WorldWideScience

Sample records for tilted fiber bragg

  1. Thermal annealing of tilted fiber Bragg gratings

    Science.gov (United States)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  2. Optical fiber refractometer based on tapered tilted-fiber Bragg grating

    Science.gov (United States)

    Wang, Tao; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Yu, Zhe; Xue, Meng

    2016-11-01

    Tilted fiber Bragg gratings (TFBGs) have been demonstrated to be accurate refractometers as they couple light from the fiber core to the cladding. In our experiment, we changed the physical structure of the TFBGs to improve the refractive index sensing ability. One way is to stretch the grating section 5 mm longer. The result showed that not only the number of the cladding mode of the TFBG decreases but also the full width half-maximum (FWHM) of the cladding modes and core mode changes. The FWHM of the cladding mode of the tapered TFBG is more than twice than that of the original. However, the refractive index sensitivity of the tapered TFBG has no obvious improvement. Another way is to etch the grating section with 20% hydrofluoric acid solution. We find that the smaller the clad diameter, the higher the refractive index sensitivity of the TFBG.

  3. A Fiber Bragg grating based tilt sensor suitable for constant temperature room

    International Nuclear Information System (INIS)

    Tang, Guoyu; Wei, Jue; Zhou, Wei; Wu, Mingyu; Yang, Meichao; Xie, Ruijun; Xu, Xiaofeng

    2015-01-01

    Constant-temperature rooms have been widely used in industrial production, quality testing, and research laboratories. This paper proposes a high-precision tilt sensor suitable for a constant- temperature room, which has achieved a wide-range power change while the fiber Bragg grating (FBG) reflection peak wavelength shifted very little, thereby demonstrating a novel method for obtaining a high-precision tilt sensor. This paper also studies the effect of the reflection peak on measurement precision. The proposed sensor can distinguish the direction of tilt with an excellent sensitivity of 403 dBm/° and a highest achievable resolution of 2.481 × 10 −5 ° (that is, 0.08% of the measuring range). (paper)

  4. Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement

    International Nuclear Information System (INIS)

    Guo, Tuan; Chen, Chengkun; Albert, Jacques

    2009-01-01

    Temperature-immune micro-displacement measurement is demonstrated by using a Gaussian-chirped tilted fiber Bragg grating (TFBG). The internal tilt angles of the sensing TFBG are effectively modulated via a displacement-induced Gaussian-strain-gradient along the specially designed bending cantilever beam. The phase mismatch between different effective pitches and tilt angles weakens the core-to-cladding mode coupling as the beam is displaced. While the power of the ghost mode resonance in transmission shows a strong sensitivity to the displacement, it is immune from spatially uniform temperature changes. Ghost-power-referenced displacement measurement and temperature-insensitive property are experimentally achieved for this cost-effective sensing device

  5. Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating.

    Science.gov (United States)

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2015-04-15

    The absolute refractive indices (RIs) of water and other liquids are determined with an uncertainty of ±0.001 at near-infrared wavelengths by using the tilted fiber Bragg grating (TFBG) cladding mode resonances of a standard single-mode fiber to measure the critical angle for total internal reflection at the interface between the fiber and its surroundings. The necessary condition to obtain absolute RIs (instead of measuring RI changes) is a thorough characterization of the dispersion of the core mode effective index of the TFBG across the full range of its cladding mode resonance spectrum. This technique is shown to be competitive with the best available measurements of the RIs of water and NaCl solutions at wavelengths in the vicinity of 1550 nm.

  6. Study of distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

    Science.gov (United States)

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  7. Optical power-based interrogation of plasmonic tilted fiber Bragg grating biosensors

    Science.gov (United States)

    González-Vila, Á.; Lopez-Aldaba, A.; Kinet, D.; Mégret, P.; Lopez-Amo, M.; Caucheteur, C.

    2017-04-01

    Two interrogation techniques for plasmonic tilted fiber Bragg grating sensors are reported and experimentally tested. Typical interrogation methods are usually based on tracking the wavelength shift of the most sensitive cladding mode, but for biosensing applications, spectrometer-based methods can be replaced by more efficient solutions. The proposed techniques thus rely on the measurement of the induced changes in optical power. The first one consists of a properly polarized tunable laser source set to emit at the wavelength of the sensor most sensitive mode and an optical power meter to measure the transmitted response. For the second method, a uniform fiber Bragg grating is photo-inscribed beyond the sensor in such a way that its central wavelength matches the sensor most sensitive mode, acting as an optical filter. Using a LED source, light reflected backwards by this grating is partially attenuated when passing through the sensor due to plasmon wave excitation and the power changes are quantified once again with an optical power meter. A performance analysis of the techniques is carried out and they both result competitive interrogation solutions. The work thus focuses on the development of cost-effective alternatives for monitoring this kind of biosensors in practical situations.

  8. Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity

    Science.gov (United States)

    Pham, Xuantung; Si, Jinhai; Chen, Tao; Wang, Ruize; Yan, Lihe; Cao, Houjun; Hou, Xun

    2018-05-01

    In this paper, we propose a demodulation method for refractive index (RI) sensing with tilted fiber Bragg gratings (TFBGs). It operates by monitoring the TFBG cladding mode resonance "cut-off wavelengths." The idea of a "cut-off wavelength" and its determination method are introduced. The RI sensitivities of TFBGs are significantly enhanced in certain RI ranges by using our demodulation method. The temperature-induced cross sensitivity is eliminated. We also demonstrate a parallel-double-angle TFBG (PDTFBG), in which two individual TFBGs are inscribed in the fiber core in parallel using a femtosecond laser and a phase mask. The RI sensing range of the PDTFBG is significantly broader than that of a conventional single-angle TFBG. In addition, its RI sensitivity can reach 1023.1 nm/refractive index unit in the 1.4401-1.4570 RI range when our proposed demodulation method is used.

  9. Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating.

    Science.gov (United States)

    Zhang, Yang; Wang, Fang; Liu, Zigeng; Duan, Zhihui; Cui, Wenli; Han, Jie; Gu, Yiying; Wu, Zhenlin; Jing, Zhenguo; Sun, Changsen; Peng, Wei

    2017-10-02

    In this work, a novel and simple optical fiber hot-wire anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is proposed and demonstrated. For the hot-wire wind speed sensor design, TFBG is an ideal in-fiber sensing structure due to its unique features. It is utilized as both light coupling and temperature sensing element without using any geometry-modified or uncommon fiber, which simplifies the sensor structure. To further enhance the thermal conversion capability, SWCNTs are coated on the surface of the TFBG instead of traditional metallic materials, which have excellent thermal characteristics. When a laser light is pumped into the sensor, the pump light propagating in the core will be easily coupled into cladding of the fiber via the TFBG and strongly absorbed by the SWCNTs thin film. This absorption acts like a hot-wire raising the local temperature of the fiber, which is accurately detected by the TFBG resonance shift. In the experiments, the sensor's performances were investigated and controlled by adjusting the inherent angle of the TFBG, the thickness of SWCNTs film, and the input power of the pump laser. It was demonstrated that the developed anemometer exhibited significant light absorption efficiency up to 93%, and the maximum temperature of the local area on the fiber was heated up to 146.1°C under the relatively low pump power of 97.76 mW. The sensitivity of -0.3667 nm/(m/s) at wind speed of 1.0 m/s was measured with the selected 12° TFBG and 1.6 μm film.

  10. [INVITED] Tilted fiber grating mechanical and biochemical sensors

    Science.gov (United States)

    Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-04-01

    The tilted fiber Bragg grating (TFBG) is a new kind of fiber-optic sensor that possesses all the advantages of well-established Bragg grating technology in addition to being able to excite cladding modes resonantly. This device opens up a multitude of opportunities for single-point sensing in hard-to-reach spaces with very controllable cross-sensitivities, absolute and relative measurements of various parameters, and an extreme sensitivity to materials external to the fiber without requiring the fiber to be etched or tapered. Over the past five years, our research group has been developing multimodal fiber-optic sensors based on TFBG in various shapes and forms, always keeping the device itself simple to fabricate and compatible with low-cost manufacturing. This paper presents a brief review of the principle, fabrication, characterization, and implementation of TFBGs, followed by our progress in TFBG sensors for mechanical and biochemical applications, including one-dimensional TFBG vibroscopes, accelerometers and micro-displacement sensors; two-dimensional TFBG vector vibroscopes and vector rotation sensors; reflective TFBG refractometers with in-fiber and fiber-to-fiber configurations; polarimetric and plasmonic TFBG biochemical sensors for in-situ detection of cell, protein and glucose.

  11. Optical Fiber Thermometer Based on Fiber Bragg Gratings

    Science.gov (United States)

    Rosli, Ekbal Bin; Mohd. Noor, Uzer

    2018-03-01

    Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.

  12. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  13. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    DEFF Research Database (Denmark)

    Min, Rui; Marques, Carlos; Bang, Ole

    2018-01-01

    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different...

  14. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  15. Influence of forming conditions on fiber tilt

    Science.gov (United States)

    David W. Vahey; John M. Considine; Michael A. and MacGregor

    2013-01-01

    Fiber tilt describes the projection of fiber length in the thickness direction of paper. The projection is described by the tilt angle of fibers with respect to the plane of the sheet. A simple model for fiber tilt is based on jet-to-wire velocity differential in combination with cross-flows on the wire. The tilt angle of a fiber is found to vary as the sine of its in-...

  16. Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling.

    Science.gov (United States)

    Caucheteur, Christophe; Mégret, Patrice; Cusano, Andrea

    2009-07-10

    In recent years, tilted fiber Bragg gratings (TFBGs) have been demonstrated to be a promising technological platform for sensing applications such as the measurement of axial strain, bending, vibration, and refractive index. However, complex spectral measurements combined with the difficulty of using TFBGs in a quasi-distributed sensors network limit the practical exploitation of this assessed technology. To address this issue, we propose a hybrid configuration involving uniform and TFBGs working in reflection, which makes the demodulation technique easier and allows multipoint sensing. This configuration provides a narrowband reflection signal that is modulated by the wavelength selective losses associated with some TFBG's cladding-modes resonances. We report here the operating principle of the proposed device. An experimental validation is presented for refractive-index sensing purposes.

  17. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers

    International Nuclear Information System (INIS)

    Wieduwilt, Torsten; Brückner, Sven; Bartelt, Hartmut

    2011-01-01

    Fiber Bragg gratings inscribed in the waist of tapered photosensitive fibers offer specific attractive properties for sensing applications. A small-diameter fiber reduces structural influences for imbedded fiber sensing elements. In the case of application as a force-sensing element for tensile forces, sensitivity scales inversely with the fiber cross-sectional area. It is therefore possible to increase force sensitivity by several orders of magnitude compared to Bragg grating sensors in conventionally sized fibers. Special requirements for such Bragg grating arrangements are discussed and experimental measurements for different fiber taper diameters down to 4 µm are presented

  18. Development of tilted fibre Bragg gratings using highly coherent 255 ...

    Indian Academy of Sciences (India)

    R&D C-1 Block, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India. ∗. Corresponding author. E-mail: oprakash@rrcat.gov.in. DOI: 10.1007/s12043-013-0672-7; ePublication: 6 February 2014. Abstract. This paper reports the study on development of tilted fibre Bragg gratings using highly coherent 255 ...

  19. All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application

    DEFF Research Database (Denmark)

    Passaro, Davide; Foroni, Matteo; Poli, Federica

    2008-01-01

    The possibility to exploit all-silica hollow-core-microstructured Bragg fibers to realize a biosensor useful to detect the DNA hybridization process has been investigated. A Bragg fiber recently fabricated has been considered for the analysis performed by means of a full-vector modal solver based...... layer on the inner surface of the fiber holes can modify the fundamental mode properties. The numerical analysis results have successfully demonstrated the DNA bio-sensor feasibility in hollow-core Bragg fibers....

  20. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    Science.gov (United States)

    Min, Rui; Marques, Carlos; Bang, Ole; Ortega, Beatriz

    2018-03-01

    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different periods to create a Moiré grating with only two pulses (one pulse is 15 ns) of UV power. Experimental characterization of the filter is provided under different conditions where the strain and temperature sensitivities were measured.

  1. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  2. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    International Nuclear Information System (INIS)

    McCary, Kelly Marie

    2017-01-01

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  3. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    Energy Technology Data Exchange (ETDEWEB)

    McCary, Kelly Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-04-01

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  4. Laser sensor with Bragg gratings of fiber optics to physics parameter measuring

    International Nuclear Information System (INIS)

    Vazquez, R.; Garcia, C.; May, M.; Camas, J.

    2009-01-01

    We present the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980nm, an 4.23 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength increases their temperature which can be used as a sensor element. The laser generation thus shows that the Bragg grating is increasing their temperature. We used a Peltier cell for to change gradually the temperature. (Author)

  5. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    2018-06-01

    Full Text Available A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration. Keywords: Tapered optical fibers, Fiber Bragg gratings, Random lasers

  6. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    Science.gov (United States)

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  7. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    Science.gov (United States)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  8. A novel method for length of chirped fiber Bragg grating sensor

    Science.gov (United States)

    Li, Zhenwei; Wei, Peng; Liu, Taolin

    2018-03-01

    Length of chirped fiber Bragg grating sensor is very important for detonation velocity. Different from other ways, we proposed a novel method based on the optical frequency domain reflection theory to measure the length of chirped fiber grating sensor in non-contact condition. This method adopts a tunable laser source to provide wavelength scanning laser, which covers the Full Width at Half Maximum of spectrum of the chirped fiber Bragg grating sensor. A Michelson interferometer is used to produce optical interference signal. Finally, the grating's length is attainable by distance domain signal. In theory, length resolution of chirped fiber Bragg grating sensor could be 0.02 mm. We perform a series of length measurement experiments for chirped fiber grating sensor, including comparison experiments with hot-tip method. And the experiment results show that the novel method could accurately measure the length of chirped fiber Bragg grating sensors, and the length differences between the optical frequency domain reflection method and the hot-tip probe method are very small.

  9. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  10. Guiding Properties of Silica/Air Hollow-Core Bragg Fibers

    DEFF Research Database (Denmark)

    Foroni, Matteo; Passaro, Davide; Poli, Federica

    2008-01-01

    The guiding properties of realistic silica/air hollow-core Bragg fibers have been investigated by calculating the dispersion curves, the confinement loss spectrum and the field distribution of the guided modes through a full-vector modal solver based on the finite element method. In particular, t...... the different possible applications, the feasibility of a DNA bio-sensor based on a hollow-core Bragg fiber has been demonstrated....

  11. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths.

    Science.gov (United States)

    Pospori, A; Marques, C A F; Sagias, G; Lamela-Rivera, H; Webb, D J

    2018-01-22

    The Bragg wavelength of a polymer optical fiber Bragg grating can be permanently shifted by utilizing the thermal annealing method. In all the reported fiber annealing cases, the authors were able to tune the Bragg wavelength only to shorter wavelengths, since the polymer fiber shrinks in length during the annealing process. This article demonstrates a novel thermal annealing methodology for permanently tuning polymer optical fiber Bragg gratings to any desirable spectral position, including longer wavelengths. Stretching the polymer optical fiber during the annealing process, the period of Bragg grating, which is directly related with the Bragg wavelength, can become permanently longer. The methodology presented in this article can be used to multiplex polymer optical fiber Bragg gratings at any desirable spectral position utilizing only one phase-mask for their photo-inscription, reducing thus their fabrication cost in an industrial setting.

  12. System Construction for the Measurement of Bragg Grating Characteristics in Optical Fibers

    Science.gov (United States)

    West, Douglas P.

    1995-01-01

    Bragg gratings are used to measure strain in optical fibers. To measure strain they are sometimes used as a smart structure. They must be characterized after they are written to determine their spectral response. This paper deals with the test setup to characterize Bragg grating spectral responses.Bragg gratings are a photo-induced phenomena in optical fibers. The gratings can be used to measure strain by measuring the shift in wavelength. They placed the fibers into a smart structure to measure the stress and strain produced on support columns placed in bridges. As the cable is subjected to strain the grating causes a shift to a longer wavelength if the fiber is stretched and a shift to a shorter wavelength shift if the fiber is compacted. Our applications involve using the fibers to measure stress and strain on airborne systems. There are many ways to write Bragg gratings into optical fibers. Our focus is on side writing the grating. Our capabilities are limited in the production rate of the gratings. The Bragg grating is written into a fiber and becomes a permanent fixture. We are writing the grating to be centered at 1300 nm because that is the standard phase mask wavelength.

  13. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    Science.gov (United States)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  14. Security System Responsive to Optical Fiber Having Bragg Grating

    Science.gov (United States)

    Gary, Charles K. (Inventor); Ozcan, Meric (Inventor)

    1997-01-01

    An optically responsive electronic lock is disclosed comprising an optical fiber serving as a key and having Bragg gratings placed therein. Further, an identification system is disclosed which has the optical fiber serving as means for tagging and identifying an object. The key or tagged object is inserted into a respective receptacle and the Bragg gratings cause the optical fiber to reflect a predetermined frequency spectra pattern of incident light which is detected by a decoder and compared against a predetermined spectrum to determine if an electrical signal is generated to either operate the lock or light a display of an authentication panel.

  15. Fabrication of locally micro-structured fiber Bragg gratings by fs-laser machining

    Science.gov (United States)

    Dutz, Franz J.; Stephan, Valentin; Marchi, Gabriele; Koch, Alexander W.; Roths, Johannes; Huber, Heinz P.

    2018-06-01

    Here, we describe a method for producing locally micro-structured fiber Bragg gratings (LMFGB) by fs-laser machining. This technique enables the precise and reproducible ablation of cladding material to create circumferential grooves inside the claddings of optical fibers. From initial ablation experiments we acquired optimized process parameters. The fabricated grooves were located in the middle of uniform type I fiber Bragg gratings. LMFBGs with four different groove widths of 48, 85, 135 and 205 μ { {m}} were produced. The grooves exhibited constant depths of about 30 μ {m} and steep sidewall angles. With the combination of micro-structures and fiber Bragg gratings, fiber optic sensor elements with enhanced functionalities can be achieved.

  16. Optical fiber laser sensor with a cavity of 8.6 Km formed by two fiber Bragg gratings used as mirrors

    Energy Technology Data Exchange (ETDEWEB)

    May A, M.; Kuzin, E.A.; Vazquez S, R.A. [Instituto Nacional de Astrofisica, Optica y Electronica, A. P. 51 y 216, C.P. 72000 Puebla (Mexico); Basurto P, M.A. [Universidad Autonoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Shlyagin, M.G.; Marquez B, I. [Centro de Investigacion Cientifica y de Ensenanza Superior de Ensenada, C.P. 22860 Ensenada, Baja California (Mexico)

    2002-07-01

    We report the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980 nm, an 8.67 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength is strained which can be used as a sensor element. The laser generation thus shows that the Bragg grating is under strain. Furthermore, our configuration give us the possibility for knowing the distance between two Bragg gratings when the laser beating frequency is measured. A measurement precision better than 25 m in 8.67 Km is shown to be feasible. (Author)

  17. Optical fiber laser sensor with a cavity of 8.6 Km formed by two fiber Bragg gratings used as mirrors

    CERN Document Server

    May, M; Vázquez, R A; Basurto, M A; Shlyagin, M G; Márquez, I

    2002-01-01

    We report the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980 nm, an 8.67 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength is strained which can be used as a sensor element. The laser generation thus shows that the Bragg grating is under strain. Furthermore, our configuration give us the possibility for knowing the distance between two Bragg gratings when the laser beating frequency is measured. A measurement precision better than 25 m in 8.67 Km is shown to be feasible. (Author)

  18. Response of fiber Bragg gratings to longitudinal ultrasonic waves.

    Science.gov (United States)

    Minardo, Aldo; Cusano, Andrea; Bernini, Romeo; Zeni, Luigi; Giordano, Michele

    2005-02-01

    In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for

  19. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    Science.gov (United States)

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-29

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

  20. Pemodelan Tapis Fabry-perot pada Serat Optik dengan Menggunakan Fiber Bragg Grating

    OpenAIRE

    Pramuliawati, Septi; ', Saktioto; ', Defrianto

    2015-01-01

    Fabry-perot filter was successfully developed by a uniform Fiber Bragg Grating in fiber optic. A characterization of Bragg Grating was analyzed by using computational model with second-order of Transfer Matrix Method based on Coupled Mode Theory. The reflectivity, length of grating, and bandwidth were parametrics to determine the performance of single Bragg Grating. The transmission spectrum showed the longer grating is designed, the larger the reflectivity was produced, so that the transmiss...

