WorldWideScience

Sample records for time regression model

  1. Forecasting daily meteorological time series using ARIMA and regression models

    Science.gov (United States)

    Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir

    2018-04-01

    The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

  2. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

    International Nuclear Information System (INIS)

    Jafri, Y.Z.; Kamal, L.

    2007-01-01

    Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

  3. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  4. Time series regression model for infectious disease and weather.

    Science.gov (United States)

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  6. Martingale Regressions for a Continuous Time Model of Exchange Rates

    OpenAIRE

    Guo, Zi-Yi

    2017-01-01

    One of the daunting problems in international finance is the weak explanatory power of existing theories of the nominal exchange rates, the so-called “foreign exchange rate determination puzzle”. We propose a continuous-time model to study the impact of order flow on foreign exchange rates. The model is estimated by a newly developed econometric tool based on a time-change sampling from calendar to volatility time. The estimation results indicate that the effect of order flow on exchange rate...

  7. A generalized exponential time series regression model for electricity prices

    DEFF Research Database (Denmark)

    Haldrup, Niels; Knapik, Oskar; Proietti, Tomasso

    on the estimated model, the best linear predictor is constructed. Our modeling approach provides good fit within sample and outperforms competing benchmark predictors in terms of forecasting accuracy. We also find that building separate models for each hour of the day and averaging the forecasts is a better...

  8. Multiple linear regression and regression with time series error models in forecasting PM10 concentrations in Peninsular Malaysia.

    Science.gov (United States)

    Ng, Kar Yong; Awang, Norhashidah

    2018-01-06

    Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.

  9. Time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik

    2008-01-01

    and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....

  10. Real time damage detection using recursive principal components and time varying auto-regressive modeling

    Science.gov (United States)

    Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.

    2018-02-01

    In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving

  11. Time series modeling by a regression approach based on a latent process.

    Science.gov (United States)

    Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice

    2009-01-01

    Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.

  12. Longitudinal beta regression models for analyzing health-related quality of life scores over time

    Directory of Open Access Journals (Sweden)

    Hunger Matthias

    2012-09-01

    Full Text Available Abstract Background Health-related quality of life (HRQL has become an increasingly important outcome parameter in clinical trials and epidemiological research. HRQL scores are typically bounded at both ends of the scale and often highly skewed. Several regression techniques have been proposed to model such data in cross-sectional studies, however, methods applicable in longitudinal research are less well researched. This study examined the use of beta regression models for analyzing longitudinal HRQL data using two empirical examples with distributional features typically encountered in practice. Methods We used SF-6D utility data from a German older age cohort study and stroke-specific HRQL data from a randomized controlled trial. We described the conceptual differences between mixed and marginal beta regression models and compared both models to the commonly used linear mixed model in terms of overall fit and predictive accuracy. Results At any measurement time, the beta distribution fitted the SF-6D utility data and stroke-specific HRQL data better than the normal distribution. The mixed beta model showed better likelihood-based fit statistics than the linear mixed model and respected the boundedness of the outcome variable. However, it tended to underestimate the true mean at the upper part of the distribution. Adjusted group means from marginal beta model and linear mixed model were nearly identical but differences could be observed with respect to standard errors. Conclusions Understanding the conceptual differences between mixed and marginal beta regression models is important for their proper use in the analysis of longitudinal HRQL data. Beta regression fits the typical distribution of HRQL data better than linear mixed models, however, if focus is on estimating group mean scores rather than making individual predictions, the two methods might not differ substantially.

  13. Replica analysis of overfitting in regression models for time-to-event data

    Science.gov (United States)

    Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.

    2017-09-01

    Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.

  14. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    Science.gov (United States)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  15. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling.

    Science.gov (United States)

    Edelman, Eric R; van Kuijk, Sander M J; Hamaekers, Ankie E W; de Korte, Marcel J M; van Merode, Godefridus G; Buhre, Wolfgang F F A

    2017-01-01

    For efficient utilization of operating rooms (ORs), accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT) per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT) and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA) physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT). We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT). TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related benefits.

  16. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Eric R. Edelman

    2017-06-01

    Full Text Available For efficient utilization of operating rooms (ORs, accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT. We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT. TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related

  17. Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia

    Science.gov (United States)

    Prahutama, Alan; Suparti; Wahyu Utami, Tiani

    2018-03-01

    Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.

  18. BFLCRM: A BAYESIAN FUNCTIONAL LINEAR COX REGRESSION MODEL FOR PREDICTING TIME TO CONVERSION TO ALZHEIMER'S DISEASE.

    Science.gov (United States)

    Lee, Eunjee; Zhu, Hongtu; Kong, Dehan; Wang, Yalin; Giovanello, Kelly Sullivan; Ibrahim, Joseph G

    2015-12-01

    The aim of this paper is to develop a Bayesian functional linear Cox regression model (BFLCRM) with both functional and scalar covariates. This new development is motivated by establishing the likelihood of conversion to Alzheimer's disease (AD) in 346 patients with mild cognitive impairment (MCI) enrolled in the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) and the early markers of conversion. These 346 MCI patients were followed over 48 months, with 161 MCI participants progressing to AD at 48 months. The functional linear Cox regression model was used to establish that functional covariates including hippocampus surface morphology and scalar covariates including brain MRI volumes, cognitive performance (ADAS-Cog), and APOE status can accurately predict time to onset of AD. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of BFLCRM.

  19. Predicting Jakarta composite index using hybrid of fuzzy time series and support vector regression models

    Science.gov (United States)

    Febrian Umbara, Rian; Tarwidi, Dede; Budi Setiawan, Erwin

    2018-03-01

    The paper discusses the prediction of Jakarta Composite Index (JCI) in Indonesia Stock Exchange. The study is based on JCI historical data for 1286 days to predict the value of JCI one day ahead. This paper proposes predictions done in two stages., The first stage using Fuzzy Time Series (FTS) to predict values of ten technical indicators, and the second stage using Support Vector Regression (SVR) to predict the value of JCI one day ahead, resulting in a hybrid prediction model FTS-SVR. The performance of this combined prediction model is compared with the performance of the single stage prediction model using SVR only. Ten technical indicators are used as input for each model.

  20. Two levels ARIMAX and regression models for forecasting time series data with calendar variation effects

    Science.gov (United States)

    Suhartono, Lee, Muhammad Hisyam; Prastyo, Dedy Dwi

    2015-12-01

    The aim of this research is to develop a calendar variation model for forecasting retail sales data with the Eid ul-Fitr effect. The proposed model is based on two methods, namely two levels ARIMAX and regression methods. Two levels ARIMAX and regression models are built by using ARIMAX for the first level and regression for the second level. Monthly men's jeans and women's trousers sales in a retail company for the period January 2002 to September 2009 are used as case study. In general, two levels of calendar variation model yields two models, namely the first model to reconstruct the sales pattern that already occurred, and the second model to forecast the effect of increasing sales due to Eid ul-Fitr that affected sales at the same and the previous months. The results show that the proposed two level calendar variation model based on ARIMAX and regression methods yields better forecast compared to the seasonal ARIMA model and Neural Networks.

  1. Prediction of hourly PM2.5 using a space-time support vector regression model

    Science.gov (United States)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  2. Non-linear auto-regressive models for cross-frequency coupling in neural time series

    Science.gov (United States)

    Tallot, Lucille; Grabot, Laetitia; Doyère, Valérie; Grenier, Yves; Gramfort, Alexandre

    2017-01-01

    We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model “goodness of fit” via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling. PMID:29227989

  3. A joint logistic regression and covariate-adjusted continuous-time Markov chain model.

    Science.gov (United States)

    Rubin, Maria Laura; Chan, Wenyaw; Yamal, Jose-Miguel; Robertson, Claudia Sue

    2017-12-10

    The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Trend Estimation and Regression Analysis in Climatological Time Series: An Application of Structural Time Series Models and the Kalman Filter.

    Science.gov (United States)

    Visser, H.; Molenaar, J.

    1995-05-01

    The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of

  5. Predicting the "graduate on time (GOT)" of PhD students using binary logistics regression model

    Science.gov (United States)

    Shariff, S. Sarifah Radiah; Rodzi, Nur Atiqah Mohd; Rahman, Kahartini Abdul; Zahari, Siti Meriam; Deni, Sayang Mohd

    2016-10-01

    Malaysian government has recently set a new goal to produce 60,000 Malaysian PhD holders by the year 2023. As a Malaysia's largest institution of higher learning in terms of size and population which offers more than 500 academic programmes in a conducive and vibrant environment, UiTM has taken several initiatives to fill up the gap. Strategies to increase the numbers of graduates with PhD are a process that is challenging. In many occasions, many have already identified that the struggle to get into the target set is even more daunting, and that implementation is far too ideal. This has further being progressing slowly as the attrition rate increases. This study aims to apply the proposed models that incorporates several factors in predicting the number PhD students that will complete their PhD studies on time. Binary Logistic Regression model is proposed and used on the set of data to determine the number. The results show that only 6.8% of the 2014 PhD students are predicted to graduate on time and the results are compared wih the actual number for validation purpose.

  6. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  7. Decoding and modelling of time series count data using Poisson hidden Markov model and Markov ordinal logistic regression models.

    Science.gov (United States)

    Sebastian, Tunny; Jeyaseelan, Visalakshi; Jeyaseelan, Lakshmanan; Anandan, Shalini; George, Sebastian; Bangdiwala, Shrikant I

    2018-01-01

    Hidden Markov models are stochastic models in which the observations are assumed to follow a mixture distribution, but the parameters of the components are governed by a Markov chain which is unobservable. The issues related to the estimation of Poisson-hidden Markov models in which the observations are coming from mixture of Poisson distributions and the parameters of the component Poisson distributions are governed by an m-state Markov chain with an unknown transition probability matrix are explained here. These methods were applied to the data on Vibrio cholerae counts reported every month for 11-year span at Christian Medical College, Vellore, India. Using Viterbi algorithm, the best estimate of the state sequence was obtained and hence the transition probability matrix. The mean passage time between the states were estimated. The 95% confidence interval for the mean passage time was estimated via Monte Carlo simulation. The three hidden states of the estimated Markov chain are labelled as 'Low', 'Moderate' and 'High' with the mean counts of 1.4, 6.6 and 20.2 and the estimated average duration of stay of 3, 3 and 4 months, respectively. Environmental risk factors were studied using Markov ordinal logistic regression analysis. No significant association was found between disease severity levels and climate components.

  8. Convergent Time-Varying Regression Models for Data Streams: Tracking Concept Drift by the Recursive Parzen-Based Generalized Regression Neural Networks.

    Science.gov (United States)

    Duda, Piotr; Jaworski, Maciej; Rutkowski, Leszek

    2018-03-01

    One of the greatest challenges in data mining is related to processing and analysis of massive data streams. Contrary to traditional static data mining problems, data streams require that each element is processed only once, the amount of allocated memory is constant and the models incorporate changes of investigated streams. A vast majority of available methods have been developed for data stream classification and only a few of them attempted to solve regression problems, using various heuristic approaches. In this paper, we develop mathematically justified regression models working in a time-varying environment. More specifically, we study incremental versions of generalized regression neural networks, called IGRNNs, and we prove their tracking properties - weak (in probability) and strong (with probability one) convergence assuming various concept drift scenarios. First, we present the IGRNNs, based on the Parzen kernels, for modeling stationary systems under nonstationary noise. Next, we extend our approach to modeling time-varying systems under nonstationary noise. We present several types of concept drifts to be handled by our approach in such a way that weak and strong convergence holds under certain conditions. Finally, in the series of simulations, we compare our method with commonly used heuristic approaches, based on forgetting mechanism or sliding windows, to deal with concept drift. Finally, we apply our concept in a real life scenario solving the problem of currency exchange rates prediction.

  9. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  10. Logistic regression models

    CERN Document Server

    Hilbe, Joseph M

    2009-01-01

    This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

  11. Using the mean approach in pooling cross-section and time series data for regression modelling

    International Nuclear Information System (INIS)

    Nuamah, N.N.N.N.

    1989-12-01

    The mean approach is one of the methods for pooling cross section and time series data for mathematical-statistical modelling. Though a simple approach, its results are sometimes paradoxical in nature. However, researchers still continue using it for its simplicity. Here, the paper investigates the nature and source of such unwanted phenomena. (author). 7 refs

  12. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    Science.gov (United States)

    Barry T. Wilson; Joseph F. Knight; Ronald E. McRoberts

    2018-01-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several...

  13. Mixture regression models for the gap time distributions and illness-death processes.

    Science.gov (United States)

    Huang, Chia-Hui

    2018-01-27

    The aim of this study is to provide an analysis of gap event times under the illness-death model, where some subjects experience "illness" before "death" and others experience only "death." Which event is more likely to occur first and how the duration of the "illness" influences the "death" event are of interest. Because the occurrence of the second event is subject to dependent censoring, it can lead to bias in the estimation of model parameters. In this work, we generalize the semiparametric mixture models for competing risks data to accommodate the subsequent event and use a copula function to model the dependent structure between the successive events. Under the proposed method, the survival function of the censoring time does not need to be estimated when developing the inference procedure. We incorporate the cause-specific hazard functions with the counting process approach and derive a consistent estimation using the nonparametric maximum likelihood method. Simulations are conducted to demonstrate the performance of the proposed analysis, and its application in a clinical study on chronic myeloid leukemia is reported to illustrate its utility.

  14. Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals

    Science.gov (United States)

    Almirall, Daniel; Griffin, Beth Ann; McCaffrey, Daniel F.; Ramchand, Rajeev; Yuen, Robert A.; Murphy, Susan A.

    2014-01-01

    This article considers the problem of examining time-varying causal effect moderation using observational, longitudinal data in which treatment, candidate moderators, and possible confounders are time varying. The structural nested mean model (SNMM) is used to specify the moderated time-varying causal effects of interest in a conditional mean model for a continuous response given time-varying treatments and moderators. We present an easy-to-use estimator of the SNMM that combines an existing regression-with-residuals (RR) approach with an inverse-probability-of-treatment weighting (IPTW) strategy. The RR approach has been shown to identify the moderated time-varying causal effects if the time-varying moderators are also the sole time-varying confounders. The proposed IPTW+RR approach provides estimators of the moderated time-varying causal effects in the SNMM in the presence of an additional, auxiliary set of known and measured time-varying confounders. We use a small simulation experiment to compare IPTW+RR versus the traditional regression approach and to compare small and large sample properties of asymptotic versus bootstrap estimators of the standard errors for the IPTW+RR approach. This article clarifies the distinction between time-varying moderators and time-varying confounders. We illustrate the methodology in a case study to assess if time-varying substance use moderates treatment effects on future substance use. PMID:23873437

  15. Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression

    International Nuclear Information System (INIS)

    Guo, Yin; Nazarian, Ehsan; Ko, Jeonghan; Rajurkar, Kamlakar

    2014-01-01

    Highlights: • Developed hourly-indexed ARX models for robust cooling-load forecasting. • Proposed a two-stage weighted least-squares regression approach. • Considered the effect of outliers as well as trend of cooling load and weather patterns. • Included higher order terms and day type patterns in the forecasting models. • Demonstrated better accuracy compared with some ARX and ANN models. - Abstract: This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting periods. The two-stage weighted least-squares regression approach in this study is robust to outliers and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale central cooling system in an academic institution. The numerical case studies show the proposed prediction method performs better than some ANN and ARX forecasting models for the given test data set

  16. Time-resolved flow reconstruction with indirect measurements using regression models and Kalman-filtered POD ROM

    Science.gov (United States)

    Leroux, Romain; Chatellier, Ludovic; David, Laurent

    2018-01-01

    This article is devoted to the estimation of time-resolved particle image velocimetry (TR-PIV) flow fields using a time-resolved point measurements of a voltage signal obtained by hot-film anemometry. A multiple linear regression model is first defined to map the TR-PIV flow fields onto the voltage signal. Due to the high temporal resolution of the signal acquired by the hot-film sensor, the estimates of the TR-PIV flow fields are obtained with a multiple linear regression method called orthonormalized partial least squares regression (OPLSR). Subsequently, this model is incorporated as the observation equation in an ensemble Kalman filter (EnKF) applied on a proper orthogonal decomposition reduced-order model to stabilize it while reducing the effects of the hot-film sensor noise. This method is assessed for the reconstruction of the flow around a NACA0012 airfoil at a Reynolds number of 1000 and an angle of attack of {20}°. Comparisons with multi-time delay-modified linear stochastic estimation show that both the OPLSR and EnKF combined with OPLSR are more accurate as they produce a much lower relative estimation error, and provide a faithful reconstruction of the time evolution of the velocity flow fields.

  17. Simple estimation procedures for regression analysis of interval-censored failure time data under the proportional hazards model.

    Science.gov (United States)

    Sun, Jianguo; Feng, Yanqin; Zhao, Hui

    2015-01-01

    Interval-censored failure time data occur in many fields including epidemiological and medical studies as well as financial and sociological studies, and many authors have investigated their analysis (Sun, The statistical analysis of interval-censored failure time data, 2006; Zhang, Stat Modeling 9:321-343, 2009). In particular, a number of procedures have been developed for regression analysis of interval-censored data arising from the proportional hazards model (Finkelstein, Biometrics 42:845-854, 1986; Huang, Ann Stat 24:540-568, 1996; Pan, Biometrics 56:199-203, 2000). For most of these procedures, however, one drawback is that they involve estimation of both regression parameters and baseline cumulative hazard function. In this paper, we propose two simple estimation approaches that do not need estimation of the baseline cumulative hazard function. The asymptotic properties of the resulting estimates are given, and an extensive simulation study is conducted and indicates that they work well for practical situations.

  18. Spatial regression methods capture prediction uncertainty in species distribution model projections through time

    Science.gov (United States)

    Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz

    2013-01-01

    The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...

  19. The subtle danger of symmetry restrictions in time series regressions, with application to fertility models.

    Science.gov (United States)

    Haynes, S E

    1983-10-01

    It is widely known that linear restrictions involve bias. What is not known is that some linear restrictions are especially dangerous for hypothesis testing. For some, the expected value of the restricted coefficient does not lie between (among) the true unconstrained coefficients, which implies that the estimate is not a simple average of these coefficients. In this paper, the danger is examined regarding the additive linear restriction almost universally imposed in statistical research--the restriction of symmetry. Symmetry implies that the response of the dependent variable to a unit decrease in an expanatory variable is identical, but of opposite sign, to the response to a unit increase. The 1st section of the paper demonstrates theoretically that a coefficient restricted by symmetry (unlike coefficients embodying other additive restrictions) is not a simple average of the unconstrained coefficients because the relevant interacted variables are inversly correlated by definition. The next section shows that, under the restriction of symmetry, fertility in Finland from 1885-1925 appears to respond in a prolonged manner to infant mortality (significant and positive with a lag of 4-6 years), suggesting a response to expected deaths. However, unscontrained estimates indicate that this finding is spurious. When the restriction is relaxed, the dominant response is rapid (significant and positive with a lag of 1-2 years) and stronger for declines in mortality, supporting an aymmetric response to actual deaths. For 2 reasons, the danger of the symmetry restriction may be especially pervasive. 1st, unlike most other linear constraints, symmetry is passively imposed merely by ignoring the possibility of asymmetry. 2nd, modles in a wide range of fields--including macroeconomics (e.g., demand for money, consumption, and investment models, and the Phillips curve), international economics (e.g., intervention models of central banks), and labor economics (e.g., sticky wage

  20. (Non) linear regression modelling

    NARCIS (Netherlands)

    Cizek, P.; Gentle, J.E.; Hardle, W.K.; Mori, Y.

    2012-01-01

    We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1,…,Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1,…,Xp),p ∈ N, which explain or

  1. Analysis of radiocardiographic first pass activity versus time data using models of the central circulation and nonlinear regression analysis

    International Nuclear Information System (INIS)

    Felix, A.C.

    1988-01-01

    In this study mathematical models of the central circulation, containing as undetermined parameters both chamber volumes and crosstalk coefficients, relating region-of-interest count rates to activity no only in the corresponding chamber but also overlapping and contiguous anatomical chambers, were used to identify contaminating crosstalk contributions to the various time-activity curves of interest. The identification of these crosstalks was essential for the creation of decontaminated region-of-interest time-activity curves which could be used for further model analysis. The decontaminated curves represent what the region-of-interest time-activity curves would look like in the absence of crosstalks. An optimal sampling route in was added to the nonlinear regression least squares fit program so that the region-of-interest time-activity curves could be analyzed to determine which data points contributed most toward decreasing the standard error or each parameter. A biplane model was investigated for use in analyzing radionuclide angiocardiographic first pass data

  2. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  3. Nonparametric Mixture of Regression Models.

    Science.gov (United States)

    Huang, Mian; Li, Runze; Wang, Shaoli

    2013-07-01

    Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.

  4. Dynamic travel time estimation using regression trees.

    Science.gov (United States)

    2008-10-01

    This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...

  5. Regression Models for Repairable Systems

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr

    2015-01-01

    Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf

  6. An Additive-Multiplicative Cox-Aalen Regression Model

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects...

  7. Multi variate regression model of the water level and production rate time series of the geothermal reservoir Waiwera (New Zealand)

    Science.gov (United States)

    Kühn, Michael; Schöne, Tim

    2017-04-01

    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a water management plan was deployed. The "Auckland Council" established guidelines to enable a sustainable management of the resource [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. For a sustainable water management, it is necessary to be able to forecast the water level as a function of the production rates in the production wells. The best predictions are provided by a multivariate regression model of the water level and production rate time series, which takes into account the production rates of individual wells. It is based on the inversely proportional relationship between the independent variable (production rate) and the dependent variable (measured water level). In production scenarios, a maximum total production rate of approx. 1,100 m3 / day is determined in order to comply with the guidelines of the "Auckland Council". [1] Kühn M., Stöfen H. (2005) A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeology Journal 13, 606-626, doi: 10.1007/s10040-004-0377-6 [2] Kühn M., Altmannsberger C. (2016) Assessment of data driven and process based water management tools for

  8. Methodological comparison of marginal structural model, time-varying Cox regression, and propensity score methods : the example of antidepressant use and the risk of hip fracture

    NARCIS (Netherlands)

    Ali, M Sanni; Groenwold, Rolf H H; Belitser, Svetlana V; Souverein, Patrick C; Martín, Elisa; Gatto, Nicolle M; Huerta, Consuelo; Gardarsdottir, Helga; Roes, Kit C B; Hoes, Arno W; de Boer, Antonius; Klungel, Olaf H

    2016-01-01

    BACKGROUND: Observational studies including time-varying treatments are prone to confounding. We compared time-varying Cox regression analysis, propensity score (PS) methods, and marginal structural models (MSMs) in a study of antidepressant [selective serotonin reuptake inhibitors (SSRIs)] use and

  9. Advantage of make-to-stock strategy based on linear mixed-effect model: a comparison with regression, autoregressive, times series, and exponential smoothing models

    Directory of Open Access Journals (Sweden)

    Yu-Pin Liao

    2017-11-01

    Full Text Available In the past few decades, demand forecasting has become relatively difficult due to rapid changes in the global environment. This research illustrates the use of the make-to-stock (MTS production strategy in order to explain how forecasting plays an essential role in business management. The linear mixed-effect (LME model has been extensively developed and is widely applied in various fields. However, no study has used the LME model for business forecasting. We suggest that the LME model be used as a tool for prediction and to overcome environment complexity. The data analysis is based on real data in an international display company, where the company needs accurate demand forecasting before adopting a MTS strategy. The forecasting result from the LME model is compared to the commonly used approaches, including the regression model, autoregressive model, times series model, and exponential smoothing model, with the results revealing that prediction performance provided by the LME model is more stable than using the other methods. Furthermore, product types in the data are regarded as a random effect in the LME model, hence demands of all types can be predicted simultaneously using a single LME model. However, some approaches require splitting the data into different type categories, and then predicting the type demand by establishing a model for each type. This feature also demonstrates the practicability of the LME model in real business operations.

  10. Interpretation of commonly used statistical regression models.

    Science.gov (United States)

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  11. Testing homogeneity in Weibull-regression models.

    Science.gov (United States)

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  12. AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Н. Білак

    2012-04-01

    Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.

  13. Updating prognosis in primary biliary cirrhosis using a time-dependent Cox regression model. PBC1 and PBC2 trial groups

    DEFF Research Database (Denmark)

    Christensen, E; Altman, D G; Neuberger, J

    1993-01-01

    BACKGROUND: The precision of current prognostic models in primary biliary cirrhosis (PBC) is rather low, partly because they are based on data from just one time during the course of the disease. The aim of this study was to design a new, more precise prognostic model by incorporating follow......-up data in the development of the model. METHODS: We have performed Cox regression analyses with time-dependent variables in 237 PBC patients followed up regularly for up to 11 years. The validity of the obtained models was tested by comparing predicted and observed survival in 147 independent PBC...... patients followed for up to 6 years. RESULTS: In the obtained model the following time-dependent variables independently indicated a poor prognosis: high bilirubin, low albumin, ascites, gastrointestinal bleeding, and old age. When including histological variables, cirrhosis, central cholestasis, and low...

  14. A Seemingly Unrelated Poisson Regression Model

    OpenAIRE

    King, Gary

    1989-01-01

    This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.

  15. Gaussian Process Regression Model in Spatial Logistic Regression

    Science.gov (United States)

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  16. Refinement of regression models to estimate real-time concentrations of contaminants in the Menomonee River drainage basin, southeast Wisconsin, 2008-11

    Science.gov (United States)

    Baldwin, Austin K.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2013-01-01

    In 2008, the U.S. Geological Survey and the Milwaukee Metropolitan Sewerage District initiated a study to develop regression models to estimate real-time concentrations and loads of chloride, suspended solids, phosphorus, and bacteria in streams near Milwaukee, Wisconsin. To collect monitoring data for calibration of models, water-quality sensors and automated samplers were installed at six sites in the Menomonee River drainage basin. The sensors continuously measured four potential explanatory variables: water temperature, specific conductance, dissolved oxygen, and turbidity. Discrete water-quality samples were collected and analyzed for five response variables: chloride, total suspended solids, total phosphorus, Escherichia coli bacteria, and fecal coliform bacteria. Using the first year of data, regression models were developed to continuously estimate the response variables on the basis of the continuously measured explanatory variables. Those models were published in a previous report. In this report, those models are refined using 2 years of additional data, and the relative improvement in model predictability is discussed. In addition, a set of regression models is presented for a new site in the Menomonee River Basin, Underwood Creek at Wauwatosa. The refined models use the same explanatory variables as the original models. The chloride models all used specific conductance as the explanatory variable, except for the model for the Little Menomonee River near Freistadt, which used both specific conductance and turbidity. Total suspended solids and total phosphorus models used turbidity as the only explanatory variable, and bacteria models used water temperature and turbidity as explanatory variables. An analysis of covariance (ANCOVA), used to compare the coefficients in the original models to those in the refined models calibrated using all of the data, showed that only 3 of the 25 original models changed significantly. Root-mean-squared errors (RMSEs

  17. Introduction to the use of regression models in epidemiology.

    Science.gov (United States)

    Bender, Ralf

    2009-01-01

    Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.

  18. Modeling oil production based on symbolic regression

    International Nuclear Information System (INIS)

    Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju

    2015-01-01

    Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak

  19. The MIDAS Touch: Mixed Data Sampling Regression Models

    OpenAIRE

    Ghysels, Eric; Santa-Clara, Pedro; Valkanov, Rossen

    2004-01-01

    We introduce Mixed Data Sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Technically speaking MIDAS models specify conditional expectations as a distributed lag of regressors recorded at some higher sampling frequencies. We examine the asymptotic properties of MIDAS regression estimation and compare it with traditional distributed lag models. MIDAS regressions have wide applicability in macroeconomics and �nance.

  20. Regression models of reactor diagnostic signals

    International Nuclear Information System (INIS)

    Vavrin, J.

    1989-01-01

    The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)

  1. Regression models to estimate real-time concentrations of selected constituents in two tributaries to Lake Houston near Houston, Texas, 2005-07

    Science.gov (United States)

    Oden, Timothy D.; Asquith, William H.; Milburn, Matthew S.

    2009-01-01

    In December 2005, the U.S. Geological Survey in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (total coliform and Escherichia coli), atrazine, and suspended sediment at two U.S. Geological Survey streamflow-gaging stations upstream from Lake Houston near Houston (08068500 Spring Creek near Spring, Texas, and 08070200 East Fork San Jacinto River near New Caney, Texas). The data from the discrete water-quality samples collected during 2005-07, in conjunction with monitored real-time data already being collected - physical properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), streamflow, and rainfall - were used to develop regression models for predicting water-quality constituent concentrations for inflows to Lake Houston. Rainfall data were obtained from a rain gage monitored by Harris County Homeland Security and Emergency Management and colocated with the Spring Creek station. The leaps and bounds algorithm was used to find the best subsets of possible regression models (minimum residual sum of squares for a given number of variables). The potential explanatory or predictive variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, rainfall, and time (to account for seasonal variations inherent in some water-quality data). The response variables at each site were nitrite plus nitrate nitrogen, total phosphorus, organic carbon, Escherichia coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities as a means to estimate concentrations of the various constituents under investigation, with accompanying estimates of measurement uncertainty. Each regression equation can be used to estimate concentrations of a given constituent in real time. In conjunction with estimated concentrations, constituent loads were estimated by multiplying the

  2. Variable importance in latent variable regression models

    NARCIS (Netherlands)

    Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.

    2014-01-01

    The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable

  3. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  4. BOX-COX REGRESSION METHOD IN TIME SCALING

    Directory of Open Access Journals (Sweden)

    ATİLLA GÖKTAŞ

    2013-06-01

    Full Text Available Box-Cox regression method with λj, for j = 1, 2, ..., k, power transformation can be used when dependent variable and error term of the linear regression model do not satisfy the continuity and normality assumptions. The situation obtaining the smallest mean square error  when optimum power λj, transformation for j = 1, 2, ..., k, of Y has been discussed. Box-Cox regression method is especially appropriate to adjust existence skewness or heteroscedasticity of error terms for a nonlinear functional relationship between dependent and explanatory variables. In this study, the advantage and disadvantage use of Box-Cox regression method have been discussed in differentiation and differantial analysis of time scale concept.

  5. [From clinical judgment to linear regression model.

    Science.gov (United States)

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

  6. Regression Models for Market-Shares

    DEFF Research Database (Denmark)

    Birch, Kristina; Olsen, Jørgen Kai; Tjur, Tue

    2005-01-01

    On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put on the interpretat......On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put...... on the interpretation of the parameters in relation to models for the total sales based on discrete choice models.Key words and phrases. MCI model, discrete choice model, market-shares, price elasitcity, regression model....

  7. Methodological comparison of marginal structural model, time-varying Cox regression, and propensity score methods: the example of antidepressant use and the risk of hip fracture.

    Science.gov (United States)

    Ali, M Sanni; Groenwold, Rolf H H; Belitser, Svetlana V; Souverein, Patrick C; Martín, Elisa; Gatto, Nicolle M; Huerta, Consuelo; Gardarsdottir, Helga; Roes, Kit C B; Hoes, Arno W; de Boer, Antonius; Klungel, Olaf H

    2016-03-01

    Observational studies including time-varying treatments are prone to confounding. We compared time-varying Cox regression analysis, propensity score (PS) methods, and marginal structural models (MSMs) in a study of antidepressant [selective serotonin reuptake inhibitors (SSRIs)] use and the risk of hip fracture. A cohort of patients with a first prescription for antidepressants (SSRI or tricyclic antidepressants) was extracted from the Dutch Mondriaan and Spanish Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria (BIFAP) general practice databases for the period 2001-2009. The net (total) effect of SSRI versus no SSRI on the risk of hip fracture was estimated using time-varying Cox regression, stratification and covariate adjustment using the PS, and MSM. In MSM, censoring was accounted for by inverse probability of censoring weights. The crude hazard ratio (HR) of SSRI use versus no SSRI use on hip fracture was 1.75 (95%CI: 1.12, 2.72) in Mondriaan and 2.09 (1.89, 2.32) in BIFAP. After confounding adjustment using time-varying Cox regression, stratification, and covariate adjustment using the PS, HRs increased in Mondriaan [2.59 (1.63, 4.12), 2.64 (1.63, 4.25), and 2.82 (1.63, 4.25), respectively] and decreased in BIFAP [1.56 (1.40, 1.73), 1.54 (1.39, 1.71), and 1.61 (1.45, 1.78), respectively]. MSMs with stabilized weights yielded HR 2.15 (1.30, 3.55) in Mondriaan and 1.63 (1.28, 2.07) in BIFAP when accounting for censoring and 2.13 (1.32, 3.45) in Mondriaan and 1.66 (1.30, 2.12) in BIFAP without accounting for censoring. In this empirical study, differences between the different methods to control for time-dependent confounding were small. The observed differences in treatment effect estimates between the databases are likely attributable to different confounding information in the datasets, illustrating that adequate information on (time-varying) confounding is crucial to prevent bias. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Categorical regression dose-response modeling

    Science.gov (United States)

    The goal of this training is to provide participants with training on the use of the U.S. EPA’s Categorical Regression soft¬ware (CatReg) and its application to risk assessment. Categorical regression fits mathematical models to toxicity data that have been assigned ord...

  9. Detecting spatio-temporal changes in agricultural land use in Heilongjiang province, China using MODIS time-series data and a random forest regression model

    Science.gov (United States)

    Hu, Q.; Friedl, M. A.; Wu, W.

    2017-12-01

    Accurate and timely information regarding the spatial distribution of crop types and their changes is essential for acreage surveys, yield estimation, water management, and agricultural production decision-making. In recent years, increasing population, dietary shifts and climate change have driven drastic changes in China's agricultural land use. However, no maps are currently available that document the spatial and temporal patterns of these agricultural land use changes. Because of its short revisit period, rich spectral bands and global coverage, MODIS time series data has been shown to have great potential for detecting the seasonal dynamics of different crop types. However, its inherently coarse spatial resolution limits the accuracy with which crops can be identified from MODIS in regions with small fields or complex agricultural landscapes. To evaluate this more carefully and specifically understand the strengths and weaknesses of MODIS data for crop-type mapping, we used MODIS time-series imagery to map the sub-pixel fractional crop area for four major crop types (rice, corn, soybean and wheat) at 500-m spatial resolution for Heilongjiang province, one of the most important grain-production regions in China where recent agricultural land use change has been rapid and pronounced. To do this, a random forest regression (RF-g) model was constructed to estimate the percentage of each sub-pixel crop type in 2006, 2011 and 2016. Crop type maps generated through expert visual interpretation of high spatial resolution images (i.e., Landsat and SPOT data) were used to calibrate the regression model. Five different time series of vegetation indices (155 features) derived from different spectral channels of MODIS land surface reflectance (MOD09A1) data were used as candidate features for the RF-g model. An out-of-bag strategy and backward elimination approach was applied to select the optimal spectra-temporal feature subset for each crop type. The resulting crop maps

  10. Marginal regression analysis of recurrent events with coarsened censoring times.

    Science.gov (United States)

    Hu, X Joan; Rosychuk, Rhonda J

    2016-12-01

    Motivated by an ongoing pediatric mental health care (PMHC) study, this article presents weakly structured methods for analyzing doubly censored recurrent event data where only coarsened information on censoring is available. The study extracted administrative records of emergency department visits from provincial health administrative databases. The available information of each individual subject is limited to a subject-specific time window determined up to concealed data. To evaluate time-dependent effect of exposures, we adapt the local linear estimation with right censored survival times under the Cox regression model with time-varying coefficients (cf. Cai and Sun, Scandinavian Journal of Statistics 2003, 30, 93-111). We establish the pointwise consistency and asymptotic normality of the regression parameter estimator, and examine its performance by simulation. The PMHC study illustrates the proposed approach throughout the article. © 2016, The International Biometric Society.

