data Exchange (ETDEWEB)

    Shtemler, Yu., E-mail: shtemler@bgu.ac.il; Liverts, E., E-mail: eliverts@bgu.ac.il; Mond, M., E-mail: mond@bgu.ac.il [Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2016-06-15

    Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads, EMRI occurs due to the resonant interactions of an MRI mode with stable Alfvén–Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the three amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.

  5. Time series analysis in chaotic diode resonator circuit

    Energy Technology Data Exchange (ETDEWEB)

    Hanias, M.P. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)] e-mail: mhanias@teihal.gr; Giannaris, G. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Spyridakis, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Rigas, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)

    2006-01-01

    A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension {nu} and m {sub min}, respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated.

  6. Time series analysis in chaotic diode resonator circuit

    International Nuclear Information System (INIS)

    Hanias, M.P.; Giannaris, G.; Spyridakis, A.; Rigas, A.

    2006-01-01

    A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension ν and m min , respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated

  7. A flow time model for melt-cast insensitive explosive process

    Energy Technology Data Exchange (ETDEWEB)

    Guillemin, Jean-Philippe; Brunet, Luc [Nexter Munitions, 7 Route de Guerry, 18023 Bourges Cedex (France); Bonnefoy, Olivier; Thomas, Gerard [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SPIN/LPMG, UMR CNRS 5148, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 2 (France)

    2007-06-15

    Diphasic flows of concentrated suspensions of melt-cast insensitive explosives exhibit specific rheological properties. In order to limit the handling of pyrotechnical products presenting a risk with respect to the mechanical and thermal shocks, a lot of work has been undertaken for many years in the civil engineering sector. The objective of this study is to propose a predictive model of the flow time of a concentrated suspension through a nozzle located at the bottom of a tank. Similar to our industrial process, the suspension is made out of insensitive energetic materials and flows under gravity. Experimental results are compared to three models (Quemada, Krieger-Dougherty, and Mooney) predicting the viscosity {mu} of a suspension as a function of the solid volume fraction {phi}, the maximum packing density {phi}{sub m} and the viscosity {mu}{sub 0} of the interstitial liquid. De Larrard's model is used to calculate {phi}{sub m}. The value of viscosity measured for the pure liquid is close to the one predicted by the Bernoulli theorem, where liquids are considered as incompressible and inviscid. Finally, it was found that the Quemada's model gives a fair agreement between predictions and experiments. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Direct Analysis in Real Time Mass Spectrometry of Potential By-Products from Homemade Nitrate Ester Explosive Synthesis

    OpenAIRE

    Sisco, Edward; Forbes, Thomas P.

    2015-01-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were ...

  9. Explosives detection through fast-neutron time-of-flight attenuation measurements

    International Nuclear Information System (INIS)

    Overley, J.C.; Chmelik, M.S.; Rasmussen, R.J.; Schofield, R.M.S.; Lefevre, H.W.

    1995-01-01

    Computer simulations have been used to devise an algorithm for detection of explosives in luggage which is based upon measured projected number densities of H, C, N, and O. Other elements are lumped together as projection X. Dependence on luggage-thickness is reduced by normalizing the projection for each element by the total. Normalization constrains projections to a 4-dimensional space. Distributions of nonexplosive (N) and explosive (E) situations are generated by sorting results of simulations into bins in that 4-space. A detection matrix element, given by the ratio E/(N+E) for each bin, is addressed by a measurement. For a realistic distribution of the numbers and types of luggage materials, the plastic explosive RDX, at 10% of suitcase thickness, can be detected in a single pixel with 85% reliability and a false alarm rate of 3%. (orig.)

  10. Universal and local time components in Schumann resonance intensity

    Directory of Open Access Journals (Sweden)

    A. P. Nickolaenko

    2008-05-01

    Full Text Available We extend the technique suggested by Sentman and Fraser (1991 and discussed by Pechony and Price (2006, the technique for separating the local and universal time variations in the Schumann resonance intensity. Initially, we simulate the resonance oscillations in a uniform Earth-ionosphere cavity with the distribution of lightning strokes based on the OTD satellite data. Different field components were used in the Dayside source model for the Moshiri (Japan, geographic coordinates: 44.365° N, 142.24° E and Lehta (Karelia, Russia, 64.427° N, 33.974° E observatories. We use the extended Fourier series for obtaining the modulating functions. Simulations show that the algorithm evaluates the impact of the source proximity in the resonance intensity. Our major goal was in estimating the universal alteration factors, which reflect changes in the global thunderstorm activity. It was achieved by compensating the local factors present in the initial data. The technique is introduced with the model Schumann resonance data and afterwards we use the long-term experimental records at the above sites for obtaining the diurnal/monthly variations of the global thunderstorms.

  11. Optical resonators for true-time-delay beam steering

    Science.gov (United States)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  12. Real time magnetic resonance guided endomyocardial local delivery

    Science.gov (United States)

    Corti, R; Badimon, J; Mizsei, G; Macaluso, F; Lee, M; Licato, P; Viles-Gonzalez, J F; Fuster, V; Sherman, W

    2005-01-01

    Objective: To investigate the feasibility of targeting various areas of left ventricle myocardium under real time magnetic resonance (MR) imaging with a customised injection catheter equipped with a miniaturised coil. Design: A needle injection catheter with a mounted resonant solenoid circuit (coil) at its tip was designed and constructed. A 1.5 T MR scanner with customised real time sequence combined with in-room scan running capabilities was used. With this system, various myocardial areas within the left ventricle were targeted and injected with a gadolinium-diethylenetriaminepentaacetic acid (DTPA) and Indian ink mixture. Results: Real time sequencing at 10 frames/s allowed clear visualisation of the moving catheter and its transit through the aorta into the ventricle, as well as targeting of all ventricle wall segments without further image enhancement techniques. All injections were visualised by real time MR imaging and verified by gross pathology. Conclusion: The tracking device allowed real time in vivo visualisation of catheters in the aorta and left ventricle as well as precise targeting of myocardial areas. The use of this real time catheter tracking may enable precise and adequate delivery of agents for tissue regeneration. PMID:15710717

  13. Influence of the magnetic field in the time evolution of the solar explosion radiation in X-ray and microwaves

    International Nuclear Information System (INIS)

    Costa, J.E.R.

    1983-01-01

    It has been made a theoretical development, sel-consistent with recent models for the explosive source, applied to time delays of peak emission at different microwave frequencies, and between microwaves and hard X-ray emission. A working hipothesis has been assumed with the adoption of a growing magnetic field during the solar flare explosion, and therefore contributing to a growth in microwave emission, differential in frequency, producing delays of maximum emission towards lower microwave frequencies, and delays of microwave maximum emission with respect to hard X-rays. It has been found that these delays are consistent with a growth in the magnetic field of about 14% by assuming both thermal and non-thermal models. This variation in magnetic field has been associated to movements of thermal sources downwards in the solar atmosphere, and it has been found that the estimated velocities of displacement were consistent compared to characteristic velocities of anomalous conduction fronts of thermal models. (Author) [pt

  14. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  15. Quantum speed limit time in a magnetic resonance

    Science.gov (United States)

    Ivanchenko, E. A.

    2017-12-01

    A visualization for dynamics of a qudit spin vector in a time-dependent magnetic field is realized by means of mapping a solution for a spin vector on the three-dimensional spherical curve (vector hodograph). The obtained results obviously display the quantum interference of precessional and nutational effects on the spin vector in the magnetic resonance. For any spin the bottom bounds of the quantum speed limit time (QSL) are found. It is shown that the bottom bound goes down when using multilevel spin systems. Under certain conditions the non-nil minimal time, which is necessary to achieve the orthogonal state from the initial one, is attained at spin S = 2. An estimation of the product of two and three standard deviations of the spin components are presented. We discuss the dynamics of the mutual uncertainty, conditional uncertainty and conditional variance in terms of spin standard deviations. The study can find practical applications in the magnetic resonance, 3D visualization of computational data and in designing of optimized information processing devices for quantum computation and communication.

  16. Similarity solutions for explosions in radiating stars with time-dependent energy and idealized magnetic field

    International Nuclear Information System (INIS)

    Verma, G.B.; Vishwakarma, J.P.; Sharan, V.

    1983-01-01

    A stellar model in which density in the undisturbed conducting-gas medium is assumed to obey a power law is considered. Similarity solutions for central explosion in radiating stars have been obtained under the assumption of isothermal-shock conditions. For the existence of self-similar character, it has been assumed that both radiation pressure and energy are negligible. The results of numerical calculations for different models are illustrated through graphs. Moreover, a comparative study has been made between the results in ordinary gasdynamics and those obtained in magnetogasdynamics

  17. Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya).

    Science.gov (United States)

    Wang, Kun; Jiang, Jian-Xin; Xu, Feng; Sun, Run-Cang

    2009-11-01

    The synergistic effect of steam explosion pretreatment and sodium hydroxide post-treatment of Lespedeza stalks (Lespedeza crytobotrya) has been investigated in this study. In this case, Lespedeza stalks were firstly exploded at a fixed steam pressure (22.5 kg/m(2)) for 2-10 min. Then the steam-exploded Lespedeza stalks was extracted with 1 M NaOH at 50 degrees C for 3 h with a shrub to water ratio of 1:20 (g/ml), which yielded 57.3%, 53.1%, 55.4%, 52.8%, 53.2%, and 56.4% (% dry weight) cellulose rich fractions, comparing to 68.0% from non-steam-exploded material. The content of glucose in cellulose rich residues increased with increment of the steaming time and reached to 94.10% at the most severity. The similar increasing trend occurred during the dissolution of hemicelluloses. It is evident that at shorter steam explosion time, autohydrolysis mainly occurred on the hemicelluloses and the amorphous area of cellulose. The crystalline region of cellulose was depolymerized under a prolonged incubation time. The characteristics of the cellulose rich fractions in terms of FT-IR and CP/MAS (13)C NMR spectroscopy and thermal analysis were discussed, and the surface structure was also investigated by SEM.

  18. Direct Observation of the Phenomenology of a Solid Thermal Explosion Using Time-Resolved Proton Radiography

    International Nuclear Information System (INIS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Schwartz, C. L.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2008-01-01

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 μs. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning

  19. TIME-DEPENDENT COROTATION RESONANCE IN BARRED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Ting; Taam, Ronald E. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Pfenniger, Daniel, E-mail: ytwu@asiaa.sinica.edu.tw, E-mail: daniel.pfenniger@unige.ch, E-mail: taam@asiaa.sinica.edu.tw [Geneva Observatory, University of Geneva, CH-1290 Sauverny (Switzerland)

    2016-10-20

    The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame, due to the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N -body simulations, we localize the instantaneous equilibrium points (EPs) and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle level the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.

  20. SVD compression for magnetic resonance fingerprinting in the time domain.

    Science.gov (United States)

    McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A

    2014-12-01

    Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.

  1. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    Science.gov (United States)

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  2. High frequency, high time resolution time-to-digital converter employing passive resonating circuits

    International Nuclear Information System (INIS)

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-01-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  3. Binding Isotherms and Time Courses Readily from Magnetic Resonance.

    Science.gov (United States)

    Xu, Jia; Van Doren, Steven R

    2016-08-16

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.

  4. Underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  5. Underground nuclear explosions

    International Nuclear Information System (INIS)

    Higgins, Gary H.

    1970-01-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  6. Effects of time delay on stochastic resonance of the stock prices in financial system

    International Nuclear Information System (INIS)

    Li, Jiang-Cheng; Li, Chun; Mei, Dong-Cheng

    2014-01-01

    The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value

  7. Effects of time delay on stochastic resonance of the stock prices in financial system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiang-Cheng [Department of Physics, Yunnan University, Kunming, 650091 (China); Li, Chun [Department of Computer Science, Puer Teachers' College, Puer 665000 (China); Mei, Dong-Cheng, E-mail: meidch@ynu.edu.cn [Department of Physics, Yunnan University, Kunming, 650091 (China)

    2014-06-13

    The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value.

  8. Liquid explosives

    CERN Document Server

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  9. The research based on intelligent night-time elimination of "red explosion" and "white explosion" vehicle license plate capturing and identifying system

    Science.gov (United States)

    Ren, Tian-Yu; Duanmu, Qing-Duo; Liu, Jing; Wu, Bo-Qi

    2018-03-01

    At night, high-speed road/all levels of road electronic cameras need to pass the white light flash can be used to obtain the road vehicle license plate and car appearance and the other related information, in order to solve the problems of the drivers' short dazzle caused by the flash of the camera, this paper shows a novel method to eliminate the "red explosion" and "white explosion" dazzle vehicle license plate capture and recognition system. This paper is based on the inconsistent principle of the absorption characteristics of the reflective film layer dye in the overlapping reflection process of the multispectral spectrums. The relationship between the wavelength of the reflective film and the back layer dye in different wavelength and the absorption/reflection is analyzed, and a dual-band active illumination method is developed. The system utilizes the visual features of human eyes in the sensitive insensitive area near infrared 390 nm 810 nm band, combining the enhanced Hough and Canny operator to preprocess the captured images, effectively obtains the license information of the fast moving vehicle at night or low illumination, and accurately locates the vehicle contour features, The high contour gray color rendering with the wavelet and Fourier filtering is used to distinguish the authenticity of the license plate quickly. To achieve the rapid statistics on the number of vehicles and containers on ground mobile vehicles and logistics sites, and provide a reliable technical guarantee for road security, because of its small weight and high intelligence, it's suitable for a variety of loading installations, and has a wide application foreground in the future.

  10. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei

    2013-08-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although \\'relaxed initial conditions,\\' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made \\'invisible\\' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  11. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2013-01-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although 'relaxed initial conditions,' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made 'invisible' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  12. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    Science.gov (United States)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  13. On spurious resonant modes in the MOT solution of time domain EFIE

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2013-01-01

    Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal

  14. Stellar explosion

    International Nuclear Information System (INIS)

    Suraud, E.

    1987-01-01

    What is the energy source and which physical processes are powerful enough to generate this explosion which scatters the star. The knowledge progress of very dense matter allows the scenario reconstitution. An instability in the star core which is developing during milliseconds is the cause of this explosion [fr

  15. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  16. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise

    International Nuclear Information System (INIS)

    Shu Chang-Zheng; Nie Lin-Ru; Zhou Zhong-Rao

    2012-01-01

    Stochastic resonance (SR)-like and resonance suppression (RS)-like phenomena in a time-delayed bistable system driven by additive white noise are investigated by means of stochastic simulations of the power spectrum, the quality factor of the power spectrum, and the mean first-passage time (MFPT) of the system. The calculative results indicate that: (i) as the system is driven by a small periodic signal, the quality factor as a function delay time exhibits a maximal value at smaller noise intensities, i.e., an SR-like phenomenon. With the increment in additive noise intensity, the extremum gradually disappears and the quality factor decreases monotonously with delay time. (ii) As the additive noise intensity is smaller, the curve of the MFPT with respect to delay time displays a peak, i.e., an RS-like phenomenon. At higher levels of noise, however, the non-monotonic behavior is lost. (general)

  17. Transmission coefficient, resonant tunneling lifetime and traversal time in multibarrier semiconductor heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Jyotirmayee [Department of Physics, National Institute of Technology, Rourkela, 769008 (India)]. E-mail: jnanda_b9@rediffmail.com; Mahapatra, P.K. [Department of Physics and Technophysics, Vidyasagar University, Midnapore, 721102 (India)]. E-mail: pkmahapatra@vidyasagar.ac.in; Roy, C.L. [Department of Physics and Meterology, Indian Institute of Technology, Kharagpur, 721302 (India)

    2006-09-01

    A computational model based on non-relativistic approach is proposed for the determination of transmission coefficient, resonant tunneling energies, group velocity, resonant tunneling lifetime and traversal time in multibarrier systems (GaAs/Al {sub y} Ga{sub 1-} {sub y} As) for the entire energy range {epsilon}V {sub 0}, V {sub 0}, being the potential barrier height. The resonant energy states were found to group into allowed tunneling bands separated by forbidden gaps. The tunneling lifetime and the traversal time are found to have minimum values at the middle of each allowed band. Further, It is observed that the electrons with energies in the higher tunneling band could tunnel out faster than those with energies in the lower band. Moreover, an additional resonant peak in resonant energy spectrum indicated the presence of a surface state where resonant tunneling occurs.

  18. Regenerative memory in time-delayed neuromorphic photonic resonators

    OpenAIRE

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the...

  19. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  20. Real-time, wide-area hyperspectral imaging sensors for standoff detection of explosives and chemical warfare agents

    Science.gov (United States)

    Gomer, Nathaniel R.; Tazik, Shawna; Gardner, Charles W.; Nelson, Matthew P.

    2017-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the detection and analysis of targets located within complex backgrounds. HSI can detect threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Unfortunately, current generation HSI systems have size, weight, and power limitations that prohibit their use for field-portable and/or real-time applications. Current generation systems commonly provide an inefficient area search rate, require close proximity to the target for screening, and/or are not capable of making real-time measurements. ChemImage Sensor Systems (CISS) is developing a variety of real-time, wide-field hyperspectral imaging systems that utilize shortwave infrared (SWIR) absorption and Raman spectroscopy. SWIR HSI sensors provide wide-area imagery with at or near real time detection speeds. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focusing on sensor design and detection results.

  1. Idaho Explosives Detection System

    International Nuclear Information System (INIS)

    Reber, Edward L.; Blackwood, Larry G.; Edwards, Andrew J.; Jewell, J. Keith; Rohde, Kenneth W.; Seabury, Edward H.; Klinger, Jeffery B.

    2005-01-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004

  2. Idaho Explosives Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward L. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)]. E-mail: reber@inel.gov; Blackwood, Larry G. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Edwards, Andrew J. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Jewell, J. Keith [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Rohde, Kenneth W. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Seabury, Edward H. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Klinger, Jeffery B. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)

    2005-12-15

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  3. Regenerative memory in time-delayed neuromorphic photonic resonators

    Science.gov (United States)

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.

  4. On the Use of Calibration Explosions at the Former Semipalatinsk Test Site for Compiling a Travel-time Model of the Crust and Upper Mantle

    Science.gov (United States)

    Belyashova, N. N.; Shacilov, V. I.; Mikhailova, N. N.; Komarov, I. I.; Sinyova, Z. I.; Belyashov, A. V.; Malakhova, M. N.

    - Two chemical calibration explosions, conducted at the former Semipalatinsk nuclear test site in 1998 with charges of 25 tons and 100 tons TNT, have been used for developing travel-time curves and generalized one-dimensional velocity models of the crust and upper mantle of the platform region of Kazakhstan. The explosions were recorded by a number of digital seismic stations, located in Kazakhstan at distances ranging from 0 to 720km. The travel-time tables developed in this paper cover the phases P, Pn, Pg, S, Sn, Lg in a range of 0-740km and the velocity models apply to the crust down to 44km depth and to the mantle down to 120km. A comparison of the compiled travel-time tables with existing travel-time tables of CSE and IASPEI91 is presented.

  5. Wigner-Eisenbud-Smith photoionization time delay due to autoioinization resonances

    Science.gov (United States)

    Deshmukh, P. C.; Kumar, A.; Varma, H. R.; Banerjee, S.; Manson, Steven T.; Dolmatov, V. K.; Kheifets, A. S.

    2018-03-01

    An empirical ansatz for the complex photoionization amplitude and Wigner-Eisenbud-Smith time delay in the vicinity of a Fano autoionization resonance are proposed to evaluate and interpret the time delay in the resonant region. The utility of this expression is evaluated in comparison with accurate numerical calculations employing the ab initio relativistic random phase approximation and relativistic multichannel quantum defect theory. The indisputably good qualitative agreement (and semiquantitative agreement) between corresponding results of the proposed model and results produced by the ab initio theories proves the usability of the model. In addition, the phenomenology of the time delay in the vicinity of multichannel autoionizing resonances is detailed.

  6. Fundamental and Subharmonic Resonances of Harmonically Oscillation with Time Delay State Feedback

    Directory of Open Access Journals (Sweden)

    A.F. EL-Bassiouny

    2006-01-01

    Full Text Available Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.

  7. Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal

    International Nuclear Information System (INIS)

    Yong-Feng, Guo; Wei, Xu; Liang, Wang

    2010-01-01

    This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)

  8. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10 4 times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO 4 tetrahedra, which efficiently transduce electric energy into elastic energy

  9. Seismic waves travel-time curve, basing on the results of signal detection from chemical explosions detonated at Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Aristova, I.L.; Germanova, T.I.

    2001-01-01

    A large amount of digital seismic data from the permanent and temporary seismic stations was acquired in the result of detonation of large chemical explosions at Semipalatinsk Test Site. All the records were collected, systematized and processed, and databases were created. Travel-time curves for regional Pn, Pg, Sn and Lg waves were created and compared with the ones used in routine earthquake processing practice. (author)

  10. Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy

    Science.gov (United States)

    Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.

    2015-08-01

    We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.

  11. On spurious resonant modes in the MOT solution of time domain EFIE

    KAUST Repository

    Shi, Yifei

    2013-07-01

    Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal resonant modes do not satisfy these initial conditions. However, these spurious modes are always observed in the MOT solution. It has been conjectured in the past that numerical errors might establish the necessary initial conditions and allow the incident field to induce the internal resonant modes. Systematic numerical experiments carried out in this work prove this conjecture by demonstrating that the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors and the spectrum of the incident field. © 2013 IEEE.

  12. Time-frequency analysis of the restricted three-body problem: transport and resonance transitions

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V; Marsden, Jerrold E

    2004-01-01

    A method of time-frequency analysis based on wavelets is applied to the problem of transport between different regions of the solar system, using the model of the circular restricted three-body problem in both the planar and the spatial versions of the problem. The method is based on the extraction of instantaneous frequencies from the wavelet transform of numerical solutions. Time-varying frequencies provide a good diagnostic tool to discern chaotic trajectories from regular ones, and we can identify resonance islands that greatly affect the dynamics. Good accuracy in the calculation of time-varying frequencies allows us to determine resonance trappings of chaotic trajectories and resonance transitions. We show the relation between resonance transitions and transport in different regions of the phase space

  13. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  14. Time-dependent resonant tunnelling for parallel-coupled double quantum dots

    International Nuclear Information System (INIS)

    Dong Bing; Djuric, Ivana; Cui, H L; Lei, X L

    2004-01-01

    We derive the quantum rate equations for an Aharonov-Bohm interferometer with two vertically coupled quantum dots embedded in each of two arms by means of the nonequilibrium Green function in the sequential tunnelling regime. Based on these equations, we investigate time-dependent resonant tunnelling under a small amplitude irradiation and find that the resonant photon-assisted tunnelling peaks in photocurrent demonstrate a combination behaviour of Fano and Lorentzian resonances due to the interference effect between the two pathways in this parallel configuration, which is controllable by threading the magnetic flux inside this device

  15. Quantum limits on the time-bandwidth product of an optical resonator.

    Science.gov (United States)

    Tsang, Mankei

    2018-01-01

    A thought-provoking proposal by Tsakmakidis et al. [Science356, 1260 (2017)SCIEAS0036-807510.1126/science.aam6662] suggests that nonreciprocal optics can break a time-bandwidth limit to passive resonators. Here I quantize their resonator model and show that quantum mechanics does impose a limit, or requires extra noise to be added in the same fashion as amplified spontaneous emission in an active resonator. I also use thermodynamics to argue that extra dissipation or noise must be present in their proposed device.

  16. Coherence resonance in an excitable system with time delay

    International Nuclear Information System (INIS)

    Sethia, Gautam C.; Kurths, Juergen; Sen, Abhijit

    2007-01-01

    We study the noise activated dynamics of a model excitable system that consists of a subcritical Hopf oscillator with a time delayed nonlinear feedback. The coherence of the noise driven pulses of the system exhibits a novel double peaked structure as a function of the noise amplitude. The two peaks correspond to separate optimal noise levels for excitation of single spikes and multiple spikes (bursts) respectively. The relative magnitudes of these peaks are found to be a sensitive function of time delay. The physical significance of our results and its practical implications in various real life systems are discussed

  17. Parametric and Internal Resonances of an Axially Moving Beam with Time-Dependent Velocity

    Directory of Open Access Journals (Sweden)

    Bamadev Sahoo

    2013-01-01

    Full Text Available The nonlinear vibration of a travelling beam subjected to principal parametric resonance in presence of internal resonance is investigated. The beam velocity is assumed to be comprised of a constant mean value along with a harmonically varying component. The stretching of neutral axis introduces geometric cubic nonlinearity in the equation of motion of the beam. The natural frequency of second mode is approximately three times that of first mode; a three-to-one internal resonance is possible. The method of multiple scales (MMS is directly applied to the governing nonlinear equations and the associated boundary conditions. The nonlinear steady state response along with the stability and bifurcation of the beam is investigated. The system exhibits pitchfork, Hopf, and saddle node bifurcations under different control parameters. The dynamic solutions in the periodic, quasiperiodic, and chaotic forms are captured with the help of time history, phase portraits, and Poincare maps showing the influence of internal resonance.

  18. Explosive Ordnance Disposal (EOD) Ensembles: Biophysical Characteristics and Predicted Work Times With and Without Chemical Protection and Active Cooling Systems

    Science.gov (United States)

    2015-04-29

    Integrated groin protector (IGP), and Boot Protector); GORE lined leather combat boots; and NOMEX® gloves with Velcro ; and EOD9 full face helmet... effective heat removal or cooling capacity of the active cooling system could not be obtained on the manikin, reasonable estimates can be used to...Price MJ, & Oldroyd M. The effect of heat acclimation on thermal strain during explosives ordnance disposal (EOD) related activity in moderate and

  19. Stochastic Resonance and First Arrival Time for Excitable Systems

    Science.gov (United States)

    Duki, Solomon Fekade; Taye, Mesfin Asfaw

    2018-06-01

    We study the noise induced thermally activated barrier crossing of Brownian particles that hop in a piecewise linear potential. Using the exact analytic solutions and via numerical simulations not only we explore the dependence for the first passage time of a single particle but also we calculate the first arrival time for one particle out of N particles. The first arrival time decreases as the number of particles increases as expected. We then explore the thermally activated barrier crossing rate of the system in the presence of time varying signal. The dependence of signal to noise ratio SNR as well as the power amplification (η ) on model parameters is explored. η and SNR depict a pronounced peak at particular noise strength. In the presence of N particles, η is considerably amplified as N steps up showing the weak periodic signal plays a vital role in controlling the noise induced dynamics of the system. Moreover, for the sake of generality, the viscous friction γ is considered to decrease exponentially when the temperature T of the medium increases (γ =Be^{-A T}) as proposed originally by Reynolds (Philos Trans R Soc Lond 177:157, 1886).

  20. Quasi-bound states, resonance tunnelling, and tunnelling times ...

    Indian Academy of Sciences (India)

    analysis of bound states below the threshold energy E = 0 and continuum above the threshold .... p are time reversal states of each other. Similarly, the ... are occurring at above-barrier energies and we do not treat them as QB states. They can ...

  1. On the change of fall-out measured by monitoring post at the time of nuclear explosion

    International Nuclear Information System (INIS)

    Nagai, Tatsuo; Honda, Tadashi; Imai, Toshio

    1977-01-01

    The measurement of the spatial distribution of gamma-ray by monitoring posts has been continued. The measurement has been made with scintillation counters. The annual variation of gamma dose in no-rain season was recorded as background. The depth of snow showed some correlation with the level of the background gamma dose. Natural radioactivity in the air emitted from the terrestrial surface may cause the activity of the air. The relation between rain and dose rate was investigated. The higher dose rate than the background was seen during rain fall. The increase of dose rate was observed after the Chinese nuclear explosion. After the analysis of data from various monitoring posts, the trace line of fall-out activity was determined. The trace of 500 mb, which means about 10 KT of explosion, did not cross Japan, and the trace of 300 mb, meaning 100 KT of explosion, was just over Japan. The movement of the fall out along the trace line was definitely observed. (Kato, T.)

  2. Double giant resonances in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Ring, P.; Podobnik, B.

    1996-01-01

    Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)

  3. Theta-frequency resonance at the cerebellum input stage improves spike-timing on the millisecond time-scale

    Directory of Open Access Journals (Sweden)

    Daniela eGandolfi

    2013-04-01

    Full Text Available The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006. However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer generates its maximum response at 5-7 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber-bundle stimulation. The spatial analysis of granular layer activity performed using voltage-sensitive dye (VSD imaging revealed 5-7 Hz resonance covering large granular layer areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, Kslow (M-like and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the granular layer when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition and learning.

  4. Energy measurement using a resonator based time-of-flight system

    International Nuclear Information System (INIS)

    Pardo, R.C.; Clifft, B.; Johnson, K.W.; Lewis, R.N.

    1983-01-01

    A resonant pick-up time-of-flight system has been developed for the precise measurement of beam energy at the Argonne Tandem-Linac Accelerator System (ATLAS). The excellent timing characteristics available with ATLAS beams make it desirable to design the beam transport system to be isochronous. The advantages of the resonant time-of-flight system over other energy analysis systems such as the dispersive magnet system are numerous. The system is non-interceptive and non-destructive and preserves the beam phase space. It is non-dispersive. Path length variations are not introduced into the beam which would reduce the timing resolution. It has a large signal-to-noise ratio when compared to non-resonant beam pick-up techniques. It provides the means to precisely set the linac energy and potentially to control the energy in a feedback loop. Finally, the resonant pick-up time-of-flight system is less expensive than an equivalent magnetic system. It consists of two beam-excited resonators, associated electronics to decode the information, a computer interface to the linac PDP 11/34 control computer, and software to analyze the information and deduce the measured beam energy. This report describes the system and its components and gives a schematic overview

  5. Probability distribution of wave packet delay time for strong overlapping of resonance levels

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1983-01-01

    Time behaviour of nuclear reactions in the case of high level densities is investigated basing on the theory of overlapping resonances. In the framework of a model of n equivalent channels an analytical expression is obtained for the probability distribution function for wave packet delay time at the compound nucleus production. It is shown that at strong overlapping of the resonance levels the relative fluctuation of the delay time is small at the stage of compound nucleus production. A possible increase in the duration of nuclear reactions with the excitation energy rise is discussed

  6. Critical Pedagogy and APA: A Resonant (and Timely) Interdisciplinary Blend.

    Science.gov (United States)

    Connolly, Maureen; Harvey, William J

    2018-04-12

    Critical pedagogy owes much of its emergence, development, and ongoing relevance to the work of Paulo Freire whose legacy remains relevant for a next generation of scholars who seek to explore issues of inclusion, oppression, social justice, and authentic expression. An interdisciplinary dialogue between critical pedagogy and adapted physical activity is timely, appropriate, and should focus on complex profiles of neurodiversity, mental illness, and mental health, with emphasis on pedagogic practices of practitioners in service delivery and teacher educators who prepare them for professional practice. A case-based scenario approach is used to present practitioner and teacher educator practices. Concrete examples are provided for analyzing and understanding deeper issues and challenges related to neurodiversity in a variety of embodied dimensions in educational and activity contexts. We work with Szostak's approach to interdisciplinary research and model an analysis strategy that integrates and applies the methodological features of interdisciplinarity, adapted physical activity, and critical pedagogy.

  7. Adaptive logical stochastic resonance in time-delayed synthetic genetic networks

    Science.gov (United States)

    Zhang, Lei; Zheng, Wenbin; Song, Aiguo

    2018-04-01

    In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.

  8. Explosive simulants for testing explosive detection systems

    Science.gov (United States)

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  9. Time dependence of resonance γ-radiation modulated by acoustic excitations

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Arakelyan, A.R.; Gabrielyan, R.G.; Kocharyan, L.A.; Grigoryan, G.R.; Slavinskii, M.M.

    1984-01-01

    Experimental investigations of the time dependence of the γ-resonance absorption line intensity in case of modulation by acoustic waves are presented. 57 Co was used as source and a stainless steel foil was chosen as an absorber. The time dependences of the counting rate of the resonant γ-quanta corresponding to excitations with 3400 Hz and with 1.5 or 7 V at the vibrosystem transducer are plotted. The measurements show that the method has principal advantages over the conventional Moessbauer spectroscopy

  10. Energy measurement using a resonator-based time-of-flight system

    International Nuclear Information System (INIS)

    Pardo, R.C.; Lewis, R.N.; Johnson, K.W.; Clifft, B.

    1983-01-01

    The resonant time-of-flight system which has been developed has several advantages over other potential approaches. The system is non-interceptive and nondestructive. The beam phase space is preserved. It is non-dispersive. Path length variations are not introduced into the beam transport which would reduce the timing resolution. It has a large signal-to-noise ratio when compared to non-resonant beam pick-up techniques. It provides the means to precisely set the linac energy and, potentially, to control the energy in a feedback loop is desired. It is less expensive than an equivalent magnetic system

  11. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  12. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2012-01-01

    Full Text Available Pleural effusions associated with pneumonia (parapneumonic effusions are one of the most common causes of exudative pleural effusions in the world. Approximately 20 to 40% of patients hospitalized with pneumonia will have an accompanying pleural effusion. The term 'Explosive pleuritis' was originally described by Braman and Donat in 1986 as pleural effusions developing within hours of admission. We report a 38 years old male patient with minimal pleural effusion which progressed rapidly within one day to involve almost whole of the hemithorax. There were multiple loculations on ultrasonography of thorax. Pleural fluid was sero-sanguinous and revealed gram positive diplococcic. The patient improved with antibiotics and pigtail catheter drainage.

  13. CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application

    Science.gov (United States)

    Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin

    2015-12-01

    Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard

  14. Time resolved resonance Raman spectra of anilino radical and aniline radical cation

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.; Schuler, R.H.

    1987-01-01

    We report, in this paper, submicrosecond time resolved resonance Raman spectra of anilino radical and its radical cation as observed in pulse radiolytic studies of the oxidation of aniline in aqueous solution. By excitation in resonance with the broad and weak electronic transition of anilino radical at 400 nm (ε--1250 M -1 cm -1 ) we have observed, for the first time, the vibrational features of this radical. The Wilson ν 8 /sub a/ ring stretching mode at 1560 cm -1 is most strongly resonance enhanced. The ν 7 /sub a/ CN stretching band at 1505 cm -1 , which is shifted to higher frequency by 231 cm -1 with respect to aniline, is also prominent. The frequency of this latter mode indicates that the CN bond in the radical has considerable double bond character. The Raman spectrum of aniline radical cation, excited in resonance with the --425 nm electronic absorption (ε--4000 M -1 cm -1 ), shows features which are similar to phenoxyl radical. Most of the observed frequencies of this radical in solution are in good agreement with vibrational energies determined by recent laser photoelectron spectroscopic studies in the vapor phase. The bands most strongly enhanced in the resonance Raman spectrum are, however, weak in the photoelectron spectrum. While the vibrational frequencies observed for anilino radical and its isoelectronic cation are quite similar, the resonance enhancement patterns are very different. In particular the ν 14 b 2 mode of anilino radical observed at 1324 cm -1 is highly resonance enhanced because of strong vibronic coupling between the 400 nm 2 A 2 -- 2 B 1 and the higher 2 B 1 -- 2 B 1 electronic transitions

  15. Locating S-wave sources for the SPE-5 explosion using time reversal methods and a close-in, 1000 sensor network

    Science.gov (United States)

    Myers, S. C.; Pitarka, A.; Mellors, R. J.

    2016-12-01

    The Source Physics Experiment (SPE) is producing new data to study the generation of seismic waves from explosive sources. Preliminary results show that far-field S-waves are generated both within the non-elastic volume surrounding explosive sources and by P- to S-wave scattering. The relative contribution of non-elastic phenomenology and elastic-wave scattering to far-field S-waves has been debated for decades, and numerical simulations based on the SPE experiments are addressing this question. The match between observed and simulated data degrades with event-station distance and with increasing time in each seismogram. This suggests that a more accurate model of subsurface elastic properties could result in better agreement between observed and simulated seismograms. A detailed model of subsurface structure has been developed using geologic maps and the extensive database of borehole logs, but uncertainty in structural details remains high. The large N instrument deployment during the SPE-5 experiment offers an opportunity to use time-reversal techniques to back project the wave field into the subsurface to locate significant sources of scattered energy. The large N deployment was nominally 1000, 5 Hz sensors (500 Z and 500 3C geophones) deployed in a roughly rectangular array to the south and east of the SPE-5 shot. Sensor spacing was nominally 50 meters in the interior portion of the array and 100 meters in the outer region, with two dense lines at 25 m spacing. The array covers the major geologic boundary between the Yucca Flat basin and the granitic Climax Stock in which the SPE experiments have been conducted. Improved mapping of subsurface scatterers is expected to result in better agreement between simulated and observed seismograms and aid in our understanding of S-wave generation from explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  16. The stretch to stray on time: Resonant length of random walks in a transient

    Science.gov (United States)

    Falcke, Martin; Friedhoff, Victor Nicolai

    2018-05-01

    First-passage times in random walks have a vast number of diverse applications in physics, chemistry, biology, and finance. In general, environmental conditions for a stochastic process are not constant on the time scale of the average first-passage time or control might be applied to reduce noise. We investigate moments of the first-passage time distribution under an exponential transient describing relaxation of environmental conditions. We solve the Laplace-transformed (generalized) master equation analytically using a novel method that is applicable to general state schemes. The first-passage time from one end to the other of a linear chain of states is our application for the solutions. The dependence of its average on the relaxation rate obeys a power law for slow transients. The exponent ν depends on the chain length N like ν = - N / ( N + 1 ) to leading order. Slow transients substantially reduce the noise of first-passage times expressed as the coefficient of variation (CV), even if the average first-passage time is much longer than the transient. The CV has a pronounced minimum for some lengths, which we call resonant lengths. These results also suggest a simple and efficient noise control strategy and are closely related to the timing of repetitive excitations, coherence resonance, and information transmission by noisy excitable systems. A resonant number of steps from the inhibited state to the excitation threshold and slow recovery from negative feedback provide optimal timing noise reduction and information transmission.