  1. Ultra-large bandwidth hollow-core guiding in all-silica bragg fibers with nano-supports

    DEFF Research Database (Denmark)

    Vienne, Guillaume; Xu, Yong; Jakobsen, Christian

    2004-01-01

    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in t...... in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m....

  2. Direct Writing of Fiber Bragg Grating in Microstructured Polymer Optical Fiber

    DEFF Research Database (Denmark)

    Stefani, Alessio; Stecher, Matthias; Town, G. E.

    2012-01-01

    We report point-by-point laser direct writing of a 1520-nm fiber Bragg grating in a microstructured polymer optical fiber (mPOF). The mPOF is specially designed such that the microstructure does not obstruct the writing beam when properly aligned. A fourth-order grating is inscribed in the m......POF with only a 2.5-s writing time....

  3. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-09-22

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.

  4. Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method

    OpenAIRE

    IKHLEF, Abdallah; HEDARA, Rachida; CHIKH-BLED, Mohamed

    2012-01-01

    This paper presents the modeling and simulation of an optical fiber Bragg grating for maximum reflectivity, minimum side lobe. Gating length represents as one of the critical parameters in contributing to a high performance fiber Bragg grating. The reflection spectra and side lobes strength were analyzed with different lengths .The side lobes have been suppressed using raised cosine apodization while maintaining the peak reflectivity. Such simulations are based on ...

  5. Confinement less spectral behavior in hollow-core Bragg fibers

    DEFF Research Database (Denmark)

    Foroni, M.; Passaro, D.; Poli, F.

    2007-01-01

    The influence of each cross-section geometric parameter on hollow-core Bragg fiber guiding properties has been numerically investigated. Fabricated fibers have been modeled, giving insight into the spectral behavior of the confinement loss. It has been verified that, by changing the amount...

  6. Bragg Grating Based Sensors in Microstructured Polymer Optical Fibers: Accelerometers and Microphones

    DEFF Research Database (Denmark)

    Stefani, Alessio

    With the growing interest towards fiber Bragg grating sensors and the growing ability in manufacturing polymer optical fibers, the development of polymer fiber Bragg sensors has catched the attention of industries with the goal of developing high performance sensors. This thesis presents...... and in microstructured fibers made of PMMA and TOPAS is reported. The gratings have been written at both 1550 nm, to take advantage of components made for telecommunications, and 850 nm, to exploit the lower loss of polymers and the fast acquisition electronics at this wavelength. A technique for writing multiplexed...

  7. Influence of optical fiber location behind an apodized phase mask on Bragg grating reflection efficiencies at Bragg wavelength and its harmonics

    Science.gov (United States)

    Osuch, Tomasz; Jaroszewicz, Zbigniew

    2017-01-01

    An apodized fiber Bragg grating formation using a phase mask with variable duty cycle is numerically analyzed. In particular, an impact of position of an optical fiber behind the phase mask with Gaussian apodization profile on Bragg grating reflection efficiencies at Bragg wavelength and its harmonics is extensively studied. It is shown that reflection efficiency of each harmonic strongly depends on the optical fiber location with respect to the adjacent Talbot planes during the grating inscription. An analytical formula for calculation such periodical changes of reflection strength is proposed. It is also proved, that the smaller optical fiber diameter the higher fluctuations of reflectivity for particular harmonic occur. Results presented for such general case (i.e. phase mask with variable duty cycle with all non-zero diffraction orders) directly correspond to less complex structures, such as uniform phase masks and those with variable groove depth. They are also useful in optimization of Bragg wavelength and harmonic reflection efficiencies as well as in deep understanding of apodized FBG formation using aforementioned phase masks.

  8. Preparation and Characterization of Bragg Fibers for Delivery of Laser Radiation at 1064 nm

    Directory of Open Access Journals (Sweden)

    V. Matejec

    2013-04-01

    Full Text Available Bragg fibers offer new performance for transmission of high laser energies over long distances. In this paper theoretical modeling, preparation and characterization of Bragg fibers for delivery laser radiation at 1064 nm are presented. Investigated Bragg fibers consist of the fiber core with a refractive index equal to that of silica which is surrounded by three pairs of circular layers. Each pair is composed of one layer with a high and one layer with a low refractive index and characterized by a refractive-index difference around 0.03. Propagation constants and radiation losses of the fundamental mode in such a structure were calculated on the basis of waveguide optics. Preforms of the Bragg fibers were prepared by the MCVD method using germanium dioxide, phosphorous pentoxide and fluorine as silica dopants. The fibers with a diameter of 170 m were drawn from the preforms. Refractive-index profiles, angular distributions of the output power and optical losses of the prepared fibers were measured. Results of testing the fibers for delivery radiation of a pulse Nd:YAG laser at 1064 nm are also shown.

  9. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Saez-Rodriguez, D.; Bang, Ole

    2014-01-01

    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure...... because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced...... birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization...

  10. Localized topological states in Bragg multihelicoidal fibers with twist defects

    Science.gov (United States)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  11. Fiber Bragg Grating Sensor for Detection of Nitrate Concentration in Water

    Directory of Open Access Journals (Sweden)

    A. S. LALASANGI

    2011-02-01

    Full Text Available The concentrations of chemical species in drinking water are of great interest. We demonstrated etched fiber Bragg grating (FBG as a concentration sensor for nitrate by analyzing the Bragg wavelength shift with concentration of chemical solution. The FBG is fabricated by phase mask technique on single mode Ge-B co-doped photosensitive fiber. Sensitivity of FBGs to the surrounding solution concentration can be enhanced by reducing diameter of the cladding with 40 % HF solution. The maximum sensitivity achieved is 1.322 ´ 10-3 nm/ppm. The overall shift of Bragg wavelength is of the order of 6.611 ´ 10-2 nm for 10 to 50 ppm concentration.

  12. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  13. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu; Wafai, Husam; Yudhanto, Arief; Lubineau, Gilles; Yaldiz, R.; Schijve, W.; Verghese, N.

    2015-01-01

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved

  14. Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask.

    Science.gov (United States)

    Voigtländer, Christian; Thomas, Jens; Wikszak, Elodie; Dannberg, Peter; Nolte, Stefan; Tünnermann, Andreas

    2009-06-15

    We report a fabrication technique for chirped fiber Bragg gratings (CFBGs) using a flexible setup based on a poly(methyl-methacrylate) phase mask. The period of the phase mask can be thermally tuned during the inscription process, allowing the grating period of uniform fiber Bragg gratings to be shifted about 7 nm by a temperature change of 74 K. In addition, CFBGs with bandwidths up to 2 nm are demonstrated in non-photosensitive fibers by IR femtosecond inscription.

  15. PROTECTIVE COATINGS OF FIBER BRAGG GRATING FOR MINIMIZING OF MECHANICAL IMPACT ON ITS WAVELENGTH CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    A. S. Munko

    2015-03-01

    Full Text Available The paper deals with the scheme for the study of the Bragg wavelength shift dependence on the applied tensile force. Samples of fiber Bragg gratings with different coatings have been studied: the restored acrylate coating, the heatshrinkable fusion splice protection sleeve without metal rod, the heat-shrinkable fusion splice protection sleeve with a metal rod, the metal capillary, polyvinylchloride tube. For different coatings of diffractive structure, dependences of wavelength shift for the Bragg grating resonance have been obtained on the tensile strength applied to the ends of an optical fiber. It was determined that the studied FBG coatings give the possibility to reduce the mechanical impact on the Bragg wavelength shift for 1.1-15 times as compared to an uncoated waveguide. The most effective version of coated fiber Bragg grating is the heatshrinkable fusion splice protection sleeve with a metal rod. When the force (equal to 6 N is applied to the 100 mm optical fiber area with the inscribed diffractive structure, the Bragg wavelength shift is 7.5 nm for the unprotected sample and 0.5 nm for the one coated with the heat-shrinkable fusion splice protection sleeve.

  16. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Science.gov (United States)

    Popov, S. M.; Butov, O. V.; Chamorovskiy, Y. K.; Isaev, V. A.; Kolosovskiy, A. O.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.; Mégret, P.; Odnoblyudov, M.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG) inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration.

  17. Temperature-referenced high-sensitivity point-probe optical fiber chem-sensors based on cladding etched fiber Bragg gratings

    OpenAIRE

    Zhou, Kaiming; Chen, Xianfeng F.; Zhang, Lin; Bennion, Ian

    2004-01-01

    Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offe...

  18. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, C. A. F.; Saez-Rodriguez, D.

    2017-01-01

    An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors......, with the possible cause being the molecular relaxation of the polymer when fiber is raised above the β-transition temperature. A simple, cost-effective, but well controlled method for fiber annealing is also presented in this work. In addition, the effects of chemical etching on the strain, stress, and force...... sensitivities have been investigated. Results show that fiber etching too can increase the force sensitivity, and it can also affect the strain and stress sensitivities of the Bragg grating sensors....

  19. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity

    Science.gov (United States)

    Pospori, A.; Marques, C. A. F.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2017-07-01

    An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors, with the possible cause being the molecular relaxation of the polymer when fiber is raised above the β -transition temperature. A simple, cost-effective, but well controlled method for fiber annealing is also presented in this work. In addition, the effects of chemical etching on the strain, stress, and force sensitivities have been investigated. Results show that fiber etching too can increase the force sensitivity, and it can also affect the strain and stress sensitivities of the Bragg grating sensors.

  20. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

    DEFF Research Database (Denmark)

    Markos, Christos; Stefani, Alessio; Nielsen, Kristian

    2013-01-01

    We present the fabrication and characterization of fiber Bragg gratings (FBGs) in an endlessly single-mode microstructured polymer optical fiber (mPOF) made of humidity-insensitive high-Tg TOPAS cyclic olefin copolymer. The mPOF is the first made from grade 5013 TOPAS with a glass transition...... temperature of Tg = 135°C and we experimentally demonstrate high strain operation (2.5%) of the FBG at 98°C and stable operation up to a record high temperature of 110°C. The Bragg wavelengths of the FBGs are around 860 nm, where the propagation loss is 5.1dB/m, close to the fiber loss minimum of 3.67d...

  1. Note: Strain sensitivity comparison between fiber Bragg gratings inscribed on 125 and 80 micron cladding diameter fibers, case study on the solidification monitoring of a photo-curable resin

    Energy Technology Data Exchange (ETDEWEB)

    Maccioni, E. [Dipartimento di Fisica, Università degli Studi di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare (INFN) sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Morganti, M. [Istituto Nazionale di Fisica Nucleare (INFN) sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Accademia Militare di Livorno, Viale Italia 72, 57100 Livorno (Italy); Brandi, F., E-mail: fernando.brandi@ino.it [Nanophysics Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche (CNR), Via G. Moruzzi 1, 56124 Pisa (Italy)

    2015-02-15

    The influence of fiber Bragg grating diameter when measuring strain is investigated and quantified. Two fiber Bragg gratings with bare cladding diameter of 125 μm and 80 μm are produced by excimer laser irradiation through a phase mask, and are used to simultaneously monitor the Bragg wavelength shift due to the strain produced by the solidification of a photo-curable resin during light exposure. It is found that the ratio of the measured strains in the two fiber Bragg gratings is close to the inverse ratio of the fiber’s cladding diameter. These results represent a direct simultaneous comparison between 125 μm and 80 μm diameter fiber Bragg grating strain sensors, and demonstrate the feasibility of strain measurements in photo-curable resins using bare 80 μm cladding diameter fiber Bragg gratings with an increased sensitivity and spatial resolution compared with standard 125 μm diameter fiber Bragg gratings.

  2. Fiber Bragg Grating vibration sensor with DFB laser diode

    Science.gov (United States)

    Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir

    2012-01-01

    The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.

  3. Continuous liquid level monitoring sensor system using fiber Bragg grating

    Science.gov (United States)

    Sengupta, Dipankar; Kishore, Putha

    2014-01-01

    The design and packaging of simple, small, and low cost sensor heads, used for continuous liquid level measurement using uniformly thinned (etched) optical fiber Bragg grating (FBG) are proposed. The sensor system consists of only an FBG and a simple detection system. The sensitivity of sensor is found to be 23 pm/cm of water column pressure. A linear optical fiber edge filter is designed and developed for the conversion of Bragg wavelength shift to its equivalent intensity. The result shows that relative power measured by a photo detector is linearly proportional to the liquid level. The obtained sensitivity of the sensor is nearly -15 mV/cm.

  4. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-08

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  5. All-optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel

    2010-01-01

    Roč. 283, č. 9 (2010), s. 1744-1749 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300670502 Institutional research plan: CEZ:AV0Z20670512 Keywords : Wavelength conversion * Fiber cross phase modulation * Fiber Bragg grating Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.517, year: 2010

  6. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    Science.gov (United States)

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  7. Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating.

    Science.gov (United States)

    Zhang, Qi; Ianno, Natale J; Han, Ming

    2013-07-10

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 × 10(5), which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  8. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    KAUST Repository

    Zhou, Jian

    2015-07-02

    Highly conductive polymer fibers are key components in the design of multifunctional textiles. Measuring the voltage/temperature relationships of these fibers is very challenging due to their very small diameters, making it impossible to rely on classical temperature sensing techniques. These fibers are also so fragile that they cannot withstand any perturbation from external measurement systems. We propose here, a non-contact temperature measurement technique based on fiber Bragg gratings (FBGs). The heat exchange is carefully controlled between the probed fibers and the sensing FBG by promoting radiation and convective heat transfer rather than conduction, which is known to be poorly controlled. We demonstrate our technique on a highly conductive Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures the temperature of the polymer fibers when subjected to electrical loading. © 2015 IOP Publishing Ltd.

  9. Smart architecture for stable multipoint fiber Bragg grating sensor system

    Science.gov (United States)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung

    2017-12-01

    In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.

  10. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings.

    Science.gov (United States)

    Barmenkov, Yuri O; Zalvidea, Dobryna; Torres-Peiró, Salvador; Cruz, Jose L; Andrés, Miguel V

    2006-07-10

    In this paper, we describe the properties of Fabry-Perot fiber cavity formed by two fiber Bragg gratings in terms of the grating effective length. We show that the grating effective length is determined by the group delay of the grating, which depends on its diffraction efficiency and physical length. We present a simple analytical formula for calculation of the effective length of the uniform fiber Bragg grating and the frequency separation between consecutive resonances of a Fabry-Perot cavity. Experimental results on the cavity transmission spectra for different values of the gratings' reflectivity support the presented theory.

  11. CENTRAL WAVELENGTH ADJUSTMENT OF LIGHT EMITTING SOURCE IN INTERFEROMETRIC SENSORS BASED ON FIBER-OPTIC BRAGG GRATINGS

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2015-09-01

    Full Text Available The paper is focused on the investigation of fiber-optic interferometric sensor based on the array of fiber Bragg gratings. Reflection spectra displacement mechanism of the fiber Bragg gratings under the external temperature effects and the static pressure is described. The experiment has shown that reflection spectra displacement of Bragg gratings reduces the visibility of the interference pattern. A method of center wavelength adjustment is proposed for the optical radiation source in accord ance with the current Bragg gratings reflection spectra based on the impulse relative modulation of control signal for the Peltier element controller. The semiconductor vertical-cavity surface-emitting laser controlled by a pump driver is used as a light source. The method is implemented by the Peltier element controller regulating and stabilizing the light source temperature, and a programmable logic-integrated circuit monitoring the Peltier element controller. The experiment has proved that the proposed method rendered possible to regulate the light source temperature at a pitch of 0.05 K and adjust the optical radiation source center wavelength at a pitch of 0.05 nm. Experimental results have revealed that the central wavelength of the radiation adjustment at a pitch of 0.005 nm gives the possibility for the capacity of the array consisting of four opticalfiber sensors based on the fiber Bragg gratings. They are formed in one optical fiber under the Bragg grating temperature change from 0° C to 300° C and by the optical fiber mechanical stretching by the force up to 2 N.

  12. Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser.

    Science.gov (United States)

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Qiaoni; Yang, Kaiming; Sun, Bing; Yin, Guolu; Liu, Shen; Zhou, Jiangtao; Zhao, Jing

    2015-05-01

    We demonstrate a highly birefringent phase-shifted fiber Bragg grating (PS-FBG) inscribed in H2-free fiber with a near-infrared femtosecond Gaussian laser beam and uniform phase mask. The PS-FBG was fabricated from an ordinary fiber Bragg grating (FBG) in a case in which overexposure was applied. The spectral evolution from FBG to FS-FBG was observed experimentally with a decrease in transmission loss at dip wavelength, blueshift of the dip wavelength, decrease in the cladding mode loss, and an increase in the insertion loss. A high birefringence was demonstrated experimentally with the existence of PS-FBG only in TM polarization. The formation of the PS-FBG may be due to a negative index change induced by the higher intensity in the center of the Gaussian laser beam.

  13. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings

    International Nuclear Information System (INIS)

    Bialiayeu, A; Albert, J; Bottomley, A; Prezgot, D; Ianoul, A

    2012-01-01

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ∼100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre. (paper)

  14. Bare Fiber Bragg Gratings embedded into concrete buffer Supercontainer concept for nuclear waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Kinet, Damien; Chah, Karima; Megret, Patrice; Caucheteur, Christophe [Electromagnetism and Telecommunications Department of the University of Mons, 31 Boulevard Dolez, 7000 Mons, (Belgium); Gusarov, Andrei [Belgian Nuclear Research Center, Boeretang 200, 2400 Mol, (Belgium); Faustov, Alexey [Belgian Nuclear Research Center, Boeretang 200, 2400 Mol, (Belgium); Electromagnetisme and Telecommunication Department of the University of Mons, 31 Boulevard Dolez, 7000 Mons, (Belgium); Areias, Lou [Mechanics of Materials and Constructions Department of the Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, (Belgium); European Underground Research Infrastructure for Disposal of nuclear waste In Clay Environment, Boeretang 200, 2400 Mol, (Belgium)

    2015-07-01

    We present the preliminary results obtained with bare fiber Bragg grating-based sensors embedded into half-scale Belgian Supercontainer concept. Being temperature and strain sensitive, some sensors were placed into aluminum tubes to monitor only temperature and results were compared with thermocouples data. The utility of using bare fiber Bragg gratings, knowing that these ones are very fragile, is to have a direct contact between the high alkaline environment of the concrete and silica fibers and to determine its impact over a very long time. (authors)

  15. Simulation and analysis of sensitivity for tapered fiber Bragg grating evanescent wave sensor

    Science.gov (United States)

    Xu, Hong-zhi; Lou, Jun; Tan, Yao-cheng; Li, Ben-chong; Huang, Jie; Shen, Wei-min

    2014-12-01

    We have carried out a detailed simulative study of the tapered fiber Bragg grating (TFBG) evanescent wave sensor sensitivity by using 3-D Coupled-Mode Theory method. The method is based on the spectral interrogation mode of operation. We also make numerical simulations to figure out how the uniform waist diameter and the difference of the relative refractive indexes between fiber core and external medium affect the sensitivity of this proposed sensor. The simulation results show that the sensitivity of the tapered fiber Bragg grating will be improved when the diameter of the uniform waist decrease as well as the difference of the relative refractive indexes between fiber core and external medium. And with the fixed uniform waist diameter and tapered length, when the difference of the relative refractive index of fiber core and external medium varies is 0.015RIU, the values of wavelength shift is 5.08nm, the sensitivity of the tapered fiber Bragg grating is 317.5nm/RIU. The sensitivity is higher than that of the common FBG. The results are consistent with theoretical models. The simulation results can supply the guidance for the further experimental study and refractive index sensor design, optimization and application.