  11. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    Science.gov (United States)

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  12. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  13. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  14. Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression.

    Directory of Open Access Journals (Sweden)

    Fabian Horst

    Full Text Available Traditionally, gait analysis has been centered on the idea of average behavior and normality. On one hand, clinical diagnoses and therapeutic interventions typically assume that average gait patterns remain constant over time. On the other hand, it is well known that all our movements are accompanied by a certain amount of variability, which does not allow us to make two identical steps. The purpose of this study was to examine changes in the intra-individual gait patterns across different time-scales (i.e., tens-of-mins, tens-of-hours.Nine healthy subjects performed 15 gait trials at a self-selected speed on 6 sessions within one day (duration between two subsequent sessions from 10 to 90 mins. For each trial, time-continuous ground reaction forces and lower body joint angles were measured. A supervised learning model using a kernel-based discriminant regression was applied for classifying sessions within individual gait patterns.Discernable characteristics of intra-individual gait patterns could be distinguished between repeated sessions by classification rates of 67.8 ± 8.8% and 86.3 ± 7.9% for the six-session-classification of ground reaction forces and lower body joint angles, respectively. Furthermore, the one-on-one-classification showed that increasing classification rates go along with increasing time durations between two sessions and indicate that changes of gait patterns appear at different time-scales.Discernable characteristics between repeated sessions indicate continuous intrinsic changes in intra-individual gait patterns and suggest a predominant role of deterministic processes in human motor control and learning. Natural changes of gait patterns without any externally induced injury or intervention may reflect continuous adaptations of the motor system over several time-scales. Accordingly, the modelling of walking by means of average gait patterns that are assumed to be near constant over time needs to be reconsidered in the

  15. Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression.

    Science.gov (United States)

    Horst, Fabian; Eekhoff, Alexander; Newell, Karl M; Schöllhorn, Wolfgang I

    2017-01-01

    Traditionally, gait analysis has been centered on the idea of average behavior and normality. On one hand, clinical diagnoses and therapeutic interventions typically assume that average gait patterns remain constant over time. On the other hand, it is well known that all our movements are accompanied by a certain amount of variability, which does not allow us to make two identical steps. The purpose of this study was to examine changes in the intra-individual gait patterns across different time-scales (i.e., tens-of-mins, tens-of-hours). Nine healthy subjects performed 15 gait trials at a self-selected speed on 6 sessions within one day (duration between two subsequent sessions from 10 to 90 mins). For each trial, time-continuous ground reaction forces and lower body joint angles were measured. A supervised learning model using a kernel-based discriminant regression was applied for classifying sessions within individual gait patterns. Discernable characteristics of intra-individual gait patterns could be distinguished between repeated sessions by classification rates of 67.8 ± 8.8% and 86.3 ± 7.9% for the six-session-classification of ground reaction forces and lower body joint angles, respectively. Furthermore, the one-on-one-classification showed that increasing classification rates go along with increasing time durations between two sessions and indicate that changes of gait patterns appear at different time-scales. Discernable characteristics between repeated sessions indicate continuous intrinsic changes in intra-individual gait patterns and suggest a predominant role of deterministic processes in human motor control and learning. Natural changes of gait patterns without any externally induced injury or intervention may reflect continuous adaptations of the motor system over several time-scales. Accordingly, the modelling of walking by means of average gait patterns that are assumed to be near constant over time needs to be reconsidered in the context of

  16. Regression Models For Multivariate Count Data.

    Science.gov (United States)

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2017-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

  17. Mixed-effects regression models in linguistics

    CERN Document Server

    Heylen, Kris; Geeraerts, Dirk

    2018-01-01

    When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed.  In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...

  18. Regression modeling methods, theory, and computation with SAS

    CERN Document Server

    Panik, Michael

    2009-01-01

    Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,

  19. Bayesian Travel Time Inversion adopting Gaussian Process Regression

    Science.gov (United States)

    Mauerberger, S.; Holschneider, M.

    2017-12-01

    A major application in seismology is the determination of seismic velocity models. Travel time measurements are putting an integral constraint on the velocity between source and receiver. We provide insight into travel time inversion from a correlation-based Bayesian point of view. Therefore, the concept of Gaussian process regression is adopted to estimate a velocity model. The non-linear travel time integral is approximated by a 1st order Taylor expansion. A heuristic covariance describes correlations amongst observations and a priori model. That approach enables us to assess a proxy of the Bayesian posterior distribution at ordinary computational costs. No multi dimensional numeric integration nor excessive sampling is necessary. Instead of stacking the data, we suggest to progressively build the posterior distribution. Incorporating only a single evidence at a time accounts for the deficit of linearization. As a result, the most probable model is given by the posterior mean whereas uncertainties are described by the posterior covariance.As a proof of concept, a synthetic purely 1d model is addressed. Therefore a single source accompanied by multiple receivers is considered on top of a model comprising a discontinuity. We consider travel times of both phases - direct and reflected wave - corrupted by noise. Left and right of the interface are assumed independent where the squared exponential kernel serves as covariance.

  20. Influence diagnostics in meta-regression model.

    Science.gov (United States)

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Geographically weighted regression model on poverty indicator

    Science.gov (United States)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  2. Predicting and Modelling of Survival Data when Cox's Regression Model does not hold

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects...

  3. Tutorial on Using Regression Models with Count Outcomes Using R

    Directory of Open Access Journals (Sweden)

    A. Alexander Beaujean

    2016-02-01

    Full Text Available Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix.

  4. Forecasting Ebola with a regression transmission model

    OpenAIRE

    Asher, Jason

    2017-01-01

    We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes ...

  5. Forecasting Ebola with a regression transmission model

    Directory of Open Access Journals (Sweden)

    Jason Asher

    2018-03-01

    Full Text Available We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes traditional Susceptible-Infected-Recovered (SIR disease modeling approaches and allows for the flexible consideration of outbreaks with complex trajectories of disease dynamics. Keywords: Ebola, Forecasting, Mathematical modeling, Bayesian inference

  6. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  7. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  8. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  9. Accelerated failure time regression for backward recurrence times and current durations

    DEFF Research Database (Denmark)

    Keiding, N; Fine, J P; Hansen, O H

    2011-01-01

    Backward recurrence times in stationary renewal processes and current durations in dynamic populations observed at a cross-section may yield estimates of underlying interarrival times or survival distributions under suitable stationarity assumptions. Regression models have been proposed for these......Backward recurrence times in stationary renewal processes and current durations in dynamic populations observed at a cross-section may yield estimates of underlying interarrival times or survival distributions under suitable stationarity assumptions. Regression models have been proposed...... for these situations, but accelerated failure time models have the particularly attractive feature that they are preserved when going from the backward recurrence times to the underlying survival distribution of interest. This simple fact has recently been noticed in a sociological context and is here illustrated...... by a study of current duration of time to pregnancy...

  10. Confidence bands for inverse regression models

    International Nuclear Information System (INIS)

    Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo

    2010-01-01

    We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract

  11. Wavelet regression model in forecasting crude oil price

    Science.gov (United States)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  12. Multitask Quantile Regression under the Transnormal Model.

    Science.gov (United States)

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2016-01-01

    We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ 1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.

  13. Crime Modeling using Spatial Regression Approach

    Science.gov (United States)

    Saleh Ahmar, Ansari; Adiatma; Kasim Aidid, M.

    2018-01-01

    Act of criminality in Indonesia increased both variety and quantity every year. As murder, rape, assault, vandalism, theft, fraud, fencing, and other cases that make people feel unsafe. Risk of society exposed to crime is the number of reported cases in the police institution. The higher of the number of reporter to the police institution then the number of crime in the region is increasing. In this research, modeling criminality in South Sulawesi, Indonesia with the dependent variable used is the society exposed to the risk of crime. Modelling done by area approach is the using Spatial Autoregressive (SAR) and Spatial Error Model (SEM) methods. The independent variable used is the population density, the number of poor population, GDP per capita, unemployment and the human development index (HDI). Based on the analysis using spatial regression can be shown that there are no dependencies spatial both lag or errors in South Sulawesi.

  14. Real-time regression analysis with deep convolutional neural networks

    OpenAIRE

    Huerta, E. A.; George, Daniel; Zhao, Zhizhen; Allen, Gabrielle

    2018-01-01

    We discuss the development of novel deep learning algorithms to enable real-time regression analysis for time series data. We showcase the application of this new method with a timely case study, and then discuss the applicability of this approach to tackle similar challenges across science domains.

  15. Linear Regression Models for Estimating True Subsurface ...

    Indian Academy of Sciences (India)

    47

    The objective is to minimize the processing time and computer memory required. 10 to carry out inversion .... to the mainland by two long bridges. .... term. In this approach, the model converges when the squared sum of the differences. 143.

  16. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    ... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.

  17. AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION

    OpenAIRE

    Krzyśko, Mirosław; Smaga, Łukasz

    2017-01-01

    In this paper, the scale response functional multivariate regression model is considered. By using the basis functions representation of functional predictors and regression coefficients, this model is rewritten as a multivariate regression model. This representation of the functional multivariate regression model is used for multiclass classification for multivariate functional data. Computational experiments performed on real labelled data sets demonstrate the effectiveness of the proposed ...

  18. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  19. Variable selection and model choice in geoadditive regression models.

    Science.gov (United States)

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  20. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  1. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  2. Outlier detection algorithms for least squares time series regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    We review recent asymptotic results on some robust methods for multiple regression. The regressors include stationary and non-stationary time series as well as polynomial terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators, in particular the Impulse Indicator Sat...

  3. Extended cox regression model: The choice of timefunction

    Science.gov (United States)

    Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu

    2017-07-01

    Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.

  4. The art of regression modeling in road safety

    CERN Document Server

    Hauer, Ezra

    2015-01-01

    This unique book explains how to fashion useful regression models from commonly available data to erect models essential for evidence-based road safety management and research. Composed from techniques and best practices presented over many years of lectures and workshops, The Art of Regression Modeling in Road Safety illustrates that fruitful modeling cannot be done without substantive knowledge about the modeled phenomenon. Class-tested in courses and workshops across North America, the book is ideal for professionals, researchers, university professors, and graduate students with an interest in, or responsibilities related to, road safety. This book also: · Presents for the first time a powerful analytical tool for road safety researchers and practitioners · Includes problems and solutions in each chapter as well as data and spreadsheets for running models and PowerPoint presentation slides · Features pedagogy well-suited for graduate courses and workshops including problems, solutions, and PowerPoint p...

  5. Tracking time-varying parameters with local regression

    DEFF Research Database (Denmark)

    Joensen, Alfred Karsten; Nielsen, Henrik Aalborg; Nielsen, Torben Skov

    2000-01-01

    This paper shows that the recursive least-squares (RLS) algorithm with forgetting factor is a special case of a varying-coe\\$cient model, and a model which can easily be estimated via simple local regression. This observation allows us to formulate a new method which retains the RLS algorithm, bu......, but extends the algorithm by including polynomial approximations. Simulation results are provided, which indicates that this new method is superior to the classical RLS method, if the parameter variations are smooth....

  6. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  7. Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing

    Directory of Open Access Journals (Sweden)

    Jun Bi

    2018-04-01

    Full Text Available Battery electric vehicles (BEVs reduce energy consumption and air pollution as compared with conventional vehicles. However, the limited driving range and potential long charging time of BEVs create new problems. Accurate charging time prediction of BEVs helps drivers determine travel plans and alleviate their range anxiety during trips. This study proposed a combined model for charging time prediction based on regression and time-series methods according to the actual data from BEVs operating in Beijing, China. After data analysis, a regression model was established by considering the charged amount for charging time prediction. Furthermore, a time-series method was adopted to calibrate the regression model, which significantly improved the fitting accuracy of the model. The parameters of the model were determined by using the actual data. Verification results confirmed the accuracy of the model and showed that the model errors were small. The proposed model can accurately depict the charging time characteristics of BEVs in Beijing.

  8. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  9. Modeling and prediction of flotation performance using support vector regression

    Directory of Open Access Journals (Sweden)

    Despotović Vladimir

    2017-01-01

    Full Text Available Continuous efforts have been made in recent year to improve the process of paper recycling, as it is of critical importance for saving the wood, water and energy resources. Flotation deinking is considered to be one of the key methods for separation of ink particles from the cellulose fibres. Attempts to model the flotation deinking process have often resulted in complex models that are difficult to implement and use. In this paper a model for prediction of flotation performance based on Support Vector Regression (SVR, is presented. Representative data samples were created in laboratory, under a variety of practical control variables for the flotation deinking process, including different reagents, pH values and flotation residence time. Predictive model was created that was trained on these data samples, and the flotation performance was assessed showing that Support Vector Regression is a promising method even when dataset used for training the model is limited.

  10. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... The research identified logistic regression as a powerful tool for analysis of DMSMS and further developed twenty models attempting to identify the "best" way to model and predict DMSMS using logistic regression...

  11. Regression model development and computational procedures to support estimation of real-time concentrations and loads of selected constituents in two tributaries to Lake Houston near Houston, Texas, 2005-9

    Science.gov (United States)

    Lee, Michael T.; Asquith, William H.; Oden, Timothy D.

    2012-01-01

    In December 2005, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (Escherichia coli and total coliform), atrazine, and suspended sediment at two USGS streamflow-gaging stations that represent watersheds contributing to Lake Houston (08068500 Spring Creek near Spring, Tex., and 08070200 East Fork San Jacinto River near New Caney, Tex.). Data from the discrete water-quality samples collected during 2005–9, in conjunction with continuously monitored real-time data that included streamflow and other physical water-quality properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), were used to develop regression models for the estimation of concentrations of water-quality constituents of substantial source watersheds to Lake Houston. The potential explanatory variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, and time (to account for seasonal variations inherent in some water-quality data). The response variables (the selected constituents) at each site were nitrite plus nitrate nitrogen, total phosphorus, total organic carbon, E. coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities to serve as potential surrogate variables to estimate concentrations of the selected constituents through statistical regression. Statistical regression also facilitates accompanying estimates of uncertainty in the form of prediction intervals. Each regression model potentially can be used to estimate concentrations of a given constituent in real time. Among other regression diagnostics, the diagnostics used as indicators of general model reliability and reported herein include the adjusted R-squared, the residual standard error, residual plots, and p-values. Adjusted R-squared values for the Spring Creek models ranged

  12. Electricity consumption forecasting in Italy using linear regression models

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio [DIAM, Seconda Universita degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)

    2009-09-15

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of {+-}1% for the best case and {+-}11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  13. Electricity consumption forecasting in Italy using linear regression models

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio

    2009-01-01

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of ±1% for the best case and ±11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  14. Model selection in kernel ridge regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    2013-01-01

    Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...

  15. Variable Selection for Regression Models of Percentile Flows

    Science.gov (United States)

    Fouad, G.

    2017-12-01

    Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high

  16. Mixture of Regression Models with Single-Index

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2016-01-01

    In this article, we propose a class of semiparametric mixture regression models with single-index. We argue that many recently proposed semiparametric/nonparametric mixture regression models can be considered special cases of the proposed model. However, unlike existing semiparametric mixture regression models, the new pro- posed model can easily incorporate multivariate predictors into the nonparametric components. Backfitting estimates and the corresponding algorithms have been proposed for...

  17. Linear regression crash prediction models : issues and proposed solutions.

    Science.gov (United States)

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  18. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia; Rue, Haavard

    2018-01-01

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite

  19. Fuzzy Linear Regression for the Time Series Data which is Fuzzified with SMRGT Method

    Directory of Open Access Journals (Sweden)

    Seçil YALAZ

    2016-10-01

    Full Text Available Our work on regression and classification provides a new contribution to the analysis of time series used in many areas for years. Owing to the fact that convergence could not obtained with the methods used in autocorrelation fixing process faced with time series regression application, success is not met or fall into obligation of changing the models’ degree. Changing the models’ degree may not be desirable in every situation. In our study, recommended for these situations, time series data was fuzzified by using the simple membership function and fuzzy rule generation technique (SMRGT and to estimate future an equation has created by applying fuzzy least square regression (FLSR method which is a simple linear regression method to this data. Although SMRGT has success in determining the flow discharge in open channels and can be used confidently for flow discharge modeling in open canals, as well as in pipe flow with some modifications, there is no clue about that this technique is successful in fuzzy linear regression modeling. Therefore, in order to address the luck of such a modeling, a new hybrid model has been described within this study. In conclusion, to demonstrate our methods’ efficiency, classical linear regression for time series data and linear regression for fuzzy time series data were applied to two different data sets, and these two approaches performances were compared by using different measures.

  20. Correlation, regression, and cointegration of nonstationary economic time series

    DEFF Research Database (Denmark)

    Johansen, Søren

    Yule (1926) introduced the concept of spurious or nonsense correlation, and showed by simulation that for some nonstationary processes, that the empirical correlations seem not to converge in probability even if the processes were independent. This was later discussed by Granger and Newbold (1974......), and Phillips (1986) found the limit distributions. We propose to distinguish between empirical and population correlation coeffients and show in a bivariate autoregressive model for nonstationary variables that the empirical correlation and regression coe¢ cients do not converge to the relevant population...

  1. Model Selection in Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels......, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely...

  2. An attempt at solving the problem of autocorrelation associated with use of mean approach for pooling cross-section and time series in regression modelling

    International Nuclear Information System (INIS)

    Nuamah, N.N.N.N.

    1990-12-01

    The paradoxical nature of results of the mean approach in pooling cross-section and time series data has been identified to be caused by the presence in the normal equations of phenomena such as autocovariances, multicollinear covariances, drift covariances and drift multicollinear covariances. This paper considers the problem of autocorrelation and suggests ways of solving it. (author). 4 refs

  3. Regression analysis for bivariate gap time with missing first gap time data.

    Science.gov (United States)

    Huang, Chia-Hui; Chen, Yi-Hau

    2017-01-01

    We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.

  4. Corporate prediction models, ratios or regression analysis?

    NARCIS (Netherlands)

    Bijnen, E.J.; Wijn, M.F.C.M.

    1994-01-01

    The models developed in the literature with respect to the prediction of a company s failure are based on ratios. It has been shown before that these models should be rejected on theoretical grounds. Our study of industrial companies in the Netherlands shows that the ratios which are used in

  5. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  6. Multiattribute shopping models and ridge regression analysis

    NARCIS (Netherlands)

    Timmermans, H.J.P.

    1981-01-01

    Policy decisions regarding retailing facilities essentially involve multiple attributes of shopping centres. If mathematical shopping models are to contribute to these decision processes, their structure should reflect the multiattribute character of retailing planning. Examination of existing

  7. Moderation analysis using a two-level regression model.

    Science.gov (United States)

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  8. Alternative regression models to assess increase in childhood BMI

    OpenAIRE

    Beyerlein, Andreas; Fahrmeir, Ludwig; Mansmann, Ulrich; Toschke, André M

    2008-01-01

    Abstract Background Body mass index (BMI) data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs), quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS). We analyzed data of 4967 childre...

  9. Time-localized wavelet multiple regression and correlation

    Science.gov (United States)

    Fernández-Macho, Javier

    2018-02-01

    This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.

  10. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  11. Direct modeling of regression effects for transition probabilities in the progressive illness-death model

    DEFF Research Database (Denmark)

    Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo

    2017-01-01

    In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...

  12. Bootstrapping Cox’s Regression Model.

    Science.gov (United States)

    1985-11-01

    crucial points a multivariate martingale central limit theorem. Involved in this is a p x p covariance matrix Z with elements T j2= f {2(s8 ) - s(l)( s ,8o...1980). The statistical analaysis of failure time data. Wiley, New York. Meyer, P.-A. (1971). Square integrable martingales, a survey. Lecture Notes

  13. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  14. Correlation, Regression, and Cointegration of Nonstationary Economic Time Series

    DEFF Research Database (Denmark)

    Johansen, Søren

    ), and Phillips (1986) found the limit distributions. We propose to distinguish between empirical and population correlation coefficients and show in a bivariate autoregressive model for nonstationary variables that the empirical correlation and regression coefficients do not converge to the relevant population...... values, due to the trending nature of the data. We conclude by giving a simple cointegration analysis of two interests. The analysis illustrates that much more insight can be gained about the dynamic behavior of the nonstationary variables then simply by calculating a correlation coefficient......Yule (1926) introduced the concept of spurious or nonsense correlation, and showed by simulation that for some nonstationary processes, that the empirical correlations seem not to converge in probability even if the processes were independent. This was later discussed by Granger and Newbold (1974...

  15. Reconstruction of missing daily streamflow data using dynamic regression models

    Science.gov (United States)

    Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault

    2015-12-01

    River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.

  16. Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series.

    Science.gov (United States)

    Hahn, Andrew D; Rowe, Daniel B

    2012-02-01

    As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Applicability of a Single Time Point Strategy for the Prediction of Area Under the Concentration Curve of Linezolid in Patients: Superiority of Ctrough- over Cmax-Derived Linear Regression Models.

    Science.gov (United States)

    Srinivas, Nuggehally R; Syed, Muzeeb

    2016-03-01

    Linezolid, a oxazolidinone, was the first in class to be approved for the treatment of bacterial infections arising from both susceptible and resistant strains of Gram-positive bacteria. Since overt exposure of linezolid may precipitate serious toxicity issues, therapeutic drug monitoring (TDM) may be required in certain situations, especially in patients who are prescribed other co-medications. Using appropriate oral pharmacokinetic data (single dose and steady state) for linezolid, both maximum plasma drug concentration (Cmax) versus area under the plasma concentration-time curve (AUC) and minimum plasma drug concentration (Cmin) versus AUC relationship was established by linear regression models. The predictions of the AUC values were performed using published mean/median Cmax or Cmin data and appropriate regression lines. The quotient of observed and predicted values rendered fold difference calculation. The mean absolute error (MAE), root mean square error (RMSE), correlation coefficient (r), and the goodness of the AUC fold prediction were used to evaluate the two models. The Cmax versus AUC and trough plasma concentration (Ctrough) versus AUC models displayed excellent correlation, with r values of >0.9760. However, linezolid AUC values were predicted to be within the narrower boundary of 0.76 to 1.5-fold by a higher percentage by the Ctrough (78.3%) versus Cmax model (48.2%). The Ctrough model showed superior correlation of predicted versus observed values and RMSE (r = 0.9031; 28.54%, respectively) compared with the Cmax model (r = 0.5824; 61.34%, respectively). A single time point strategy of using Ctrough level is possible as a prospective tool to measure the AUC of linezolid in the patient population.

  18. Multivariate Frequency-Severity Regression Models in Insurance

    Directory of Open Access Journals (Sweden)

    Edward W. Frees

    2016-02-01

    Full Text Available In insurance and related industries including healthcare, it is common to have several outcome measures that the analyst wishes to understand using explanatory variables. For example, in automobile insurance, an accident may result in payments for damage to one’s own vehicle, damage to another party’s vehicle, or personal injury. It is also common to be interested in the frequency of accidents in addition to the severity of the claim amounts. This paper synthesizes and extends the literature on multivariate frequency-severity regression modeling with a focus on insurance industry applications. Regression models for understanding the distribution of each outcome continue to be developed yet there now exists a solid body of literature for the marginal outcomes. This paper contributes to this body of literature by focusing on the use of a copula for modeling the dependence among these outcomes; a major advantage of this tool is that it preserves the body of work established for marginal models. We illustrate this approach using data from the Wisconsin Local Government Property Insurance Fund. This fund offers insurance protection for (i property; (ii motor vehicle; and (iii contractors’ equipment claims. In addition to several claim types and frequency-severity components, outcomes can be further categorized by time and space, requiring complex dependency modeling. We find significant dependencies for these data; specifically, we find that dependencies among lines are stronger than the dependencies between the frequency and average severity within each line.

  19. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  20. Mixed Frequency Data Sampling Regression Models: The R Package midasr

    Directory of Open Access Journals (Sweden)

    Eric Ghysels

    2016-08-01

    Full Text Available When modeling economic relationships it is increasingly common to encounter data sampled at different frequencies. We introduce the R package midasr which enables estimating regression models with variables sampled at different frequencies within a MIDAS regression framework put forward in work by Ghysels, Santa-Clara, and Valkanov (2002. In this article we define a general autoregressive MIDAS regression model with multiple variables of different frequencies and show how it can be specified using the familiar R formula interface and estimated using various optimization methods chosen by the researcher. We discuss how to check the validity of the estimated model both in terms of numerical convergence and statistical adequacy of a chosen regression specification, how to perform model selection based on a information criterion, how to assess forecasting accuracy of the MIDAS regression model and how to obtain a forecast aggregation of different MIDAS regression models. We illustrate the capabilities of the package with a simulated MIDAS regression model and give two empirical examples of application of MIDAS regression.

  1. Impact of multicollinearity on small sample hydrologic regression models

    Science.gov (United States)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  2. A Quantile Regression Approach to Estimating the Distribution of Anesthetic Procedure Time during Induction.

    Directory of Open Access Journals (Sweden)

    Hsin-Lun Wu

    Full Text Available Although procedure time analyses are important for operating room management, it is not easy to extract useful information from clinical procedure time data. A novel approach was proposed to analyze procedure time during anesthetic induction. A two-step regression analysis was performed to explore influential factors of anesthetic induction time (AIT. Linear regression with stepwise model selection was used to select significant correlates of AIT and then quantile regression was employed to illustrate the dynamic relationships between AIT and selected variables at distinct quantiles. A total of 1,060 patients were analyzed. The first and second-year residents (R1-R2 required longer AIT than the third and fourth-year residents and attending anesthesiologists (p = 0.006. Factors prolonging AIT included American Society of Anesthesiologist physical status ≧ III, arterial, central venous and epidural catheterization, and use of bronchoscopy. Presence of surgeon before induction would decrease AIT (p < 0.001. Types of surgery also had significant influence on AIT. Quantile regression satisfactorily estimated extra time needed to complete induction for each influential factor at distinct quantiles. Our analysis on AIT demonstrated the benefit of quantile regression analysis to provide more comprehensive view of the relationships between procedure time and related factors. This novel two-step regression approach has potential applications to procedure time analysis in operating room management.

  3. Optimum short-time polynomial regression for signal analysis

    Indian Academy of Sciences (India)

    A Sreenivasa Murthy

    the Proceedings of European Signal Processing Conference. (EUSIPCO) 2008. ... In a seminal paper, Savitzky and Golay [4] showed that short-time polynomial modeling is ...... We next consider a linearly frequency-modulated chirp with an exponentially .... 1 http://www.physionet.org/physiotools/matlab/ECGwaveGen/.

  4. Genetic evaluation of European quails by random regression models

    Directory of Open Access Journals (Sweden)

    Flaviana Miranda Gonçalves

    2012-09-01

    Full Text Available The objective of this study was to compare different random regression models, defined from different classes of heterogeneity of variance combined with different Legendre polynomial orders for the estimate of (covariance of quails. The data came from 28,076 observations of 4,507 female meat quails of the LF1 lineage. Quail body weights were determined at birth and 1, 14, 21, 28, 35 and 42 days of age. Six different classes of residual variance were fitted to Legendre polynomial functions (orders ranging from 2 to 6 to determine which model had the best fit to describe the (covariance structures as a function of time. According to the evaluated criteria (AIC, BIC and LRT, the model with six classes of residual variances and of sixth-order Legendre polynomial was the best fit. The estimated additive genetic variance increased from birth to 28 days of age, and dropped slightly from 35 to 42 days. The heritability estimates decreased along the growth curve and changed from 0.51 (1 day to 0.16 (42 days. Animal genetic and permanent environmental correlation estimates between weights and age classes were always high and positive, except for birth weight. The sixth order Legendre polynomial, along with the residual variance divided into six classes was the best fit for the growth rate curve of meat quails; therefore, they should be considered for breeding evaluation processes by random regression models.

  5. A generalized multivariate regression model for modelling ocean wave heights

    Science.gov (United States)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  6. Identification of Influential Points in a Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Jan Grosz

    2011-03-01

    Full Text Available The article deals with the detection and identification of influential points in the linear regression model. Three methods of detection of outliers and leverage points are described. These procedures can also be used for one-sample (independentdatasets. This paper briefly describes theoretical aspects of several robust methods as well. Robust statistics is a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. A simulation model of the simple linear regression is presented.

  7. Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling

    International Nuclear Information System (INIS)

    Che Jinxing; Wang Jianzhou

    2010-01-01

    In this paper, we present the use of different mathematical models to forecast electricity price under deregulated power. A successful prediction tool of electricity price can help both power producers and consumers plan their bidding strategies. Inspired by that the support vector regression (SVR) model, with the ε-insensitive loss function, admits of the residual within the boundary values of ε-tube, we propose a hybrid model that combines both SVR and Auto-regressive integrated moving average (ARIMA) models to take advantage of the unique strength of SVR and ARIMA models in nonlinear and linear modeling, which is called SVRARIMA. A nonlinear analysis of the time-series indicates the convenience of nonlinear modeling, the SVR is applied to capture the nonlinear patterns. ARIMA models have been successfully applied in solving the residuals regression estimation problems. The experimental results demonstrate that the model proposed outperforms the existing neural-network approaches, the traditional ARIMA models and other hybrid models based on the root mean square error and mean absolute percentage error.

  8. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Directory of Open Access Journals (Sweden)

    Drzewiecki Wojciech

    2016-12-01

    Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.

  9. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

    Science.gov (United States)

    Foster, Guy M.; Graham, Jennifer L.

    2016-04-06

    The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes

  10. Detection of epistatic effects with logic regression and a classical linear regression model.

    Science.gov (United States)

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  11. The R Package threg to Implement Threshold Regression Models

    Directory of Open Access Journals (Sweden)

    Tao Xiao

    2015-08-01

    This new package includes four functions: threg, and the methods hr, predict and plot for threg objects returned by threg. The threg function is the model-fitting function which is used to calculate regression coefficient estimates, asymptotic standard errors and p values. The hr method for threg objects is the hazard-ratio calculation function which provides the estimates of hazard ratios at selected time points for specified scenarios (based on given categories or value settings of covariates. The predict method for threg objects is used for prediction. And the plot method for threg objects provides plots for curves of estimated hazard functions, survival functions and probability density functions of the first-hitting-time; function curves corresponding to different scenarios can be overlaid in the same plot for comparison to give additional research insights.

  12. Random regression models for detection of gene by environment interaction

    Directory of Open Access Journals (Sweden)

    Meuwissen Theo HE

    2007-02-01

    Full Text Available Abstract Two random regression models, where the effect of a putative QTL was regressed on an environmental gradient, are described. The first model estimates the correlation between intercept and slope of the random regression, while the other model restricts this correlation to 1 or -1, which is expected under a bi-allelic QTL model. The random regression models were compared to a model assuming no gene by environment interactions. The comparison was done with regards to the models ability to detect QTL, to position them accurately and to detect possible QTL by environment interactions. A simulation study based on a granddaughter design was conducted, and QTL were assumed, either by assigning an effect independent of the environment or as a linear function of a simulated environmental gradient. It was concluded that the random regression models were suitable for detection of QTL effects, in the presence and absence of interactions with environmental gradients. Fixing the correlation between intercept and slope of the random regression had a positive effect on power when the QTL effects re-ranked between environments.

  13. Multiple regression and beyond an introduction to multiple regression and structural equation modeling

    CERN Document Server

    Keith, Timothy Z

    2014-01-01

    Multiple Regression and Beyond offers a conceptually oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. Covers both MR and SEM, while explaining their relevance to one another Also includes path analysis, confirmatory factor analysis, and latent growth modeling Figures and tables throughout provide examples and illustrate key concepts and techniques For additional resources, please visit: http://tzkeith.com/.

  14. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    Science.gov (United States)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  15. Stagewise pseudo-value regression for time-varying effects on the cumulative incidence

    DEFF Research Database (Denmark)

    Zöller, Daniela; Schmidtmann, Irene; Weinmann, Arndt

    2016-01-01

    In a competing risks setting, the cumulative incidence of an event of interest describes the absolute risk for this event as a function of time. For regression analysis, one can either choose to model all competing events by separate cause-specific hazard models or directly model the association...... for time-varying effects. This is implemented by coupling variable selection between the grid times, but determining estimates separately. The effect estimates are regularized to also allow for model fitting with a low to moderate number of observations. This technique is illustrated in an application...

  16. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu; Pourahmadi, Mohsen; Maadooliat, Mehdi

    2014-01-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both

  17. Correlation-regression model for physico-chemical quality of ...

    African Journals Online (AJOL)

    abusaad

    areas, suggesting that groundwater quality in urban areas is closely related with land use ... the ground water, with correlation and regression model is also presented. ...... WHO (World Health Organization) (1985). Health hazards from nitrates.

  18. Real estate value prediction using multivariate regression models

    Science.gov (United States)

    Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav

    2017-11-01

    The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.

  19. Application of random regression models to the genetic evaluation ...

    African Journals Online (AJOL)

    The model included fixed regression on AM (range from 30 to 138 mo) and the effect of herd-measurement date concatenation. Random parts of the model were RRM coefficients for additive and permanent environmental effects, while residual effects were modelled to account for heterogeneity of variance by AY. Estimates ...

  20. The APT model as reduced-rank regression

    NARCIS (Netherlands)

    Bekker, P.A.; Dobbelstein, P.; Wansbeek, T.J.

    Integrating the two steps of an arbitrage pricing theory (APT) model leads to a reduced-rank regression (RRR) model. So the results on RRR can be used to estimate APT models, making estimation very simple. We give a succinct derivation of estimation of RRR, derive the asymptotic variance of RRR

  1. Feature Selection, Flaring Size and Time-to-Flare Prediction Using Support Vector Regression, and Automated Prediction of Flaring Behavior Based on Spatio-Temporal Measures Using Hidden Markov Models

    Science.gov (United States)

    Al-Ghraibah, Amani

    error of approximately 3/4 a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a TPR. of 0.69 and a TNR of 0.86 for flare prediction, consistent with our previous studies of flare prediction using the same magnetic complexity features. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This conjecture is supported by our larger error rates of some 40 hours in the time-to-flare regression problem. The magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem. We also study the prediction of solar flare size and time-to-flare using two temporal features, namely the ▵- and ▵-▵-features, the same average size and time-to-flare regression error are found when these temporal features are used in size and time-to-flare prediction. In the third topic, we study the temporal evolution of active region magnetic fields using Hidden Markov Models (HMMs) which is one of the efficient temporal analyses found in literature. We extracted 38 features which describing the complexity of the photospheric magnetic field. These features are converted into a sequence of symbols using k-nearest neighbor search method. We study many parameters before prediction; like the length of the training window Wtrain which denotes to the number of history images use to train the flare and non-flare HMMs, and number of hidden states Q. In training phase, the model parameters of the HMM of each category are optimized so as to best describe the training symbol sequences. In testing phase, we use the best flare and non-flare models to predict/classify active regions as a flaring or non-flaring region

  2. Alternative regression models to assess increase in childhood BMI

    Directory of Open Access Journals (Sweden)

    Mansmann Ulrich

    2008-09-01

    Full Text Available Abstract Background Body mass index (BMI data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs, quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS. We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. Results GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. Conclusion GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.