  17. Novel methods for detecting buried explosive devices

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.; Burlage, R.S.; Patek, D.R.; Smith, C.M. [Oak Ridge National Lab., TN (United States); Hibbs, A.D.; Rayner, T.J. [Quantum Magnetics, Inc., San Diego, CA (United States)

    1997-04-01

    Oak Ridge National Laboratory (ORNL) and Quantum Magnetics, Inc. (QM) are exploring novel landmine detection technologies. Technologies considered here include bioreporter bacteria, swept acoustic resonance, nuclear quadrupole resonance (NQR), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and deployment does not require high-tech methods. Swept acoustic resonance may be a useful adjunct to magnetometers in humanitarian demining. For military demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, none has an NQR signature that can be mistaken for RDX or TNT. For both military and commercial demining, sensor fusion entails two daunting tasks, identifying fusible features in both present-day and emerging technologies, and devising a fusion algorithm that runs in real-time on cheap hardware. Preliminary research in these areas is encouraging. A bioreporter bacterium for TNT detection is under development. Investigation has just started in swept acoustic resonance as an approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine detection, including TNT-based mines. Recent discoveries in semiotics may be the breakthrough that will lead to a robust fused detection scheme.

  18. Time-dependent transport in interacting and noninteracting resonant-tunneling systems

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Wingreen, Ned S.; Meir, Yigal

    1994-01-01

    noninteracting resonant-tunneling system are presented. Due to the coherence between the leads and the resonant site, the current does not follow the driving signal adiabatically: a ''ringing'' current is found as a response to a voltage pulse, and a complex time dependence results in the case of harmonic......We consider a mesoscopic region coupled to two leads under the influence of external time-dependent voltages. The time dependence is coupled to source and drain contacts, the gates controlling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive, with the Keldysh...... nonequilibrium-Green-function technique, a formal expression for the fully nonlinear, time-dependent current through the system. The analysis admits arbitrary interactions in the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to the leads, the time-averaged current...

  19. Time of acquisition and network stability in pediatric resting-state functional magnetic resonance imaging

    NARCIS (Netherlands)

    T.J.H. White (Tonya); R.L. Muetzel (Ryan); M. Schmidt (Marcus); S.J.E. Langeslag (Sandra); V.W.V. Jaddoe (Vincent); A. Hofman (Albert); V.D. Calhoun Vince D. (V.); F.C. Verhulst (Frank); H.W. Tiemeier (Henning)

    2014-01-01

    textabstractResting-state functional magnetic resonance imaging (rs-fMRI) has been shown to elucidate reliable patterns of brain networks in both children and adults. Studies in adults have shown that rs-fMRI acquisition times of ∼5 to 6 min provide adequate sampling to produce stable spatial maps

  20. Real-Time Particle Mass Spectrometry Based on Resonant Micro Strings

    DEFF Research Database (Denmark)

    Schmid, Silvan; Dohn, Søren; Boisen, Anja

    2010-01-01

    by measuring the resonant frequency shifts of the first two bending modes. The method has been tested by detecting the mass spectrum of micro particles placed on a micro string. This method enables real-time mass spectrometry necessary for applications such as personal monitoring devices for the assessment......Micro- and nanomechanical resonators are widely being used as mass sensors due to their unprecedented mass sensitivity. We present a simple closed-form expression which allows a fast and quantitative calculation of the position and mass of individual particles placed on a micro or nano string...

  1. Resonant e+e- production by time-varying electromagnetic field

    International Nuclear Information System (INIS)

    Farakos, K.; Koutsoumbas, G.; Tiktopoulos, G.

    1990-01-01

    As pointed out by Cornwall and Tiktopoulos (CT) strong, time-varying electric fields may produce e + e - pairs in a resonant fashion. This effect could be related to the sharp peaks in the e + e - spectrum observed in the GSI heavy-ion collision experiments. We attempt to go beyond the case of spatially uniform fields discussed by CT. We find that resonant e + e - production indeed takes place for electric fields derived from four-potentials of the form A 1 =A 2 =A 0 =0, A 3 =δ(t)b(x 3 ) provided by b(x) has discontinuities with a jump at least equal to π. (orig.)

  2. Expansion shock waves in the implosion process from a time-reversible molecular-dynamics simulation of a dual explosion process

    International Nuclear Information System (INIS)

    Komatsu, Nobuyoshi; Abe, Takashi

    2007-01-01

    Why does not an expansion shock wave exist in a gaseous medium in nature? The reason has been widely believed to be the irreversibility in nature, while an obvious demonstration for this belief has not been accomplished yet. In order to resolve the question from a microscopic viewpoint, an implosion process dual to an explosion process was investigated by means of the molecular-dynamics method (MD). To this aim, we employed a ''bit-reversible algorithm (Bit MD)'' that was completely time-reversible in a microscopic viewpoint and was free from any round-off error. Here we show that, through a dual implosion simulation (i.e., a time-reversible simulation of the explosion), a kind of expansion shock wave is successfully formed in the Bit MD simulation. Furthermore, we show that when the controlled noise is intentionally added to the Bit MD, the expansion shock wave disappears dramatically and turns into an isentropic expansion wave, even if the noise is extremely small. Since the controlled noise gives rise to the irreversibility in the Bit MD simulation, it can be concluded that the irreversibility in the system prohibits the expansion shock wave from appearing in the system

  3. Analytical detection of explosives and illicit, prescribed and designer drugs using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Bishu; Petersson, Fredrik; Juerschik, Simone [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Sulzer, Philipp; Jordan, Alfons [IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Maerk, Tilmann D. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Watts, Peter; Mayhew, Chris A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 4TT (United Kingdom)

    2011-07-01

    This work demonstrates the extremely favorable features of Proton Transfer Reaction Time-of-flight Mass Spectrometry (PTR-TOF-MS) for the detection and identification of solid explosives, chemical warfare agent simulants and illicit, prescribed and designer drugs in real time. Here, we report the use of PTR-TOF, for the detection of explosives (e.g., trinitrotoluene, trinitrobenzene) and illicit, prescribed and designer drugs (e.g., ecstasy, morphine, heroin, ethcathinone, 2C-D). For all substances, the protonated parent ion (as we used H{sub 3}O{sup +} as a reagent ion) could be detected, providing a high level of confidence in their identification since the high mass resolution allows compounds having the same nominal mass to be separated. We varied the E/N from 90 to 220 T{sub d} (1 T{sub d}=10{sup -17} Vcm{sup -1}). This allowed us to study fragmentation pathways as a function of E/N (reduced electric field). For a few compounds rather unusual E/N dependencies were also discovered.

  4. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  5. Infinite dwell time and group delay in resonant electron tunneling through double complex potential barrier

    Science.gov (United States)

    Opacak, Nikola; Milanović, Vitomir; Radovanović, Jelena

    2017-12-01

    Tunneling times in complex potentials are investigated. Analytical expressions for dwell time, self-interference time and group delay are obtained for the case of complex double delta potentials. It is shown that we can always find a set of parameters of the potential so that the tunneling times achieve very large values and even approach infinity for the case of resonance. The phenomenon of infinite tunneling times occurs for only one particular positive value of the imaginary part of the potential, if all other parameters are given.

  6. The optimization of scan timing for contrast-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Lee, Jong Min; Chang, Yong Min; Ryeom, Hun Kyu; Lee, Sang Kwon; Kim, Yong Sun; Kang, Duk Sik; Tirman, Philip J.

    2000-01-01

    To determine the optimal scan timing for contrast-enhanced magnetic resonance angiography and to evaluate a new timing method based on the arteriovenous circulation time. Eighty-nine contrast-enhanced magnetic resonance angiographic examinations were performed mainly in the extremities. A 1.5T scanner with a 3-D turbo-FLASH sequence was used, and during each study, two consecutive arterial phases and one venous phase were acquired. Scan delay time was calculated from the time-intensity curve by the traditional (n = 48) and/or the new (n = 41) method. This latter was based on arteriovenous circulation time rather than peak arterial enhancement time, as used in the traditional method. The numbers of first-phase images showing a properly enhanced arterial phase were compared between the two methods. Mean scan delay time was 5.4 sec longer with the new method than with the traditional. Properly enhanced first-phase images were found in 65% of cases (31/48) using the traditional timing method, and 95% (39/41) using the new method. When cases in which there was mismatch between the target vessel and the Time-intensity curve acquisition site are excluded, erroneous acquisition occurred in seven cases with the traditional method, but in none with the new method. The calculation of scan delay time on the basis of arteriovenous circulation time provides better timing for arterial phase acquisition than the traditional method

  7. Explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    1971-04-01

    An explosive composition containing ammonium nitrate consists of (1) from 40 to 75 Pt. by wt of particulate ammonium nitrate, (2) from 20 to 35 Pt. by wt of a solution selected from the group consisting of aqueous magnesium nitrate, aqueous ammonium nitrate and aqueous ammoniacal ammonium nitrate; and (3) at least 2 Pt. by wt of a setting agent selected from the group consisting of alkaline earth metal oxides, zinc oxide, lead monoxide, calcined dolomitic limestone, anhydrous calcium sulfate, anhydrous magnesium sulfate, anhydrous sodium tetrapyrophosphate and anhydrous sodium thiosulfate. The setting agent is further characterized in setting the composition to a solid material which contains solvent used in the liquid phase. (Abstract only - original article not available from T.U.)

  8. Explosive composition

    Energy Technology Data Exchange (ETDEWEB)

    Slykhouse, T E

    1968-05-09

    An ammonium nitrate explosive composition is characterized in that it contains from 40 to 75 parts by wt of particulate ammonium nitrate, from 20 to 35 parts by wt of a solution selected from the group consisting of aqueous magnesium nitrate, aqueous ammonium nitrate, and aqueous ammoniacal ammonium nitrate. It also contains at least 2 parts by wt of a setting agent selected from the group consisting of alkaline earth metal oxides, zinc oxide, lead monoxide, calcined dolomitic limestone, substantially anhydrous calcium sulfate, substantially anhydrous magnesium sulfate, substantially anhydrous sodium tetrapyrophosphate and substantially anhydrous sodium thiosulfate. The setting agent is further characterized in that it sets the composition to a solid material which contains solvent used in the liquid phase. (12 claims)

  9. Slurry explosives

    Energy Technology Data Exchange (ETDEWEB)

    1973-08-23

    A slurry explosive is comprised of (1) a composition consisting of ammonium nitrate or a mixture of ammonium nitrate and an alkali metal nitrate; or an alkaline earth metal nitrate; or an alkali metal nitrate and an alkaline earth metal nitrate; at least one member selected from the group consisting of 2,4,6-trinitrotoluene, aluminum, smokeless powder and fuels; and water; (2) 0.1 to 2.0% of guar gum; (3) between 0% and 0.3% of a sodium, potassium, calcium or magnesium borate; and greater than 0% but not more than 20% of hexamethylene tetramine; and (4) 0.02 to 2.0% of antimony potassium tartarate, antimony trioxide, antimony trisulfide or a mixture of these antimony compounds, % by wt.

  10. Explosive coalescence of Magnetic Islands

    International Nuclear Information System (INIS)

    Tajima, T.; Sakai, J.I.

    1985-04-01

    An explosive reconnection process associated with nonlinear evolution of the coalescence instability is found through studies of particle and magnetohydrodynamic simulations. The explosive coalescence is a self-similar process of magnetic collapse, in which the magnetic and electrostatic energies and temperatures explode toward the explosion time t 0 as (t 0 -t)/sup 8/3/,(t 0 -t) -4 , and (t 0 -t)/sup -8/3/, respectively. Ensuing amplitude oscillations in these quantities are identified by deriving an equation of motion for the scale factor in the Sagdeev potential

  11. RESONANCE

    Indian Academy of Sciences (India)

    Forest fires have occurred across the globe at various times ... thought to have impacts on the ecology of plants and ... the soil and finally when it comes in contact with forest litter it .... UNDAC: United Nations Disaster Assessment Committee .... [2] Stephen J Pyne, America's Fire Management on Wildlands and Forests, ...

  12. RESONANCE

    Indian Academy of Sciences (India)

    Seymour Cray's idea was to build a 'balanced system', that is, a system whose ... operations per second in order to solve problems such as .... This is called a uniform address space and the time to access a .... CEs and managing message routing between CEs. .... which contains user callable routines for message passing,.

  13. RESONANCE

    Indian Academy of Sciences (India)

    The Wright brothers were from a low middle class family and their formal education did not go beyond high school, and though each spent the time for a ... concealed is his hands, and before we ... sublime disregard for science, at once dubbed ...

  14. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. [[Page 64247

  15. Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-12-20

    2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (∼30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ∼10 pg/mm2. Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies. © 2013 Springer Science+Business Media.

  16. Spin and time-resolved magnetic resonance in radiation chemistry. Recent developments and perspectives

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1997-01-01

    Time-resolved pulsed EPR and ODMR in studies on early events in radiation chemistry are examined. It is concluded that these techniques yield valuable and diverse information about chemical reactions in spurs, despite the fact that the spur reactions occur on a time scale that is much shorter than the time resolution of these methods. Several recent examples include EPR of H/D atoms in vitreous silica and cryogenic liquids and ODMR of doped alkane solids and amorphous semiconductors. It is argued that a wider use of time-resolved magnetic resonance methods would benefit the studies on radiation chemistry of disordered solids, simple liquids, and polymers. (author)

  17. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    Science.gov (United States)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.

  18. Time-dependent shape fluctuations and the giant dipole resonance in hot nuclei: Realistic calculations

    International Nuclear Information System (INIS)

    Alhassid, Y.; Bush, B.; Yale Univ., New Haven, CT

    1990-01-01

    The effects of time-dependent shape fluctuations on the giant dipole resonance (GDR) in hot rotating nuclei are investigated. Using the framework of the Landau theory of shape transitions we develop a realistic macroscopic stochastic model to describe the quadrupole time-dependent shape fluctuations and their coupling to the dipole degrees of freedom. In the adiabatic limit the theory reduces to a previous adiabatic theory of static fluctuations in which the GDR cross section is calculated by averaging over the equilibrium distribution with the unitary invariant metric. Nonadiabatic effects are investigated in this model and found to cause structural changes in the resonance cross section and motional narrowing. Comparisons with experimental data are made and deviations from the adiabatic calculations can be explained. In these cases it is possible to determine from the data the damping of the quadrupole motion at finite temperature. (orig.)

  19. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  20. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  1. MCRTOF, Multiple Scattering of Resonance Region Neutron in Time of Flight Experiments

    International Nuclear Information System (INIS)

    Ohkubo, Mako

    1984-01-01

    1 - Description of program or function: Multiple scattering of neutrons in the resonance energy region impinging on a disk with an arbitrary angle. 2 - Method of solution: The Monte Carlo method is employed to simulate the path of an incident neutron in a medium for which macroscopic cross sections are determined by resonance parameters. By tracing a large number of neutrons, probabilities for capture, transmission, front-face scattering, rear-face scattering and side-face scattering are determined and printed out as function of incident neutron energy. Optionally, the distribution of capture locations in the disk can be printed. The incident neutron energy is swept to fit a situation as encountered in time-of-flight experiments. 3 - Restrictions on the complexity of the problem: The cross section file is constructed from input resonance parameters with a single- level Breit-Wigner formula. The following restrictions and simplifications apply: - The maximum number of resonances is five. - Reactions other than capture and scattering are neglected. - The angular scattering distribution in the center-of-mass system is assumed to be uniform. - Chemical binding effects are neglected

  2. Time dependence, complex scaling, and the calculation of resonances in many-electron systems

    International Nuclear Information System (INIS)

    Nicolaides, C.A.; Beck, D.R.

    1978-01-01

    The theory deals with certain aspects of the formal properties of atomic and molecular highly excited nonstationary states and the problem of calculating their wave functions, energies, and widths. The conceptual framework is a decay theory based on the consistent definition and calculation of the t = 0 localized state, vertical bar psi 0 >. Given this framework, the following topics are treated: The variational calculation of psi 0 and E 0 using a previously published theory that generalized the projection operator approach to many-electron systems. The exact definition of the resonance energy. The possibility of bound states in the continuum. The relation of psi 0 to the resonance (Gamow) function psi and of the Hamiltonian to the rotated Hamiltonian H(theta) based on the notion of perturbation of boundary conditions in the asymptotic region. The variational calculation of real and complex energies employing matrix elements of H and H 2 with square-integrable and resonance functions. The mathematical structure of the time evolution of vertical bar psi 0 > and the possibility of observing nonexponential decays in certain autoionizing states that are very close to the ionization threshold. A many-body theory of atomic and molecular resonances that employs the coordinate rotation method. 107 references

  3. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    International Nuclear Information System (INIS)

    Haverkort, Maurits W.

    2016-01-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty , a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org. (paper)

  4. Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode

    OpenAIRE

    Saffarzadeh, Alireza; Daqiq, Reza

    2009-01-01

    We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...

  5. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    OpenAIRE

    Quodbach, J.; Moussavi, A.; Tammer, R.; Frahm, J.; Kleinebudde, P.

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 x 80 m with a section thickness of only 600 m were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the i...

  6. Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations

    Energy Technology Data Exchange (ETDEWEB)

    Després, Bruno, E-mail: despres@ann.jussieu.fr [Laboratory Jacques Louis Lions, University Pierre et Marie Curie, Paris VI, Boîte courrier 187, 75252 Paris Cedex 05 (France); Weder, Ricardo, E-mail: weder@unam.mx [Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, DF 01000 (Mexico)

    2016-03-22

    We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas. - Highlights: • The upper-hybrid resonance in the cold plasma model is considered. • The long-time asymptotic of the solutions to Maxwell's equations is studied. • A method based in a singular limiting absorption principle is proposed.

  7. Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to Imaging With Zero Echo Time.

    Science.gov (United States)

    Marjanovic, Josip; Weiger, Markus; Reber, Jonas; Brunner, David O; Dietrich, Benjamin E; Wilm, Bertram J; Froidevaux, Romain; Pruessmann, Klaas P

    2018-02-01

    For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent.

  8. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    Science.gov (United States)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  9. The effects of resonances on time delay estimation for water leak detection in plastic pipes

    Science.gov (United States)

    Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Gao, Yan; Paschoalini, Amarildo T.

    2018-04-01

    In the use of acoustic correlation methods for water leak detection, sensors are placed at pipe access points either side of a suspected leak, and the peak in the cross-correlation function of the measured signals gives the time difference (delay) between the arrival times of the leak noise at the sensors. Combining this information with the speed at which the leak noise propagates along the pipe, gives an estimate for the location of the leak with respect to one of the measurement positions. It is possible for the structural dynamics of the pipe system to corrupt the time delay estimate, which results in the leak being incorrectly located. In this paper, data from test-rigs in the United Kingdom and Canada are used to demonstrate this phenomenon, and analytical models of resonators are coupled with a pipe model to replicate the experimental results. The model is then used to investigate which of the two commonly used correlation algorithms, the Basic Cross-Correlation (BCC) function or the Phase Transform (PHAT), is more robust to the undesirable structural dynamics of the pipe system. It is found that time delay estimation is highly sensitive to the frequency bandwidth over which the analysis is conducted. Moreover, it is found that the PHAT is particularly sensitive to the presence of resonances and can give an incorrect time delay estimate, whereas the BCC function is found to be much more robust, giving a consistently accurate time delay estimate for a range of dynamic conditions.

  10. A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains

    International Nuclear Information System (INIS)

    Liu Dan-Dan; Zhang Hong

    2011-01-01

    We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time-dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Time domain-nuclear magnetic resonance study of chars from southern hardwoods

    International Nuclear Information System (INIS)

    Elder, Thomas; Labbe, Nicole; Harper, David; Rials, Timothy

    2006-01-01

    Chars from the thermal degradation of silver maple (Acer saccharinum), red maple (Acer rubrum), sugar maple (Acer saccharum), and white oak (Quercus spp.), performed at temperatures from 250 to 350 o C, were examined using time domain-nuclear magnetic resonance spectroscopy. Prior to analysis, the chars were equilibrated under conditions insuring the presence of bound water only and both bound water and free water. Transverse relaxation times were found to be related to the moisture content of the chars, which varied with temperature. At elevated temperatures the number of signals assigned to free water decreased, indicative of an increase in pore size within the chars

  12. Sub-Poissonian photon statistics in time-dependent collective resonance fluorescence

    International Nuclear Information System (INIS)

    Buzek, V.; Tran Quang; Lan, L.H.

    1989-10-01

    We have discussed the photon statistics of the spectral components of N-atom time-dependent resonance fluorescence. It is shown that in contrast to the stationary limit, sub-Poissonian photon statistics in the sidebands occur for any number N of atoms including the case N >> 1. Reduction in Maldel's parameters Q ±1 is found with increasing numbers of atoms. The typical time for the presence of sub-Poissonian statistics is proportional to 1/N. (author). 31 refs, 1 fig

  13. Deformation effect and five-fold correlation time reversal test in neutron resonances using aligned 165Ho

    International Nuclear Information System (INIS)

    Huffman, P.R.; Roberson, N.R.; Gould, C.R.; Haase, D.G.

    1993-01-01

    In 1988, Bunakov proposed a test of parity (P) even time reversal (T) violation in the neighborhood of two interfering p-wave resonances of the same spin. A similar enhancement exists if a d-wave and s-wave resonance interfere. Until now, however, no suitable resonances have been located in nuclei which can be aligned, and the only tests of time reversal violation in neutron transmission have been carried out with MeV-energy neutrons. The authors estimate the deformation effect cross sections for neutron resonances in aligned 165 Ho, and estimate the sensitivity of a five-fold correlation time reversal test carried out on a resonance that exhibits a deformation effect

  14. Explosive Characteristics of Carbonaceous Nanoparticles

    Science.gov (United States)

    Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok

    2013-03-01

    Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)

  15. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  16. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  17. Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models

    Science.gov (United States)

    Ravi, Aruna

    Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical

  18. The Effects of Metabolic Work Rate and Ambient Environment on Physiological Tolerance Times While Wearing Explosive and Chemical Personal Protective Equipment

    Directory of Open Access Journals (Sweden)

    Joseph T. Costello

    2015-01-01

    Full Text Available This study evaluated the physiological tolerance times when wearing explosive and chemical (>35 kg personal protective equipment (PPE in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4, and 5.5 km·h−1 in the following environmental conditions, 21, 30, and 37°C wet bulb globe temperature (WBGT. Participants exercised for 60 min or until volitional fatigue, core temperature reached 39°C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate, and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37 < WBGT30 < WBGT21; P < 0.05 and work intensities (5.5 < 4 < 2.5 km·h−1; P < 0.001. The majority of trials (85/108; 78.7% were terminated due to participant’s heart rate exceeding 90% of their maximum. A total of eight trials (7.4% lasted the full duration. Only nine (8.3% trials were terminated due to volitional fatigue and six (5.6% due to core temperatures in excess of 39°C. These results demonstrate that physiological tolerance times are influenced by the external environment and workload and that cardiovascular strain is the limiting factor to work tolerance when wearing this heavy multilayered PPE.

  19. Explosions on a gas-vacuum interface

    International Nuclear Information System (INIS)

    Nutt, G.; Klein, L.; Ratcliffe, A.E.

    1981-01-01

    A finite-difference computer code is used to calculate the time development of an explosion on a gas-vacuum interface. An analytic theory of the shape of the shock wave produced in the explosion is compared with the results of the computer simulation. The assumptions used in obtaining this analytic solution are verified, and the degree to which the variables describing the explosion are self-similar is examined. Finally, certain consistency relations among the similarity exponents are tested

  20. Numerical study on the matching law between charge caliber and delay time of the rod-shaped explosively formed projectile

    Science.gov (United States)

    Shen, H. M.; Li, W. B.; Wang, X. M.; Li, W. B.

    2017-09-01

    To study the application of multi-point initiation technology on shaped charge warhead, numerically simulated the influence of initiating delay time of different charge caliber on detonation wave and performance forming of penetrator. The study found that as charge caliber increased, the allowable initiating delay time also increased. For the commonly used small and medium-charge caliber shaped charge warhead, the charge caliber(Dk ) and the delay time (σ) presented a linear relationship σ = -12.79+1.25Dk . As charge caliber continue increasing, the initiating allowable delay time started to increase exponentially. The study reveals the matching law between charge caliber, initiating delay time and performance forming of penetrator, and it offers guidance for the design of multi-point initiation network for shaped charge.

  1. Follow-up of regional myocardial T2 relaxation times in patients with myocardial infarction evaluated with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Krauss, X.H.; Wall, E. van der; Laarse, A. van der; Dijkman, P.R.M. van; Bruschke, A.V.G.; Doornbos, J.; Roos, A. de; Voorthuisen, A.E. van

    1990-01-01

    Multi-echo spin-echo cardiac magnetic resonance imaging studies (echo times 30, 60, 90 and 120 ms) were performed in 19 patients with a 7-14-day (mean 10) old myocardial infarction and were repeated in 13 patients 4-7 months (mean 6) later. Also, 10 normal subjects were studied with magnetic resonance imaging. T2 relaxation times of certain left ventricular segments were calculated from the signal intensities at echo times of 30 and 90 ms. Compared to normal individuals, the mean T2 values on the early magnetic resonance images of the patients with inferior infarction showed significantly prolonged T2 times in the inferiorly localized segments, while on the follow-up magnetic resonance images the T2 times had almost returned to the normal range. Also the patients with anterior infarction showed significantly prolonged T2 times in the anteriorly localized segments on the early nuclear magnetic resonance images, but the T2 times remained prolonged at the follow-up magnetic resonance images. For every patient a myocardial damage score was determined, which was defined as the sum of the segmental T2 values in the patients minus the upper limit of normal T2 values obtained from the normal volunteers (= mean normal+2SD). The damage score on both the early and late magnetic resonance imaging study correlated well with the infarction size determined by myocardial enzyme release. Only the patients with an inferior infarction showed a significant decrease in damage score at follow-up magnetic resonance imaging. It is concluded that the regional T2 relaxation times are increased in infarcted myocardial regions and may remain prolonged for at least up to 7 months after the acute event, particularly in patients with an anterior infarction. These findings demonstrate the clinical potential of T2-weighted magnetic resonance imaging studies for detecting myocardial infarction, and estimating infarct size for an extended period after acute myocardial infarction. (author). 29 refs

  2. Stochastic resonance in a bistable system subject to multi-time-delayed feedback and aperiodic signal

    International Nuclear Information System (INIS)

    Li Jianlong; Zeng Lingzao

    2010-01-01

    We discuss in detail the effects of the multi-time-delayed feedback driven by an aperiodic signal on the output of a stochastic resonance (SR) system. The effective potential function and dynamical probability density function (PDF) are derived. To measure the performance of the SR system in the presence of a binary random signal, the bit error rate (BER) defined by the dynamical PDF is employed, as is commonly used in digital communications. We find that the delay time, strength of the feedback, and number of time-delayed terms can change the effective potential function and the effective amplitude of the signal, and then affect the BER of the SR system. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the multi-time-delayed feedback on SR and give a guidance to nonlinear systems in the application of information processing.

  3. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  4. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    Science.gov (United States)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development

  6. Exact invariants in the form of momentum resonances for particle motion in one-dimensional, time-dependent potentials

    International Nuclear Information System (INIS)

    Goedert, J.; Lewis, H.R.

    1984-01-01

    A momentum-resonance ansatz of Lewis and Leach was used to study exact invariants for time-dependent, one-dimensional potentials. This ansatz provides a framework for finding invariants admitted by a larger class of time-dependent potentials that was known previously. For a potential that admits an exact invariant in this resonance form, we have shown how to construct the invariant as a functional of the potential in terms of the solution of a definite linear algebraic system of equations. We have found a necessary and sufficient condition on the potential for the existence of an invariant with a given number of resonances. There exist more potentials that admit invariants with two resonances than were previously known and we have found an example in parametric form of such a potential. We have also found examples of potentials that admit invariants with three resonances

  7. Photolytic interruptions of the bacteriorhodopsin photocycle examined by time-resolved resonance raman spectroscopy.

    Science.gov (United States)

    Grieger, I; Atkinson, G H

    1985-09-24

    An investigation of the photolytic conditions used to initiate and spectroscopically monitor the bacteriorhodopsin (BR) photocycle utilizing time-resolved resonance Raman (TR3) spectroscopy has revealed and characterized two photoinduced reactions that interrupt the thermal pathway. One reaction involves the photolytic interconversion of M-412 and M', and the other involves the direct photolytic conversion of the BR-570/K-590 photostationary mixture either to M-412 and M' or to M-like intermediates within 10 ns. The photolytic threshold conditions describing both reactions have been quantitatively measured and are discussed in terms of experimental parameters.

  8. Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.

    Science.gov (United States)

    Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori

    2011-12-05

    We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

  9. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium

    International Nuclear Information System (INIS)

    Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.; Kurz, H.

    1985-01-01

    The dynamics of the electron-hole plasma in silicon and germanium samples irradiated by 20 ps. 532 nm laser pulses has been investigated in the near infrared by the time-resolved picosecond optical spectroscopy. The experimental reflectivities and transmission are compared with the predictions of the thermal model for degenerate carrier distributions through the Drude formalism. Above a certain fluence, a significant deviation between measured and calculated values indicates a strong increase of the recombination rate as soon as the plasma resonances become comparable with the band gaps. These new plasmon-aided recombination channels are particularly pronounced in germanium. 15 refs., 8 figs

  10. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France); McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Glazyrin, K. [Photon Science, DESY, D-22607 Hamburg (Germany); Vasiukov, D.; Aprilis, G. [Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, D-95440 Bayreuth (Germany); Chumakov, A. I.; Rüffer, R. [ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France)

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  11. Real-time monitoring of human blood clotting using a lateral excited film bulk acoustic resonator

    Science.gov (United States)

    Chen, Da; Wang, Jingjng; Wang, Peng; Guo, Qiuquan; Zhang, Zhen; Ma, Jilong

    2017-04-01

    Frequent assay of hemostatic status is an essential issue for the millions of patients using anticoagulant drugs. In this paper, we presented a micro-fabricated film bulk acoustic sensor for the real-time monitoring of blood clotting and the measurement of hemostatic parameters. The device was made of an Au/ZnO/Si3N4 film stack and excited by a lateral electric field. It operated under a shear mode resonance with the frequency of 1.42 GHz and had a quality factor of 342 in human blood. During the clotting process of blood, the resonant frequency decreased along with the change of blood viscosity and showed an apparent step-ladder curve, revealing the sequential clotting stages. An important hemostatic parameter, prothrombin time, was quantitatively determined from the frequency response for different dilutions of the blood samples. The effect of a typical anticoagulant drug (heparin) on the prothrombin time was exemplarily shown. The proposed sensor displayed a good consistency and clinical comparability with the standard coagulometric methods. Thanks to the availability of direct digital signals, excellent potentials of miniaturization and integration, the proposed sensor has promising application for point-of-care coagulation technologies.

  12. On the Physiology of Normal Swallowing as Revealed by Magnetic Resonance Imaging in Real Time

    Directory of Open Access Journals (Sweden)

    Arno Olthoff

    2014-01-01

    Full Text Available The aim of this study was to assess the physiology of normal swallowing using recent advances in real-time magnetic resonance imaging (MRI. Therefore ten young healthy subjects underwent real-time MRI and flexible endoscopic evaluations of swallowing (FEES with thickened pineapple juice as oral contrast bolus. MRI movies were recorded in sagittal, coronal, and axial orientations during successive swallows at about 25 frames per second. Intermeasurement variation was analyzed and comparisons between real-time MRI and FEES were performed. Twelve distinct swallowing events could be quantified by real-time MRI (start time, end time, and duration. These included five valve functions: oro-velar opening, velo-pharyngeal closure, glottal closure, epiglottic retroflexion, and esophageal opening; three bolus transports: oro-velar transit, pharyngeal delay, pharyngeal transit; and four additional events: laryngeal ascent, laryngeal descent, vallecular, and piriform sinus filling and pharyngeal constriction. Repetitive measurements confirmed the general reliability of the MRI method with only two significant differences for the start times of the velo-pharyngeal closure (t(8=-2.4, P≤0.046 and laryngeal ascent (t(8=-2.6, P≤0.031. The duration of the velo-pharyngeal closure was significantly longer in real-time MRI compared to FEES (t(8=-3.3, P≤0.011. Real-time MRI emerges as a simple, robust, and reliable tool for obtaining comprehensive functional and anatomical information about the swallowing process.

  13. Analysis of Current-mode Detectors For Resonance Detection In Neutron Optics Time Reversal Symmetry Experiment

    Science.gov (United States)

    Forbes, Grant; Noptrex Collaboration

    2017-09-01

    One of the most promising explanations for the observed matter-antimatter asymmetry in our universe is the search for new sources of time-reversal (T) symmetry violation. The current amount of violation seen in the kaon and B-meson systems is not sufficient to describe this asymmetry. The Neutron Optics Time Reversal Experiment Collaboration (NOPTREX) is a null test for T violation in polarized neutron transmission through a polarized 139La target. Due to the high neutron flux needed for this experiment, as well as the ability to effectively subtract background noise, a current-mode neutron detector that can resolve resonances at epithermal energies has been proposed. In order to ascertain if this detector design would meet the requirements for the eventual NOPTREX experiment, prototypical detectors were tested at the NOBORU beam at the Japan Proton Accelerator Research Complex (JPARC) facility. Resonances in In and Ta were measured and the collected data was analyzed. This presentation will describe the analysis process and the efficacy of the detectors will be discussed. Department of Energy under Contract DE-SC0008107, UGRAS Scholarship.

  14. Explosive coalescence of magnetic islands and explosive particle acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Sakai, J.I.

    1985-07-01

    An explosive reconnection process associated with the nonlinear evolution of the coalescence instability is found through studies of the electromagnetic particle simulation and the magnetohydrodynamic particle simulation. The explosive coalescence is a process of magnetic collapse, in which we find the magnetic and electrostatic field energies and temperatures (ion temperature in the coalescing direction, in particular) explode toward the explosion time t 0 as (t 0 - t)/sup -8/3/, (t 0 - t) -4 , and (t 0 - t)/sup -8/3/, respectively for a canonical case. Single-peak, double-peak, and triple-peak structures of magnetic energy, temperature, and electrostatic energy, respectively, are observed on the simulation as overshoot amplitude oscillations and are theoretically explained. The heuristic model of Brunel and Tajima is extended to this explosive coalescence in order to extract the basic process. Since the explosive coalescence exhibits self-similarity, a temporal universality, we theoretically search for a self-similar solution to the two-fluid plasma equations

  15. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source.

    Science.gov (United States)

    Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E

    2012-10-01

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  16. Stochastic resonance driven by time-modulated correlated coloured noise sources in a single-mode laser

    International Nuclear Information System (INIS)

    De-Yi, Chen; Li, Zhang

    2009-01-01

    This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by time-modulated correlated coloured noise sources. The power spectrum and signal-to-noise ratio R of the laser intensity are calculated by the linear approximation. The effects caused by noise self-correlation time τ 1 , τ 2 and cross-correlated time τ 3 for stochastic resonance are analysed in two ways: τ 1 , τ 2 and τ 3 are taken to be the independent variables and the parameters respectively. The effects of the gain coefficient Γ and loss coefficient K on the stochastic resonance are also discussed. It is found that besides the presence of the standard form and the broad sense of stochastic resonance, the number of extrema in the curve of R versus K is reduced with the increase of the gain coefficient Γ

  17. Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues

    International Nuclear Information System (INIS)

    Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo; Suda, Syuichi; Fukuzaki, Minoru.

    1994-01-01

    We investigated the nuclear magnetic resonance (NMR) relaxation times, T 1 and T 2 , for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T 1 and T 2 for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T 1 and T 2 between adenocarcinoma and lung tissue. The values of T 1 and T 2 for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T 1 and T 2 are not specific to malignant tissues. (author)

  18. Time-Domain Nuclear Magnetic Resonance Investigation of Water Dynamics in Different Ginger Cultivars.

    Science.gov (United States)

    Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang

    2016-01-20

    Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.

  19. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    Science.gov (United States)

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.

  20. Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study

    DEFF Research Database (Denmark)

    Kjaer, L; Thomsen, C; Henriksen, O

    1987-01-01

    Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different...... concentrations of CuSO4 and correlating the calculated T1 and T2 values with reference values obtained by two spectrometers (corrected to MRI-proton frequency = 64 MHz) we found a maximum deviation of about 10 per cent. Measurements performed on a large water phantom in order to evaluate the homogeneity...... in the imaging plane showed a variation of less than 10 per cent within 10 cm from the centre of the magnet in all three imaging planes. Changing the gradient field strength apparently had no influence on the T2 values recorded. Consequently diffusion processes seem without significance. It is concluded...