  16. Capacity of Wavelength and Time Division Multiplexing for Quasi-Distributed Measurement Using Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Marcel Fajkus

    2015-01-01

    Full Text Available In this paper, an analysis of the use of wavelength and time division multiplexing techniques for quasi-distributed measurement in uniform fiber Bragg gratings is presented. To date, publications have concentrated on the determination of the maximum number of fiber Bragg gratings on one optical fiber using wavelength and time division multiplexing. In this paper, these techniques will be extended to determine the spectral width of wavelength division multiplexing in terms of the spectral width of the light emitting diode, the spectral width of the Bragg gratings, the measurement ranges of the individual sensors, and the guard band between two adjacent Bragg gratings. For time division multiplexing, a description of the time and power conditions are given. In particular the reflected power, first order crosstalk and chromatic dispersion have been considered. Finally, these relationships were applied to verify a design in a simulation using OptiSystem software.

  17. Fiber-Optic Refractometer Based on an Etched High-Q π-Phase-Shifted Fiber-Bragg-Grating

    Directory of Open Access Journals (Sweden)

    Ming Han

    2013-07-01

    Full Text Available We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit at an ambient refractive index of 1.318. The reflection spectrum of the etched pFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 ´ 105, which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  18. Fiber Bragg Grating Based System for Temperature Measurements

    Science.gov (United States)

    Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly

    In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.

  19. Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Pedersen, Jens Kristian Mølgaard; Fasano, Andrea

    2017-01-01

    A microstructured polymer optical fiber (mPOF) Bragg grating sensor system for the simultaneous measurement of temperature and relative humidity (RH) has been developed and characterized. The sensing head is based on two in-line fiber Bragg gratings recorded in a mPOF. The sensor system has a root...... mean square deviation of 1.04 % RH and 0.8 °C in the range 10 to 90% RH and 20 to 80 °C. The proposed sensor system is easy to fabricate, cheap and compact....

  20. Muscular condition monitoring system using fiber bragg grating sensors

    International Nuclear Information System (INIS)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun

    2014-01-01

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  1. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  2. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mehdi Shadaram

    2010-10-01

    Full Text Available In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  3. Fiber-Optic Refractometer Based on an Etched High-Q ?-Phase-Shifted Fiber-Bragg-Grating

    OpenAIRE

    Zhang, Qi; Ianno, Natale J.; Han, Ming

    2013-01-01

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive...

  4. Developing fiber lasers with Bragg reflectors as deep sea hydrophones

    Directory of Open Access Journals (Sweden)

    F. Sorrentino

    2006-06-01

    Full Text Available The present paper will discuss the work in progress at the Department of Physics of the University of Pisa in collaboration with the IFAC laboratory of CNR in Florence to develop pressure sensors with outstanding sensitivity in the acoustic and ultrasonic ranges. These devices are based on optically-pumped fiber lasers, where the mirrors are Bragg gratings written into the fiber core.

  5. Strain measurements by fiber Bragg grating sensors for in situ pile loading tests

    Science.gov (United States)

    Schmidt-Hattenberger, Cornelia; Straub, Tilmann; Naumann, Marcel; Borm, Günter; Lauerer, Robert; Beck, Christoph; Schwarz, Wolfgang

    2003-07-01

    A fiber Bragg grating (FBG) sensor network has been installed into a large diameter concrete pile on a real construction site. The intention was to monitor its deformation behavior during several quasi-static loading cycles. The skin friction between pile and subsoil affecting the ultimate bearing capacity of the pile as well as the settlement behavior of the structure under investigation has been derived from our measurements. A comparison between the results of the fiber Bragg grating sensors and conventional concrete strain gages (CSG) has shown excellent correspondence.

  6. Numerical analysis of the optimal length and profile of a linearly chirped fiber Bragg grating for dispersion compensation.

    Science.gov (United States)

    Thibault, S; Lauzon, J; Cliche, J F; Martin, J; Duguay, M A; Têtu, M

    1995-03-15

    We propose a theoretical investigation of the length and coupling profile of a linearly chirped fiber Bragg grating for maximum dispersion compensation in a repeaterless optical communication system. The system consists of 100 km of standard optical fiber in which a 1550-nm signal, directly modulated at 2.5 Gbits/s, is launched. We discuss the results obtained with 6-, 4.33-, and 1-cm-long linearly chirped fiber Bragg gratings having Gaussian and uniform coupling profiles. We numerically show that a 4.33-cm-long chirped fiber Bragg grating having a uniform coupling profile is capable of compensating efficiently for the dispersion of our optical communication system.

  7. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    Science.gov (United States)

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2017-01-01

    In the quest of finding the ideal polymer optical fiber (POF) for Bragg grating sensing, we have fabricated and characterized an endlessly single mode microstructured POF (mPOF). This fiber is made from cyclo-olefin homopolymer Zeonex grade 480R which has a very high glass transition temperature...

  9. A dual-wavelength tunable laser with superimposed fiber Bragg gratings

    International Nuclear Information System (INIS)

    Álvarez-Tamayo, R I; Durán-Sánchez, M; Pottiez, O; Ibarra-Escamilla, B; Kuzin, E A; Cruz, J L; Andrés, M V

    2013-01-01

    We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths. (paper)

  10. Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bache, Morten

    2011-01-01

    We report on a detailed study of the inscription and characterization of fiber Bragg gratings (FBGs) in commercial step index polymer optical fibers (POFs). Through the growth dynamics of the gratings, we identify the effect of UV-induced heating during the grating inscription. We found that FBGs...

  11. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Stajanca, Pavol

    2016-01-01

    Here we present the fabrication of a solid-core microstructured polymer optical fiber (mPOF) made of polycarbonate (PC), and report the first experimental demonstration of a fiber Bragg grating (FBG) written in a PC optical fiber. The PC used in this work has a glass transition temperature of 145°C...

  12. Underwater Acoustic Sensors Based on Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Giuseppe Parente

    2009-06-01

    Full Text Available We report on recent results obtained with a fiber optic hydrophone based on the intensity modulation of the laser light in a FBG (Fiber Bragg Grating under the influence of the sound pressure. In order to control the behavior of the hydrophone in terms of sensitivity and bandwidth, FBGs have been coated with proper materials, characterized by different elastic modulus and shapes. In particular, new experiments have been carried out using a cylindrical geometry with two different coating, showing that the sensitivity is not influenced by the shape but by the transversal dimension and the material characteristics of the coating.

  13. Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    Science.gov (United States)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-01-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.

  14. Humidity insensitive TOPAS polymer fiber Bragg grating sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Khan, Lutul; Webb, David J.

    2011-01-01

    We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance...... wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both...... wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG....

  15. Structural Health Monitoring of Bridges with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2014-11-01

    Systems with fiber optic sensors FBG (Fiber Bragg Grating are consolidated in the Structural Health Monitoring (SMH of bridges, Nondestructive Testing (NDT static and dynamic measurements of deformation, displacement, deflection, temperature and vibration. This article provides a brief introduction to the technology and the fundamentals of fiber optic sensors, also present comparative advantages over its traditional counterpart is presented. Their characteristics are described and measurement graphics are presented as an application example of the FBG sensors. Finally, some key aspects to consider for proper use in the field are mentioned.

  16. Fiber Bragg grating sensor-based communication assistance device

    Science.gov (United States)

    Padma, Srivani; Umesh, Sharath; Pant, Shweta; Srinivas, Talabattula; Asokan, Sundarrajan

    2016-08-01

    Improvements in emergency medicine in the form of efficient life supporting systems and intensive care have increased the survival rate in critically injured patients; however, in some cases, severe brain and spinal cord injuries can result in a locked-in syndrome or other forms of paralysis, and communication with these patients may become restricted or impossible. The present study proposes a noninvasive, real-time communication assistive methodology for those with restricted communication ability, employing a fiber Bragg grating (FBG) sensor. The communication assistive methodology comprises a breath pattern analyzer using an FBG sensor, which acquires the exhalation force that is converted into strain variations on a cantilever. The FBG breath pattern analyzer along with specific breath patterns, which are programmed to give specific audio output commands, constitutes the proposed fiber Bragg grating sensor-based communication assistive device. The basic communication can be carried out by instructing the patients with restricted communication ability to perform the specific breath patterns. The present approach is intended to be an alternative to the common approach of brain-computer interface in which an instrument is utilized for learning of brain responses.

  17. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  18. Bragg Grating Inscription With Low Pulse Energy in Doped Microstructured Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Min, Rui; Ortega, Beatriz; Nielsen, Kristian

    2018-01-01

    in the POFs without high pulse energy (mJ level) at 248-nm wavelength, which reduces maintenance costs. Furthermore, we can consider it as a solution to increase the lifetime of the laser system without high energy still allowing fast and efficient production of the FBGs for sensing applications.......We demonstrate that fiber Bragg gratings (FBGs) can be written in a doped polymer optical fiber (POF) in a low ultraviolet (UV) pulse energy regime (60Jpulse) using a 248-nm krypton fluoride excimer laser system. The total energy density per inscription necessary to obtain Bragg gratings is between...

  19. Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors

    Energy Technology Data Exchange (ETDEWEB)

    Abbaneo, D.; Abbas, M. [CERN, Geneva (Switzerland); Abbrescia, M. [INFN Bari and University of Bari, Bari (Italy); Abdelalim, A.A. [Helwan University & CTP, Cairo (Egypt); Abi Akl, M. [Texas A& M University at Qatar, Doha (Qatar); Aboamer, O. [Academy of Scientific Research and Technology – Egyptian Network of High Energy Physics, ASRT-ENHEP, Cairo (Egypt); Acosta, D. [University of Florida, Gainesville (United States); Ahmad, A. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Ahmed, W. [Helwan University & CTP, Cairo (Egypt); Ahmed, W. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Aleksandrov, A. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Aly, R. [Helwan University & CTP, Cairo (Egypt); Altieri, P. [INFN Bari and University of Bari, Bari (Italy); Asawatangtrakuldee, C. [Peking University, Beijing (China); Aspell, P. [CERN, Geneva (Switzerland); Assran, Y. [Academy of Scientific Research and Technology – Egyptian Network of High Energy Physics, ASRT-ENHEP, Cairo (Egypt); Awan, I. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Bally, S. [CERN, Geneva (Switzerland); Ban, Y. [Peking University, Beijing (China); Banerjee, S. [Saha Institute of Nuclear Physics, Kolkata (India); and others

    2016-07-11

    A novel approach which uses Fiber Bragg Grating (FBG) sensors has been utilized to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.

  20. Silica Bridge Impact on Hollow-core Bragg Fiber Transmission Properties

    DEFF Research Database (Denmark)

    Poli, F.; Foroni, M.; Giovanelli, D.

    2007-01-01

    The silica bridges impact on the hollow-core Bragg fiber guiding properties is investigated. Results demonstrate that silica nanosupports are responsible for the surface mode presence, which causes the peaks experimentally measured in the transmission spectrum. © 2006 Optical Society of America....

  1. Design of Matched Cladding Fiber with UV-sensitive Cladding for Minimization of Claddingmode Losses in Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Berendt, Martin Ole; Bjarklev, Anders Overgaard

    2000-01-01

    The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found to be adv......The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found...... to be advantageous to increase the extent of the photosensitive region. However, no significant improvement is obtained by extending the photosensitive region more than approximately 10 mu m into the cladding. This result is not in agreement with a simple analysis that neglects UV absorption, which suggests...... that the radius of the photosensitive region should be close to twice as large. (C) 2000 Academic Press....

  2. The effect of shape anisotropy in giant magnetostrictive fiber Bragg grating sensors

    International Nuclear Information System (INIS)

    Pacheco, C J; Bruno, A C

    2010-01-01

    We study the role of shape anisotropy on the strain response of magnetic field sensors based on square cuboids with giant magnetostriction and fiber Bragg gratings. We measured a maximum sensitivity of 18 µε mT −1 when a biasing uniform field of 15 mT was applied to a Tb 0.3 Dy 0.7 Fe 1.92 cuboid with an aspect ratio of 5.0. When gradient fields were applied, we were able to measure a significant change in the magnetostrictive response at different positions, attaching fiber Bragg gratings along the cuboid face containing the main magnetostrictive axis. Depending on the magnitude of the applied gradient, the magnetostrictive response was reduced by up to 34%

  3. Bandwidth-Tunable Fiber Bragg Gratings Based on UV Glue Technique

    Science.gov (United States)

    Fu, Ming-Yue; Liu, Wen-Feng; Chen, Hsin-Tsang; Chuang, Chia-Wei; Bor, Sheau-Shong; Tien, Chuen-Lin

    2007-07-01

    In this study, we have demonstrated that a uniform fiber Bragg grating (FBG) can be transformed into a chirped fiber grating by a simple UV glue adhesive technique without shifting the reflection band with respect to the center wavelength of the FBG. The technique is based on the induced strain of an FBG due to the UV glue adhesive force on the fiber surface that causes a grating period variation and an effective index change. This technique can provide a fast and simple method of obtaining the required chirp value of a grating for applications in the dispersion compensators, gain flattening in erbium-doped fiber amplifiers (EDFAs) or optical filters.

  4. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    Science.gov (United States)

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  5. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...

  6. Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete

    Science.gov (United States)

    Wang, Lili; Xin, Xiangjun; Song, Jun; Wang, Honggang; Sai, Yaozhang

    2018-02-01

    Fiber Bragg sensor is applied for detecting and monitoring the cracks that occur in the reinforced concrete. We use the three-dimensional finite element model to provide the three-axial stresses along the fiber Bragg sensor and then converted the stresses as a wavelength deformation of fiber Bragg grating (FBG) reflected spectrum. For the crack detection, an FBG sensor with 10-mm length is embedded in the reinforced concrete, and its reflection spectrum is measured after loading is applied to the concrete slab. As a result, the main peak wavelength and the ratio of the peak reflectivity to the maximal side-mode reflectivity of the optic-fiber grating represent the fracture severity. The fact that the sharp decreasing of the ratio of the peak reflectivity to the maximal side-mode reflectivity represents the early crack is confirmed by the theoretical calculation. The method can be used to detect the cracks in the reinforced concrete and give safety evaluation of large-scale infrastructure.

  7. Fiber Bragg Gratings for High-Temperature Thermal Characterization

    International Nuclear Information System (INIS)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.

    2004-01-01

    Fiber Bragg grating (FBG) sensors were used as a characterization tool to study the SAFE-100 thermal simulator at the Nasa Marshal Space Flight Center. The motivation for this work was to support Nasa space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements, up to 1150 deg. C, were made with FBG temperature sensors. Additionally, FBG strain measurements were taken at elevated temperatures to provide a strain profile of the core during operation. This paper will discuss the contribution of these measurements to meet the goals of Nasa Marshall Space Flight Center's Propulsion Research Center. (authors)

  8. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  9. Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip

    Science.gov (United States)

    Gomes, André D.; Silveira, Beatriz; Warren-Smith, Stephen C.; Becker, Martin; Rothhardt, Manfred; Frazão, Orlando

    2018-05-01

    A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode-field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 ± 1 nm/RIU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 ± 0.06 pm/°C). The cross sensitivity for this structure is 2.0 × 10-5 RIU/°C. The potential for simultaneous measurement of refractive index and temperature is also studied.

  10. Crack growth monitoring in composite materials using embedded optical Fiber Bragg Grating sensor

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    In this paper a novel method to assess a crack growing/damage event in fiber reinforced plastic, or adhesive using Fiber Bragg Grating (FBG) sensors embedded in a host material is shown. Different features of the crack mechanism that induce a change in the FBG response were identified. Double...

  11. Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements.

    Science.gov (United States)

    Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M

    2015-02-15

    A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.

  12. Single- and two-phase flow characterization using optical fiber bragg gratings.

    Science.gov (United States)

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  13. Retinal Nerve Fiber Layer Protrusion Associated with Tilted Optic Discs.

    Science.gov (United States)

    Chiang, Jaclyn; Yapp, Michael; Ly, Angelica; Hennessy, Michael P; Kalloniatis, Michael; Zangerl, Barbara

    2018-03-01

    This study resulted in the identification of an optic nerve head (ONH) feature associated with tilted optic discs, which might potentially contribute to ONH pathologies. Knowledge of such findings will enhance clinical insights and drive future opportunities to understand disease processes related to tilted optic discs. The aim of this study was to identify novel retinal nerve fiber layer (RNFL) anomalies by evaluating tilted optic discs using optical coherence tomography. An observed retinal nerve fiber protrusion was further investigated for association with other morphological or functional parameters. A retrospective review of 400 randomly selected adult patients with ONH examinations was conducted in a referral-only, diagnostic imaging center. After excluding other ONH pathologies, 215 patients were enrolled and evaluated for optic disc tilt and/or torsion. Gross anatomical ONH features, including size and rim or parapapillary region elevation, were assessed with stereoscopic fundus photography. Optical coherence tomography provided detailed morphological information of individual retinal layers. Statistical analysis was applied to identify significant changes between individual patient cohorts. A dome-shaped hyperreflective RNFL bulge, protruding into the neurosensory retina at the optic disc margins, was identified in 17 eyes with tilted optic discs. Available follow-up data were inconclusive regarding natural changes with this ONH feature. This RNFL herniation was significantly correlated with smaller than average optic disc size (P = .005), congenital disc tilt (P optic discs, which has not previously been assessed as an independent ONH structure. The feature is predominantly related to congenital crowded, small optic discs and variable between patients. This study is an important first step to elucidate diagnostic capabilities of tilted disc morphological changes and understanding associated functional deficits.

  14. Dual-wavelength erbium-doped fiber laser with asymmetric fiber Bragg grating Fabry-Perot cavity

    Science.gov (United States)

    Chen, Cong; Xu, Zhi-wei; Wang, Meng; Chen, Hai-yan

    2014-11-01

    A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating (FBG) Fabry-Perot (FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.

  15. Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores.

    Science.gov (United States)

    Zaghloul, Mohamed A S; Wang, Mohan; Huang, Sheng; Hnatovsky, Cyril; Grobnic, Dan; Mihailov, Stephen; Li, Ming-Jun; Carpenter, David; Hu, Lin-Wen; Daw, Joshua; Laffont, Guillaume; Nehr, Simon; Chen, Kevin P

    2018-04-30

    This paper reports the testing results of radiation resistant fiber Bragg grating (FBG) in random air-line (RAL) fibers in comparison with FBGs in other radiation-hardened fibers. FBGs in RAL fibers were fabricated by 80 fs ultrafast laser pulse using a phase mask approach. The fiber Bragg gratings tests were carried out in the core region of a 6 MW MIT research reactor (MITR) at a steady temperature above 600°C and an average fast neutron (>1 MeV) flux >1.2 × 10 14 n/cm 2 /s. Fifty five-day tests of FBG sensors showed less than 5 dB reduction in FBG peak strength after over 1 × 10 20 n/cm 2 of accumulated fast neutron dose. The radiation-induced compaction of FBG sensors produced less than 5.5 nm FBG wavelength shift toward shorter wavelength. To test temporal responses of FBG sensors, a number of reactor anomaly events were artificially created to abruptly change reactor power, temperature, and neutron flux over short periods of time. The thermal sensitivity and temporal responses of FBGs were determined at different accumulated doses of neutron flux. Results presented in this paper reveal that temperature-stable Type-II FBGs fabricated in radiation-hardened fibers can survive harsh in-pile conditions. Despite large parameter drift induced by strong nuclear radiation, further engineering and innovation on both optical fibers and fiber devices could lead to useful fiber sensors for various in-pile measurements to improve safety and efficiency of existing and next generation nuclear reactors.

  16. Optical fiber pressure sensor based on fiber Bragg grating

    Science.gov (United States)

    Song, Dongcao

    In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon

  17. Proof of Concept of Impact Detection in Composites Using Fiber Bragg Grating Arrays

    Directory of Open Access Journals (Sweden)

    Ander Montero

    2013-09-01

    Full Text Available Impact detection in aeronautical structures allows predicting their future reliability and performance. An impact can produce microscopic fissures that could evolve into fractures or even the total collapse of the structure, so it is important to know the location and severity of each impact. For this purpose, optical fibers with Bragg gratings are used to analyze each impact and the vibrations generated by them. In this paper it is proven that optical fibers with Bragg gratings can be used to detect impacts, and also that a high-frequency interrogator is necessary to collect valuable information about the impacts. The use of two interrogators constitutes the main novelty of this paper.