  3. Alternative regression models to assess increase in childhood BMI.

    Science.gov (United States)

    Beyerlein, Andreas; Fahrmeir, Ludwig; Mansmann, Ulrich; Toschke, André M

    2008-09-08

    Body mass index (BMI) data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs), quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS). We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.

  4. Technological progress and regress in pre-industrial times

    DEFF Research Database (Denmark)

    Aiyar, Shekhar; Dalgaard, Carl-Johan Lars; Moav, Omer

    2008-01-01

    This paper offers micro-foundations for the dynamic relationship between technology and population in the pre-industrial world, accounting for both technological progress and the hitherto neglected but common phenomenon of technological regress. A positive feedback between population and the adop....... Inventions don't just get adopted once and forever; they have to be constantly practised and transmitted, or useful techniques may be forgotten. Jared Diamond, Ten Thousand Years of Solitude, 1993...

  5. Robust mislabel logistic regression without modeling mislabel probabilities.

    Science.gov (United States)

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  6. Drought Patterns Forecasting using an Auto-Regressive Logistic Model

    Science.gov (United States)

    del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.

    2014-12-01

    Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.

  7. Characteristics and Properties of a Simple Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Kowal Robert

    2016-12-01

    Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Despite the passage of time, it continues to raise interest both from the theoretical side as well as from the application side. One of the many fundamental questions in the model concerns determining derivative characteristics and studying the properties existing in their scope, referring to the first of these aspects. The literature of the subject provides several classic solutions in that regard. In the paper, a completely new design is proposed, based on the direct application of variance and its properties, resulting from the non-correlation of certain estimators with the mean, within the scope of which some fundamental dependencies of the model characteristics are obtained in a much more compact manner. The apparatus allows for a simple and uniform demonstration of multiple dependencies and fundamental properties in the model, and it does it in an intuitive manner. The results were obtained in a classic, traditional area, where everything, as it might seem, has already been thoroughly studied and discovered.

  8. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    Science.gov (United States)

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  9. Linear regression models for quantitative assessment of left ...

    African Journals Online (AJOL)

    Changes in left ventricular structures and function have been reported in cardiomyopathies. No prediction models have been established in this environment. This study established regression models for prediction of left ventricular structures in normal subjects. A sample of normal subjects was drawn from a large urban ...

  10. Geographically Weighted Logistic Regression Applied to Credit Scoring Models

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Melo Albuquerque

    Full Text Available Abstract This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC, granted to clients residing in the Distrito Federal (DF, to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower’s geographic location; to compare the set of models estimated via GWLR with the global model estimated via Logistic Regression, in terms of predictive power and financial losses for the institution; and to verify the viability of using the GWLR technique to develop credit scoring models. The metrics used to compare the models developed via the two techniques were the AICc informational criterion, the accuracy of the models, the percentage of false positives, the sum of the value of false positive debt, and the expected monetary value of portfolio default compared with the monetary value of defaults observed. The models estimated for each region in the DF were distinct in their variables and coefficients (parameters, with it being concluded that credit risk was influenced differently in each region in the study. The Logistic Regression and GWLR methodologies presented very close results, in terms of predictive power and financial losses for the institution, and the study demonstrated viability in using the GWLR technique to develop credit scoring models for the target population in the study.

  11. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia

    2018-04-10

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite the fact that this leads to a proper posterior for the regression coefficients, the resulting posterior variance is however affected by an unidentifiable parameter, hence any inferential procedure beside point estimation is unreliable. We propose a model-based approach for quantile regression that considers quantiles of the generating distribution directly, and thus allows for a proper uncertainty quantification. We then create a link between quantile regression and generalised linear models by mapping the quantiles to the parameter of the response variable, and we exploit it to fit the model with R-INLA. We extend it also in the case of discrete responses, where there is no 1-to-1 relationship between quantiles and distribution\\'s parameter, by introducing continuous generalisations of the most common discrete variables (Poisson, Binomial and Negative Binomial) to be exploited in the fitting.

  12. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    Science.gov (United States)

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  13. Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.

    Science.gov (United States)

    Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa

    2008-01-01

    This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.

  14. Multiple Response Regression for Gaussian Mixture Models with Known Labels.

    Science.gov (United States)

    Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng

    2012-12-01

    Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes.

  15. Thermal Efficiency Degradation Diagnosis Method Using Regression Model

    International Nuclear Information System (INIS)

    Jee, Chang Hyun; Heo, Gyun Young; Jang, Seok Won; Lee, In Cheol

    2011-01-01

    This paper proposes an idea for thermal efficiency degradation diagnosis in turbine cycles, which is based on turbine cycle simulation under abnormal conditions and a linear regression model. The correlation between the inputs for representing degradation conditions (normally unmeasured but intrinsic states) and the simulation outputs (normally measured but superficial states) was analyzed with the linear regression model. The regression models can inversely response an associated intrinsic state for a superficial state observed from a power plant. The diagnosis method proposed herein is classified into three processes, 1) simulations for degradation conditions to get measured states (referred as what-if method), 2) development of the linear model correlating intrinsic and superficial states, and 3) determination of an intrinsic state using the superficial states of current plant and the linear regression model (referred as inverse what-if method). The what-if method is to generate the outputs for the inputs including various root causes and/or boundary conditions whereas the inverse what-if method is the process of calculating the inverse matrix with the given superficial states, that is, component degradation modes. The method suggested in this paper was validated using the turbine cycle model for an operating power plant

  16. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis

    CERN Document Server

    Harrell , Jr , Frank E

    2015-01-01

    This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap.  The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes.  This text realistically...

  17. Flexible competing risks regression modeling and goodness-of-fit

    DEFF Research Database (Denmark)

    Scheike, Thomas; Zhang, Mei-Jie

    2008-01-01

    In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause...... models that is easy to fit and contains the Fine-Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy...... of the flexible regression models to analyze competing risks data when non-proportionality is present in the data....

  18. Model building strategy for logistic regression: purposeful selection.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-03-01

    Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.

  19. Regression analysis of a chemical reaction fouling model

    International Nuclear Information System (INIS)

    Vasak, F.; Epstein, N.

    1996-01-01

    A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

  20. Overcoming Spurious Regression Using time-Varying Fourier ...

    African Journals Online (AJOL)

    Non-stationary time series data have been traditionally analyzed in the frequency domain by assuming constant amplitudes regardless of the timelag. A new approach called time-varying amplitude method (TVAM) is presented here. Oscillations are analyzed for changes in the magnitude of Fourier Coefficients which are ...

  1. Spatial stochastic regression modelling of urban land use

    International Nuclear Information System (INIS)

    Arshad, S H M; Jaafar, J; Abiden, M Z Z; Latif, Z A; Rasam, A R A

    2014-01-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable

  2. Direction of Effects in Multiple Linear Regression Models.

    Science.gov (United States)

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.

  3. Logistic regression for risk factor modelling in stuttering research.

    Science.gov (United States)

    Reed, Phil; Wu, Yaqionq

    2013-06-01

    To outline the uses of logistic regression and other statistical methods for risk factor analysis in the context of research on stuttering. The principles underlying the application of a logistic regression are illustrated, and the types of questions to which such a technique has been applied in the stuttering field are outlined. The assumptions and limitations of the technique are discussed with respect to existing stuttering research, and with respect to formulating appropriate research strategies to accommodate these considerations. Finally, some alternatives to the approach are briefly discussed. The way the statistical procedures are employed are demonstrated with some hypothetical data. Research into several practical issues concerning stuttering could benefit if risk factor modelling were used. Important examples are early diagnosis, prognosis (whether a child will recover or persist) and assessment of treatment outcome. After reading this article you will: (a) Summarize the situations in which logistic regression can be applied to a range of issues about stuttering; (b) Follow the steps in performing a logistic regression analysis; (c) Describe the assumptions of the logistic regression technique and the precautions that need to be checked when it is employed; (d) Be able to summarize its advantages over other techniques like estimation of group differences and simple regression. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Bayesian approach to errors-in-variables in regression models

    Science.gov (United States)

    Rozliman, Nur Aainaa; Ibrahim, Adriana Irawati Nur; Yunus, Rossita Mohammad

    2017-05-01

    In many applications and experiments, data sets are often contaminated with error or mismeasured covariates. When at least one of the covariates in a model is measured with error, Errors-in-Variables (EIV) model can be used. Measurement error, when not corrected, would cause misleading statistical inferences and analysis. Therefore, our goal is to examine the relationship of the outcome variable and the unobserved exposure variable given the observed mismeasured surrogate by applying the Bayesian formulation to the EIV model. We shall extend the flexible parametric method proposed by Hossain and Gustafson (2009) to another nonlinear regression model which is the Poisson regression model. We shall then illustrate the application of this approach via a simulation study using Markov chain Monte Carlo sampling methods.

  5. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  6. Application of multilinear regression analysis in modeling of soil ...

    African Journals Online (AJOL)

    The application of Multi-Linear Regression Analysis (MLRA) model for predicting soil properties in Calabar South offers a technical guide and solution in foundation designs problems in the area. Forty-five soil samples were collected from fifteen different boreholes at a different depth and 270 tests were carried out for CBR, ...

  7. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2009-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  8. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2010-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  9. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2011-01-01

    In this paper, two non-parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel-based approaches. The second estimator

  10. A binary logistic regression model with complex sampling design of ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Bi-variable and multi-variable binary logistic regression model with complex sampling design was fitted. .... Data was entered into STATA-12 and analyzed using. SPSS-21. .... lack of access/too far or costs too much. 35. 1.2.

  11. Transpiration of glasshouse rose crops: evaluation of regression models

    NARCIS (Netherlands)

    Baas, R.; Rijssel, van E.

    2006-01-01

    Regression models of transpiration (T) based on global radiation inside the greenhouse (G), with or without energy input from heating pipes (Eh) and/or vapor pressure deficit (VPD) were parameterized. Therefore, data on T, G, temperatures from air, canopy and heating pipes, and VPD from both a

  12. Conditional mode regression: Application to functional time series prediction

    OpenAIRE

    Dabo-Niang, Sophie; Laksaci, Ali

    2008-01-01

    We consider $\\alpha$-mixing observations and deal with the estimation of the conditional mode of a scalar response variable $Y$ given a random variable $X$ taking values in a semi-metric space. We provide a convergence rate in $L^p$ norm of the estimator. A useful and typical application to functional times series prediction is given.

  13. Approximating prediction uncertainty for random forest regression models

    Science.gov (United States)

    John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne

    2016-01-01

    Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...

  14. CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Hansen, Lars Kai

    2004-01-01

    We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least square...... estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording....

  15. On concurvity in nonlinear and nonparametric regression models

    Directory of Open Access Journals (Sweden)

    Sonia Amodio

    2014-12-01

    Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.

  16. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Directory of Open Access Journals (Sweden)

    Minh Vu Trieu

    2017-03-01

    Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  17. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Science.gov (United States)

    Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno

    2017-03-01

    This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  18. Detection of Outliers in Regression Model for Medical Data

    Directory of Open Access Journals (Sweden)

    Stephen Raj S

    2017-07-01

    Full Text Available In regression analysis, an outlier is an observation for which the residual is large in magnitude compared to other observations in the data set. The detection of outliers and influential points is an important step of the regression analysis. Outlier detection methods have been used to detect and remove anomalous values from data. In this paper, we detect the presence of outliers in simple linear regression models for medical data set. Chatterjee and Hadi mentioned that the ordinary residuals are not appropriate for diagnostic purposes; a transformed version of them is preferable. First, we investigate the presence of outliers based on existing procedures of residuals and standardized residuals. Next, we have used the new approach of standardized scores for detecting outliers without the use of predicted values. The performance of the new approach was verified with the real-life data.

  19. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  20. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  1. Generic global regression models for growth prediction of Salmonella in ground pork and pork cuts

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Hansen, Tina Beck; Bahl, Martin Iain

    2017-01-01

    Introduction and Objectives Models for the prediction of bacterial growth in fresh pork are primarily developed using two-step regression (i.e. primary models followed by secondary models). These models are also generally based on experiments in liquids or ground meat and neglect surface growth....... It has been shown that one-step global regressions can result in more accurate models and that bacterial growth on intact surfaces can substantially differ from growth in liquid culture. Material and Methods We used a global-regression approach to develop predictive models for the growth of Salmonella....... One part of obtained logtransformed cell counts was used for model development and another for model validation. The Ratkowsky square root model and the relative lag time (RLT) model were integrated into the logistic model with delay. Fitted parameter estimates were compared to investigate the effect...

  2. Predicting Taxi-Out Time at Congested Airports with Optimization-Based Support Vector Regression Methods

    Directory of Open Access Journals (Sweden)

    Guan Lian

    2018-01-01

    Full Text Available Accurate prediction of taxi-out time is significant precondition for improving the operationality of the departure process at an airport, as well as reducing the long taxi-out time, congestion, and excessive emission of greenhouse gases. Unfortunately, several of the traditional methods of predicting taxi-out time perform unsatisfactorily at congested airports. This paper describes and tests three of those conventional methods which include Generalized Linear Model, Softmax Regression Model, and Artificial Neural Network method and two improved Support Vector Regression (SVR approaches based on swarm intelligence algorithm optimization, which include Particle Swarm Optimization (PSO and Firefly Algorithm. In order to improve the global searching ability of Firefly Algorithm, adaptive step factor and Lévy flight are implemented simultaneously when updating the location function. Six factors are analysed, of which delay is identified as one significant factor in congested airports. Through a series of specific dynamic analyses, a case study of Beijing International Airport (PEK is tested with historical data. The performance measures show that the proposed two SVR approaches, especially the Improved Firefly Algorithm (IFA optimization-based SVR method, not only perform as the best modelling measures and accuracy rate compared with the representative forecast models, but also can achieve a better predictive performance when dealing with abnormal taxi-out time states.

  3. Two-step variable selection in quantile regression models

    Directory of Open Access Journals (Sweden)

    FAN Yali

    2015-06-01

    Full Text Available We propose a two-step variable selection procedure for high dimensional quantile regressions, in which the dimension of the covariates, pn is much larger than the sample size n. In the first step, we perform ℓ1 penalty, and we demonstrate that the first step penalized estimator with the LASSO penalty can reduce the model from an ultra-high dimensional to a model whose size has the same order as that of the true model, and the selected model can cover the true model. The second step excludes the remained irrelevant covariates by applying the adaptive LASSO penalty to the reduced model obtained from the first step. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. We conduct a simulation study and a real data analysis to evaluate the finite sample performance of the proposed approach.

  4. New robust statistical procedures for the polytomous logistic regression models.

    Science.gov (United States)

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  5. Use of multiple linear regression and logistic regression models to investigate changes in birthweight for term singleton infants in Scotland.

    Science.gov (United States)

    Bonellie, Sandra R

    2012-10-01

    To illustrate the use of regression and logistic regression models to investigate changes over time in size of babies particularly in relation to social deprivation, age of the mother and smoking. Mean birthweight has been found to be increasing in many countries in recent years, but there are still a group of babies who are born with low birthweights. Population-based retrospective cohort study. Multiple linear regression and logistic regression models are used to analyse data on term 'singleton births' from Scottish hospitals between 1994-2003. Mothers who smoke are shown to give birth to lighter babies on average, a difference of approximately 0.57 Standard deviations lower (95% confidence interval. 0.55-0.58) when adjusted for sex and parity. These mothers are also more likely to have babies that are low birthweight (odds ratio 3.46, 95% confidence interval 3.30-3.63) compared with non-smokers. Low birthweight is 30% more likely where the mother lives in the most deprived areas compared with the least deprived, (odds ratio 1.30, 95% confidence interval 1.21-1.40). Smoking during pregnancy is shown to have a detrimental effect on the size of infants at birth. This effect explains some, though not all, of the observed socioeconomic birthweight. It also explains much of the observed birthweight differences by the age of the mother.   Identifying mothers at greater risk of having a low birthweight baby as important implications for the care and advice this group receives. © 2012 Blackwell Publishing Ltd.

  6. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE

    OpenAIRE

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-01-01

    Background: The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran?s universities. Methods: This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran?s public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For pr...

  7. Predictive densities for day-ahead electricity prices using time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi; Pinson, Pierre; Madsen, Henrik

    2014-01-01

    A large part of the decision-making problems actors of the power system are facing on a daily basis requires scenarios for day-ahead electricity market prices. These scenarios are most likely to be generated based on marginal predictive densities for such prices, then enhanced with a temporal...... dependence structure. A semi-parametric methodology for generating such densities is presented: it includes: (i) a time-adaptive quantile regression model for the 5%–95% quantiles; and (ii) a description of the distribution tails with exponential distributions. The forecasting skill of the proposed model...

  8. Online Statistical Modeling (Regression Analysis) for Independent Responses

    Science.gov (United States)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  9. A test of inflated zeros for Poisson regression models.

    Science.gov (United States)

    He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan

    2017-01-01

    Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.

  10. Augmented Beta rectangular regression models: A Bayesian perspective.

    Science.gov (United States)

    Wang, Jue; Luo, Sheng

    2016-01-01

    Mixed effects Beta regression models based on Beta distributions have been widely used to analyze longitudinal percentage or proportional data ranging between zero and one. However, Beta distributions are not flexible to extreme outliers or excessive events around tail areas, and they do not account for the presence of the boundary values zeros and ones because these values are not in the support of the Beta distributions. To address these issues, we propose a mixed effects model using Beta rectangular distribution and augment it with the probabilities of zero and one. We conduct extensive simulation studies to assess the performance of mixed effects models based on both the Beta and Beta rectangular distributions under various scenarios. The simulation studies suggest that the regression models based on Beta rectangular distributions improve the accuracy of parameter estimates in the presence of outliers and heavy tails. The proposed models are applied to the motivating Neuroprotection Exploratory Trials in Parkinson's Disease (PD) Long-term Study-1 (LS-1 study, n = 1741), developed by The National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson's Disease (NINDS NET-PD) network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bayesian semiparametric regression models to characterize molecular evolution

    Directory of Open Access Journals (Sweden)

    Datta Saheli

    2012-10-01

    Full Text Available Abstract Background Statistical models and methods that associate changes in the physicochemical properties of amino acids with natural selection at the molecular level typically do not take into account the correlations between such properties. We propose a Bayesian hierarchical regression model with a generalization of the Dirichlet process prior on the distribution of the regression coefficients that describes the relationship between the changes in amino acid distances and natural selection in protein-coding DNA sequence alignments. Results The Bayesian semiparametric approach is illustrated with simulated data and the abalone lysin sperm data. Our method identifies groups of properties which, for this particular dataset, have a similar effect on evolution. The model also provides nonparametric site-specific estimates for the strength of conservation of these properties. Conclusions The model described here is distinguished by its ability to handle a large number of amino acid properties simultaneously, while taking into account that such data can be correlated. The multi-level clustering ability of the model allows for appealing interpretations of the results in terms of properties that are roughly equivalent from the standpoint of molecular evolution.

  12. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  13. Modeling the number of car theft using Poisson regression

    Science.gov (United States)

    Zulkifli, Malina; Ling, Agnes Beh Yen; Kasim, Maznah Mat; Ismail, Noriszura

    2016-10-01

    Regression analysis is the most popular statistical methods used to express the relationship between the variables of response with the covariates. The aim of this paper is to evaluate the factors that influence the number of car theft using Poisson regression model. This paper will focus on the number of car thefts that occurred in districts in Peninsular Malaysia. There are two groups of factor that have been considered, namely district descriptive factors and socio and demographic factors. The result of the study showed that Bumiputera composition, Chinese composition, Other ethnic composition, foreign migration, number of residence with the age between 25 to 64, number of employed person and number of unemployed person are the most influence factors that affect the car theft cases. These information are very useful for the law enforcement department, insurance company and car owners in order to reduce and limiting the car theft cases in Peninsular Malaysia.

  14. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Science.gov (United States)

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  15. Dynamic Regression Intervention Modeling for the Malaysian Daily Load

    Directory of Open Access Journals (Sweden)

    Fadhilah Abdrazak

    2014-05-01

    Full Text Available Malaysia is a unique country due to having both fixed and moving holidays.  These moving holidays may overlap with other fixed holidays and therefore, increase the complexity of the load forecasting activities. The errors due to holidays’ effects in the load forecasting are known to be higher than other factors.  If these effects can be estimated and removed, the behavior of the series could be better viewed.  Thus, the aim of this paper is to improve the forecasting errors by using a dynamic regression model with intervention analysis.   Based on the linear transfer function method, a daily load model consists of either peak or average is developed.  The developed model outperformed the seasonal ARIMA model in estimating the fixed and moving holidays’ effects and achieved a smaller Mean Absolute Percentage Error (MAPE in load forecast.

  16. Learning Supervised Topic Models for Classification and Regression from Crowds.

    Science.gov (United States)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C

    2017-12-01

    The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.

  17. Linear regression metamodeling as a tool to summarize and present simulation model results.

    Science.gov (United States)

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  18. Continuous validation of ASTEC containment models and regression testing

    International Nuclear Information System (INIS)

    Nowack, Holger; Reinke, Nils; Sonnenkalb, Martin

    2014-01-01

    The focus of the ASTEC (Accident Source Term Evaluation Code) development at GRS is primarily on the containment module CPA (Containment Part of ASTEC), whose modelling is to a large extent based on the GRS containment code COCOSYS (COntainment COde SYStem). Validation is usually understood as the approval of the modelling capabilities by calculations of appropriate experiments done by external users different from the code developers. During the development process of ASTEC CPA, bugs and unintended side effects may occur, which leads to changes in the results of the initially conducted validation. Due to the involvement of a considerable number of developers in the coding of ASTEC modules, validation of the code alone, even if executed repeatedly, is not sufficient. Therefore, a regression testing procedure has been implemented in order to ensure that the initially obtained validation results are still valid with succeeding code versions. Within the regression testing procedure, calculations of experiments and plant sequences are performed with the same input deck but applying two different code versions. For every test-case the up-to-date code version is compared to the preceding one on the basis of physical parameters deemed to be characteristic for the test-case under consideration. In the case of post-calculations of experiments also a comparison to experimental data is carried out. Three validation cases from the regression testing procedure are presented within this paper. The very good post-calculation of the HDR E11.1 experiment shows the high quality modelling of thermal-hydraulics in ASTEC CPA. Aerosol behaviour is validated on the BMC VANAM M3 experiment, and the results show also a very good agreement with experimental data. Finally, iodine behaviour is checked in the validation test-case of the THAI IOD-11 experiment. Within this test-case, the comparison of the ASTEC versions V2.0r1 and V2.0r2 shows how an error was detected by the regression testing

  19. Modeling of the Monthly Rainfall-Runoff Process Through Regressions

    Directory of Open Access Journals (Sweden)

    Campos-Aranda Daniel Francisco

    2014-10-01

    Full Text Available To solve the problems associated with the assessment of water resources of a river, the modeling of the rainfall-runoff process (RRP allows the deduction of runoff missing data and to extend its record, since generally the information available on precipitation is larger. It also enables the estimation of inputs to reservoirs, when their building led to the suppression of the gauging station. The simplest mathematical model that can be set for the RRP is the linear regression or curve on a monthly basis. Such a model is described in detail and is calibrated with the simultaneous record of monthly rainfall and runoff in Ballesmi hydrometric station, which covers 35 years. Since the runoff of this station has an important contribution from the spring discharge, the record is corrected first by removing that contribution. In order to do this a procedure was developed based either on the monthly average regional runoff coefficients or on nearby and similar watershed; in this case the Tancuilín gauging station was used. Both stations belong to the Partial Hydrologic Region No. 26 (Lower Rio Panuco and are located within the state of San Luis Potosi, México. The study performed indicates that the monthly regression model, due to its conceptual approach, faithfully reproduces monthly average runoff volumes and achieves an excellent approximation in relation to the dispersion, proved by calculation of the means and standard deviations.

  20. Can We Use Regression Modeling to Quantify Mean Annual Streamflow at a Global-Scale?

    Science.gov (United States)

    Barbarossa, V.; Huijbregts, M. A. J.; Hendriks, J. A.; Beusen, A.; Clavreul, J.; King, H.; Schipper, A.

    2016-12-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF using observations of discharge and catchment characteristics from 1,885 catchments worldwide, ranging from 2 to 106 km2 in size. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB [van Beek et al., 2011] by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area, mean annual precipitation and air temperature, average slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of agreement was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied globally at any point of the river network, provided that the input parameters are within the range of values employed in the calibration of the model. The performance is reduced for water scarce regions and further research should focus on improving such an aspect for regression-based global hydrological models.

  1. Poisson regression for modeling count and frequency outcomes in trauma research.

    Science.gov (United States)

    Gagnon, David R; Doron-LaMarca, Susan; Bell, Margret; O'Farrell, Timothy J; Taft, Casey T

    2008-10-01

    The authors describe how the Poisson regression method for analyzing count or frequency outcome variables can be applied in trauma studies. The outcome of interest in trauma research may represent a count of the number of incidents of behavior occurring in a given time interval, such as acts of physical aggression or substance abuse. Traditional linear regression approaches assume a normally distributed outcome variable with equal variances over the range of predictor variables, and may not be optimal for modeling count outcomes. An application of Poisson regression is presented using data from a study of intimate partner aggression among male patients in an alcohol treatment program and their female partners. Results of Poisson regression and linear regression models are compared.

  2. Interpreting parameters in the logistic regression model with random effects

    DEFF Research Database (Denmark)

    Larsen, Klaus; Petersen, Jørgen Holm; Budtz-Jørgensen, Esben

    2000-01-01

    interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects......interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects...

  3. Learning Supervised Topic Models for Classification and Regression from Crowds

    DEFF Research Database (Denmark)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete

    2017-01-01

    problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages...... annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression...

  4. Preference learning with evolutionary Multivariate Adaptive Regression Spline model

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for function approximation as well as being relatively easy to interpret. MARS models are evolved based on their efficiency in learning pairwise data. The method is tested on two datasets that collectively provide pairwise preference data of five cognitive states expressed by users. The method is analysed...

  5. Predicting Performance on MOOC Assessments using Multi-Regression Models

    OpenAIRE

    Ren, Zhiyun; Rangwala, Huzefa; Johri, Aditya

    2016-01-01

    The past few years has seen the rapid growth of data min- ing approaches for the analysis of data obtained from Mas- sive Open Online Courses (MOOCs). The objectives of this study are to develop approaches to predict the scores a stu- dent may achieve on a given grade-related assessment based on information, considered as prior performance or prior ac- tivity in the course. We develop a personalized linear mul- tiple regression (PLMR) model to predict the grade for a student, prior to attempt...

  6. Analytical and regression models of glass rod drawing process

    Science.gov (United States)

    Alekseeva, L. B.

    2018-03-01

    The process of drawing glass rods (light guides) is being studied. The parameters of the process affecting the quality of the light guide have been determined. To solve the problem, mathematical models based on general equations of continuum mechanics are used. The conditions for the stable flow of the drawing process have been found, which are determined by the stability of the motion of the glass mass in the formation zone to small uncontrolled perturbations. The sensitivity of the formation zone to perturbations of the drawing speed and viscosity is estimated. Experimental models of the drawing process, based on the regression analysis methods, have been obtained. These models make it possible to customize a specific production process to obtain light guides of the required quality. They allow one to find the optimum combination of process parameters in the chosen area and to determine the required accuracy of maintaining them at a specified level.

  7. Failure and reliability prediction by support vector machines regression of time series data

    International Nuclear Information System (INIS)

    Chagas Moura, Marcio das; Zio, Enrico; Lins, Isis Didier; Droguett, Enrique

    2011-01-01

    Support Vector Machines (SVMs) are kernel-based learning methods, which have been successfully adopted for regression problems. However, their use in reliability applications has not been widely explored. In this paper, a comparative analysis is presented in order to evaluate the SVM effectiveness in forecasting time-to-failure and reliability of engineered components based on time series data. The performance on literature case studies of SVM regression is measured against other advanced learning methods such as the Radial Basis Function, the traditional MultiLayer Perceptron model, Box-Jenkins autoregressive-integrated-moving average and the Infinite Impulse Response Locally Recurrent Neural Networks. The comparison shows that in the analyzed cases, SVM outperforms or is comparable to other techniques. - Highlights: → Realistic modeling of reliability demands complex mathematical formulations. → SVM is proper when the relation input/output is unknown or very costly to be obtained. → Results indicate the potential of SVM for reliability time series prediction. → Reliability estimates support the establishment of adequate maintenance strategies.

  8. INTRODUCTION TO A COMBINED MULTIPLE LINEAR REGRESSION AND ARMA MODELING APPROACH FOR BEACH BACTERIA PREDICTION

    Science.gov (United States)

    Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...

  9. Regression Models for Predicting Force Coefficients of Aerofoils

    Directory of Open Access Journals (Sweden)

    Mohammed ABDUL AKBAR

    2015-09-01

    Full Text Available Renewable sources of energy are attractive and advantageous in a lot of different ways. Among the renewable energy sources, wind energy is the fastest growing type. Among wind energy converters, Vertical axis wind turbines (VAWTs have received renewed interest in the past decade due to some of the advantages they possess over their horizontal axis counterparts. VAWTs have evolved into complex 3-D shapes. A key component in predicting the output of VAWTs through analytical studies is obtaining the values of lift and drag coefficients which is a function of shape of the aerofoil, ‘angle of attack’ of wind and Reynolds’s number of flow. Sandia National Laboratories have carried out extensive experiments on aerofoils for the Reynolds number in the range of those experienced by VAWTs. The volume of experimental data thus obtained is huge. The current paper discusses three Regression analysis models developed wherein lift and drag coefficients can be found out using simple formula without having to deal with the bulk of the data. Drag coefficients and Lift coefficients were being successfully estimated by regression models with R2 values as high as 0.98.

  10. Regression analysis of informative current status data with the additive hazards model.

    Science.gov (United States)

    Zhao, Shishun; Hu, Tao; Ma, Ling; Wang, Peijie; Sun, Jianguo

    2015-04-01

    This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

  11. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  12. Developing and testing a global-scale regression model to quantify mean annual streamflow

    Science.gov (United States)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.

    2017-01-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.

  13. Structured Additive Regression Models: An R Interface to BayesX

    Directory of Open Access Journals (Sweden)

    Nikolaus Umlauf

    2015-02-01

    Full Text Available Structured additive regression (STAR models provide a flexible framework for model- ing possible nonlinear effects of covariates: They contain the well established frameworks of generalized linear models and generalized additive models as special cases but also allow a wider class of effects, e.g., for geographical or spatio-temporal data, allowing for specification of complex and realistic models. BayesX is standalone software package providing software for fitting general class of STAR models. Based on a comprehensive open-source regression toolbox written in C++, BayesX uses Bayesian inference for estimating STAR models based on Markov chain Monte Carlo simulation techniques, a mixed model representation of STAR models, or stepwise regression techniques combining penalized least squares estimation with model selection. BayesX not only covers models for responses from univariate exponential families, but also models from less-standard regression situations such as models for multi-categorical responses with either ordered or unordered categories, continuous time survival data, or continuous time multi-state models. This paper presents a new fully interactive R interface to BayesX: the R package R2BayesX. With the new package, STAR models can be conveniently specified using Rs formula language (with some extended terms, fitted using the BayesX binary, represented in R with objects of suitable classes, and finally printed/summarized/plotted. This makes BayesX much more accessible to users familiar with R and adds extensive graphics capabilities for visualizing fitted STAR models. Furthermore, R2BayesX complements the already impressive capabilities for semiparametric regression in R by a comprehensive toolbox comprising in particular more complex response types and alternative inferential procedures such as simulation-based Bayesian inference.

  14. Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis.

    Science.gov (United States)

    Matsunobu, Shohei; Sasakura, Yasunori

    2015-09-01

    In most ascidians, the tadpole-like swimming larvae dramatically change their body-plans during metamorphosis and develop into sessile adults. The mechanisms of ascidian metamorphosis have been researched and debated for many years. Until now information on the detailed time course of the initiation and completion of each metamorphic event has not been described. One dramatic and important event in ascidian metamorphosis is tail regression, in which ascidian larvae lose their tails to adjust themselves to sessile life. In the present study, we measured the time associated with tail regression in the ascidian Ciona intestinalis. Larvae are thought to acquire competency for each metamorphic event in certain developmental periods. We show that the timing with which the competence for tail regression is acquired is determined by the time since hatching, and this timing is not affected by the timing of post-hatching events such as adhesion. Because larvae need to adhere to substrates with their papillae to induce tail regression, we measured the duration for which larvae need to remain adhered in order to initiate tail regression and the time needed for the tail to regress. Larvae acquire the ability to adhere to substrates before they acquire tail regression competence. We found that when larvae adhered before they acquired tail regression competence, they were able to remember the experience of adhesion until they acquired the ability to undergo tail regression. The time course of the events associated with tail regression provides a valuable reference, upon which the cellular and molecular mechanisms of ascidian metamorphosis can be elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Conditional Monte Carlo randomization tests for regression models.

    Science.gov (United States)

    Parhat, Parwen; Rosenberger, William F; Diao, Guoqing

    2014-08-15

    We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Genomic breeding value estimation using nonparametric additive regression models

    Directory of Open Access Journals (Sweden)

    Solberg Trygve

    2009-01-01

    Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.

  17. Global Land Use Regression Model for Nitrogen Dioxide Air Pollution.

    Science.gov (United States)

    Larkin, Andrew; Geddes, Jeffrey A; Martin, Randall V; Xiao, Qingyang; Liu, Yang; Marshall, Julian D; Brauer, Michael; Hystad, Perry

    2017-06-20

    Nitrogen dioxide is a common air pollutant with growing evidence of health impacts independent of other common pollutants such as ozone and particulate matter. However, the worldwide distribution of NO 2 exposure and associated impacts on health is still largely uncertain. To advance global exposure estimates we created a global nitrogen dioxide (NO 2 ) land use regression model for 2011 using annual measurements from 5,220 air monitors in 58 countries. The model captured 54% of global NO 2 variation, with a mean absolute error of 3.7 ppb. Regional performance varied from R 2 = 0.42 (Africa) to 0.67 (South America). Repeated 10% cross-validation using bootstrap sampling (n = 10,000) demonstrated a robust performance with respect to air monitor sampling in North America, Europe, and Asia (adjusted R 2 within 2%) but not for Africa and Oceania (adjusted R 2 within 11%) where NO 2 monitoring data are sparse. The final model included 10 variables that captured both between and within-city spatial gradients in NO 2 concentrations. Variable contributions differed between continental regions, but major roads within 100 m and satellite-derived NO 2 were consistently the strongest predictors. The resulting model can be used for global risk assessments and health studies, particularly in countries without existing NO 2 monitoring data or models.