  1. Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise

    Science.gov (United States)

    Yan, Jiaquan; Sun, Haixin; Chen, Hailan; Junejo, Naveed Ur Rehman; Cheng, En

    2018-01-01

    In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method. PMID:29565288

  2. Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection

    KAUST Repository

    Bougot-Robin, Kristelle; Kodzius, Rimantas; Yue, Weisheng; Chen, Longqing; Li, Shunbo; Zhang, Xixiang; Bé nisty, Henri; Wen, Weijia

    2013-01-01

    2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip

  3. Underground Explosions

    Science.gov (United States)

    2015-09-09

    determined by the ratios of radioactive isotopes in the samples collected in places of the venting. Using known venting times for the radioactive products...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S...76  2.2.4 Ground material/ soil  parameters in the laboratory model

  4. Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review.

    Science.gov (United States)

    Young, Kymberly D; Zotev, Vadim; Phillips, Raquel; Misaki, Masaya; Drevets, Wayne C; Bodurka, Jerzy

    2018-04-23

    Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy. © 2018 The Author. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  5. Seismic coupling of nuclear explosions

    International Nuclear Information System (INIS)

    Larson, D.B.

    1989-01-01

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 x 10 -3 to as low as 5.8 x 10 -6 . Other experiments in PMMA, reported recently by Stout and Larson 8 provide additional particle velocity data to strains of 10 -1

  6. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and

  7. Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter

    CERN Document Server

    Parizzi, A A; Klose, F

    2002-01-01

    A computer program for modeling the neutron spin-flip process in a novel time-of-flight (TOF) spin-resonance energy filter has been developed. The software allows studying the applicability of the device in various areas of spallation neutron scattering instrumentation, for example as a dynamic TOF monochromator. The program uses a quantum-mechanical approach to calculate the local spin-dependent spectra and is essential for optimizing the magnetic field profiles along the resonator axis. (orig.)

  8. Structure and dynamics of olefin radical cation aggregates. Time-resolved fluorescence detected magnetic resonance

    International Nuclear Information System (INIS)

    Desrosiers, M.F.; Trifunac, A.D.

    1986-01-01

    The time-resolved EPR spectra and thus the structure and dynamics of transient hydrocarbon radical cations are obtained by the pulse radiolysis-fluorescence detected magnetic resonance (FDMR) technique. Here the authors report the observation of short-lived radical cations from olefins. FDMR-EPR spectra of radical cations from tetramethylethylene and cyclohexadiene are illustrated. The olefin radical cations, FDMR spectra are concentration-dependent, since dimerization with neutral molecules takes place at higher (>10 -2 M) olefin concentration. Rate constants for the dimerization reaction are derived and the effect of solvent viscosity on aggregate formation is demonstrated. By monitoring the further reactions of dimer cations the authors have obtained EPR evidence for previously unobserved higher-order (multimer) radical cation aggregates of olefins. 16 references, 5 figures

  9. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-11-09

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole

  10. New Mix Explosives for Explosive Welding

    Science.gov (United States)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  11. Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales.

    Science.gov (United States)

    Salmon, Loïc; Bouvignies, Guillaume; Markwick, Phineus; Blackledge, Martin

    2011-04-12

    A complete description of biomolecular activity requires an understanding of the nature and the role of protein conformational dynamics. In recent years, novel nuclear magnetic resonance-based techniques that provide hitherto inaccessible detail concerning biomolecular motions occurring on physiologically important time scales have emerged. Residual dipolar couplings (RDCs) provide precise information about time- and ensemble-averaged structural and dynamic processes with correlation times up to the millisecond and thereby encode key information for understanding biological activity. In this review, we present the application of two very different approaches to the quantitative description of protein motion using RDCs. The first is purely analytical, describing backbone dynamics in terms of diffusive motions of each peptide plane, using extensive statistical analysis to validate the proposed dynamic modes. The second is based on restraint-free accelerated molecular dynamics simulation, providing statistically sampled free energy-weighted ensembles that describe conformational fluctuations occurring on time scales from pico- to milliseconds, at atomic resolution. Remarkably, the results from these two approaches converge closely in terms of distribution and absolute amplitude of motions, suggesting that this kind of combination of analytical and numerical models is now capable of providing a unified description of protein conformational dynamics in solution.

  12. On the study of quantum properties of space-time with interferometers and resonant bars

    International Nuclear Information System (INIS)

    Amelino-Camelia, G.

    2001-01-01

    The expectation that it should not be possible to gain experimental insight on the structure of space-time at Planckian distance scales has been recently challenged by several studies which have shown that there are a few classes of experiments with sensitivity sufficient for setting significant limits on certain candidate Planckian pictures of space-time. With respect to quantum space-time fluctuations, one of the most popular predictions of various Quantum-Gravity approaches, the experiments that have the best sensitivity are the same experiments which are used in searches of the classical-physics phenomenon of gravity waves. In experiments searching for classical gravity waves the presence of quantum space-time fluctuations would introduce a source of noise just like the ordinary (non-gravitational) quantum properties of the photons composing the laser beam used in interferometry introduce a source of noise. The sensitivity to distance fluctuations achieved (or being achieved) by modern interferometers and resonant-bar detectors is here described in terms of the Planck length, hoping that this characterization may prove useful for theorists attempting to gain some intuition for these sensitivity levels. While theory work on Quantum Gravity is not yet ready to provide definite noise models, there are some general characteristics of Quantum-Gravity-induced noise that could be used in experimental studies. (author)

  13. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Science.gov (United States)

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-01

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  14. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  15. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  16. Close-in airblast from underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Vortman, L J [Sandia Laboratories, Albuquerque, NM (United States)

    1970-05-15

    Air overpressures as a function of time have been measured from surface zero to about 170 ft/lb{sup 1/3} along the ground from nuclear and chemical explosions. Charge depths varied from the surface to depths below which explosion gases are contained. A ground-shock-induced air pressure pulse is clearly distinguishable from the pulse caused by venting gases. Measured peak overpressures show reasonable agreement with the theoretical treatment by Monta. In a given medium the suppression of blast with explosion burial depth is a function of the relative distance at which the blast is observed. Rates of suppression of peak overpressure with charge burial are different for the two pulses. Rates are determined for each pulse over the range of distances at which measurements have been made of air overpressure from chemical explosions in several media. Nuclear data are available from too few shots for similar dependence on burial depth and distance to be developed, but it is clear that the gas venting peak overpressure from nuclear explosions is much more dependent on medium than that from chemical explosions. For above-ground explosions, experiment has shown that airblast from a I-kiloton nuclear explosion is equal to that from a 0.5-kiloton TNT explosion. Data on ground-shock-induced airblast is now sufficient to show that a similar relationship may exist for buried explosions. Because of medium dependence of the gas venting pulse from nuclear explosions, data from additional nuclear events will be required before a chemical/nuclear airblast equivalence can be determined for the gas-venting pulse. (author)

  17. Screening sealed bottles for liquid explosives

    Science.gov (United States)

    Kumar, Sankaran; McMichael, W. Casey; Kim, Y.-W.; Sheldon, Alan G.; Magnuson, Erik E.; Ficke, L.; Chhoa, T. K.; Moeller, C. R.; Barrall, Geoffrey A.; Burnett, Lowell J.; Czipott, Peter V.; Pence, J. S.; Skvoretz, David C.

    1997-01-01

    A particularly disturbing development affecting transportation safety and security is the increasing use of terrorist devices which avoid detection by conventional means through the use of liquid explosives and flammables. The hazardous materials are generally hidden in wine or liquor bottles that cannot be opened routinely for inspection. This problem was highlighted by the liquid explosives threat which disrupted air traffic between the US an the Far East for an extended period in 1995. Quantum Magnetics has developed a Liquid Explosives Screening systems capable of scanning unopened bottles for liquid explosives. The system can be operated to detect specific explosives directly or to verify the labeled or bar-coded contents of the container. In this system, magnetic resonance (MR) is used to interrogate the liquid. MR produces an extremely rich data set and many characteristics of the MR response can be determined simultaneously. As a result, multiple MR signatures can be defined for any given set of liquids, and the signature complexity then selected according to the level of threat. The Quantum Magnetics Liquid Explosives Screening System is currently operational. Following extensive laboratory testing, a field trial of the system was carried out at the Los Angeles International Airport.

  18. Improve Image Quality of Transversal Relaxation Time PROPELLER and FLAIR on Magnetic Resonance Imaging

    Science.gov (United States)

    Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.

    2018-03-01

    The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).

  19. Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction

    International Nuclear Information System (INIS)

    Garzon, Benjamin; Emblem, Kyrre E.; Mouridsen, Kim; Nedregaard, Baard; Due-Toennessen, Paulina; Nome, Terje; Hald, John K.; Bjoernerud, Atle; Haaberg, Asta K.; Kvinnsland, Yngve

    2011-01-01

    Background. A systematic comparison of magnetic resonance imaging (MRI) options for glioma diagnosis is lacking. Purpose. To investigate multiple MR-derived image features with respect to diagnostic accuracy in tumor grading and survival prediction in glioma patients. Material and Methods. T1 pre- and post-contrast, T2 and dynamic susceptibility contrast scans of 74 glioma patients with histologically confirmed grade were acquired. For each patient, a set of statistical features was obtained from the parametric maps derived from the original images, in a region-of-interest encompassing the tumor volume. A forward stepwise selection procedure was used to find the best combinations of features for grade prediction with a cross-validated logistic model and survival time prediction with a cox proportional-hazards regression. Results. Presence/absence of enhancement paired with kurtosis of the FM (first moment of the first-pass curve) was the feature combination that best predicted tumor grade (grade II vs. grade III-IV; median AUC 0.96), with the main contribution being due to the first of the features. A lower predictive value (median AUC = 0.82) was obtained when grade IV tumors were excluded. Presence/absence of enhancement alone was the best predictor for survival time, and the regression was significant (P < 0.0001). Conclusion. Presence/absence of enhancement, reflecting transendothelial leakage, was the feature with highest predictive value for grade and survival time in glioma patients

  20. Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, Benjamin (Dept. of Circulation and Medical Imaging, NTNU, Trondheim (Norway)), email: benjamin.garzon@ntnu.no; Emblem, Kyrre E. (The Interventional Center, Rikshospitalet, Oslo Univ. Hospital, Oslo (Norway); Dept. of Radiology, MGH-HST AA Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States)); Mouridsen, Kim (Center of Functionally Integrative Neuroscience, Aarhus Univ., Aarhus (Denmark)); Nedregaard, Baard; Due-Toennessen, Paulina; Nome, Terje; Hald, John K. (Dept. of Radiology and Nuclear Medicine, Rikshospitalet, Oslo Univ. Hospital, Oslo (Norway)); Bjoernerud, Atle (The Interventional Center, Rikshospitalet, Oslo Univ. Hospital, Oslo (Norway)); Haaberg, Asta K. (Dept. of Circulation and Medical Imaging, NTNU, Trondheim (Norway); Dept. of Medical Imaging, St Olav' s Hospital, Trondheim (Norway)); Kvinnsland, Yngve (NordicImagingLab, Bergen (Norway))

    2011-11-15

    Background. A systematic comparison of magnetic resonance imaging (MRI) options for glioma diagnosis is lacking. Purpose. To investigate multiple MR-derived image features with respect to diagnostic accuracy in tumor grading and survival prediction in glioma patients. Material and Methods. T1 pre- and post-contrast, T2 and dynamic susceptibility contrast scans of 74 glioma patients with histologically confirmed grade were acquired. For each patient, a set of statistical features was obtained from the parametric maps derived from the original images, in a region-of-interest encompassing the tumor volume. A forward stepwise selection procedure was used to find the best combinations of features for grade prediction with a cross-validated logistic model and survival time prediction with a cox proportional-hazards regression. Results. Presence/absence of enhancement paired with kurtosis of the FM (first moment of the first-pass curve) was the feature combination that best predicted tumor grade (grade II vs. grade III-IV; median AUC 0.96), with the main contribution being due to the first of the features. A lower predictive value (median AUC = 0.82) was obtained when grade IV tumors were excluded. Presence/absence of enhancement alone was the best predictor for survival time, and the regression was significant (P < 0.0001). Conclusion. Presence/absence of enhancement, reflecting transendothelial leakage, was the feature with highest predictive value for grade and survival time in glioma patients

  1. Measurement of Isobaric Analogue Resonances of 47Ar with the Active-Target Time Projection Chamber

    Science.gov (United States)

    Bradt, Joshua William

    While the nuclear shell model accurately describes the structure of nuclei near stability, the structure of unstable, neutron-rich nuclei is still an area of active research. One region of interest is the set of nuclei near N=28. The shell model suggests that these nuclei should be approximately spherical due to the shell gap predicted by their magic number of neutrons; however, experiments have shown that the nuclei in this region rapidly become deformed as protons are removed from the spherical 48Ca. This makes 46Ar a particularly interesting system as it lies in a transition region between 48Ca and lighter isotones that are known to be deformed. An experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) to measure resonant proton scattering on 46Ar. The resonances observed in this reaction correspond to unbound levels in the 47K intermediate state nucleus which are isobaric analogues of states in the 47Ar nucleus. By measuring the spectroscopic factors of these states in 47Ar, we gain information about the single-particle structure of this system, which is directly related to the size of the N=28 shell gap. Four resonances were observed: one corresponding to the ground state in 47Ar, one corresponding its first excited 1/2- state, and two corresponding to 1/2+ states in either 47Ar or the intermediate state nucleus. However, only a limited amount of information about these states could be recovered due to the low experimental statistics and limited angular resolution caused by pileup rejection and the inability to accurately reconstruct the beam particle track. In addition to the nuclear physics motivations, this experiment served as the radioactive beam commissioning for the Active-Target Time Projection Chamber (AT-TPC). The AT-TPC is a new gas-filled charged particle detector built at the NSCL to measure low-energy radioactive beams from the ReA3 facility. Since the gas inside the detector serves as both the tracking medium and

  2. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.

    Science.gov (United States)

    Simon, Ferenc; Murányi, Ferenc

    2005-04-01

    The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.

  3. [Possibilities in the differential diagnosis of brain neoplasms using the long and short time sequences of proton magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Gajewicz, W.; Goraj, B.M.

    2004-01-01

    Currently to perform proton magnetic resonance spectroscopy (1H MRS) with single voxel spectroscopy (SVS) technique long and/or short echo time sequences are used in order to provide complementary information. PURPOSE: The aim of the study was to compare the usefulness of STEAM (time echo, TE, 20

  4. Explosives remain preferred methods for platform abandonment

    International Nuclear Information System (INIS)

    Pulsipher, A.; Daniel, W. IV; Kiesler, J.E.; Mackey, V. III

    1996-01-01

    Economics and safety concerns indicate that methods involving explosives remain the most practical and cost-effective means for abandoning oil and gas structures in the Gulf of Mexico. A decade has passed since 51 dead sea turtles, many endangered Kemp's Ridleys, washed ashore on the Texas coast shortly after explosives helped remove several offshore platforms. Although no relationship between the explosions and the dead turtles was ever established, in response to widespread public concern, the US Minerals Management Service (MMS) and National Marine Fisheries Service (NMFS) implemented regulations limiting the size and timing of explosive charges. Also, more importantly, they required that operators pay for observers to survey waters surrounding platforms scheduled for removal for 48 hr before any detonations. If observers spot sea turtles or marine mammals within the danger zone, the platform abandonment is delayed until the turtles leave or are removed. However, concern about the effects of explosives on marine life remains

  5. Free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  6. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  7. Chernobyl explosion bombshell

    International Nuclear Information System (INIS)

    Martin, S.; Arnott, D.

    1988-01-01

    It is suggested that the explosion at the Chernobyl-4 reactor in April 1986 was a nuclear explosion. The evidence for this is examined. The sequence of events at Chernobyl is looked at to see if the effects were like those from a nuclear explosion. The question of whether a United Kingdom reactor could go prompt critical is discussed. It is concluded that prompt criticality excursions are possible, but the specific Chernobyl sequence is impossible. (UK)

  8. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.

    2016-10-21

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  9. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Andreeva, C.; Cinins, A.; Markovski, A.; Iftikhar, Z.; Ekers, Aigars; Ryabtsev, I. I.

    2016-01-01

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  10. Nuclear magnetic resonance studies on brain edema. Time course of /sup 1/H-NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, S; Horikawa, Y; Tanaka, C; Hirakawa, K; Nishikawa, H [Kyoto Prefectural Univ. of Medicine (Japan)

    1981-06-01

    1. The state of water in normal and edematous brain tissue was studied by measurement of proton longitudinal (T/sub 1/) and transverse (T/sub 2/) relaxation times using pulsed nuclear magnetic resonance (NMR) technique. 2. In control rats, T/sub 1/ and T/sub 2/ of water showed one component, which was more fast in white matter. Those values displayed 1.07 - 1.18 sec. of T/sub 1/ and 75 - 76 msec. of T/sub 2/. 3. When rat brain was injured by cold, T/sub 1/ was observed to become longer (1.18 - 1.27 sec.), and T/sub 2/ was observed be separated into two components, the faster T/sub 2/ (45 - 50 msec.) and slower T/sub 2/ (100 - 105 msec.), in both gray and white matter of the injured side. 4. In triethyltin (TET) induced brain edema, elongation of T/sub 1/ (1.2 sec.) and remarkable separation of T/sub 2/, faster T/sub 2/ (75 msec.) and slower T/sub 2/ (400 - 450 msec.), were observed in white matter. 5. In both cold and TET induced edema, slower T/sub 2/ fraction is suggested to be the extracellular space and faster T/sub 2/ fraction, intracellular. 6. T/sub 2/ changes precede the water content changes in cold injury, and parallel in TET induced edema. Those changes of relaxation times are reversible. 7. T/sub 2/ changes of water is more sensitive than the T/sub 1/ for the detection of production and disappearance of brain edema. 8. These results disclose the dynamic movements of water during the course of brain edema and offered significant information of the clinical application of NMR-CT.

  11. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  12. Explosive performance on the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    McKown, T.O. [Los Alamos National Lab., NM (United States)

    1994-12-31

    The Explosive Effects Physics Project at the Los Alamos National Laboratory planned and conducted experiments on the Non-Proliferation Experiment (NPE) as part of its effort to define source functions for seismic waves. Since all investigations were contingent on the performance of the emplaced chemical explosive, an array of diagnostic measurements was fielded in the emplaced explosive. The CORRTEX (COntinuous Reflectometry for Radius vs Time EXperiment) system was used to investigate the explosive initiation and to determine the detonation velocities on three levels and in a number of radial directions. The CORRTEX experiments fielded in the explosive chamber will be described, including a description of the explosive emplacement from the perspective of its impact on the CORRTEX results. The data obtained are reviewed and the resulting detonation velocities are reported. A variation of detonation velocity with depth in the explosive and the apparent underdetonation and overdetonation of the explosive in different radial directions is reported.

  13. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  14. Real time detection of antibody-antigen interaction using a laser scanning confocal imaging-surface plasmon resonance system

    International Nuclear Information System (INIS)

    Zhang Hong-Yan; Yang Li-Quan; Ning Ting-Yin; Liu Wei-Min; Sun Jia-Yu; Wang Peng-Fei; Meng Lan; Nie Jia-Cai

    2012-01-01

    A laser scanning confocal imaging-surface plasmon resonance (LSCI-SPR) instrument integrated with a wavelength-dependent surface plasmon resonance (SPR) sensor and a laser scanning confocal microscopy (LSCM) is built to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibodies in real time. The shifts of resonant wavelength at different reaction time stages are obtained by SPR, corresponding well with the changes of the fluorescence intensity collected by using LSCM. The instrument shows the merits of the combination and complementation of the SPR and LSCM, with such advantages as quantificational analysis, high spatial resolution and real time monitor, which are of great importance for practical applications in biosensor and life science. (general)

  15. Probing the UV-Induced Photodissociation of CH3I and C6H3F2I with Femtosecond Time-Resolved Coulomb Explosion Imaging at FLASH

    DEFF Research Database (Denmark)

    Savelyev, Evgeny; Amini, Kasra; Brauße, Felix

    2017-01-01

    , the dominant reaction pathway in both molecules is neutral cleavage of the carbon--iodine bond, which allows studying the influence of the molecular environment on the XUV absorption and the subsequent Coulomb explosion process. The XUV probe pulse induces local inner-shell ionization of atomic iodine...

  16. Nucleosynthesis in stellar explosions

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  17. Nucleosynthesis in stellar explosions

    International Nuclear Information System (INIS)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10 6 M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints

  18. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction

    Directory of Open Access Journals (Sweden)

    Merboldt Klaus-Dietmar

    2010-07-01

    Full Text Available Abstract Background Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR commonly rely on (i electrocardiographic (ECG gating yielding pseudo real-time cine representations, (ii balanced gradient-echo sequences referred to as steady-state free precession (SSFP, and (iii breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts, and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. Methods The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Results Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle with an opposed-phase or in-phase condition for water and fat signals (depending on echo time. They completely avoid (i susceptibility-induced artefacts due to the very short echo times, (ii radiofrequency power limitations due to excitations with flip angles of 10° or less, and (iii the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Conclusions Though awaiting thorough clinical evaluation, this work describes a robust and

  19. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction.

    Science.gov (United States)

    Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens

    2010-07-08

    Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for

  20. Variable flip angle excitation for reduced acquisition time magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mills, T.C.; Ortendahl, D.A.; Hylton, N.M.; Carlson, J.W.; Crooks, L.E.; Kaufman, L.

    1987-01-01

    This paper describes an MRI technique which can be used to acquire images at short TR values while maintaining the sensitivity to disease found in longer TR images. For spin echo imaging there are three acquisition parameters that can be set in the imaging protocol; TR, the repetition interval; TE, the time of echo and Θ, the excitation flip angle. Standard imaging techniques set Θ to 90 degrees regardless of the TR value. With Θ fixed, imaging systems have been optimized by varying the value for TE and TR with the results in general indicating the need for long TR values. However, if the flip angle is included as a variable acquisition parameter the optimal operating point can be changed. The solution to the Bloch equation shows a functional relationship between the flip angle and the ratio TR/T1. This functionality was first observed by Ernst and Anderson as a method to increase the signal generated in fourier transform magnetic resonance spectroscopy. When TR/T1<1 the optimum flip angle for producing maximum magnetization in the transverse plane is less then 90 degrees. Therefore, by reducing both TR and flip angle it is possible to maintain signal intensity while reducing the time of data acquisition

  1. Real-time biodetection using a smartphone-based dual-color surface plasmon resonance sensor

    Science.gov (United States)

    Liu, Qiang; Yuan, Huizhen; Liu, Yun; Wang, Jiabin; Jing, Zhenguo; Peng, Wei

    2018-04-01

    We proposed a compact and cost-effective red-green dual-color fiber optic surface plasmon resonance (SPR) sensor based on the smartphone. Inherent color selectivity of phone cameras was utilized for real-time monitoring of red and green color channels simultaneously, which can reduce the chance of false detection and improve the sensitivity. Because there are no external prisms, complex optical lenses, or diffraction grating, simple optical configuration is realized. It has a linear response in a refractive index range of 1.326 to 1.351 (R2 = 0.991) with a resolution of 2.3 × 10 - 4 RIU. We apply it for immunoglobulin G (IgG) concentration measurement. Experimental results demonstrate that a linear SPR response was achieved for IgG concentrations varying from 0.02 to 0.30 mg / ml with good repeatability. It may find promising applications in the fields of public health and environment monitoring owing to its simple optics design and applicability in real-time, label-free biodetection.

  2. Analysis of sample composition using resonant ionization and time-of-flight techniques

    International Nuclear Information System (INIS)

    Cruz, A. de la; Ortiz, M.; Campos, J.

    1995-01-01

    This paper describes the setting up of a linear time-of-flight mass spectrometer that uses a tunable laser to produce resonant ionization of atoms and molecules in a pulsed supersonic beam. The ability of this kind of systems to produce time resolved signals for each species present in the sample allows quantitative analysis of its composition. By using a tunable laser beam of high spectral resolution to produce ionization, studies based on the structure of the photoionization spectra obtained are possible. In the present work several isotopic species of ordinary and deuterated benzene have been studied. Special care has been dedicated to the influence of the presence of a 13C in the ring. In this way values for spectroscopic constants and isotopic shifts have been obtained. Another system based in a homemade proportional counter has been designed and used is an auxiliary system. The results obtained with it are independent of these mentioned above and compatible with them. This system is of great utility for laser wavelength tuning to produce ionization in the mass spectrometer. (Author) 98 refs

  3. Analysis of sample composition using resonant ionization and time-of-flight techniques

    International Nuclear Information System (INIS)

    Luz, A. de la; Ortiz, M.; Campos, J.

    1995-01-01

    This paper describes the setting up of a linear time-of-flight mass spectrometer that uses a tunable laser to produce resonant ionization of atoms and molecules in a pulsed supersonic beam. The ability of this kind of systems to produce time resolved signals for each species present in the samples allows quantitative analysis of its composition. By using a tunable laser beam of high spectral resolution to produce ionization, studies based on the structure of the photoionization spectra obtained are possible. In the present work several isotopic species of ordinary and deuterated benzene have been studies. special care has been dedicated to the influence of the presence of a ''13 C in the ring. In this way values for spectroscopic constants and isotopic shifts have been obtained. Another system based in a homemade proportional counter has been designed and used as an auxiliary system. The results obtained with it are independent of these mentioned above and compatible with them. This system is of great utility for laser wavelength tuning to produce ionization in the mass spectrometer

  4. An innovative application of time-domain spectroscopy on localized surface plasmon resonance sensing

    Science.gov (United States)

    Li, Meng-Chi; Chang, Ying-Feng; Wang, Huai-Yi; Lin, Yu-Xen; Kuo, Chien-Cheng; Annie Ho, Ja-An; Lee, Cheng-Chung; Su, Li-Chen

    2017-03-01

    White-light scanning interferometry (WLSI) is often used to study the surface profiles and properties of thin films because the strength of the technique lies in its ability to provide fast and high resolution measurements. An innovative attempt is made in this paper to apply WLSI as a time-domain spectroscopic system for localized surface plasmon resonance (LSPR) sensing. A WLSI-based spectrometer is constructed with a breadboard of WLSI in combination with a spectral centroid algorithm for noise reduction and performance improvement. Experimentally, the WLSI-based spectrometer exhibits a limit of detection (LOD) of 1.2 × 10-3 refractive index units (RIU), which is better than that obtained with a conventional UV-Vis spectrometer, by resolving the LSPR peak shift. Finally, the bio-applicability of the proposed spectrometer was investigated using the rs242557 tau gene, an Alzheimer’s and Parkinson’s disease biomarker. The LOD was calculated as 15 pM. These results demonstrate that the proposed WLSI-based spectrometer could become a sensitive time-domain spectroscopic biosensing platform.

  5. Improving the time efficiency of the Fourier synthesis method for slice selection in magnetic resonance imaging.

    Science.gov (United States)

    Tahayori, B; Khaneja, N; Johnston, L A; Farrell, P M; Mareels, I M Y

    2016-01-01

    The design of slice selective pulses for magnetic resonance imaging can be cast as an optimal control problem. The Fourier synthesis method is an existing approach to solve these optimal control problems. In this method the gradient field as well as the excitation field are switched rapidly and their amplitudes are calculated based on a Fourier series expansion. Here, we provide a novel insight into the Fourier synthesis method via representing the Bloch equation in spherical coordinates. Based on the spherical Bloch equation, we propose an alternative sequence of pulses that can be used for slice selection which is more time efficient compared to the original method. Simulation results demonstrate that while the performance of both methods is approximately the same, the required time for the proposed sequence of pulses is half of the original sequence of pulses. Furthermore, the slice selectivity of both sequences of pulses changes with radio frequency field inhomogeneities in a similar way. We also introduce a measure, referred to as gradient complexity, to compare the performance of both sequences of pulses. This measure indicates that for a desired level of uniformity in the excited slice, the gradient complexity for the proposed sequence of pulses is less than the original sequence. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Magnetic resonance angiography with ultrashort echo times reduces the artefact of aneurysm clips

    International Nuclear Information System (INIS)

    Goenner, F.; Heid, O.; Remonda, L.; Schroth, G.; Loevblad, K.O.; Guzman, R.; Barth, A.

    2002-01-01

    We evaluated the ability of an ultrashort echo time (TE) three-dimensional (3D) time-of-flight (TOF) magnetic resonance angiography (MRA) sequence to reduce the metal artefact of intracranial aneurysm clips and to display adjacent cerebral arteries. In five patients (aged 8-72 years) treated with Elgiloy or Phynox aneurysm clips we prospectively performed a conventional (TE 6.0 ms) and a new ultrashort TE (TE 2.4 ms) 3D TOF MRA. We compared the diameter of the clip-induced susceptibility artefact and the detectability of flow in adjacent vessels. The mean artefact diameter was 22.3±6.4 mm (range 14-38 mm) with the ultrashort TE and 27.7±6.4 mm (range 19-45 mm) with the conventional MRA (P<0.0001). This corresponded to a diameter reduction of 19.5±9.2%. More parts of adjacent vessels were detected, but with less intense flow signal. The aneurysm dome and neck remained within the area of signal loss and were therefore not displayed. Ultrashort TE MRA is a noninvasive and fast method for improving detection of vessels adjacent to clipped intracranial aneurysms, by reducing clip-induced susceptibility artefact. The method cannot, however, be used to show remnants of the aneurysm neck or sac as a result of imperfect clipping. (orig.)

  7. Resonant power converter with dead-time control of synchronous rectification circuit

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising a synchronous rectifier for supplying a DC output voltage. The synchronous rectifier is configured for alternatingly connecting a resonant output voltage to positive and negative DC output nodes via first and second ...

  8. Experimental investigation of quantum effects in time-resolved resonance Rayleigh scattering from quantum well excitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Shchegrov, Andrei V.

    2000-01-01

    Resonant Rayleigh scattering from quantum well excitons is investigated using ultrafast spectral interferometry. We isolate the coherent Rayleigh scattering from incoherent luminescence in a single speckle. Averaging the resonant Rayleigh intensity over several speckles allows us to identify...... features in support of quantum corrections to the classical description of the underlying scattering process....

  9. Real-time virtual sonography for navigation during targeted prostate biopsy using magnetic resonance imaging data

    International Nuclear Information System (INIS)

    Miyagawa, Tomoaki; Ishikawa, Satoru; Kimura, Tomokazu; Suetomi, Takahiro; Tsutsumi, Masakazu; Irie, Toshiyuki; Kondoh, Masanao; Mitake, Tsuyoshi

    2010-01-01

    The objective of this study was to evaluate the effectiveness of the medical navigation technique, namely, Real-time Virtual Sonography (RVS), for targeted prostate biopsy. Eighty-five patients with suspected prostate cancer lesions using magnetic resonance imaging (MRI) were included in this study. All selected patients had at least one negative result on the previous transrectal biopsies. The acquired MRI volume data were loaded onto a personal computer installed with RVS software, which registers the volumes between MRI and real-time ultrasound data for real-time display. The registered MRI images were displayed adjacent to the ultrasonographic sagittal image on the same computer monitor. The suspected lesions on T2-weighted images were marked with a red circle. At first suspected lesions were biopsied transperineally under real-time navigation with RVS and then followed by the conventional transrectal and transperineal biopsy under spinal anesthesia. The median age of the patients was 69 years (56-84 years), and the prostate-specific antigen level and prostate volume were 9.9 ng/mL (4.0-34.2) and 37.2 mL (18-141), respectively. Prostate cancer was detected in 52 patients (61%). The biopsy specimens obtained using RVS revealed 45/52 patients (87%) positive for prostate cancer. A total of 192 biopsy cores were obtained using RVS. Sixty-two of these (32%) were positive for prostate cancer, whereas conventional random biopsy revealed cancer only in 75/833 (9%) cores (P<0.01). Targeted prostate biopsy with RVS is very effective to diagnose lesions detected with MRI. This technique only requires additional computer and RVS software and thus is cost-effective. Therefore, RVS-guided prostate biopsy has great potential for better management of prostate cancer patients. (author)

  10. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Energy Technology Data Exchange (ETDEWEB)

    Kidon, Lyran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Wilner, Eli Y. [School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rabani, Eran [The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley California 94720-1460 (United States)

    2015-12-21

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  11. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    International Nuclear Information System (INIS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile

    2014-01-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks

  12. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn; Deng, Bin; Wei, Xile [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  13. Transition times between the extremum points of the current–voltage characteristic of a resonant tunneling diode with hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Grishakov, K. S., E-mail: ksgrishakov@yahoo.com; Elesin, V. F. [National Research Nuclear University “MEPhI” (Russian Federation)

    2016-08-15

    A numerical solution to the problem of transient processes in a resonant tunneling diode featuring a current–voltage characteristic with hysteresis is found for the first time in the context of a coherent model (based on the coupled Schrödinger and Poisson equations) taking into account the Fermi distribution of electrons. The transitions from the high-current to the low-current state and vice versa, which result from the existence of hysteresis and are of great practical importance for ultrafast switches based on resonant tunneling diodes, are studied in detail. It is shown that the transition times for such processes initiated by the application of a small voltage can significantly exceed the characteristic time ℏ/Γ (where G is the width of the resonance level). It is established for the first time that the transition time can be reduced and made as short as the characteristic time ℏ/Γ by applying a sufficiently high voltage. For the parameters of the resonant-tunnelingdiode structure considered in this study, the required voltage is about 0.01 V.

  14. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, Syed Irtiza Ali

    2008-09-15

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  15. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gilani, Syed Irtiza Ali

    2008-09-01

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T 1 relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  16. Cine viability magnetic resonance imaging of the heart without increased scan time.

    Science.gov (United States)

    Hassanein, Azza S; Khalifa, Ayman M; Ibrahim, El-Sayed H

    2016-02-01

    Cardiac magnetic resonance imaging (MRI) provides information about myocardial morphology, function, and viability from cine, tagged, and late gadolinium enhancement (LGE) images, respectively. While the cine and tagged images are acquired in a time-resolved fashion, the LGE images are acquired at a single timeframe. The purpose of this work is to develop a method for generating cine LGE images without additional scan time. The motion field is extracted from the tagged images, and is then used to guide the deformation of the infarcted region from the acquired LGE image at the acquired timeframe to any other timeframe. Major techniques for motion estimation, including harmonic phase (HARP) and optical flow analysis, are tested in this work for motion estimation. The proposed method is tested on numerical phantom and images from four human subjects. The generated cine LGE images showed both viability and wall motion information in the same set of images without additional scan time or image misregistration problems. The band-pass optical flow analysis resulted in the most accurate motion estimation compared to other methods, especially HARP, which fails to track points at the myocardial boundary. Infarct transmurality from the generated images showed good agreement with myocardial strain, and wall thickening showed good agreement with that measured from conventional cine images. In conclusion, the developed technique allows for generating cine LGE images that enable simultaneous display of wall motion and viability information. The generated images could be useful for estimating myocardial contractility reserve and for treatment prognosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Automatic multimodal real-time tracking for image plane alignment in interventional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Neumann, Markus

    2014-01-01

    Interventional magnetic resonance imaging (MRI) aims at performing minimally invasive percutaneous interventions, such as tumor ablations and biopsies, under MRI guidance. During such interventions, the acquired MR image planes are typically aligned to the surgical instrument (needle) axis and to surrounding anatomical structures of interest in order to efficiently monitor the advancement in real-time of the instrument inside the patient's body. Object tracking inside the MRI is expected to facilitate and accelerate MR-guided interventions by allowing to automatically align the image planes to the surgical instrument. In this PhD thesis, an image-based work-flow is proposed and refined for automatic image plane alignment. An automatic tracking work-flow was developed, performing detection and tracking of a passive marker directly in clinical real-time images. This tracking work-flow is designed for fully automated image plane alignment, with minimization of tracking-dedicated time. Its main drawback is its inherent dependence on the slow clinical MRI update rate. First, the addition of motion estimation and prediction with a Kalman filter was investigated and improved the work-flow tracking performance. Second, a complementary optical sensor was used for multi-sensor tracking in order to decouple the tracking update rate from the MR image acquisition rate. Performance of the work-flow was evaluated with both computer simulations and experiments using an MR compatible test bed. Results show a high robustness of the multi-sensor tracking approach for dynamic image plane alignment, due to the combination of the individual strengths of each sensor. (author)

  18. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  19. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  20. Steam explosion studies review

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  1. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  2. Paralinguistic mechanisms of production in human "beatboxing": a real-time magnetic resonance imaging study.

    Science.gov (United States)

    Proctor, Michael; Bresch, Erik; Byrd, Dani; Nayak, Krishna; Narayanan, Shrikanth

    2013-02-01

    Real-time magnetic resonance imaging (rtMRI) was used to examine mechanisms of sound production by an American male beatbox artist. rtMRI was found to be a useful modality with which to study this form of sound production, providing a global dynamic view of the midsagittal vocal tract at frame rates sufficient to observe the movement and coordination of critical articulators. The subject's repertoire included percussion elements generated using a wide range of articulatory and airstream mechanisms. Many of the same mechanisms observed in human speech production were exploited for musical effect, including patterns of articulation that do not occur in the phonologies of the artist's native languages: ejectives and clicks. The data offer insights into the paralinguistic use of phonetic primitives and the ways in which they are coordinated in this style of musical performance. A unified formalism for describing both musical and phonetic dimensions of human vocal percussion performance is proposed. Audio and video data illustrating production and orchestration of beatboxing sound effects are provided in a companion annotated corpus.