  18. POINT-BY-POINT INSCRIPTION OF FIBER BRAGG GRATINGS INTO BIREFRINGENT OPTICAL FIBER THROUGH PROTECTIVE ACRYLATE COATING BY TI:SA FEMTOSECOND LASER

    Directory of Open Access Journals (Sweden)

    S. V. Arkhipov,

    2016-05-01

    Full Text Available The paper deals withpoint-by-point inscriptionof fiber Bragg gratings by the 800 nm Ti:Sa femtosecond laser pulses into a unique birefringent fiber with elliptical stress cladding of home manufacture. The proposed inscriptionmethod has advantages over the conventional phase mask method. The possibility to create complex grating structures and relatively high transparency of acrylate coating to the Ti:Sa femtosecond laser radiation of 800 nm gives the possibility for inscriptionof phase shifting gratings, chirped grating and superstructures without stripping the fiber. Also, this method makes it possible to inscribethese diffractive structures with and without co-doping of GeO2 in the fiber core. Achieved reflectance was 10%. The microscopic image of the diffractive structure in the fiber core is presented. The grating of 1.07 µm is realized by pulling the fiber with constant speed while the laser pulses are applied with a repetition frequency of 1 kHz. The results are usable in the sphere of creation of different fiber optic sensitive elements based on Bragg gratings.

  19. Damage Evaluation and Analysis of Composite Pressure Vessels Using Fiber Bragg Gratings to Determine Structural Health

    National Research Council Canada - National Science Library

    Kunzler, Marley; Udd, Eric; Kreger, Stephen; Johnson, Mont; Henrie, Vaughn

    2005-01-01

    .... Using fiber Bragg gratings embedded into the weave structure of carbon fiber epoxy composites allow the capability to monitor these composites during manufacture, cure, general aging, and damage...

  20. EFFECT OF OPTICAL FIBER HYDROGEN LOADING ON THE INSCRIPTION EFFICIENCY OF CHIRPED BRAGG GRATINGS BY MEANS OF KrF EXCIMER LASER RADIATION

    Directory of Open Access Journals (Sweden)

    Sergey V. Varzhel

    2016-11-01

    Full Text Available Subject of Research.We present comparative results of the chirped Bragg gratings inscription efficiency in optical fiber of domestic production with and without low-temperature hydrogen loading. Method. Chirped fiber Bragg gratings inscription was made by the Talbot interferometer with chirped phase mask having a chirp rate of 2.3 nm/cm used for the laser beam amplitude separation. The excimer laser system Coherent COMPexPro 150T, working with the gas mixture KrF (248 nm, was used as the radiation source. In order to increase the UV photosensitivity, the optical fiber was placed in a chamber with hydrogen under a pressure of 10 MPa and kept there for 14 days at 40 °C. Main Results. The usage of the chirped phase mask in a Talbot interferometer scheme has made it possible to get a full width at half-maximum of the fiber Bragg grating reflection spectrum of 3.5 nm with induced diffraction structure length of 5 mm. By preliminary hydrogen loading of optical fiber the broad reflection spectrum fiber Bragg gratings with a reflectivity close to 100% has been inscribed. Practical Relevance. The resulting chirped fiber Bragg gratings can be used as dispersion compensators in optical fiber communications, as well as the reflective elements of distributed fiber-optic phase interferometric sensors.

  1. Study on the weighing system based on optical fiber Bragg grating

    Science.gov (United States)

    Wang, Xiaona; Yu, Qingxu; Li, Yefang

    2010-10-01

    The optical fiber sensor based on wavelength demodulation such as fiber Bragg grating(FBG), with merits of immunity to electromagnetic interference, low drift and high precision, has been widely used in many areas, such as structural health monitoring and smart materials, and the wavelength demodulation system was also studied widely. In the paper, a weighing system based on FBG was studied. The optical source is broadband Erbium-doped fiber ring laser with a spectral range of 1500~1600nm and optical power of 2mW; A Fabry-Perot Etalon with orientation precision of 1pm was adopted as real-time wavelength calibration for the swept laser; and multichannel high resolution simultaneous sampling card was used in the system to acquire sensing signals simultaneously, thus high-resolution and real-time calibration of sweep-wavelength can be achieved. The FBG was adhered to a cantilever beam and the Bragg wavelength was demodulated with the system. The weighing system was done after calibrated with standard weight. Experimental results show that the resolution of the weighing system is 0.5 g with a full scale of 2Kg.

  2. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    International Nuclear Information System (INIS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-01-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center

  3. Femtosecond-pulse inscription of fiber Bragg gratings with single or multiple phase-shifts in the structure

    Science.gov (United States)

    Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey

    2018-05-01

    In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.

  4. Three-axis force sensor with fiber Bragg grating.

    Science.gov (United States)

    Hyundo Choi; Yoan Lim; Junhyung Kim

    2017-07-01

    Haptic feedback is critical for many surgical tasks, and it replicates force reflections at the surgical site. To meet the force reflection requirements, we propose a force sensor with an optical fiber Bragg grating (FBG) for robotic surgery. The force sensor can calculate three directional forces of an instrument from the strain of three FBGs, even under electromagnetic interference. A flexible ring-shape structure connects an instrument tip and fiber strain gages to sense three directional force. And a stopper mechanism is added in the structure to avoid plastic deformation under unexpected large force on the instrument tip. The proposed sensor is experimentally verified to have a sensing range from -12 N to 12 N, and its sensitivity was less than 0.06 N.

  5. Core-to-core uniformity improvement in multi-core fiber Bragg gratings

    Science.gov (United States)

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Jovanovic, Nemanja; Bland-Hawthorn, Joss; Lawrence, Jon; Gris-Sanchez, Itandehui; Birks, Tim; Haynes, Roger; Haynes, Dionne

    2014-07-01

    Multi-core fiber Bragg gratings (MCFBGs) will be a valuable tool not only in communications but also various astronomical, sensing and industry applications. In this paper we address some of the technical challenges of fabricating effective multi-core gratings by simulating improvements to the writing method. These methods allow a system designed for inscribing single-core fibers to cope with MCFBG fabrication with only minor, passive changes to the writing process. Using a capillary tube that was polished on one side, the field entering the fiber was flattened which improved the coverage and uniformity of all cores.

  6. Analysis of the dependence of the guided mode field distribution on the silica bridges in hollow-core Bragg fibers

    DEFF Research Database (Denmark)

    Selleri, S.; Poli, F.; Foroni, M.

    2007-01-01

    The guiding properties of fabricated air-silica Bragg fibers with different geometric characteristics have been numerically investigated through a modal solver based on the finite element method. The method has been used to compute the dispersion curves, the loss spectra and the field distribution...... of the modes sustained by the Bragg fibers under investigation. In particular, the silica bridge influence on the fundamental mode has been analyzed, by considering structures with different cross sections, that is an ideal Bragg fiber, without the silica nonosupports, a squared air-hole one and, finally......, a rounded air-hole one, which better describes the real fiber transverse section. Results have shown.the presence of anti-crossing points in the effective index curves associated with the transition of the guided mode to a surface mode. Moreover, it has been verified that these surface modes are responsible...

  7. Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser.

    Science.gov (United States)

    Shi, Jiawei; Li, Yuhua; Liu, Shuhui; Wang, Haiyan; Liu, Ningliang; Lu, Peixiang

    2011-01-31

    Bragg gratings with the bandwidth(FWHM) narrowed up to 79 pm were inscribed in double-cladding fiber with femtosecond radiation and a phase mask followed by an annealing treatment. With the annealing temperature below a critical value, the bandwidth of Bragg gratings induced by Type I-IR and Type II-IR index change was narrowed without the reduction of reflectivity. The bandwidth narrowing is due to the profile transformation of the refractive index modulation caused by the annealing treatment. This mechanism was verified by comparing bandwidth narrowing processes of FBGs written with different power densities.

  8. A magnetostrictive composite-fiber Bragg Grating sensor.

    Science.gov (United States)

    Quintero, Sully M M; Braga, Arthur M B; Weber, Hans I; Bruno, Antonio C; Araújo, Jefferson F D F

    2010-01-01

    This paper presents a light and compact optical fiber Bragg Grating sensor for DC and AC magnetic field measurements. The fiber is coated by a thick layer of a magnetostrictive composite consisting of particles of Terfenol-D dispersed in a polymeric matrix. Among the different compositions for the coating that were tested, the best magnetostrictive response was obtained using an epoxy resin as binder and a 30% volume fraction of Terfenol-D particles with sizes ranging from 212 to 300 μm. The effect of a compressive preload in the sensor was also investigated. The achieved resolution was 0.4 mT without a preload or 0.3 mT with a compressive pre-stress of 8.6 MPa. The sensor was tested at magnetic fields of up to 750 mT under static conditions. Dynamic measurements were conducted with a magnetic unbalanced four-pole rotor.

  9. A Magnetostrictive Composite-Fiber Bragg Grating Sensor

    Directory of Open Access Journals (Sweden)

    Jefferson F. D. F. Araújo

    2010-08-01

    Full Text Available This paper presents a light and compact optical fiber Bragg Grating sensor for DC and AC magnetic field measurements. The fiber is coated by a thick layer of a magnetostrictive composite consisting of particles of Terfenol-D dispersed in a polymeric matrix. Among the different compositions for the coating that were tested, the best magnetostrictive response was obtained using an epoxy resin as binder and a 30% volume fraction of Terfenol-D particles with sizes ranging from 212 to 300 µm. The effect of a compressive preload in the sensor was also investigated. The achieved resolution was 0.4 mT without a preload or 0.3 mT with a compressive pre-stress of 8.6 MPa. The sensor was tested at magnetic fields of up to 750 mT under static conditions. Dynamic measurements were conducted with a magnetic unbalanced four-pole rotor

  10. Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Oh, Seung Ryeol; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Kim, Soohyun

    2015-03-01

    Single-pulse coherently controlled nonlinear Raman spectroscopy is the simplest method among the coherent anti-Stokes Raman spectroscopy systems. In recent research, it has been proven that notch-shaped femtosecond pulse laser can be used to collect the coherent anti-Stokes Raman signals. In this study, we applied a fiber Bragg grating to the notch filtering component on the femtosecond pulse lasers. The experiment was performed incorporating a titanium sapphire femtosecond pulse laser source with a 100 mm length of 780-HP fiber which is inscribed 30 mm of Bragg grating. The fiber Bragg grating has 785 nm Bragg wavelength with 0.9 nm bandwidth. We proved that if the pulse lasers have above a certain level of positive group delay dispersion, it is sufficient to propagate in the fiber Bragg grating without any spectral distortion. After passing through the fiber Bragg grating, the pulse laser is reflected on the chirped mirror for 40 times to make the transform-limited pulse. Finally, the pulse time duration was 37 fs, average power was 50mW, and showed an adequate notch shape. Furthermore, the simulation of third order polarization signal is performed using MATLAB tools and the simulation result shows that spectral characteristic and time duration of the pulse is sufficient to use as an excitation source for single-pulse coherent anti-Stokes Raman spectroscopy. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab.

  11. Improved response time of laser etched polymer optical fiber Bragg grating humidity sensor

    OpenAIRE

    Zhang, Wei; Chen, Xianfeng; Liu, Chen; Lu, Yuanfu; Cardoso, Marcos; Webb, David J.

    2015-01-01

    The humidity sensor made of polymer optical fiber Bragg grating (POFBG) responds to the water content change in fiber induced by the change of environmental condition. The response time strongly depends on fiber size as the water change is a diffusion process. The ultra short laser pulses have been providing an effective micro fabrication method to achieve spatial localized modification in materials. In this work we used the excimer laser to create different microstructures (slot, D-shape) in...

  12. Field analysis of TE and TM modes in photonic crystal Bragg fibers by transmission matrix method

    Directory of Open Access Journals (Sweden)

    M Hosseini Farzad

    2010-03-01

    Full Text Available In this article, we considered the field analysis in photonic crystal Bragg fibers. We apply the method of transmission matrix to calculater the dispersion curves, the longitudinal wave number over wave number versus incident wavelength, and the field distributions of TE and TM modes in the Bragg fiber. Our analysis shows that the field of guided modes is confined in the core and can exist only in particular wavelength bands corresponding to the band-gap of the periodic structure of the clad. From another point of view, light confinement is due to Bragg reflection from high-and low-refractive index layers of the clad. Also, the diagram of average angular frequency with respect to average longitudinal wave number is plotted so that the band gap regions of the clad are clearly observed.

  13. Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties.

    Science.gov (United States)

    Lhommé, Frederic; Caucheteur, Christophe; Chah, Karima; Blondel, Michel; Mégret, Patrice

    2005-02-01

    A simple, accurate, and fast method to synthesize the physical parameters of a fiber Bragg grating numerically from its reflectivity is proposed and demonstrated. Our program uses the transfer matrix method and is based on a Nelder-Mead simplex optimization algorithm. It can be applied to both uniform and nonuniform (apodized and chirped) fiber Bragg gratings. The method is then used to synthesize a uniform Bragg grating from its reflectivity taken at different temperatures. It gives a good estimate of the thermal expansion coefficient and the thermo-optic coefficient of the fiber.

  14. Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2012-01-01

    We demonstrate stable wavelength tunable inscription of polymer optical fiber Bragg gratings (FBGs). By straining the fiber during FBG inscription, we linearly tune the center wavelength over 7 nm with less than 1% strain. Above 1% strain, the tuning curve saturates and we show a maximum tuning...... of 12 nm with 2.25% strain. We use this inscription method to fabricate a dual-FBG strain sensor in a poly (methyl methacrylate) single-mode microstructured polymer optical fiber and demonstrate temperature compensated strain sensing around 850 nm....

  15. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  16. Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers

    DEFF Research Database (Denmark)

    Burani, Nicola; Lægsgaard, Jesper

    2005-01-01

    We present a modeling study carried out to support the design of a novel, to our knowledge, kind of photonic-crystal fiber (PCF)-based sensor. This device, based on a PCF Bragg grating, detects the presence of selected single-stranded DNA molecules, hybridized to a biofilm in the air holes of the...

  17. Tactile Sensor Array with Fiber Bragg Gratings in Quasi-Distributed Sensing

    Directory of Open Access Journals (Sweden)

    Marcelo A. Pedroso

    2018-01-01

    Full Text Available This work describes the development of a quasi-distributed real-time tactile sensing system with a reduced number of fiber Bragg grating-based sensors and reports its use with a reconstruction method based on differential evolution. The sensing system is comprised of six fiber Bragg gratings encapsulated in silicone elastomer to form a tactile sensor array with total dimensions of 60 × 80 mm, divided into eight sensing cells with dimensions of 20 × 30 mm. Forces applied at the central position of the sensor array resulted in linear response curves for the gratings, highlighting their coupled responses and allowing the application of compressive sensing. The reduced number of sensors regarding the number of sensing cells results in an undetermined inverse problem, solved with a compressive sensing algorithm with the aid of differential evolution method. The system is capable of identifying and quantifying up to four different loads at four different cells with relative errors lower than 10.5% and signal-to-noise ratio better than 12 dB.

  18. Polymer optical fiber Bragg grating inscription with a single UV laser pulse

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, A.T.; Bang, Ole

    2017-01-01

    We experimentally demonstrate the first polymer optical fiber Bragg grating inscribed with only one krypton fluoride laser pulse. The device has been recorded in a single-mode poly(methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One...... laser pulse with a duration of 15 ns, which provide energy density of 974 mJ/cm2, is adequate to introduce a refractive index change of 0.74×10-4 in the fiber core. After the exposure, the reflectivity of the grating increases for a few minutes following a second order exponential saturation...

  19. Combined distributed Raman and Bragg fiber temperature sensing using incoherent optical frequency domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Koeppel

    2018-02-01

    Full Text Available Optical temperature sensors offer unique features which make them indispensable for key industries such as the energy sector. However, commercially available systems are usually designed to perform either distributed or distinct hot spot temperature measurements since they are restricted to one measurement principle. We have combined two concepts, fiber Bragg grating (FBG temperature sensors and Raman-based distributed temperature sensing (DTS, to overcome these limitations. Using a technique called incoherent optical frequency domain reflectometry (IOFDR, it is possible to cascade several FBGs with the same Bragg wavelength in one fiber and simultaneously perform truly distributed Raman temperature measurements. In our lab we have achieved a standard deviation of 2.5 K or better at a spatial resolution in the order of 1 m with the Raman DTS. We have also carried out a field test in a high-voltage environment with strong magnetic fields where we performed simultaneous Raman and FBG temperature measurements using a single sensor fiber only.

  20. Bend measurement using an etched fiber incorporating a fiber Bragg grating.

    Science.gov (United States)

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang; Jiang, Yajun; Jiang, Wei

    2013-01-15

    A fiber Bragg grating (FBG) based bend measurement method using an etched fiber is proposed that utilizes the coupling of the core mode to the cladding and radiation modes at the bending region. An etching region of 99 µm diameter that serves as bend sensing head is achieved at 10 mm upstream the FBG through processing in 40% hydrofluoric acid, while the FBG acts as a narrowband reflector to enhance the sensitivity. The power variation curves are obtained for a wide range of bend angles, but the performance is limited due to the presence of the loss peaks. The sensing response is improved by immersing the etching region in a refractive index matching gel. The results are analyzed by using curve fitting formulas and are in good agreement. A large dynamic range of -27° to +27° and sensitivity of 0.43 dBm/deg is achieved, which can be enhanced by reducing the etched diameter.

  1. Fiber design and realization of point-by-point written fiber Bragg gratings in polymer optical fibers

    DEFF Research Database (Denmark)

    Stefani, Alessio; Stecher, Matthias; Town, Graham E.

    2012-01-01

    the gratings make the point-by-point grating writing technique very interesting and would appear to be able to fill this technological gap. On the other end this technique is hardly applicable for microstructured fibers because of the writing beam being scattered by the air-holes. We report on the design...... and because they allow to tune the guiding parameters by modifying the microstructure. Now a days the only technique used to write gratings in such fibers is the phase mask technique with UV light illumination. Despite the good results that have been obtained, a limited flexibility on the grating design...... and the very long times required for the writing of FBGs raise some questions about the possibility of exporting POF FBGs and the sensors based on them from the laboratory bench to the mass production market. The possibility of arbitrary design of fiber Bragg gratings and the very short time required to write...

  2. Polymer coated fiber Bragg grating thermometry for microwave hyperthermia.

    Science.gov (United States)

    Saxena, Indu Fiesler; Hui, Kaleo; Astrahan, Melvin

    2010-09-01

    Measuring tissue temperature distribution during electromagnetically induced hyperthermia (HT) is challenging. High resistance thermistors with nonmetallic leads have been used successfully in commercial HT systems for about three decades. The single 1 mm thick temperature sensing element is mechanically moved to measure tissue temperature distributions. By employing a single thermometry probe containing a fixed linear sensor array temperature, distributions during therapy can be measured with greater ease. While the first attempts to use fiber Bragg grating (FBG) technology to obtain multiple temperature points along a single fiber have been reported, improvement in the detection system's stability were needed for clinical applications. The FBG temperature sensing system described here has a very high temporal stability detection system and an order of magnitude faster readout than commercial systems. It is shown to be suitable for multiple point fiber thermometry during microwave hyperthermia when compared to conventional mechanically scanning probe HT thermometry. A polymer coated fiber Bragg grating (PFBG) technology is described that provides a number of FBG thermometry locations along the length of a single optical fiber. The PFBG probe developed is tested under simulated microwave hyperthermia treatment to a tissue equivalent phantom. Two temperature probes, the multiple PFBG sensor and the Bowman probe, placed symmetrically with respect to a microwave antenna in a tissue phantom are subjected to microwave hyperthermia. Measurements are made at start of HT and 85 min later, when a 6 degrees C increase in temperature is registered by both probes, as is typical in clinical HT therapy. The optical fiber multipoint thermometry probe performs highly stable, real-time thermometry updating each multipoint thermometry scan over a 5 cm length every 2 s. Bowman probe measurements are acquired simultaneously for comparison. In addition, the PFBG sensor's detection

  3. Bragg grating photo-inscription in doped microstructured polymer optical fiber by 400 nm femtosecond laser pulses

    DEFF Research Database (Denmark)

    Hu, X.; Woyessa, Getinet; Kinet, D.