  18. A Gompertz regression model for fern spores germination

    Directory of Open Access Journals (Sweden)

    Gabriel y Galán, Jose María

    2015-06-01

    Full Text Available Germination is one of the most important biological processes for both seed and spore plants, also for fungi. At present, mathematical models of germination have been developed in fungi, bryophytes and several plant species. However, ferns are the only group whose germination has never been modelled. In this work we develop a regression model of the germination of fern spores. We have found that for Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei and Polypodium feuillei species the Gompertz growth model describe satisfactorily cumulative germination. An important result is that regression parameters are independent of fern species and the model is not affected by intraspecific variation. Our results show that the Gompertz curve represents a general germination model for all the non-green spore leptosporangiate ferns, including in the paper a discussion about the physiological and ecological meaning of the model.La germinación es uno de los procesos biológicos más relevantes tanto para las plantas con esporas, como para las plantas con semillas y los hongos. Hasta el momento, se han desarrollado modelos de germinación para hongos, briofitos y diversas especies de espermatófitos. Los helechos son el único grupo de plantas cuya germinación nunca ha sido modelizada. En este trabajo se desarrolla un modelo de regresión para explicar la germinación de las esporas de helechos. Observamos que para las especies Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei y Polypodium feuillei el modelo de crecimiento de Gompertz describe satisfactoriamente la germinación acumulativa. Un importante resultado es que los parámetros de la regresión son independientes de la especie y que el modelo no está afectado por variación intraespecífica. Por lo tanto, los resultados del trabajo muestran que la curva de Gompertz puede representar un modelo general para todos los helechos leptosporangiados

  19. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  20. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE.

    Science.gov (United States)

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-10-01

    The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran's universities. This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran's public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran's libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries.

  1. Additive Intensity Regression Models in Corporate Default Analysis

    DEFF Research Database (Denmark)

    Lando, David; Medhat, Mamdouh; Nielsen, Mads Stenbo

    2013-01-01

    We consider additive intensity (Aalen) models as an alternative to the multiplicative intensity (Cox) models for analyzing the default risk of a sample of rated, nonfinancial U.S. firms. The setting allows for estimating and testing the significance of time-varying effects. We use a variety of mo...

  2. Meta-Modeling by Symbolic Regression and Pareto Simulated Annealing

    NARCIS (Netherlands)

    Stinstra, E.; Rennen, G.; Teeuwen, G.J.A.

    2006-01-01

    The subject of this paper is a new approach to Symbolic Regression.Other publications on Symbolic Regression use Genetic Programming.This paper describes an alternative method based on Pareto Simulated Annealing.Our method is based on linear regression for the estimation of constants.Interval

  3. Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.

    Science.gov (United States)

    Ferrari, Alberto

    2017-01-01

    Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.

  4. Variable selection in Logistic regression model with genetic algorithm.

    Science.gov (United States)

    Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi

    2018-02-01

    Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.

  5. Electricity prices forecasting by automatic dynamic harmonic regression models

    International Nuclear Information System (INIS)

    Pedregal, Diego J.; Trapero, Juan R.

    2007-01-01

    The changes experienced by electricity markets in recent years have created the necessity for more accurate forecast tools of electricity prices, both for producers and consumers. Many methodologies have been applied to this aim, but in the view of the authors, state space models are not yet fully exploited. The present paper proposes a univariate dynamic harmonic regression model set up in a state space framework for forecasting prices in these markets. The advantages of the approach are threefold. Firstly, a fast automatic identification and estimation procedure is proposed based on the frequency domain. Secondly, the recursive algorithms applied offer adaptive predictions that compare favourably with respect to other techniques. Finally, since the method is based on unobserved components models, explicit information about trend, seasonal and irregular behaviours of the series can be extracted. This information is of great value to the electricity companies' managers in order to improve their strategies, i.e. it provides management innovations. The good forecast performance and the rapid adaptability of the model to changes in the data are illustrated with actual prices taken from the PJM interconnection in the US and for the Spanish market for the year 2002. (author)

  6. Bayesian Regression of Thermodynamic Models of Redox Active Materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Finding a suitable functional redox material is a critical challenge to achieving scalable, economically viable technologies for storing concentrated solar energy in the form of a defected oxide. Demonstrating e ectiveness for thermal storage or solar fuel is largely accomplished by using a thermodynamic model derived from experimental data. The purpose of this project is to test the accuracy of our regression model on representative data sets. Determining the accuracy of the model includes parameter tting the model to the data, comparing the model using di erent numbers of param- eters, and analyzing the entropy and enthalpy calculated from the model. Three data sets were considered in this project: two demonstrating materials for solar fuels by wa- ter splitting and the other of a material for thermal storage. Using Bayesian Inference and Markov Chain Monte Carlo (MCMC), parameter estimation was preformed on the three data sets. Good results were achieved, except some there was some deviations on the edges of the data input ranges. The evidence values were then calculated in a variety of ways and used to compare models with di erent number of parameters. It was believed that at least one of the parameters was unnecessary and comparing evidence values demonstrated that the parameter was need on one data set and not signi cantly helpful on another. The entropy was calculated by taking the derivative in one variable and integrating over another. and its uncertainty was also calculated by evaluating the entropy over multiple MCMC samples. Afterwards, all the parts were written up as a tutorial for the Uncertainty Quanti cation Toolkit (UQTk).

  7. Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment

    Science.gov (United States)

    Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe

    2018-01-01

    In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.

  8. Tightness of M-estimators for multiple linear regression in time series

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    We show tightness of a general M-estimator for multiple linear regression in time series. The positive criterion function for the M-estimator is assumed lower semi-continuous and sufficiently large for large argument: Particular cases are the Huber-skip and quantile regression. Tightness requires...

  9. Piecewise linear regression techniques to analyze the timing of head coach dismissals in Dutch soccer clubs

    NARCIS (Netherlands)

    Schryver, T. de; Eisinga, R.

    2010-01-01

    The key question in research on dismissals of head coaches in sports clubs is not whether they should happen but when they will happen. This paper applies piecewise linear regression to advance our understanding of the timing of head coach dismissals. Essentially, the regression sacrifices degrees

  10. Convergence diagnostics for Eigenvalue problems with linear regression model

    International Nuclear Information System (INIS)

    Shi, Bo; Petrovic, Bojan

    2011-01-01

    Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)

  11. Time series regression and ARIMAX for forecasting currency flow at Bank Indonesia in Sulawesi region

    Science.gov (United States)

    Suharsono, Agus; Suhartono, Masyitha, Aulia; Anuravega, Arum

    2015-12-01

    The purpose of the study is to forecast the outflow and inflow of currency at Indonesian Central Bank or Bank Indonesia (BI) in Sulawesi Region. The currency outflow and inflow data tend to have a trend pattern which is influenced by calendar variation effects. Therefore, this research focuses to apply some forecasting methods that could handle calendar variation effects, i.e. Time Series Regression (TSR) and ARIMAX models, and compare the forecast accuracy with ARIMA model. The best model is selected based on the lowest of Root Mean Squares Errors (RMSE) at out-sample dataset. The results show that ARIMA is the best model for forecasting the currency outflow and inflow at South Sulawesi. Whereas, the best model for forecasting the currency outflow at Central Sulawesi and Southeast Sulawesi, and for forecasting the currency inflow at South Sulawesi and North Sulawesi is TSR. Additionally, ARIMAX is the best model for forecasting the currency outflow at North Sulawesi. Hence, the results show that more complex models do not neccessary yield more accurate forecast than the simpler one.

  12. Ultracentrifuge separative power modeling with multivariate regression using covariance matrix

    International Nuclear Information System (INIS)

    Migliavacca, Elder

    2004-01-01

    In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process variables, which significantly influence the δU values are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut θ and product line pressure P p . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heteroscedasticity with any explained regression model variable. The surface curves are made relating the separative power with the control variables F, θ and P p to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)

  13. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

    Science.gov (United States)

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984

  14. Coupled variable selection for regression modeling of complex treatment patterns in a clinical cancer registry.

    Science.gov (United States)

    Schmidtmann, I; Elsäßer, A; Weinmann, A; Binder, H

    2014-12-30

    For determining a manageable set of covariates potentially influential with respect to a time-to-event endpoint, Cox proportional hazards models can be combined with variable selection techniques, such as stepwise forward selection or backward elimination based on p-values, or regularized regression techniques such as component-wise boosting. Cox regression models have also been adapted for dealing with more complex event patterns, for example, for competing risks settings with separate, cause-specific hazard models for each event type, or for determining the prognostic effect pattern of a variable over different landmark times, with one conditional survival model for each landmark. Motivated by a clinical cancer registry application, where complex event patterns have to be dealt with and variable selection is needed at the same time, we propose a general approach for linking variable selection between several Cox models. Specifically, we combine score statistics for each covariate across models by Fisher's method as a basis for variable selection. This principle is implemented for a stepwise forward selection approach as well as for a regularized regression technique. In an application to data from hepatocellular carcinoma patients, the coupled stepwise approach is seen to facilitate joint interpretation of the different cause-specific Cox models. In conditional survival models at landmark times, which address updates of prediction as time progresses and both treatment and other potential explanatory variables may change, the coupled regularized regression approach identifies potentially important, stably selected covariates together with their effect time pattern, despite having only a small number of events. These results highlight the promise of the proposed approach for coupling variable selection between Cox models, which is particularly relevant for modeling for clinical cancer registries with their complex event patterns. Copyright © 2014 John Wiley & Sons

  15. An Ordered Regression Model to Predict Transit Passengers’ Behavioural Intentions

    Energy Technology Data Exchange (ETDEWEB)

    Oña, J. de; Oña, R. de; Eboli, L.; Forciniti, C.; Mazzulla, G.

    2016-07-01

    Passengers’ behavioural intentions after experiencing transit services can be viewed as signals that show if a customer continues to utilise a company’s service. Users’ behavioural intentions can depend on a series of aspects that are difficult to measure directly. More recently, transit passengers’ behavioural intentions have been just considered together with the concepts of service quality and customer satisfaction. Due to the characteristics of the ways for evaluating passengers’ behavioural intentions, service quality and customer satisfaction, we retain that this kind of issue could be analysed also by applying ordered regression models. This work aims to propose just an ordered probit model for analysing service quality factors that can influence passengers’ behavioural intentions towards the use of transit services. The case study is the LRT of Seville (Spain), where a survey was conducted in order to collect the opinions of the passengers about the existing transit service, and to have a measure of the aspects that can influence the intentions of the users to continue using the transit service in the future. (Author)

  16. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Directory of Open Access Journals (Sweden)

    Camerin Hahn

    2012-01-01

    Full Text Available As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007. However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed.

  17. Predicting recovery of cognitive function soon after stroke: differential modeling of logarithmic and linear regression.

    Science.gov (United States)

    Suzuki, Makoto; Sugimura, Yuko; Yamada, Sumio; Omori, Yoshitsugu; Miyamoto, Masaaki; Yamamoto, Jun-ichi

    2013-01-01

    Cognitive disorders in the acute stage of stroke are common and are important independent predictors of adverse outcome in the long term. Despite the impact of cognitive disorders on both patients and their families, it is still difficult to predict the extent or duration of cognitive impairments. The objective of the present study was, therefore, to provide data on predicting the recovery of cognitive function soon after stroke by differential modeling with logarithmic and linear regression. This study included two rounds of data collection comprising 57 stroke patients enrolled in the first round for the purpose of identifying the time course of cognitive recovery in the early-phase group data, and 43 stroke patients in the second round for the purpose of ensuring that the correlation of the early-phase group data applied to the prediction of each individual's degree of cognitive recovery. In the first round, Mini-Mental State Examination (MMSE) scores were assessed 3 times during hospitalization, and the scores were regressed on the logarithm and linear of time. In the second round, calculations of MMSE scores were made for the first two scoring times after admission to tailor the structures of logarithmic and linear regression formulae to fit an individual's degree of functional recovery. The time course of early-phase recovery for cognitive functions resembled both logarithmic and linear functions. However, MMSE scores sampled at two baseline points based on logarithmic regression modeling could estimate prediction of cognitive recovery more accurately than could linear regression modeling (logarithmic modeling, R(2) = 0.676, PLogarithmic modeling based on MMSE scores could accurately predict the recovery of cognitive function soon after the occurrence of stroke. This logarithmic modeling with mathematical procedures is simple enough to be adopted in daily clinical practice.

  18. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  19. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    Science.gov (United States)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  20. A computational approach to compare regression modelling strategies in prediction research.

    Science.gov (United States)

    Pajouheshnia, Romin; Pestman, Wiebe R; Teerenstra, Steven; Groenwold, Rolf H H

    2016-08-25

    It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in clinical prediction research. A framework for comparing logistic regression modelling strategies by their likelihoods was formulated using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were performed in both randomly generated data and empirical data to investigate the influence of data characteristics on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were selected based on the results of a priori comparisons in a clinical data set and the performance of models built according to each strategy was assessed using the Brier score and calibration plots. The performance of modelling strategies was highly dependent on the characteristics of the development data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no strategy consistently outperformed the others. The percentage of times that a model adjustment strategy outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our case study setting the a priori selection of optimal methods did not result in detectable improvement in model performance when assessed in an external data set. The performance of prediction modelling strategies is a data-dependent process and can be highly variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.

  1. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    Directory of Open Access Journals (Sweden)

    Menon Carlo

    2011-09-01

    Full Text Available Abstract Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2 values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS was shown to have high isometric torque estimation accuracy combined with very short training times.

  2. application of multilinear regression analysis in modeling of soil

    African Journals Online (AJOL)

    Windows User

    Accordingly [1, 3] in their work, they applied linear regression ... (MLRA) is a statistical technique that uses several explanatory ... order to check this, they adopted bivariate correlation analysis .... groups, namely A-1 through A-7, based on their relative expected ..... Multivariate Regression in Gorgan Province North of Iran” ...

  3. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  4. Soft-sensing model of temperature for aluminum reduction cell on improved twin support vector regression

    Science.gov (United States)

    Li, Tao

    2018-06-01

    The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.

  5. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  6. Wheat flour dough Alveograph characteristics predicted by Mixolab regression models.

    Science.gov (United States)

    Codină, Georgiana Gabriela; Mironeasa, Silvia; Mironeasa, Costel; Popa, Ciprian N; Tamba-Berehoiu, Radiana

    2012-02-01

    In Romania, the Alveograph is the most used device to evaluate the rheological properties of wheat flour dough, but lately the Mixolab device has begun to play an important role in the breadmaking industry. These two instruments are based on different principles but there are some correlations that can be found between the parameters determined by the Mixolab and the rheological properties of wheat dough measured with the Alveograph. Statistical analysis on 80 wheat flour samples using the backward stepwise multiple regression method showed that Mixolab values using the ‘Chopin S’ protocol (40 samples) and ‘Chopin + ’ protocol (40 samples) can be used to elaborate predictive models for estimating the value of the rheological properties of wheat dough: baking strength (W), dough tenacity (P) and extensibility (L). The correlation analysis confirmed significant findings (P 0.70 for P, R²(adjusted) > 0.70 for W and R²(adjusted) > 0.38 for L, at a 95% confidence interval. Copyright © 2011 Society of Chemical Industry.

  7. Application of regression model on stream water quality parameters

    International Nuclear Information System (INIS)

    Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.

    2012-01-01

    Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)

  8. The microcomputer scientific software series 2: general linear model--regression.

    Science.gov (United States)

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  9. MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION

    Science.gov (United States)

    Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...

  10. Methods of Detecting Outliers in A Regression Analysis Model ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-06-01

    Jun 1, 2013 ... especially true in observational studies .... Simple linear regression and multiple ... The simple linear ..... Grubbs,F.E (1950): Sample Criteria for Testing Outlying observations: Annals of ... In experimental design, the Relative.

  11. 231 Using Multiple Regression Analysis in Modelling the Role of ...

    African Journals Online (AJOL)

    User

    of Internal Revenue, Tourism Bureau and hotel records. The multiple regression .... additional guest facilities such as restaurant, a swimming pool or child care and social function ... and provide good quality service to the public. Conclusion.

  12. A logistic regression model for Ghana National Health Insurance claims

    Directory of Open Access Journals (Sweden)

    Samuel Antwi

    2013-07-01

    Full Text Available In August 2003, the Ghanaian Government made history by implementing the first National Health Insurance System (NHIS in Sub-Saharan Africa. Within three years, over half of the country’s population had voluntarily enrolled into the National Health Insurance Scheme. This study had three objectives: 1 To estimate the risk factors that influences the Ghana national health insurance claims. 2 To estimate the magnitude of each of the risk factors in relation to the Ghana national health insurance claims. In this work, data was collected from the policyholders of the Ghana National Health Insurance Scheme with the help of the National Health Insurance database and the patients’ attendance register of the Koforidua Regional Hospital, from 1st January to 31st December 2011. Quantitative analysis was done using the generalized linear regression (GLR models. The results indicate that risk factors such as sex, age, marital status, distance and length of stay at the hospital were important predictors of health insurance claims. However, it was found that the risk factors; health status, billed charges and income level are not good predictors of national health insurance claim. The outcome of the study shows that sex, age, marital status, distance and length of stay at the hospital are statistically significant in the determination of the Ghana National health insurance premiums since they considerably influence claims. We recommended, among other things that, the National Health Insurance Authority should facilitate the institutionalization of the collection of appropriate data on a continuous basis to help in the determination of future premiums.

  13. The analysis of nonstationary time series using regression, correlation and cointegration

    DEFF Research Database (Denmark)

    Johansen, Søren

    2012-01-01

    There are simple well-known conditions for the validity of regression and correlation as statistical tools. We analyse by examples the effect of nonstationarity on inference using these methods and compare them to model based inference using the cointegrated vector autoregressive model. Finally we...... analyse some monthly data from US on interest rates as an illustration of the methods...

  14. The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration

    Directory of Open Access Journals (Sweden)

    Søren Johansen

    2012-06-01

    Full Text Available There are simple well-known conditions for the validity of regression and correlation as statistical tools. We analyse by examples the effect of nonstationarity on inference using these methods and compare them to model based inference using the cointegrated vector autoregressive model. Finally we analyse some monthly data from US on interest rates as an illustration of the methods.

  15. Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia

    Science.gov (United States)

    Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat

    2015-04-01

    Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.

  16. Item parameters dissociate between expectation formats: A regression analysis of time-frequency decomposed EEG data

    Directory of Open Access Journals (Sweden)

    Irene Fernández Monsalve

    2014-08-01

    Full Text Available During language comprehension, semantic contextual information is used to generate expectations about upcoming items. This has been commonly studied through the N400 event-related potential (ERP, as a measure of facilitated lexical retrieval. However, the associative relationships in multi-word expressions (MWE may enable the generation of a categorical expectation, leading to lexical retrieval before target word onset. Processing of the target word would thus reflect a target-identification mechanism, possibly indexed by a P3 ERP component. However, given their time overlap (200-500 ms post-stimulus onset, differentiating between N400/P3 ERP responses (averaged over multiple linguistically variable trials is problematic. In the present study, we analyzed EEG data from a previous experiment, which compared ERP responses to highly expected words that were placed either in a MWE or a regular non-fixed compositional context, and to low predictability controls. We focused on oscillatory dynamics and regression analyses, in order to dissociate between the two contexts by modeling the electrophysiological response as a function of item-level parameters. A significant interaction between word position and condition was found in the regression model for power in a theta range (~7-9 Hz, providing evidence for the presence of qualitative differences between conditions. Power levels within this band were lower for MWE than compositional contexts then the target word appeared later on in the sentence, confirming that in the former lexical retrieval would have taken place before word onset. On the other hand, gamma-power (~50-70 Hz was also modulated by predictability of the item in all conditions, which is interpreted as an index of a similar `matching' sub-step for both types of contexts, binding an expected representation and the external input.

  17. Time series linear regression of half-hourly radon levels in a residence

    International Nuclear Information System (INIS)

    Hull, D.A.

    1990-01-01

    This paper uses time series linear regression modelling to assess the impact of temperature and pressure differences on the radon measured in the basement and in the basement drain of a research house in the Princeton area of New Jersey. The models examine half-hour averages of several climate and house parameters for several periods of up to 11 days. The drain radon concentrations follow a strong diurnal pattern that shifts 12 hours in phase between the summer and the fall seasons. This shift can be linked both to the change in temperature differences between seasons and to an experiment which involved sealing the connection between the drain and the basement. We have found that both the basement and the drain radon concentrations are correlated to basement-outdoor and soil-outdoor temperature differences (the coefficient of determination varies between 0.6 and 0.8). The statistical models for the summer periods clearly describe a physical system where the basement drain pumps radon in during the night and sucks radon out during the day

  18. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  19. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Morales P, R.

    1992-06-01

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ( 90 Sr/ 90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  20. Generation of Natural Runoff Monthly Series at Ungauged Sites Using a Regional Regressive Model

    Directory of Open Access Journals (Sweden)

    Dario Pumo

    2016-05-01

    Full Text Available Many hydrologic applications require reliable estimates of runoff in river basins to face the widespread lack of data, both in time and in space. A regional method for the reconstruction of monthly runoff series is here developed and applied to Sicily (Italy. A simple modeling structure is adopted, consisting of a regression-based rainfall–runoff model with four model parameters, calibrated through a two-step procedure. Monthly runoff estimates are based on precipitation, temperature, and exploiting the autocorrelation with runoff at the previous month. Model parameters are assessed by specific regional equations as a function of easily measurable physical and climate basin descriptors. The first calibration step is aimed at the identification of a set of parameters optimizing model performances at the level of single basin. Such “optimal” sets are used at the second step, part of a regional regression analysis, to establish the regional equations for model parameters assessment as a function of basin attributes. All the gauged watersheds across the region have been analyzed, selecting 53 basins for model calibration and using the other six basins exclusively for validation. Performances, quantitatively evaluated by different statistical indexes, demonstrate relevant model ability in reproducing the observed hydrological time-series at both the monthly and coarser time resolutions. The methodology, which is easily transferable to other arid and semi-arid areas, provides a reliable tool for filling/reconstructing runoff time series at any gauged or ungauged basin of a region.

  1. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system

    International Nuclear Information System (INIS)

    Fang, Tingting; Lahdelma, Risto

    2016-01-01

    Highlights: • Social factor is considered for the linear regression models besides weather file. • Simultaneously optimize all the coefficients for linear regression models. • SARIMA combined with linear regression is used to forecast the heat demand. • The accuracy for both linear regression and time series models are evaluated. - Abstract: Forecasting heat demand is necessary for production and operation planning of district heating (DH) systems. In this study we first propose a simple regression model where the hourly outdoor temperature and wind speed forecast the heat demand. Weekly rhythm of heat consumption as a social component is added to the model to significantly improve the accuracy. The other type of model is the seasonal autoregressive integrated moving average (SARIMA) model with exogenous variables as a combination to take weather factors, and the historical heat consumption data as depending variables. One outstanding advantage of the model is that it peruses the high accuracy for both long-term and short-term forecast by considering both exogenous factors and time series. The forecasting performance of both linear regression models and time series model are evaluated based on real-life heat demand data for the city of Espoo in Finland by out-of-sample tests for the last 20 full weeks of the year. The results indicate that the proposed linear regression model (T168h) using 168-h demand pattern with midweek holidays classified as Saturdays or Sundays gives the highest accuracy and strong robustness among all the tested models based on the tested forecasting horizon and corresponding data. Considering the parsimony of the input, the ease of use and the high accuracy, the proposed T168h model is the best in practice. The heat demand forecasting model can also be developed for individual buildings if automated meter reading customer measurements are available. This would allow forecasting the heat demand based on more accurate heat consumption

  2. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    Science.gov (United States)

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  3. A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs

    Science.gov (United States)

    Karabatsos, George; Walker, Stephen G.

    2013-01-01

    The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…

  4. Parametric vs. Nonparametric Regression Modelling within Clinical Decision Support

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan; Zvárová, Jana

    2017-01-01

    Roč. 5, č. 1 (2017), s. 21-27 ISSN 1805-8698 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : decision support systems * decision rules * statistical analysis * nonparametric regression Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability

  5. Logistic regression modelling: procedures and pitfalls in developing and interpreting prediction models

    Directory of Open Access Journals (Sweden)

    Nataša Šarlija

    2017-01-01

    Full Text Available This study sheds light on the most common issues related to applying logistic regression in prediction models for company growth. The purpose of the paper is 1 to provide a detailed demonstration of the steps in developing a growth prediction model based on logistic regression analysis, 2 to discuss common pitfalls and methodological errors in developing a model, and 3 to provide solutions and possible ways of overcoming these issues. Special attention is devoted to the question of satisfying logistic regression assumptions, selecting and defining dependent and independent variables, using classification tables and ROC curves, for reporting model strength, interpreting odds ratios as effect measures and evaluating performance of the prediction model. Development of a logistic regression model in this paper focuses on a prediction model of company growth. The analysis is based on predominantly financial data from a sample of 1471 small and medium-sized Croatian companies active between 2009 and 2014. The financial data is presented in the form of financial ratios divided into nine main groups depicting following areas of business: liquidity, leverage, activity, profitability, research and development, investing and export. The growth prediction model indicates aspects of a business critical for achieving high growth. In that respect, the contribution of this paper is twofold. First, methodological, in terms of pointing out pitfalls and potential solutions in logistic regression modelling, and secondly, theoretical, in terms of identifying factors responsible for high growth of small and medium-sized companies.

  6. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model

    International Nuclear Information System (INIS)

    Hong, W.-C.

    2009-01-01

    Accurate forecasting of electric load has always been the most important issues in the electricity industry, particularly for developing countries. Due to the various influences, electric load forecasting reveals highly nonlinear characteristics. Recently, support vector regression (SVR), with nonlinear mapping capabilities of forecasting, has been successfully employed to solve nonlinear regression and time series problems. However, it is still lack of systematic approaches to determine appropriate parameter combination for a SVR model. This investigation elucidates the feasibility of applying chaotic particle swarm optimization (CPSO) algorithm to choose the suitable parameter combination for a SVR model. The empirical results reveal that the proposed model outperforms the other two models applying other algorithms, genetic algorithm (GA) and simulated annealing algorithm (SA). Finally, it also provides the theoretical exploration of the electric load forecasting support system (ELFSS)

  7. Sagittal and Vertical Craniofacial Growth Pattern and Timing of Circumpubertal Skeletal Maturation: A Multiple Regression Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Perinetti

    2016-01-01

    Full Text Available The knowledge of the associations between the timing of skeletal maturation and craniofacial growth is of primary importance when planning a functional treatment for most of the skeletal malocclusions. This cross-sectional study was thus aimed at evaluating whether sagittal and vertical craniofacial growth has an association with the timing of circumpubertal skeletal maturation. A total of 320 subjects (160 females and 160 males were included in the study (mean age, 12.3±1.7 years; range, 7.6–16.7 years. These subjects were equally distributed in the circumpubertal cervical vertebral maturation (CVM stages 2 to 5. Each CVM stage group also had equal number of females and males. Multiple regression models were run for each CVM stage group to assess the significance of the association of cephalometric parameters (ANB, SN/MP, and NSBa angles with age of attainment of the corresponding CVM stage (in months. Significant associations were seen only for stage 3, where the SN/MP angle was negatively associated with age (β coefficient, −0.7. These results show that hyperdivergent and hypodivergent subjects may have an anticipated and delayed attainment of the pubertal CVM stage 3, respectively. However, such association remains of little entity and it would become clinically relevant only in extreme cases.

  8. Sagittal and Vertical Craniofacial Growth Pattern and Timing of Circumpubertal Skeletal Maturation: A Multiple Regression Study

    Science.gov (United States)

    Rosso, Luigi; Riatti, Riccardo

    2016-01-01

    The knowledge of the associations between the timing of skeletal maturation and craniofacial growth is of primary importance when planning a functional treatment for most of the skeletal malocclusions. This cross-sectional study was thus aimed at evaluating whether sagittal and vertical craniofacial growth has an association with the timing of circumpubertal skeletal maturation. A total of 320 subjects (160 females and 160 males) were included in the study (mean age, 12.3 ± 1.7 years; range, 7.6–16.7 years). These subjects were equally distributed in the circumpubertal cervical vertebral maturation (CVM) stages 2 to 5. Each CVM stage group also had equal number of females and males. Multiple regression models were run for each CVM stage group to assess the significance of the association of cephalometric parameters (ANB, SN/MP, and NSBa angles) with age of attainment of the corresponding CVM stage (in months). Significant associations were seen only for stage 3, where the SN/MP angle was negatively associated with age (β coefficient, −0.7). These results show that hyperdivergent and hypodivergent subjects may have an anticipated and delayed attainment of the pubertal CVM stage 3, respectively. However, such association remains of little entity and it would become clinically relevant only in extreme cases. PMID:27995136

  9. Phase Space Prediction of Chaotic Time Series with Nu-Support Vector Machine Regression

    International Nuclear Information System (INIS)

    Ye Meiying; Wang Xiaodong

    2005-01-01

    A new class of support vector machine, nu-support vector machine, is discussed which can handle both classification and regression. We focus on nu-support vector machine regression and use it for phase space prediction of chaotic time series. The effectiveness of the method is demonstrated by applying it to the Henon map. This study also compares nu-support vector machine with back propagation (BP) networks in order to better evaluate the performance of the proposed methods. The experimental results show that the nu-support vector machine regression obtains lower root mean squared error than the BP networks and provides an accurate chaotic time series prediction. These results can be attributable to the fact that nu-support vector machine implements the structural risk minimization principle and this leads to better generalization than the BP networks.

  10. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    Science.gov (United States)

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19

  11. Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2017-07-01

    Full Text Available This study mapped and analyzed groundwater potential using two different models, logistic regression (LR and multivariate adaptive regression splines (MARS, and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70% were used for model training, whereas the other 365 locations (30% were used for model validation. We analyzed 16 groundwater influence factors including altitude, slope degree, slope aspect, plan curvature, profile curvature, topographic wetness index, stream power index, sediment transport index, distance from drainage, drainage density, lithology, distance from fault, fault density, distance from lineament, lineament density, and land cover. Groundwater potential maps (GPMs were constructed using LR and MARS models and tested using a receiver operating characteristics curve. Based on this analysis, the area under the curve (AUC for the success rate curve of GPMs created using the MARS and LR models was 0.867 and 0.838, and the AUC for the prediction rate curve was 0.836 and 0.801, respectively. This implies that the MARS model is useful and effective for groundwater potential analysis in the study area.

  12. Near Real-Time Dust Aerosol Detection with Support Vector Machines for Regression

    Science.gov (United States)

    Rivas-Perea, P.; Rivas-Perea, P. E.; Cota-Ruiz, J.; Aragon Franco, R. A.

    2015-12-01

    Remote sensing instruments operating in the near-infrared spectrum usually provide the necessary information for further dust aerosol spectral analysis using statistical or machine learning algorithms. Such algorithms have proven to be effective in analyzing very specific case studies or dust events. However, very few make the analysis open to the public on a regular basis, fewer are designed specifically to operate in near real-time to higher resolutions, and almost none give a global daily coverage. In this research we investigated a large-scale approach to a machine learning algorithm called "support vector regression". The algorithm uses four near-infrared spectral bands from NASA MODIS instrument: B20 (3.66-3.84μm), B29 (8.40-8.70μm), B31 (10.78-11.28μm), and B32 (11.77-12.27μm). The algorithm is presented with ground truth from more than 30 distinct reported dust events, from different geographical regions, at different seasons, both over land and sea cover, in the presence of clouds and clear sky, and in the presence of fires. The purpose of our algorithm is to learn to distinguish the dust aerosols spectral signature from other spectral signatures, providing as output an estimate of the probability of a data point being consistent with dust aerosol signatures. During modeling with ground truth, our algorithm achieved more than 90% of accuracy, and the current live performance of the algorithm is remarkable. Moreover, our algorithm is currently operating in near real-time using NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) servers, providing a high resolution global overview including 64, 32, 16, 8, 4, 2, and 1km. The near real-time analysis of our algorithm is now available to the general public at http://dust.reev.us and archives of the results starting from 2012 are available upon request.

  13. Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2017-01-01

    In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...

  14. Semiparametric nonlinear quantile regression model for financial returns

    Czech Academy of Sciences Publication Activity Database

    Avdulaj, Krenar; Baruník, Jozef

    2017-01-01

    Roč. 21, č. 1 (2017), s. 81-97 ISSN 1081-1826 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : copula quantile regression * realized volatility * value-at-risk Subject RIV: AH - Economic s OBOR OECD: Applied Economic s, Econometrics Impact factor: 0.649, year: 2016 http://library.utia.cas.cz/separaty/2017/E/avdulaj-0472346.pdf

  15. The Norwegian Healthier Goats program--modeling lactation curves using a multilevel cubic spline regression model.

    Science.gov (United States)

    Nagel-Alne, G E; Krontveit, R; Bohlin, J; Valle, P S; Skjerve, E; Sølverød, L S

    2014-07-01

    In 2001, the Norwegian Goat Health Service initiated the Healthier Goats program (HG), with the aim of eradicating caprine arthritis encephalitis, caseous lymphadenitis, and Johne's disease (caprine paratuberculosis) in Norwegian goat herds. The aim of the present study was to explore how control and eradication of the above-mentioned diseases by enrolling in HG affected milk yield by comparison with herds not enrolled in HG. Lactation curves were modeled using a multilevel cubic spline regression model where farm, goat, and lactation were included as random effect parameters. The data material contained 135,446 registrations of daily milk yield from 28,829 lactations in 43 herds. The multilevel cubic spline regression model was applied to 4 categories of data: enrolled early, control early, enrolled late, and control late. For enrolled herds, the early and late notations refer to the situation before and after enrolling in HG; for nonenrolled herds (controls), they refer to development over time, independent of HG. Total milk yield increased in the enrolled herds after eradication: the total milk yields in the fourth lactation were 634.2 and 873.3 kg in enrolled early and enrolled late herds, respectively, and 613.2 and 701.4 kg in the control early and control late herds, respectively. Day of peak yield differed between enrolled and control herds. The day of peak yield came on d 6 of lactation for the control early category for parities 2, 3, and 4, indicating an inability of the goats to further increase their milk yield from the initial level. For enrolled herds, on the other hand, peak yield came between d 49 and 56, indicating a gradual increase in milk yield after kidding. Our results indicate that enrollment in the HG disease eradication program improved the milk yield of dairy goats considerably, and that the multilevel cubic spline regression was a suitable model for exploring effects of disease control and eradication on milk yield. Copyright © 2014

  16. Mathematical models for estimating earthquake casualties and damage cost through regression analysis using matrices

    International Nuclear Information System (INIS)

    Urrutia, J D; Bautista, L A; Baccay, E B

    2014-01-01

    The aim of this study was to develop mathematical models for estimating earthquake casualties such as death, number of injured persons, affected families and total cost of damage. To quantify the direct damages from earthquakes to human beings and properties given the magnitude, intensity, depth of focus, location of epicentre and time duration, the regression models were made. The researchers formulated models through regression analysis using matrices and used α = 0.01. The study considered thirty destructive earthquakes that hit the Philippines from the inclusive years 1968 to 2012. Relevant data about these said earthquakes were obtained from Philippine Institute of Volcanology and Seismology. Data on damages and casualties were gathered from the records of National Disaster Risk Reduction and Management Council. This study will be of great value in emergency planning, initiating and updating programs for earthquake hazard reduction in the Philippines, which is an earthquake-prone country.