  3. Real-time magnetic resonance imaging of highly dynamic granular phenomena

    Science.gov (United States)

    Penn, Alexander; Pruessmann, Klaas P.; Müller, Christoph

    Probing non-intrusively the interior of three-dimensional granular systems is a challenging task for which a number of imaging techniques have been applied including positron emission particle tracking, X-ray tomography and magnetic resonance imaging (MRI). A particular advantage of MRI is its versatility allowing quantitative velocimetry through phase contrast encoding and tagging, arbitrary slice orientations and the flexibility to trade spatial for temporal resolution and vice versa during image reconstruction. However, previous attempts to image granular systems using MRI were often limited to (pseudo-) steady state systems due to the poor temporal resolution of conventional imaging methodology. Here we present an experimental approach that overcomes previous limitations in temporal resolution by implementing a variety of methodological advances, viz. parallel data acquisition through tailored multiple receiver coils, fast gradient readouts for time-efficient data sampling and engineered granular materials that contain signal sources of high proton density. Achieving a spatial and temporal resolution of, respectively, 2 mm x 2 mm and 50 ms, we were able to image highly dynamic phenomena in granular media such as bubble coalescence and granular compaction waves.

  4. Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction

    Directory of Open Access Journals (Sweden)

    Sebastian Schaetz

    2017-01-01

    Full Text Available Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs in magnetic resonance imaging (MRI and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results. The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

  5. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  6. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization.

    Science.gov (United States)

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W L; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

  7. Motion-Corrected Real-Time Cine Magnetic Resonance Imaging of the Heart: Initial Clinical Experience.

    Science.gov (United States)

    Rahsepar, Amir Ali; Saybasili, Haris; Ghasemiesfe, Ahmadreza; Dolan, Ryan S; Shehata, Monda L; Botelho, Marcos P; Markl, Michael; Spottiswoode, Bruce; Collins, Jeremy D; Carr, James C

    2018-01-01

    Free-breathing real-time (RT) imaging can be used in patients with difficulty in breath-holding; however, RT cine imaging typically experiences poor image quality compared with segmented cine imaging because of low resolution. Here, we validate a novel unsupervised motion-corrected (MOCO) reconstruction technique for free-breathing RT cardiac images, called MOCO-RT. Motion-corrected RT uses elastic image registration to generate a single heartbeat of high-quality data from a free-breathing RT acquisition. Segmented balanced steady-state free precession (bSSFP) cine images and free-breathing RT images (Cartesian, TGRAPPA factor 4) were acquired with the same spatial/temporal resolution in 40 patients using clinical 1.5 T magnetic resonance scanners. The respiratory cycle was estimated using the reconstructed RT images, and nonrigid unsupervised motion correction was applied to eliminate breathing motion. Conventional segmented RT and MOCO-RT single-heartbeat cine images were analyzed to evaluate left ventricular (LV) function and volume measurements. Two radiologists scored images for overall image quality, artifact, noise, and wall motion abnormalities. Intraclass correlation coefficient was used to assess the reliability of MOCO-RT measurement. Intraclass correlation coefficient showed excellent reliability (intraclass correlation coefficient ≥ 0.95) of MOCO-RT with segmented cine in measuring LV function, mass, and volume. Comparison of the qualitative ratings indicated comparable image quality for MOCO-RT (4.80 ± 0.35) with segmented cine (4.45 ± 0.88, P = 0.215) and significantly higher than conventional RT techniques (3.51 ± 0.41, P cine (1.51 ± 0.90, P = 0.088 and 1.23 ± 0.45, P = 0.182) were not different. Wall motion abnormality ratings were comparable among different techniques (P = 0.96). The MOCO-RT technique can be used to process conventional free-breathing RT cine images and provides comparable quantitative assessment of LV function and volume

  8. EVENT, Explosive Transients in Flow Networks

    International Nuclear Information System (INIS)

    Andrae, R.W.; Tang, P.K.; Bolstad, J.W.; Gregory, W.S.

    1985-01-01

    1 - Description of problem or function: A major concern of the chemical, nuclear, and mining industries is the occurrence of an explosion in one part of a facility and subsequent transmission of explosive effects through the ventilation system. An explosive event can cause performance degradation of the ventilation system or even structural failures. A more serious consequence is the release of hazardous materials to the environment if vital protective devices such as air filters, are damaged. EVENT was developed to investigate the effects of explosive transients through fluid-flow networks. Using the principles of fluid mechanics and thermodynamics, governing equations for the conservation of mass, energy, and momentum are formulated. These equations are applied to the complete network subdivided into two general components: nodes and branches. The nodes represent boundaries and internal junctions where the conservation of mass and energy applies. The branches can be ducts, valves, blowers, or filters. Since in EVENT the effect of the explosion, not the characteristics of the explosion itself, is of interest, the transient is simulated in the simplest possible way. A rapid addition of mass and energy to the system at certain locations is used. This representation is adequate for all of the network except the region where the explosion actually occurs. EVENT84 is a modification of EVENT which includes a new explosion chamber model subroutine based on the NOL BLAST program developed at the Naval Ordnance Laboratory, Silver Spring, Maryland. This subroutine calculates the confined explosion near-field parameters and supplies the time functions of energy and mass injection. Solid-phase or TNT-equivalent explosions (which simulate 'point source' explosions in nuclear facilities) as well as explosions in gas-air mixtures can be simulated. The four types of explosions EVENT84 simulates are TNT, hydrogen in air, acetylene in air, and tributyl phosphate (TBP or 'red oil

  9. Research topics in explosives - a look at explosives behaviors

    International Nuclear Information System (INIS)

    Maienschein, J L

    2014-01-01

    The behaviors of explosives under many conditions - e.g., sensitivity to inadvertent reactions, explosion, detonation - are controlled by the chemical and physical properties of the explosive materials. Several properties are considered for a range of improvised and conventional explosives. Here I compare these properties across a wide range of explosives to develop an understanding of explosive behaviors. For improvised explosives, which are generally heterogeneous mixtures of ingredients, a range of studies is identified as needed to more fully understand their behavior and properties. For conventional explosives, which are generally comprised of crystalline explosive molecules held together with a binder, I identify key material properties that determine overall sensitivity, including the extremely safe behavior of Insensitive High Explosives, and discuss an approach to predicting the sensitivity or insensitivity of an explosive.

  10. Double parametric resonance for matter-wave solitons in a time-modulated trap

    International Nuclear Information System (INIS)

    Baizakov, Bakhtiyor; Salerno, Mario; Filatrella, Giovanni; Malomed, Boris

    2005-01-01

    We analyze the motion of solitons in a self-attractive Bose-Einstein condensate, loaded into a quasi-one-dimensional parabolic potential trap, which is subjected to time-periodic modulation with an amplitude ε and frequency Ω. First, we apply the variational approximation, which gives rise to decoupled equations of motion for the center-of-mass coordinate of the soliton, ξ(t), and its width a(t). The equation for ξ(t) is the ordinary Mathieu equation (ME) (it is an exact equation that does not depend on the adopted ansatz), the equation for a(t) being a nonlinear generalization of the ME. Both equations give rise to the same map of instability zones in the (ε,Ω) plane, generated by the parametric resonances (PRs), if the instability is defined as the onset of growth of the amplitude of the parametrically driven oscillations. In this sense, the double PR is predicted. Direct simulations of the underlying Gross-Pitaevskii equation give rise to a qualitatively similar but quantitatively different stability map for oscillations of the soliton's width a(t). In the direct simulations, we identify the soliton dynamics as unstable if the instability (again, realized as indefinite growth of the amplitude of oscillations) can be detected during a time comparable with, or smaller than, the lifetime of the condensate (therefore accessible to experimental detection). Two-soliton configurations are also investigated. It is concluded that multiple collisions between solitons are elastic, and they do not affect the instability borders

  11. Time-domain electric field enhancement on micrometer scale in coupled split ring resonator upon terahertz radiation

    DEFF Research Database (Denmark)

    Lange, Simon Lehnskov; Iwaszczuk, Krzysztof; Hoffmann, Matthias

    2016-01-01

    We present here a novel design for a coupled split ring resonator antenna optimized for time-domain electric field enhancement in the 0.1 to 1 terahertz (THz) range. The antenna is designed to be sensitive to the incident field polarization and seeks to avoid metal damage due to electron bombardm...

  12. Behavior of explosion debris clouds

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made

  13. Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Adolphsen, Jens Q

    2013-01-01

    Nanomechanical resonators have an unprecedented mass sensitivity sufficient to detect single molecules, viruses or nanoparticles. The challenge with nanomechanical mass sensors is the direction of nano-sized samples onto the resonator. In this work we present an efficient inertial sampling...... study of single filter-fiber behavior. We present the direct measurement of diffusive nanoparticle collection on a single filter-fiber qualitatively confirming Langmuir's model from 1942....

  14. Real-time magnetic resonance imaging of deep venous flow during muscular exercise-preliminary experience.

    Science.gov (United States)

    Joseph, Arun Antony; Merboldt, Klaus-Dietmar; Voit, Dirk; Dahm, Johannes; Frahm, Jens

    2016-12-01

    The accurate assessment of peripheral venous flow is important for the early diagnosis and treatment of disorders such as deep-vein thrombosis (DVT) which is a major cause of post-thrombotic syndrome or even death due to pulmonary embolism. The aim of this work is to quantitatively determine blood flow in deep veins during rest and muscular exercise using a novel real-time magnetic resonance imaging (MRI) method for velocity-encoded phase-contrast (PC) MRI at high spatiotemporal resolution. Real-time PC MRI of eight healthy volunteers and one patient was performed at 3 Tesla (Prisma fit, Siemens, Erlangen, Germany) using a flexible 16-channel receive coil (Variety, NORAS, Hoechberg, Germany). Acquisitions were based on a highly undersampled radial FLASH sequence with image reconstruction by regularized nonlinear inversion at 0.5×0.5×6 mm 3 spatial resolution and 100 ms temporal resolution. Flow was assessed in two cross-sections of the lower leg at the level of the calf muscle and knee using a protocol of 10 s rest, 20 s flexion and extension of the foot, and 10 s rest. Quantitative analyses included through-plane flow in the right posterior tibial, right peroneal and popliteal vein (PC maps) as well as signal intensity changes due to flow and muscle movements (corresponding magnitude images). Real-time PC MRI successfully monitored the dynamics of venous flow at high spatiotemporal resolution and clearly demonstrated increased flow in deep veins in response to flexion and extension of the foot. In normal subjects, the maximum velocity (averaged across vessel lumen) during exercise was 9.4±5.7 cm·s -1 for the right peroneal vein, 8.5±4.6 cm·s -1 for the right posterior tibial vein and 17.8±5.8 cm·s -1 for the popliteal vein. The integrated flow volume per exercise (20 s) was 1.9, 1.6 and 50 mL (mean across subjects) for right peroneal, right posterior tibial and popliteal vein, respectively. A patient with DVT presented with peak flow velocities of only

  15. Ground truth data collection on mining industrial explosions registered by the International Monitoring System

    International Nuclear Information System (INIS)

    Ehl'tekov, A.Yu.; Gordon, V.P.; Firsov, V.A.; Chervyakov, V.B.

    2004-01-01

    The presentation is dedicated to organizational and technical issues connected with the task of Comprehensive Test-Ban-Treaty Organization timely notification on large chemical explosions including data on explosion location and time, on applied explosive substance quantity and type, and also on configuration and assumed purpose of explosion. Explosions registered by International Monitoring System are of special interest. Their data could be used for calibration of the monitoring system. Ground truth data collection and some explosions location results on Russia's mining enterprises were given. Ground truth data collection peculiarities according to mining industrial explosions were considered. (author)

  16. Dipole resonances in light neutron-rich nuclei studied with time-dependent calculations of antisymmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Kanada-En'yo, Y.; Kimura, M.

    2005-01-01

    To study isovector dipole responses of neutron-rich nuclei, we applied a time-dependent method of antisymmetrized molecular dynamics. The dipole resonances in Be, B, and C isotopes were investigated. In 10 Be, 15 B, and 16 C, collective modes of the vibration between a core and valence neutrons cause soft resonances at the excitation energy E x =10-15 MeV below the giant dipole resonance (GDR). In 16 C, we found that a remarkable peak at E x =14 MeV corresponds to the coherent motion of four valence neutrons against a 12 C core, whereas the GDR arises in the E x >20 MeV region because of vibration within the core. In 17 B and 18 C, the dipole strengths in the low-energy region decline compared with those in 15 B and 16 C. We also discuss the energy-weighted sum rule for the E1 transitions

  17. Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique

    International Nuclear Information System (INIS)

    Tu, Hui-Lin; Xiao, Shao-Qiu

    2016-01-01

    The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysis of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.

  18. Furball Explosive Breakout Test

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Joshua David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-05

    For more than 30 years the Onionskin test has been the primary way to study the surface breakout of a detonation wave. Currently the Onionskin test allows for only a small, one dimensional, slice of the explosive in question to be observed. Asymmetrical features are not observable with the Onionskin test and its one dimensional view. As a result, in 2011, preliminary designs for the Hairball and Furball were developed then tested. The Hairball used shorting pins connected to an oscilloscope to determine the arrival time at 24 discrete points. This limited number of data points, caused by the limited number of oscilloscope channels, ultimately led to the Hairball’s demise. Following this, the Furball was developed to increase the number of data points collected. Instead of shorting pins the Furball uses fiber optics imaged by a streak camera to determine the detonation wave arrival time for each point. The original design was able to capture the detonation wave’s arrival time at 205 discrete points with the ability to increase the number of data points if necessary.

  19. Time-resolved optically-detected magnetic resonance of II-VI diluted-magnetic-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.Yu.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Dept. Mathem. and Natural Sci. College of Sci., Card. S. Wyszynski Univ., Warsaw (Poland); Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44221 Dortmund (Germany); A. F. Ioffe Physico-Technical Institute, 194017 St. Petersburg (Russian Federation); Ryabchenko, S.M. [Institute of Physics NAS Ukraine, 03028 Kiev (Ukraine); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany)

    2007-01-15

    Time-resolved optically-detected magnetic resonance (ODMR) technique was used to study spin dynamics of Mn{sup 2+} ions in (Zn,Mn)Se- and (Cd,Mn)Te-based diluted magnetic semiconductor quantum wells. Times of spin-lattice relaxation have been measured directly from a dynamical shift of exciton luminescence lines after a pulsed impact of 60 GHz microwave radiation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Stochastic resonance in a time-delayed mono-stable system with correlated multiplicative and additive white noise

    International Nuclear Information System (INIS)

    Zhou Yu-Rong

    2011-01-01

    This paper considers the stochastic resonance for a time-delayed mono-stable system, driven by correlated multiplicative and additive white noise. It finds that the output signal-to-noise ratio (SNR) varies non-monotonically with the delayed times. The SNR varies non-monotonically with the increase of the intensities of the multiplicative and additive noise, with the increase of the correlation strength between the two noises, as well as with the system parameter. (general)

  1. Acoustic and tephra records of explosive eruptions at West Mata submarine volcano, NE Lau Basin

    Science.gov (United States)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Mack, C. J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T. A.

    2013-12-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were directly observed in May 2009. Here we present long-term acoustic and tephra records of West Mata explosion activity from three deployments of hydrophone and particle sensor moorings beginning on 8 January 2009. These records provide insights into the character of explosive magma degassing occurring at the volcano's summit vent until the decline and eventual cessation of the eruption during late 2010 and early 2011. The detailed acoustic records show three types of volcanic signals, 1) discrete explosions, 2) diffuse explosions, and 3) volcanic tremor. Discrete explosions are short duration, high amplitude broad-band signals caused by rapid gas bubble release. Diffuse signals are likely a result of 'trap-door' explosions where a quench cap of cooled lava forms over the magmatic vent but gas pressure builds underneath the cap. This pressure eventually causes the cap to breach and gas is explosively released until pressure reduces and the cap once again forms. Volcanic tremor is typified by narrow-band, long-duration signals with overtones, as well as narrow-band tones that vary frequency over time between 60-100 Hz. The harmonic tremor is thought to be caused by modulation of rapid, short duration gas explosion pulses and not a magma resonance phenomenon. The variable frequency tones may be caused by focused degassing or hydrothermal fluid flow from a narrow volcanic vent or conduit. High frequency (>30 Hz) tremor-like bands of energy are a result of interference caused by multipath wide-band signals, including sea-surface reflected acoustic phases, that arrive at the hydrophone with small time delays. Acoustic data suggest that eruption velocities for a single explosion range from 4-50 m s-1, although synchronous arrival of explosion signals has complicated our efforts to estimate long-term gas flux. Single explosions exhibit ~4-40 m3 s-1 of total volume flux (gas and rock) but

  2. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    Science.gov (United States)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  3. Measurement of oro-caecal transit time by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Savarino, Edoardo; De Cassan, Chiara [Division of Gastroenterology, Department of Surgical, Oncological and Gastroenterological Sciences, Padua (Italy); Savarino, Vincenzo; Furnari, Manuele; Marabotto, Elisa; Gemignani, Lorenzo; Bruzzone, Luca; Moscatelli, Alessandro [University of Genoa, Division of Gastroenterology, Department of Internal Medicine, Genoa (Italy); Fox, Mark [Queen' s Medical Center, NIHR Biomedical Research Unit, Nottingham Digestive Diseases Centre, Nottingham (United Kingdom); Di Leo, Giovanni [IRCCS Policlinico San Donato, Servizio di Radiologia, San Donato Milanese (Italy); Sardanelli, Francesco; Sconfienza, Luca Maria [IRCCS Policlinico San Donato, Servizio di Radiologia, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese, Milano (Italy)

    2015-06-01

    To assess prospectively the agreement of orocaecal transit time (OCTT) measurements by lactulose hydrogen breath test (LHBT) and magnetic resonance imaging (MRI) in healthy subjects. Volunteers underwent abdominal 1.5-T MRI using axial and coronal single-shot fast-spin-echo T2-weighted sequences, having fasted and after lactulose ingestion (10 g/125 mL). Imaging and H{sub 2} excretion gas-chromatography were performed concurrently every 15 min up to 180 min. MR images were analyzed using semiautomatic segmentation to calculate small bowel gas volume (SBGV) and visually to detect bolus arrival in the caecum. Agreement between MRI- and LHBT-OCTT was assessed. Twenty-eight subjects (17 men/11 women; mean age ± standard deviation 30 ± 8 years) were evaluated. Two H{sub 2} non-producers on LHBT were excluded. OCTT measured by MRI and LHBT was concordant in 18/26 (69 %) subjects (excellent agreement, k = 0.924). Median SBGV was 49.0 mL (interquartile interval 44.1 - 51.6 mL). In 8/26 (31 %) subjects, MRI showed that the lactulose bolus was in the terminal ileum and not the caecum when H{sub 2}E increased on LHBT. Median OCTT measured by MRI was significantly longer than OCTT measured by LHBT [135 min (120 - 150 min) vs. 127.5 min (105 - 150 min); p = 0.008]. Above baseline levels, correlation between [H{sub 2}] and SBGV was significant (r = 0.964; p < 0.001). MRI provides valid measurements of OCTT and gas production in the small bowel. (orig.)

  4. Optimization of three-dimensional time-of-flight magnetic resonance angiography of the intracranial arteries

    International Nuclear Information System (INIS)

    Harada, Kuniaki; Honmou, Osamu; Odawara, Yoshihiro; Bando, Michio; Houkin, Kiyohiro

    2006-01-01

    The signal-to-noise ratio obtained from arteries in three-dimensional (3D) time-of-flight (TOF) magnetic resonance (MR) angiography is often too low to allow clinical diagnosis because the radiofrequency pulse decreases the magnetization of protons in the blood and suppresses the in-flow effect in the slab. The present study adjusted the position of the head coil to boost arterial signal intensity. Ten healthy volunteers, eight men and two women aged 24-78 years, underwent 3D TOF MR angiography of the intracranial arteries with the same standard GE transmit-receive birdcage head coil using both normal and half position (lower edge of the coil level with the mouth) methods. Our subjects were divided into Group 1 consisted of five relatively young volunteers aged 24-42 years (mean 31.2 years), and Group 2 consisted of five older volunteers aged 70-78 years (mean 73 years). The following four arteries were chosen for analysis: the internal carotid artery (ICA), the proximal middle cerebral artery segment (M 1 ), and the two distal middle cerebral artery segments (M 2 , M 3 ). The half position method increased the signal-to-noise ratio in the ICA, M 1 , M 2 , and M 3 by 15%, 25%, 36%, and 44%, respectively. In general, this method resulted in the generation of stronger signals in the M 2 and M 3 in younger subjects and in all arteries examined in older subjects. The half position method can provide better MR angiograms in certain brain regions of younger people, and in all brain regions in older patients. (author)

  5. Explosives 92. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Farnfield, R.A. (ed.)

    1992-01-01

    17 papers are presented. Topics covered include: the POG system - a new concept in the use of ANFO; demolition of a motorway bridge; presplit and smooth blasting; VIBReX - a predictive code for assessing the effect of blast design on ground vibration; ground vibrations from blasting; digital seismographs; human response to blasting and the effects on planning conditions; landform construction by restoration blasting; use of small diameter explosives; efficient priming; safety management in the explosives industry; and the law on packaging of explosives. Two papers have been abstracted separately.

  6. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  7. Seismic and source characteristics of large chemical explosions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V.; Kostuchenko, V.N.; Pernik, L.M.; Sultanov, D.D.; Zcikanovsky, V.I.

    1995-01-01

    From the very beginning of its arrangement in 1947, the Institute for Dynamics of the Geospheres RAS (former Special Sector of the Institute for physics of the Earth, RAS) was providing scientific observations of effects of nuclear explosions, as well as large-scale detonations of HE, on environment. This report presents principal results of instrumental observations obtained from various large-scale chemical explosions conducted in the Former-Soviet Union in the period of time from 1957 to 1989. Considering principal aim of the work, tamped and equivalent chemical explosions have been selected with total weights from several hundreds to several thousands ton. In particular, the selected explosions were aimed to study scaling law from excavation explosions, seismic effect of tamped explosions, and for dam construction for hydropower stations and soil melioration. Instrumental data on surface explosions of total weight in the same range aimed to test military technics and special objects are not included.

  8. Insensitive detonator apparatus for initiating large failure diameter explosives

    Science.gov (United States)

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  9. Time-resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: The bK(590) intermediate.

    Science.gov (United States)

    Terner, J; Hsieh, C L; Burns, A R; El-Sayed, M A

    1979-07-01

    We have combined microbeam and flow techniques with computer subtraction methods to obtain the resonance Raman spectrum of the short lived batho-intermediate (bK(590)) of bacteriorhodopsin. Comparison of the spectra obtained in (1)H(2)O and (2)H(2)O, as well as the fact that the bK(590) intermediate shows large optical red shifts, suggests that the Schiff base linkage of this intermediate is protonated. The fingerprint region of the spectrum of bK(590), sensitive to the isomeric configuration of the retinal chromophore, does not resemble the corresponding region of the parent bR(570) form. The resonance Raman spectrum of bK(590) as well as the spectra of all of the other main intermediates in the photoreaction cycle of bacteriorhodopsin are discussed and compared with resonance Raman spectra of published model compounds.

  10. Real-time functional magnetic resonance imaging in obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Gonçalves ÓF

    2017-07-01

    Full Text Available Óscar F Gonçalves,1–3 Marcelo C Batistuzzo,4 João R Sato5 1Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal; 2Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 3Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University, 4Department and Institute of Psychiatry, University of São Paulo Medical School (FMUSP, 5Mathematics, Computing, and Cognition Center, Universidade Federal do ABC – UFABC, São Paulo, Brazil Abstract: The current literature provides substantial evidence of brain alterations associated with obsessive-compulsive disorder (OCD symptoms (eg, checking, cleaning/decontamination, counting compulsions; harm or sexual, symmetry/exactness obsessions, and emotional problems (eg, defensive/appetitive emotional imbalance, disgust, guilt, shame, and fear learning/extinction and cognitive impairments associated with this disorder (eg, inhibitory control, working memory, cognitive flexibility. Building on this evidence, new clinical trials can now target specific brain regions/networks. Real-time functional magnetic resonance imaging (rtfMRI was introduced as a new therapeutic tool for the self-regulation of brain–mind. In this review, we describe initial trials testing the use of rtfMRI to target brain regions associated with specific OCD symptoms (eg, contamination, and other mind–brain processes (eg, cognitive – working memory, inhibitory control, emotional – defensive, appetitive systems, fear reduction through counter-conditioning found impaired in OCD patients. While this is a novel topic of research, initial evidence shows the promise of using rtfMRI in training the self-regulation of brain regions and mental processes associated with OCD. Additionally, studies with

  11. Fetal magnetic resonance imaging: exposure times and functional outcomes at preschool age

    Energy Technology Data Exchange (ETDEWEB)

    Bouyssi-Kobar, Marine [George Washington University, Institute for Biomedical Sciences, Washington, DC (United States); Children' s National Health System, Advanced Pediatric Brain Imaging Research Laboratory, Departments of Diagnostic Imaging and Radiology, Washington, DC (United States); Du Plessis, Adre J. [Children' s National Health System, Fetal and Transitional Medicine, Washington, DC (United States); Robertson, Richard L. [Children' s Hospital Boston and Harvard Medical School, Department of Radiology, Boston, MA (United States); Limperopoulos, Catherine [Children' s National Health System, Advanced Pediatric Brain Imaging Research Laboratory, Departments of Diagnostic Imaging and Radiology, Washington, DC (United States); Children' s National Health System, Fetal and Transitional Medicine, Washington, DC (United States)

    2015-11-15

    Fetal magnetic resonance imaging (MRI) has been routinely used as a noninvasive diagnostic tool for more than a decade; however, there is a paucity of follow-up studies examining the effects of prenatal exposure to 1.5-T MRI on developmental outcome. The objective of this study was to assess the safety of 1.5-T fetal MRI by evaluating functional outcomes of preschool children who were exposed in utero. In the context of a prospective observational study, healthy pregnant women underwent a 1.5-T MRI study using single-shot fast spin echo (SSFSE) sequences during the second or third trimester of pregnancy. The study was approved by the institutional review board at our institution, and written informed consent was obtained from all study participants. MRI scanning times were recorded, and prenatal/postnatal clinical data were collected prospectively. Functional outcomes were assessed using the Vineland Adaptive Behavior Scale (VABS), a widely used, norm-referenced and psychometrically sound functional assessment. We studied 72 healthy pregnant women, who underwent fetal MRI at a mean gestational age of 30.5 ± 3.1 weeks. The cohort of fetuses was composed of 43% females, and 18 fetuses were scanned during the second trimester. All fetuses were born at term with appropriate birth weights (3.54 ± 0.5 kg) for gestational age. Mean age at follow-up testing was 24.5 ± 6.7 months. All children had age-appropriate scores in the communication, daily living, socialization and motor skills subdomains of the VABS (z-scores, P > 0.05). Furthermore, all children passed their newborn otoacoustic emission test and had normal hearing at preschool age. MRI study duration and exposure time to radio frequency waves and SSFSE sequences were not associated with adverse functional outcomes or hearing impairment. Prenatal exposure to 1.5-T MRI during the second or third trimester of pregnancy in a cohort of healthy fetuses is not associated with disturbances in functional outcomes or

  12. Fetal magnetic resonance imaging: exposure times and functional outcomes at preschool age

    International Nuclear Information System (INIS)

    Bouyssi-Kobar, Marine; Du Plessis, Adre J.; Robertson, Richard L.; Limperopoulos, Catherine

    2015-01-01

    Fetal magnetic resonance imaging (MRI) has been routinely used as a noninvasive diagnostic tool for more than a decade; however, there is a paucity of follow-up studies examining the effects of prenatal exposure to 1.5-T MRI on developmental outcome. The objective of this study was to assess the safety of 1.5-T fetal MRI by evaluating functional outcomes of preschool children who were exposed in utero. In the context of a prospective observational study, healthy pregnant women underwent a 1.5-T MRI study using single-shot fast spin echo (SSFSE) sequences during the second or third trimester of pregnancy. The study was approved by the institutional review board at our institution, and written informed consent was obtained from all study participants. MRI scanning times were recorded, and prenatal/postnatal clinical data were collected prospectively. Functional outcomes were assessed using the Vineland Adaptive Behavior Scale (VABS), a widely used, norm-referenced and psychometrically sound functional assessment. We studied 72 healthy pregnant women, who underwent fetal MRI at a mean gestational age of 30.5 ± 3.1 weeks. The cohort of fetuses was composed of 43% females, and 18 fetuses were scanned during the second trimester. All fetuses were born at term with appropriate birth weights (3.54 ± 0.5 kg) for gestational age. Mean age at follow-up testing was 24.5 ± 6.7 months. All children had age-appropriate scores in the communication, daily living, socialization and motor skills subdomains of the VABS (z-scores, P > 0.05). Furthermore, all children passed their newborn otoacoustic emission test and had normal hearing at preschool age. MRI study duration and exposure time to radio frequency waves and SSFSE sequences were not associated with adverse functional outcomes or hearing impairment. Prenatal exposure to 1.5-T MRI during the second or third trimester of pregnancy in a cohort of healthy fetuses is not associated with disturbances in functional outcomes or

  13. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  14. The control and prevention of dust explosions

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Papers presented discussed: explosion characteristics and hybrid mixtures explosion characteristics and influencing factors, propagation of dust explosions in ducts, prevention of dust explosions, desensitization, explosion-proof type of construction, explosion pressure relief, optical flame barriers, slide-valves for explosion protection, Ventex explosion barrier valves, grinding and mixing plants, spray driers, dust explosions in silos, and explosion-proof bucket elevators. One paper has been abstracted separately.

  15. Photonic ring resonance is a versatile platform for performing multiplex immunoassays in real time.

    Science.gov (United States)

    Mudumba, Sasi; de Alba, Sophia; Romero, Randy; Cherwien, Carli; Wu, Alice; Wang, Jue; Gleeson, Martin A; Iqbal, Muzammil; Burlingame, Rufus W

    2017-09-01

    Photonic ring resonance is a property of light where in certain circumstances specific wavelengths are trapped in a ring resonator. Sensors based on silicon photonic ring resonators function by detecting the interaction between light circulating inside the sensor and matter deposited on the sensor surface. Binding of biological material results in a localized change in refractive index on the sensor surface, which affects the circulating optical field extending beyond the sensor boundary. That is, the resonant wavelength will change when the refractive index of the medium around the ring resonator changes. Ring resonators can be fabricated onto small silicon chips, allowing development of a miniature multiplex array of ring based biosensors. This paper describes the properties of such a system when responding to the refractive index changed in a simple and precise way by changing the ionic strength of the surrounding media, and in a more useful way by the binding of macromolecules to the surface above the resonators. Specifically, a capture immunoassay is described that measures the change of resonant wavelength as a patient serum sample with anti-SS-A autoantibodies is flowed over a chip spotted with SS-A antigen and amplified with anti-IgG. The technology has been miniaturized and etched into a 4×6mm silicon chip that can measure 32 different reactions in quadruplicate simultaneously. The variability between 128 rings on a chip as measured by 2M salt assays averaged 0.6% CV. The output of the assays is the average shift per cluster of 4 rings, and the assays averaged 0.5% CV between clusters. The variability between chips averaged 1.8%. Running the same array on multiple instruments showed that after some improvements to the wavelength referencing system, the upper boundary of variation was 3% between 13 different instruments. The immunoassay displayed about 2% higher variability than the salt assays. There are several outstanding features of this system. The

  16. Thermal explosion models

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tso Chin [Malaya Univ., Kuala Lumpur (Malaysia)

    1984-12-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon.

  17. Thermal explosion models

    International Nuclear Information System (INIS)

    Tso Chin Ping

    1984-01-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon. (author)

  18. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  19. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  20. Nuclear explosive driven experiments

    International Nuclear Information System (INIS)

    Ragan, C.E.

    1981-01-01

    Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment

  1. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  2. Intermittent Explosive Disorder

    Science.gov (United States)

    ... explosive disorder involves repeated, sudden episodes of impulsive, aggressive, violent behavior or angry verbal outbursts in which you react grossly out of proportion to the situation. Road rage, domestic abuse, throwing or breaking objects, or other temper tantrums ...

  3. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  4. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  5. Inelastic processes in seismic wave generation by underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Rodean, H.C.

    1980-08-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations.

  6. Inelastic processes in seismic wave generation by underground explosions

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1980-01-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations

  7. Sensitivities of ionic explosives

    Science.gov (United States)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  8. Time-domain, nuclear-resonant, forward scattering: the classical approach

    International Nuclear Information System (INIS)

    Hoy, G.R.

    1997-01-01

    This paper deals with the interaction of electromagnetic radiation with matter assuming the matter to have nuclear transitions in resonance with incident electromagnetic radiation. The source of the radiation is taken to be of two types; natural radioactive gamma decay and synchrotron radiation. Numerical examples using 57 Fe are given for the two types of source radiation. Calculated results are contrasted for the two cases. Electromagnetic radiation produced by recoil-free gamma-ray emission has essentially the natural linewidth. Electromagnetic radiation from a synchrotron, even with the best monochromators available, has a relatively broad-band spectrum, essentially constant for these considerations. Polarization effects are considered. In general, the nuclear-resonant medium changes the polarization of the input radiation on traversing the medium. Calculations are presented to illustrate that synchrotron radiation studies using nuclear-resonant forward scattering have the potential for making high-precision measurements of hyperfine fields and recoilless fractions. An interesting aspect of nuclear-resonant forward scattering, relative to possible gamma-ray laser development, is the so-called 'speed-up' effect

  9. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and T2∗ relaxation times.

    Science.gov (United States)

    Rieger, Benedikt; Zimmer, Fabian; Zapp, Jascha; Weingärtner, Sebastian; Schad, Lothar R

    2017-11-01

    To develop an implementation of the magnetic resonance fingerprinting (MRF) paradigm for quantitative imaging using echo-planar imaging (EPI) for simultaneous assessment of T 1 and T2∗. The proposed MRF method (MRF-EPI) is based on the acquisition of 160 gradient-spoiled EPI images with rapid, parallel-imaging accelerated, Cartesian readout and a measurement time of 10 s per slice. Contrast variation is induced using an initial inversion pulse, and varying the flip angles, echo times, and repetition times throughout the sequence. Joint quantification of T 1 and T2∗ is performed using dictionary matching with integrated B1+ correction. The quantification accuracy of the method was validated in phantom scans and in vivo in 6 healthy subjects. Joint T 1 and T2∗ parameter maps acquired with MRF-EPI in phantoms are in good agreement with reference measurements, showing deviations under 5% and 4% for T 1 and T2∗, respectively. In vivo baseline images were visually free of artifacts. In vivo relaxation times are in good agreement with gold-standard techniques (deviation T 1 : 4 ± 2%, T2∗: 4 ± 5%). The visual quality was comparable to the in vivo gold standard, despite substantially shortened scan times. The proposed MRF-EPI method provides fast and accurate T 1 and T2∗ quantification. This approach offers a rapid supplement to the non-Cartesian MRF portfolio, with potentially increased usability and robustness. Magn Reson Med 78:1724-1733, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong; Min, Byoung-Hyun; Yoon, Seung-Hyun

    2009-01-01

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  11. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong (Dept. of Radiology, Ajou Univ. Medical Center, Suwon (Korea)); Min, Byoung-Hyun; Yoon, Seung-Hyun (Cartilage Regeneration Center, Ajou Univ. Medical Center, Suwon (Korea))

    2009-11-15

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  12. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  13. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker-Planck Systems

    International Nuclear Information System (INIS)

    Yan-Mei, Kang; Yao-Lin, Jiang

    2008-01-01

    To explore the influence of anomalous diffusion on stochastic resonance (SR) more deeply and effectively, the method of moments is extended to subdiffusive overdamped bistable fractional Fokker-Planck systems for calculating the long-time linear dynamic response. It is found that the method of moments attains high accuracy with the truncation order N = 10, and in normal diffusion such obtained spectral amplification factor (SAF) of the first-order harmonic is also confirmed by stochastic simulation. Observing the SAF of the odd-order harmonics we find some interesting results, i.e. for smaller driving frequency the decrease of sub diffusion exponent inhibits the stochastic resonance (SR), while for larger driving frequency the decrease of sub diffusion exponent enhances the second SR peak, but the first one vanishes and a double SR is induced in the third-order harmonic at the same time. These observations suggest that the anomalous diffusion has important influence on the bistable dynamics

  14. The probability distribution of the delay time of a wave packet in strong overlap of resonance levels

    International Nuclear Information System (INIS)

    Lyuboshitz, V.L.