    2016-01-01

    In this paper, we report the manufacturing of high-quality endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fibers. Bragg gratings are photo-inscribed in such fibers by means of 400 nm femtosecond laser pulses through a 1060-nm-period uniform phase mask...

  4. Fiber Bragg Grating Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Stephen J. Mihailov

    2012-02-01

    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  5. Theory of Fiber Optical Bragg Grating: Revisited

    Science.gov (United States)

    Tai, H.

    2003-01-01

    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  6. Remote (250 km Fiber Bragg Grating Multiplexing System

    Directory of Open Access Journals (Sweden)

    Manuel Lopez-Amo

    2011-09-01

    Full Text Available We propose and demonstrate two ultra-long range fiber Bragg grating (FBG sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6–8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system.

  7. A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings

    International Nuclear Information System (INIS)

    Ai, L; Chen, T C; Su, W K; Mau, J C; Liu, W F

    2008-01-01

    A fiber sensor based on a polyaniline (PANI) film that is coated on the surface of an etched superstructure fiber grating to detect volatile solvent vapors is experimentally demonstrated. This sensing mechanism is based on the interaction of the testing gas with the polyaniline coating film, which changes the film index, resulting in a shift in the Bragg wavelength. The sensitivity of this sensor to ammonia (NH 3 ) gas is about 0.073 pm ppm −1 , which depends on the optical characteristics of the fiber grating, the diameter of the fiber cladding and the constituents of the sensing film. Methanol concentrations can also be measured using this sensing scheme. The sensitivity of this sensor must be improved to provide a simple, reliable, repeatable and non-destructive method for sensing various chemical gases. (technical design note)

  8. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification.

    Science.gov (United States)

    Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P

    2015-09-01

    We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035  nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.

  9. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio

    2016-01-01

    The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C...

  10. Multipoint sensor based on fiber Bragg gratings

    International Nuclear Information System (INIS)

    Mendez-Zepeda, O; Munoz-Aguirre, S; Beltran-Perez, G; Castillo-Mixcoatl, J

    2011-01-01

    In some control and industrial measurement systems of physical variables (pressure, temperature, flow, etc) it is necessary one system and one sensor to control each process. On the other hand, there are systems such as PLC (Programmable Logic Control), which can process several signals simultaneously. However it is still necessary to use one sensor for each variable. Therefore, in the present work the use of a multipoint sensor to solve such problem has been proposed. The sensor consists of an optical fiber laser with two Fabry-Perot cavities constructed using fiber Bragg gratings (FBG). In the same system is possible to measure changes in two variables by detecting the intermodal separation frequency of each cavity and evaluate their amplitudes. The intermodal separation frequency depends on each cavity length. The sensor signals are monitored through an oscilloscope or a PCI card and after that acquired by PC, where they are analyzed and displayed. Results of the evaluation of the intermodal frequency separation peak amplitude behavior with FBG stretching are presented.

  11. Metallic-packaging fiber Bragg grating sensor based on ultrasonic welding for strain-insensitive temperature measurement

    Science.gov (United States)

    Zhu, Lianqing; Yang, Runtao; Zhang, Yumin; Dong, Mingli; Lou, Xiaoping

    2018-04-01

    In this paper, a metallic-packaging fiber Bragg grating temperature sensor characterized by a strain insensitive design is demonstrated. The sensor is fabricated by the one-step ultrasonic welding technique using type-II fiber Bragg grating combined with an aluminum alloy substrate. Finite element analysis is used to perform theoretical evaluation. The result of the experiment illustrates that the metallic-packaging temperature sensor is insensitive to longitudinal strain. The sensor's temperature sensitivity is 36 pm/°C over the range of 50-110 °C, with the correlation coefficient (R2) being 0.999. The sensor's temporal response is 40 s at a sudden temperature change from 21 °C to 100 °C. The proposed sensor can be applied on reliable and precise temperature measurement.

  12. Hydrogel-coated fiber Bragg grating sensor for pH monitoring

    Science.gov (United States)

    Pabbisetti, Vayu Nandana Kishore; Madhuvarasu, Sai Shankar

    2016-06-01

    We present a fiber-optic wavelength-modulated sensor for pH applications. Fiber Bragg grating (FBG) is functionalized with a stimulus-responsive hydrogel that induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of poly (vinyl alcohol)/poly (acrylic acid). The induced strain results in a shift of FBG reflected peak that is monitored by an interrogator. The sensor system shows good linearity in the acidic pH range of 3 to 7 with a sensitivity of 12.16 pm/pH. In addition, it shows good repeatability and oscillator behavior, which proves it to be fit for pH sensing applications.

  13. Cladding modes of optical fibers: properties and applications

    International Nuclear Information System (INIS)

    Ivanov, Oleg V; Nikitov, Sergei A; Gulyaev, Yurii V

    2006-01-01

    One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers. (instruments and methods of investigation)

  14. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  15. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    OpenAIRE

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong; Grattan, Kenneth T. V.; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating-based optical fiber sensors written into a very short length (60 mm) optical fiber network and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures and in tests were subjected to strain through a series of cycles of pulling tests, with applied forces of up to 30 kN. The results show that effective strain measurements can be obtained from the diffe...

  16. Hybrid fiber grating cavity for multi-parametric sensing.

    Science.gov (United States)

    Paladino, Domenico; Quero, Giuseppe; Caucheteur, Christophe; Mégret, Patrice; Cusano, Andrea

    2010-05-10

    We propose an all-fiber hybrid cavity involving two unbalanced uniform fiber Bragg gratings (FBGs) written at both sides of a tilted FBG (TFBG) to form an all-fiber interferometer. This configuration provides a wavelength gated reflection signal with interference fringes depending on the cavity features modulated by spectral dips associated to the wavelength dependent optical losses due to cladding mode coupling occurring along the TFBG. Such a robust structure preserves the advantages of uniform FBGs in terms of interrogation methods and allows the possibility of simultaneous physical and chemical sensing. (c) 2010 Optical Society of America.

  17. Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings

    Science.gov (United States)

    Allsop, Thomas; Bhamber, Ranjeet; Lloyd, Glynn; Miller, Martin R.; Dixon, Andrew; Webb, David; Ania Castañón, Juan Diego; Bennion, Ian

    2012-11-01

    An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p<0.01.

  18. Plantar Pressure Detection with Fiber Bragg Gratings Sensing System

    Directory of Open Access Journals (Sweden)

    Tsair-Chun Liang

    2016-10-01

    Full Text Available In this paper, a novel fiber-optic sensing system based on fiber Bragg gratings (FBGs to measure foot plantar pressure is proposed. This study first explores the Pedar-X insole foot pressure types of the adult-size chart and then defines six measurement areas to effectively identify four foot types: neutral foot, cavus foot, supinated foot and flat foot. The plantar pressure signals are detected by only six FBGs, which are embedded in silicone rubber. The performance of the fiber optic sensing is examined and compared with a digital pressure plate of i-Step P1000 with 1024 barometric sensors. In the experiment, there are 11 participants with different foot types to participate in the test. The Pearson correlation coefficient, which is determined from the measured results of the homemade fiber-optic plantar pressure system and i-Step P1000 plantar pressure plate, reaches up to 0.671 (p < 0.01. According to the measured results from the plantar pressure data, the proposed fiber optic sensing system can successfully identify the four different foot types. Measurements of this study have demonstrated the feasibility of the proposed system so that it can be an alternative for plantar pressure detection systems.

  19. BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription

    DEFF Research Database (Denmark)

    Hu, Xuehao; Woyessa, Getinet; Kinet, Damien

    2017-01-01

    An endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fiber is produced for effective fiber Bragg grating (FBG) photo-inscription by means of a 400 nm femtosecond pulsed laser and the phase mask technique. The fiber presents a uniform benzyl dimethyl ketal (BDK......) distribution in its core without drastic loss increase. It was produced using the selected center hole doping technique, and the BDK dopant acts as a photoinitiator. In this Letter, we report a rapidly growing process of the grating reflection band. For an 11 mW mean laser power, the FBG reflectivity reaches...

  20. Spectral characterization of differential group delay in uniform fiber Bragg gratings.

    Science.gov (United States)

    Bette, S; Caucheteur, C; Wuilpart, M; Mégret, P; Garcia-Olcina, R; Sales, S; Capmany, J

    2005-12-12

    In this paper, we completely study the wavelength dependency of differential group delay (DGD) in uniform fiber Bragg gratings (FBG) exhibiting birefringence. An analytical expression of DGD is established. We analyze the impact of grating parameters (physical length, index modulation and apodization profile) on the wavelength dependency of DGD. Experimental results complete the paper. A very good agreement between theory and experience is reported.

  1. Embedded Bragg grating fiber optic sensor for composite flexbeams

    Science.gov (United States)

    Bullock, Daniel; Dunphy, James; Hufstetler, Gerard

    1993-03-01

    An embedded fiber-optic (F-O) sensor has been developed for translaminar monitoring of the structural integrity of composites, with a view to application in composite helicopter flexbeams for bearingless main rotor hubs. This through-thickness strain sensor is much more sensitive than conventional in-plane embedded F-O sensors to ply delamination, on the basis of a novel insertion technique and innovative Bragg grating sensor. Experimental trials have demonstrated the detection by this means of potential failures in advance of the edge-delamination or crack-propagation effect.

  2. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  3. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  4. BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription.

    Science.gov (United States)

    Hu, Xuehao; Woyessa, Getinet; Kinet, Damien; Janting, Jakob; Nielsen, Kristian; Bang, Ole; Caucheteur, Christophe

    2017-06-01

    An endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fiber is produced for effective fiber Bragg grating (FBG) photo-inscription by means of a 400 nm femtosecond pulsed laser and the phase mask technique. The fiber presents a uniform benzyl dimethyl ketal (BDK) distribution in its core without drastic loss increase. It was produced using the selected center hole doping technique, and the BDK dopant acts as a photoinitiator. In this Letter, we report a rapidly growing process of the grating reflection band. For an 11 mW mean laser power, the FBG reflectivity reaches 83% in only 40 s.

  5. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    Science.gov (United States)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  6. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Homola, Jiří

    2009-01-01

    Roč. 17, č. 25 (2009), s. 23254-23264 ISSN 1094-4087 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor * Coupled mode theory Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.278, year: 2009

  7. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  8. Fiber Optic pH Sensor with Self-Assembled Polymer Multilayer Nanocoatings

    OpenAIRE

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-01

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength s...

  9. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    Science.gov (United States)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  10. Multi-resonance peaks fiber Bragg gratings based on largely-chirped structure

    Science.gov (United States)

    Chen, Chao; Zhang, Xuan-Yu; Wei, Wei-Hua; Chen, Yong-Yi; Qin, Li; Ning, Yong-Qiang; Yu, Yong-Sen

    2018-04-01

    A composite fiber Bragg grating (FBG) with multi-resonance peaks (MRPs) has been realized by using femtosecond (fs) laser point-by-point inscription in single-mode fiber. This device contains a segment of largely-chirped gratings with the ultrahigh chirp coefficients and a segment of uniform high-order gratings. The observed MRPs are distributed in an ultra-broadband wavelength range from 1200 nm to 1700 nm in the form of quasi-period or multi-peak-group. For the 8th-order MRPs-FBG, we studied the axial strain and high-temperature sensing characteristics of different resonance peaks experimentally. Moreover, we have demonstrated a multi-wavelength fiber lasers with three-wavelength stable output by using a 9th-order MRPs-FBG as the wavelength selector. This work is significant for the fabrication and functionalization of FBGs with complicated spectra characteristics.

  11. Exact bidirectional X -wave solutions in fiber Bragg gratings

    Science.gov (United States)

    Efremidis, Nikolaos K.; Nye, Nicholas S.; Christodoulides, Demetrios N.

    2017-10-01

    We find exact solutions describing bidirectional pulses propagating in fiber Bragg gratings. They are derived by solving the coupled-mode theory equations and are expressed in terms of products of modified Bessel functions with algebraic functions. Depending on the values of the two free parameters, the general bidirectional X -wave solution can also take the form of a unidirectional pulse. We analyze the symmetries and the asymptotic properties of the solutions and also discuss additional waveforms that are obtained by interference of more than one solution. Depending on their parameters, such pulses can create a sharp focus with high contrast.

  12. Research on fiber Bragg grating heart sound sensing and wavelength demodulation method

    Science.gov (United States)

    Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang

    2010-11-01

    Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.

  13. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings

    International Nuclear Information System (INIS)

    Oliveira, Ricardo; Osório, Jonas H; Aristilde, Stenio; Cordeiro, Cristiano M B; Bilro, Lúcia; Nogueira, Rogerio N

    2016-01-01

    We report the development of an optical fiber sensor capable of simultaneously measuring strain, temperature and refractive index. The sensor is based on the combination of two fiber Bragg gratings written in a standard single-mode fiber, one in an untapered region and another in a tapered region, spliced to a no-core fiber. The possibility of simultaneously measuring three parameters relies on the different sensitivity responses of each part of the sensor. The results have shown the possibility of measuring three parameters simultaneously with a resolution of 3.77 με , 1.36 °C and 5  ×  10 −4 , respectively for strain, temperature and refractive index. On top of the multiparameter ability, the simple production and combination of all the parts involved on this optical-fiber-based sensor is an attractive feature for several sensing applications. (paper)

  14. Ultrafast all-optical integrator based on a fiber Bragg grating: proposal and design.

    Science.gov (United States)

    Preciado, Miguel A; Muriel, Miguel A

    2008-06-15

    We demonstrate a simple technique for the implementation of an all-optical integrator based on a uniform-period fiber Bragg grating (FBG) in reflection that is designed to present a decreasing exponential impulse response. The proposed FBG integrator is readily feasible and can perform close to ideal integration of few-picosecond and subpicosecond pulses.

  15. Fabrication et applications des reseaux de Bragg ultra-longs

    Science.gov (United States)

    Gagne, Mathieu

    This thesis presents the principal accomplishments realized during the PhD project. The thesis is presented by publication format and is a collection of four published articles having fiber Bragg gratings as a central theme. First achieved in 1978, UV writing of fiber Bragg gratings is nowadays a common and mature technology being present in both industry and academia. The property of reflecting light guided by optical fibers lead to diverse applications in telecommunication, lasers as well as several types of sensors. The conventional fabrication technique is generally based on the use of generally expensive phase masks which determine the obtained characteristics of the fiber Bragg grating. The fiber being photosensitive at those wavelengths, a periodic pattern can be written into it. The maximal length, the period, the chirp, the index contrast and the apodisation are all characteristics that depend on the phase mask. The first objective of the research project is to be able to go beyond this strong dependance on the phase mask without deteriorating grating quality. This is what really sets apart the technique presented in this thesis from other long fiber Bragg grating fabrication techniques available in the literature. The fundamental approach to obtain ultra long fiber Bragg gratings of arbitrary profile is to replace the scheme of scanning a UV beam across a phase mask to expose a fixed fiber by a scheme where the UV beam and phase mask are fixed and where the fiber is moving instead. To obtain a periodic index variation, the interference pattern itself must be synchronized with the moving fiber. Two variations of this scheme were implanted: the first one using electro-optical phase modulator placed in each arm of a Talbot interferometer and the second one using a phase mask mounted on a piezo electric actuator. A new scheme that imparts fine movements of the interferometer is also implemented for the first time and showed to be essential to achieve high

  16. Preparation and characterization of bragg fibers for delivery of laser radiation at 1064 nm

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Kašík, Ivan; Podrazký, Ondřej; Aubrecht, Jan; Frank, M.; Jelínek, M.; Kubeček, V.

    2013-01-01

    Roč. 22, č. 1 (2013), s. 346-351 ISSN 1210-2512 R&D Projects: GA ČR GAP102/12/2361 Institutional support: RVO:67985882 Keywords : Bragg fiber s * High-index contrast * MCVD method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.796, year: 2013

  17. Effects of pre-strain on the intrinsic pressure sensitivity of polymer optical fiber Bragg-gratings

    DEFF Research Database (Denmark)

    Pedersen, Jens Kristian Mølgaard; Woyessa, Getinet; Nielsen, Kristian

    2017-01-01

    We experimentally demonstrate a scheme for improving the intrinsic pressure sensitivity of fiber Bragg-gratings (FBGs) inscribed in polymer optical fibers by applying pre-strain in order to suppress the pressure induced mechanical contraction of the fiber. This contraction would otherwise...... contribute to a blueshift of the Brag-wavelength, counteracting the dominant redshift caused by the stress-optic effect, which effectively reduces the pressure sensitivity of the FBG. By applying this technique we are able to improve the sensitivity of the FBG from 2.8 pm/bar to 7.3 pm/bar. © (2017...

  18. Characterizing Fiber Bragg Grating Index Profiles to Improve the Writing Process

    DEFF Research Database (Denmark)

    Espejo, M.J.; Svalgaard, Mikael; Dyer, S.D.

    2006-01-01

    We demonstrate an accurate method for identifying both systematic and random errors in a fiber Bragg grating (FBG) writing system and show its application to calibration of the writing process. We first measure the FBG impulse response using low-coherence interferometry, and then we calculate......-beam dithered phase mask FBG writing system. We demonstrate the ability to identify errors in the writing process that would not likely be found from a measurement of the FBG reflection spectrum alone....

  19. Development of pulse laser processing for mounting fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umebidai Kidugawa Kyoto 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, 65-20 Kizaki Tsuruga Fukui 914-8585 (Japan); Technical Research and Development Institute, Kumagai Gumi Co., Ltd., 2-1 Tsukudo, Shinjuku Tokyo 162-8557 (Japan)

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  20. Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Janting, Jakob

    2017-01-01

    In this letter, we investigate the response of poly(methylmethacrylate) (PMMA) microstructured polymer optical fiber Bragg gratings (POFBGs) after immersion inmethanol/water solutions at room temperature. As the glass transition temperature of solution-equilibrated PMMA differs from the one...... of solvent-free PMMA, different concentrations of methanol and water lead to various degrees of frozen-in stress relaxation in the fiber. After solvent evaporation, we observe a permanent blue-shift in the grating resonance wavelength. The main contribution in the resonance wavelength shift arises from...... a permanent change in the size of the fiber. The results are compared with conventional annealing. The proposed methodology is cost-effective as it does not require a climate chamber. Furthermore, it enables an easy-to-control tuning of the resonance wavelength of POFBGs....

  1. Reconstruction of fiber grating refractive-index profiles from complex bragg reflection spectra.

    Science.gov (United States)

    Huang, D W; Yang, C C

    1999-07-20

    Reconstruction of the refractive-index profiles of fiber gratings from their complex Bragg reflection spectra is experimentally demonstrated. The amplitude and phase of the complex reflection spectrum were measured with a balanced Michelson interferometer. By integrating the coupled-mode equations, we built the relationship between the complex coupling coefficient and the complex reflection spectrum as an iterative algorithm for reconstructing the index profile. This method is expected to be useful for reconstructing the index profiles of fiber gratings with any apodization, chirp, or dc structures. An apodized chirped grating and a uniform grating with a depression of index modulation were used to demonstrate the technique.

  2. Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors

    Science.gov (United States)

    Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.

    2018-05-01

    Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5  ×  10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.

  3. Bragg grating induced cladding mode coupling due to asymmetrical index modulation in depressed cladding fibers

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.

    1998-01-01

    to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode......UV-written Bragg gratings find wide spread use as wavelength selective components. In reflection high extinction ratios are routinely obtained. However, coupling to cladding modes gives excess loss on the short wavelength side of the main reflection. Different fiber-designs have been proposed......-solver based on the staircase-approximation method. The Bragg grating causes coupling between the fundamental LP01 mode and higher order LP1p modes that satisfy phase-matching. The coupling strength is determined by the overlap integral of the LP01, the LP1p mode, and the UV-induced index perturbation. For LP0...