  17. Support vector regression model based predictive control of water level of U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir, E-mail: kadir.kavaklioglu@pau.edu.tr

    2014-10-15

    Highlights: • Water level of U-tube steam generators was controlled in a model predictive fashion. • Models for steam generator water level were built using support vector regression. • Cost function minimization for future optimal controls was performed by using the steepest descent method. • The results indicated the feasibility of the proposed method. - Abstract: A predictive control algorithm using support vector regression based models was proposed for controlling the water level of U-tube steam generators of pressurized water reactors. Steam generator data were obtained using a transfer function model of U-tube steam generators. Support vector regression based models were built using a time series type model structure for five different operating powers. Feedwater flow controls were calculated by minimizing a cost function that includes the level error, the feedwater change and the mismatch between feedwater and steam flow rates. Proposed algorithm was applied for a scenario consisting of a level setpoint change and a steam flow disturbance. The results showed that steam generator level can be controlled at all powers effectively by the proposed method.

  18. Modeling Complex Time Limits

    Directory of Open Access Journals (Sweden)

    Oleg Svatos

    2013-01-01

    Full Text Available In this paper we analyze complexity of time limits we can find especially in regulated processes of public administration. First we review the most popular process modeling languages. There is defined an example scenario based on the current Czech legislature which is then captured in discussed process modeling languages. Analysis shows that the contemporary process modeling languages support capturing of the time limit only partially. This causes troubles to analysts and unnecessary complexity of the models. Upon unsatisfying results of the contemporary process modeling languages we analyze the complexity of the time limits in greater detail and outline lifecycles of a time limit using the multiple dynamic generalizations pattern. As an alternative to the popular process modeling languages there is presented PSD process modeling language, which supports the defined lifecycles of a time limit natively and therefore allows keeping the models simple and easy to understand.

  19. Beta Regression Finite Mixture Models of Polarization and Priming

    Science.gov (United States)

    Smithson, Michael; Merkle, Edgar C.; Verkuilen, Jay

    2011-01-01

    This paper describes the application of finite-mixture general linear models based on the beta distribution to modeling response styles, polarization, anchoring, and priming effects in probability judgments. These models, in turn, enhance our capacity for explicitly testing models and theories regarding the aforementioned phenomena. The mixture…

  20. 10 km running performance predicted by a multiple linear regression model with allometrically adjusted variables.

    Science.gov (United States)

    Abad, Cesar C C; Barros, Ronaldo V; Bertuzzi, Romulo; Gagliardi, João F L; Lima-Silva, Adriano E; Lambert, Mike I; Pires, Flavio O

    2016-06-01

    The aim of this study was to verify the power of VO 2max , peak treadmill running velocity (PTV), and running economy (RE), unadjusted or allometrically adjusted, in predicting 10 km running performance. Eighteen male endurance runners performed: 1) an incremental test to exhaustion to determine VO 2max and PTV; 2) a constant submaximal run at 12 km·h -1 on an outdoor track for RE determination; and 3) a 10 km running race. Unadjusted (VO 2max , PTV and RE) and adjusted variables (VO 2max 0.72 , PTV 0.72 and RE 0.60 ) were investigated through independent multiple regression models to predict 10 km running race time. There were no significant correlations between 10 km running time and either the adjusted or unadjusted VO 2max . Significant correlations (p 0.84 and power > 0.88. The allometrically adjusted predictive model was composed of PTV 0.72 and RE 0.60 and explained 83% of the variance in 10 km running time with a standard error of the estimate (SEE) of 1.5 min. The unadjusted model composed of a single PVT accounted for 72% of the variance in 10 km running time (SEE of 1.9 min). Both regression models provided powerful estimates of 10 km running time; however, the unadjusted PTV may provide an uncomplicated estimation.

  1. A regressive methodology for estimating missing data in rainfall daily time series

    Science.gov (United States)

    Barca, E.; Passarella, G.

    2009-04-01

    The "presence" of gaps in environmental data time series represents a very common, but extremely critical problem, since it can produce biased results (Rubin, 1976). Missing data plagues almost all surveys. The problem is how to deal with missing data once it has been deemed impossible to recover the actual missing values. Apart from the amount of missing data, another issue which plays an important role in the choice of any recovery approach is the evaluation of "missingness" mechanisms. When data missing is conditioned by some other variable observed in the data set (Schafer, 1997) the mechanism is called MAR (Missing at Random). Otherwise, when the missingness mechanism depends on the actual value of the missing data, it is called NCAR (Not Missing at Random). This last is the most difficult condition to model. In the last decade interest arose in the estimation of missing data by using regression (single imputation). More recently multiple imputation has become also available, which returns a distribution of estimated values (Scheffer, 2002). In this paper an automatic methodology for estimating missing data is presented. In practice, given a gauging station affected by missing data (target station), the methodology checks the randomness of the missing data and classifies the "similarity" between the target station and the other gauging stations spread over the study area. Among different methods useful for defining the similarity degree, whose effectiveness strongly depends on the data distribution, the Spearman correlation coefficient was chosen. Once defined the similarity matrix, a suitable, nonparametric, univariate, and regressive method was applied in order to estimate missing data in the target station: the Theil method (Theil, 1950). Even though the methodology revealed to be rather reliable an improvement of the missing data estimation can be achieved by a generalization. A first possible improvement consists in extending the univariate technique to

  2. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  3. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Issaku Kawashima

    2017-07-01

    Full Text Available Mind-wandering (MW, task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  4. Eigenvector Spatial Filtering Regression Modeling of Ground PM2.5 Concentrations Using Remotely Sensed Data

    Directory of Open Access Journals (Sweden)

    Jingyi Zhang

    2018-06-01

    Full Text Available This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF method to estimate ground PM2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM2.5 analysis and prediction.

  5. Eigenvector Spatial Filtering Regression Modeling of Ground PM2.5 Concentrations Using Remotely Sensed Data.

    Science.gov (United States)

    Zhang, Jingyi; Li, Bin; Chen, Yumin; Chen, Meijie; Fang, Tao; Liu, Yongfeng

    2018-06-11

    This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF) method to estimate ground PM 2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR) models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM 2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM 2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM 2.5 analysis and prediction.

  6. Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model.

    Science.gov (United States)

    Suchetana, Bihu; Rajagopalan, Balaji; Silverstein, JoAnn

    2017-11-15

    A regression tree-based diagnostic approach is developed to evaluate factors affecting US wastewater treatment plant compliance with ammonia discharge permit limits using Discharge Monthly Report (DMR) data from a sample of 106 municipal treatment plants for the period of 2004-2008. Predictor variables used to fit the regression tree are selected using random forests, and consist of the previous month's effluent ammonia, influent flow rates and plant capacity utilization. The tree models are first used to evaluate compliance with existing ammonia discharge standards at each facility and then applied assuming more stringent discharge limits, under consideration in many states. The model predicts that the ability to meet both current and future limits depends primarily on the previous month's treatment performance. With more stringent discharge limits predicted ammonia concentration relative to the discharge limit, increases. In-sample validation shows that the regression trees can provide a median classification accuracy of >70%. The regression tree model is validated using ammonia discharge data from an operating wastewater treatment plant and is able to accurately predict the observed ammonia discharge category approximately 80% of the time, indicating that the regression tree model can be applied to predict compliance for individual treatment plants providing practical guidance for utilities and regulators with an interest in controlling ammonia discharges. The proposed methodology is also used to demonstrate how to delineate reliable sources of demand and supply in a point source-to-point source nutrient credit trading scheme, as well as how planners and decision makers can set reasonable discharge limits in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Multivariate Multiple Regression Models for a Big Data-Empowered SON Framework in Mobile Wireless Networks

    Directory of Open Access Journals (Sweden)

    Yoonsu Shin

    2016-01-01

    Full Text Available In the 5G era, the operational cost of mobile wireless networks will significantly increase. Further, massive network capacity and zero latency will be needed because everything will be connected to mobile networks. Thus, self-organizing networks (SON are needed, which expedite automatic operation of mobile wireless networks, but have challenges to satisfy the 5G requirements. Therefore, researchers have proposed a framework to empower SON using big data. The recent framework of a big data-empowered SON analyzes the relationship between key performance indicators (KPIs and related network parameters (NPs using machine-learning tools, and it develops regression models using a Gaussian process with those parameters. The problem, however, is that the methods of finding the NPs related to the KPIs differ individually. Moreover, the Gaussian process regression model cannot determine the relationship between a KPI and its various related NPs. In this paper, to solve these problems, we proposed multivariate multiple regression models to determine the relationship between various KPIs and NPs. If we assume one KPI and multiple NPs as one set, the proposed models help us process multiple sets at one time. Also, we can find out whether some KPIs are conflicting or not. We implement the proposed models using MapReduce.

  8. Forecast Model of Urban Stagnant Water Based on Logistic Regression

    Directory of Open Access Journals (Sweden)

    Liu Pan

    2017-01-01

    Full Text Available With the development of information technology, the construction of water resource system has been gradually carried out. In the background of big data, the work of water information needs to carry out the process of quantitative to qualitative change. Analyzing the correlation of data and exploring the deep value of data which are the key of water information’s research. On the basis of the research on the water big data and the traditional data warehouse architecture, we try to find out the connection of different data source. According to the temporal and spatial correlation of stagnant water and rainfall, we use spatial interpolation to integrate data of stagnant water and rainfall which are from different data source and different sensors, then use logistic regression to find out the relationship between them.

  9. Parental Vaccine Acceptance: A Logistic Regression Model Using Previsit Decisions.

    Science.gov (United States)

    Lee, Sara; Riley-Behringer, Maureen; Rose, Jeanmarie C; Meropol, Sharon B; Lazebnik, Rina

    2017-07-01

    This study explores how parents' intentions regarding vaccination prior to their children's visit were associated with actual vaccine acceptance. A convenience sample of parents accompanying 6-week-old to 17-year-old children completed a written survey at 2 pediatric practices. Using hierarchical logistic regression, for hospital-based participants (n = 216), vaccine refusal history ( P < .01) and vaccine decision made before the visit ( P < .05) explained 87% of vaccine refusals. In community-based participants (n = 100), vaccine refusal history ( P < .01) explained 81% of refusals. Over 1 in 5 parents changed their minds about vaccination during the visit. Thirty parents who were previous vaccine refusers accepted current vaccines, and 37 who had intended not to vaccinate choose vaccination. Twenty-nine parents without a refusal history declined vaccines, and 32 who did not intend to refuse before the visit declined vaccination. Future research should identify key factors to nudge parent decision making in favor of vaccination.

  10. Bootstrapped neural nets versus regression kriging in the digital mapping of pedological attributes: the automatic and time-consuming perspectives

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; Manna, Piero; Terribile, Fabio

    2013-04-01

    Digital soil mapping procedures are widespread used to build two-dimensional continuous maps about several pedological attributes. Our work addressed a regression kriging (RK) technique and a bootstrapped artificial neural network approach in order to evaluate and compare (i) the accuracy of prediction, (ii) the susceptibility of being included in automatic engines (e.g. to constitute web processing services), and (iii) the time cost needed for calibrating models and for making predictions. Regression kriging is maybe the most widely used geostatistical technique in the digital soil mapping literature. Here we tried to apply the EBLUP regression kriging as it is deemed to be the most statistically sound RK flavor by pedometricians. An unusual multi-parametric and nonlinear machine learning approach was accomplished, called BAGAP (Bootstrap aggregating Artificial neural networks with Genetic Algorithms and Principal component regression). BAGAP combines a selected set of weighted neural nets having specified characteristics to yield an ensemble response. The purpose of applying these two particular models is to ascertain whether and how much a more cumbersome machine learning method could be much promising in making more accurate/precise predictions. Being aware of the difficulty to handle objects based on EBLUP-RK as well as BAGAP when they are embedded in environmental applications, we explore the susceptibility of them in being wrapped within Web Processing Services. Two further kinds of aspects are faced for an exhaustive evaluation and comparison: automaticity and time of calculation with/without high performance computing leverage.

  11. Regression Modeling of EDM Process for AISI D2 Tool Steel with RSM

    Directory of Open Access Journals (Sweden)

    Shakir M. Mousa

    2018-01-01

    Full Text Available In this paper, Response Surface Method (RSM is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T. [Gr, Cu and CuW], pulse duration of current (Ip, pulse duration on time (Ton, and pulse duration off time (Toff on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra. Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of Variance (ANOVA at the 5 % confidence interval. The outcomes discover that Surface Roughness (Ra is much more impacted by E.T., Ton, Toff, Ip and little of their interactions action or influence. To predict the average Surface Roughness (Ra, a mathematical regression model was developed. Furthermore, for saving in time, the created model could be utilized for the choice of the high levels in the EDM procedure. The model adequacy was extremely agreeable as the constant Coefficient of Determination (R2 is observed to be 99.72% and adjusted R2-measurement (R2adj 99.60%.

  12. Time-trend of melanoma screening practice by primary care physicians: A meta-regression analysis

    OpenAIRE

    Valachis, Antonis; Mauri, Davide; Karampoiki, Vassiliki; Polyzos, Nikolaos P; Cortinovis, Ivan; Koukourakis, Georgios; Zacharias, Georgios; Xilomenos, Apostolos; Tsappi, Maria; Casazza, Giovanni

    2009-01-01

    Objective To assess whether the proportion of primary care physicians implementing full body skin examination (FBSE) to screen for melanoma changed over time. Methods Meta-regression analyses of available data. Data Sources: MEDLINE, ISI, Cochrane Central Register of Controlled Trials. Results Fifteen studies surveying 10,336 physicians were included in the analyses. Overall, 15%?82% of them reported to perform FBSE to screen for melanoma. The proportion of physicians using FBSE screening ten...

  13. Adaptive robust polynomial regression for power curve modeling with application to wind power forecasting

    DEFF Research Database (Denmark)

    Xu, Man; Pinson, Pierre; Lu, Zongxiang

    2016-01-01

    of the lack of time adaptivity. In this paper, a refined local polynomial regression algorithm is proposed to yield an adaptive robust model of the time-varying scattered power curve for forecasting applications. The time adaptivity of the algorithm is considered with a new data-driven bandwidth selection......Wind farm power curve modeling, which characterizes the relationship between meteorological variables and power production, is a crucial procedure for wind power forecasting. In many cases, power curve modeling is more impacted by the limited quality of input data rather than the stochastic nature...... of the energy conversion process. Such nature may be due the varying wind conditions, aging and state of the turbines, etc. And, an equivalent steady-state power curve, estimated under normal operating conditions with the intention to filter abnormal data, is not sufficient to solve the problem because...

  14. Cluster regression model and level fluctuation features of Van Lake, Turkey

    Directory of Open Access Journals (Sweden)

    Z. Şen

    1999-02-01

    Full Text Available Lake water levels change under the influences of natural and/or anthropogenic environmental conditions. Among these influences are the climate change, greenhouse effects and ozone layer depletions which are reflected in the hydrological cycle features over the lake drainage basins. Lake levels are among the most significant hydrological variables that are influenced by different atmospheric and environmental conditions. Consequently, lake level time series in many parts of the world include nonstationarity components such as shifts in the mean value, apparent or hidden periodicities. On the other hand, many lake level modeling techniques have a stationarity assumption. The main purpose of this work is to develop a cluster regression model for dealing with nonstationarity especially in the form of shifting means. The basis of this model is the combination of transition probability and classical regression technique. Both parts of the model are applied to monthly level fluctuations of Lake Van in eastern Turkey. It is observed that the cluster regression procedure does preserve the statistical properties and the transitional probabilities that are indistinguishable from the original data.Key words. Hydrology (hydrologic budget; stochastic processes · Meteorology and atmospheric dynamics (ocean-atmosphere interactions

  15. Cluster regression model and level fluctuation features of Van Lake, Turkey

    Directory of Open Access Journals (Sweden)

    Z. Şen

    Full Text Available Lake water levels change under the influences of natural and/or anthropogenic environmental conditions. Among these influences are the climate change, greenhouse effects and ozone layer depletions which are reflected in the hydrological cycle features over the lake drainage basins. Lake levels are among the most significant hydrological variables that are influenced by different atmospheric and environmental conditions. Consequently, lake level time series in many parts of the world include nonstationarity components such as shifts in the mean value, apparent or hidden periodicities. On the other hand, many lake level modeling techniques have a stationarity assumption. The main purpose of this work is to develop a cluster regression model for dealing with nonstationarity especially in the form of shifting means. The basis of this model is the combination of transition probability and classical regression technique. Both parts of the model are applied to monthly level fluctuations of Lake Van in eastern Turkey. It is observed that the cluster regression procedure does preserve the statistical properties and the transitional probabilities that are indistinguishable from the original data.

    Key words. Hydrology (hydrologic budget; stochastic processes · Meteorology and atmospheric dynamics (ocean-atmosphere interactions

  16. Misspecified poisson regression models for large-scale registry data

    DEFF Research Database (Denmark)

    Grøn, Randi; Gerds, Thomas A.; Andersen, Per K.

    2016-01-01

    working models that are then likely misspecified. To support and improve conclusions drawn from such models, we discuss methods for sensitivity analysis, for estimation of average exposure effects using aggregated data, and a semi-parametric bootstrap method to obtain robust standard errors. The methods...

  17. Logistic regression model for detecting radon prone areas in Ireland.

    Science.gov (United States)

    Elío, J; Crowley, Q; Scanlon, R; Hodgson, J; Long, S

    2017-12-01

    A new high spatial resolution radon risk map of Ireland has been developed, based on a combination of indoor radon measurements (n=31,910) and relevant geological information (i.e. Bedrock Geology, Quaternary Geology, soil permeability and aquifer type). Logistic regression was used to predict the probability of having an indoor radon concentration above the national reference level of 200Bqm -3 in Ireland. The four geological datasets evaluated were found to be statistically significant, and, based on combinations of these four variables, the predicted probabilities ranged from 0.57% to 75.5%. Results show that the Republic of Ireland may be divided in three main radon risk categories: High (HR), Medium (MR) and Low (LR). The probability of having an indoor radon concentration above 200Bqm -3 in each area was found to be 19%, 8% and 3%; respectively. In the Republic of Ireland, the population affected by radon concentrations above 200Bqm -3 is estimated at ca. 460k (about 10% of the total population). Of these, 57% (265k), 35% (160k) and 8% (35k) are in High, Medium and Low Risk Areas, respectively. Our results provide a high spatial resolution utility which permit customised radon-awareness information to be targeted at specific geographic areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Science.gov (United States)

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Development of a Modified Kernel Regression Model for a Robust Signal Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ibrahim; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The demand for robust and resilient performance has led to the use of online-monitoring techniques to monitor the process parameters and signal validation. On-line monitoring and signal validation techniques are the two important terminologies in process and equipment monitoring. These techniques are automated methods of monitoring instrument performance while the plant is operating. To implementing these techniques, several empirical models are used. One of these models is nonparametric regression model, otherwise known as kernel regression (KR). Unlike parametric models, KR is an algorithmic estimation procedure which assumes no significant parameters, and it needs no training process after its development when new observations are prepared; which is good for a system characteristic of changing due to ageing phenomenon. Although KR is used and performed excellently when applied to steady state or normal operating data, it has limitation in time-varying data that has several repetition of the same signal, especially if those signals are used to infer the other signals. The convectional KR has limitation in correctly estimating the dependent variable when time-varying data with repeated values are used to estimate the dependent variable especially in signal validation and monitoring. Therefore, we presented here in this work a modified KR that can resolve this issue which can also be feasible in time domain. Data are first transformed prior to the Euclidian distance evaluation considering their slopes/changes with respect to time. The performance of the developed model is evaluated and compared with that of conventional KR using both the lab experimental data and the real time data from CNS provided by KAERI. The result shows that the proposed developed model, having demonstrated high performance accuracy than that of conventional KR, is capable of resolving the identified limitation with convectional KR. We also discovered that there is still need to further

  20. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... This thesis draws on available data from the electronics integrated circuit industry to attempt to assess whether statistical modeling offers a viable method for predicting the presence of DMSMS...

  1. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    International Nuclear Information System (INIS)

    Harlim, John; Mahdi, Adam; Majda, Andrew J.

    2014-01-01

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model

  2. Weighted functional linear regression models for gene-based association analysis.

    Science.gov (United States)

    Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

    2018-01-01

    Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

  3. Online Support Vector Regression with Varying Parameters for Time-Dependent Data

    International Nuclear Information System (INIS)

    Omitaomu, Olufemi A.; Jeong, Myong K.; Badiru, Adedeji B.

    2011-01-01

    Support vector regression (SVR) is a machine learning technique that continues to receive interest in several domains including manufacturing, engineering, and medicine. In order to extend its application to problems in which datasets arrive constantly and in which batch processing of the datasets is infeasible or expensive, an accurate online support vector regression (AOSVR) technique was proposed. The AOSVR technique efficiently updates a trained SVR function whenever a sample is added to or removed from the training set without retraining the entire training data. However, the AOSVR technique assumes that the new samples and the training samples are of the same characteristics; hence, the same value of SVR parameters is used for training and prediction. This assumption is not applicable to data samples that are inherently noisy and non-stationary such as sensor data. As a result, we propose Accurate On-line Support Vector Regression with Varying Parameters (AOSVR-VP) that uses varying SVR parameters rather than fixed SVR parameters, and hence accounts for the variability that may exist in the samples. To accomplish this objective, we also propose a generalized weight function to automatically update the weights of SVR parameters in on-line monitoring applications. The proposed function allows for lower and upper bounds for SVR parameters. We tested our proposed approach and compared results with the conventional AOSVR approach using two benchmark time series data and sensor data from nuclear power plant. The results show that using varying SVR parameters is more applicable to time dependent data.

  4. Data to support "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations & Biological Condition"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spreadsheets are included here to support the manuscript "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition". This...

  5. Estimation of Stature from Foot Dimensions and Stature among South Indian Medical Students Using Regression Models

    Directory of Open Access Journals (Sweden)

    Rajesh D. R

    2015-01-01

    Full Text Available Background: At times fragments of soft tissues are found disposed off in the open, in ditches at the crime scene and the same are brought to forensic experts for the purpose of identification and such type of cases pose a real challenge. Objectives: This study was aimed at developing a methodology which could help in personal identification by studying the relation between foot dimensions and stature among south subjects using regression models. Material and Methods: Stature and foot length of 100 subjects (age range 18-22 years were measured. Linear regression equations for stature estimation were calculated. Result: The correlation coefficients between stature and foot lengths were found to be positive and statistically significant. Height = 98.159 + 3.746 × FLRT (r = 0.821 and Height = 91.242 + 3.284 × FLRT (r = 0.837 are the regression formulas from foot lengths for males and females respectively. Conclusion: The regression equation derived in the study can be used reliably for estimation of stature in a diverse population group thus would be of immense value in the field of personal identification especially from mutilated bodies or fragmentary remains.

  6. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

    Science.gov (United States)

    Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

    2010-10-01

    This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

  7. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

    Science.gov (United States)

    Saunders, Christina T; Blume, Jeffrey D

    2017-10-26

    Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

  8. Focused information criterion and model averaging based on weighted composite quantile regression

    KAUST Repository

    Xu, Ganggang; Wang, Suojin; Huang, Jianhua Z.

    2013-01-01

    We study the focused information criterion and frequentist model averaging and their application to post-model-selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non

  9. Cox's regression model for dynamics of grouped unemployment data

    Czech Academy of Sciences Publication Activity Database

    Volf, Petr

    2003-01-01

    Roč. 10, č. 19 (2003), s. 151-162 ISSN 1212-074X R&D Projects: GA ČR GA402/01/0539 Institutional research plan: CEZ:AV0Z1075907 Keywords : mathematical statistics * survival analysis * Cox's model Subject RIV: BB - Applied Statistics, Operational Research

  10. Multiple Linear Regression Model for Estimating the Price of a ...

    African Journals Online (AJOL)

    Ghana Mining Journal ... In the modeling, the Ordinary Least Squares (OLS) normality assumption which could introduce errors in the statistical analyses was dealt with by log transformation of the data, ensuring the data is normally ... The resultant MLRM is: Ŷi MLRM = (X'X)-1X'Y(xi') where X is the sample data matrix.

  11. Inflation, Forecast Intervals and Long Memory Regression Models

    NARCIS (Netherlands)

    C.S. Bos (Charles); Ph.H.B.F. Franses (Philip Hans); M. Ooms (Marius)

    2001-01-01

    textabstractWe examine recursive out-of-sample forecasting of monthly postwar U.S. core inflation and log price levels. We use the autoregressive fractionally integrated moving average model with explanatory variables (ARFIMAX). Our analysis suggests a significant explanatory power of leading

  12. Inflation, Forecast Intervals and Long Memory Regression Models

    NARCIS (Netherlands)

    Ooms, M.; Bos, C.S.; Franses, P.H.

    2003-01-01

    We examine recursive out-of-sample forecasting of monthly postwar US core inflation and log price levels. We use the autoregressive fractionally integrated moving average model with explanatory variables (ARFIMAX). Our analysis suggests a significant explanatory power of leading indicators

  13. Data-driven modelling of LTI systems using symbolic regression

    NARCIS (Netherlands)

    Khandelwal, D.; Toth, R.; Van den Hof, P.M.J.

    2017-01-01

    The aim of this project is to automate the task of data-driven identification of dynamical systems. The underlying goal is to develop an identification tool that models a physical system without distinguishing between classes of systems such as linear, nonlinear or possibly even hybrid systems. Such

  14. Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures.

    Science.gov (United States)

    Liu, Shelley H; Bobb, Jennifer F; Lee, Kyu Ha; Gennings, Chris; Claus Henn, Birgit; Bellinger, David; Austin, Christine; Schnaas, Lourdes; Tellez-Rojo, Martha M; Hu, Howard; Wright, Robert O; Arora, Manish; Coull, Brent A

    2018-07-01

    The impact of neurotoxic chemical mixtures on children's health is a critical public health concern. It is well known that during early life, toxic exposures may impact cognitive function during critical time intervals of increased vulnerability, known as windows of susceptibility. Knowledge on time windows of susceptibility can help inform treatment and prevention strategies, as chemical mixtures may affect a developmental process that is operating at a specific life phase. There are several statistical challenges in estimating the health effects of time-varying exposures to multi-pollutant mixtures, such as: multi-collinearity among the exposures both within time points and across time points, and complex exposure-response relationships. To address these concerns, we develop a flexible statistical method, called lagged kernel machine regression (LKMR). LKMR identifies critical exposure windows of chemical mixtures, and accounts for complex non-linear and non-additive effects of the mixture at any given exposure window. Specifically, LKMR estimates how the effects of a mixture of exposures change with the exposure time window using a Bayesian formulation of a grouped, fused lasso penalty within a kernel machine regression (KMR) framework. A simulation study demonstrates the performance of LKMR under realistic exposure-response scenarios, and demonstrates large gains over approaches that consider each time window separately, particularly when serial correlation among the time-varying exposures is high. Furthermore, LKMR demonstrates gains over another approach that inputs all time-specific chemical concentrations together into a single KMR. We apply LKMR to estimate associations between neurodevelopment and metal mixtures in Early Life Exposures in Mexico and Neurotoxicology, a prospective cohort study of child health in Mexico City.

  15. Nonparametric Estimation of Regression Parameters in Measurement Error Models

    Czech Academy of Sciences Publication Activity Database

    Ehsanes Saleh, A.K.M.D.; Picek, J.; Kalina, Jan

    2009-01-01

    Roč. 67, č. 2 (2009), s. 177-200 ISSN 0026-1424 Grant - others:GA AV ČR(CZ) IAA101120801; GA MŠk(CZ) LC06024 Institutional research plan: CEZ:AV0Z10300504 Keywords : asymptotic relative efficiency(ARE) * asymptotic theory * emaculate mode * Me model * R-estimation * Reliabilty ratio(RR) Subject RIV: BB - Applied Statistics, Operational Research

  16. Shaofu Zhuyu Decoction Regresses Endometriotic Lesions in a Rat Model

    Directory of Open Access Journals (Sweden)

    Guanghui Zhu

    2018-01-01

    Full Text Available The current therapies for endometriosis are restricted by various side effects and treatment outcome has been less than satisfactory. Shaofu Zhuyu Decoction (SZD, a classic traditional Chinese medicinal (TCM prescription for dysmenorrhea, has been widely used in clinical practice by TCM doctors to relieve symptoms of endometriosis. The present study aimed to investigate the effects of SZD on a rat model of endometriosis. Forty-eight female Sprague-Dawley rats with regular estrous cycles went through autotransplantation operation to establish endometriosis model. Then 38 rats with successful ectopic implants were randomized into two groups: vehicle- and SZD-treated groups. The latter were administered SZD through oral gavage for 4 weeks. By the end of the treatment period, the volume of the endometriotic lesions was measured, the histopathological properties of the ectopic endometrium were evaluated, and levels of proliferating cell nuclear antigen (PCNA, CD34, and hypoxia inducible factor- (HIF- 1α in the ectopic endometrium were detected with immunohistochemistry. Furthermore, apoptosis was assessed using the terminal deoxynucleotidyl transferase (TdT deoxyuridine 5′-triphosphate (dUTP nick-end labeling (TUNEL assay. In this study, SZD significantly reduced the size of ectopic lesions in rats with endometriosis, inhibited cell proliferation, increased cell apoptosis, and reduced microvessel density and HIF-1α expression. It suggested that SZD could be an effective therapy for the treatment and prevention of endometriosis recurrence.

  17. [Application of detecting and taking overdispersion into account in Poisson regression model].

    Science.gov (United States)

    Bouche, G; Lepage, B; Migeot, V; Ingrand, P

    2009-08-01

    Researchers often use the Poisson regression model to analyze count data. Overdispersion can occur when a Poisson regression model is used, resulting in an underestimation of variance of the regression model parameters. Our objective was to take overdispersion into account and assess its impact with an illustration based on the data of a study investigating the relationship between use of the Internet to seek health information and number of primary care consultations. Three methods, overdispersed Poisson, a robust estimator, and negative binomial regression, were performed to take overdispersion into account in explaining variation in the number (Y) of primary care consultations. We tested overdispersion in the Poisson regression model using the ratio of the sum of Pearson residuals over the number of degrees of freedom (chi(2)/df). We then fitted the three models and compared parameter estimation to the estimations given by Poisson regression model. Variance of the number of primary care consultations (Var[Y]=21.03) was greater than the mean (E[Y]=5.93) and the chi(2)/df ratio was 3.26, which confirmed overdispersion. Standard errors of the parameters varied greatly between the Poisson regression model and the three other regression models. Interpretation of estimates from two variables (using the Internet to seek health information and single parent family) would have changed according to the model retained, with significant levels of 0.06 and 0.002 (Poisson), 0.29 and 0.09 (overdispersed Poisson), 0.29 and 0.13 (use of a robust estimator) and 0.45 and 0.13 (negative binomial) respectively. Different methods exist to solve the problem of underestimating variance in the Poisson regression model when overdispersion is present. The negative binomial regression model seems to be particularly accurate because of its theorical distribution ; in addition this regression is easy to perform with ordinary statistical software packages.

  18. Linking Simple Economic Theory Models and the Cointegrated Vector AutoRegressive Model

    DEFF Research Database (Denmark)

    Møller, Niels Framroze

    This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its stru....... Further fundamental extensions and advances to more sophisticated theory models, such as those related to dynamics and expectations (in the structural relations) are left for future papers......This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its......, it is demonstrated how other controversial hypotheses such as Rational Expectations can be formulated directly as restrictions on the CVAR-parameters. A simple example of a "Neoclassical synthetic" AS-AD model is also formulated. Finally, the partial- general equilibrium distinction is related to the CVAR as well...

  19. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Science.gov (United States)

    Chardon, Jérémy; Hingray, Benoit; Favre, Anne-Catherine

    2018-01-01

    Statistical downscaling models (SDMs) are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  20. Capacitance Regression Modelling Analysis on Latex from Selected Rubber Tree Clones

    International Nuclear Information System (INIS)

    Rosli, A D; Baharudin, R; Hashim, H; Khairuzzaman, N A; Mohd Sampian, A F; Abdullah, N E; Kamaru'zzaman, M; Sulaiman, M S

    2015-01-01

    This paper investigates the capacitance regression modelling performance of latex for various rubber tree clones, namely clone 2002, 2008, 2014 and 3001. Conventionally, the rubber tree clones identification are based on observation towards tree features such as shape of leaf, trunk, branching habit and pattern of seeds texture. The former method requires expert persons and very time-consuming. Currently, there is no sensing device based on electrical properties that can be employed to measure different clones from latex samples. Hence, with a hypothesis that the dielectric constant of each clone varies, this paper discusses the development of a capacitance sensor via Capacitance Comparison Bridge (known as capacitance sensor) to measure an output voltage of different latex samples. The proposed sensor is initially tested with 30ml of latex sample prior to gradually addition of dilution water. The output voltage and capacitance obtained from the test are recorded and analyzed using Simple Linear Regression (SLR) model. This work outcome infers that latex clone of 2002 has produced the highest and reliable linear regression line with determination coefficient of 91.24%. In addition, the study also found that the capacitive elements in latex samples deteriorate if it is diluted with higher volume of water. (paper)

  1. Using the classical linear regression model in analysis of the dependences of conveyor belt life

    Directory of Open Access Journals (Sweden)

    Miriam Andrejiová

    2013-12-01

    Full Text Available The paper deals with the classical linear regression model of the dependence of conveyor belt life on some selected parameters: thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material. The first part of the article is about regression model design, point and interval estimation of parameters, verification of statistical significance of the model, and about the parameters of the proposed regression model. The second part of the article deals with identification of influential and extreme values that can have an impact on estimation of regression model parameters. The third part focuses on assumptions of the classical regression model, i.e. on verification of independence assumptions, normality and homoscedasticity of residuals.

  2. Time series regression-based pairs trading in the Korean equities market

    Science.gov (United States)

    Kim, Saejoon; Heo, Jun

    2017-07-01

    Pairs trading is an instance of statistical arbitrage that relies on heavy quantitative data analysis to profit by capitalising low-risk trading opportunities provided by anomalies of related assets. A key element in pairs trading is the rule by which open and close trading triggers are defined. This paper investigates the use of time series regression to define the rule which has previously been identified with fixed threshold-based approaches. Empirical results indicate that our approach may yield significantly increased excess returns compared to ones obtained by previous approaches on large capitalisation stocks in the Korean equities market.