    1982-01-01

    The time development of nuclear reactions at a large density of levels is investigated using the theory of overlapping resonances. The analytical expression for the function describing the time delay probability distribution of a wave packet is obtained in the framework of the model of n equi - valent channels. It is shown that a relative fluctuation of the time delay at the stage of the compound nucleus is snall. The possibility is discussed of increasing the duration of nuclear raactions with rising excitation energy

  15. Time-dependent Hartree-Fock calculation of the escape width of the giant monopole resonance in 16O

    International Nuclear Information System (INIS)

    Pacheco, J.M.; Maglione, E.; Broglia, R.A.

    1988-01-01

    The damping of the giant monopole resonance in 16 O is calculated within the framework of the time-dependent Hartree-Fock approximation. The strength function contains two peaks, centered at around 25 and 33 MeV, with escape widths of ∼11 and ∼2 MeV, associated with the 1p(0p) -1 and 1s(0s) -1 configurations, respectively

  16. Implementation of TTIK method and time of flight for resonance reaction studies at heavy ion accelerator DC-60

    Energy Technology Data Exchange (ETDEWEB)

    Nurmukhanbetova, A.K. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Goldberg, V.Z. [Cyclotron Institute, Texas A& M University, College Station, TX (United States); Nauruzbayev, D.K. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Saint Petersburg State University, Saint Petersburg (Russian Federation); Rogachev, G.V. [Cyclotron Institute, Texas A& M University, College Station, TX (United States); Golovkov, M.S. [Joint Institute of Nuclear Research, Dubna (Russian Federation); Dubna State University, Dubna (Russian Federation); Mynbayev, N.A. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Artemov, S.; Karakhodjaev, A. [Institute of Nuclear Physics, Tashkent (Uzbekistan); Kuterbekov, K. [L.N. Gumilov Eurasian National University, Astana (Kazakhstan); Rakhymzhanov, A. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Berdibek, Zh. [School of Science and Technology, Nazarbayev University, Astana (Kazakhstan); Ivanov, I. [Institute of Nuclear Physics, Astana (Kazakhstan); Tikhonov, A. [School of Science and Technology, Nazarbayev University, Astana (Kazakhstan); Zherebchevsky, V.I.; Torilov, S. Yu. [Saint Petersburg State University, Saint Petersburg (Russian Federation); Tribble, R.E. [Cyclotron Institute, Texas A& M University, College Station, TX (United States)

    2017-03-01

    To study resonance reactions of heavy ions at low energy we have combined the Thick Target Inverse Kinematics Method (TTIK) with Time of Flight method (TF). We used extended target and TF to resolve the identification problems of various possible nuclear processes inherent to the simplest popular version of TTIK. Investigations of the {sup 15}N interaction with hydrogen and helium gas targets by using this new approach are presented.

  17. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  18. Neutrino oscillations in magnetically driven supernova explosions

    Science.gov (United States)

    Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  19. Nuclear Explosions 1945-1998

    Energy Technology Data Exchange (ETDEWEB)

    Bergkvist, Nils-Olov; Ferm, Ragnhild

    2000-07-01

    The main part of this report is a list of nuclear explosions conducted by the United States, the Soviet Union, the United Kingdom, France, China, India and Pakistan in 1945-98. The list includes all known nuclear test explosions and is compiled from a variety of sources including officially published information from the USA, Russia and France. The details given for each explosion (date, origin time, location, yield, type, etc.) are often compiled from more than one source because the individual sources do not give complete information. The report includes a short background to nuclear testing and provides brief information on the Comprehensive Nuclear-Test-Ban Treaty and the verification regime now being established to verify compliance with the treaty. It also summarizes nuclear testing country by country. The list should be used with some caution because its compilation from a variety of sources means that some of the data could be incorrect. This report is the result of cooperation between the Defence Research Establishment (FOA) and the Stockholm International Peace Research Institute (SIPRI)

  20. SU-F-I-63: Relaxation Times of Lipid Resonances in NAFLD Animal Model Using Enhanced Curve Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Yoo, C-H; Lim, S-I; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The objective of this study is to evaluate the relaxation time of methylene resonance in comparison with other lipid resonances. Methods: The examinations were performed on a 3.0T MRI scanner using a four-channel animal coil. Eight more Sprague-Dawley rats in the same baseline weight range were housed with ad libitum access to water and a high-fat (HF) diet (60% fat, 20% protein, and 20% carbohydrate). In order to avoid large blood vessels, a voxel (0.8×0.8×0.8 cm{sup 3}) was placed in a homogeneous area of the liver parenchyma during free breathing. Lipid relaxations in NC and HF diet rats were estimated at a fixed repetition time (TR) of 6000 msec, and multi echo time (TEs) of 40–220 msec. All spectra for data measurement were processed using the Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting algorithm of the Java-based Magnetic Resonance User Interface (jMRUI) package. Results: The mean T2 relaxation time of the methylene resonance in normal-chow diet was 37.1 msec (M{sub 0}, 2.9±0.5), with a standard deviation of 4.3 msec. The mean T2 relaxation time of the methylene resonance was 31.4 msec (M{sub 0}, 3.7±0.3), with a standard deviation of 1.8 msec. The T2 relaxation times of methylene protons were higher in normal-chow diet rats than in HF rats (p<0.05), and the extrapolated M{sub 0} values were higher in HF rats than in NC rats (p<0.005). The excellent linear fit with R{sup 2}>0.9971 and R{sup 2}>0.9987 indicates T2 relaxation decay curves with mono-exponential function. Conclusion: In in vivo, a sufficient spectral resolution and a sufficiently high signal-to-noise ratio (SNR) can be achieved, so that the data measured over short TE values can be extrapolated back to TE = 0 to produce better estimates of the relative weights of the spectral components. In the short term, treating the effective decay rate as exponential is an adequate approximation.

  1. Resonance Raman spectroscopy in the picosecond time scale: the carboxyhemoglobin photointermediate

    International Nuclear Information System (INIS)

    Terner, J.; Spiro, T.G.; Nagumo, M.; Nicol, M.F.; El-Sayed, M.A.

    1980-01-01

    A picosecond resonance Raman detection technique is described. The technique is described as specifically applied to the analysis of carboxyhemoglobin (COHb). Irradiaton of COHb with a tightly focused laser produced three distinct bands between 1540 and 1620cm -1 that are distinct from bands of COHb or deoxyHb, and the bands are attributed to an intermediate in the photolysis of COHb which develops within 30ps of the excitation. Computer subtraction of the COHb spectrum yielded a spectrum of the photointermediate

  2. Do peaceful nuclear explosions have a future

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The idea of peaceful uses for nuclear explosive devices arose almost simultaneously with the concept of the nuclear explosion itself. It has been a powerful idea in that it soon generated major study efforts in the United States and the USSR and also captured the interest of many developing nations. But in spite of this considerable interest and much expenditure of funds and effort, the expectation that economically viable uses will be found for peaceful nuclear explosions looks even more distant now that when the first studies were initiated. This, at least, is the conclusion of two recent U.S. studies of the economic feasibility and time scale for application of peaceful nuclear explosions by the United States. The larger of these two studies was prepared by the Gulf Universities Research Consortium, and dealt particularly with possibilities for use in the United States by 1990 of contained, i.e., underground, peaceful nuclear explosions. This paper provides briefer analysis by an ad hoc panel assesses the implications of the Gulf report, considers other uses for peaceful nuclear explosions, and summarizes the reasons why there is only a small possibility that there will be significant use of them by the United States before the year 2000

  3. THE BIGGEST EXPLOSIONS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Johnson, Jarrett L.; Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Heger, Alex; Chen, Ke-Jung

    2013-01-01

    Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs). Supermassive stars with masses of ∼55, 000 M ☉ , however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to ∼10 55 erg instead of collapsing to a BH. Such events, ∼10, 000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. Here we present a simulation of such a SN in two stages. Using the RAGE radiation hydrodynamics code, we first evolve the explosion from an early stage through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z ≅ 15. Then, using the GADGET cosmological hydrodynamics code, we evolve the explosion out to several kiloparsecs from the explosion site, far into the low-density intergalactic medium. The host DM halo, with a total mass of 4 × 10 7 M ☉ , much more massive than typical primordial star-forming halos, is completely evacuated of high-density gas after ∼ ☉ after ∼> 70 Myr. The chemical signature of supermassive star explosions may be found in such long-lived second-generation stars today

  4. What factors control superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  5. Explosive hydrogen brning of 35Cl

    International Nuclear Information System (INIS)

    Ilidas, C.; Goerres, J.; Ross, J.G.; Scheller, K.W.; Wiescher, M.; Azuma, R.E.; Roters, G.; Trautvetter, H.P.; Evans, H.C.

    1994-01-01

    Proton threshold states in 36 Ar have been studied via the reactions 35 Cl( 3 He,d) 36 Ar, 32 S( 6 Li,d) 36 Ar, 32 S(α,γ) 36 Ar, 35 Cl(p,γ) 36 Ar and 35 Cl(p,α) 32 S to investigate their influence on a possible SCl reaction cycle in explosive hydrogen burning. Three new states in 36 Ar have been observed in the ( 3 He,d) reaction at E x =8806, 8887 and 8923 keV. Deuteron angular distributions were measured for 14 states near the 35 Cl+p threshold and were analyzed with DWBA calculations. Values of transferred orbital angular momenta, spectroscopic factors and proton partial widths were determined. Gamma-ray spectra have been measured at ten (p,γ) resonances. Three new resonances were observed at E R =311, 416 and 627 keV, corresponding to 36 Ar states at E x =8806, 8909 and 9117 keV, respectively. Excitation and resonance energies, γ-ray branching ratios and resonance strengths are presented. The astrophysical implications of our results for explosive hydrogen burning of 35 Cl are discussed. (orig.)

  6. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  7. Time resolved resonant inelastic X-ray scattering: A supreme tool to understand dynamics in solids and molecules

    International Nuclear Information System (INIS)

    Beye, M.; Wernet, Ph.; Schüßler-Langeheine, C.; Föhlisch, A.

    2013-01-01

    Highlights: •The high specificity of RIXS ideally suits time-resolved measurements. •Methods relating to the core hole lifetime cover the low femtosecond regime. •Pump-probe methods are used starting at sub-ps time scales. •FELs and synchrotrons are useful for pump-probe studies. •Examples from solid state dynamics and molecules are discussed. -- Abstract: Dynamics in materials typically involve different degrees of freedom, like charge, lattice, orbital and spin in a complex interplay. Time-resolved resonant inelastic X-ray scattering (RIXS) as a highly selective tool can provide unique insight and follow the details of dynamical processes while resolving symmetries, chemical and charge states, momenta, spin configurations, etc. In this paper, we review examples where the intrinsic scattering duration time is used to study femtosecond phenomena. Free-electron lasers access timescales starting in the sub-ps range through pump-probe methods and synchrotrons study the time scales longer than tens of ps. In these examples, time-resolved resonant inelastic X-ray scattering is applied to solids as well as molecular systems

  8. Novel high explosive compositions

    Science.gov (United States)

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  9. Calculating method for confinement time and charge distribution of ions in electron cyclotron resonance sources

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.; Umnov, A.M.; Kutner, V.B.

    1996-01-01

    It is common knowledge that the electrostatic pit in a core plasma of electron cyclotron resonance sources exerts strict control over generation of ions in high charge states. This work is aimed at finding a dependence of the lifetime of ions on their charge states in the core region and to elaborate a numerical model of ion charge dispersion not only for the core plasmas but for extracted beams as well. The calculated data are in good agreement with the experimental results on charge distributions and magnitudes for currents of beams extracted from the 14 GHz DECRIS source. copyright 1996 American Institute of Physics

  10. High-nitrogen explosives

    Energy Technology Data Exchange (ETDEWEB)

    Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAz

  11. Seismic coupling of nuclear explosions. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D B [ed.; Defense Advanced Research Projects Agency, Arlington, VA (United States)

    1989-12-31

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 {times} 10{sup {minus}3} to as low as 5.8 {times} 10{sup {minus}6}. Other experiments in PMMA, reported recently by Stout and Larson{sup 8} provide additional particle velocity data to strains of 10{sup {minus}1}.

  12. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II

    International Nuclear Information System (INIS)

    Corge, Ch.

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [fr

  13. Explosive material treatment in particular the explosive compaction of powders

    International Nuclear Information System (INIS)

    Pruemmer, R.

    1985-01-01

    The constructive use of explosives in the last decades has led to new procedures in manufacturing techniques. The most important of these are explosive forming and cladding, the latter especially for the production of compound materials. The method of explosive compaction has the highest potential for further innovation. Almost theoretical densities are achievable in the green compacts as the pressure released by detonating explosives are very high. Also, the production of new conditions of materials (metastable high pressure phases) is possible. (orig.) [de

  14. Progress in the development of explosives materials detectors

    International Nuclear Information System (INIS)

    Williams, W.D.; Conrad, F.J.; Sandlin, L.L.; Burrows, T.A.

    1978-01-01

    Five hand-held explosives vapor detectors (Elscint Model EXD-2, ITI Model 70, Leigh-Marsland Model S-201, Pye Dynamics Model PD.2.A, and Xonics Model GC-710) were evaluated for sensitivity to a variety of explosives, identification of false alarm agents, and general performance and maintenance characteristics. The results of this evaluation, as presented, indicate that there is no single explosives detector which is best-suited for use at all nuclear facilities. Rather, there are several site-specific elements which must be considered when choosing an explosives detector. There are several new explosives detector technologies being developed which will out-perform existing commercial equipment. Some of these new detectors may be commercially available by the end of fiscal year 1980 and will be cost-effective to purchase and operate. The following areas of explosives detection research are discussed: nitrogen-phosphorous detectors, plasma chromatography, mass spectroscopy, small animal olfactory, vapor preconcentration, nuclear quadrupole resonance, far infrared radiation imaging, nuclear magnetic resonance, thermal neutron activation, and computerized tomography

  15. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Science.gov (United States)

    2010-01-08

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  16. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Science.gov (United States)

    2010-11-17

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  17. Feasibility of real-time magnetic resonance imaging-guided endomyocardial biopsies: An in-vitro study.

    Science.gov (United States)

    Lossnitzer, Dirk; Seitz, Sebastian A; Krautz, Birgit; Schnackenburg, Bernhard; André, Florian; Korosoglou, Grigorios; Katus, Hugo A; Steen, Henning

    2015-07-26

    To investigate if magnetic resonance (MR)-guided biopsy can improve the performance and safety of such procedures. A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5T magnetic resonance imaging (MRI) system. The bioptome was inserted into explanted porcine and bovine hearts under real-time MR-guidance employing a steady state free precession sequence. The artifact produced by the metal element at the tip and the signal voids caused by the bioptome were visually tracked for navigation and allowed its constant and precise localization. Cardiac structural elements and the target regions for the biopsy were clearly visible. Our method allowed a significantly better spatial visualization of the bioptoms tip compared to conventional X-ray guidance. The specific device design of the bioptome avoided inducible currents and therefore subsequent heating. The novel MR-compatible bioptome provided a superior cardiovascular magnetic resonance (imaging) soft-tissue visualization for MR-guided myocardial biopsies. Not at least the use of MRI guidance for endomyocardial biopsies completely avoided radiation exposure for both patients and interventionalists. MRI-guided endomyocardial biopsies provide a better than conventional X-ray guided navigation and could therefore improve the specificity and reproducibility of cardiac biopsies in future studies.

  18. Switching Device Dead Time Optimization of Resonant Double-Sided LCC Wireless Charging System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-11-01

    Full Text Available Aiming at the reduction of the influence of the dead time setting on power level and efficiency of the inverter of double-sided LCC resonant wireless power transfer (WPT system, a dead time soft switching optimization method for metal–oxide–semiconductor field-effect transistor (MOSFET is proposed. At first, the mathematic description of double-sided LCC resonant wireless charging system is established, and the operating mode is analyzed as well, deducing the quantitative characteristic that the secondary side compensation capacitor C2 can be adjusted to ensure that the circuit is inductive. A dead time optimization design method is proposed, contributing to achieving zero-voltage switching (ZVS of the inverter, which is closely related to the performance of the WPT system. In the end, a prototype is built. The experimental results verify that dead time calculated by this optimized method can ensure the soft switching of the inverter MOSFET and promote the power and efficiency of the WPT.

  19. Explosive composition containing water

    Energy Technology Data Exchange (ETDEWEB)

    Cattermole, G.R.; Lyerly, W.M.; Cummings, A.M.

    1971-11-26

    This addition to Fr. 1,583,223, issued 31 May 1968, describes an explosive composition containing a water in oil emulsion. The composition contains an oxidizing mineral salt, a nitrate base salt as sensitizer, water, an organic fuel, a lipophilic emulsifier, and incorporates gas bubbles. The composition has a performance which is improved over and above the original patent.

  20. 75 FR 5545 - Explosives

    Science.gov (United States)

    2010-02-03

    ... the Storage of Ammonium Nitrate. OSHA subsequently made several minor revisions to the standard (37 FR... explosives; storing ammonium nitrate; and storing small arms ammunition, small arms primers, and small arms..., which is extremely widespread, causes lung disease, silicosis and lung cancer. Terminating the...

  1. New slurry explosives

    Energy Technology Data Exchange (ETDEWEB)

    Kale, D.C.

    1982-12-01

    Mining engineers will soon have an additional 2 or 3 types of explosives which increase rock yield without increasing cost. A new variety of Ammonium Nitrate and Fuel Oil (ANFO), which is much heavier and more powerful, is being introduced in the US. New types of NCN (nitrocarbonitrate) blasting agents have also been developed.

  2. Underground Nuclear Explosions and Release of Radioactive Noble Gases

    Science.gov (United States)

    Dubasov, Yuri V.

    2010-05-01

    Over a period in 1961-1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them - in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.

  3. Nuclear explosion and internal contamination; Explosion nucleaire et contamination interne

    Energy Technology Data Exchange (ETDEWEB)

    Aeberhardt, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    By the study of the conditions of internal contamination due to the radioactive mixture produced by a nuclear explosion, the parts played by the relative weights of the different elements and the mode of expression of the doses are considered. Only the knowledge of the weight composition of the contamination mixture and of its evolution as a function of time can provide the required basis for the study of its metabolism in the organism. The curves which give the composition of the fission product mixture - in number of nuclei - - as a function of time - have been established. These curves are applied to some practical examples, particularly relative to the nature of contamination, radiotoxicity of some elements and assessment of hazards. (author) [French] Etudiant les modalites de la contamination interne par les elements radioactifs apparus lors d'une explosion nucleaire, le role de la 'masse' et le mode d'expression des doses sont envisages. La connaissance de la composition en 'masse' du melange contaminant et de son evolution en fonction du temps peut seule apporter les bases necessaires a l'etude de son comportement dans l'organisme. Les courbes donnant la composition du melange de produits de fission - en nombre de noyaux - - en fonction du temps - ont ete etablies. Quelques applications pratiques, relatives en particulier a la nature de la contamination, a la radiotoxicite de certains elements et a l'evaluation de risque, sont envisagees a titre d'exemple. (auteur)

  4. Determination of organic compounds in nano-particles by laser breakdown and resonant ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Tanaka, Nobuyuki

    2005-01-01

    Laser breakdown and resonance ionization time-of-flight mass spectrometry (TOFMS) with a differential mobility analyzer (DMA) was developed and applied to detect compositions and organic substances in nano-particles. The laser breakdown TOFMS method is capable of reaching pptv sensitivity, which is generally much better than the normal LIBS techniques. The system was demonstrated to successfully detect signals in the mass range of 1 to 300 amu for 60 and 140 nm particles in diesel engine exhaust. The detected signals showed that the nano-particles contained both aromatic and chain hydrocarbons

  5. Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations

    OpenAIRE

    Kuisma, Mikael; Sakko, Arto; Rossi, Tuomas P.; Larsen, Ask H.; Enkovaara, Jussi; Lehtovaara, Lauri; Rantala, Tapio T.

    2015-01-01

    We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag$_{55}$ (1.06 nm), Ag$_{147}$ (1.60 nm), Ag$_{309}$ (2.14 nm), and Ag$_{561}$ (2.68 nm). The simulation method combines the adiabat...

  6. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging.

    Science.gov (United States)

    Liu, Zhi-jun; Song, Xiao-xia; Xu, Xian-zhu; Tang, Qun

    2014-04-18

    Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent.

  7. Time delay for resonant vibrational excitation in electron--molecule collisions

    International Nuclear Information System (INIS)

    Gauyacq, J.P.

    1990-01-01

    An analysis of the time delay associated with vibrational excitation in electron--molecule collision is presented. It consists of a direct study of the time dependence of the process for three model systems. An electron wave packet, that is narrow in time, is sent on the target and the amplitudes in the different inelastic channels are studied as functions of time. The time delay is found to correspond to very different time effects: broadenings, shifts in time of the wave packet, but also complex distortions that cannot be represented by a time delay. The direct analysis of the scattered wave also provides new insights into the vibrational excitation process. It should be a useful tool to analyze complex collision processes

  8. Effect of chopping time and heating on 1 H nuclear magnetic resonance and rheological behavior of meat batter matrix.

    Science.gov (United States)

    Zhou, Fen; Dong, Hui; Shao, Jun-Hua; Zhang, Jun-Long; Liu, Deng-Yong

    2018-04-01

    The effect of chopping time and heating on physicochemical properties of meat batters was investigated by low-field nuclear magnetic resonance and rheology technology. Cooking loss and L* increased while texture profile analysis index decreased between chopping 5 and 6 min. The relaxation time T 21 (bound water) and its peak area ratio decreased, while the ratio of T 22 peak area (immobilized water) in raw meat batters gradually increased with the extension of chopping time. However, T 22 was opposite after being heated and a new component T 23 (free water) appeared (T 2i is the spin - spin relaxation time for the ith component.). The initial damping factor (Tan δ) gradually decreased and there were significant difference between 4 and 5 min of chopping time. There were significantly positive correlations between the ratio of peak area of T 22 and chopping time, the storage modulus (G'), cooking loss, and L*, respectively. Continued chopping time could improve the peak area proportion of T 22 in raw meat batters. Further, the higher the peak area proportion of T 22 in raw meat batters, the cooking loss of heated meat gel was higher. Also, the stronger the mobility of immobilized water in meat batter, the higher the L* of the fresh meat batters. Thus, it is revealed that the physicochemical properties of meat batter are significantly influenced by chopping time which further affects the water holding capacity and the texture of emulsification gel. © 2017 Japanese Society of Animal Science.

  9. Contained fission explosion breeder reactor system

    International Nuclear Information System (INIS)

    Juhl, N.H.; Marwick, E.F.

    1983-01-01

    A reactor system for producing useful thermal energy and valuable isotopes, such as plutonium-239, uranium-233, and/or tritium, in which a pair of sub-critical masses of fissile and fertile actinide slugs are propelled into an ellipsoidal pressure vessel. The propelled slugs intercept near the center of the chamber where the concurring slugs become a more than prompt configuration thereby producing a fission explosion. Re-useable accelerating mechanisms are provided external of the vessel for propelling the slugs at predetermined time intervals into the vessel. A working fluid of lean molten metal slurry is injected into the chamber prior to each explosion for the attenuation of the explosion's effects, for the protection of the chamber's walls, and for the absorbtion of thermal energy and debris from the explosion. The working fluid is injected into the chamber in a pattern so as not to interfere with the flight paths of the slugs and to maximize the concentration of working fluid near the chamber's center. The heated working fluid is drained from the vessel and is used to perform useful work. Most of the debris from the explosion is collected as precipitate and is used for the manufacture of new slugs

  10. Whole body magnetic resonance in indolent lymphomas under watchful waiting. The time is now

    Energy Technology Data Exchange (ETDEWEB)

    Galia, Massimo; Albano, Domenico; Midiri, Massimo; Lagalla, Roberto [University of Palermo, Department of Radiology, Di.Bi.Med., Palermo (Italy); Tarella, Corrado [European Institute of Oncology, Hemato-Oncology Division, Milan (Italy); Patti, Caterina; Mule, Antonino [Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Department of Hematology I, Palermo (Italy); Sconfienza, Luca Maria [IRCCS Istituto Ortopedico Galeazzi, Unit of Diagnostic and Interventional Radiology, Milano (Italy); Universita degli Studi di Milano, Department of Biomedical Sciences for Health, Milano (Italy); Alongi, Pierpaolo [Fondazione Istituto G. Giglio, Contrada Pietrapollastra-Pisciotto, Department of Radiological Sciences, Nuclear Medicine Unit, Cefalu (Italy)

    2018-03-15

    The indolent non-Hodgkin lymphomas (i-NHLs) are characterised by 'indolent' clinical behaviour with slow growth and prolonged natural history. The watchful waiting (WW) strategy is a frequently employed treatment option in these patients. This implies a strict monitoring by imaging examinations, including 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) and CT. A major concern is radiation exposure due to regularly monitoring by conventional imaging procedures. Several studies have demonstrated the reliability of whole-body magnetic resonance imaging (WB-MRI) for lymphoma staging. WB-MRI could be useful for active surveillance in i-NHLs providing the suspect of disease progression that can be then confirmed by additional diagnostic procedures, including 18F-FDG-PET/CT. The directive 2013/59 by the European Union claims that if a radiation-free imaging technique allows obtaining the same diagnostic results, it should be invariably used. In this setting, WB-MRI may be considered a reasonable option in i-NHLs under WW, replacing imaging modalities that cause exposure to ionising radiations. This will help to reduce the cancer risk in i-NHL patients for whom chemo-/radiotherapy remain the usual treatment options following the usually long WW phase. The scientific community should raise the awareness of the risk of ionising radiations in i-NHLs and the emphasise the need for establishing the proper place of WB-MRI in lymphoma imaging. (orig.)

  11. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution

    Science.gov (United States)

    Li, Jimeng; Li, Ming; Zhang, Jinfeng

    2017-08-01

    Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.

  12. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2014-12-01

    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  13. Services Textbook of Explosives

    Science.gov (United States)

    1972-03-01

    the propagation in such systems of the detonation wave which had been observed in 1881 by Berthelot and Vieille and by Mallard and le Chatelier . In...detonation, Berthelot and Le Chatelier , Dautrich 4 - 63: Calorometric value 4 -- 66, Power of explosive, lead block, Trauzl 4 - 67- Ballistic pendulum 4...the principles of electric ignition were applied to this system also. 75. In 1890-91 Curtius first prepared lead, silver and mercury azides. The

  14. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  15. Exposure to time varying magnetic fields associated with magnetic resonance imaging reduces fentanyl-induced analgesia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Teskey, G.C.; Prato, F.S.; Ossenkopp, K.P.; Kavaliers, M.

    1988-01-01

    The effects of exposure to clinical magnetic resonance imaging (MRI) on analgesia induced by the mu opiate agonist, fentanyl, was examined in mice. During the dark period, adult male mice were exposed for 23.2 min to the time-varying (0.6 T/sec) magnetic field (TVMF) component of the MRI procedure. Following this exposure, the analgesic potency of fentanyl citrate (0.1 mg/kg) was determined at 5, 10, 15, and 30 min post-injection, using a thermal test stimulus (hot-plate 50 degrees C). Exposure to the magnetic-field gradients attenuated the fentanyl-induced analgesia in a manner comparable to that previously observed with morphine. These results indicate that the time-varying magnetic fields associated with MRI have significant inhibitory effects on the analgesic effects of specific mu-opiate-directed ligands.

  16. Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang Shumin; Duyn, Jeff H

    2008-01-01

    A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations

  17. Non explosive collapse of white dwarfs

    International Nuclear Information System (INIS)

    Canal, R.; Schatzmann, E.

    1976-01-01

    We show that if a sufficiently cold carbon-oxygen white dwarf, close to the critical mass, accretes matter from a companion in a binary system, the time scale of collapse is long enough to allow neutronization before the onset of pycnonuclear reactions. This can possibly lead to the formation of X-ray sources by a non explosive collapse. (orig.) [de

  18. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    OpenAIRE

    Qingjie Jiao; Qiushi Wang; Jianxin Nie; Xueyong Guo; Wei Zhang; Wenqi Fan

    2018-01-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-...

  19. Explosive double salts and preparation

    Science.gov (United States)

    Cady, Howard H.; Lee, Kien-yin

    1984-01-01

    Applicants have discovered a new composition of matter which is an explosive addition compound of ammonium nitrate (AN) and diethylenetriamine trinitrate (DETN) in a 50:50 molar ratio. The compound is stable over extended periods of time only at temperatures higher than 46.degree. C., decomposing to a fine-grained eutectic mixture (which is also believed to be new) of AN and DETN at temperatures lower than 46.degree. C. The compound of the invention has an x-ray density of 1.61 g/cm.sup.3, explodes to form essentially only gaseous products, has higher detonation properties (i.e., detonation velocity and pressure) than those of any mechanical mixture having the same density and composition as the compound of the invention, is a quite insensitive explosive material, can be cast at temperatures attainable by high pressure steam, and is prepared from inexpensive ingredients. Methods of preparing the compound of the invention and the fine-grained eutectic composition of the invention are given.

  20. Supernova Explosions Stay In Shape

    Science.gov (United States)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  1. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    Science.gov (United States)

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  2. Nuclear explosion and internal contamination

    International Nuclear Information System (INIS)

    Aeberhardt, A.

    1956-01-01

    By the study of the conditions of internal contamination due to the radioactive mixture produced by a nuclear explosion, the parts played by the relative weights of the different elements and the mode of expression of the doses are considered. Only the knowledge of the weight composition of the contamination mixture and of its evolution as a function of time can provide the required basis for the study of its metabolism in the organism. The curves which give the composition of the fission product mixture - in number of nuclei - - as a function of time - have been established. These curves are applied to some practical examples, particularly relative to the nature of contamination, radiotoxicity of some elements and assessment of hazards. (author) [fr

  3. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  4. A Microfluidic Chip Based on Localized Surface Plasmon Resonance for Real-Time Monitoring of Antigen-Antibody Reactions

    Science.gov (United States)

    Hiep, Ha Minh; Nakayama, Tsuyoshi; Saito, Masato; Yamamura, Shohei; Takamura, Yuzuru; Tamiya, Eiichi

    2008-02-01

    Localized surface plasmon resonance (LSPR) connecting to noble metal nanoparticles is an important issue for many analytical and biological applications. Therefore, the development of microfluidic LSPR chip that allows studying biomolecular interactions becomes an essential requirement for micro total analysis systems (µTAS) integration. However, miniaturized process of the conventional surface plasmon resonance system has been faced with some limitations, especially with the usage of Kretschmann configuration in total internal reflection mode. In this study, we have tried to solve this problem by proposing a novel microfluidic LSPR chip operated with a simple collinear optical system. The poly(dimethylsiloxane) (PDMS) based microfluidic chip was fabricated by soft-lithography technique and enables to interrogate specific insulin and anti-insulin antibody reaction in real-time after immobilizing antibody on its surface. Moreover, the sensing ability of microfluidic LSPR chip was also evaluated with various glucose concentrations. The kinetic constant of insulin and anti-insulin antibody was determined and the detection limit of 100 ng/mL insulin was archived.

  5. Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness

    Science.gov (United States)

    Wu, R. Q.; Zhang, W.; Yao, M. H.

    2018-02-01

    In this paper, we analyze the complicated nonlinear dynamics of rotor-active magnetic bearings (rotor-AMB) with 16-pole legs and the time varying stiffness. The magnetic force with 16-pole legs is obtained by applying the electromagnetic theory. The governing equation of motion for rotor-active magnetic bearings is derived by using the Newton's second law. The resulting dimensionless equation of motion for the rotor-AMB system is expressed as a two-degree-of-freedom nonlinear system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equation of the rotor-AMB system is obtained by using the method of multiple scales when the primary parametric resonance and 1/2 subharmonic resonance are taken into account. From the frequency-response curves, it is found that there exist the phenomena of the soft-spring type nonlinearity and the hardening-spring type nonlinearity in the rotor-AMB system. The effects of different parameters on the nonlinear dynamic behaviors of the rotor-AMB system are investigated. The numerical results indicate that the periodic, quasi-periodic and chaotic motions occur alternately in the rotor-AMB system.

  6. Thermal decomposition and reaction of confined explosives

    International Nuclear Information System (INIS)

    Catalano, E.; McGuire, R.; Lee, E.; Wrenn, E.; Ornellas, D.; Walton, J.

    1976-01-01

    Some new experiments designed to accurately determine the time interval required to produce a reactive event in confined explosives subjected to temperatures which will cause decomposition are described. Geometry and boundary conditions were both well defined so that these experiments on the rapid thermal decomposition of HE are amenable to predictive modelling. Experiments have been carried out on TNT, TATB and on two plastic-bonded HMX-based high explosives, LX-04 and LX-10. When the results of these experiments are plotted as the logarithm of the time to explosion versus 1/T K (Arrhenius plot), the curves produced are remarkably linear. This is in contradiction to the results obtained by an iterative solution of the Laplace equation for a system with a first order rate heat source. Such calculations produce plots which display considerable curvature. The experiments have also shown that the time to explosion is strongly influenced by the void volume in the containment vessel. Results of the experiments with calculations based on the heat flow equations coupled with first-order models of chemical decomposition are compared. The comparisons demonstrate the need for a more realistic reaction model

  7. Time-resolved three-dimensional magnetic resonance velocity mapping of chronic thoracic aortic dissection. A preliminary investigation

    International Nuclear Information System (INIS)

    Amano, Yasuo; Sekine, Tetsuro; Tanaka, Keiji; Takagi, Ryo; Kumita, Shinichiro; Suzuki, Yuriko

    2011-01-01

    The blood flow patterns of chronic thoracic aortic dissection are complicated, and their clinical significance remains unknown. We evaluated the technical and clinical potentials of time-resolved 3-dimensional (3D) magnetic resonance (MR) velocity mapping for assessing these patterns. We used data collected from time-resolved 3D phase-contrast MR imaging of 16 patients with chronic thoracic aortic dissection to generate time-resolved 3D MR velocity mapping that included 3D streamline and path line. We investigated blood flow patterns of this disease in the mapping and compared them with the morphological changes of the patent false lumen. Time-resolved 3D MR velocity mapping visualized rapid flow at the entry and in the true lumen immediately distal to the entry. We observed slower helical or laminar flow in the patent false lumen. In patients with disease progression, slower helical flow following rapid entry jet collided with the outer wall of the false lumen and was also observed in a growing ulcer-like projection. We showed the potential of time-resolved 3D MR velocity mapping for visualizing pathologic flow patterns related to chronic thoracic aortic dissection. (author)

  8. Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Mahoney, Christine M; Kelly, Ryan T; Alexander, Liz; Newburn, Matt; Bader, Sydney; Ewing, Robert G; Fahey, Albert J; Atkinson, David A; Beagley, Nathaniel

    2016-04-05

    Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field.

  9. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  10. Statistics of resonances and time reversal reconstruction in aluminum acoustic chaotic cavities

    NARCIS (Netherlands)

    Antoniuk, O.; Sprik, R.

    2010-01-01

    The statistical properties of wave propagation in classical chaotic systems are of fundamental interest in physics and are the basis for diagnostic tools in materials science. The statistical properties depend in particular also on the presence of time reversal invariance in the system, which can be

  11. The present status of scientific applications of nuclear explosions

    International Nuclear Information System (INIS)

    Cowan, G.A.; Diven, B.C.

    1970-01-01

    This is the fourth in a series of symposia which started, in 1957 at Livermore with the purpose of examining the peaceful uses of nuclear explosives. Although principal emphasis has b een placed on technological applications, the discussions have, from the outset, included the fascinating question of scientific uses. Of the possible scientific applications which were mentioned at the 1957 meeting, the proposals which attracted most attention involved uses of nuclear explosions for research in seismology. It is interesting to note that since then a very large and stimulating body of data in the field of seismology has been collected from nuclear tests. Ideas for scientific applications of nuclear explosions go back considerably further than 1957. During the war days Otto Frisch at Los Alamos suggested that a fission bomb would provide an excellent source of fast neutrons which could be led down a vacuum pipe and used for experiments in a relatively unscattered state. This idea, reinvented, modified, and elaborated upon in the ensuing twenty-five years, provides the basis for much of the research discussed in this morning's program. In 1952 a somewhat different property of nuclear explosions, their ability to produce intense neutron exposures on internal targets and to synthesize large quantities of multiple neutron capture products, was dramatically brought to our attention by analysis of debris from the first large thermonuclear explosion (Mike) in which the elements einsteinium and fermiun were observed for the first time. The reports of the next two Plowshare symposia in 1959 and 1964 help record the fascinating development of the scientific uses of neutrons in nuclear explosions. Starting with two 'wheel' experiments in 1958 to measure symmetry of fission in 235-U resonances, the use of external beams of energy-resolved neutrons was expanded on the 'Gnome' experiment in 1961 to include the measurement of neutron capture excitation functions for 238-U, 232-Th

  12. The present status of scientific applications of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, G A; Diven, B C [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1970-05-15

    This is the fourth in a series of symposia which started, in 1957 at Livermore with the purpose of examining the peaceful uses of nuclear explosives. Although principal emphasis has {sup b}een placed on technological applications, the discussions have, from the outset, included the fascinating question of scientific uses. Of the possible scientific applications which were mentioned at the 1957 meeting, the proposals which attracted most attention involved uses of nuclear explosions for research in seismology. It is interesting to note that since then a very large and stimulating body of data in the field of seismology has been collected from nuclear tests. Ideas for scientific applications of nuclear explosions go back considerably further than 1957. During the war days Otto Frisch at Los Alamos suggested that a fission bomb would provide an excellent source of fast neutrons which could be led down a vacuum pipe and used for experiments in a relatively unscattered state. This idea, reinvented, modified, and elaborated upon in the ensuing twenty-five years, provides the basis for much of the research discussed in this morning's program. In 1952 a somewhat different property of nuclear explosions, their ability to produce intense neutron exposures on internal targets and to synthesize large quantities of multiple neutron capture products, was dramatically brought to our attention by analysis of debris from the first large thermonuclear explosion (Mike) in which the elements einsteinium and fermiun were observed for the first time. The reports of the next two Plowshare symposia in 1959 and 1964 help record the fascinating development of the scientific uses of neutrons in nuclear explosions. Starting with two 'wheel' experiments in 1958 to measure symmetry of fission in 235-U resonances, the use of external beams of energy-resolved neutrons was expanded on the 'Gnome' experiment in 1961 to include the measurement of neutron capture excitation functions for 238-U, 232

  13. Duchenne muscular dystrophy carriers. Proton spin-lattice relaxation times of skeletal muscles on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, K.; Nakano, I. (Shimoshizu National Hospital, Chiba (Japan). Dept. of Neurology); Fukuda, N.; Ikehira, H.; Tateno, Y. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Clinical Research); Aoki, Y. (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-11-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.).