  4. Phase-shifted fiber Bragg grating inscription by fusion splicing technique and femtosecond laser

    Science.gov (United States)

    Jiang, Yajun; Yuan, Yuan; Xu, Jian; Yang, Dexing; Li, Dong; Wang, Meirong; Zhao, Jianlin

    2016-11-01

    A new method for phase-shifted fiber Bragg grating (PS-FBG) inscription in single mode fiber by fusion splicing technique and femtosecond laser is presented. The PS-FBG is produced by exposing the fusion spliced fiber with femtosecond laser through a uniform phase mask. The transmission spectrum of the PS-FBG shows a nonlinear red shift during the inscription process, and two or three main dips can be observed due to the formation of one or two FBG-based Fabry-Pérot structures by controlling the exposure intensity and time of the laser. For a peak power density of 4.8×1013 W/cm2, the induced refractive index modulation can reach to 6.3×10-4 in the fiber without sensitization. The PS-FBG's temperature, strain and pressure characteristics are also experimentally studied. These PS-FBGs can be potentially used for multiple wavelength fiber lasers, filters and optical fiber sensors.

  5. Experimental reconstruction of a highly reflecting fiber Bragg grating by using spectral regularization and inverse scattering.

    Science.gov (United States)

    Rosenthal, Amir; Horowitz, Moshe; Kieckbusch, Sven; Brinkmeyer, Ernst

    2007-10-01

    We demonstrate experimentally, for the first time to our knowledge, a reconstruction of a highly reflecting fiber Bragg grating from its complex reflection spectrum by using a regularization algorithm. The regularization method is based on correcting the measured reflection spectrum at the Bragg zone frequencies and enables the reconstruction of the grating profile using the integral-layer-peeling algorithm. A grating with an approximately uniform profile and with a maximum reflectivity of 99.98% was accurately reconstructed by measuring only its complex reflection spectrum.

  6. Measurement of strain distribution in bonded joints by fiber Bragg gratings

    Science.gov (United States)

    Guemes, J. Alfredo; Diaz-Carrillo, Sebastian; Menendez, Jose M.

    1998-07-01

    Due to the small dimensions of the adhesive layer, the high non-uniformity of the strain field and the non linear elastic behavior of the adhesive material, the strain distribution at an adhesive joint can be predicted by FEM, but can not be experimentally obtained with classical approaches; only non standard procedures like Moire interferometry, or special artifacts like KGR extensometers may afford some insights on the behavior of the adhesive. Due to their small size, ensuring low perturbation of the strain field, and their innate ability to measure strain and strain gradient along the sensor, fiber Bragg gratings offer a good opportunity to solve this problem, and it is a good example of situations that may benefit from these new sensors. Fiber Bragg gratings may be placed or at the interface, within the adhesive layer, or embedded at the adherents, if these were made of composite material. Tests may be run at different temperatures, changing the adhesive characteristics from brittle to pseudoplastic without additional difficulties. When loading the joint, the strain field is obtained by analyzing the distorted spectrum of the reflected light pulse; the algorithm for doing it has already been published. A comparison with theoretical results is done, and the validity and utility of these sensors for this and similar applications is demonstrated.

  7. Strain and temperature characteristics of the LP11 mode based on a few-mode fiber Bragg grating and core-offset splicing

    Science.gov (United States)

    Jin, Wenxing; Xu, Yao; Jiang, Youchao; Wu, Yue; Yao, Shuzhi; Xiao, Shiying; Qi, Yanhui; Ren, Wenhua; Jian, Shuisheng

    2018-02-01

    We propose and demonstrate a ring fiber laser based on a few-mode fiber Bragg grating for strain and temperature sensing using only the LP11 mode. The core-offset splicing method is used to ensure effective coupling from the fundamental mode to the LP11 mode. A stable erbium-doped fiber laser operating as a single LP11 mode with a 3 dB linewidth of about 0.02 nm and an optical signal-to-noise ratio over 42 dB is achieved by appropriately adjusting the polarization controller between the optical circulator and the few-mode fiber Bragg grating. A high axial strain sensitivity of 0.8778 pm μ\\varepsilon-1 and a temperature sensitivity of 9.9214 pm °C-1 are achieved with the advantages of all-fiber, simple construction and easy control.

  8. Fiber Bragg Grating-Based Performance Monitoring of Piles Fiber in a Geotechnical Centrifugal Model Test

    Directory of Open Access Journals (Sweden)

    Xiaolin Weng

    2014-01-01

    Full Text Available In centrifugal tests, conventional sensors can hardly capture the performance of reinforcement in small-scale models. However, recent advances in fiber optic sensing technologies enable the accurate and reliable monitoring of strain and temperature in laboratory geotechnical tests. This paper outlines a centrifugal model test, performed using a 60 g ton geocentrifuge, to investigate the performance of pipe piles used to reinforce the loess foundation below a widened embankment. Prior to the test, quasidistributed fiber Bragg grating (FBG strain sensors were attached to the surface of the pipe piles to measure the lateral friction resistance in real time. Via the centrifuge actuator, the driving of pipe piles was simulated. During testing, the variations of skin friction distribution along the pipe piles were measured automatically using an optical fiber interrogator. This paper represents the presentation and detailed analysis of monitoring results. Herein, we verify the reliability of the fiber optic sensors in monitoring the model piles without affecting the integrity of the centrifugal model. This paper, furthermore, shows that lateral friction resistance developed in stages with the pipe piles being pressed in and that this sometimes may become negative.

  9. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    Science.gov (United States)

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  10. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.

    Science.gov (United States)

    Hu, Chenyuan; Bai, Wei

    2018-02-24

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.

  11. Fiber Bragg grating based arterial localization device

    Science.gov (United States)

    Ho, Siu Chun Michael; Li, Weijie; Razavi, Mehdi; Song, Gangbing

    2017-06-01

    A critical first step to many surgical procedures is locating and gaining access to a patients vascular system. Vascular access allows the deployment of other surgical instruments and also the monitoring of many physiological parameters. Current methods to locate blood vessels are predominantly based on the landmark technique coupled with ultrasound, fluoroscopy, or Doppler. However, even with experience and technological assistance, locating the required blood vessel is not always an easy task, especially with patients that present atypical anatomy or suffer from conditions such as weak pulsation or obesity that make vascular localization difficult. With recent advances in fiber optic sensors, there is an opportunity to develop a new tool that can make vascular localization safer and easier. In this work, the authors present a new fiber Bragg grating (FBG) based vascular access device that specializes in arterial localization. The device estimates the location towards a local artery based on the bending of a needle inserted near the tissue surrounding the artery. Experimental results obtained from an artificial circulatory loop and a mock artery show the device works best for lower angles of needle insertion and can provide an approximately 40° range of estimation towards the location of a pulsating source (e.g. an artery).

  12. A Highly Sensitive Two-Dimensional Inclinometer Based on Two Etched Chirped-Fiber-Grating Arrays †

    Science.gov (United States)

    Chang, Hung-Ying; Chang, Yu-Chung; Liu, Wen-Fung

    2017-01-01

    We present a novel two-dimensional fiber-optic inclinometer with high sensitivity by crisscrossing two etched chirped fiber Bragg gratings (CFBG) arrays. Each array is composed of two symmetrically-arranged CFBGs. By etching away most of the claddings of the CFBGs to expose the evanescent wave, the reflection spectra are highly sensitive to the surrounding index change. When we immerse only part of the CFBG in liquid, the effective index difference induces a superposition peak in the refection spectrum. By interrogating the peak wavelengths of the CFBGs, we can deduce the tilt angle and direction simultaneously. The inclinometer has a resolution of 0.003° in tilt angle measurement and 0.00187 rad in tilt direction measurement. Due to the unique sensing mechanism, the sensor is temperature insensitive. This sensor can be useful in long term continuous monitoring of inclination or in real-time feedback control of tilt angles, especially in harsh environments with violent temperature variation. PMID:29244770

  13. Intensity liquid level sensor based on multimode interference and fiber Bragg grating

    International Nuclear Information System (INIS)

    Oliveira, Ricardo; Aristilde, Stenio; Osório, Jonas H; Cordeiro, Cristiano M B; Franco, Marcos A R; Bilro, Lúcia; Nogueira, Rogério N

    2016-01-01

    In this paper an intensity liquid level sensor based on a single-mode—no-core—single-mode (SMS) fiber structure together with a Bragg grating inscribed in the later single mode fiber is proposed. As the no-core fiber is sensitive to the external refractive index, the SMS spectral response will be shifted related to the length of no-core fiber that is immersed in a liquid. By positioning the FBG central wavelength at the spectral region of the SMS edge filter, it is possible to measure the liquid level using the reflected FBG peak power through an intensity-based approach. The sensor is also self-referenced using the peak power of another FBG that is placed before and far from the sensing part. The temperature error analysis was also studied revealing that the sensor can operate in environments where the temperature changes are minimal. The possibility to use a second setup that makes the whole device temperature insensitive is also discussed. (paper)

  14. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO₂-laser annealing.

    Science.gov (United States)

    Lai, Man-Hong; Lim, Kok-Sing; Gunawardena, Dinusha S; Yang, Hang-Zhou; Chong, Wu-Yi; Ahmad, Harith

    2015-03-01

    In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling. It is repeatable with different cooling process in the subsequent annealing treatments. This phenomenon can be attributed to the thermal stress modification in the fiber core by means of manipulation of glass transition temperature with different cooling rates. This finding in this investigation is important for accurate temperature measurement of RFBG in dynamic environment.

  15. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    Science.gov (United States)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  16. Fine-filter method for Raman lidar based on wavelength division multiplexing and fiber Bragg grating.

    Science.gov (United States)

    Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin

    2017-11-01

    Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.

  17. Monitoring on internal temperature of composite insulator with embedding fiber Bragg grating for early diagnosis

    Science.gov (United States)

    Chen, Wen; Tang, Ming

    2017-04-01

    The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.

  18. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    Directory of Open Access Journals (Sweden)

    Xijia Gu

    2010-08-01

    Full Text Available We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor.

  19. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  20. Bragg Grating Waveguide Array Ultrafast Laser Inscribed into the Cladding of a Flat Fiber

    Directory of Open Access Journals (Sweden)

    Beecher Stephen J.

    2013-11-01

    Full Text Available We report the fabrication and initial characterization of a waveguide sensor array in the cladding of a flat fiber. The sensor, designed to independently measure the strain on three Bragg grating waveguides, exploits the true three dimensional fabrication technology of ultrafast laser inscription by placing these gratings in a non-planar configuration.

  1. Modeling the characteristic of the optical wavelength discriminator with fiber Bragg grating

    Science.gov (United States)

    Sikora, Aleksandra

    2017-08-01

    Using the transfer matrix method, the influence of fiber Bragg gratings' (FBG) characteristics on the optical wavelength discriminator characteristics was analyzed. The wavelength discriminator forms FBG and cooperates with the identical FBG sensor. The calculation was made for uniform and chirped FBGs. The comparison of the discriminators processing range measurement was analyzed. Presented results are crucial while choosing parameters of FBG used in constructing optical wavelength discriminators for strain and pressure sensor.

  2. Flat-top pulse generation based on a fiber Bragg grating in transmission.

    Science.gov (United States)

    Preciado, Miguel A; Muriel, Miguel A

    2009-03-15

    We propose and analyze a flat-top pulse generator based on a fiber Bragg grating (FBG) in transmission. As is shown in the examples, a uniform period FBG properly designed can exhibit a spectral response in transmission close to sinc function (in amplitude and phase) in a certain bandwidth, because of the logarithm Hilbert transform relations, which can be used to reshape a Gaussian-like input pulse into a flat-top pulse.

  3. Perturbative approach to continuum generation in a fiber Bragg grating.

    Science.gov (United States)

    Westbrook, P S; Nicholson, J W

    2006-08-21

    We derive a perturbative solution to the nonlinear Schrödinger equation to include the effect of a fiber Bragg grating whose bandgap is much smaller than the pulse bandwidth. The grating generates a slow dispersive wave which may be computed from an integral over the unperturbed solution if nonlinear interaction between the grating and unperturbed waves is negligible. Our approach allows rapid estimation of large grating continuum enhancement peaks from a single nonlinear simulation of the waveguide without grating. We apply our method to uniform and sampled gratings, finding good agreement with full nonlinear simulations, and qualitatively reproducing experimental results.

  4. Interrogating adhesion using fiber Bragg grating sensing technology

    Science.gov (United States)

    Rasberry, Roger D.; Rohr, Garth D.; Miller, William K.; Udd, Eric; Blach, Noah T.; Davis, Ryan A.; Olson, Walter R.; Calkins, David; Roach, Allen R.; Walsh, David S.; McElhanon, James R.

    2015-05-01

    The assurance of the integrity of adhesive bonding at substrate interfaces is paramount to the longevity and sustainability of encapsulated components. Unfortunately, it is often difficult to non-destructively evaluate these materials to determine the adequacy of bonding after manufacturing and then later in service. A particularly difficult problem in this regard is the reliable detection/monitoring of regions of weak bonding that may result from poor adhesion or poor cohesive strength, or degradation in service. One promising and perhaps less explored avenue we have recently begun to investigate for this purpose centers on the use of (chirped) fiber Bragg grating sensing technology. In this scenario, a grating is patterned into a fiber optic such that a (broadband) spectral reflectance is observed. The sensor is highly sensitive to local and uniform changes across the length of the grating. Initial efforts to evaluate this approach for measuring adhesive bonding defects at substrate interfaces are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Feasibility study of the optical fiber Bragg grating sensors in radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Kaoru; Kimura, Atsushi; Nakazawa, Masaharu [Tokyo Univ., Dept. of Quantum Engineering and Systems Science, Tokyo (Japan); Takahashi, Hiroyuki [Tokyo Univ., Center of Engineering, Research into Artifacts, Tokyo (Japan); Ariyoshi, Masahiko [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan)

    2002-09-01

    Applicability of an optical fiber Bragg grating (FBG)-based vibration sensor to radiation environment was investigated for monitoring nuclear plants. The FBG sensor is a kind of optical fiber sensors which is developing rapidly in recent years. FBGs reflect light which fulfill the Bragg condition {lambda} = 2 n L, where {lambda} is the wave length of reflecting light, n and L are the effective refractive index and length of the modulation period in grating part, respectively. The strain on FBGs influences on n and L and causes shift of {lambda}. The sensitivity to strain of FBG were investigated. The FBGs was irradiated with gamma-rays to investigate the irradiation effects on the FBGs. The Bragg wavelength of FBGs is not affected by gamma-rays up to 1.0 MGy of total absorbed dose. In vibration measurement system, two FBGs were attached to a thin iron plate. Each FBG was set up both side of the thin plate and spliced in series. An audio speaker was used as a vibration source. FBGs were irradiated at the dose rate of 50Gy/h and the vibration were observed in situ. Input signals from oscillator, the output from FBG sensors and the power spectra of the two signals were measured. The output signal was very noisy, however, the peak of the frequency is corresponding. The noise seemed to be arisen during the vibration traveled between the speaker and the plate and considered to be not essential. As a result, it is shown that a change of frequency at the vibration source could be followed by FBG-based sensors. To reduce the noise, the method for conducting the vibration to FBGs should be improved. (M. Suetake)

  6. Feasibility study of the optical fiber Bragg grating sensors in radiation environment

    International Nuclear Information System (INIS)

    Fujita, Kaoru; Kimura, Atsushi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Ariyoshi, Masahiko

    2002-01-01

    Applicability of an optical fiber Bragg grating (FBG)-based vibration sensor to radiation environment was investigated for monitoring nuclear plants. The FBG sensor is a kind of optical fiber sensors which is developing rapidly in recent years. FBGs reflect light which fulfill the Bragg condition λ = 2 n L, where λ is the wave length of reflecting light, n and L are the effective refractive index and length of the modulation period in grating part, respectively. The strain on FBGs influences on n and L and causes shift of λ. The sensitivity to strain of FBG were investigated. The FBGs was irradiated with gamma-rays to investigate the irradiation effects on the FBGs. The Bragg wavelength of FBGs is not affected by gamma-rays up to 1.0 MGy of total absorbed dose. In vibration measurement system, two FBGs were attached to a thin iron plate. Each FBG was set up both side of the thin plate and spliced in series. An audio speaker was used as a vibration source. FBGs were irradiated at the dose rate of 50Gy/h and the vibration were observed in situ. Input signals from oscillator, the output from FBG sensors and the power spectra of the two signals were measured. The output signal was very noisy, however, the peak of the frequency is corresponding. The noise seemed to be arisen during the vibration traveled between the speaker and the plate and considered to be not essential. As a result, it is shown that a change of frequency at the vibration source could be followed by FBG-based sensors. To reduce the noise, the method for conducting the vibration to FBGs should be improved. (M. Suetake)

  7. Effective refractive index modulation based optical fiber humidity sensor employing etched fiber Bragg grating

    Science.gov (United States)

    Mundendhar, Pathi; Khijwania, Sunil K.

    2015-09-01

    Relative humidity (RH) sensor employing etched fiber Bragg grating (FBG) is reported where RH variations are captured using effective-index-modulation, rather than traditional strain-modulation. Additionly, linear sensor response over wide dynamic range with optimum characteristics is focused. Comprehensive experimental investigation is carried out for the sensor that comprises uniformly etched cladding in the FBG region. Obtained results are observed to be in agreement with the theoretical analysis. Sensor response is observed to be linear over dynamic range 3-94%RH with ~ 0.082 pm/%RH sensitivity, ~0.6%RH resolution, ~ +/-2.5%RH accuracy, ~ +/-0.2 pm average discrepancy and ~ 0.2s response time during humidification/desiccation.

  8. Fiber optic liquid-level sensor using a long fiber Bragg grating

    Science.gov (United States)

    Ricchiuti, Amelia L.; Barrera, David; Nonaka, Koji; Sales, Salvador

    2013-05-01

    A technique for liquid-level sensors based on a long fiber Bragg grating (FBG) is presented and experimentally demonstrated. The measurement system is based on the measurement of the central frequency distribution of the FBG based on time-frequency domain analysis. A short optical pulse is injected into a 10-cm long FBG mounted in a container. The back-reflected pulse is scanned by means of an oscilloscope. When part of the grating is immersed in a liquid having temperature higher than the surrounding ambient, the structure of the uniform grating is distorted and its time-frequency response changes. A spatial resolution of 2 mm, given by the input pulse duration, and a 10-cm long measurement range are achieved. Liquid-temperature sensing has also been implemented by scanning the spectral response of the FBG by means of a CW laser and an OSA.

  9. Interferometric interrogation of π-phase shifted fiber Bragg grating sensors

    Science.gov (United States)

    Srivastava, Deepa; Tiwari, Umesh; Das, Bhargab

    2018-03-01

    Interferometric interrogation technique realized for conventional fiber Bragg grating (FBG) sensors is historically known to offer the highest sensitivity measurements, however, it has not been yet explored for π-phase-shifted FBG (πFBG) sensors. This, we believe, is due to the complex nature of the reflection/transmission spectrum of a πFBG, which cannot be directly used for interferometric interrogation purpose. Therefore, we propose here an innovative as well as simple concept towards this direction, wherein, the transmission spectrum of a πFBG sensor is optically filtered using a specially designed fiber grating. The resulting filtered spectrum retains the entire characteristics of a πFBG sensor and hence the filtered spectrum can be interrogated with interferometric principles. Furthermore, due to the extremely narrow transmission notch of a πFBG sensor, a fiber interferometer can be realized with significantly longer path difference. This leads to substantially enhanced detection limit as compared to sensors based on a regular FBG of similar length. Theoretical analysis demonstrates that high resolution weak dynamic strain measurement down to 4 pε /√{ Hz } is easily achievable. Preliminary experimental results are also presented as proof-of-concept of the proposed interrogation principle.

  10. Bragg grating photo-inscription in doped microstructured polymer optical fiber by 400 nm femtosecond laser pulses.

    OpenAIRE

    Hu, X.; Woyessa, Getinet; Kinet, D.; Janting, Jakob; Nielsen, Kristian; Bang, Ole; Mégret, P.; Caucheteur, C.