  3. Underwater Cylindrical Object Detection Using the Spectral Features of Active Sonar Signals with Logistic Regression Models

    Directory of Open Access Journals (Sweden)

    Yoojeong Seo

    2018-01-01

    Full Text Available The issue of detecting objects bottoming on the sea floor is significant in various fields including civilian and military areas. The objective of this study is to investigate the logistic regression model to discriminate the target from the clutter and to verify the possibility of applying the model trained by the simulated data generated by the mathematical model to the real experimental data because it is not easy to obtain sufficient data in the underwater field. In the first stage of this study, when the clutter signal energy is so strong that the detection of a target is difficult, the logistic regression model is employed to distinguish the strong clutter signal and the target signal. Previous studies have found that if the clutter energy is larger, false detection occurs even for the various existing detection schemes. For this reason, the discrete Fourier transform (DFT magnitude spectrum of acoustic signals received by active sonar is applied to train the model to distinguish whether the received signal contains a target signal or not. The goodness of fit of the model is verified in terms of receiver operation characteristic (ROC, area under ROC curve (AUC, and classification table. The detection performance of the proposed model is evaluated in terms of detection rate according to target to clutter ratio (TCR. Furthermore, the real experimental data are employed to test the proposed approach. When using the experimental data to test the model, the logistic regression model is trained by the simulated data that are generated based on the mathematical model for the backscattering of the cylindrical object. The mathematical model is developed according to the size of the cylinder used in the experiment. Since the information on the experimental environment including the sound speed, the sediment type and such is not available, once simulated data are generated under various conditions, valid simulated data are selected using 70% of the

  4. Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling.

    Science.gov (United States)

    Melcher, Michael; Scharl, Theresa; Luchner, Markus; Striedner, Gerald; Leisch, Friedrich

    2017-02-01

    The quality of biopharmaceuticals and patients' safety are of highest priority and there are tremendous efforts to replace empirical production process designs by knowledge-based approaches. Main challenge in this context is that real-time access to process variables related to product quality and quantity is severely limited. To date comprehensive on- and offline monitoring platforms are used to generate process data sets that allow for development of mechanistic and/or data driven models for real-time prediction of these important quantities. Ultimate goal is to implement model based feed-back control loops that facilitate online control of product quality. In this contribution, we explore structured additive regression (STAR) models in combination with boosting as a variable selection tool for modeling the cell dry mass, product concentration, and optical density on the basis of online available process variables and two-dimensional fluorescence spectroscopic data. STAR models are powerful extensions of linear models allowing for inclusion of smooth effects or interactions between predictors. Boosting constructs the final model in a stepwise manner and provides a variable importance measure via predictor selection frequencies. Our results show that the cell dry mass can be modeled with a relative error of about ±3%, the optical density with ±6%, the soluble protein with ±16%, and the insoluble product with an accuracy of ±12%. Biotechnol. Bioeng. 2017;114: 321-334. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Statistical approach for selection of regression model during validation of bioanalytical method

    Directory of Open Access Journals (Sweden)

    Natalija Nakov

    2014-06-01

    Full Text Available The selection of an adequate regression model is the basis for obtaining accurate and reproducible results during the bionalytical method validation. Given the wide concentration range, frequently present in bioanalytical assays, heteroscedasticity of the data may be expected. Several weighted linear and quadratic regression models were evaluated during the selection of the adequate curve fit using nonparametric statistical tests: One sample rank test and Wilcoxon signed rank test for two independent groups of samples. The results obtained with One sample rank test could not give statistical justification for the selection of linear vs. quadratic regression models because slight differences between the error (presented through the relative residuals were obtained. Estimation of the significance of the differences in the RR was achieved using Wilcoxon signed rank test, where linear and quadratic regression models were treated as two independent groups. The application of this simple non-parametric statistical test provides statistical confirmation of the choice of an adequate regression model.

  6. On a Robust MaxEnt Process Regression Model with Sample-Selection

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2018-04-01

    Full Text Available In a regression analysis, a sample-selection bias arises when a dependent variable is partially observed as a result of the sample selection. This study introduces a Maximum Entropy (MaxEnt process regression model that assumes a MaxEnt prior distribution for its nonparametric regression function and finds that the MaxEnt process regression model includes the well-known Gaussian process regression (GPR model as a special case. Then, this special MaxEnt process regression model, i.e., the GPR model, is generalized to obtain a robust sample-selection Gaussian process regression (RSGPR model that deals with non-normal data in the sample selection. Various properties of the RSGPR model are established, including the stochastic representation, distributional hierarchy, and magnitude of the sample-selection bias. These properties are used in the paper to develop a hierarchical Bayesian methodology to estimate the model. This involves a simple and computationally feasible Markov chain Monte Carlo algorithm that avoids analytical or numerical derivatives of the log-likelihood function of the model. The performance of the RSGPR model in terms of the sample-selection bias correction, robustness to non-normality, and prediction, is demonstrated through results in simulations that attest to its good finite-sample performance.

  7. Predicting Antitumor Activity of Peptides by Consensus of Regression Models Trained on a Small Data Sample

    Directory of Open Access Journals (Sweden)

    Ivanka Jerić

    2011-11-01

    Full Text Available Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample.

  8. A generalized right truncated bivariate Poisson regression model with applications to health data.

    Science.gov (United States)

    Islam, M Ataharul; Chowdhury, Rafiqul I

    2017-01-01

    A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model.

  9. Testing for constant nonparametric effects in general semiparametric regression models with interactions

    KAUST Repository

    Wei, Jiawei; Carroll, Raymond J.; Maity, Arnab

    2011-01-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work

  10. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  11. EMD-regression for modelling multi-scale relationships, and application to weather-related cardiovascular mortality

    Science.gov (United States)

    Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B. M. J.

    2018-01-01

    In a number of environmental studies, relationships between natural processes are often assessed through regression analyses, using time series data. Such data are often multi-scale and non-stationary, leading to a poor accuracy of the resulting regression models and therefore to results with moderate reliability. To deal with this issue, the present paper introduces the EMD-regression methodology consisting in applying the empirical mode decomposition (EMD) algorithm on data series and then using the resulting components in regression models. The proposed methodology presents a number of advantages. First, it accounts of the issues of non-stationarity associated to the data series. Second, this approach acts as a scan for the relationship between a response variable and the predictors at different time scales, providing new insights about this relationship. To illustrate the proposed methodology it is applied to study the relationship between weather and cardiovascular mortality in Montreal, Canada. The results shed new knowledge concerning the studied relationship. For instance, they show that the humidity can cause excess mortality at the monthly time scale, which is a scale not visible in classical models. A comparison is also conducted with state of the art methods which are the generalized additive models and distributed lag models, both widely used in weather-related health studies. The comparison shows that EMD-regression achieves better prediction performances and provides more details than classical models concerning the relationship.

  12. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    Science.gov (United States)

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  13. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    Energy Technology Data Exchange (ETDEWEB)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.; Fortin, D.; Hathaway, J.; Rice, J.; Kraucunas, I.

    2017-11-01

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.

  14. Regression analysis of mixed recurrent-event and panel-count data with additive rate models.

    Science.gov (United States)

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L

    2015-03-01

    Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. © 2014, The International Biometric Society.

  15. Time-trend of melanoma screening practice by primary care physicians: a meta-regression analysis.

    Science.gov (United States)

    Valachis, Antonis; Mauri, Davide; Karampoiki, Vassiliki; Polyzos, Nikolaos P; Cortinovis, Ivan; Koukourakis, Georgios; Zacharias, Georgios; Xilomenos, Apostolos; Tsappi, Maria; Casazza, Giovanni

    2009-01-01

    To assess whether the proportion of primary care physicians implementing full body skin examination (FBSE) to screen for melanoma changed over time. Meta-regression analyses of available data. MEDLINE, ISI, Cochrane Central Register of Controlled Trials. Fifteen studies surveying 10,336 physicians were included in the analyses. Overall, 15%-82% of them reported to perform FBSE to screen for melanoma. The proportion of physicians using FBSE screening tended to decrease by 1.72% per year (P =0.086). Corresponding annual changes in European, North American, and Australian settings were -0.68% (P =0.494), -2.02% (P =0.044), and +2.59% (P =0.010), respectively. Changes were not influenced by national guide-lines. Considering the increasing incidence of melanoma and other skin malignancies, as well as their relative potential consequences, the FBSE implementation time-trend we retrieved should be considered a worrisome phenomenon.

  16. Statistical power to detect violation of the proportional hazards assumption when using the Cox regression model.

    Science.gov (United States)

    Austin, Peter C

    2018-01-01

    The use of the Cox proportional hazards regression model is widespread. A key assumption of the model is that of proportional hazards. Analysts frequently test the validity of this assumption using statistical significance testing. However, the statistical power of such assessments is frequently unknown. We used Monte Carlo simulations to estimate the statistical power of two different methods for detecting violations of this assumption. When the covariate was binary, we found that a model-based method had greater power than a method based on cumulative sums of martingale residuals. Furthermore, the parametric nature of the distribution of event times had an impact on power when the covariate was binary. Statistical power to detect a strong violation of the proportional hazards assumption was low to moderate even when the number of observed events was high. In many data sets, power to detect a violation of this assumption is likely to be low to modest.

  17. Regression models for categorical, count, and related variables an applied approach

    CERN Document Server

    Hoffmann, John P

    2016-01-01

    Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists counting the number of offenses people commit, health scientists studying the number of suicides across neighborhoods, and psychologists modeling mental health treatment success are all interested in outcomes that are not continuous. Instead, they must measure and analyze these events and phenomena in a discrete manner.   This book provides an introduction and overview of several statistical models designed for these types of outcomes--all presented with the assumption that the reader has only a good working knowledge of elementary algebra and has taken introductory statistics and linear regression analysis.   Numerous examples from the social sciences demonstrate the practical applications of these models. The chapte...

  18. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    Science.gov (United States)

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  19. An adaptive functional regression-based prognostic model for applications with missing data

    International Nuclear Information System (INIS)

    Fang, Xiaolei; Zhou, Rensheng; Gebraeel, Nagi

    2015-01-01

    Most prognostic degradation models rely on a relatively accurate and comprehensive database of historical degradation signals. Typically, these signals are used to identify suitable degradation trends that are useful for predicting lifetime. In many real-world applications, these degradation signals are usually incomplete, i.e., contain missing observations. Often the amount of missing data compromises the ability to identify a suitable parametric degradation model. This paper addresses this problem by developing a semi-parametric approach that can be used to predict the remaining lifetime of partially degraded systems. First, key signal features are identified by applying Functional Principal Components Analysis (FPCA) to the available historical data. Next, an adaptive functional regression model is used to model the extracted signal features and the corresponding times-to-failure. The model is then used to predict remaining lifetimes and to update these predictions using real-time signals observed from fielded components. Results show that the proposed approach is relatively robust to significant levels of missing data. The performance of the model is evaluated and shown to provide significantly accurate predictions of residual lifetime using two case studies. - Highlights: • We model degradation signals with missing data with the goal of predicting remaining lifetime. • We examine two types of signal characteristics, fragmented and sparse. • We provide framework that updates remaining life predictions by incorporating real-time signal observations. • For the missing data, we show that the proposed model outperforms other benchmark models. • For the complete data, we show that the proposed model performs at least as good as a benchmark model

  20. Analysis of dental caries using generalized linear and count regression models

    Directory of Open Access Journals (Sweden)

    Javali M. Phil

    2013-11-01

    Full Text Available Generalized linear models (GLM are generalization of linear regression models, which allow fitting regression models to response data in all the sciences especially medical and dental sciences that follow a general exponential family. These are flexible and widely used class of such models that can accommodate response variables. Count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or a negative binomial data-generating process. Zero inflated count regression models such as the zero-inflated Poisson (ZIP, zero-inflated negative binomial (ZINB regression models have been used to handle dental caries count data with many zeros. We present an evaluation framework to the suitability of applying the GLM, Poisson, NB, ZIP and ZINB to dental caries data set where the count data may exhibit evidence of many zeros and over-dispersion. Estimation of the model parameters using the method of maximum likelihood is provided. Based on the Vuong test statistic and the goodness of fit measure for dental caries data, the NB and ZINB regression models perform better than other count regression models.

  1. Accounting for measurement error in log regression models with applications to accelerated testing.

    Directory of Open Access Journals (Sweden)

    Robert Richardson

    Full Text Available In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  2. Accounting for measurement error in log regression models with applications to accelerated testing.

    Science.gov (United States)

    Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M

    2018-01-01

    In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  3. Modelling bursty time series

    International Nuclear Information System (INIS)

    Vajna, Szabolcs; Kertész, János; Tóth, Bálint

    2013-01-01

    Many human-related activities show power-law decaying interevent time distribution with exponents usually varying between 1 and 2. We study a simple task-queuing model, which produces bursty time series due to the non-trivial dynamics of the task list. The model is characterized by a priority distribution as an input parameter, which describes the choice procedure from the list. We give exact results on the asymptotic behaviour of the model and we show that the interevent time distribution is power-law decaying for any kind of input distributions that remain normalizable in the infinite list limit, with exponents tunable between 1 and 2. The model satisfies a scaling law between the exponents of interevent time distribution (β) and autocorrelation function (α): α + β = 2. This law is general for renewal processes with power-law decaying interevent time distribution. We conclude that slowly decaying autocorrelation function indicates long-range dependence only if the scaling law is violated. (paper)

  4. Predictive market segmentation model: An application of logistic regression model and CHAID procedure

    Directory of Open Access Journals (Sweden)

    Soldić-Aleksić Jasna

    2009-01-01

    Full Text Available Market segmentation presents one of the key concepts of the modern marketing. The main goal of market segmentation is focused on creating groups (segments of customers that have similar characteristics, needs, wishes and/or similar behavior regarding the purchase of concrete product/service. Companies can create specific marketing plan for each of these segments and therefore gain short or long term competitive advantage on the market. Depending on the concrete marketing goal, different segmentation schemes and techniques may be applied. This paper presents a predictive market segmentation model based on the application of logistic regression model and CHAID analysis. The logistic regression model was used for the purpose of variables selection (from the initial pool of eleven variables which are statistically significant for explaining the dependent variable. Selected variables were afterwards included in the CHAID procedure that generated the predictive market segmentation model. The model results are presented on the concrete empirical example in the following form: summary model results, CHAID tree, Gain chart, Index chart, risk and classification tables.

  5. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    Science.gov (United States)

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  6. Perceived Organizational Support for Enhancing Welfare at Work: A Regression Tree Model

    Science.gov (United States)

    Giorgi, Gabriele; Dubin, David; Perez, Javier Fiz

    2016-01-01

    When trying to examine outcomes such as welfare and well-being, research tends to focus on main effects and take into account limited numbers of variables at a time. There are a number of techniques that may help address this problem. For example, many statistical packages available in R provide easy-to-use methods of modeling complicated analysis such as classification and tree regression (i.e., recursive partitioning). The present research illustrates the value of recursive partitioning in the prediction of perceived organizational support in a sample of more than 6000 Italian bankers. Utilizing the tree function party package in R, we estimated a regression tree model predicting perceived organizational support from a multitude of job characteristics including job demand, lack of job control, lack of supervisor support, training, etc. The resulting model appears particularly helpful in pointing out several interactions in the prediction of perceived organizational support. In particular, training is the dominant factor. Another dimension that seems to influence organizational support is reporting (perceived communication about safety and stress concerns). Results are discussed from a theoretical and methodological point of view. PMID:28082924

  7. Failure prognostics by support vector regression of time series data under stationary/nonstationary environmental and operational conditions

    International Nuclear Information System (INIS)

    Liu, Jie

    2015-01-01

    This Ph. D. work is motivated by the possibility of monitoring the conditions of components of energy systems for their extended and safe use, under proper practice of operation and adequate policies of maintenance. The aim is to develop a Support Vector Regression (SVR)-based framework for predicting time series data under stationary/nonstationary environmental and operational conditions. Single SVR and SVR-based ensemble approaches are developed to tackle the prediction problem based on both small and large datasets. Strategies are proposed for adaptively updating the single SVR and SVR-based ensemble models in the existence of pattern drifts. Comparisons with other online learning approaches for kernel-based modelling are provided with reference to time series data from a critical component in Nuclear Power Plants (NPPs) provided by Electricite de France (EDF). The results show that the proposed approaches achieve comparable prediction results, considering the Mean Squared Error (MSE) and Mean Relative Error (MRE), in much less computation time. Furthermore, by analyzing the geometrical meaning of the Feature Vector Selection (FVS) method proposed in the literature, a novel geometrically interpretable kernel method, named Reduced Rank Kernel Ridge Regression-II (RRKRR-II), is proposed to describe the linear relations between a predicted value and the predicted values of the Feature Vectors (FVs) selected by FVS. Comparisons with several kernel methods on a number of public datasets prove the good prediction accuracy and the easy-of-tuning of the hyper-parameters of RRKRR-II. (author)

  8. Robust geographically weighted regression of modeling the Air Polluter Standard Index (APSI)

    Science.gov (United States)

    Warsito, Budi; Yasin, Hasbi; Ispriyanti, Dwi; Hoyyi, Abdul

    2018-05-01

    The Geographically Weighted Regression (GWR) model has been widely applied to many practical fields for exploring spatial heterogenity of a regression model. However, this method is inherently not robust to outliers. Outliers commonly exist in data sets and may lead to a distorted estimate of the underlying regression model. One of solution to handle the outliers in the regression model is to use the robust models. So this model was called Robust Geographically Weighted Regression (RGWR). This research aims to aid the government in the policy making process related to air pollution mitigation by developing a standard index model for air polluter (Air Polluter Standard Index - APSI) based on the RGWR approach. In this research, we also consider seven variables that are directly related to the air pollution level, which are the traffic velocity, the population density, the business center aspect, the air humidity, the wind velocity, the air temperature, and the area size of the urban forest. The best model is determined by the smallest AIC value. There are significance differences between Regression and RGWR in this case, but Basic GWR using the Gaussian kernel is the best model to modeling APSI because it has smallest AIC.

  9. Parameter estimation and statistical test of geographically weighted bivariate Poisson inverse Gaussian regression models

    Science.gov (United States)

    Amalia, Junita; Purhadi, Otok, Bambang Widjanarko

    2017-11-01

    Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.

  10. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  11. Travel time reliability modeling.

    Science.gov (United States)

    2011-07-01

    This report includes three papers as follows: : 1. Guo F., Rakha H., and Park S. (2010), "A Multi-state Travel Time Reliability Model," : Transportation Research Record: Journal of the Transportation Research Board, n 2188, : pp. 46-54. : 2. Park S.,...

  12. Describing Growth Pattern of Bali Cows Using Non-linear Regression Models

    Directory of Open Access Journals (Sweden)

    Mohd. Hafiz A.W

    2016-12-01

    Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.

  13. Data analysis and approximate models model choice, location-scale, analysis of variance, nonparametric regression and image analysis

    CERN Document Server

    Davies, Patrick Laurie

    2014-01-01

    Introduction IntroductionApproximate Models Notation Two Modes of Statistical AnalysisTowards One Mode of Analysis Approximation, Randomness, Chaos, Determinism ApproximationA Concept of Approximation Approximation Approximating a Data Set by a Model Approximation Regions Functionals and EquivarianceRegularization and Optimality Metrics and DiscrepanciesStrong and Weak Topologies On Being (almost) Honest Simulations and Tables Degree of Approximation and p-values ScalesStability of Analysis The Choice of En(α, P) Independence Procedures, Approximation and VaguenessDiscrete Models The Empirical Density Metrics and Discrepancies The Total Variation Metric The Kullback-Leibler and Chi-Squared Discrepancies The Po(λ) ModelThe b(k, p) and nb(k, p) Models The Flying Bomb Data The Student Study Times Data OutliersOutliers, Data Analysis and Models Breakdown Points and Equivariance Identifying Outliers and Breakdown Outliers in Multivariate Data Outliers in Linear Regression Outliers in Structured Data The Location...

  14. ANALYSIS OF THE FINANCIAL PERFORMANCES OF THE FIRM, BY USING THE MULTIPLE REGRESSION MODEL

    Directory of Open Access Journals (Sweden)

    Constantin Anghelache

    2011-11-01

    Full Text Available The information achieved through the use of simple linear regression are not always enough to characterize the evolution of an economic phenomenon and, furthermore, to identify its possible future evolution. To remedy these drawbacks, the special literature includes multiple regression models, in which the evolution of the dependant variable is defined depending on two or more factorial variables.

  15. Deriving Genomic Breeding Values for Residual Feed Intake from Covariance Functions of Random Regression Models

    DEFF Research Database (Denmark)

    Strathe, Anders B; Mark, Thomas; Nielsen, Bjarne

    2014-01-01

    Random regression models were used to estimate covariance functions between cumulated feed intake (CFI) and body weight (BW) in 8424 Danish Duroc pigs. Random regressions on second order Legendre polynomials of age were used to describe genetic and permanent environmental curves in BW and CFI...

  16. Modelling infant mortality rate in Central Java, Indonesia use generalized poisson regression method

    Science.gov (United States)

    Prahutama, Alan; Sudarno

    2018-05-01

    The infant mortality rate is the number of deaths under one year of age occurring among the live births in a given geographical area during a given year, per 1,000 live births occurring among the population of the given geographical area during the same year. This problem needs to be addressed because it is an important element of a country’s economic development. High infant mortality rate will disrupt the stability of a country as it relates to the sustainability of the population in the country. One of regression model that can be used to analyze the relationship between dependent variable Y in the form of discrete data and independent variable X is Poisson regression model. Recently The regression modeling used for data with dependent variable is discrete, among others, poisson regression, negative binomial regression and generalized poisson regression. In this research, generalized poisson regression modeling gives better AIC value than poisson regression. The most significant variable is the Number of health facilities (X1), while the variable that gives the most influence to infant mortality rate is the average breastfeeding (X9).

  17. The Application of Classical and Neural Regression Models for the Valuation of Residential Real Estate

    Directory of Open Access Journals (Sweden)

    Mach Łukasz

    2017-06-01

    Full Text Available The research process aimed at building regression models, which helps to valuate residential real estate, is presented in the following article. Two widely used computational tools i.e. the classical multiple regression and regression models of artificial neural networks were used in order to build models. An attempt to define the utilitarian usefulness of the above-mentioned tools and comparative analysis of them is the aim of the conducted research. Data used for conducting analyses refers to the secondary transactional residential real estate market.

  18. Modeling vector nonlinear time series using POLYMARS

    NARCIS (Netherlands)

    de Gooijer, J.G.; Ray, B.K.

    2003-01-01

    A modified multivariate adaptive regression splines method for modeling vector nonlinear time series is investigated. The method results in models that can capture certain types of vector self-exciting threshold autoregressive behavior, as well as provide good predictions for more general vector

  19. Regression analysis of case K interval-censored failure time data in the presence of informative censoring.

    Science.gov (United States)

    Wang, Peijie; Zhao, Hui; Sun, Jianguo

    2016-12-01

    Interval-censored failure time data occur in many fields such as demography, economics, medical research, and reliability and many inference procedures on them have been developed (Sun, 2006; Chen, Sun, and Peace, 2012). However, most of the existing approaches assume that the mechanism that yields interval censoring is independent of the failure time of interest and it is clear that this may not be true in practice (Zhang et al., 2007; Ma, Hu, and Sun, 2015). In this article, we consider regression analysis of case K interval-censored failure time data when the censoring mechanism may be related to the failure time of interest. For the problem, an estimated sieve maximum-likelihood approach is proposed for the data arising from the proportional hazards frailty model and for estimation, a two-step procedure is presented. In the addition, the asymptotic properties of the proposed estimators of regression parameters are established and an extensive simulation study suggests that the method works well. Finally, we apply the method to a set of real interval-censored data that motivated this study. © 2016, The International Biometric Society.

  20. AN APPLICATION OF THE LOGISTIC REGRESSION MODEL IN THE EXPERIMENTAL PHYSICAL CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Elpidio Corral-López

    2015-06-01

    Full Text Available The calculation of intensive properties molar volumes of ethanol-water mixtures by experimental densities and tangent method in the Physical Chemistry Laboratory presents the problem of making manually the molar volume curve versus mole fraction and the trace of the tangent line trace. The advantage of using a statistical model the Logistic Regression on a Texas VOYAGE graphing calculator allowed trace the curve and the tangents in situ, and also evaluate the students work during the experimental session. The error percentage between the molar volumes calculated using literature data and those obtained with statistical method is minimal, which validates the model. It is advantageous use the calculator with this application as a teaching support tool, reducing the evaluation time of 3 weeks to 3 hours.

  1. Flow modeling in a porous cylinder with regressing walls using semi analytical approach

    Directory of Open Access Journals (Sweden)

    M Azimi

    2016-10-01

    Full Text Available In this paper, the mathematical modeling of the flow in a porous cylinder with a focus on applications to solid rocket motors is presented. As usual, the cylindrical propellant grain of a solid rocket motor is modeled as a long tube with one end closed at the headwall, while the other remains open. The cylindrical wall is assumed to be permeable so as to simulate the propellant burning and normal gas injection. At first, the problem description and formulation are considered. The Navier-Stokes equations for the viscous flow in a porous cylinder with regressing walls are reduced to a nonlinear ODE by using a similarity transformation in time and space. Application of Differential Transformation Method (DTM as an approximate analytical method has been successfully applied. Finally the results have been presented for various cases.

  2. An attempt to evaluate some regression models used for radiometric ash determination in the brown coal

    International Nuclear Information System (INIS)

    Karamuz, S.; Urbanski, P.; Antoniak, W.; Wagner, D.

    1984-01-01

    Five different regression models for determination of the ash as well as iron and calcium contents in brown coal using fluorescence and scattering of X-rays have been evaluated. Calculations were done using experimental results obtained from the natural brown coal samples to which appropriate quantities of iron, calcium and silicon oxides were added. The secondary radiation was excited by Pu-238 source and detected by X-ray argone filled proportional counter. The investigation has shown the superiority of the multiparametric models over the radiometric ash determination in the pit-coal applying aluminium filter for the correction of the influence of iron content on the intensity of scattered radiation. Standard error of estimation for the best algorithm is about three time smaler than that for algorithm simulating application of the aluminium filter. Statistical parameters of the considered algorithm were reviewed and discussed. (author)

  3. [Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].

    Science.gov (United States)

    Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L

    2017-03-10

    To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.

  4. Land-use regression panel models of NO2 concentrations in Seoul, Korea

    Science.gov (United States)

    Kim, Youngkook; Guldmann, Jean-Michel

    2015-04-01

    Transportation and land-use activities are major air pollution contributors. Since their shares of emissions vary across space and time, so do air pollution concentrations. Despite these variations, panel data have rarely been used in land-use regression (LUR) modeling of air pollution. In addition, the complex interactions between traffic flows, land uses, and meteorological variables, have not been satisfactorily investigated in LUR models. The purpose of this research is to develop and estimate nitrogen dioxide (NO2) panel models based on the LUR framework with data for Seoul, Korea, accounting for the impacts of these variables, and their interactions with spatial and temporal dummy variables. The panel data vary over several scales: daily (24 h), seasonally (4), and spatially (34 intra-urban measurement locations). To enhance model explanatory power, wind direction and distance decay effects are accounted for. The results show that vehicle-kilometers-traveled (VKT) and solar radiation have statistically strong positive and negative impacts on NO2 concentrations across the four seasonal models. In addition, there are significant interactions with the dummy variables, pointing to VKT and solar radiation effects on NO2 concentrations that vary with time and intra-urban location. The results also show that residential, commercial, and industrial land uses, and wind speed, temperature, and humidity, all impact NO2 concentrations. The R2 vary between 0.95 and 0.98.

  5. Model-free prediction and regression a transformation-based approach to inference

    CERN Document Server

    Politis, Dimitris N

    2015-01-01

    The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, co...

  6. PERAMALAN DERET WAKTU MENGGUNAKAN MODEL FUNGSI BASIS RADIAL (RBF DAN AUTO REGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA

    Directory of Open Access Journals (Sweden)

    DT Wiyanti

    2013-07-01

    Full Text Available Salah satu metode peramalan yang paling dikembangkan saat ini adalah time series, yakni menggunakan pendekatan kuantitatif dengan data masa lampau yang dijadikan acuan untuk peramalan masa depan. Berbagai penelitian telah mengusulkan metode-metode untuk menyelesaikan time series, di antaranya statistik, jaringan syaraf, wavelet, dan sistem fuzzy. Metode-metode tersebut memiliki kekurangan dan keunggulan yang berbeda. Namun permasalahan yang ada dalam dunia nyata merupakan masalah yang kompleks. Satu metode saja mungkin tidak mampu mengatasi masalah tersebut dengan baik. Dalam artikel ini dibahas penggabungan dua buah metode yaitu Auto Regressive Integrated Moving Average (ARIMA dan Radial Basis Function (RBF. Alasan penggabungan kedua metode ini adalah karena adanya asumsi bahwa metode tunggal tidak dapat secara total mengidentifikasi semua karakteristik time series. Pada artikel ini dibahas peramalan terhadap data Indeks Harga Perdagangan Besar (IHPB dan data inflasi komoditi Indonesia; kedua data berada pada rentang tahun 2006 hingga beberapa bulan di tahun 2012. Kedua data tersebut masing-masing memiliki enam variabel. Hasil peramalan metode ARIMA-RBF dibandingkan dengan metode ARIMA dan metode RBF secara individual. Hasil analisa menunjukkan bahwa dengan metode penggabungan ARIMA dan RBF, model yang diberikan memiliki hasil yang lebih akurat dibandingkan dengan penggunaan salah satu metode saja. Hal ini terlihat dalam visual plot, MAPE, dan RMSE dari semua variabel pada dua data uji coba. The accuracy of time series forecasting is the subject of many decision-making processes. Time series use a quantitative approach to employ data from the past to make forecast for the future. Many researches have proposed several methods to solve time series, such as using statistics, neural networks, wavelets, and fuzzy systems. These methods have different advantages and disadvantages. But often the problem in the real world is just too complex that a

  7. Risk of Recurrence in Operated Parasagittal Meningiomas: A Logistic Binary Regression Model.

    Science.gov (United States)

    Escribano Mesa, José Alberto; Alonso Morillejo, Enrique; Parrón Carreño, Tesifón; Huete Allut, Antonio; Narro Donate, José María; Méndez Román, Paddy; Contreras Jiménez, Ascensión; Pedrero García, Francisco; Masegosa González, José

    2018-02-01

    Parasagittal meningiomas arise from the arachnoid cells of the angle formed between the superior sagittal sinus (SSS) and the brain convexity. In this retrospective study, we focused on factors that predict early recurrence and recurrence times. We reviewed 125 patients with parasagittal meningiomas operated from 1985 to 2014. We studied the following variables: age, sex, location, laterality, histology, surgeons, invasion of the SSS, Simpson removal grade, follow-up time, angiography, embolization, radiotherapy, recurrence and recurrence time, reoperation, neurologic deficit, degree of dependency, and patient status at the end of follow-up. Patients ranged in age from 26 to 81 years (mean 57.86 years; median 60 years). There were 44 men (35.2%) and 81 women (64.8%). There were 57 patients with neurologic deficits (45.2%). The most common presenting symptom was motor deficit. World Health Organization grade I tumors were identified in 104 patients (84.6%), and the majority were the meningothelial type. Recurrence was detected in 34 cases. Time of recurrence was 9 to 336 months (mean: 84.4 months; median: 79.5 months). Male sex was identified as an independent risk for recurrence with relative risk 2.7 (95% confidence interval 1.21-6.15), P = 0.014. Kaplan-Meier curves for recurrence had statistically significant differences depending on sex, age, histologic type, and World Health Organization histologic grade. A binary logistic regression was made with the Hosmer-Lemeshow test with P > 0.05; sex, tumor size, and histologic type were used in this model. Male sex is an independent risk factor for recurrence that, associated with other factors such tumor size and histologic type, explains 74.5% of all cases in a binary regression model. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Formulating state space models in R with focus on longitudinal regression models

    DEFF Research Database (Denmark)

    Dethlefsen, Claus; Lundbye-Christensen, Søren

      We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms in the form......  We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms...

  9. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner

    Directory of Open Access Journals (Sweden)

    Yubo Wang

    2017-06-01

    Full Text Available It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC. In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976 ratio and outperforms existing methods such as short-time Fourier transfrom (STFT, continuous Wavelet transform (CWT and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  10. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    Science.gov (United States)

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  11. Modeling Tetanus Neonatorum case using the regression of negative binomial and zero-inflated negative binomial

    Science.gov (United States)

    Amaliana, Luthfatul; Sa'adah, Umu; Wayan Surya Wardhani, Ni

    2017-12-01

    Tetanus Neonatorum is an infectious disease that can be prevented by immunization. The number of Tetanus Neonatorum cases in East Java Province is the highest in Indonesia until 2015. Tetanus Neonatorum data contain over dispersion and big enough proportion of zero-inflation. Negative Binomial (NB) regression is an alternative method when over dispersion happens in Poisson regression. However, the data containing over dispersion and zero-inflation are more appropriately analyzed by using Zero-Inflated Negative Binomial (ZINB) regression. The purpose of this study are: (1) to model Tetanus Neonatorum cases in East Java Province with 71.05 percent proportion of zero-inflation by using NB and ZINB regression, (2) to obtain the best model. The result of this study indicates that ZINB is better than NB regression with smaller AIC.

  12. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    Science.gov (United States)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  13. SOME STATISTICAL ISSUES RELATED TO MULTIPLE LINEAR REGRESSION MODELING OF BEACH BACTERIA CONCENTRATIONS

    Science.gov (United States)

    As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...

  14. Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S.S. [Department of Information and Communication Systems Engineering, University of the Aegean, Karlovassi, 83 200 Samos (Greece); Ekonomou, L.; Chatzarakis, G.E. [Department of Electrical Engineering Educators, ASPETE - School of Pedagogical and Technological Education, N. Heraklion, 141 21 Athens (Greece); Karamousantas, D.C. [Technological Educational Institute of Kalamata, Antikalamos, 24100 Kalamata (Greece); Katsikas, S.K. [Department of Technology Education and Digital Systems, University of Piraeus, 150 Androutsou Srt., 18 532 Piraeus (Greece); Liatsis, P. [Division of Electrical Electronic and Information Engineering, School of Engineering and Mathematical Sciences, Information and Biomedical Engineering Centre, City University, Northampton Square, London EC1V 0HB (United Kingdom)

    2008-09-15

    This study addresses the problem of modeling the electricity demand loads in Greece. The provided actual load data is deseasonilized and an AutoRegressive Moving Average (ARMA) model is fitted on the data off-line, using the Akaike Corrected Information Criterion (AICC). The developed model fits the data in a successful manner. Difficulties occur when the provided data includes noise or errors and also when an on-line/adaptive modeling is required. In both cases and under the assumption that the provided data can be represented by an ARMA model, simultaneous order and parameter estimation of ARMA models under the presence of noise are performed. The produced results indicate that the proposed method, which is based on the multi-model partitioning theory, tackles successfully the studied problem. For validation purposes the produced results are compared with three other established order selection criteria, namely AICC, Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC). The developed model could be useful in the studies that concern electricity consumption and electricity prices forecasts. (author)

  15. An appraisal of convergence failures in the application of logistic regression model in published manuscripts.

    Science.gov (United States)

    Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A

    2014-09-01

    Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.