  14. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  15. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-01-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy

  16. Time dependence of the UV resonance lines in the cataclysmic variables SU UMa, RX And and 0623+71

    International Nuclear Information System (INIS)

    Woods, J.A.; Drew, J.E.; Verbunt, Frank

    1990-01-01

    We present IUE observations of the dwarf novae SU UMa and RX And, and of the nova-like variable 0623 + 71. At the time of observation, SU UMa and RX And were in outburst. All three systems show variability in the wind-formed UV resonance lines of N v λ 1240, Si IV λ 1397 and C IV λ 1549 on timescale of hours. The amplitude of variation is smallest in RX And and largest in 0623 + 71. There is evidence that the variations observed in SU UMa's UV spectrum repeat on the orbital period. Our observations of SU UMa also reveal variability in the continuum flux during the decline from outburst maximum that is much more marked in the UV than at optical wavelengths. (author)

  17. The optimization of the time resolution and the sensitivity in the pulsed nuclear resonance

    International Nuclear Information System (INIS)

    Umathum, R.

    1987-01-01

    The time resolution of pulsed NMR spectrometer and its spectral sensitivity are closely connected together. An important obstacle in the attempt to increase the resolution represents the dead time of the spectrometer. In the present thesis therefore the different contributions to the system dead time and their causes are analyzed and ways to the reduction respectively complete removement of a part of these contributions are indicated. So a duplexer was developed and constructed on the base of a principle novel for the NMR under application of quadrature hybrids which reduces the residual voltage of the sender pulse to less than 1/10 of the hitherto reached value. In this thesis a concept is extensively discussed which allows to generate at constant quality respectively damping constant of the sample circuit and given sender power a larger high frequency field strength than it is possible in the state of the power fitting. It could be shown than also concerning the noise behaviour by the application of the principle of the defined misfit no compromise must be made but it is even facilitated to approach the ideal of the noise fit of the first receiver stage to the sample circuit. (orig./HSI) [de

  18. Asymmetric Explosion of Type Ia Supernovae and Their Observational Signatures

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    2010-01-01

    The nature of Type Ia supernova (SN Ia) explosions has not yet been clarified, despite their importance in astrophysics and cosmology. Recent theoretical investigations suggest that asymmetric distribution of initial thermonuclear sparks may be a key in the SN Ia explosion mechanism. In this paper, the first observational evidence of the asymmetry in SN Ia explosions is presented: We have found that late-time nebular spectra of various SNe Ia show a diversity in wavelengths of emission lines. This feature is inconsistent with any spherically symmetric explosion models, and indicates that the innermost region, a likely product of the deflagration wave propagation, shows an off-set with respect to the explosion center. The diversity in the emission-line wavelengths could naturally be explained by a combination of different viewing angles.

  19. Off-center point explosion in a spheroid

    International Nuclear Information System (INIS)

    Morita, Kazuhiko; Sakashita, Shiro

    1978-01-01

    An off-center point explosion in a spheroid with exponential or Gaussian density distribution is investigated by applying the generalized Laumbach and Probstein method. For a typical example, we calculate the explosion in a spheroid with the eccentricity e = 0.7. If the separation distance between the center of the spheroid and the explosion point is larger than three times of the density scale height, the shock wave may almost propagate toward the direction of the minor axis of symmetry, within the polar angle of 30 0 . The shock envelope elongates toward the same direction and may form a polar jet and/or a tilted jet. But, in the case of an explosion in the equatorial plane (perpendicular to the minor axis of symmetry), two plasmas with the same form may be ejected into two different directions with the angle smaller than 180 0 . Explosion models of double radio sources and related objects are suggested. (author)

  20. Performance investigation of stochastic resonance in bistable systems with time-delayed feedback and three types of asymmetries

    Science.gov (United States)

    Liu, Jian; Wang, Youguo

    2018-03-01

    The simultaneous influence of potential asymmetries and time-delayed feedback on stochastic resonance (SR) subject to both periodic force and additive Gaussian white noise is investigated by using two-state theory and small-delay approximation, where three types of asymmetries include well-depth, well-width, and both well-depth and well-width asymmetries, respectively. The asymmetric types and time-delayed feedback determine the behaviors of SR, especially output signal-to-noise ratio (SNR) peaks, optimal additive noise intensity and feedback intensity. Moreover, the largest SNR in asymmetric SR is found to be relatively larger than symmetric one in some cases, whereas in other cases the symmetric SR is superior to asymmetric one, which is of dependence on time delay and feedback intensity. In addition, the SR with well-width asymmetry can suppress stronger noise than that with well-depth asymmetry under the action of same time delay, which is beneficial to weak signal detection.

  1. Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity

    International Nuclear Information System (INIS)

    Xie, Huijuan; Gong, Yubing

    2017-01-01

    In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on multiple coherence resonances (MCR) and synchronization transitions (ST) induced by time delay in adaptive scale-free Hodgkin–Huxley neuronal networks. It is found that STDP has a big influence on MCR and ST induced by time delay and on the effect of network average degree on the MCR and ST. MCR is enhanced or suppressed as the adjusting rate A p of STDP decreases or increases, and there is optimal A p by which ST becomes strongest. As network average degree 〈k〉 increases, ST is enhanced and there is optimal 〈k〉 at which MCR becomes strongest. Moreover, for a larger A p value, ST is enhanced more rapidly with increasing 〈k〉 and the optimal 〈k〉 for MCR increases. These results show that STDP can either enhance or suppress MCR, and there is optimal STDP that can most strongly enhance ST induced by time delay in the adaptive neuronal networks. These findings could find potential implication for the information processing and transmission in neural systems.

  2. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  3. Explosive processes in nucleosynthesis

    International Nuclear Information System (INIS)

    Boyd, R.N.

    2002-01-01

    There are many explosive processes in nucleosynthesis: big bang nucleosynthesis, the rp-process, the γ-process, the ν-process, and the r-process. However, I will discuss just the rp-process and the r-process in detail, primarily because both seem to have been very active research areas of late, and because they have great potential for studies with radioactive nuclear beams. I will also discuss briefly the γ-process because of its inevitability in conjunction with the rp-process. (orig.)

  4. Real-time phase contrast magnetic resonance imaging for assessment of haemodynamics: from phantom to patients

    Energy Technology Data Exchange (ETDEWEB)

    Traber, Julius; Wurche, Lennart; Dieringer, Matthias A.; Utz, Wolfgang; Knobelsdorff-Brenkenhoff, Florian von; Schulz-Menger, Jeanette [Max-Delbrueck-Centrum and Charite -Medical University Berlin and HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Working Group on Cardiovascular Magnetic Resonance Imaging, Experimental and Clinical Research Center, Berlin (Germany); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany); Jin, Ning [Siemens Medical Solutions USA, Inc., Columbus, OH (United States)

    2016-04-15

    Assessment of haemodynamics is crucial in many cardiac diseases. Phase contrast MRI (PC-MRI) can accurately access it. Arrhythmia is a major limitation in conventional segmented PC-MRI (SEG). A real-time PC-MRI sequence (RT) could overcome this. We validated RT by comparing to SEG. A prototype RT using shared velocity encoding was tested against SEG at 1.5 T in a flow phantom and consecutively included patients with (n = 55) or without (n = 59) aortic valve disease. In patients with atrial fibrillation (Afib, n = 15), only RT was applied. Phantom: PC images were acquired in front of and behind an interchangeable aortic-stenosis-like inlay. Mean velocity and flow were quantified. Patients: PC images were acquired in the ascending aorta, pulmonary trunk and superior caval vein. Peak velocity, stroke volume and regurgitant fraction were quantified. Phantom: Mean velocities (11 ± 1 to 207 ± 10 cm/s) and flow correlated closely between SEG and RT (r ≥ 0.99, ICC ≥ 0.98, p < 0.0005). Patients without AVD or with aortic regurgitation: Concordance of SEG and RT was excellent regarding peak velocities, stroke volumes (r ≥ 0.91, ICC ≥ 0.94, p < 0.0005) and regurgitant fractions (r = 0.95, ICC = 0.95, p < 0.0005). RT was feasible in all patients with Afib. The real-time sequence is accurate compared to conventional segmented PC-MRI. Its applicability in Afib was shown. Real-time PC-MRI might become a valuable tool in arrhythmia. (orig.)

  5. Zirconium hydride containing explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  6. Environmental control for nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, A W; Wells, W H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Peaceful applications introduce some new environmental considerations into the design of nuclear explosives. Much of the experience gained in weapon work can be applied, but the requirement of survival in a very deep hole is not found in any military system. We will briefly mention the overall environment and make a few comparisons with some general characteristics of the weapon environment. The major portion of this paper is devoted to the special problems of pressure and temperature found in the emplacement environment. Potential users should know where we stand with regard to survival in hostile environments in terms of feasibility and possible effects on field operations. In all applications there are several things competing for the available diameter. Given that explosives can be made to work over a range of diameters and that necessary environmental control is feasible, all further discussions can be related to the cost of providing a hole big enough to accomplish the task. The items competing for diameter are: 1) bare nuclear assembly 2) insulation and cooling system if needed 3) pressure canister 4) shielding material 5) emplacement clearance All of these must be considered with the cost of the hole in optimizing an overall design. Conditions in a particular location will affect the shielding requirements and the emplacement clearance. The nuclear assembly can vary in size, but the long development time requires that decisions be made quite early, perhaps in ignorance of the economic details of a particular application. The pressure canister is a relatively straightforward design problem that can be resolved by giving appropriate consideration to all of the design requirements. In particular for 20,000 psi pressure in the emplacement hole, a canister of heat-treated alloy steel having a yield strength of 200,000 psi and a wall thickness which is about .07 times the outside diameter is adequate and straight- forward to fabricate. The insulation and cooling

  7. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Science.gov (United States)

    2011-10-19

    ... slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive... silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G Gelatinized...

  8. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Science.gov (United States)

    2012-09-20

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive.... Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G...

  9. Definition of Time Induction of Self-Ignition of the Substance on the Prognostic Extrapolation Depending on the Basis of Indicators Fire and Explosion Hazard

    International Nuclear Information System (INIS)

    Sechin, A; Kyrmakova, O; Osipenko, S

    2016-01-01

    In this article the research directed on development of a technique of definition of time of induction of the self-ignition of substances and materials which is an indicator of the beginning of development of an emergency is conducted. The experiment consisting in supervision over process of self-ignition of coal and oil deposits was the basis for research. On the basis of experimental data the curve expressing analytic - expected dependence of size of temperature of ignition on induction time was constructed. Proceeding from graphical representation of process, functional dependence of time of induction on a temperature indicator was received: y = 16920 • x 0 537 . By means of known indicators of such substances as bitumen oil oxidized (the combustible solid substance received by oxidation of residual product of oil refining) and tar oil (the combustible solid substance which is residual product of oil refining) and the received algorithm, verification of reliability of the received dependence and a technique of definition of time of induction of spontaneous ignition of deposits of oil in general was carried out. The practical importance of the conducted research is that having data on time of induction of process of self-ignition, by means of preventive measures becomes possible to avoid and prevent accidents in oil and oil processing branches, at the same time loss of property and loss of human life. (paper)

  10. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time.

    Science.gov (United States)

    Sandulache, Vlad C; Chen, Yunyun; Lee, Jaehyuk; Rubinstein, Ashley; Ramirez, Marc S; Skinner, Heath D; Walker, Christopher M; Williams, Michelle D; Tailor, Ramesh; Court, Laurence E; Bankson, James A; Lai, Stephen Y

    2014-01-01

    Ionizing radiation (IR) cytotoxicity is primarily mediated through reactive oxygen species (ROS). Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP) magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC), an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-¹³C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.

  11. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time.

    Directory of Open Access Journals (Sweden)

    Vlad C Sandulache

    Full Text Available Ionizing radiation (IR cytotoxicity is primarily mediated through reactive oxygen species (ROS. Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP magnetic resonance spectroscopy (MRS and spectroscopic imaging (MRSI can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC, an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-¹³C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.

  12. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    Science.gov (United States)

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  13. Explosive Infrasonic Events: Sensor Comparison Experiment (SCE)

    Energy Technology Data Exchange (ETDEWEB)

    Schnurr, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Garces, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-06

    SCE (sensor comparison experiment) 1 through 4 consists of a series of four controlled above-ground explosions designed to provide new data for overpressure propagation. Infrasound data were collected by LLNL iPhones and other sensors. Origin times, locations HOB, and yields are not being released at this time and are therefore not included in this report. This preliminary report will be updated as access to additional data changes, or instrument responses are determined.

  14. Peaceful nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    Article V of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) specifies that the potential benefits of peaceful applications of nuclear explosions be made available to non-nuclear weapon states party to the Treaty 'under appropriate international observation and through appropriate international procedures'. The International Atomic Energy Agency's responsibility and technical competence in this respect have been recognized by its Board of Governors, the Agency's General Conference and the United Nations' General Assembly. Since 1968 when the United Nations Conference of Non-Nuclear Weapon States also recommended that the Agency initiate the necessary studies in the peaceful nuclear explosions (PNE) field, the Agency has taken the following steps: 1. The exchange of scientific and technical information has been facilitated by circulating information on the status of the technology and through the Agency's International Nuclear Information System. A bibliography of PNE-related literature was published in 1970. 2. In 1972, guidelines for 'the international observation of PNE under the provisions of NPT and analogous provisions in other international agreements' were developed and approved by the Board of Governors. These guidelines defined the basic purpose of international observation as being to verify that in the course of conducting a PNE project the intent and letter of Articles I and II of the NPT are not violated. 3. In 1974, an advisory group developed 'Procedures for the Agency to Use in Responding to Requests for PNE-Related Services'. These procedures have also been approved by the Board of Governors. 4. The Agency has convened a series of technical meetings which reviewed the 'state-of-the- art'. These meetings were convened in 1970, 1971, 1972 and in January 1975. The Fourth Technical Committee was held in Vienna from 20-24 January 1975 under the chairmanship of Dr. Allen Wilson of Australia with Experts from: Australia, France, Federal

  15. The reliability of linear position transducer, force plate and combined measurement of explosive power-time variables during a loaded jump squat in elite athletes.

    Science.gov (United States)

    Hansen, Keir T; Cronin, John B; Newton, Michael J

    2011-03-01

    The purpose of this study was to determine the between day reliability of power-time measures calculated with data collected using the linear position transducer or the force plate independently, or a combination of the two technologies. Twenty-five male rugby union players performed three jump squats on two occasions one week apart. Ground reaction forces were measured via a force plate and position data were collected using a linear position transducer. From these data, a number of power-time variables were calculated for each method. The force plate, linear position transducer and a combined method were all found to be a reliable means of measuring peak power (ICC = 0.87-0.95, CV = 3.4%-8.0%). The absolute consistency of power-time measures varied between methods (CV = 8.0%-53.4%). Relative consistency of power-time measures was generally comparable between methods and measures, and for many variables was at an acceptable level (ICC = 0.77-0.94). Although a number of time-dependent power variables can be reliably calculated from data acquired from the three methods investigated, the reliability of a number of these measures is below that which is acceptable for use in research and for practical applications.

  16. Aspects regarding explosion risk assessment

    Directory of Open Access Journals (Sweden)

    Părăian Mihaela

    2017-01-01

    Full Text Available Explosive risk occurs in all activities involving flammable substances in the form of gases, vapors, mists or dusts which, in mixture with air, can generate an explosive atmosphere. As explosions can cause human losses and huge material damage, the assessment of the explosion risk and the establishment of appropriate measures to reduce it to acceptable levels according to the standards and standards in force is of particular importance for the safety and health of people and goods.There is no yet a recognized method of assessing the explosion risk, but regardless of the applied method, the likelihood of an explosive atmosphere occurrence has to be determined, together with the occurrence of an efficient ignition source and the magnitude of foreseeable consequences. In assessment processes, consequences analysis has a secondary importance since it’s likely that explosions would always involve considerable damage, starting from important material damages and up to human damages that could lead to death.The purpose of the work is to highlight the important principles and elements to be taken into account for a specific risk assessment. An essential element in assessing the risk of explosion in workplaces where explosive atmospheres may occur is technical installations and personal protective equipment (PPE that must be designed, manufactured, installed and maintained so that they cannot generate a source of ignition. Explosion prevention and protection requirements are governed by specific norms and standards, and a main part of the explosion risk assessment is related to the assessment of the compliance of the equipment / installation with these requirements.

  17. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  18. Toward Improved Fidelity of Thermal Explosion Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L; Becker, R; Howard, W M; Wemhoff, A

    2009-07-17

    We will present results of an effort to improve the thermal/chemical/mechanical modeling of HMX based explosive like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The current results were built to remedy the deficiencies of that original model. We concentrated our efforts in four areas. The first area was addition of porosity to the chemical material model framework in ALE3D that is used to model the HMX explosive formulation. This is needed to handle the roughly 2% porosity in solid explosives. The second area was the improvement of the HMX reaction network, which included the inclusion of a reactive phase change model base on work by Henson et.al. The third area required adding early decomposition gas species to the CHEETAH material database to develop more accurate equations of state for gaseous intermediates and products. Finally, it was necessary to improve the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cook-off. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.

  19. Galactic spiral arms formed by central explosions

    International Nuclear Information System (INIS)

    Havnes, O.

    1978-01-01

    Calculations have been made of spiral arm formation due to central explosions in a nucleus surrounded by a disc containing most of the galactic mass with the purpose of obtaining estimates on lifetimes of arms and the requirements on the energy involved in the process. The ejected gas is taken to be a few percent, or less, of the central nucleus and is ejected with velocities of the order of 1000 km s -1 . The gas, considered to be in forms of blobs, moves under the gravitational force from the disc and the nucleus and the drag force by the gas in the disc. The orbits of the blobs evolve towards the circular orbits of the disc due to this drag force and the velocities in the arms will therefore, after some time, approach those of a normal rotation curve. A relatively open structure will last 8 years. Stable ring structures with longer lifetimes may be formed by some explosions. With an energy of approximately 5 x 10 57 erg in the initial gas-blob motion and a duration of the explosion of approximately 10 7 years, the energy output in such explosions has to be > 10 43 erg s -1 . (Auth.)

  20. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Messroghli, Daniel R; Rudolph, Andre; Abdel-Aty, Hassan; Wassmuth, Ralf; Kühne, Titus; Dietz, Rainer; Schulz-Menger, Jeanette

    2010-01-01

    In magnetic resonance (MR) imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI) T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet

  1. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kühne Titus

    2010-07-01

    Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.

  2. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery.

    Science.gov (United States)

    Prada, F; Del Bene, M; Mattei, L; Lodigiani, L; DeBeni, S; Kolev, V; Vetrano, I; Solbiati, L; Sakas, G; DiMeco, F

    2015-04-01

    Brain shift and tissue deformation during surgery for intracranial lesions are the main actual limitations of neuro-navigation (NN), which currently relies mainly on preoperative imaging. Ultrasound (US), being a real-time imaging modality, is becoming progressively more widespread during neurosurgical procedures, but most neurosurgeons, trained on axial computed tomography (CT) and magnetic resonance imaging (MRI) slices, lack specific US training and have difficulties recognizing anatomic structures with the same confidence as in preoperative imaging. Therefore real-time intraoperative fusion imaging (FI) between preoperative imaging and intraoperative ultrasound (ioUS) for virtual navigation (VN) is highly desirable. We describe our procedure for real-time navigation during surgery for different cerebral lesions. We performed fusion imaging with virtual navigation for patients undergoing surgery for brain lesion removal using an ultrasound-based real-time neuro-navigation system that fuses intraoperative cerebral ultrasound with preoperative MRI and simultaneously displays an MRI slice coplanar to an ioUS image. 58 patients underwent surgery at our institution for intracranial lesion removal with image guidance using a US system equipped with fusion imaging for neuro-navigation. In all cases the initial (external) registration error obtained by the corresponding anatomical landmark procedure was below 2 mm and the craniotomy was correctly placed. The transdural window gave satisfactory US image quality and the lesion was always detectable and measurable on both axes. Brain shift/deformation correction has been successfully employed in 42 cases to restore the co-registration during surgery. The accuracy of ioUS/MRI fusion/overlapping was confirmed intraoperatively under direct visualization of anatomic landmarks and the error was surgery and is less expensive and time-consuming than other intraoperative imaging techniques, offering high precision and

  3. NQR: From imaging to explosives and drugs detection

    International Nuclear Information System (INIS)

    Osan, Tristan M.; Cerioni, Lucas M.C.; Forguez, Jose; Olle, Juan M.; Pusiol, Daniel J.

    2007-01-01

    The main aim of this work is to present an overview of the nuclear quadrupole resonance (NQR) spectroscopy capabilities for solid state imaging and detection of illegal substances, such as explosives and drugs. We briefly discuss the evolution of different NQR imaging techniques, in particular those involving spatial encoding which permit conservation of spectroscopic information. It has been shown that plastic explosives and other forbidden substances cannot be easily detected by means of conventional inspection techniques, such as those based on conventional X-ray technology. For this kind of applications, the experimental results show that the information inferred from NQR spectroscopy provides excellent means to perform volumetric and surface detection of dangerous explosive and drug compounds

  4. Introduction to High Explosives Science

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, Cary Bradford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.

  5. Kaliski's explosive driven fusion experiments

    International Nuclear Information System (INIS)

    Marshall, J.

    1979-01-01

    An experiment performed by a group in Poland on the production of DD fusion neutrons by purely explosive means is discussed. A method for multiplying shock velocities ordinarily available from high explosives by a factor of ten is described, and its application to DD fusion experiments is discussed

  6. Correlations between muons and low energy pulses at LSD of the Mont Blanc laboratory near the time of SN1987A explosion

    International Nuclear Information System (INIS)

    Dadykin, V.L.; Khalchukov, F.F.; Korchagin, P.V.; Korolkova, E.V.; Kudryavtsev, V.A.; Mal'gin, A.S.; Ryasny, V.G.; Ryazhskaya, O.G.; Yakushev, V.F.; Zatsepin, G.T.; Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G.; Vernetto, S.; Turin Univ.

    1989-01-01

    We have analysed the data of LSD from February 10, 1987, to March 7, 1987, in order to search for autocorrelations between all pulses detected by LSD with energy higher than 5 MeV like those occurred at ∼ 3:00 UT on February 23, 1987, between the pulses detected by 3 neutrino telescopes and 2 gravitational wave antennae. We have found 9 pairs of correlated pulses (muon + low energy pulse) from 5:42 UT to 10:13 UT on February 23, 1987. The time differences of pulses in the pairs are less than 2 s, the first pulse in the pair being either muon or low energy pulse. The frequency of such random poissonian fluctuations is ∼1/(10 years). There are no correlations outside statistics between low energy, low energy pulses and muon, muon pulses detected by LSD during the whole time period

  7. High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Chang, Eric Y.; Biswas, Reni; Statum, Sheronda; Chung, Christine B. [Veterans Administration San Diego Healthcare System, Department of Radiology, San Diego, CA (United States); University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Tafur, Monica; Du, Jiang; Healey, Robert [University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Kwack, Kyu-Sung [Ajou University Medical Center, Department of Radiology, Wonchon-dong, Yeongtong-gu, Gyeonggi-do, Suwon (Korea, Republic of)

    2016-03-15

    To implement high-resolution morphologic and quantitative magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ) using ultrashort time-to-echo (UTE) techniques in cadavers and volunteers. This study was approved by the institutional review board. TMJs of cadavers and volunteers were imaged on a 3-T MR system. High-resolution morphologic and quantitative sequences using conventional and UTE techniques were performed in cadaveric TMJs. Morphologic and UTE quantitative sequences were performed in asymptomatic and symptomatic volunteers. Morphologic evaluation demonstrated the TMJ structures in open- and closed-mouth position. UTE techniques facilitated the visualization of the disc and fibrocartilage. Quantitative UTE MRI was successfully performed ex vivo and in vivo, reflecting the degree of degeneration. There was a difference in the mean UTE T2* values between asymptomatic and symptomatic volunteers. MRI evaluation of the TMJ using UTE techniques allows characterization of the internal structure and quantification of the MR properties of the disc. Quantitative UTE MRI can be performed in vivo with short scan times. (orig.)

  8. Resonance ionization and time-of-flight mass spectrometry for the analysis of trace substances in complex gas mixtures

    International Nuclear Information System (INIS)

    Nagel, Holger; Weickhardt, Christian; Boesl, Ulrich; Frey, Ruediger

    1995-01-01

    The analysis of mixtures of technical gases still comprises a lot of problems: the large number of components with very different and often rapidly varying concentrations makes great demands on analytical methods. By use of conventional analytical methods, signals of trace substances may interfere with signals of main components, whereas small signals representing low concentrations are covered by signals of main substances.The resonant-enhanced multiphoton ionization (REMPI) makes use of excited intermediate states of molecules. As these states are characteristic of each substance, one or more components of interest can be ionized with high efficiency without interference of other molecules by using a special laser-wavelength. The combination of the above mentioned ionization method with a reflectron time-of-flight mass spectrometer permits a very fast and sensitive detection of preselected trace substances.As ionization processes of higher order strongly depend on the laser intensity, there is no direct relation between ion signals and concentrations of exhaust components. Quantitative assessments are based on an especially developed calibration technique that makes use of internal standards. Applied under environmental aspects, this new analytical method helps to analyze a large number of components extracted from exhaust gases of combustion engines with high time resolution (<20 ms motor synchronously), high sensitivity (1 ppm) and high quantitative accuracy (more than 10%). A preliminary list of detectable compounds contains 30 substances

  9. Hydration kinetics of cements by Time-Domain Nuclear Magnetic Resonance: Application to Portland-cement-derived endodontic pastes

    International Nuclear Information System (INIS)

    Bortolotti, Villiam; Fantazzini, Paola; Mongiorgi, Romano; Sauro, Salvatore; Zanna, Silvano

    2012-01-01

    Time-Domain Nuclear Magnetic Resonance (TD-NMR) of 1 H nuclei is used to monitor the maturation up to 30 days of three different endodontic cement pastes. The “Solid–liquid” separation of the NMR signals and quasi-continuous distributions of relaxation times allow one to follow the formation of chemical compounds and the build-up of the nano- and subnano-structured C–S–H gel. 1 H populations, distinguished by their different mobilities, can be identified and assigned to water confined within the pores of the C–S–H gel, to crystallization water and Portlandite, and to hydroxyl groups. Changes of the TD-NMR parameters during hydration are in agreement with the expected effects of the different additives, which, as it is known, can substantially modify the rate of reactions and the properties of cementitious pastes. Endodontic cements are suitable systems to check the ability of this non-destructive technique to give insight into the complex hydration process of real cement pastes.

  10. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Andreas Müller

    2017-01-01

    Full Text Available Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 -/- mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 -/- mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis.

  11. Defining the value of magnetic resonance imaging in prostate brachytherapy using time-driven activity-based costing.

    Science.gov (United States)

    Thaker, Nikhil G; Orio, Peter F; Potters, Louis

    Magnetic resonance imaging (MRI) simulation and planning for prostate brachytherapy (PBT) may deliver potential clinical benefits but at an unknown cost to the provider and healthcare system. Time-driven activity-based costing (TDABC) is an innovative bottom-up costing tool in healthcare that can be used to measure the actual consumption of resources required over the full cycle of care. TDABC analysis was conducted to compare patient-level costs for an MRI-based versus traditional PBT workflow. TDABC cost was only 1% higher for the MRI-based workflow, and utilization of MRI allowed for cost shifting from other imaging modalities, such as CT and ultrasound, to MRI during the PBT process. Future initiatives will be required to follow the costs of care over longer periods of time to determine if improvements in outcomes and toxicities with an MRI-based approach lead to lower resource utilization and spending over the long-term. Understanding provider costs will become important as healthcare reform transitions to value-based purchasing and other alternative payment models. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. Nuclear explosions and their effects

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-01

    A brief historical background is given of the development of the atomic bomb. Also included is an account of the Hiroshima-Nagasaki bombing, plus some information on the testing and production of nuclear weapons by the United States, United Kingdom, and Russia. More detailed consideration is given to the following: the scientific principles of fission and fusion explosions; the energy released in fission and the radioactivity of fission products; blast, thermal, and radiologicalal effects of nuclear explosions; long-term radiological hazards from fall-out; and genetic effects of nuclear explosions. A brief account is given of the fission chain process, the concept of critical size, and the principles of implosion as applied to nuclear explosions. Limited information is presented on the controlled release of thermonuclear energy and catalyzed fusion reaction. Discussions are included on dose rates from radiation sources inside and outside the body, the effect of nuclear explosions on the weather, and the contamination of fish and marine organisms.

  13. Amplification of weak signals via the non-adiabatic regime of stochastic resonance in a bistable dynamical system with time delay

    International Nuclear Information System (INIS)

    Du Luchun; Mei Dongcheng

    2011-01-01

    The non-adiabatic regime of stochastic resonance (SR) in a bistable system with time delay, an additive white noise and a periodic signal was investigated. The signal power amplification η was employed to characterize the SR of the system. The simulation results indicate that (i) in the case of intermediate frequency Ω of the periodic signal, the typical behavior of SR is lowered monotonically by increasing the delay time τ; in the case of large Ω, τ weakens the SR behavior and then enhances it, with a non-monotonic behavior as a function of time delay; (ii) time delay induces SR when A is above the threshold, whereas no such resonance exists in the absence of time delay; (iii) time delay induces a transition from bimodal to unimodal configuration of η; (iv) varying the particular form of time delay results in different phenomena.

  14. Time-resolved resonance raman spectrum of all-trans-diphenylbutadiene in the lowest excited singlet state

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Langkilde, F.W.

    1984-01-01

    The resonance Raman spectrwn of all-trans-diphenylbutadiene in its lowest excited S1 state excited in resonance with the S1 → Sn absorption band at 650 nm in non-polar solvents is reported. Three vibrational bands at 1572, 1481 and 1165 cm−1 are observed. A possible assignment of the the 1481 cm−...

  15. Novel Application of Time-Spatial Labeling Inversion Pulse Magnetic Resonance Imaging for Diagnosis of External Hydrocephalus.

    Science.gov (United States)

    Nakae, Shunsuke; Murayama, Kazuhiro; Adachi, Kazuhide; Kumai, Tadashi; Abe, Masato; Hirose, Yuichi

    2018-01-01

    Although a subdural fluid collection frequently is observed, diagnostic methods that differentiate between the subdural collection caused by external hydrocephalus and that caused by subdural hygroma have not been established. Here, we report a case of external hydrocephalus caused by Gliadel-induced eosinophilic meningitis that has been previously reported in only 1 case and can be diagnosed by time-spatial labeling inversion pulse magnetic resonance imaging (time-SLIP MRI). A tumor located in the left temporal was detected incidentally in an 81-year-old man by examination of a head injury. The tumor was surgically resected and diagnosed as a high-grade glioma during the surgery; Gliadel wafers subsequently were implanted. Three weeks after the resection, the patient showed disturbed consciousness, and computed tomography revealed a subdural fluid collection. The out-flow of cerebrospinal through the resection cavity was detected by time-SLIP MRI. Cerebrospinal tests indicated high white blood cell counts and high protein levels, with more than 90% of the white blood cell count comprising eosinophils. Therefore, we suspected that the subdural fluid collection was caused by external hydrocephalus because of Gliadel-induced eosinophilic meningitis. We surgically removed the Gliadel wafers and subsequently performed a surgery to insert a ventriculoperitoneal shunt. Histologic examination indicated eosinophilic accumulation around the Gliadel wafers. The patient's symptoms improved after the insertion of a ventriculoperitoneal shunt. In the present case, time-SLIP MRI was a useful and noninvasive method for diagnosing external hydrocephalus which was caused by eosinophilic meningitis because of Gliadel-induced eosinophilic meningitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Fast monitoring of motor exhaust components by resonant multi-photon ionisation and time-of-flight mass spectrometry

    Science.gov (United States)

    Franzen, Jochen; Frey, Rüdiger; Nagel, Holger

    1995-03-01

    A new analytical procedure is provided by the combination of two types of spectroscopy. Resonant ionization of selected compounds by multiphoton ionization is based on results of absorption spectroscopy for the compound molecules of interest and time-of-flight mass spectrometry serves for the unambigious detection of these compounds. An interesting application of this method is the fast exhaust gas analysis. In the development of future combustion engines, the management of dynamic motor processes becomes predominant because by more than 90 % of all the dangerous exhaust pollutions are produced in instationary motor phases such as fast speed or load changes. The investigation of dynamic processes however, requires fast analytical procedures with millisecond time resolution together with the capability to measure individual components in a very complex gas mixture The objectives for a development project of such an instrument were set by the Research Association for Combustion Engines (Forschungsvereinigung Verbrennungskraftmaschinen, FVV, Germany): Up to ten substances should be monitored synchroneously with a time resolution of about 10 milliseconds, with concentration limits of 1 part per million and with a precision better than 10 % relative standard deviation. Such a laser mass spectrometer for fast multi-component automotive exhaust analyses has been developed in a joint research project by Bruker-Franzen Analytik GmbH, Dornier GmbH and the Technical University of Munich. The system has been applied at a motor test facility to investigate the emissions of the aromatic hydrocarbons benzene, toluene and xylene, of nitric oxide and acetaldehyde in stationary and dynamic engine operation. These measurements demonstrate that strong emission of these pollutants takes place at instationary engine operation and in particular that these compounds are emitted at different times, giving new information about the processes in the combustion chamber and in the exhaust pipe.

  17. Thermochemistry of mixed explosives

    International Nuclear Information System (INIS)

    Janney, J.L.; Rogers, R.N.

    1982-01-01

    In order to predict thermal hazards of high-energy materials, accurate kinetics constants must be determined. Predictions of thermal hazards for mixtures of high-energy materials require measurements on the mixtures, because interactions among components are common. A differential-scanning calorimeter (DSC) can be used to observe rate processes directly, and isothermal methods enable detection of mechanism changes. Rate-controlling processes will change as components of a mixture are depleted, and the correct depletion function must be identified for each specific stage of a complex process. A method for kinetics measurements on mixed explosives can be demonstrated with Composition B is an approximately 60/40 mixture of RDX and TNT, and is an important military explosive. Kinetics results indicate that the mator process is the decomposition of RDX in solution in TNT with a perturbation caused by interaction between the two components. It is concluded that a combination of chemical kinetics and experimental self-heating procedures provides a good approach to the production of predictive models for thermal hazards of high-energy materials. Systems involving more than one energy-contributing component can be studied. Invalid and dangerous predictive models can be detected by a failure of agreement between prediction and experiment at a specific size, shape, and density. Rates of thermal decomposition for Composition B appear to be modeled adequately for critical-temperature predictions with the following kinetics constants: E = 180.2 kJ mole -1 and Z = 4.62 X 10 16 s -1

  18. Impact of orthodontic appliances on the quality of craniofacial anatomical magnetic resonance imaging and real-time speech imaging.

    Science.gov (United States)

    Wylezinska, Marzena; Pinkstone, Marie; Hay, Norman; Scott, Andrew D; Birch, Malcolm J; Miquel, Marc E

    2015-12-01

    The aim of this work was to investigate the effects of commonly used orthodontic appliances on the magnetic resonance (MR) image quality of the craniofacial region, with special interest in the soft palate and velopharyngeal wall using real-time speech imaging sequences and anatomical imaging of the temporomandibular joints (TMJ) and pituitaries. Common orthodontic appliances were studied on 1.5 T scanner using standard spin and gradient echo sequences (based on the American Society for Testing and Materials standard test method) and sequences previously applied for high-resolution anatomical and dynamic real-time imaging during speech. Images were evaluated for the presence and size of artefacts. Metallic orthodontic appliances had different effects on image quality. The most extensive individual effects were associated with the presence of stainless steel archwire, particularly if combined with stainless steel brackets and stainless steel molar bands. With those appliances, diagnostic quality of magnetic resonance imaging speech and palate images will be most likely severely degraded, or speech imaging and imaging of pituitaries and TMJ will be not possible. All non-metallic, non-metallic with Ni/Cr reinforcement or Ni/Ti alloys appliances were of little concern. The results in the study are only valid at 1.5 T and for the sequences and devices used and cannot necessarily be extrapolated to all sequences and devices. Furthermore, both geometry and size of some appliances are subject dependent, and consequently, the effects on the image quality can vary between subjects. Therefore, the results presented in this article should be treated as a guide when assessing the risks of image quality degradation rather than an absolute evaluation of possible artefacts. Appliances manufactured from stainless steel cause extensive artefacts, which may render image non-diagnostic. The presence and type of orthodontic appliances should be always included in the patient

  19. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    Science.gov (United States)

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  20. Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system

    International Nuclear Information System (INIS)

    Hsu, P C; Hust, G; Zhang, M X; Lorenz, T K; Reynolds, J G; Fried, L; Springer, H K; Maienschein, J L

    2014-01-01

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.