    2016-01-01

    In this paper, we report the manufacturing of high-quality endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fibers. Bragg gratings are photo-inscribed in such fibers by means of 400 nm femtosecond laser pulses through a 1060-nm-period uniform phase mask. Preliminary results show a rapid growing process of the reflection band. To preserve a good spectral shape, the photo-inscription process was limited to ~20 seconds, yielding an FBG reflectivity close to 40 %.

  11. Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Markos, Christos

    2014-01-01

    We demonstrate fiber Bragg grating (FBG) writing in PMMA microstructured Polymer Optical Fibers (mPOFs) using UV Phase Mask technique with writing times shorter than 10 min. The shortest writing time was 6 minutes and 50 seconds and the longest writing time was 8 min and 50 sec. The FBGs were...... written in a 125 x00B5;m PMMA mPOF having 3-rings of holes, the reflection peaks were centred at 632.6 nm and have a reflectivity as high as 26 dB. We also demonstrate how the writing dynamics depends on the intensity of the writing beam....

  12. All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating.

    Science.gov (United States)

    Zang, Zhigang

    2013-08-10

    A configuration of all-optical switching based on a Signac loop mirror that incorporates an ytterbium-doped fiber and uniform fiber Bragg grating (FBG) is proposed in this paper. It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG. The shift of this ultranarrow transmission spectrum is very sensitive to the intensity of the pump power. Thus, the threshold switching power can be greatly reduced by shifting such narrow transmission spectrum. Compared with the single FBG, the threshold switching power of this configuration is reduced by 4 orders of magnitude. In addition, the results indicate that this optical switching has a high extinction ratio of 20 dB and a ultrafast response time of 3 ns. The operation regime and switching performance under the cross-phase modulation cases are also investigated.

  13. Real-time Cure Monitoring of Composites Using a Guided wave-based System with High Temperature Piezoelectric Transducers, Fiber Bragg Gratings, and Phase-shifted Fiber Bragg Gratings

    Science.gov (United States)

    Hudson, Tyler Blake

    An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS

  14. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-02-01

    Full Text Available This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.

  15. Fiber Bragg grating sensor for simultaneous measurement of temperature and force using polymer open loop

    Science.gov (United States)

    Huang, Yonglin; Zhang, Shiyan

    2014-07-01

    A fiber Bragg grating (FBG) sensor for simultaneous measurement of temperature and force is proposed and demonstrated. Where a part of uniform FBG (about one half length of an FBG) is attached on the polymer open loop, the FBG is divided into two parts which has an equal length. So the two parts can be regarded as two FBGs. Because of the difference of the Young's modulus and the thermal expansion coefficients for two parts of the FBG, the two Bragg reflection wavelengths are shift when the temperature and force are applied on the sensor. Simultaneous measurement of temperature and force is demonstrated experimentally. The experimental results show that the linear response to temperature and force are achieved. The value of applied temperature and force can be obtained from the two Bragg wavelength shift via the coefficient matrix. This study provides a simple and economical method to measure temperature and force simultaneously.

  16. Study on strain transfer of embedded fiber Bragg grating sensors

    Science.gov (United States)

    Wu, Rujun; Zheng, Bailin; Fu, Kunkun; He, Pengfei; Tan, Yuegang

    2014-08-01

    In this study, a theoretical model of embedded fiber Bragg grating sensors was developed to provide predictions of the strain transfer rate and average strain transfer rate without the assumption that the host material is subjected to uniform axial stress. Further, a finite element (FE) analysis was performed to validate the present model. It was shown that the theoretical results with the present model are in good agreement with those by FE analysis. Finally, the parametric analysis was used to quantitatively investigate the effect of the parameters of the adhesive layer and host material on the strain transfer rate and average strain transfer rate.

  17. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    Directory of Open Access Journals (Sweden)

    Song Chunsheng

    2017-01-01

    Full Text Available The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhesive layer was achieved by finite element software ABAQUS. The fiber Bragg grating was embedded in the adherend between the first and second layers at the end of the adhesive layer to calculate the reflection spectrum of fiber Bragg grating sensor region with improved T-matrix method for reconstruction of the adherend strain profile of fiber Bragg grating sensing area with the help of genetic algorithm. According to the reconstruction results, the maximum error between the ideal and reconstructed strain profile under different tension loads did not exceed 7.43%, showing a good coincidence degree. The monitoring method of the stiffness degradation evolution of adhesive layer of the carbon fiber–reinforced plastic single-lap joint based on the reconstruction of the adherend strain profile of fiber Bragg grating sensing area thus was figured out.

  18. Femtosecond filaments for rapid and flexible writing of Fiber-Bragg grating (Conference Presentation)

    Science.gov (United States)

    Ertorer, Erden; Haque, Moez; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    Kerr-lens self-channelling of femtosecond laser light offers a novel high-aspect geometry for laser processing inside transparent materials. In glass materials, the laser filaments enable white-light continuum generation, scribing, nanochannel formation, and refractive index modification. In the present work, refractive index matching oils were applied around optical fiber to eliminate astigmatic aberration and thereby form highly symmetric and uniform filaments selectively in the cladding or core waveguide of standard single-mode optical fibre (SMF-28). Under tight focusing, long filaments exceeding 20 um length were formed with single pulses to sub-micron diameter. Arrays of 0.5 um spaced filaments are verified by formation of strong fiber Bragg gratings (FBGs). Flexible positioning of the filament arrays within the fiber core offers wide scope for coupling to cladding and radiation modes and creating new types of in-fibre optical devices.

  19. Monitoring Bridge Dynamic Responses Using Fiber Bragg Grating Tiltmeters.

    Science.gov (United States)

    Xiao, Feng; Chen, Gang S; Hulsey, J Leroy

    2017-10-20

    In bridge health monitoring, tiltmeters have been used for measuring rotation and curvature; however, their application in dynamic parameter identification has been lacking. This study installed fiber Bragg grating (FBG) tiltmeters on the bearings of a bridge and monitored the dynamic rotational angle. The dynamic features, including natural frequencies and mode shapes, have been identified successfully. The innovation presented in this paper is the first-time use of FBG tiltmeter readings to identify the natural frequencies of a long-span steel girder bridge. The identified results have been verified using a bridge finite element model. This paper introduces a new method for the dynamic monitoring of a bridge using FBG tiltmeters. Limitations and future research directions are also discussed in the conclusion.

  20. Monitoring Bridge Dynamic Responses Using Fiber Bragg Grating Tiltmeters

    Directory of Open Access Journals (Sweden)

    Feng Xiao

    2017-10-01

    Full Text Available In bridge health monitoring, tiltmeters have been used for measuring rotation and curvature; however, their application in dynamic parameter identification has been lacking. This study installed fiber Bragg grating (FBG tiltmeters on the bearings of a bridge and monitored the dynamic rotational angle. The dynamic features, including natural frequencies and mode shapes, have been identified successfully. The innovation presented in this paper is the first-time use of FBG tiltmeter readings to identify the natural frequencies of a long-span steel girder bridge. The identified results have been verified using a bridge finite element model. This paper introduces a new method for the dynamic monitoring of a bridge using FBG tiltmeters. Limitations and future research directions are also discussed in the conclusion.

  1. Second-harmonic generation in second-harmonic fiber Bragg gratings.

    Science.gov (United States)

    Steel, M J; de Sterke, C M

    1996-06-20

    We consider the production of second-harmonic light in gratings resonant with the generated field, through a Green's function approach. We recover some standard results and obtain new limits for the uniform grating case. With the extension to nonuniform gratings, we find the Green's function for the second harmonic in a grating with an arbitrary phase shift at some point. We then obtain closed form approximate expressions for the generated light for phase shifts close to π/2 and at the center of the grating. Finally, comparing the uniform and phase-shifted gratings with homogeneous materials, we discuss the enhancement in generated light and the bandwidth over which it occurs, and the consequences for second-harmonic generation in optical fiber Bragg gratings.

  2. Temperature-insensitive fiber Bragg grating dynamic pressure sensing system.

    Science.gov (United States)

    Guo, Tuan; Zhao, Qida; Zhang, Hao; Zhang, Chunshu; Huang, Guiling; Xue, Lifang; Dong, Xiaoyi

    2006-08-01

    Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85 Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of -10 degrees C to 80 degrees C.

  3. Translational motion of an atom in a weakly driven fiber-Bragg-grating cavity

    International Nuclear Information System (INIS)

    Kien, Fam Le; Hakuta, K

    2012-01-01

    We study the translational motion of an atom in the vicinity of a weakly driven nanofiber with two fiber-Bragg-grating mirrors. We find that the spatial dependences of the force, the friction coefficients and the momentum diffusion are very complicated due to the evanescent-wave nature of the atom–field coupling as well as the effect of the van der Waals potential. We show that the time development of the mean number of photons in the cavity closely follows the translational motion of the atom through the nodes and antinodes of the fiber-guided cavity standing-wave field even though the cavity finesse is moderate, the cavity is long and the probe field is weak

  4. Refractive index and temperature sensitivity characteristics of a micro-slot fiber Bragg grating.

    Science.gov (United States)

    Saffari, Pouneh; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin

    2012-07-10

    Fabrication and characterization of a UV inscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h)×125 μm(w)×1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off.

  5. Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission.

    Science.gov (United States)

    Preciado, Miguel A; Muriel, Miguel A

    2008-11-01

    We propose and analyze a first-order optical differentiator based on a fiber Bragg grating (FBG) in transmission. It is shown in the examples that a simple uniform-period FBG in a very strong coupling regime (maximum reflectivity very close to 100%) can perform close to ideal temporal differentiation of the complex envelope of an arbitrary-input optical signal.

  6. Angle transducer based on fiber Bragg gratings able for tunnel auscultation

    Science.gov (United States)

    Quintela, A.; Lázaro, J. M.; Quintela, M. A.; Mirapeix, J.; Muñoz-Berti, V.; López-Higuera, J. M.

    2010-09-01

    In this paper an angle transducer based on Fiber Bragg Grating (FBG) is presented. Two gratings are glued to a metallic platen, one in each side. It is insensitive to temperature changes, given that the temperature shifts affect equally to both FBG. When the platen is uniformly bent an uniform strain appears in both sides of the platen. It depends on the bend angle and the platen length and thickness. The transducer has been designed to be used in the auscultation of tunnels during their construction process and during their live time. The transducer design and its characterization are presented.

  7. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  8. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    Science.gov (United States)

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  9. All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2009-02-01

    A simple all-fiber design for implementing an all-optical temporal Hilbert transformer is proposed and numerically demonstrated. We show that an all-optical Hilbert transformer can be implemented using a uniform-period fiber Bragg grating (FBG) with a properly designed amplitude-only grating apodization profile incorporating a single pi phase shift in the middle of the grating length. All-optical Hilbert transformers capable of processing arbitrary optical waveforms with bandwidths up to a few hundreds of gigahertz can be implemented using feasible FBGs.

  10. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints

    International Nuclear Information System (INIS)

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Gilbart, Michael K

    2010-01-01

    We present an in-fiber Bragg grating-based sensor (240 µm diameter) for contact force/stress measurements in articular joints. The contact force sensor and another Bragg grating-based pressure sensor (400 µm diameter) are used to conduct the first simultaneous measurements of contact force/stress and fluid pressure in intact cadaveric human hips. The contact force/stress sensor addresses limitations associated with stress-sensitive films, the current standard tools for contact measurements in joints, including cartilage modulus-dependent sensitivity of films and the necessity to remove biomechanically relevant anatomy to implant the films. Because stress-sensitive films require removal of anatomy, it has been impossible to validate the mechanical rationale underlying preventive or corrective surgeries, which repair these anatomies, by conducting simultaneous stress and pressure measurements in intact hips. Methods are presented to insert the Bragg grating-based sensors into the joint, while relevant anatomy is left largely intact. Sensor performance is predicted using numerical models and the predicted sensitivity is verified through experimental calibrations. Contact force/stress and pressure measurements in cadaveric joints exhibited repeatability. With further validation, the Bragg grating-based sensors could be used to study the currently unknown relationships between contact forces and pressures in both healthy and degenerated joints

  11. Fabrication of Fiber Bragg Grating Coating with TiO2 Nanostructured Metal Oxide for Refractive Index Sensor

    Directory of Open Access Journals (Sweden)

    Shaymaa Riyadh Tahhan

    2017-01-01

    Full Text Available To increase the sensitivity of biosensor a new approach using an optical fiber Bragg grating (FBG coated with a suitable nanostructured metal oxide (NMO is proposed which is costly effective compared to other biosensors. Bragg grating was written on a D-shaped optical fiber by phase mask method using a 248 nm KrF excimer laser for a 5 min exposure time producing a grating with a period of 528 nm. Titanium dioxide (TiO2 nanostructured metal oxide was coated over the fiber for the purpose of increasing its sensing area. The etched D-shaped FBG was then coated with 312 nm thick TiO2 nanostructured layer to ensure propagating the radiation modes within the core. The final structure was used to sense deionized water and saline. The etched D-shaped FBG original sensitivity before coating to air-deionized water and to air-saline was 0.314 nm/riu and 0.142 nm/riu, respectively. After coating the sensitivity became 1.257 nm/riu for air-deionized water and 0.857 nm/riu for air-saline.

  12. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability

    Science.gov (United States)

    Mamidi, Venkata Reddy; Kamineni, Srimannarayana; Ravinuthala, Lakshmi Narayana Sai Prasad; Tumu, Venkatappa Rao

    2017-09-01

    Fiber Bragg grating (FBG)-based high-temperature sensor with enhanced-temperature range and stability has been developed and tested. The sensor consists of an FBG and a mechanical transducer, which furnishes a linear temperature-dependent tensile strain on FBG by means of differential linear thermal expansion of two different ceramic materials. The designed sensor is tested over a range: 20°C to 1160°C and is expected to measure up to 1500°C.

  13. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    OpenAIRE

    R. Brian Jenkins; Peter Joyce; Deborah Mechtel

    2017-01-01

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initia...

  14. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating.

    Science.gov (United States)

    Zheng, Yulong; Bremer, Kort; Roth, Bernhard

    2018-05-05

    In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.

  15. Optical microphone with fiber Bragg grating and signal processing techniques

    Science.gov (United States)

    Tosi, Daniele; Olivero, Massimo; Perrone, Guido

    2008-06-01

    In this paper, we discuss the realization of an optical microphone array using fiber Bragg gratings as sensing elements. The wavelength shift induced by acoustic waves perturbing the sensing Bragg grating is transduced into an intensity modulation. The interrogation unit is based on a fixed-wavelength laser source and - as receiver - a photodetector with proper amplification; the system has been implemented using devices for standard optical communications, achieving a low-cost interrogator. One of the advantages of the proposed approach is that no voltage-to-strain calibration is required for tracking dynamic shifts. The optical sensor is complemented by signal processing tools, including a data-dependent frequency estimator and adaptive filters, in order to improve the frequency-domain analysis and mitigate the effects of disturbances. Feasibility and performances of the optical system have been tested measuring the output of a loudspeaker. With this configuration, the sensor is capable of correctly detecting sounds up to 3 kHz, with a frequency response that exhibits a top sensitivity within the range 200-500 Hz; single-frequency input sounds inducing an axial strain higher than ~10nɛ are correctly detected. The repeatability range is ~0.1%. The sensor has also been applied for the detection of pulsed stimuli generated from a metronome.

  16. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  17. Dense Wavelength Division (De Multiplexers Based on Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    S. BENAMEUR

    2014-05-01

    Full Text Available This study is to measure the impact of demultiplexers based on Fiber Bragg Grating (FBG filter on performance of DWDM system for optical access network. An optical transmission link has been established in which we have inserted a demultiplexer based on four different FBG filters. The first step will be the characterization of FBG’s filters (i.e. uniform FBG, Gaussian apodized Grating, chirped FBG to explain their behavior in the optical link. The simulations were conducted for different fiber’s lengths, filter bandwidth and different received power to get the best system performance. This helped to assess their impact on the link performance in terms of Bit Error Rate (BER.

  18. Flood scour monitoring system using fiber Bragg grating sensors

    Science.gov (United States)

    Lin, Yung Bin; Lai, Jihn Sung; Chang, Kuo Chun; Li, Lu Sheng

    2006-12-01

    The exposure and subsequent undermining of pier/abutment foundations through the scouring action of a flood can result in the structural failure of a bridge. Bridge scour is one of the leading causes of bridge failure. Bridges subject to periods of flood/high flow require monitoring during those times in order to protect the traveling public. In this study, an innovative scour monitoring system using button-like fiber Bragg grating (FBG) sensors was developed and applied successfully in the field during the Aere typhoon period in 2004. The in situ FBG scour monitoring system has been demonstrated to be robust and reliable for real-time scour-depth measurements, and to be valid for indicating depositional depth at the Dadu Bridge. The field results show that this system can function well and survive a typhoon flood.

  19. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  20. Sensitivity Enhancement for Fiber Bragg Grating Sensors by Four Wave Mixing

    Directory of Open Access Journals (Sweden)

    Jiangbing Du

    2015-04-01

    Full Text Available All-optical signal processing based on four wave mixing (FWM in a highly nonlinear fiber (HNLF to enhance the sensitivity of a fiber sensor is demonstrated and comprehensively reviewed in this paper. The principle is based on the frequency chirp magnification (FCM by FWM. Degenerated FWM, cascaded two-stage FWM and pump-pulsed FWM with optical parametric amplification (OPA are experimentally utilized for magnifying the frequency chirp. By using the pump pulse modulation to increase the peak power, OPA can be induced with the use of a dispersion-optimized HNLF. Therefore, ultra-highly efficient FWM can be realized due to the high peak power and OPA. By using the fiber Bragg grating (FBG laser as the FWM pump, the wavelength drift of the FBG can thus be magnified due to the FCM. We obtain a sensing performance of 13.3 pm/με strain sensitivity and 141.2 pm/°C temperature sensitivity for a conventional FBG, which has an intrinsic strain sensitivity of only ~1 pm/με and an intrinsic temperature sensitivity of only ~10 pm/°C, respectively.

  1. Sensitive detection of C-reactive protein using optical fiber Bragg gratings.

    Science.gov (United States)

    Sridevi, S; Vasu, K S; Asokan, S; Sood, A K

    2015-03-15

    An accurate and highly sensitive sensor platform has been demonstrated for the detection of C-reactive protein (CRP) using optical fiber Bragg gratings (FBGs). The CRP detection has been carried out by monitoring the shift in Bragg wavelength (ΔλB) of an etched FBG (eFBG) coated with an anti-CRP antibody (aCRP)-graphene oxide (GO) complex. The complex is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. A limit of detection of 0.01mg/L has been achieved with a linear range of detection from 0.01mg/L to 100mg/L which includes clinical range of CRP. The eFBG sensor coated with only aCRP (without GO) show much less sensitivity than that of aCRP-GO complex coated eFBG. The eFBG sensors show high specificity to CRP even in the presence of other interfering factors such as urea, creatinine and glucose. The affinity constant of ∼1.1×10(10)M(-1) has been extracted from the data of normalized shift (ΔλB/λB) as a function of CRP concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    Science.gov (United States)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  3. Fiber Bragg Grating Sensors Based Monitoring System for Superconducting Accelerator Magnets

    CERN Document Server

    Chiuchiolo, A; Perez, J C; Bajas, H; Consales, M; Giordano, M; Breglio, G; Cusano, A

    2014-01-01

    New generation of accelerator magnets for high energy applications currently designed, manufactured and tested at the European Organization for Nuclear Research (CERN) require the implementation of precise cryogenic sensors with long-term robustness and reliability able to withstand cryogenic temperature and to monitor the mechanical stresses affecting the winding during all the stages of his service life, assembly, cool down and powering. Monitoring the mechanical behavior of the magnet from assembly to operation is a critical task which aims to assure the integrity of the magnet and to safely handle the coils made of new brittle material. This contribution deals with the first successful embedding of Fiber Bragg Grating sensors in a subscale Nb$_{3}$Sn dipole magnet in order to monitor the strain developed in the coil during the cool down to 1.9 K, the powering up to 15.8 kA and the warm up, offering new perspectives for the development of a complementary sensing technology based on fiber optic sensors.