  16. A note on modeling of tumor regression for estimation of radiobiological parameters

    International Nuclear Information System (INIS)

    Zhong, Hualiang; Chetty, Indrin

    2014-01-01

    Purpose: Accurate calculation of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on derived parameters. In this study, the authors have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for estimation of radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time T d , half-life of dead cells T r , and cell survival fraction SF D under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models: Chvetsov's model (C-model) and Lim's model (L-model). The C-model and L-model were optimized with the parameter T d fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43 ± 0.08, and the half-life of dead cells averaged over the six patients is 17.5 ± 3.2 days. The parameters T r and SF D optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the T d -fixed C-model, and by 32.1% and 112.3% from those optimized with the T d -fixed L-model, respectively. Conclusions: The Z-model was analytically constructed from the differential equations of cell populations that describe changes in the number of different tumor cells during the course of radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The generated model and its optimization method may help develop high-quality treatment regimens for individual patients

  17. An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models

    DEFF Research Database (Denmark)

    Kinnebrock, Silja; Podolskij, Mark

    This paper introduces a new estimator to measure the ex-post covariation between high-frequency financial time series under market microstructure noise. We provide an asymptotic limit theory (including feasible central limit theorems) for standard methods such as regression, correlation analysis...... process can be relaxed and how our method can be applied to non-synchronous observations. We also present an empirical study of how high-frequency correlations, regressions and covariances change through time....

  18. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    Science.gov (United States)

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  19. Formulating state space models in R with focus on longitudinal regression models

    DEFF Research Database (Denmark)

    Dethlefsen, Claus; Lundbye-Christensen, Søren

    2006-01-01

    We provide a language for formulating a range of state space models with response densities within the exponential family. The described methodology is implemented in the R-package sspir. A state space model is specified similarly to a generalized linear model in R, and then the time-varying terms...

  20. Reflexion on linear regression trip production modelling method for ensuring good model quality

    Science.gov (United States)

    Suprayitno, Hitapriya; Ratnasari, Vita

    2017-11-01

    Transport Modelling is important. For certain cases, the conventional model still has to be used, in which having a good trip production model is capital. A good model can only be obtained from a good sample. Two of the basic principles of a good sampling is having a sample capable to represent the population characteristics and capable to produce an acceptable error at a certain confidence level. It seems that this principle is not yet quite understood and used in trip production modeling. Therefore, investigating the Trip Production Modelling practice in Indonesia and try to formulate a better modeling method for ensuring the Model Quality is necessary. This research result is presented as follows. Statistics knows a method to calculate span of prediction value at a certain confidence level for linear regression, which is called Confidence Interval of Predicted Value. The common modeling practice uses R2 as the principal quality measure, the sampling practice varies and not always conform to the sampling principles. An experiment indicates that small sample is already capable to give excellent R2 value and sample composition can significantly change the model. Hence, good R2 value, in fact, does not always mean good model quality. These lead to three basic ideas for ensuring good model quality, i.e. reformulating quality measure, calculation procedure, and sampling method. A quality measure is defined as having a good R2 value and a good Confidence Interval of Predicted Value. Calculation procedure must incorporate statistical calculation method and appropriate statistical tests needed. A good sampling method must incorporate random well distributed stratified sampling with a certain minimum number of samples. These three ideas need to be more developed and tested.

  1. Multi-step polynomial regression method to model and forecast malaria incidence.

    Directory of Open Access Journals (Sweden)

    Chandrajit Chatterjee

    Full Text Available Malaria is one of the most severe problems faced by the world even today. Understanding the causative factors such as age, sex, social factors, environmental variability etc. as well as underlying transmission dynamics of the disease is important for epidemiological research on malaria and its eradication. Thus, development of suitable modeling approach and methodology, based on the available data on the incidence of the disease and other related factors is of utmost importance. In this study, we developed a simple non-linear regression methodology in modeling and forecasting malaria incidence in Chennai city, India, and predicted future disease incidence with high confidence level. We considered three types of data to develop the regression methodology: a longer time series data of Slide Positivity Rates (SPR of malaria; a smaller time series data (deaths due to Plasmodium vivax of one year; and spatial data (zonal distribution of P. vivax deaths for the city along with the climatic factors, population and previous incidence of the disease. We performed variable selection by simple correlation study, identification of the initial relationship between variables through non-linear curve fitting and used multi-step methods for induction of variables in the non-linear regression analysis along with applied Gauss-Markov models, and ANOVA for testing the prediction, validity and constructing the confidence intervals. The results execute the applicability of our method for different types of data, the autoregressive nature of forecasting, and show high prediction power for both SPR and P. vivax deaths, where the one-lag SPR values plays an influential role and proves useful for better prediction. Different climatic factors are identified as playing crucial role on shaping the disease curve. Further, disease incidence at zonal level and the effect of causative factors on different zonal clusters indicate the pattern of malaria prevalence in the city

  2. Using the Logistic Regression model in supporting decisions of establishing marketing strategies

    Directory of Open Access Journals (Sweden)

    Cristinel CONSTANTIN

    2015-12-01

    Full Text Available This paper is about an instrumental research regarding the using of Logistic Regression model for data analysis in marketing research. The decision makers inside different organisation need relevant information to support their decisions regarding the marketing strategies. The data provided by marketing research could be computed in various ways but the multivariate data analysis models can enhance the utility of the information. Among these models we can find the Logistic Regression model, which is used for dichotomous variables. Our research is based on explanation the utility of this model and interpretation of the resulted information in order to help practitioners and researchers to use it in their future investigations

  3. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    Science.gov (United States)

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  4. Use of empirical likelihood to calibrate auxiliary information in partly linear monotone regression models.

    Science.gov (United States)

    Chen, Baojiang; Qin, Jing

    2014-05-10

    In statistical analysis, a regression model is needed if one is interested in finding the relationship between a response variable and covariates. When the response depends on the covariate, then it may also depend on the function of this covariate. If one has no knowledge of this functional form but expect for monotonic increasing or decreasing, then the isotonic regression model is preferable. Estimation of parameters for isotonic regression models is based on the pool-adjacent-violators algorithm (PAVA), where the monotonicity constraints are built in. With missing data, people often employ the augmented estimating method to improve estimation efficiency by incorporating auxiliary information through a working regression model. However, under the framework of the isotonic regression model, the PAVA does not work as the monotonicity constraints are violated. In this paper, we develop an empirical likelihood-based method for isotonic regression model to incorporate the auxiliary information. Because the monotonicity constraints still hold, the PAVA can be used for parameter estimation. Simulation studies demonstrate that the proposed method can yield more efficient estimates, and in some situations, the efficiency improvement is substantial. We apply this method to a dementia study. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Semiparametric regression analysis of failure time data with dependent interval censoring.

    Science.gov (United States)

    Chen, Chyong-Mei; Shen, Pao-Sheng

    2017-09-20

    Interval-censored failure-time data arise when subjects are examined or observed periodically such that the failure time of interest is not examined exactly but only known to be bracketed between two adjacent observation times. The commonly used approaches assume that the examination times and the failure time are independent or conditionally independent given covariates. In many practical applications, patients who are already in poor health or have a weak immune system before treatment usually tend to visit physicians more often after treatment than those with better health or immune system. In this situation, the visiting rate is positively correlated with the risk of failure due to the health status, which results in dependent interval-censored data. While some measurable factors affecting health status such as age, gender, and physical symptom can be included in the covariates, some health-related latent variables cannot be observed or measured. To deal with dependent interval censoring involving unobserved latent variable, we characterize the visiting/examination process as recurrent event process and propose a joint frailty model to account for the association of the failure time and visiting process. A shared gamma frailty is incorporated into the Cox model and proportional intensity model for the failure time and visiting process, respectively, in a multiplicative way. We propose a semiparametric maximum likelihood approach for estimating model parameters and show the asymptotic properties, including consistency and weak convergence. Extensive simulation studies are conducted and a data set of bladder cancer is analyzed for illustrative purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. A comparative study between nonlinear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

    Science.gov (United States)

    Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...

  7. Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon

    Science.gov (United States)

    Dons, Evi; Van Poppel, Martine; Kochan, Bruno; Wets, Geert; Int Panis, Luc

    2013-08-01

    Land use regression (LUR) modeling is a statistical technique used to determine exposure to air pollutants in epidemiological studies. Time-activity diaries can be combined with LUR models, enabling detailed exposure estimation and limiting exposure misclassification, both in shorter and longer time lags. In this study, the traffic related air pollutant black carbon was measured with μ-aethalometers on a 5-min time base at 63 locations in Flanders, Belgium. The measurements show that hourly concentrations vary between different locations, but also over the day. Furthermore the diurnal pattern is different for street and background locations. This suggests that annual LUR models are not sufficient to capture all the variation. Hourly LUR models for black carbon are developed using different strategies: by means of dummy variables, with dynamic dependent variables and/or with dynamic and static independent variables. The LUR model with 48 dummies (weekday hours and weekend hours) performs not as good as the annual model (explained variance of 0.44 compared to 0.77 in the annual model). The dataset with hourly concentrations of black carbon can be used to recalibrate the annual model, resulting in many of the original explaining variables losing their statistical significance, and certain variables having the wrong direction of effect. Building new independent hourly models, with static or dynamic covariates, is proposed as the best solution to solve these issues. R2 values for hourly LUR models are mostly smaller than the R2 of the annual model, ranging from 0.07 to 0.8. Between 6 a.m. and 10 p.m. on weekdays the R2 approximates the annual model R2. Even though models of consecutive hours are developed independently, similar variables turn out to be significant. Using dynamic covariates instead of static covariates, i.e. hourly traffic intensities and hourly population densities, did not significantly improve the models' performance.

  8. Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis

    International Nuclear Information System (INIS)

    Fang, Xiande; Xu, Yu

    2011-01-01

    The empirical model of turbine efficiency is necessary for the control- and/or diagnosis-oriented simulation and useful for the simulation and analysis of dynamic performances of the turbine equipment and systems, such as air cycle refrigeration systems, power plants, turbine engines, and turbochargers. Existing empirical models of turbine efficiency are insufficient because there is no suitable form available for air cycle refrigeration turbines. This work performs a critical review of empirical models (called mean value models in some literature) of turbine efficiency and develops an empirical model in the desired form for air cycle refrigeration, the dominant cooling approach in aircraft environmental control systems. The Taylor series and regression analysis are used to build the model, with the Taylor series being used to expand functions with the polytropic exponent and the regression analysis to finalize the model. The measured data of a turbocharger turbine and two air cycle refrigeration turbines are used for the regression analysis. The proposed model is compact and able to present the turbine efficiency map. Its predictions agree with the measured data very well, with the corrected coefficient of determination R c 2 ≥ 0.96 and the mean absolute percentage deviation = 1.19% for the three turbines. -- Highlights: → Performed a critical review of empirical models of turbine efficiency. → Developed an empirical model in the desired form for air cycle refrigeration, using the Taylor expansion and regression analysis. → Verified the method for developing the empirical model. → Verified the model.

  9. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    Science.gov (United States)

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  10. REGRESSION MODEL FOR RISK REPORTING IN FINANCIAL STATEMENTS OF ACCOUNTING SERVICES ENTITIES

    Directory of Open Access Journals (Sweden)

    Mirela NICHITA

    2015-06-01

    Full Text Available The purpose of financial reports is to provide useful information to users; the utility of information is defined through the qualitative characteristics (fundamental and enhancing. The financial crisis emphasized the limits of financial reporting which has been unable to prevent investors about the risks they were facing. Due to the current changes in business environment, managers have been highly motivated to rethink and improve the risk governance philosophy, processes and methodologies. The lack of quality, timely data and adequate systems to capture, report and measure the right information across the organization is a fundamental challenge for implementing and sustaining all aspects of effective risk management. Starting with the 80s, the investors are more interested in narratives (Notes to financial statements, than in primary reports (financial position and performance. The research will apply a regression model for assessment of risk reporting by the professional (accounting and taxation services for major companies from Romania during the period 2009 – 2013.

  11. Linear regression models and k-means clustering for statistical analysis of fNIRS data.

    Science.gov (United States)

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-02-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

  12. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an application to Chesapeake Bay River inputs

    Science.gov (United States)

    Hirsch, Robert M.; Moyer, Douglas; Archfield, Stacey A.

    2010-01-01

    A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.

  13. Modelling and analysis of turbulent datasets using Auto Regressive Moving Average processes

    International Nuclear Information System (INIS)

    Faranda, Davide; Dubrulle, Bérengère; Daviaud, François; Pons, Flavio Maria Emanuele; Saint-Michel, Brice; Herbert, Éric; Cortet, Pierre-Philippe

    2014-01-01

    We introduce a novel way to extract information from turbulent datasets by applying an Auto Regressive Moving Average (ARMA) statistical analysis. Such analysis goes well beyond the analysis of the mean flow and of the fluctuations and links the behavior of the recorded time series to a discrete version of a stochastic differential equation which is able to describe the correlation structure in the dataset. We introduce a new index Υ that measures the difference between the resulting analysis and the Obukhov model of turbulence, the simplest stochastic model reproducing both Richardson law and the Kolmogorov spectrum. We test the method on datasets measured in a von Kármán swirling flow experiment. We found that the ARMA analysis is well correlated with spatial structures of the flow, and can discriminate between two different flows with comparable mean velocities, obtained by changing the forcing. Moreover, we show that the Υ is highest in regions where shear layer vortices are present, thereby establishing a link between deviations from the Kolmogorov model and coherent structures. These deviations are consistent with the ones observed by computing the Hurst exponents for the same time series. We show that some salient features of the analysis are preserved when considering global instead of local observables. Finally, we analyze flow configurations with multistability features where the ARMA technique is efficient in discriminating different stability branches of the system

  14. An Ionospheric Index Model based on Linear Regression and Neural Network Approaches

    Science.gov (United States)

    Tshisaphungo, Mpho; McKinnell, Lee-Anne; Bosco Habarulema, John

    2017-04-01

    The ionosphere is well known to reflect radio wave signals in the high frequency (HF) band due to the present of electron and ions within the region. To optimise the use of long distance HF communications, it is important to understand the drivers of ionospheric storms and accurately predict the propagation conditions especially during disturbed days. This paper presents the development of an ionospheric storm-time index over the South African region for the application of HF communication users. The model will result into a valuable tool to measure the complex ionospheric behaviour in an operational space weather monitoring and forecasting environment. The development of an ionospheric storm-time index is based on a single ionosonde station data over Grahamstown (33.3°S,26.5°E), South Africa. Critical frequency of the F2 layer (foF2) measurements for a period 1996-2014 were considered for this study. The model was developed based on linear regression and neural network approaches. In this talk validation results for low, medium and high solar activity periods will be discussed to demonstrate model's performance.

  15. Profile-driven regression for modeling and runtime optimization of mobile networks

    DEFF Research Database (Denmark)

    McClary, Dan; Syrotiuk, Violet; Kulahci, Murat

    2010-01-01

    Computer networks often display nonlinear behavior when examined over a wide range of operating conditions. There are few strategies available for modeling such behavior and optimizing such systems as they run. Profile-driven regression is developed and applied to modeling and runtime optimization...... of throughput in a mobile ad hoc network, a self-organizing collection of mobile wireless nodes without any fixed infrastructure. The intermediate models generated in profile-driven regression are used to fit an overall model of throughput, and are also used to optimize controllable factors at runtime. Unlike...

  16. Regression models for interval censored survival data: Application to HIV infection in Danish homosexual men

    DEFF Research Database (Denmark)

    Carstensen, Bendix

    1996-01-01

    This paper shows how to fit excess and relative risk regression models to interval censored survival data, and how to implement the models in standard statistical software. The methods developed are used for the analysis of HIV infection rates in a cohort of Danish homosexual men.......This paper shows how to fit excess and relative risk regression models to interval censored survival data, and how to implement the models in standard statistical software. The methods developed are used for the analysis of HIV infection rates in a cohort of Danish homosexual men....

  17. The Relationship between Economic Growth and Money Laundering – a Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Daniel Rece

    2009-09-01

    Full Text Available This study provides an overview of the relationship between economic growth and money laundering modeled by a least squares function. The report analyzes statistically data collected from USA, Russia, Romania and other eleven European countries, rendering a linear regression model. The study illustrates that 23.7% of the total variance in the regressand (level of money laundering is “explained” by the linear regression model. In our opinion, this model will provide critical auxiliary judgment and decision support for anti-money laundering service systems.

  18. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Directory of Open Access Journals (Sweden)

    J. Chardon

    2018-01-01

    Full Text Available Statistical downscaling models (SDMs are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  19. Principal components based support vector regression model for on-line instrument calibration monitoring in NPPs

    International Nuclear Information System (INIS)

    Seo, In Yong; Ha, Bok Nam; Lee, Sung Woo; Shin, Chang Hoon; Kim, Seong Jun

    2010-01-01

    In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method

  20. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    Science.gov (United States)

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  1. A History of Regression and Related Model-Fitting in the Earth Sciences (1636?-2000)

    International Nuclear Information System (INIS)

    Howarth, Richard J.

    2001-01-01

    roots in meeting the evident need for improved estimators in spatial interpolation. Technical advances in regression analysis during the 1970s embraced the development of regression diagnostics and consequent attention to outliers; the recognition of problems caused by correlated predictors, and the subsequent introduction of ridge regression to overcome them; and techniques for fitting errors-in-variables and mixture models. Improvements in computational power have enabled ever more computer-intensive methods to be applied. These include algorithms which are robust in the presence of outliers, for example Rousseeuw's 1984 Least Median Squares; nonparametric smoothing methods, such as kernel-functions, splines and Cleveland's 1979 LOcally WEighted Scatterplot Smoother (LOWESS); and the Classification and Regression Tree (CART) technique of Breiman and others in 1984. Despite a continuing improvement in the rate of technology-transfer from the statistical to the earth-science community, despite an abrupt drop to a time-lag of about 10 years following the introduction of digital computers, these more recent developments are only just beginning to penetrate beyond the research community of earth scientists. Examples of applications to problem-solving in the earth sciences are given

  2. A primer for biomedical scientists on how to execute model II linear regression analysis.

    Science.gov (United States)

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  3. Logistic regression models for polymorphic and antagonistic pleiotropic gene action on human aging and longevity

    DEFF Research Database (Denmark)

    Tan, Qihua; Bathum, L; Christiansen, L

    2003-01-01

    In this paper, we apply logistic regression models to measure genetic association with human survival for highly polymorphic and pleiotropic genes. By modelling genotype frequency as a function of age, we introduce a logistic regression model with polytomous responses to handle the polymorphic...... situation. Genotype and allele-based parameterization can be used to investigate the modes of gene action and to reduce the number of parameters, so that the power is increased while the amount of multiple testing minimized. A binomial logistic regression model with fractional polynomials is used to capture...... the age-dependent or antagonistic pleiotropic effects. The models are applied to HFE genotype data to assess the effects on human longevity by different alleles and to detect if an age-dependent effect exists. Application has shown that these methods can serve as useful tools in searching for important...

  4. Modeling Governance KB with CATPCA to Overcome Multicollinearity in the Logistic Regression

    Science.gov (United States)

    Khikmah, L.; Wijayanto, H.; Syafitri, U. D.

    2017-04-01

    The problem often encounters in logistic regression modeling are multicollinearity problems. Data that have multicollinearity between explanatory variables with the result in the estimation of parameters to be bias. Besides, the multicollinearity will result in error in the classification. In general, to overcome multicollinearity in regression used stepwise regression. They are also another method to overcome multicollinearity which involves all variable for prediction. That is Principal Component Analysis (PCA). However, classical PCA in only for numeric data. Its data are categorical, one method to solve the problems is Categorical Principal Component Analysis (CATPCA). Data were used in this research were a part of data Demographic and Population Survey Indonesia (IDHS) 2012. This research focuses on the characteristic of women of using the contraceptive methods. Classification results evaluated using Area Under Curve (AUC) values. The higher the AUC value, the better. Based on AUC values, the classification of the contraceptive method using stepwise method (58.66%) is better than the logistic regression model (57.39%) and CATPCA (57.39%). Evaluation of the results of logistic regression using sensitivity, shows the opposite where CATPCA method (99.79%) is better than logistic regression method (92.43%) and stepwise (92.05%). Therefore in this study focuses on major class classification (using a contraceptive method), then the selected model is CATPCA because it can raise the level of the major class model accuracy.

  5. Gap timing and the spectral timing model.

    Science.gov (United States)

    Hopson, J W

    1999-04-01

    A hypothesized mechanism underlying gap timing was implemented in the Spectral Timing Model [Grossberg, S., Schmajuk, N., 1989. Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw. 2, 79-102] , a neural network timing model. The activation of the network nodes was made to decay in the absence of the timed signal, causing the model to shift its peak response time in a fashion similar to that shown in animal subjects. The model was then able to accurately simulate a parametric study of gap timing [Cabeza de Vaca, S., Brown, B., Hemmes, N., 1994. Internal clock and memory processes in aminal timing. J. Exp. Psychol.: Anim. Behav. Process. 20 (2), 184-198]. The addition of a memory decay process appears to produce the correct pattern of results in both Scalar Expectancy Theory models and in the Spectral Timing Model, and the fact that the same process should be effective in two such disparate models argues strongly that process reflects a true aspect of animal cognition.

  6. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Science.gov (United States)

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  7. Regression analysis understanding and building business and economic models using Excel

    CERN Document Server

    Wilson, J Holton

    2012-01-01

    The technique of regression analysis is used so often in business and economics today that an understanding of its use is necessary for almost everyone engaged in the field. This book will teach you the essential elements of building and understanding regression models in a business/economic context in an intuitive manner. The authors take a non-theoretical treatment that is accessible even if you have a limited statistical background. It is specifically designed to teach the correct use of regression, while advising you of its limitations and teaching about common pitfalls. This book describe

  8. Estimasi Model Seemingly Unrelated Regression (SUR dengan Metode Generalized Least Square (GLS

    Directory of Open Access Journals (Sweden)

    Ade Widyaningsih

    2015-04-01

    Full Text Available Regression analysis is a statistical tool that is used to determine the relationship between two or more quantitative variables so that one variable can be predicted from the other variables. A method that can used to obtain a good estimation in the regression analysis is ordinary least squares method. The least squares method is used to estimate the parameters of one or more regression but relationships among the errors in the response of other estimators are not allowed. One way to overcome this problem is Seemingly Unrelated Regression model (SUR in which parameters are estimated using Generalized Least Square (GLS. In this study, the author applies SUR model using GLS method on world gasoline demand data. The author obtains that SUR using GLS is better than OLS because SUR produce smaller errors than the OLS.

  9. Estimasi Model Seemingly Unrelated Regression (SUR dengan Metode Generalized Least Square (GLS

    Directory of Open Access Journals (Sweden)

    Ade Widyaningsih

    2014-06-01

    Full Text Available Regression analysis is a statistical tool that is used to determine the relationship between two or more quantitative variables so that one variable can be predicted from the other variables. A method that can used to obtain a good estimation in the regression analysis is ordinary least squares method. The least squares method is used to estimate the parameters of one or more regression but relationships among the errors in the response of other estimators are not allowed. One way to overcome this problem is Seemingly Unrelated Regression model (SUR in which parameters are estimated using Generalized Least Square (GLS. In this study, the author applies SUR model using GLS method on world gasoline demand data. The author obtains that SUR using GLS is better than OLS because SUR produce smaller errors than the OLS.

  10. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam [Pusat Pengajian Sains Matematik, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia amirul@unisel.edu.my, zalila@cs.usm.my, norlida@usm.my, adam@usm.my (Malaysia)

    2015-10-22

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.

  11. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    International Nuclear Information System (INIS)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam

    2015-01-01

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake

  12. Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models

    Directory of Open Access Journals (Sweden)

    Aeriel Belk

    2018-02-01

    Full Text Available Death investigations often include an effort to establish the postmortem interval (PMI in cases in which the time of death is uncertain. The postmortem interval can lead to the identification of the deceased and the validation of witness statements and suspect alibis. Recent research has demonstrated that microbes provide an accurate clock that starts at death and relies on ecological change in the microbial communities that normally inhabit a body and its surrounding environment. Here, we explore how to build the most robust Random Forest regression models for prediction of PMI by testing models built on different sample types (gravesoil, skin of the torso, skin of the head, gene markers (16S ribosomal RNA (rRNA, 18S rRNA, internal transcribed spacer regions (ITS, and taxonomic levels (sequence variants, species, genus, etc.. We also tested whether particular suites of indicator microbes were informative across different datasets. Generally, results indicate that the most accurate models for predicting PMI were built using gravesoil and skin data using the 16S rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently contributed highly to model accuracy and may be candidate indicators of PMI.

  13. Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2014-01-01

    Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.

  14. Regression trees modeling and forecasting of PM10 air pollution in urban areas

    Science.gov (United States)

    Stoimenova, M.; Voynikova, D.; Ivanov, A.; Gocheva-Ilieva, S.; Iliev, I.

    2017-10-01

    Fine particulate matter (PM10) air pollution is a serious problem affecting the health of the population in many Bulgarian cities. As an example, the object of this study is the pollution with PM10 of the town of Pleven, Northern Bulgaria. The measured concentrations of this air pollutant for this city consistently exceeded the permissible limits set by European and national legislation. Based on data for the last 6 years (2011-2016), the analysis shows that this applies both to the daily limit of 50 micrograms per cubic meter and the allowable number of daily concentration exceedances to 35 per year. Also, the average annual concentration of PM10 exceeded the prescribed norm of no more than 40 micrograms per cubic meter. The aim of this work is to build high performance mathematical models for effective prediction and forecasting the level of PM10 pollution. The study was conducted with the powerful flexible data mining technique Classification and Regression Trees (CART). The values of PM10 were fitted with respect to meteorological data such as maximum and minimum air temperature, relative humidity, wind speed and direction and others, as well as with time and autoregressive variables. As a result the obtained CART models demonstrate high predictive ability and fit the actual data with up to 80%. The best models were applied for forecasting the level pollution for 3 to 7 days ahead. An interpretation of the modeling results is presented.

  15. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    Science.gov (United States)

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  16. Segmented regression analysis of interrupted time series data to assess outcomes of a South American road traffic alcohol policy change.

    Science.gov (United States)

    Nistal-Nuño, Beatriz

    2017-09-01

    In Chile, a new law introduced in March 2012 decreased the legal blood alcohol concentration (BAC) limit for driving while impaired from 1 to 0.8 g/l and the legal BAC limit for driving under the influence of alcohol from 0.5 to 0.3 g/l. The goal is to assess the impact of this new law on mortality and morbidity outcomes in Chile. A review of national databases in Chile was conducted from January 2003 to December 2014. Segmented regression analysis of interrupted time series was used for analyzing the data. In a series of multivariable linear regression models, the change in intercept and slope in the monthly incidence rate of traffic deaths and injuries and association with alcohol per 100,000 inhabitants was estimated from pre-intervention to postintervention, while controlling for secular changes. In nested regression models, potential confounding seasonal effects were accounted for. All analyses were performed at a two-sided significance level of 0.05. Immediate level drops in all the monthly rates were observed after the law from the end of the prelaw period in the majority of models and in all the de-seasonalized models, although statistical significance was reached only in the model for injures related to alcohol. After the law, the estimated monthly rate dropped abruptly by -0.869 for injuries related to alcohol and by -0.859 adjusting for seasonality (P < 0.001). Regarding the postlaw long-term trends, it was evidenced a steeper decreasing trend after the law in the models for deaths related to alcohol, although these differences were not statistically significant. A strong evidence of a reduction in traffic injuries related to alcohol was found following the law in Chile. Although insufficient evidence was found of a statistically significant effect for the beneficial effects seen on deaths and overall injuries, potential clinically important effects cannot be ruled out. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd

  17. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    Science.gov (United States)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  18. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    International Nuclear Information System (INIS)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region dominated by dairy farming. No data from this area were used for calibrating the regression models. The model was validated by additional probability sampling. This sample was used to estimate errors in 1) the predicted areal fractions where the EU standard of 50 mg l -1 is exceeded for farms with low N surpluses (ALT) and farms with higher N surpluses (REF); 2) predicted cumulative frequency distributions of nitrate concentration for both groups of farms. Both the errors in the predicted areal fractions as well as the errors in the predicted cumulative frequency distributions indicate that the regression models are invalid for the sandy soils of this study area. - This study indicates that linear regression models that predict nitrate concentrations in the upper groundwater using residual soil N contents should be applied with care.

  19. A brief introduction to regression designs and mixed-effects modelling by a recent convert

    OpenAIRE

    Balling, Laura Winther

    2008-01-01

    This article discusses the advantages of multiple regression designs over the factorial designs traditionally used in many psycholinguistic experiments. It is shown that regression designs are typically more informative, statistically more powerful and better suited to the analysis of naturalistic tasks. The advantages of including both fixed and random effects are demonstrated with reference to linear mixed-effects models, and problems of collinearity, variable distribution and variable sele...

  20. truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models

    Directory of Open Access Journals (Sweden)

    Maria Karlsson

    2014-05-01

    Full Text Available Problems with truncated data occur in many areas, complicating estimation and inference. Regarding linear regression models, the ordinary least squares estimator is inconsistent and biased for these types of data and is therefore unsuitable for use. Alternative estimators, designed for the estimation of truncated regression models, have been developed. This paper presents the R package truncSP. The package contains functions for the estimation of semi-parametric truncated linear regression models using three different estimators: the symmetrically trimmed least squares, quadratic mode, and left truncated estimators, all of which have been shown to have good asymptotic and ?nite sample properties. The package also provides functions for the analysis of the estimated models. Data from the environmental sciences are used to illustrate the functions in the package.

  1. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction

    International Nuclear Information System (INIS)

    Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.

    2013-01-01

    Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability

  2. Modeling and prediction of Turkey's electricity consumption using Support Vector Regression

    International Nuclear Information System (INIS)

    Kavaklioglu, Kadir

    2011-01-01

    Support Vector Regression (SVR) methodology is used to model and predict Turkey's electricity consumption. Among various SVR formalisms, ε-SVR method was used since the training pattern set was relatively small. Electricity consumption is modeled as a function of socio-economic indicators such as population, Gross National Product, imports and exports. In order to facilitate future predictions of electricity consumption, a separate SVR model was created for each of the input variables using their current and past values; and these models were combined to yield consumption prediction values. A grid search for the model parameters was performed to find the best ε-SVR model for each variable based on Root Mean Square Error. Electricity consumption of Turkey is predicted until 2026 using data from 1975 to 2006. The results show that electricity consumption can be modeled using Support Vector Regression and the models can be used to predict future electricity consumption. (author)

  3. Improved model of the retardance in citric acid coated ferrofluids using stepwise regression

    Science.gov (United States)

    Lin, J. F.; Qiu, X. R.

    2017-06-01

    Citric acid (CA) coated Fe3O4 ferrofluids (FFs) have been conducted for biomedical application. The magneto-optical retardance of CA coated FFs was measured by a Stokes polarimeter. Optimization and multiple regression of retardance in FFs were executed by Taguchi method and Microsoft Excel previously, and the F value of regression model was large enough. However, the model executed by Excel was not systematic. Instead we adopted the stepwise regression to model the retardance of CA coated FFs. From the results of stepwise regression by MATLAB, the developed model had highly predictable ability owing to F of 2.55897e+7 and correlation coefficient of one. The average absolute error of predicted retardances to measured retardances was just 0.0044%. Using the genetic algorithm (GA) in MATLAB, the optimized parametric combination was determined as [4.709 0.12 39.998 70.006] corresponding to the pH of suspension, molar ratio of CA to Fe3O4, CA volume, and coating temperature. The maximum retardance was found as 31.712°, close to that obtained by evolutionary solver in Excel and a relative error of -0.013%. Above all, the stepwise regression method was successfully used to model the retardance of CA coated FFs, and the maximum global retardance was determined by the use of GA.

  4. Configuring calendar variation based on time series regression method for forecasting of monthly currency inflow and outflow in Central Java

    Science.gov (United States)

    Setiawan, Suhartono, Ahmad, Imam Safawi; Rahmawati, Noorgam Ika

    2015-12-01

    Bank Indonesia (BI) as the central bank of Republic Indonesiahas a single overarching objective to establish and maintain rupiah stability. This objective could be achieved by monitoring traffic of inflow and outflow money currency. Inflow and outflow are related to stock and distribution of money currency around Indonesia territory. It will effect of economic activities. Economic activities of Indonesia,as one of Moslem country, absolutely related to Islamic Calendar (lunar calendar), that different with Gregorian calendar. This research aims to forecast the inflow and outflow money currency of Representative Office (RO) of BI Semarang Central Java region. The results of the analysis shows that the characteristics of inflow and outflow money currency influenced by the effects of the calendar variations, that is the day of Eid al-Fitr (moslem holyday) as well as seasonal patterns. In addition, the period of a certain week during Eid al-Fitr also affect the increase of inflow and outflow money currency. The best model based on the value of the smallestRoot Mean Square Error (RMSE) for inflow data is ARIMA model. While the best model for predicting the outflow data in RO of BI Semarang is ARIMAX model or Time Series Regression, because both of them have the same model. The results forecast in a period of 2015 shows an increase of inflow money currency happened in August, while the increase in outflow money currency happened in July.

  5. On pseudo-values for regression analysis in competing risks models

    DEFF Research Database (Denmark)

    Graw, F; Gerds, Thomas Alexander; Schumacher, M

    2009-01-01

    For regression on state and transition probabilities in multi-state models Andersen et al. (Biometrika 90:15-27, 2003) propose a technique based on jackknife pseudo-values. In this article we analyze the pseudo-values suggested for competing risks models and prove some conjectures regarding their...

  6. A Predictive Logistic Regression Model of World Conflict Using Open Source Data

    Science.gov (United States)

    2015-03-26

    No correlation between the error terms and the independent variables 9. Absence of perfect multicollinearity (Menard, 2001) When assumptions are...some of the variables before initial model building. Multicollinearity , or near-linear dependence among the variables will cause problems in the...model. High multicollinearity tends to produce unreasonably high logistic regression coefficients and can result in coefficients that are not

  7. Sample size calculation to externally validate scoring systems based on logistic regression models.

    Directory of Open Access Journals (Sweden)

    Antonio Palazón-Bru

    Full Text Available A sample size containing at least 100 events and 100 non-events has been suggested to validate a predictive model, regardless of the model being validated and that certain factors can influence calibration of the predictive model (discrimination, parameterization and incidence. Scoring systems based on binary logistic regression models are a specific type of predictive model.The aim of this study was to develop an algorithm to determine the sample size for validating a scoring system based on a binary logistic regression model and to apply it to a case study.The algorithm was based on bootstrap samples in which the area under the ROC curve, the observed event probabilities through smooth curves, and a measure to determine the lack of calibration (estimated calibration index were calculated. To illustrate its use for interested researchers, the algorithm was applied to a scoring system, based on a binary logistic regression model, to determine mortality in intensive care units.In the case study provided, the algorithm obtained a sample size with 69 events, which is lower than the value suggested in the literature.An algorithm is provided for finding the appropriate sample size to validate scoring systems based on binary logistic regression models. This could be applied to determine the sample size in other similar cases.