  1. Explosive instabilities of reaction-diffusion equations including pinch effects

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1992-01-01

    Particular solutions of reaction-diffusion equations for temperature are obtained for explosively unstable situations. As a result of the interplay between inertial, diffusion, pinch and source processes certain 'bell-shaped' distributions may grow explosively in time with preserved shape of the spatial distribution. The effect of the pinch, which requires a density inhomogeneity, is found to diminish the effect of diffusion, or inversely to support the inertial and source processes in creating the explosion. The results may be described in terms of elliptic integrals or. more simply, by means of expansions in the spatial coordinate. An application is the temperature evolution of a burning fusion plasma. (au) (18 refs.)

  2. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    Science.gov (United States)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial

  3. A strategy for the application of steam explosion codes to reactor analysis

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Nakamura, Hideo

    2006-01-01

    A technical view on the strategy for the application of steam explosion codes for plant scale analysis is described. It includes assumption of triggering at the time of peak premixed melt mass, tuning of the explosion model on typical alumina steam explosion data, consideration of void and solidification effects as primary mechanism to limit the premixed mass and explosion energetics, choice of simple heat partition models affecting evaporation. The view was developed through experiences in development, verification and application of a steam explosion simulation code, JASMINE, at Japan Atomic Energy Agency (JAEA), as well as participation in OECD SERENA Phase-1 program. (author)

  4. Integrated control system for nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ragsdale, William F [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    The Integrated Control System (ICS) has been developed to facilitate Plowshare nuclear detonations by following a unified system approach. This system consolidates the techniques for firing, safety program, scientific program, and communications. Maximum emphasis is placed upon control and data transmission by radio rather than hardwire or coaxial cable. The ICS consists of a Command Point (CP) Trailer, a radio repeater station, a field station (the ICE Box), and several chassis located in the explosive canister. Commands originate in the CP and are transmitted via microwave radio to the ICE Box; monitors are returned to the CP from the canister, the ICE Box, and sensors near ground zero. The system allows complete checkout and operation before shipment to the field. The explosive canister may be dry-run at the assembly area (at NTS) before shipment to the field. The basic detonation functions for every event are: 1. Arming and firing commands in the explosive canister and at surface ground zero. 2. Environmental monitors and suitable arming monitors in the explosive canister. 3. Safety monitors at the zero site for weather, RAMS (Remote Area Monitoring System), and cavity collapse. Secondary functions that may be required for a specific project are: 4. Scientific program of phenomenology measurements. 5. Explosive performance measurements. 6. Ground zero television. 7. Auxiliary communications such as local telephones, VHF radio. By combining functions that have previously been performed by separate organizations and systems, the ICS attempts a minimum cost detonation service. Economy of operation results because: 1. Operating personnel work on more than one sub-system. 2. Interfaces and interface complexity are minimized. 3. A reduced dependence upon signal cables results from a microwave-based system. 4. Pre-fabrication allows test operation before shipment to the field and minimizes setup time in the field. The ICS is in use on the Sturtevant event and is

  5. Optical detection of explosives: spectral signatures for the explosive bouquet

    Science.gov (United States)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  6. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite

    International Nuclear Information System (INIS)

    Kusrini, Eny; Sontang, Muhammad

    2012-01-01

    The physical and chemical properties of a hydroxyapatite produced by the sintering of bovine bone were investigated by powder x-ray diffraction (PXRD), electron spin resonance (ESR), energy dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential thermal analysis (DTA). A bovine bone powder was sintered at different temperatures ranging from 500 to 1400 °C. The influences of post-irradiation storage on the radiation ESR response of the bovine bone powder before and after sintering were also studied. The results indicate that the sintered bovine bone powder contained hydroxyapatite. Diffraction patterns were sharp and clear based on the (211), (300), and (202) reflections corresponding to bovine hydroxyapatite (BHA), which confirmed the phase purity and high crystalline grade of the BHA produced. The PXRD profile of BHA was dependent on sintering temperatures and times. The molecular formula of BHA was determined by Rietveld analysis showed a similar structure and composition to calcium hydroxyapatite in hexagonal P6 3 /m space group a=b=9.435 Å and c=6.895 Å. ESR data showed that the sintering process can decrease the number of free radicals in BHA; it also revealed that the number of free radicals is constant during long storage periods (75 days). The sintering technique described in this study may be used to extract hydroxyapatite from biowaste bovine bone, leading to its application as a bone filler. - Highlights: ► Natural hydroxyapatite was produced from the bio-wasting bovine bones by sintering method. ► PXRD profile of BHA is dependent on the different temperatures and times in sintering process. ► ESR data is useful to study the typical of free radicals formed in the samples after irradiation. ► Stability and physicochemical properties of BHA is dependent on the different storage times. ► Technique is able to be used to find the natural hydroxyapatite applicable for bone filler.

  7. Real-Time Functional Magnetic Resonance Imaging Amygdala Neurofeedback Changes Positive Information Processing in Major Depressive Disorder.

    Science.gov (United States)

    Young, Kymberly D; Misaki, Masaya; Harmer, Catherine J; Victor, Teresa; Zotev, Vadim; Phillips, Raquel; Siegle, Greg J; Drevets, Wayne C; Bodurka, Jerzy

    2017-10-15

    In participants with major depressive disorder who are trained to upregulate their amygdalar hemodynamic responses during positive autobiographical memory recall with real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. This study tested whether amygdalar rtfMRI-nf also changes emotional processing of positive and negative stimuli in a variety of behavioral and imaging tasks. Patients with major depressive disorder completed two rtfMRI-nf sessions (18 received amygdalar rtfMRI-nf, 16 received control parietal rtfMRI-nf). One week before and following rtfMRI-nf training, participants performed tasks measuring responses to emotionally valenced stimuli including a backward-masking task, which measures the amygdalar hemodynamic response to emotional faces presented for traditionally subliminal duration and followed by a mask, and the Emotional Test Battery in which reaction times and performance accuracy are measured during tasks involving emotional faces and words. During the backward-masking task, amygdalar responses increased while viewing masked happy faces but decreased to masked sad faces in the experimental versus control group following rtfMRI-nf. During the Emotional Test Battery, reaction times decreased to identification of positive faces and during self-identification with positive words and vigilance scores increased to positive faces and decreased to negative faces during the faces dot-probe task in the experimental versus control group following rtfMRI-nf. rtfMRI-nf training to increase the amygdalar hemodynamic response to positive memories was associated with changes in amygdalar responses to happy and sad faces and improved processing of positive stimuli during performance of the Emotional Test Battery. These results may suggest that amygdalar rtfMRI-nf training alters responses to emotional stimuli in a manner similar to antidepressant pharmacotherapy. Copyright © 2017 Society of

  8. Diagnosis of acute ischemic stroke based on time-to-peak and diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Keisuke; Eguchi, Tsuneyoshi; Sora, Shigeo; Izumi, Masafumi; Hiyama, Hirofumi [Kameda General Hospital, Kamogawa, Chiba (Japan); Ueki, Keisuke [Tokyo Univ. (Japan). Hospital

    2002-07-01

    Rapid and accurate diagnosis of the hemodynamics of the brain is essential for the treatment of acute ischemic stroke. This study investigated whether time-to-peak and diffusion-weighted magnetic resonance (MR) imaging are useful for predicting the course of stroke. Fourteen patients with non-lacunar acute ischemic stroke underwent emergent MR imaging within 24 hours from the onset followed by cerebral angiography and xenon-enhanced computed tomography (CT). Serial CT was obtained to monitor changes in the size and nature of the infarct. Volumes of the abnormal lesions demonstrated on time-to-peak (V{sub T}) or diffusion-weighted (V{sub D}) images were measured, and the ratio of V{sub T} to V{sub D} was calculated. Based on this ratio, patients were classified into three groups: Group 1 (V{sub T}/V{sub D} 0.5-1.5, n=9), Group 2 (V{sub T}/V{sub D}>1.5, n=3), and Group 3 (V{sub T}/V{sub D}<0.5, n=2). The size of the infarct detected as a low-density area on serial CT scans did not change significantly throughout the course in Group 1 patients, but showed enlargement in all three patients in Group 2. Two patients in Group 3 had major trunk occlusion followed by spontaneous reperfusion, and both developed hemorrhagic transformation. Our study showed that classification of ischemic stroke based on the V{sub T}/V{sub D} ratio was predictive of the time course of the infarct, and may be useful in selecting the initial therapeutic procedure immediately after the onset of stroke. (author)

  9. Enabling Real-Time Volume Rendering of Functional Magnetic Resonance Imaging on an iOS Device.

    Science.gov (United States)

    Holub, Joseph; Winer, Eliot

    2017-12-01

    Powerful non-invasive imaging technologies like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI) are used daily by medical professionals to diagnose and treat patients. While 2D slice viewers have long been the standard, many tools allowing 3D representations of digital medical data are now available. The newest imaging advancement, functional MRI (fMRI) technology, has changed medical imaging from viewing static to dynamic physiology (4D) over time, particularly to study brain activity. Add this to the rapid adoption of mobile devices for everyday work and the need to visualize fMRI data on tablets or smartphones arises. However, there are few mobile tools available to visualize 3D MRI data, let alone 4D fMRI data. Building volume rendering tools on mobile devices to visualize 3D and 4D medical data is challenging given the limited computational power of the devices. This paper describes research that explored the feasibility of performing real-time 3D and 4D volume raycasting on a tablet device. The prototype application was tested on a 9.7" iPad Pro using two different fMRI datasets of brain activity. The results show that mobile raycasting is able to achieve between 20 and 40 frames per second for traditional 3D datasets, depending on the sampling interval, and up to 9 frames per second for 4D data. While the prototype application did not always achieve true real-time interaction, these results clearly demonstrated that visualizing 3D and 4D digital medical data is feasible with a properly constructed software framework.

  10. Action Replay of Powerful Stellar Explosion

    Science.gov (United States)

    2008-03-01

    Astronomers have made the best ever determination of the power of a supernova explosion that was visible from Earth long ago. By observing the remnant of a supernova and a light echo from the initial outburst, they have established the validity of a powerful new method for studying supernovas. Using data from NASA's Chandra X-ray Observatory, ESA's XMM-Newton Observatory, and the Gemini Observatory, two teams of researchers studied the supernova remnant and the supernova light echo that are located in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light years from Earth. They concluded that the supernova occurred about 400 years ago (in Earth’s time frame), and was unusually bright and energetic. X-ray Image of SNR 0509-67.5 X-ray Image of SNR 0509-67.5 This result is the first time two methods - X-ray observations of a supernova remnant and optical observations of the expanding light echoes from the explosion - have both been used to estimate the energy of a supernova explosion. Up until now, scientists had only made such an estimate using the light seen soon after a star exploded, or using remnants that are several hundred years old, but not from both. "People didn't have advanced telescopes to study supernovas when they went off hundreds of years ago," said Armin Rest of Harvard University, who led the light echo observations using Gemini. "But we've done the next best thing by looking around the site of the explosion and constructing an action replay of it." People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Discovery of Most Recent Supernova in Our Galaxy NASA Unveils Cosmic Images Book in Braille for Blind Readers In 2004, scientists used Chandra to determine that a supernova remnant, known as SNR 0509-67.5 in the LMC, was a so-called Type Ia supernova, caused by a white dwarf star in a binary system that reaches a critical mass and explodes. In

  11. Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction.

    Science.gov (United States)

    Lee, Gregory R; Seiberlich, Nicole; Sunshine, Jeffrey L; Carroll, Timothy J; Griswold, Mark A

    2013-02-01

    Contrast-enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo-random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1-mm isotropic resolution and a 1.1-s frame rate (corresponding to an acceleration factor > 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal-to-noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Copyright © 2012 Wiley Periodicals, Inc.

  12. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Drakonaki, Eleni E. [University of Crete, Radiology Department, Heraklion (Greece); Allen, Gina M. [Green Templeton College, Oxford (United Kingdom)

    2010-04-15

    Congenital muscle dystrophy includes a range of genetic disorders characterized by muscle weakness and contractures. We report the magnetic resonance (MR), ultrasound (US) and real-time sonoelastography (RTE) imaging findings of the thigh muscles of a 15-year-old boy with Bethlem myopathy diagnosed with clinical, electromyographic and histopathological criteria. Ultrasound and MR showed hyperechoic appearance and high signal intensity on T1- and T2-weighted sequences respectively at the periphery of the vastus lateralis and the long head of the biceps femoris muscles, and at a central area within the rectus femoris muscles. RTE was employed to examine the elastic properties of the muscle. The elastograms were presented as colour-coded maps superimposed on the B-mode images and revealed that the elastographic pattern correlated with the MR and US pattern of involvement. The abnormal muscle areas were stiffer (blue) than the normal-appearing areas (green), a finding that probably correlates with the presence of dystrophic collagen at the affected areas. This report suggests that RTE could be used as an additional imaging tool to evaluate the pattern of muscle changes in congenital myopathy. Further studies are needed to investigate the specificity and clinical value of RTE in the diagnosis and monitoring of neuromuscular disease. (orig.)

  13. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy

    International Nuclear Information System (INIS)

    Drakonaki, Eleni E.; Allen, Gina M.

    2010-01-01

    Congenital muscle dystrophy includes a range of genetic disorders characterized by muscle weakness and contractures. We report the magnetic resonance (MR), ultrasound (US) and real-time sonoelastography (RTE) imaging findings of the thigh muscles of a 15-year-old boy with Bethlem myopathy diagnosed with clinical, electromyographic and histopathological criteria. Ultrasound and MR showed hyperechoic appearance and high signal intensity on T1- and T2-weighted sequences respectively at the periphery of the vastus lateralis and the long head of the biceps femoris muscles, and at a central area within the rectus femoris muscles. RTE was employed to examine the elastic properties of the muscle. The elastograms were presented as colour-coded maps superimposed on the B-mode images and revealed that the elastographic pattern correlated with the MR and US pattern of involvement. The abnormal muscle areas were stiffer (blue) than the normal-appearing areas (green), a finding that probably correlates with the presence of dystrophic collagen at the affected areas. This report suggests that RTE could be used as an additional imaging tool to evaluate the pattern of muscle changes in congenital myopathy. Further studies are needed to investigate the specificity and clinical value of RTE in the diagnosis and monitoring of neuromuscular disease. (orig.)

  14. Fire and explosion hazards to flora and fauna from explosives.

    Science.gov (United States)

    Merrifield, R

    2000-06-30

    Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.

  15. Peaceful applications of nuclear explosions

    International Nuclear Information System (INIS)

    Wallin, L.B.

    1975-12-01

    The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)

  16. Donor free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  17. Towards real-time cardiovascular magnetic resonance guided transarterial CoreValve implantation: in vivo evaluation in swine

    Science.gov (United States)

    2012-01-01

    Background Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis. Methods rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. Results rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. Conclusions Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media. PMID:22453050

  18. Towards real-time cardiovascular magnetic resonance guided transarterial CoreValve implantation: in vivo evaluation in swine.

    Science.gov (United States)

    Kahlert, Philipp; Parohl, Nina; Albert, Juliane; Schäfer, Lena; Reinhardt, Renate; Kaiser, Gernot M; McDougall, Ian; Decker, Brad; Plicht, Björn; Erbel, Raimund; Eggebrecht, Holger; Ladd, Mark E; Quick, Harald H

    2012-03-27

    Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis. rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media.

  19. Towards real-time cardiovascular magnetic resonance guided transarterial CoreValve implantation: in vivo evaluation in swine

    Directory of Open Access Journals (Sweden)

    Kahlert Philipp

    2012-03-01

    Full Text Available Abstract Background Real-time cardiovascular magnetic resonance (rtCMR is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI using the nitinol-based Medtronic CoreValve bioprosthesis. Methods rtCMR-guided transfemoral (n = 2 and transsubclavian (n = 6 TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. Results rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. Conclusions Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media.

  20. Full genotyping of a highly polymorphic human gene trait by time-resolved fluorescence resonance energy transfer.

    Directory of Open Access Journals (Sweden)

    Edoardo Totè

    Full Text Available The ability of detecting the subtle variations occurring, among different individuals, within specific DNA sequences encompassed in highly polymorphic genes discloses new applications in genomics and diagnostics. DQB1 is a gene of the HLA-II DQ locus of the Human Leukocyte Antigens (HLA system. The polymorphisms of the trait of the DQB1 gene including codons 52-57 modulate the susceptibility to a number of severe pathologies. Moreover, the donor-receiver tissue compatibility in bone marrow transplantations is routinely assessed through crossed genotyping of DQB and DQA. For the above reasons, the development of rapid, reliable and cost-effective typing technologies of DQB1 in general, and more specifically of the codons 52-57, is a relevant although challenging task. Quantitative assessment of the fluorescence resonance energy transfer (FRET efficiency between chromophores labelling the opposite ends of gene-specific oligonucleotide probes has proven to be a powerful tool to type DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, i.e. time-correlated single-photon counting, which allows working on very diluted template specimens and in the presence of fluorescent contaminants. Here we present a full in-vitro characterization of the fluorescence responses of two probes when hybridized to oligonucleotide mixtures mimicking all the possible genotypes of the codons 52-57 trait of DQB1 (8 homozygous and 28 heterozygous. We show that each genotype can be effectively tagged by the combination of the fluorescence decay constants extrapolated from the data obtained with such probes.

  1. Development of a surface plasmon resonance biosensor for real-time detection of osteogenic differentiation in live mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Yi-Chun Kuo

    Full Text Available Surface plasmon resonance (SPR biosensors have been recognized as a useful tool and widely used for real-time dynamic analysis of molecular binding affinity because of its high sensitivity to the change of the refractive index of tested objects. The conventional methods in molecular biology to evaluate cell differentiation require cell lysis or fixation, which make investigation in live cells difficult. In addition, a certain amount of cells are needed in order to obtain adequate protein or messenger ribonucleic acid for various assays. To overcome this limitation, we developed a unique SPR-based biosensing apparatus for real-time detection of cell differentiation in live cells according to the differences of optical properties of the cell surface caused by specific antigen-antibody binding. In this study, we reported the application of this SPR-based system to evaluate the osteogenic differentiation of mesenchymal stem cells (MSCs. OB-cadherin expression, which is up-regulated during osteogenic differentiation, was targeted under our SPR system by conjugating antibodies against OB-cadherin on the surface of the object. A linear relationship between the duration of osteogenic induction and the difference in refractive angle shift with very high correlation coefficient was observed. To sum up, the SPR system and the protocol reported in this study can rapidly and accurately define osteogenic maturation of MSCs in a live cell and label-free manner with no need of cell breakage. This SPR biosensor will facilitate future advances in a vast array of fields in biomedical research and medical diagnosis.

  2. Screening and confirmation criteria for hormone residue analysis using liquid chromatography accurate mass time-of-flight, Fourier transform ion cyclotron resonance and orbitrap mass spectrometry techniques

    NARCIS (Netherlands)

    Nielen, M.W.F.; Engelen, M.C. van; Zuiderent, R.; Ramaker, R.

    2007-01-01

    An emerging trend is recognised in hormone and veterinary drug residue analysis from liquid chromatography tandem mass spectrometry (LC/MS/MS) based screening and confirmation towards accurate mass alternatives such as LC coupled with time-of-flight (TOF), Fourier transform ion cyclotron resonance

  3. A Study on intelligent measurement of nuclear explosion equivalent in atmosphere

    International Nuclear Information System (INIS)

    Wang Desheng; Wu Xiaohong

    1999-01-01

    Measurement of nuclear explosion equivalent in atmosphere is an important subject for nuclear survey. Based on the relations between nuclear explosion equivalent and the minimum illuminance time of light radiation from nuclear explosion. The method of RC differential valley time detection and mean-time taking is presented the method, using a single-chip computer as a intelligent part, can realize intelligent measurement of minimum illuminance time with high reliability and low power consumption. This method provides a practical mean for quick, accurate and reliable measurement of nuclear explosion equivalent in atmosphere

  4. Reduction of residual strains in weldments in explosion welding

    International Nuclear Information System (INIS)

    Tsemakhovich, B.D.

    1985-01-01

    Peculiarities of large-size item strains in explosion cladding have been investigated. Causes of explosion-welded item destruction under the action of reflected waves have been established by means of the acoustic analysis of the item-support system. It is suggested to use grit as a support which permits to decrease 3-4 times and stabilize residual strains and reduce to minimum the probability of crack appearance

  5. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions.

    Science.gov (United States)

    Xue, Hui; Kellman, Peter; Larocca, Gina; Arai, Andrew E; Hansen, Michael S

    2013-11-14

    Cine cardiovascular magnetic resonance (CMR) is challenging in patients who cannot perform repeated breath holds. Real-time, free-breathing acquisition is an alternative, but image quality is typically inferior. There is a clinical need for techniques that achieve similar image quality to the segmented cine using a free breathing acquisition. Previously, high quality retrospectively gated cine images have been reconstructed from real-time acquisitions using parallel imaging and motion correction. These methods had limited clinical applicability due to lengthy acquisitions and volumetric measurements obtained with such methods have not previously been evaluated systematically. This study introduces a new retrospective reconstruction scheme for real-time cine imaging which aims to shorten the required acquisition. A real-time acquisition of 16-20s per acquired slice was inputted into a retrospective cine reconstruction algorithm, which employed non-rigid registration to remove respiratory motion and SPIRiT non-linear reconstruction with temporal regularization to fill in missing data. The algorithm was used to reconstruct cine loops with high spatial (1.3-1.8 × 1.8-2.1 mm²) and temporal resolution (retrospectively gated, 30 cardiac phases, temporal resolution 34.3 ± 9.1 ms). Validation was performed in 15 healthy volunteers using two different acquisition resolutions (256 × 144/192 × 128 matrix sizes). For each subject, 9 to 12 short axis and 3 long axis slices were imaged with both segmented and real-time acquisitions. The retrospectively reconstructed real-time cine images were compared to a traditional segmented breath-held acquisition in terms of image quality scores. Image quality scoring was performed by two experts using a scale between 1 and 5 (poor to good). For every subject, LAX and three SAX slices were selected and reviewed in the random order. The reviewers were blinded to the reconstruction approach and acquisition protocols and

  6. Safety assessment of in-vessel vapor explosion loads in next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang Hyun; Cho, Jong Rae; Choi, Byung Uk; Kim, Ki Yong; Lee, Kyung Jung [Korea Maritime University, Busan (Korea); Park, Ik Kyu [Seoul National University, Seoul (Korea)

    1998-12-01

    A safety assessment of the reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. The explosion analyses show that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations within the conservative ranges. Strain analyses using the calculated pressure loads on the lower head inner wall show that the vapor explosion-induced lower head failure is physically unreasonable. The static analysis using the conservative explosion-end pressure of 7,246 psia shows that the maximum equivalent strain is 4.3% at the bottom of lower head, which is less than the allowable threshold value of 11%. (author). 24 refs., 40 figs., 3 tabs.

  7. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    Science.gov (United States)

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  8. Explosive actuated valve

    International Nuclear Information System (INIS)

    Byrne, K.G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means

  9. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.

    Science.gov (United States)

    Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse

    2014-09-28

    Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.

  10. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  11. Phenomenological modelling of steam explosions

    International Nuclear Information System (INIS)

    Corradini, M.L.; Drumheller, D.S.

    1980-01-01

    During a hypothetical core meltdown accident, an important safety issue to be addressed is the potential for steam explosions. This paper presents analysis and modelling of experimental results. There are four observations that can be drawn from the analysis: (1) vapor explosions are suppressed by noncondensible gases generated by fuel oxidation, by high ambient pressure, and by high water temperatures; (2) these effects appear to be trigger-related in that an explosion can again be induced in some cases by increasing the trigger magnitude; (3) direct fuel liquid-coolant liquid contact can explain small scale fuel fragmentation; (4) heat transfer during the expansion phase of the explosion can reduce the work potential

  12. Water-bearing explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G M

    1970-12-21

    An explosive water-bearing composition, with high detonation velocity, comprises a mixture of (1) an inorganic oxidizer salt; (2) nitroglycerine; (3) nitrocellulose; (4) water; and (5) a water thickening agent. (11 claims)

  13. Lower head integrity under steam explosion loads

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Freeman, K.; Chen, X.; Salmassi, T. [Center for Risk Studies and Safety, Univ. of California, Santa Barbara, CA (United States); Sienicki, J.J.

    1998-01-01

    Lower head integrity under steam explosion loads in an AP600-like reactor design is considered. The assessment is the second part of an evaluation of the in-vessel retention idea as a severe accident management concept, the first part (DOE/ID-10460) dealing with thermal loads. The assessment is conducted in terms of the Risk Oriented Accident Analysis Methodology (ROAAM), and includes the comprehensive evaluation of all relevant severe accident scenarios, melt conditions and timing of release from the core region, fully 3D mixing and explosion wave dynamics, and lower head fragility under local, dynamic loading. All of these factors and brought together in a ROAAM Probabilistic Framework to evaluate failure likelihood. The conclusion is that failure is `physically unreasonable`. (author)

  14. Ignitability and explosibility of gases and vapors

    CERN Document Server

    Ma, Tingguang

    2015-01-01

    The book provides a systematic view on flammability and a collection of solved engineering problems in the fields of dilution and purge, mine gas safety, clean burning safety and gas suppression modeling. For the first time, fundamental principles of energy conservation are used to develop theoretical flammability diagrams and are then explored to understand various safety-related mixing problems. This provides the basis for a fully-analytical solution to any flammability problem. Instead of the traditional view that flammability is a fundamental material property, here flammability is discovered to be a result of the explosibility of air and the ignitability of fuel, or a process property. By exploring the more fundamental concepts of explosibility and ignitability, the safety targets of dilution and purge can be better defined and utilized for guiding safe operations in process safety. This book provides various engineering approaches to mixture flammability, benefiting not only the safety students, but al...

  15. Pipelines explosion, violates Humanitarian International Right

    International Nuclear Information System (INIS)

    Carta Petrolera

    1997-01-01

    Recently and for first time, an organism of the orbit of the human rights put the finger in the wound of the problem that represents for Colombia the pipelines explosion and the social and environmental impact that those actions in this case the Defense of the People office, the institution that published a document related this denounces, in the one that sustains that the country it cannot continue of back with a serious and evident reality as the related with the explosions of pipelines. We are the only country of the world where happen these facts and enormous losses are not only causing to the Colombian economy, but rather our environmental wealth is affecting, the document, denounced the ignorance of the humanitarian international right on the part of those who apply to that class of attacks

  16. 30 CFR 77.1301 - Explosives; magazines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives; magazines. 77.1301 Section 77.1301... and Blasting § 77.1301 Explosives; magazines. (a) Detonators and explosives other than blasting agents shall be stored in magazines. (b) Detonators shall not be stored in the same magazine with explosives...

  17. Explosives mimic for testing, training, and monitoring

    Science.gov (United States)

    Reynolds, John G.; Durban, Matthew M.; Gash, Alexander E.; Grapes, Michael D.; Kelley, Ryan S.; Sullivan, Kyle T.

    2018-02-13

    Additive Manufacturing (AM) is used to make mimics for explosives. The process uses mixtures of explosives and matrices commonly used in AM. The explosives are formulated into a mixture with the matrix and printed using AM techniques and equipment. The explosive concentrations are kept less than 10% by wt. of the mixture to conform to requirements of shipping and handling.

  18. 8. Peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Musilek, L.

    1992-01-01

    The chapter deals with peaceful uses of nuclear explosions. Described are the development of the underground nuclear explosion, properties of radionuclides formed during the explosion, their distribution, the release of radioactive products of underground nuclear explosions into the air, their propagation in the atmosphere, and fallout in the landscape. (Z.S.). 1 tab., 8 figs., 19 refs

  19. Safety vessels for explosive fusion reactor

    International Nuclear Information System (INIS)

    Mineev, V.

    1994-01-01

    The failure of several types of geometrically similar cylindrical and spherical steel and glass fibers vessels filled with water or air was investigated when an explosive charge of TNT was detonated in the center. Vessels had radius 50-1000 mm, thickness of walls 2-20%. The detonation on TNT imitated energy release. The parameter: K = M/mf is a measure of the strength of the vessel where M is the mass of the vessel, and mf is the mass of TNT for which the vessel fails. This demanded 2-4 destroyed and nondestroyed shots. It may be showed that: K=A/σ f where σ f is the fracture stress of the material vessel, and A = const = F(energy TNT, characteristic of elasticity of vessel material). The chief results are the following: (1) A similar increase in the geometrical dimensions of steel vessels by a factor of 10 leads to the increase of parameter K in about 5 times and to decrease of failure deformation in 7 times (scale effect). (2) For glass fibers, scale effect is absent. (3) This problem is solved in terms of theory energetic scale effect. (4) The concept of TNT equivalent explosive makes it possible to use these investigations to evaluate the response of safety vessels for explosive fusion reactor

  20. Computer simulation of explosion crater in dams with different buried depths of explosive

    Science.gov (United States)

    Zhang, Zhichao; Ye, Longzhen

    2018-04-01

    Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.

  1. Dynamic subtraction magnetic resonance venography: a new real time imaging technique for the detection of dural sinus thrombosis

    International Nuclear Information System (INIS)

    Mandel, C.; Birchall, D.; Connolly, D.; English, P.

    2002-01-01

    Full text: Requests for imaging suspected dural sinus thrombosis are increasing. Conventional magnetic imaging (MRI) and magnetic resonance venography (MRV) are often used to detect venous sinus thrombosis, but these techniques are prone to technical problems. Catheter angiography is sometimes required as the final arbiter in the evaluation of the dural venous sinuses. Recent technical developments in MR scanning have allowed the development of dynamic subtraction MRA. This technique is beginning to be applied to the assessment of intracranial vascular malformations. We have recently applied the technique to the imaging of the dural venous sinuses, and describe our early experience with the technique. Imaging was performed on a Philips Intera 1.5T scanner with gradient strength 33 mT and slew rate 130 T/m/sec. T1-weighed fast field echo imaging was performed (flip angle 400, TR 1.5 msec) during bolus injection of gadolinium (5ml gadolinium followed by a 10 ml saline chaser) at 5-6 ml/sec using a MRI-compatible pump injector. Slice thickness depended on the plane of acquisition, but was between 100- 150 mm. Images were acquired in three orthogonal projections in each case, using 3 separate contrast injections. Mask images were obtained before the arrival of contrast, and subtracted reconstructed images were obtained in real time, providing a dynamic display of the intracranial circulation including the dural venous sinuses. Frame rate was 1 frame per 0.8 seconds. We will present dynamic MR angiographic images in a number of patients. Normal appearances and those seen in venous sinus thrombosis will be presented in the video display. Dynamic MR venography is a new technique for the imaging of dural venous sinuses. In our practice, it has proved a valuable adjunct for the imaging of patients with dural venous sinus thrombosis. Copyright (2002) Blackwell Science Pty Ltd

  2. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis.

    Science.gov (United States)

    HaiFeng, Liu; YongSheng, Xu; YangQin, Xun; Yu, Dou; ShuaiWen, Wang; XingRu, Lu; JunQiang, Lei

    2017-11-01

    This meta-analysis is to comprehensively evaluate the diagnostic performance of three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) for detecting intracranial aneurysm (IA). PubMed, Embase, Web of Science, and the Cochrane library were systematically searched for retrieving eligible studies. Study inclusion, data extraction, and risk of bias assessment were performed by two researchers independently. Pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess the diagnostic value. In addition, heterogeneity and subgroup analysis were carried out. In total, 18 studies comprising 3463 patients were selected. The results of 3D-TOF-MRA for diagnosing IA were SEN 0.89 (95% CI 0.82-0.94), SPE 0.94 (0.86-0.97), PLR 13.79 (5.92-32.12), NLR 0.11 (0.07-0.19), DOR 121.90 (38.81-382.94), and AUC 0.96 (0.94-0.98), respectively. In the subgroup analysis, studies without subarachnoid hemorrhage (SAH) tend to perform statistical significantly better (P 3D-TOF-MRA had better SEN in aneurysms > 3 mm than the aneurysms ≤ 3 mm in diameter: 0.89 (0.87-0.92) vs. 0.78 (0.71-0.84) with P 3D-TOF-MRA has an excellent diagnostic performance for the overall assessment of IA and may serve as an alternative for further patient management with IA.

  3. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  4. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  5. Safety engineering experiments of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Noboru

    1987-07-24

    The outline of large scale experiments carried out every year since 1969 to obtain fundamental data and then establish the safety engineering standards concerning the manufacturing, storage and transportation, etc. of all explosives was described. Because it becomes recently difficult to ensure the safety distance in powder magazines and powder plants, the sandwich structure with sand is thought to be suitable as the neighboring barrier walls. The special vertical structure for embankments to provide against a emergency explosion is effective to absorb the blast. Explosion behaviors such as initiating sensitivity, detonation, sympathetic detonation, and shock occurence of the ANFO explosives in place of dynamite and the slurry explosives were studied. The safety engineering standards for the manufacturing and application of explosives were studied to establish because accidents by tabacco fire are not still distinguished. Much data concerning early stage fire fighting, a large quantity of flooding and shock occurence from a assumption of ignition during machining in the propellants manufacturing plant, could be obtained. Basic studies were made to prevent pollution in blasting sites. Collected data are utilized for the safety administration after sufficient discussion. (4 figs, 2 tabs, 3 photos, 17 refs)

  6. Trace explosives sensor testbed (TESTbed)

    Science.gov (United States)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  7. Experimental study on underwater electrical explosion of a copper wire

    International Nuclear Information System (INIS)

    Zhou Qing; Zhang Jun; Tan Xiangyu; Ren Baozhong; Zhang Qiaogen

    2010-01-01

    Through analyzing the physical process of underwater electrical wire explosion, electrical wire explosions with copper wires were investigated underwater using pulsed voltage in the time scale of a few microseconds. A self-integrating Rogowsky coil and a voltage divider were used for current and voltage at the wire load, respectively. The shock wave pressure is measured with a piezoelectric pressure probe at the same distance. The current rise rate was adjusted by changing the applied voltage, circuit inductance, length and diameter of copper wire. The change of the current rise rate had a great effect on the process of underwater electrical wire explosion with copper wires. At last, the effect of discharge voltage, circuit inductance, length and diameter of copper wire were obtained on the explosion voltage and current as well as shock wave pressure. (authors)

  8. The imitator of nuclear explosion signals for field operations

    International Nuclear Information System (INIS)

    Wang Lusong; Xie Yujun; Tan Youjin; Wang Liping

    1999-01-01

    According to the present system of the nuclear explosion monitoring equipment (NEME), the imitator of nuclear explosion signals for field operation is urgently needed by NEME, which has been fitted out to the army and some new types that will be finalized soon. The authors have made the imitator for the equipment, and as the cause of this research, it can be used not only in training and maintenance for army but also in research and production for scientific research institutions and industrial enterprise. Function of this imitator is to imitate the NEMP, the light and shock wave signals of nuclear explosion in proper order. The time difference of the process accords with the true location of nuclear explosion. This research is of great military importance

  9. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    Explosive boiling, defined as energy transfer leading to formation of vapor rapidly enough to produce large shock waves, has been widely studied in a number of contexts. Depending upon the nature and temperatures of the liquids and mode of contacting, large-scale mixing and explosive vaporization may occur, or alternatively, only relatively non-energetic, film-type boiling may exist. The key difference is whether a mechanism is operative for increasing the liquid-liquid interfacial area in a time scale consistent with the formation of a detonation wave. Small drops of a cold volatile liquid were dropped onto a free surface of a hot, non-volatile liquid. The critical Weber number for coalescence is obtained from the envelope of the film boiling region. Markedly different behavior for the two hot liquids is observed. A 'splash' theory for local propagation of vapor explosions in spontaneously nucleating liquid-liquid systems is now formulated. After a random contact is made, explosive growth and coalescence of the vapor bubbles occurs as soon as the surrounding pressure is relieved, resulting in a high-pressure vapor layer at the liquid-liquid contact area. This amounts to an impact pressure applied to the free surface, with a resulting velocity distribution obtained from potential flow theory. The peak pressure predictions are. consistent with data for Freon-oil mixing, but further evaluation will await additional experimental data. Nevertheless, the current inference is that a UO 2 -Na vapor explosion in a reactor environment cannot be visualized. In conclusion: The propagation model presented here differs in some details from that of Henry and Fauske, although both are consistent with some peak pressure data obtained by Henry, et al. Clearly, additional experimental information is needed for further evaluation of these theories. Nevertheless, it should be emphasized that even at this time a number of important observations concerning the requirements for a vapor

  10. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Numerical schemes for explosion hazards

    International Nuclear Information System (INIS)

    Therme, Nicolas

    2015-01-01

    In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. Blast waves resulting from explosions are modeled by the system of Euler equations for compressible flows, whereas Navier-Stokes equations with reactive source terms and level set techniques are used to simulate the propagation of flame front during the deflagration phase. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations, then the buildup of reliable schemes for the front propagation. In both cases, explicit in time schemes are used, but we also introduce a pressure correction scheme for the Euler equations. Staggered discretization is used in space. It is based on the internal energy formulation of the Euler system, which insures its positivity and avoids tedious discretization of the total energy over staggered grids. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance at the limit. High order methods of MUSCL type are used in the discrete convective operators, based solely on material velocity. They lead to positivity of density and internal energy under CFL conditions. This ensures that the total energy cannot grow and we can furthermore derive a discrete entropy inequality. Under stability assumptions of the discrete L8 and BV norms of the scheme's solutions one can prove that a sequence of converging discrete solutions necessarily converges towards the weak solution of the Euler system. Besides it satisfies a weak entropy inequality at the limit. Concerning the front propagation, we transform the flame front evolution equation (the so called

  12. Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions

    Science.gov (United States)

    Carrigan, C. R.; Sun, Y.

    2016-12-01

    Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032

  13. Application of factor analysis to the explosive detection

    International Nuclear Information System (INIS)

    Park, Yong Joon; Song, Byung Chul; Im, Hee Jung; Kim, Won Ho; Cho, Jung Hwan

    2005-01-01

    The detection of explosive devices hidden in airline baggage is significant problem, particularly in view of the development of modern plastic explosives which can formed into various innocent-appearing shapes and which are sufficiently powerful that small quantities can destroy an aircraft in flight. Besides, the biggest difficulty occurs from long detection time required for the explosive detection system based on thermal neutron interrogation, which involves exposing baggage to slow neutrons having energy in the order of 0.025 eV. The elemental compositions of explosives can be determined by the Neutron Induced Prompt gamma Spectroscopy (NIPS) which has been installed in Korea Atomic Energy Research Institute as a tool for the detection of explosives in passenger baggage. In this work, the factor analysis has been applied to the NIPS system to increase the signal-to-noise ratio of the prompt gamma spectrum for the detection of explosive hidden in a passenger's baggage, especially for the noisy prompt gamma spectrum obtained with short measurement time

  14. Timing of surgery following neoadjuvant chemoradiotherapy in locally advanced rectal cancer - A comparison of magnetic resonance imaging at two time points and histopathological responses.

    Science.gov (United States)

    West, M A; Dimitrov, B D; Moyses, H E; Kemp, G J; Loughney, L; White, D; Grocott, M P W; Jack, S; Brown, G

    2016-09-01

    There is wide inter-institutional variation in the interval between neoadjuvant chemoradiotherapy (NACRT) and surgery for locally advanced rectal cancer. We aimed to assess the association of magnetic resonance imaging (MRI) at 9 and 14 weeks post-NACRT; T-staging (ymrT) and post-NACRT tumour regression grading (ymrTRG) with histopathological outcomes; histopathological T-stage (ypT) and histopathological tumour regression grading (ypTRG) in order to inform decision-making about timing of surgery. We prospectively studied 35 consecutive patients (26 males) with MRI-defined resection margin threatened rectal cancer who had completed standardized NACRT. Patients underwent a MRI at Weeks 9 and 14 post-NACRT, and surgery at Week 15. Two readers independently assessed MRIs for ymrT, ymrTRG and volume change. ymrT and ymrTRG were analysed against histopathological ypT and ypTRG as predictors by logistic regression modelling and receiver operating characteristic (ROC) curve analyses. Thirty-five patients were recruited. Inter-observer agreement was good for all MR variables (Kappa > 0.61). Considering ypT as an outcome variable, a stronger association of favourable ymrTRG and volume change at Week 14 compared to Week 9 was found (ymrTRG - p = 0.064 vs. p = 0.010; Volume change - p = 0.062 vs. p = 0.007). Similarly, considering ypTRG as an outcome variable, a greater association of favourable ymrTRG and volume change at Week 14 compared to Week 9 was found (ymrTRG - p = 0.005 vs. p = 0.042; Volume change - p = 0.004 vs. 0.055). Following NACRT, greater tumour down-staging and volume reduction was observed at Week 14. Timing of surgery, in relation to NACRT, merits further investigation. NCT01325909. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Recurrence of the excited states of nuclei and time coherency of the de Broglie wave in 16O+n resonances

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    2003-01-01

    From the requirement of the time periodicity of a (quasi) stable state, frequencies of the normal modes, which compose the state, are commensurable (integer ratios) with each other, and the excitation energies E x are written as a sum of inverse integers. We propose an expression: E x = GΣ1/n, where n = integers and G = 34.5 MeV. Recurrence time is defined as LCM(n j ) x τ o , where τ 0 = 2πℎ/G = 1.20 x 10 -22 s. LCM vs. E x are illustrated for all possible n j of 2 and 3 normal modes. In 16 O +n resonances, integer ratios are found between the recurrence frequencies of 17 O and the de Broglie wave frequencies of incident neutron, meaning time coherency between them. A simple branch pattern is found in 16 O +n resonance levels. (author)

  16. Influence of Actively Controlled Heat Release Timing on the Performance and Operational Characteristics of a Rotary Valve, Acoustically Resonant Pulse Combustor

    KAUST Repository

    Lisanti, Joel; Roberts, William L.

    2017-01-01

    The influence of heat release timing on the performance and operational characteristics of a rotary valve, acoustically resonant pulse combustor is investigated both experimentally and numerically. Simulation results are obtained by solving the quasi-1D Navier-Stokes equations with forced volumetric heat addition. Experimental efforts modify heat release timing through modulated fuel injection and modification of the fluid dynamic mixing. Results indicate that the heat release timing has a profound effect on the operation and efficiency of the pulse combustor and that this timing can be difficult to control experimentally.

  17. Influence of Actively Controlled Heat Release Timing on the Performance and Operational Characteristics of a Rotary Valve, Acoustically Resonant Pulse Combustor

    KAUST Repository

    Lisanti, Joel

    2017-01-05

    The influence of heat release timing on the performance and operational characteristics of a rotary valve, acoustically resonant pulse combustor is investigated both experimentally and numerically. Simulation results are obtained by solving the quasi-1D Navier-Stokes equations with forced volumetric heat addition. Experimental efforts modify heat release timing through modulated fuel injection and modification of the fluid dynamic mixing. Results indicate that the heat release timing has a profound effect on the operation and efficiency of the pulse combustor and that this timing can be difficult to control experimentally.

  18. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  19. Optical pyrometry of fireballs of metalized explosives

    Energy Technology Data Exchange (ETDEWEB)

    Goroshin, Samuel; Frost, David L.; Levine, Jeffrey [McGill University, Mechanical Engineering, 817 Sherbrooke St. W., Montreal, Quebec, H3A 2K6 (Canada); Yoshinaka, Akio; Zhang, Fan [Defence R and D Canada - Suffield, Box 4000, Stn. Main, Medicine Hat, Alberta, T1A 8K6 (Canada)

    2006-06-15

    Fast-response optical diagnostics (a time-integrated spectrometer and two separate fast-response three-color pyrometers) are used to record the transient visible radiation emitted by a fireball produced when a condensed explosive is detonated. Measurement of the radiant intensity, in several narrow wavelength bands, is used to estimate the temperature of the condensed products within the fireball. For kg-scale conventional oxygen-deficient homogeneous TNT and nitromethane explosive charges, the radiant intensity reaches a maximum typically after tens of milliseconds, but the measured fireball temperature remains largely constant for more than 100 ms, at a value of about 2,000 K, consistent with predictions using equilibrium thermodynamics codes. When combustible metal particles (aluminum, magnesium or zirconium) are added to the explosive, reaction of the particles enhances the radiant energy and the fireball temperature is increased. In this case the fireball temperatures are lower than equilibrium predictions, but are consistent with measurements of particle temperature in single particle ignition experiments. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  20. Slurry explosive containing an improved thickening agent

    Energy Technology Data Exchange (ETDEWEB)

    Wakazono, Y.; Otsuka, Y.

    1970-08-18

    A slurry explosive having stable physical properties and a thickening agent which when blended with a slurry explosive, maintains it in a uniform and stable state as a good suspended dispersion condition over a long period of time, are described. The slurry explosive has a composition consisting essentially of ammonium nitrate, or a mixture of ammonium nitrate and an alkali metal nitrate, or a mixture of ammonium nitrate and an alkaline earth metal nitrate, or a mixture of ammonium nitrate and an alkali metal nitrate and an alkaline earth metal nitrate, at least one member selected from the group consisting of 2,4,6-trinitrotoluene, aluminum, smokeless powder and fuels, and water, 0.1 to 2.0% guar gum, not more than 0.3% of a borate or borates, and/or not more than 20% of hexamethylene tetramine, and 0.02 to 2.0% of an antimony compound or compounds, all percents being by weight. (6 claims)

  1. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Directory of Open Access Journals (Sweden)

    Qingjie Jiao

    2018-03-01

    Full Text Available To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20 based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm grows gradually; shock wave energy (Es continues increasing, bubble energy (Eb increases then decreases peaking at 15% for both formulas, and the total energy (E and energy release rate (η peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  2. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Science.gov (United States)

    Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi

    2018-03-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  3. Molecular Outflows: Explosive versus Protostellar

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Schmid-Burgk, Johannes [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)

    2017-02-10

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  4. The long-term nuclear explosives predicament

    International Nuclear Information System (INIS)

    Swahn, J.

    1992-01-01

    A scenario is described, where the production of new military fissile materials is halted and where civil nuclear power is phased out in a 'no-new orders' case. It is found that approximately 1100 tonnes of weapons-grade uranium, 233 tonnes of weapons-grade plutonium and 3795 tonnes of reactor-grade plutonium have to be finally disposed of as nuclear waste. This material could be used for the construction of over 1 million nuclear explosives. Reactor-grade plutonium is found to be easier to extract from spent nuclear fuel with time and some physical characteristics important for the construction of nuclear explosives are improved. Alternative methods for disposal of the fissile material that will avoid the long-term nuclear explosives predicament are examined. Among these methods are dilution, denaturing or transmutation of the fissile material and options for practicably irrecoverable disposal in deep boreholes, on the sea-bed, and in space. It is found that the deep boreholes method for disposal should be the primary alternative to be examined further. This method can be combined with an effort to 'forget' where the material was put. Included in the thesis is also an evaluation of the possibilities of controlling the limited civil nuclear activities in a post-nuclear world. Some surveillance technologies for a post-nuclear world are described, including satellite surveillance. In a review part of the thesis, methods for the production of fissile material for nuclear explosives are described, the technological basis for the construction of nuclear weapons is examined, including use of reactor-grade plutonium for such purposes; also plans for the disposal of spent fuel from civil nuclear power reactors and for the handling of the fissile material from dismantled warheads is described. The Swedish plan for the handling and disposal of spent nuclear fuel is described in detail. (490 refs., 66 figs., 27 tabs.)

  5. Bayesian Integration and Characterization of Composition C-4 Plastic Explosives Based on Time-of-Flight Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Christine M.; Kelly, Ryan T.; Alexander, M. L.; Newburn, Matthew K.; Bader, Sydney P.; Ewing, Robert G.; Fahey, Albert J.; Atkinson, David A.; Beagley, Nathaniel

    2016-02-25

    Key elements regarding the use of non-radioactive ionization sources will be presented as related to explosives detection by mass spectrometry and ion mobility spectrometry. Various non-radioactive ionization sources will be discussed along with associated ionization mechanisms pertaining to specific sample types.

  6. Diagnostic value of T1 and T2 * relaxation times and off-resonance saturation effects in the evaluation of Achilles tendinopathy by MRI at 3T.

    Science.gov (United States)

    Grosse, Ulrich; Syha, Roland; Hein, Tobias; Gatidis, Sergios; Grözinger, Gerd; Schabel, Christoph; Martirosian, Petros; Schick, Fritz; Springer, Fabian

    2015-04-01

    To evaluate and compare the diagnostic value of T1 , T2 * relaxation times and off-resonance saturation ratios (OSR) in healthy controls and patients with different clinical and morphological stages of Achilles tendinopathy. Forty-two healthy Achilles tendons and 34 tendons of 17 patients with symptomatic and asymptomatic tendinopathy were investigated clinically with conventional magnetic resonance imaging (MRI) sequences on a 3T whole-body MR scanner and a dynamic ultrasound examination. In addition, T1 and T2 * relaxation times were assessed using an ultrashort echo time (UTE) imaging sequence with flip angle and echo time variation. For the calculation of OSR values a Gaussian off-resonance saturation pulse (frequency offset: 750-5000 Hz) was used. The diagnostic value of the derived MR values was assessed and compared using receiver operating characteristic (ROC) curves. ROC curves demonstrate the highest overall test performance for OSR values at 2000 Hz off-resonance in differentiating slightly (OSR-2000 [AUC: 0.930] > T2 * [AUC: 0.884] > T1 [AUC: 0.737]) and more severe pathologically altered tendon areas (OSR-2000 [AUC: 0.964] > T2 * [AUC: 0.917] > T1 [AUC: 0.819]) from healthy ones. OSR values at a frequency offset of 2000 Hz demonstrated a better sensitivity and specificity for detecting mild and severe stages of tendinopathy compared to T2 * and particularly when compared to T1 relaxation times. © 2014 Wiley Periodicals, Inc.

  7. Droplet solidification and the potential for steam explosions

    International Nuclear Information System (INIS)

    Epstein, M.; Fauske, H.K.; Luangdilok, W.

    2009-01-01

    It is well known that under certain circumstances a mixture of coarse-hot (molten) drops in water formed from pouring a hot melt into water explodes. This so-called 'steam explosion' is generally believed to involve steam-bubble-collapse-induced fine fragmentation of the melt drops and concomitant water vaporization on a timescale that is short compared with the steam pressure relief time. Motivated by the idea put forth by Okkonen and Sehgal that rapid solidification would render UO 2 -containing (Corium) melt drops stiff and resistant to the steam-bubble-collapse-induced fragmentation required to support an explosion, here we combine solidification theory with an available theory of the stability of thin, submerged crusts subject to acceleration to predict the 'cutoff time' beyond which melt-drop fragmentation is suppressed by crust cover rigidity. Illustration calculations show that the cutoff time for Corium melt drops in water is a fraction of a second and probably shorter than the time it takes to form the explosion-prerequisite-coarse-premixture configuration of melt drops in water, while the opposite is true for the molten aluminum oxide/water system for which the window of opportunity for an explosion is predicted to be several seconds. These theoretical findings are consistent with early experiments that revealed molten uranium oxide or Corium pours into water to be non-explosive and that produced steam explosions upon pouring molten aluminum oxide into water. Also in this paper, the recent TROI Corium/water interaction experiments are examined and it is concluded that they do not contravene the earlier experimental observations that the pouring of prototypical Corium mixtures into water does not result in steam explosions with destructive potential. (author)

  8. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, HaiFeng; Xu, YongSheng [First Hospital of LanZhou University, Department of Radiology, Lanzhou, Gansu (China); First Clinical Medical College of LanZhou University, Lanzhou, Gansu (China); Xun, YangQin [Lanzhou University, Evidence-based Medicine Center, Lanzhou (China); Dou, Yu; Wang, ShuaiWen; Lu, XingRu; Lei, JunQiang [First Hospital of LanZhou University, Department of Radiology, Lanzhou, Gansu (China)

    2017-11-15

    This meta-analysis is to comprehensively evaluate the diagnostic performance of three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) for detecting intracranial aneurysm (IA). PubMed, Embase, Web of Science, and the Cochrane library were systematically searched for retrieving eligible studies. Study inclusion, data extraction, and risk of bias assessment were performed by two researchers independently. Pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess the diagnostic value. In addition, heterogeneity and subgroup analysis were carried out. In total, 18 studies comprising 3463 patients were selected. The results of 3D-TOF-MRA for diagnosing IA were SEN 0.89 (95% CI 0.82-0.94), SPE 0.94 (0.86-0.97), PLR 13.79 (5.92-32.12), NLR 0.11 (0.07-0.19), DOR 121.90 (38.81-382.94), and AUC 0.96 (0.94-0.98), respectively. In the subgroup analysis, studies without subarachnoid hemorrhage (SAH) tend to perform statistical significantly better (P < 0.05) in detecting IAs than studies with SAH 0.99 (0.98-1.00) vs. 0.89 (0.86-0.91). The diagnostic value of studies with a two-image reconstruction method was higher than studies with only one image reconstruction method: 0.99 (0.98-1.00) vs. 0.91 (0.89-0.94) with P < 0.05. The 3D-TOF-MRA had better SEN in aneurysms > 3 mm than the aneurysms ≤ 3 mm in diameter: 0.89 (0.87-0.92) vs. 0.78 (0.71-0.84) with P < 0.05. This study demonstrated that 3D-TOF-MRA has an excellent diagnostic performance for the overall assessment of IA and may serve as an alternative for further patient management with IA. (orig.)

  9. Gas pollutants from detonation and combustion of industrial explosives

    Energy Technology Data Exchange (ETDEWEB)

    Campos, J.; Pines, A.; Gois, J.C.; Portugal, A. (University of Coimbra, Coimbra (Portugal). Mechanical Engineering Dept.)

    1993-01-01

    The potential hazards of fumes, from blasting operations in underground mines, have long been recognised. Beyond this normal use of explosives, there are also large amounts of energy substances which cannot be used because their life time is outdated or they are not within the minimal quality requirements. There is a lack of information concerning tests, procedures and theoretical predictions of pollutant concentrations in fumes from detonation and combustion operations with industrial explosives. The most common industrial explosives in Portugal are ammonium nitrate-fuel oil compositions (anfo), and dynamite. Recently, ammonium nitrate based emulsion explosives are more and more used in industrial applications. This paper presents the structure and fundamental thermodynamic equations of THOR computer code to calculate the combustion and detonation products (CO[sub 2], CO, H[sub 2]O, N[sub 2], O[sub 2], H[sub 2], OH, NO, H, N, O, HCN, NH[sub 3], NO[sub 2], N[sub 2]O, CH[sub 4] gases and two kinds of solid carbon - graphite and diamond) for the minimum value of Gibbs free energy, using three well known equations of state - BKW, H9 and H12. Detonation experiments are described and gas analysis discussed. Measured pollutants concentrations (CO, CO[sub 2], NO and NO[sub 2]), as a function of volume of explosion chamber, prove the dependence of expansion mechanisms on CO and NO formation and recombination and validate theoretical predictions. Incineration of explosives in a fluidised bed is described. Products composition from isobare adiabatic combustion of selected explosives has been calculated and correlated with previous calculations for a detonation regime. The obtained results demonstrate the possibility of predicting gas composition of detonation and combustion products of industrial explosives. 22 refs., 14 figs., 1 tab.

  10. Pyroshock Prediction of Ridge-Cut Explosive Bolts Using Hydrocodes

    Directory of Open Access Journals (Sweden)

    Juho Lee

    2016-01-01

    Full Text Available Pyrotechnic release devices such as explosive bolts are prevalent for many applications due to their merits: high reliability, high power-to-weight ratio, reasonable cost, and more. However, pyroshock generated by an explosive event can cause failures in electric components. Although pyroshock propagations are relatively well understood through many numerical and experimental studies, the prediction of pyroshock generation is still a very difficult problem. This study proposes a numerical method for predicting the pyroshock of a ridge-cut explosive bolt using a commercial hydrocode (ANSYS AUTODYN. A numerical model is established by integrating fluid-structure interaction and complex material models for high explosives and metals, including high explosive detonation, shock wave transmission and propagation, and stress wave propagation. To verify the proposed numerical scheme, pyroshock measurement experiments of the ridge-cut explosive bolts with two types of surrounding structures are performed using laser Doppler vibrometers (LDVs. The numerical analysis results provide accurate prediction in both the time (acceleration and frequency domains (maximax shock response spectra. In maximax shock response spectra, the peaks due to vibration modes of the structures are observed in both the experimental and numerical results. The numerical analysis also helps to identify the pyroshock generation source and the propagation routes.

  11. Early light curves for Type Ia supernova explosion models

    Science.gov (United States)

    Noebauer, U. M.; Kromer, M.; Taubenberger, S.; Baklanov, P.; Blinnikov, S.; Sorokina, E.; Hillebrandt, W.

    2017-12-01

    Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach STELLA for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.

  12. Explosive mechanism of metal destruction by intense electromagnetic radiation flux

    International Nuclear Information System (INIS)

    Martynyuk, M.M.

    1977-01-01

    The metal destruction by a powerful flux of electromagnetic radiation is considered on the basis of thermodynamics and kinetics of the transition of molten metal to vapour during its rapid heating. The possibility is discussed of obtaining a metastable liquid-metal phase and of its explosion transition to a stable two-phase state (phase explosion of metastable liquid). It has been shown that at densities of radiation beam ensuring the heating of the metal to the spinodal point Tsub(s) during a time tsub(s)=10 -5 -10 -7 s the vaporization of the matter from the surface of the liquid is negligible, and the main mechanism of the metal destruction is the phase explosion of the metastable liquid-metal phase which originates in the Tsub(s) vicinity. The experimental data on the electric explosion of conductors for tsub(s)=10 -6 -10 -5 s has served as a basis for calculating the excess enthalpy and the proportion of the vapour phase formed in the phase explosion of Cu, Ag, Au, Zn, Cd, Al, Pb, Zr, Nb, Mo, W, Pt and Re. The particularities of the phase explosion at flux densities corresponding to tsub(s)( -8 s are considered

  13. General phenomenology of underground nuclear explosions

    International Nuclear Information System (INIS)

    Derlich, S.; Supiot, F.

    1969-01-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [fr

  14. Electromagnetic field effects in explosives

    Science.gov (United States)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  15. Youngest Stellar Explosion in Our Galaxy Discovered

    Science.gov (United States)

    2008-05-01

    the star's explosion. They did this by comparing images of the object, called G1.9+0.3, made more than two decades apart. In 1985, astronomers led by Green observed G1.9+0.3 with the VLA and identified it as a supernova remnant. At that time, they estimated its age as between 400 and 1,000 years. It is near the center of our Galaxy, roughly 25,000 light-years from Earth. In 2007, another team of astronomers, led by Stephen Reynolds of North Carolina State University, observed the object with the Chandra X-Ray Observatory. To their surprise, their image showed the object to be about 16 percent larger than in the 1985 VLA image. "This is a huge difference. It means the explosion debris is expanding very quickly, which in turn means the object is much younger than we originally thought," Reynolds explained. However, this expansion measurement came from comparing a radio image to an X-ray image. To make an "apples to apples" comparison, the scientists sought and were quickly granted observing time on the VLA. "I've never seen a large astronomical institution move so fast," said Reynolds. Their new VLA observations confirmed the supernova remnant's rapid expansion. The discovery provides scientists with a valuable source of new information about exploding stars. "Our previous situation was as if someone studying humans could look at babies and at adults, but could not study teenagers. Now, we're filling in that gap," said Reynolds. The object already has provided surprises. The velocities of its explosion debris and extreme energies of its particles are unprecedented. "No other object in the Galaxy has properties like this," said Reynolds. "Finding G1.9+0.3 is extremely important for learning more about how some stars explode and what happens in the aftermath," he added. The discovery was possible because radio and X-ray telescopes, unlike visible-light telescopes, can penetrate the thick clouds of gas and dust in our Galaxy. "Looking out of the Milky Way, we can see some

  16. High explosive programmed burn in the FLAG code

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, D.; Burton, D.; Lund, C.

    1998-02-01

    The models used to calculate the programmed burn high-explosive lighting times for two- and three-dimensions in the FLAG code are described. FLAG uses an unstructured polyhedra grid. The calculations were compared to exact solutions for a square in two dimensions and for a cube in three dimensions. The maximum error was 3.95 percent in two dimensions and 4.84 percent in three dimensions. The high explosive lighting time model described has the advantage that only one cell at a time needs to be considered.

  17. Analysis methods of neutrons induced resonances in the transmission experiments by time-of-flight and automation of these methods on IBM 7094 II computer

    International Nuclear Information System (INIS)

    Corge, C.

    1967-01-01

    The neutron induced resonances analysis aims to determine the neutrons characteristics, leading to the excitation energies, de-excitation probabilities by gamma radiation emission, by neutron emission or by fission, their spin, their parity... This document describes the methods developed, or adapted, the calculation schemes and the algorithms implemented to realize such analysis on a computer, from data obtained during time-of-flight experiments on the linear accelerator of Saclay. (A.L.B.)

  18. Utility of time-resolved three-dimensional magnetic resonance digital subtraction angiography without contrast material for assessment of intracranial dural arterio-venous fistula

    International Nuclear Information System (INIS)

    Hori, Masaaki; Aoki, Shigeki; Nakanishi, Atsushi; Shimoji, Keigo; Kamagata, Koji; Houshito, Haruyoshi; Kuwatsuru, Ryohei; Oishi, Hidenori; Arai, Hajime

    2011-01-01

    Background: Intracranial dural arteriovenous fistula (DAVF) is an arteriovenous shunting disease of the dura. Magnetic resonance angiography (MRA) is expected to be a safer alternative method in evaluation of DAVF, compared with invasive intra-arterial digital subtraction angiography (IADSA). Purpose: To evaluate the diagnostic use of time-spatial labeling inversion pulse (Time-SLIP) three-dimensional (3D) magnetic resonance digital subtraction angiography (MRDSA) without contrast material in six patients with DAVF. Material and Methods: Images for 3D time-of-flight MRA, which has been a valuable tool for the diagnosis of DAVF but provide little or less hemodynamic information, and Time-SLIP 3D MRDSA, were acquired for each patient. The presence, side, and grade of the disease were evaluated according to IADSA. Results: In all patients, the presence and side of the DAVF were correctly identified by both 3D time-of-flight MRA and Time-SLIP 3D MRDSA. Cortical reflux present in a patient with a grade 2b DAVF was not detected by Time-SLIP 3D MRDSA, when compared with IADSA findings. Conclusion: Time-SLIP 3D MRDSA provides hemodynamic information without contrast material and is a useful complementary tool for diagnosis of DAVF

  19. Proceedings of the seventh annual symposium on explosives and blasting research

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Papers from this symposium dealt with the following topics: advanced primer designs, seismic effects of blasting, systems for velocity of detonation measurement and pressure measurement, toxic fumes from explosions, blast performance, blasting for rock fragmentation, computer-aided blast design, characteristics of liquid oxygen explosives, and correlations of performance of explosives with ground vibration, partitioning of energy, and firing time scatter effects. Papers have been indexed separately for inclusion on the data base

  20. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  1. Optimal dynamic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory; Scharff, R J [Los Alamos National Laboratory; Rabitz, Herschel A [PRINCETON UNIV; Roslund, J [PRINCETON UNIV

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  2. Calculating overpressure from BLEVE explosions

    Energy Technology Data Exchange (ETDEWEB)

    Planas-Cuchi, E.; Casal, J. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Chemical Engineering, Centre for Technological Risk Studies; Salla, J.M. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Heat Engines

    2004-11-01

    Although a certain number of authors have analyzed the prediction of boiling liquid expanding vapour explosion (BLEVE) and fireball effects, only very few of them have proposed methodologies for predicting the overpressure from such explosions. In this paper, the methods previously published are discussed and shown to introduce a significant overestimation due to erroneous thermodynamic assumptions - ideal gas behaviour and isentropic vapour expansion - on which they are based (in fact, they give the maximum value of overpressure which can be caused by a BLEVE). A new approach is proposed, based on the - more realistic - assumption of an adiabatic and irreversible expansion process; the real properties of the substance involved in the explosion are used. The two methods are compared through the application to a given case. (author)

  3. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  4. Evidence for nearby supernova explosions

    International Nuclear Information System (INIS)

    Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova (SN) explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at ∼130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of 60 Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ∼2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction

  5. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mayr, Nina A.; Taoka, Toshiaki; Yuh, William T.C.; Denning, Leah M.; Zhen, Weining K.; Paulino, Arnold C.; Gaston, Robert C.; Sorosky, Joel I.; Meeks, Sanford L.; Walker, Joan L.; Mannel, Robert S.; Buatti, John M.

    2002-01-01

    Purpose: Recently, imaging-based tumor volume before, during, and after radiation therapy (RT) has been shown to predict tumor response in cervical cancer. However, the effectiveness of different methods and timing of imaging-based tumor size assessment have not been investigated. The purpose of this study was to compare the predictive value for treatment outcome derived from simple diameter-based ellipsoid tumor volume measurement using orthogonal diameters (with ellipsoid computation) with that derived from more complex contour tracing/region-of-interest (ROI) analysis 3D tumor volumetry. Methods and Materials: Serial magnetic resonance imaging (MRI) examinations were prospectively performed in 60 patients with advanced cervical cancer (Stages IB 2 -IVB/recurrent) at the start of RT, during early RT (20-25 Gy), mid-RT (45-50 Gy), and at follow-up (1-2 months after RT completion). ROI-based volumetry was derived by tracing the entire tumor region in each MR slice on the computer work station. For the diameter-based surrogate ''ellipsoid volume,'' the three orthogonal diameters (d 1 , d 2 , d 3 ) were measured on film hard copies to calculate volume as an ellipsoid (d 1 x d 2 x d 3 x π/6). Serial tumor volumes and regression rates determined by each method were correlated with local control, disease-free and overall survival, and the results were compared between the two measuring methods. Median post-therapy follow-up was 4.9 years (range, 2.0-8.2 years). Results: The best method and time point of tumor size measurement for the prediction of outcome was the tumor regression rate in the mid-therapy MRI examination (at 45-50 Gy) using 3D ROI volumetry. For the pre-RT measurement both the diameter-based method and ROI volumetry provided similar predictive accuracy, particularly for patients with small ( 3 ) and large (≥100 cm 3 ) pre-RT tumor size. However, the pre-RT tumor size measured by either method had much less predictive value for the intermediate-size (40

  6. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    Graybill, R.; Morgado, R.E.; Cappiello, C.C.

    1994-05-01

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported

  7. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Graybill, R. [ed.; Morgado, R.E.; Cappiello, C.C. [and others

    1994-05-01

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported.

  8. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.

    1976-01-01

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  9. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization

    Directory of Open Access Journals (Sweden)

    Wendy Whiteside

    2015-01-01

    Full Text Available Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver.

  10. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization

    International Nuclear Information System (INIS)

    Whiteside, Wendy; Christensen, Jason; Zampi, Jeffrey D

    2005-01-01

    Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI) overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver

  11. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly

  12. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This report discusses the recovery from the February 9, 1991 small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant. Custom processing is a small scale dissolution facility which processes nuclear material in an economical fashion. The material dissolved in this facility was uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid. The paper explained the release of fission material, and the decontamination and recovery of the fuel material. The safety and protection procedures were also discussed. Also described was the chemical analysis which was used to speculate the most probable cause of the explosion. (MB)

  13. Explosions in Landau Vlasov dynamics

    International Nuclear Information System (INIS)

    Suraud, E.; Cussol, D.; Gregoire, C.; Boilley, D.; Pi, M.; Schuck, P.; Remaud, B.; Sebille, F.

    1988-01-01

    A microscopic study of the quasi-fusion/explosion transition is presented in the framework of Landau-Vlasov simulations of intermediate energy heavy-ion collisions (bombarding energies between 10 and 100 MeV/A). A detailed analysis in terms of the Equation of State of the system is performed. In agreement with schematic models we find that the composite nuclear system formed in the collision does explode when it stays long enough in the mechanically unstable region (spinodal region). Quantitative estimates of the explosion threshold are given for central symmetric reactions (Ca+Ca and Ar+Ti). The effect of the nuclear matter compressibility modulus is discussed

  14. System for detecting nuclear explosions

    International Nuclear Information System (INIS)

    Rawls, L.E.

    1978-01-01

    Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means

  15. Biological consequences of atomic explosions

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1984-01-01

    After an introductory chapter of the development and properties of nuclear weapons and the events of Hiroshima and Nagasaki, this books shows the effects of atomic explosions for man: effects of the pressure wave, thermal radiation, initial nuclear radiation alone or in conjunction and possible medical help. In addition the less massive damage caused by induced radioactivity and fallout, their prevention resp. treatment and the malignant/nonmalignant late effects are discussed. A further chapter deals with the psychological and epidemiological effects of atomic explosions, the consequences for food and water supply, and the construction of shetters. The last chapter is concerned with the problem of organising medical help. (MG) [de

  16. Behaviour of a reactor PWR containment submitted to an external explosion

    International Nuclear Information System (INIS)

    Barbe, B.; Avet-Flancard, R.; Perrot, J.; Berriaud, C.; Dulac, J.

    1981-01-01

    The aims of this study are to obtain experimental data and theoretical evaluation of the transient field pressure existing on importants buildings of the plant. The knowledge of the pressure loading permits then to predict the structure mechanical behaviour. For this purpose the cylindrical reactor building and the parallelepipedic fuel building have been modelized to a 1/40 scale. These models were realized as carefully as possible with prestressing in the thickness of microconcrete walls and were submitted to incident shock waves obtained by T.N.T. explosions. Several characteristics explosion directions have been tested. Experimental data were recorded with pressure and displacement transducers and also by accelerometers. The results show that: 1) the geometrical dihedral between reactor and fuel building induces local overpressures five times the incident pressures; 2) no apparent damage occurred on the structure, for the range of field pressure tested so far; this may related to only small effects of resonances. Simultaneously a tridimensional, acoustic code has been developed an conveniently correlates experimental data. (orig./HP)

  17. An effect of corium composition variations on occurrence of a steam explosion in the TROI experiments

    International Nuclear Information System (INIS)

    Kim, J. W.; Park, I. K.; Hong, S. W.; Min, B. T.; Shin, Y. S.; Song, J. H.; Kim, H. D.

    2003-01-01

    Recently series of steam explosion experiments have been performed in the TROI facility using corium melts of various compositions. The compositions (UO 2 : ZrO 2 ) of the corium were 0 : 100, 50 : 50, 70 : 30, 80 : 20 and 87 : 13 in weight percent and the mass of the corium was about 10kg. An experiment using 0 : 100 corium (pure zirconia) caused a steam explosion. An experiment using 50 : 50 corium did not cause a steam explosion while a steam spike occurred in an experiment using 70 : 30 corium which was the eutectic point of corium. A steam spike is considered to be the fact that a triggering of a steam explosion occurred but a propagation process does not occur so as to cause a weak interaction. However, the possibility of a steam explosion with this composition can not be ruled out since many steam explosions occurred in the previous experiments. In the two experiments using 80 : 20 corium, a steam spike occurred in one experiment but no steam explosion occurred in the other experiment. However, the triggerability of a steam explosion with this composition is not clear since few steam explosions occurred in the previous experiments. And no steam explosion occurred in an experiment using 87 : 13 corium of which urania content was the greatest among the experiments performed in the TROI facility. From this, the possibility of a steam explosion or a steam spike is appeared to be high in the non-mush zone. It is considered that an explosive interaction could easily occur with the eutectic composition. Since the solidification temperature around the eutectic point is low, the melt is likely to maintain its liquid state at the time of triggering so as to cause an explosive phenomenon

  18. An experimental study of an explosively driven flat plate launcher

    Science.gov (United States)

    Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team

    2017-06-01

    For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.

  19. Background on the commercial explosive chosen for the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mammele, M.E.

    1994-12-31

    The requirements of the Chemical Kiloton Experiment as outlined in the original explosives bid package provided DYNO NOBEL/Alpha-Ireco, Inc. with a unique challenge. The size of the chamber, the total volume of explosives required, the chemical energy equivalent of one kiloton, the time-frame of loading the chamber, transportation, safety, were all necessary considerations in choosing this particular explosive. The rationale for choosing this particular emulsion/ANFO blend of blasting agent explosive will be presented. DYNO NOBEL INC in-house theoretical predictions as to the explosive performance potential of the blasting agent will be compared to some of the actual data acquired upon detonation. The results of this type of experiment may provide new insight as to the efficiency of the energy release of typical commercial explosives.

  20. Rock Springs Site 12 hydraulic/explosive true in situ oil shale fracturing experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, R.L.; Boade, R.R.; Stevens, A.L.; Long, A. Jr.; Turner, T.F.

    1980-06-01

    The experiment plan involved the creation and characterization of three horizontal hydraulic fractures, followed by the insertion and simultaneous detonation of slurry explosive in the two lower fractures. Core analyses, wellbore logging, and airflow and /sup 85/Kr tracer tests were used for site characterization and assessment of the hydraulic and explosive fracturing. Tiltmeters, wellhead pressure and flow gages, and in-formation pressure, flow and crack-opening sensors were used to monitor hydrofracture creation and explosive insertion. Explosive detonation diagnostic data were taken with stress and time-of-arrival gages and surface and in-formation accelerometers. The post-fracturing assessments indicated that: (1) hydrofracture creation and explosive insertion and detonation were accomplished essentially as planned; (2) induced fractures were randomly distributed through the shale with no extensively fractured regions or dislocation of shale; and (3) enhancement of permeability was limited to enlargement of the explosive-filled fractures.