  8. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    Science.gov (United States)

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  9. Fitting multistate transition models with autoregressive logistic regression : Supervised exercise in intermittent claudication

    NARCIS (Netherlands)

    de Vries, S O; Fidler, Vaclav; Kuipers, Wietze D; Hunink, Maria G M

    1998-01-01

    The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a

  10. Endogenous glucose production from infancy to adulthood: a non-linear regression model

    NARCIS (Netherlands)

    Huidekoper, Hidde H.; Ackermans, Mariëtte T.; Ruiter, An F. C.; Sauerwein, Hans P.; Wijburg, Frits A.

    2014-01-01

    To construct a regression model for endogenous glucose production (EGP) as a function of age, and compare this with glucose supplementation using commonly used dextrose-based saline solutions at fluid maintenance rate in children. A model was constructed based on EGP data, as quantified by

  11. Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    1995-01-01

    This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for

  12. Genomic prediction based on data from three layer lines using non-linear regression models

    NARCIS (Netherlands)

    Huang, H.; Windig, J.J.; Vereijken, A.; Calus, M.P.L.

    2014-01-01

    Background - Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. Methods - In an attempt to alleviate

  13. Logistic regression models of factors influencing the location of bioenergy and biofuels plants

    Science.gov (United States)

    T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu

    2011-01-01

    Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...

  14. Determining factors influencing survival of breast cancer by fuzzy logistic regression model.

    Science.gov (United States)

    Nikbakht, Roya; Bahrampour, Abbas

    2017-01-01

    Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.

  15. Photovoltaic Array Condition Monitoring Based on Online Regression of Performance Model

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2013-01-01

    regression modeling, from PV array production, plane-of-array irradiance, and module temperature measurements, acquired during an initial learning phase of the system. After the model has been parameterized automatically, the condition monitoring system enters the normal operation phase, where...

  16. The use of logistic regression in modelling the distributions of bird ...

    African Journals Online (AJOL)

    The method of logistic regression was used to model the observed geographical distribution patterns of bird species in Swaziland in relation to a set of environmental variables. Reporting rates derived from bird atlas data are used as an index of population densities. This is justified in part by the success of the modelling ...

  17. A LATENT CLASS POISSON REGRESSION-MODEL FOR HETEROGENEOUS COUNT DATA

    NARCIS (Netherlands)

    WEDEL, M; DESARBO, WS; BULT, [No Value; RAMASWAMY, [No Value

    1993-01-01

    In this paper an approach is developed that accommodates heterogeneity in Poisson regression models for count data. The model developed assumes that heterogeneity arises from a distribution of both the intercept and the coefficients of the explanatory variables. We assume that the mixing

  18. The limiting behavior of the estimated parameters in a misspecified random field regression model

    DEFF Research Database (Denmark)

    Dahl, Christian Møller; Qin, Yu

    This paper examines the limiting properties of the estimated parameters in the random field regression model recently proposed by Hamilton (Econometrica, 2001). Though the model is parametric, it enjoys the flexibility of the nonparametric approach since it can approximate a large collection of n...

  19. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    Science.gov (United States)

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bias and Uncertainty in Regression-Calibrated Models of Groundwater Flow in Heterogeneous Media

    DEFF Research Database (Denmark)

    Cooley, R.L.; Christensen, Steen

    2006-01-01

    small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate θ* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear...... are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis....

  1. Regression models for the restricted residual mean life for right-censored and left-truncated data

    DEFF Research Database (Denmark)

    Cortese, Giuliana; Holmboe, Stine A.; Scheike, Thomas H.

    2017-01-01

    The hazard ratios resulting from a Cox's regression hazards model are hard to interpret and to be converted into prolonged survival time. As the main goal is often to study survival functions, there is increasing interest in summary measures based on the survival function that are easier to inter......The hazard ratios resulting from a Cox's regression hazards model are hard to interpret and to be converted into prolonged survival time. As the main goal is often to study survival functions, there is increasing interest in summary measures based on the survival function that are easier...... to interpret than the hazard ratio; the residual mean time is an important example of those measures. However, because of the presence of right censoring, the tail of the survival distribution is often difficult to estimate correctly. Therefore, we consider the restricted residual mean time, which represents...... a partial area under the survival function, given any time horizon τ, and is interpreted as the residual life expectancy up to τ of a subject surviving up to time t. We present a class of regression models for this measure, based on weighted estimating equations and inverse probability of censoring weighted...

  2. [Logistic regression model of noninvasive prediction for portal hypertensive gastropathy in patients with hepatitis B associated cirrhosis].

    Science.gov (United States)

    Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo

    2015-05-12

    To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.

  3. An epidemiological survey on road traffic crashes in Iran: application of the two logistic regression models.

    Science.gov (United States)

    Bakhtiyari, Mahmood; Mehmandar, Mohammad Reza; Mirbagheri, Babak; Hariri, Gholam Reza; Delpisheh, Ali; Soori, Hamid

    2014-01-01

    Risk factors of human-related traffic crashes are the most important and preventable challenges for community health due to their noteworthy burden in developing countries in particular. The present study aims to investigate the role of human risk factors of road traffic crashes in Iran. Through a cross-sectional study using the COM 114 data collection forms, the police records of almost 600,000 crashes occurred in 2010 are investigated. The binary logistic regression and proportional odds regression models are used. The odds ratio for each risk factor is calculated. These models are adjusted for known confounding factors including age, sex and driving time. The traffic crash reports of 537,688 men (90.8%) and 54,480 women (9.2%) are analysed. The mean age is 34.1 ± 14 years. Not maintaining eyes on the road (53.7%) and losing control of the vehicle (21.4%) are the main causes of drivers' deaths in traffic crashes within cities. Not maintaining eyes on the road is also the most frequent human risk factor for road traffic crashes out of cities. Sudden lane excursion (OR = 9.9, 95% CI: 8.2-11.9) and seat belt non-compliance (OR = 8.7, CI: 6.7-10.1), exceeding authorised speed (OR = 17.9, CI: 12.7-25.1) and exceeding safe speed (OR = 9.7, CI: 7.2-13.2) are the most significant human risk factors for traffic crashes in Iran. The high mortality rate of 39 people for every 100,000 population emphasises on the importance of traffic crashes in Iran. Considering the important role of human risk factors in traffic crashes, struggling efforts are required to control dangerous driving behaviours such as exceeding speed, illegal overtaking and not maintaining eyes on the road.

  4. Flexible regression models for estimating postmortem interval (PMI) in forensic medicine.

    Science.gov (United States)

    Muñoz Barús, José Ignacio; Febrero-Bande, Manuel; Cadarso-Suárez, Carmen

    2008-10-30

    Correct determination of time of death is an important goal in forensic medicine. Numerous methods have been described for estimating postmortem interval (PMI), but most are imprecise, poorly reproducible and/or have not been validated with real data. In recent years, however, some progress in PMI estimation has been made, notably through the use of new biochemical methods for quantifying relevant indicator compounds in the vitreous humour. The best, but unverified, results have been obtained with [K+] and hypoxanthine [Hx], using simple linear regression (LR) models. The main aim of this paper is to offer more flexible alternatives to LR, such as generalized additive models (GAMs) and support vector machines (SVMs) in order to obtain improved PMI estimates. The present study, based on detailed analysis of [K+] and [Hx] in more than 200 vitreous humour samples from subjects with known PMI, compared classical LR methodology with GAM and SVM methodologies. Both proved better than LR for estimation of PMI. SVM showed somewhat greater precision than GAM, but GAM offers a readily interpretable graphical output, facilitating understanding of findings by legal professionals; there are thus arguments for using both types of models. R code for these methods is available from the authors, permitting accurate prediction of PMI from vitreous humour [K+], [Hx] and [U], with confidence intervals and graphical output provided. Copyright 2008 John Wiley & Sons, Ltd.

  5. Estimating carbon and showing impacts of drought using satellite data in regression-tree models

    Science.gov (United States)

    Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.

    2018-01-01

    Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.

  6. Association of footprint measurements with plantar kinetics: a linear regression model.

    Science.gov (United States)

    Fascione, Jeanna M; Crews, Ryan T; Wrobel, James S

    2014-03-01

    The use of foot measurements to classify morphology and interpret foot function remains one of the focal concepts of lower-extremity biomechanics. However, only 27% to 55% of midfoot variance in foot pressures has been determined in the most comprehensive models. We investigated whether dynamic walking footprint measurements are associated with inter-individual foot loading variability. Thirty individuals (15 men and 15 women; mean ± SD age, 27.17 ± 2.21 years) walked at a self-selected speed over an electronic pedography platform using the midgait technique. Kinetic variables (contact time, peak pressure, pressure-time integral, and force-time integral) were collected for six masked regions. Footprints were digitized for area and linear boundaries using digital photo planimetry software. Six footprint measurements were determined: contact area, footprint index, arch index, truncated arch index, Chippaux-Smirak index, and Staheli index. Linear regression analysis with a Bonferroni adjustment was performed to determine the association between the footprint measurements and each of the kinetic variables. The findings demonstrate that a relationship exists between increased midfoot contact and increased kinetic values in respective locations. Many of these variables produced large effect sizes while describing 38% to 71% of the common variance of select plantar kinetic variables in the medial midfoot region. In addition, larger footprints were associated with larger kinetic values at the medial heel region and both masked forefoot regions. Dynamic footprint measurements are associated with dynamic plantar loading kinetics, with emphasis on the midfoot region.

  7. Role of regression model selection and station distribution on the estimation of oceanic anthropogenic carbon change by eMLR

    Directory of Open Access Journals (Sweden)

    Y. Plancherel

    2013-07-01

    Full Text Available Quantifying oceanic anthropogenic carbon uptake by monitoring interior dissolved inorganic carbon (DIC concentrations is complicated by the influence of natural variability. The "eMLR method" aims to address this issue by using empirical regression fits of the data instead of the data themselves, inferring the change in anthropogenic carbon in time by difference between predictions generated by the regressions at each time. The advantages of the method are that it provides in principle a means to filter out natural variability, which theoretically becomes the regression residuals, and a way to deal with sparsely and unevenly distributed data. The degree to which these advantages are realized in practice is unclear, however. The ability of the eMLR method to recover the anthropogenic carbon signal is tested here using a global circulation and biogeochemistry model in which the true signal is known. Results show that regression model selection is particularly important when the observational network changes in time. When the observational network is fixed, the likelihood that co-located systematic misfits between the empirical model and the underlying, yet unknown, true model cancel is greater, improving eMLR results. Changing the observational network modifies how the spatio-temporal variance pattern is captured by the respective datasets, resulting in empirical models that are dynamically or regionally inconsistent, leading to systematic errors. In consequence, the use of regression formulae that change in time to represent systematically best-fit models at all times does not guarantee the best estimates of anthropogenic carbon change if the spatial distributions of the stations emphasize hydrographic features differently in time. Other factors, such as a balanced and representative station coverage, vertical continuity of the regression formulae consistent with the hydrographic context and resiliency of the spatial distribution of the residual

  8. Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics.

    Science.gov (United States)

    Madarang, Krish J; Kang, Joo-Hyon

    2014-06-01

    Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R(2) and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.

    Science.gov (United States)

    Schmidt, Amand F; Klungel, Olaf H; Groenwold, Rolf H H

    2016-01-01

    Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and stabilized inverse probability weighting methods to adjust for confounding. Model misspecification was induced in the independent derivation dataset. We evaluated performance using relative bias confidence interval coverage of the true effect, among other metrics. At low events per coefficient (1.0 and 0.5), the logistic regression estimates had a large relative bias (greater than -100%). Bias of the disease risk score estimates was at most 13.48% and 18.83%. For the propensity score model, this was 8.74% and >100%, respectively. At events per coefficient of 1.0 and 0.5, inverse probability weighting frequently failed or reduced to a crude regression, resulting in biases of -8.49% and 24.55%. Coverage of logistic regression estimates became less than the nominal level at events per coefficient ≤5. For the disease risk score, inverse probability weighting, and propensity score, coverage became less than nominal at events per coefficient ≤2.5, ≤1.0, and ≤1.0, respectively. Bias of misspecified disease risk score models was 16.55%. In settings with low events/exposed subjects per coefficient, disease risk score methods can be useful alternatives to logistic regression models, especially when propensity score models cannot be used. Despite better performance of disease risk score methods than logistic regression and propensity score models in small events per coefficient settings, bias, and coverage still deviated from nominal.

  10. Bivariate least squares linear regression: Towards a unified analytic formalism. I. Functional models

    Science.gov (United States)

    Caimmi, R.

    2011-08-01

    Concerning bivariate least squares linear regression, the classical approach pursued for functional models in earlier attempts ( York, 1966, 1969) is reviewed using a new formalism in terms of deviation (matrix) traces which, for unweighted data, reduce to usual quantities leaving aside an unessential (but dimensional) multiplicative factor. Within the framework of classical error models, the dependent variable relates to the independent variable according to the usual additive model. The classes of linear models considered are regression lines in the general case of correlated errors in X and in Y for weighted data, and in the opposite limiting situations of (i) uncorrelated errors in X and in Y, and (ii) completely correlated errors in X and in Y. The special case of (C) generalized orthogonal regression is considered in detail together with well known subcases, namely: (Y) errors in X negligible (ideally null) with respect to errors in Y; (X) errors in Y negligible (ideally null) with respect to errors in X; (O) genuine orthogonal regression; (R) reduced major-axis regression. In the limit of unweighted data, the results determined for functional models are compared with their counterparts related to extreme structural models i.e. the instrumental scatter is negligible (ideally null) with respect to the intrinsic scatter ( Isobe et al., 1990; Feigelson and Babu, 1992). While regression line slope and intercept estimators for functional and structural models necessarily coincide, the contrary holds for related variance estimators even if the residuals obey a Gaussian distribution, with the exception of Y models. An example of astronomical application is considered, concerning the [O/H]-[Fe/H] empirical relations deduced from five samples related to different stars and/or different methods of oxygen abundance determination. For selected samples and assigned methods, different regression models yield consistent results within the errors (∓ σ) for both

  11. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Ali Asghar Besalatpour

    2016-02-01

    Full Text Available Introduction: Soil aggregate stability is a key factor in soil resistivity to mechanical stresses, including the impacts of rainfall and surface runoff, and thus to water erosion (Canasveras et al., 2010. Various indicators have been proposed to characterize and quantify soil aggregate stability, for example percentage of water-stable aggregates (WSA, mean weight diameter (MWD, geometric mean diameter (GMD of aggregates, and water-dispersible clay (WDC content (Calero et al., 2008. Unfortunately, the experimental methods available to determine these indicators are laborious, time-consuming and difficult to standardize (Canasveras et al., 2010. Therefore, it would be advantageous if aggregate stability could be predicted indirectly from more easily available data (Besalatpour et al., 2014. The main objective of this study is to investigate the potential use of support vector machines (SVMs method for estimating soil aggregate stability (as quantified by GMD as compared to multiple linear regression approach. Materials and Methods: The study area was part of the Bazoft watershed (31° 37′ to 32° 39′ N and 49° 34′ to 50° 32′ E, which is located in the Northern part of the Karun river basin in central Iran. A total of 160 soil samples were collected from the top 5 cm of soil surface. Some easily available characteristics including topographic, vegetation, and soil properties were used as inputs. Soil organic matter (SOM content was determined by the Walkley-Black method (Nelson & Sommers, 1986. Particle size distribution in the soil samples (clay, silt, sand, fine sand, and very fine sand were measured using the procedure described by Gee & Bauder (1986 and calcium carbonate equivalent (CCE content was determined by the back-titration method (Nelson, 1982. The modified Kemper & Rosenau (1986 method was used to determine wet-aggregate stability (GMD. The topographic attributes of elevation, slope, and aspect were characterized using a 20-m

  12. Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression

    Directory of Open Access Journals (Sweden)

    Li Jian

    2017-01-01

    Full Text Available Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P=BMI × 0.735+ vegetables × (−0.671 + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287 + sleep ×(−0.009 +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P=BMI ×1.979+ vegetables× (−0.292 + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287 + sleep × (−0.010.The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.

  13. Model-based bootstrapping when correcting for measurement error with application to logistic regression.

    Science.gov (United States)

    Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne

    2018-03-01

    When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.

  14. Multiple regression models for energy use in air-conditioned office buildings in different climates

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Liu Dalong; Tsang, C.L.

    2010-01-01

    An attempt was made to develop multiple regression models for office buildings in the five major climates in China - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter. A total of 12 key building design variables were identified through parametric and sensitivity analysis, and considered as inputs in the regression models. The coefficient of determination R 2 varies from 0.89 in Harbin to 0.97 in Kunming, indicating that 89-97% of the variations in annual building energy use can be explained by the changes in the 12 parameters. A pseudo-random number generator based on three simple multiplicative congruential generators was employed to generate random designs for evaluation of the regression models. The difference between regression-predicted and DOE-simulated annual building energy use are largely within 10%. It is envisaged that the regression models developed can be used to estimate the likely energy savings/penalty during the initial design stage when different building schemes and design concepts are being considered.

  15. SPSS macros to compare any two fitted values from a regression model.

    Science.gov (United States)

    Weaver, Bruce; Dubois, Sacha

    2012-12-01

    In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.

  16. LINEAR REGRESSION MODEL ESTİMATİON FOR RIGHT CENSORED DATA

    Directory of Open Access Journals (Sweden)

    Ersin Yılmaz

    2016-05-01

    Full Text Available In this study, firstly we will define a right censored data. If we say shortly right-censored data is censoring values that above the exact line. This may be related with scaling device. And then  we will use response variable acquainted from right-censored explanatory variables. Then the linear regression model will be estimated. For censored data’s existence, Kaplan-Meier weights will be used for  the estimation of the model. With the weights regression model  will be consistent and unbiased with that.   And also there is a method for the censored data that is a semi parametric regression and this method also give  useful results  for censored data too. This study also might be useful for the health studies because of the censored data used in medical issues generally.

  17. Application of empirical mode decomposition with local linear quantile regression in financial time series forecasting.

    Science.gov (United States)

    Jaber, Abobaker M; Ismail, Mohd Tahir; Altaher, Alsaidi M

    2014-01-01

    This paper mainly forecasts the daily closing price of stock markets. We propose a two-stage technique that combines the empirical mode decomposition (EMD) with nonparametric methods of local linear quantile (LLQ). We use the proposed technique, EMD-LLQ, to forecast two stock index time series. Detailed experiments are implemented for the proposed method, in which EMD-LPQ, EMD, and Holt-Winter methods are compared. The proposed EMD-LPQ model is determined to be superior to the EMD and Holt-Winter methods in predicting the stock closing prices.

  18. Modeling Personalized Email Prioritization: Classification-based and Regression-based Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yoo S.; Yang, Y.; Carbonell, J.

    2011-10-24

    Email overload, even after spam filtering, presents a serious productivity challenge for busy professionals and executives. One solution is automated prioritization of incoming emails to ensure the most important are read and processed quickly, while others are processed later as/if time permits in declining priority levels. This paper presents a study of machine learning approaches to email prioritization into discrete levels, comparing ordinal regression versus classier cascades. Given the ordinal nature of discrete email priority levels, SVM ordinal regression would be expected to perform well, but surprisingly a cascade of SVM classifiers significantly outperforms ordinal regression for email prioritization. In contrast, SVM regression performs well -- better than classifiers -- on selected UCI data sets. This unexpected performance inversion is analyzed and results are presented, providing core functionality for email prioritization systems.

  19. A Logistic Regression Model with a Hierarchical Random Error Term for Analyzing the Utilization of Public Transport

    Directory of Open Access Journals (Sweden)

    Chong Wei

    2015-01-01

    Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.

  20. Combination of supervised and semi-supervised regression models for improved unbiased estimation

    DEFF Research Database (Denmark)

    Arenas-Garía, Jeronimo; Moriana-Varo, Carlos; Larsen, Jan

    2010-01-01

    In this paper we investigate the steady-state performance of semisupervised regression models adjusted using a modified RLS-like algorithm, identifying the situations where the new algorithm is expected to outperform standard RLS. By using an adaptive combination of the supervised and semisupervi......In this paper we investigate the steady-state performance of semisupervised regression models adjusted using a modified RLS-like algorithm, identifying the situations where the new algorithm is expected to outperform standard RLS. By using an adaptive combination of the supervised...

  1. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression

    Science.gov (United States)

    Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N.

    2013-02-01

    parameter estimates for all the variables and an important reduction of the autocorrelation in the residuals of the GW linear model. Despite the fitting improvement of local models, GW regression, more than an alternative to "global" or traditional regression modelling, seems to be a valuable complement to explore the non-stationary relationships between the response variable and the explanatory variables. The synergy of global and local modelling provides insights into fire management and policy and helps further our understanding of the fire problem over large areas while at the same time recognizing its local character.

  2. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change.

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua

    2017-09-22

    Defining transition rules is an important issue in cellular automaton (CA)-based land use modeling because these models incorporate highly correlated driving factors. Multicollinearity among correlated driving factors may produce negative effects that must be eliminated from the modeling. Using exploratory regression under pre-defined criteria, we identified all possible combinations of factors from the candidate factors affecting land use change. Three combinations that incorporate five driving factors meeting pre-defined criteria were assessed. With the selected combinations of factors, three logistic regression-based CA models were built to simulate dynamic land use change in Shanghai, China, from 2000 to 2015. For comparative purposes, a CA model with all candidate factors was also applied to simulate the land use change. Simulations using three CA models with multicollinearity eliminated performed better (with accuracy improvements about 3.6%) than the model incorporating all candidate factors. Our results showed that not all candidate factors are necessary for accurate CA modeling and the simulations were not sensitive to changes in statistically non-significant driving factors. We conclude that exploratory regression is an effective method to search for the optimal combinations of driving factors, leading to better land use change models that are devoid of multicollinearity. We suggest identification of dominant factors and elimination of multicollinearity before building land change models, making it possible to simulate more realistic outcomes.

  3. Accounting for spatial effects in land use regression for urban air pollution modeling.

    Science.gov (United States)

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. A Poisson regression approach to model monthly hail occurrence in Northern Switzerland using large-scale environmental variables

    Science.gov (United States)

    Madonna, Erica; Ginsbourger, David; Martius, Olivia

    2018-05-01

    In Switzerland, hail regularly causes substantial damage to agriculture, cars and infrastructure, however, little is known about its long-term variability. To study the variability, the monthly number of days with hail in northern Switzerland is modeled in a regression framework using large-scale predictors derived from ERA-Interim reanalysis. The model is developed and verified using radar-based hail observations for the extended summer season (April-September) in the period 2002-2014. The seasonality of hail is explicitly modeled with a categorical predictor (month) and monthly anomalies of several large-scale predictors are used to capture the year-to-year variability. Several regression models are applied and their performance tested with respect to standard scores and cross-validation. The chosen model includes four predictors: the monthly anomaly of the two meter temperature, the monthly anomaly of the logarithm of the convective available potential energy (CAPE), the monthly anomaly of the wind shear and the month. This model well captures the intra-annual variability and slightly underestimates its inter-annual variability. The regression model is applied to the reanalysis data back in time to 1980. The resulting hail day time series shows an increase of the number of hail days per month, which is (in the model) related to an increase in temperature and CAPE. The trend corresponds to approximately 0.5 days per month per decade. The results of the regression model have been compared to two independent data sets. All data sets agree on the sign of the trend, but the trend is weaker in the other data sets.

  5. Evaluating Non-Linear Regression Models in Analysis of Persian Walnut Fruit Growth

    Directory of Open Access Journals (Sweden)

    I. Karamatlou

    2016-02-01

    Full Text Available Introduction: Persian walnut (Juglans regia L. is a large, wind-pollinated, monoecious, dichogamous, long lived, perennial tree cultivated for its high quality wood and nuts throughout the temperate regions of the world. Growth model methodology has been widely used in the modeling of plant growth. Mathematical models are important tools to study the plant growth and agricultural systems. These models can be applied for decision-making anddesigning management procedures in horticulture. Through growth analysis, planning for planting systems, fertilization, pruning operations, harvest time as well as obtaining economical yield can be more accessible.Non-linear models are more difficult to specify and estimate than linear models. This research was aimed to studynon-linear regression models based on data obtained from fruit weight, length and width. Selecting the best models which explain that fruit inherent growth pattern of Persian walnut was a further goal of this study. Materials and Methods: The experimental material comprising 14 Persian walnut genotypes propagated by seed collected from a walnut orchard in Golestan province, Minoudasht region, Iran, at latitude 37◦04’N; longitude 55◦32’E; altitude 1060 m, in a silt loam soil type. These genotypes were selected as a representative sampling of the many walnut genotypes available throughout the Northeastern Iran. The age range of walnut trees was 30 to 50 years. The annual mean temperature at the location is16.3◦C, with annual mean rainfall of 690 mm.The data used here is the average of walnut fresh fruit and measured withgram/millimeter/day in2011.According to the data distribution pattern, several equations have been proposed to describesigmoidal growth patterns. Here, we used double-sigmoid and logistic–monomolecular models to evaluate fruit growth based on fruit weight and4different regression models in cluding Richards, Gompertz, Logistic and Exponential growth for evaluation

  6. Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.

    Science.gov (United States)

    Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris

    2016-09-01

    Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have

  7. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.

    Science.gov (United States)

    Liu, Cong; Wang, Xujun; Genchev, Georgi Z; Lu, Hui

    2017-07-15

    New developments in high-throughput genomic technologies have enabled the measurement of diverse types of omics biomarkers in a cost-efficient and clinically-feasible manner. Developing computational methods and tools for analysis and translation of such genomic data into clinically-relevant information is an ongoing and active area of investigation. For example, several studies have utilized an unsupervised learning framework to cluster patients by integrating omics data. Despite such recent advances, predicting cancer prognosis using integrated omics biomarkers remains a challenge. There is also a shortage of computational tools for predicting cancer prognosis by using supervised learning methods. The current standard approach is to fit a Cox regression model by concatenating the different types of omics data in a linear manner, while penalty could be added for feature selection. A more powerful approach, however, would be to incorporate data by considering relationships among omics datatypes. Here we developed two methods: a SKI-Cox method and a wLASSO-Cox method to incorporate the association among different types of omics data. Both methods fit the Cox proportional hazards model and predict a risk score based on mRNA expression profiles. SKI-Cox borrows the information generated by these additional types of omics data to guide variable selection, while wLASSO-Cox incorporates this information as a penalty factor during model fitting. We show that SKI-Cox and wLASSO-Cox models select more true variables than a LASSO-Cox model in simulation studies. We assess the performance of SKI-Cox and wLASSO-Cox using TCGA glioblastoma multiforme and lung adenocarcinoma data. In each case, mRNA expression, methylation, and copy number variation data are integrated to predict the overall survival time of cancer patients. Our methods achieve better performance in predicting patients' survival in glioblastoma and lung adenocarcinoma. Copyright © 2017. Published by Elsevier

  8. Accounting for Zero Inflation of Mussel Parasite Counts Using Discrete Regression Models

    Directory of Open Access Journals (Sweden)

    Emel Çankaya

    2017-06-01

    Full Text Available In many ecological applications, the absences of species are inevitable due to either detection faults in samples or uninhabitable conditions for their existence, resulting in high number of zero counts or abundance. Usual practice for modelling such data is regression modelling of log(abundance+1 and it is well know that resulting model is inadequate for prediction purposes. New discrete models accounting for zero abundances, namely zero-inflated regression (ZIP and ZINB, Hurdle-Poisson (HP and Hurdle-Negative Binomial (HNB amongst others are widely preferred to the classical regression models. Due to the fact that mussels are one of the economically most important aquatic products of Turkey, the purpose of this study is therefore to examine the performances of these four models in determination of the significant biotic and abiotic factors on the occurrences of Nematopsis legeri parasite harming the existence of Mediterranean mussels (Mytilus galloprovincialis L.. The data collected from the three coastal regions of Sinop city in Turkey showed more than 50% of parasite counts on the average are zero-valued and model comparisons were based on information criterion. The results showed that the probability of the occurrence of this parasite is here best formulated by ZINB or HNB models and influential factors of models were found to be correspondent with ecological differences of the regions.

  9. A ¤nonparametric dynamic additive regression model for longitudinal data

    DEFF Research Database (Denmark)

    Martinussen, T.; Scheike, T. H.

    2000-01-01

    dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models......dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models...

  10. A regression modeling approach for studying carbonate system variability in the northern Gulf of Alaska

    Science.gov (United States)

    Evans, Wiley; Mathis, Jeremy T.; Winsor, Peter; Statscewich, Hank; Whitledge, Terry E.

    2013-01-01

    northern Gulf of Alaska (GOA) shelf experiences carbonate system variability on seasonal and annual time scales, but little information exists to resolve higher frequency variability in this region. To resolve this variability using platforms-of-opportunity, we present multiple linear regression (MLR) models constructed from hydrographic data collected along the Northeast Pacific Global Ocean Ecosystems Dynamics (GLOBEC) Seward Line. The empirical algorithms predict dissolved inorganic carbon (DIC) and total alkalinity (TA) using observations of nitrate (NO3-), temperature, salinity and pressure from the surface to 500 m, with R2s > 0.97 and RMSE values of 11 µmol kg-1 for DIC and 9 µmol kg-1 for TA. We applied these relationships to high-resolution NO3- data sets collected during a novel 20 h glider flight and a GLOBEC mesoscale SeaSoar survey. Results from the glider flight demonstrated time/space along-isopycnal variability of aragonite saturations (Ωarag) associated with a dicothermal layer (a cold near-surface layer found in high latitude oceans) that rivaled changes seen vertically through the thermocline. The SeaSoar survey captured the uplift to aragonite saturation horizon (depth where Ωarag = 1) shoaled to a previously unseen depth in the northern GOA. This work is similar to recent studies aimed at predicting the carbonate system in continental margin settings, albeit demonstrates that a NO3--based approach can be applied to high-latitude data collected from platforms capable of high-frequency measurements.

  11. Analysis of the Influence of Quantile Regression Model on Mainland Tourists' Service Satisfaction Performance

    Science.gov (United States)

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models. PMID:24574916

  12. Analysis of the influence of quantile regression model on mainland tourists' service satisfaction performance.

    Science.gov (United States)

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  13. Analysis of the Influence of Quantile Regression Model on Mainland Tourists’ Service Satisfaction Performance

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wang

    2014-01-01

    Full Text Available It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  14. Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors

    Directory of Open Access Journals (Sweden)

    Xibin Zhang

    2016-04-01

    Full Text Available This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We derive an approximate likelihood and posterior for bandwidth parameters, followed by a sampling algorithm. Simulation results show that the proposed approach typically leads to better accuracy of the resulting estimates than cross-validation, particularly for smaller sample sizes. This bandwidth estimation approach is applied to nonparametric regression model of the Australian All Ordinaries returns and the kernel density estimation of gross domestic product (GDP growth rates among the organisation for economic co-operation and development (OECD and non-OECD countries.

  15. INVESTIGATION OF E-MAIL TRAFFIC BY USING ZERO-INFLATED REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Yılmaz KAYA

    2012-06-01

    Full Text Available Based on count data obtained with a value of zero may be greater than anticipated. These types of data sets should be used to analyze by regression methods taking into account zero values. Zero- Inflated Poisson (ZIP, Zero-Inflated negative binomial (ZINB, Poisson Hurdle (PH, negative binomial Hurdle (NBH are more common approaches in modeling more zero value possessing dependent variables than expected. In the present study, the e-mail traffic of Yüzüncü Yıl University in 2009 spring semester was investigated. ZIP and ZINB, PH and NBH regression methods were applied on the data set because more zeros counting (78.9% were found in data set than expected. ZINB and NBH regression considered zero dispersion and overdispersion were found to be more accurate results due to overdispersion and zero dispersion in sending e-mail. ZINB is determined to be best model accordingto Vuong statistics and information criteria.

  16. Antibiotic Resistances in Livestock: A Comparative Approach to Identify an Appropriate Regression Model for Count Data

    Directory of Open Access Journals (Sweden)

    Anke Hüls

    2017-05-01

    Full Text Available Antimicrobial resistance in livestock is a matter of general concern. To develop hygiene measures and methods for resistance prevention and control, epidemiological studies on a population level are needed to detect factors associated with antimicrobial resistance in livestock holdings. In general, regression models are used to describe these relationships between environmental factors and resistance outcome. Besides the study design, the correlation structures of the different outcomes of antibiotic resistance and structural zero measurements on the resistance outcome as well as on the exposure side are challenges for the epidemiological model building process. The use of appropriate regression models that acknowledge these complexities is essential to assure valid epidemiological interpretations. The aims of this paper are (i to explain the model building process comparing several competing models for count data (negative binomial model, quasi-Poisson model, zero-inflated model, and hurdle model and (ii to compare these models using data from a cross-sectional study on antibiotic resistance in animal husbandry. These goals are essential to evaluate which model is most suitable to identify potential prevention measures. The dataset used as an example in our analyses was generated initially to study the prevalence and associated factors for the appearance of cefotaxime-resistant Escherichia coli in 48 German fattening pig farms. For each farm, the outcome was the count of samples with resistant bacteria. There was almost no overdispersion and only moderate evidence of excess zeros in the data. Our analyses show that it is essential to evaluate regression models in studies analyzing the relationship between environmental factors and antibiotic resistances in livestock. After model comparison based on evaluation of model predictions, Akaike information criterion, and Pearson residuals, here the hurdle model was judged to be the most appropriate

  17. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering

    Science.gov (United States)

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana

    2012-01-01

    The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735

  18. A componential model of human interaction with graphs: 1. Linear regression modeling

    Science.gov (United States)

    Gillan, Douglas J.; Lewis, Robert

    1994-01-01

    Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.

  19. Modelling urban travel times

    NARCIS (Netherlands)

    Zheng, F.

    2011-01-01

    Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of traffic, especially at signalized intersections. A single travel time does not have much meaning and is not informative to drivers or traffic managers. The range of travel times is large such that certain

  20. Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model.

    Science.gov (United States)

    Ren, Yilong; Wang, Yunpeng; Wu, Xinkai; Yu, Guizhen; Ding, Chuan

    2016-10-01

    Red light running (RLR) has become a major safety concern at signalized intersection. To prevent RLR related crashes, it is critical to identify the factors that significantly impact the drivers' behaviors of RLR, and to predict potential RLR in real time. In this research, 9-month's RLR events extracted from high-resolution traffic data collected by loop detectors from three signalized intersections were applied to identify the factors that significantly affect RLR behaviors. The data analysis indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the preceding vehicle runs through the intersection during yellow, and whether there is a vehicle passing through the intersection on the adjacent lane were significantly factors for RLR behaviors. Furthermore, due to the rare events nature of RLR, a modified rare events logistic regression model was developed for RLR prediction. The rare events logistic regression method has been applied in many fields for rare events studies and shows impressive performance, but so far none of previous research has applied this method to study RLR. The results showed that the rare events logistic regression model performed significantly better than the standard logistic regression model. More importantly, the proposed RLR prediction method is purely based on loop detector data collected from a single advance loop detector located 400 feet away from stop-bar. This brings great potential for future field applications of the proposed method since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.