  4. Brightness enhancement of a multi-mode ribbon fiber using transmitting Bragg gratings

    Science.gov (United States)

    Anderson, B. M.; Venus, G.; Ott, D.; Divliansky, I.; Dawson, J. W.; Drachenberg, D. R.; Messerly, M. J.; Pax, P. H.; Tassano, J. B.; Glebov, L. B.

    2015-03-01

    Increasing the dimensions of a waveguide provides the simplest means of reducing detrimental nonlinear effects, but such systems are inherently multi-mode, reducing the brightness of the system. Furthermore, using rectangular dimensions allows for improved heat extraction, as well as uniform temperature profile within the core. We propose a method of using the angular acceptance of a transmitting Bragg grating (TBG) to filter the fundamental mode of a fiber laser resonator, and as a means to increase the brightness of multi-mode fiber laser. Numerical modeling is used to calculate the diffraction losses needed to suppress the higher order modes in a laser system with saturable gain. The model is tested by constructing an external cavity resonator using an ytterbium doped ribbon fiber with core dimensions of 107.8μm by 8.3μm as the active medium. We show that the TBG increases the beam quality of the system from M2 = 11.3 to M2 = 1.45, while reducing the slope efficiency from 76% to 53%, overall increasing the brightness by 5.1 times.

  5. Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement

    Science.gov (United States)

    Park, Jinwoo; Kwon, Yong Seok; Ko, Myeong Ock; Jeon, Min Yong

    2017-11-01

    We demonstrate a 1550 nm band resonance Fourier-domain mode-locked (FDML) fiber laser with fiber Bragg grating (FBG) array. Using the FDML fiber laser, we successfully demonstrate real-time monitoring of dynamic FBG strain sensor interrogation for structural health monitoring. The resonance FDML fiber laser consists of six multiplexed FBGs, which are arranged in series with delay fiber lengths. It is operated by driving the fiber Fabry-Perot tunable filter (FFP-TF) with a sinusoidal waveform at a frequency corresponding to the round-trip time of the laser cavity. Each FBG forms a laser cavity independently in the FDML fiber laser because the light travels different length for each FBG. The very closely positioned two FBGs in a pair are operated simultaneously with a frequency in the FDML fiber laser. The spatial positions of the sensing pair can be distinguished from the variation of the applied frequency to the FFP-TF. One of the FBGs in the pair is used as a reference signal and the other one is fixed on the piezoelectric transducer stack to apply the dynamic strain. We successfully achieve real-time measurement of the abrupt change of the frequencies applied to the FBG without any signal processing delay. The real-time monitoring system is displayed simultaneously on the monitor for the variation of the two peaks, the modulation interval of the two peaks, and their fast Fourier transform spectrum. The frequency resolution of the dynamic variation could reach up to 0.5 Hz for 2 s integration time. It depends on the integration time to measure the dynamic variation. We believe that the real-time monitoring system will have a potential application for structural health monitoring.

  6. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    OpenAIRE

    Marina Kurohiji; Seiji Ichiriyama; Naoki Yamasaku; Shinji Okazaki; Naoya Kasai; Yusuke Maru; Tadahito Mizutani

    2018-01-01

    A robust fiber Bragg grating (FBG) hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2) catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor...

  7. Off-axis ultraviolet-written thin-core fiber Bragg grating for directional bending measurements

    Science.gov (United States)

    Zhang, Lisong; Qiao, Xueguang; Liu, Qinpeng; Shao, Min; Jiang, Youhua; Huang, Dong

    2018-03-01

    A directional bending sensor based on thin-core fiber Bragg grating is proposed and demonstrated experimentally. It is inscribed by off-center technique and exposed by 193 nm ArF excimer laser through a phase mask. A series of cladding modes are excited and their intensities are enhanced to about 10 dB. The formation mechanism of those cladding modes is discussed and analyzed. The intensities of these cladding mode resonances is detected for bending and direction with maximum sensitivity 1.93 dB/m1 at 0° to - 1 . 95 dB/m1 at 180°under the curvature varied from 0 m-1to 2.5 m-1. The sensitivity of surrounding temperature is 11.3pm/°C ranging from 25 °C to 60 °C. This all-fiber structure has a great advantage for fiber orientation identification sensor with more convenient manufacture and needless de-localize FBGs.

  8. Analysis and experimental study on the strain transfer mechanism of an embedded basalt fiber-encapsulated fiber Bragg grating sensor

    Science.gov (United States)

    Zhang, Zhenglin; Wang, Yuan; Sun, Yangyang; Zhang, Qinghua; You, Zewei; Huang, Xiaodi

    2017-01-01

    The precision of the encapsulated fiber optic sensor embedded into a host suffers from the influences of encapsulating materials. Furthermore, an interface transfer effect of strain sensing exists. This study uses an embedded basalt fiber-encapsulated fiber Bragg grating (FBG) sensor as the research object to derive an expression in a multilayer interface strain transfer coefficient by considering the mechanical properties of the host material. The direct impact of the host material on the strain transfer at an embedded multipoint continuous FBG (i.e., multiple gratings written on a single optical fiber) monitoring strain sensor, which was self-developed and encapsulated with basalt fiber, is studied to present the strain transfer coefficients corresponding to the positions of various gratings. The strain transfer coefficients of the sensor are analyzed based on the experiments designed for this study. The error of the experimental results is ˜2 μɛ when the strain is at 60 μɛ and below. Moreover, the measured curves almost completely coincide with the theoretical curves. The changes in the internal strain field inside the embedded structure of the basalt fiber-encapsulated FBG strain sensor could be easily monitored. Hence, important references are provided to measure the internal stress strain of the sensor.

  9. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    Science.gov (United States)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  10. Dynamic and static strain gauge using superimposed fiber Bragg gratings

    International Nuclear Information System (INIS)

    Ma, Y C; Yang, Y H; Yang, M W; Li, J M; Tang, J; Liang, T

    2012-01-01

    This paper demonstrates a simple and fast interrogation method for the dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to decrease nonequidistant space of generated a sensing pulse train in a time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A four times increase in the interrogation speed of dynamic strain, by generating a 2 kHz optical sensing pulse train from a 500 Hz scanning frequency, is demonstrated experimentally. The interrogation uncertainty and total harmonic distortion characterization of superimposed FBGs are tested and less than 4 pm standard deviation is obtained. (paper)

  11. A fiber Bragg grating acceleration sensor for ground surveillance

    Science.gov (United States)

    Jiang, Shaodong; Zhang, Faxiang; Lv, Jingsheng; Ni, Jiasheng; Wang, Chang

    2017-10-01

    Ground surveillance system is a kind of intelligent monitoring equipment for detecting and tracking the ground target. This paper presents a fiber Bragg grating (FBG) acceleration sensor for ground surveillance, which has the characteristics of no power supply, anti-electromagnetic interference, easy large-scale networking, and small size. Which make it able to achieve the advantage of the ground surveillance system while avoiding the shortcoming of the electric sensing. The sensor has a double cantilever beam structure with a sensitivity of 1000 pm/g. Field experiment has been carried out on a flood beach to examine the sensor performance. The result shows that the detection distance on the walking of personnel reaches 70m, and the detection distance on the ordinary motor vehicle reaches 200m. The performance of the FBG sensor can satisfy the actual needs of the ground surveillance system.

  12. Fiber Bragg grating based spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples

    International Nuclear Information System (INIS)

    Latka, Ines; Habisreuther, Tobias; Litzkendorf, Doris

    2011-01-01

    Highlights: → Fiber Bragg gratings (FBG) act as strain sensors, also at cryogenic temperatures. → FBGs are not sensitive to magnetic fields. → Local, shape dependent magnetostriction was detected on rectangular samples. → Magnetostrictive effects of the top surface and in a gap between two samples are different. - Abstract: We report on measurements of the spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples. The spatially resolved strain measurements are accomplished by the use 2 fiber Bragg grating arrays, which are with an included angle of 45 o fixed to the surface. In this paper first attempts to confirm the shape distortions caused by the flux-pinning induced strain as predicted in will be presented. Two sample setups, a single bulk and a 'mirror' arrangement, will be compared. This mirror setup represents a model configuration for a measurement inside the superconductor, where demagnetization effects can be neglected and the magnetic field merely has a z-component.

  13. Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge

    Science.gov (United States)

    Ma, Y. C.; Liu, H. Y.; Yan, S. B.; Yang, Y. H.; Yang, M. W.; Li, J. M.; Tang, J.

    2013-05-01

    This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency.

  14. Software Development to Assist in the Processing and Analysis of Data Obtained Using Fiber Bragg Grating Interrogation Systems

    Science.gov (United States)

    Hicks, Rebecca

    2010-01-01

    A fiber Bragg grating is a portion of a core of a fiber optic stand that has been treated to affect the way light travels through the strand. Light within a certain narrow range of wavelengths will be reflected along the fiber by the grating, while light outside that range will pass through the grating mostly undisturbed. Since the range of wavelengths that can penetrate the grating depends on the grating itself as well as temperature and mechanical strain, fiber Bragg gratings can be used as temperature and strain sensors. This capability, along with the light-weight nature of the fiber optic strands in which the gratings reside, make fiber optic sensors an ideal candidate for flight testing and monitoring in which temperature and wing strain are factors. A team of NASA Dryden engineers has been working to advance the fiber optic sensor technology since the mid 1990 s. The team has been able to improve the dependability and sample rate of fiber optic sensor systems, making them more suitable for real-time wing shape and strain monitoring and capable of rivaling traditional strain gauge sensors in accuracy. The sensor system was recently tested on the Ikhana unmanned aircraft and will be used on the Global Observer unmanned aircraft. Since a fiber Bragg grating sensor can be placed every halfinch on each optic fiber, and since fibers of approximately 40 feet in length each are to be used on the Global Observer, each of these fibers will have approximately 1,000 sensors. A total of 32 fibers are to be placed on the Global Observer aircraft, to be sampled at a rate of about 50 Hz, meaning about 1.6 million data points will be taken every second. The fiber optic sensors system is capable of producing massive amounts of potentially useful data; however, methods to capture, record, and analyze all of this data in a way that makes the information useful to flight test engineers are currently limited. The purpose of this project is to research the availability of software

  15. Fiber Bragg grating sensors for structural and railway applications

    Science.gov (United States)

    Tam, H. Y.; Liu, S. Y.; Guan, B. O.; Chung, W. H.; Chan, T. H.; Cheng, L. K.

    2005-02-01

    Historically, due to the high cost of optical devices, fiber-optics sensor systems were only employed in niche areas where conventional electrical sensors are not suitable. This scenario changed dramatically in the last few years following the explosion of the Internet which caused the rapid expansion of the optical fiber telecommunication industry and substantially driven down the cost of optical components. In recent years, fiber-optic sensors and particularly fiber Bragg grating (FBG) sensors have attracted a lot of interests and are being used in numerous applications. We have conducted several field trials of FBG sensors for railway applications and structural monitoring. About 30 FBG sensors were installed on the rail tracks of Kowloon-Canton Railway Corp. for train identification and speed measurements and the results obtained show that FBG sensors exhibit very good performance and could play a major role in the realization of "Smart Railway". FBG sensors were also installed on Hong Kong's landmark TsingMa Bridge, which is the world longest suspension bridge (2.2 km) that carries both trains and regular road traffic. The trials were carried out with a high-speed (up to 20 kHz) interrogation system based on CCD and also with a interrogation unit that based on scanning optical filter (up to 70 Hz). Forty FBGs sensors were divided into 3 arrays and installed on different parts of the bridge (suspension cable, rocker bearing and truss girders). The objectives of the field trial on the TsingMa Bridge are to monitor the strain of different parts of the bridge under railway load and highway load, and to compare the FBG sensors' performance with conventional resistive strain gauges already installed on the bridge. The measured results show that excellent agreement was obtained between the 2 types of sensors.

  16. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements

    OpenAIRE

    Bai, Wei; Yang, Minghong; Hu, Chenyuan; Dai, Jixiang; Zhong, Xuexiang; Huang, Shuai; Wang, Gaopeng

    2017-01-01

    A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG) array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ...

  17. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    Science.gov (United States)

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  18. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  19. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  20. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    R. Brian Jenkins

    2017-01-01

    Full Text Available Fiber Bragg grating (FBG temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  1. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  2. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe

    International Nuclear Information System (INIS)

    Li, Weijie; Ho, Siu Chun Michael; Song, Gangbing

    2016-01-01

    Steel reinforcement corrosion is one of the dominant causes for structural deterioration for reinforced concrete structures. This paper presents a novel corrosion detection technique using an active thermal probe. The technique takes advantage of the fact that corrosion products have poor thermal conductivity, which will impede heat propagation generated from the active thermal probe. At the same time, the active thermal probe records the temperature response. The presence of corrosion products can thus be detected by analyzing the temperature response after the injection of heat at the reinforcement-concrete interface. The feasibility of the proposed technique was firstly analyzed through analytical modeling and finite element simulation. The active thermal probe consisted of carbon fiber strands to generate heat and a fiber optic Bragg grating (FBG) temperature sensor. Carbon fiber strands are used due to their corrosion resistance. Wet-dry cycle accelerated corrosion experiments were performed to study the effect of corrosion products on the temperature response of the reinforced concrete sample. Results suggest a high correlation between corrosion severity and magnitude of the temperature response. The technique has the merits of high accuracy, high efficiency in measurement and excellent embeddability. (paper)

  3. High-quality phase-shifted Bragg grating sensor inscribed with only one laser pulse in a polymer optical fiber

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Pereira, L.

    2017-01-01

    We present the first phase-shifted polymer optical fiber Bragg grating sensor inscribed with only one KrF laser pulse. The phase shift defect was created directly during the grating inscription process by placing a very narrow blocking aperture, in the center of the UV beam. One laser pulse...

  4. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhang; Xueguang Qiao; Manli Hu; Zhongyao Feng; Hong Gao; Yang Yang; Rui Zhou

    2011-01-01

    @@ The intelligent structural health monitoring method,which uses a fiber Bragg grating(FBG)sensor,is a new approach in the field of civil engineering.However,it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements.In this letter,a flextensional FBG-based accelerometer is proposed and demonstrated.The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz,with a high sensitivity of 410.7 pm/g.In addition,it has a broad and flat response over low frequencies ranging from 1 to 10 Hz.The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications.Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer.These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.%The intelligent structural health monitoring method, which uses a fiber Bragg grating {FBG} sensor, ie a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a flextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.

  5. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Kuo-Chih, E-mail: chuangkc@zju.edu.cn; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-09

    Highlights: • Slow waves around the defect modes in a phononic crystal beam are validated. • A fiber Bragg grating displacement sensing system can measure the defect mode. • The defect mode is analyzed by a transfer matrix method with a supercell technique. - Abstract: This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  6. Chemical and Biological Sensing with a Fiber Optic Surface Plasmon Resonance Device

    Science.gov (United States)

    Shevchenko, Yanina

    Fiber biosensors have emerged as an alternative to other optical sensor platforms which utilize bulkier optical elements. Sensors manufactured using optical fiber offer considerable advantages over traditional platforms, such as simple manufacturing process, small size and possibility for in situ and remote measurements. The possibility to manufacture a compact sensor with very few optical elements and package it into a portable hand-held device makes it particularly useful in many biomedical applications. Such applications generate a growing demand for an improved understanding of how fiber sensors function as well as for sensor optimization techniques so later these devices can suit the needs of the applications they are developed for. Research presented in this thesis is focused on a development of a plasmonic fiber biosensor and its application towards biochemical sensing. The fiber sensor used in this study integrates plasmonics with tilted Bragg grating technology, creating a versatile sensing solution. Plasmonics alone is an established phenomenon that is widely employed in many sensing applications. The Bragg grating is also a well-researched optical component that has been extensively applied in telecommunication. By combining both plasmonics and Bragg gratings, it is possible to design a compact and very sensitive chemical sensor. The presented work focuses on the characterization and optimization of the fiber sensor so later it could be applied in biochemical sensing. It also explores several applications including real-time monitoring of polymer adsorption, detection of thrombin and cellular sensing. All applications are focused on studying processes that are very different in their nature and thus the various strengths of the developed sensing platform were leveraged to suit the requirements of these applications.

  7. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    Science.gov (United States)

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2014-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. PMID:24489440

  8. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    International Nuclear Information System (INIS)

    Lee, Hwi Don; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok; Jung, Eun Joo

    2013-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. (paper)

  9. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    Science.gov (United States)

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2013-06-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal.

  10. On the Effects of the Lateral Strains on the Fiber Bragg Grating Response

    Directory of Open Access Journals (Sweden)

    Marco Lai

    2013-02-01

    Full Text Available In this paper, a combined experimental-numerical based work was undertaken to investigate the Bragg wavelength shift response of an embedded FBG sensor when subjected to different conditions of multi-axial loading (deformation. The following cases are examined: (a when an isotropic host material with no constrains on planes normal to the embedded sensor’s axis is biaxially loaded, (b when the same isotropic host material is subjected to hydrostatic pressure and (c when the hydrostatically loaded host material is an anisotropic one, as in the case of a composite material, where the optical fiber is embedded along the reinforcing fibers. The comparison of the experimental results and the finite element simulations shows that, when the axial strain on the FBG sensor is the dominant component, the standard wavelength-shift strain relation can be used even if large lateral strains apply on the sensor. However when this is not the case, large errors may be introduced in the conversion of the wavelength to axial strains on the fiber. This situation arises when the FBG is placed parallel to high modulus reinforcing fibers of a polymer composite.

  11. Elimination of drift in a fiber-Bragg-grating-based multiplexed Michelson interferometer measurement system.

    Science.gov (United States)

    Ren, Junyu; Xie, Fang; Chen, Zhimin

    2010-02-01

    Random phase drift in single-mode optical fiber interferometers used with measurement systems, which is resulted from various types of environmental disturbances, should be eliminated in order to obtain high measurement precision. We propose an optical fiber interferometric measurement system which has the function of self-eliminating the random phase drift and is stable and robust enough for real-time precision measurement. By employing the characteristics of fiber Bragg gratings, the system interleaves two fiber Michelson interferometers together that share the common-interferometric-optical path. The signal of one of the interferometers is used to stabilize the system while the signal of the other interferometer is used for measurement. An electronic feedback loop for the stabilizing action is designed. The bandwidth of the feedback loop is 5 kHz, sufficiently wide to eliminate random phase drift resulted from various environmental disturbances. The system is endowed with high stability and therefore suitable for real-time precision measurement. By means of an active phase tracking technique to measure displacement, the linear regression coefficient of the displacement measurement results is 0.9998.

  12. Self-optimized metal coatings for fiber plasmonics by electroless deposition.

    Science.gov (United States)

    Bialiayeu, A; Caucheteur, C; Ahamad, N; Ianoul, A; Albert, J

    2011-09-26

    We present a novel method to prepare optimized metal coatings for infrared Surface Plasmon Resonance (SPR) sensors by electroless plating. We show that Tilted Fiber Bragg grating sensors can be used to monitor in real-time the growth of gold nano-films up to 70 nm in thickness and to stop the deposition of the gold at a thickness that maximizes the SPR (near 55 nm for sensors operating in the near infrared at wavelengths around 1550 nm). The deposited films are highly uniform around the fiber circumference and in spite of some nanoscale roughness (RMS surface roughness of 5.17 nm) the underlying gratings show high quality SPR responses in water. © 2011 Optical Society of America

  13. Vibration monitoring of carbon fiber composites by multiple fiber optic sensors

    Science.gov (United States)

    Olivero, Massimo; Perrone, Guido; Vallan, Alberto; Chen, Wei; Tosi, Daniele

    2014-05-01

    This work presents the comparison between the fiber Bragg grating technology and a vibration-measurement technique based on the detection of polarization rotation (polarimetric sensor) in a standard optical fiber, applied to the dynamic structural monitoring of carbon reinforced composites for the automotive industry. A carbon reinforced composite test plate in a 4-layer configuration was equipped with fiber Bragg gratings and polarimetric fiber sensors, then it was mechanically stressed by static and dynamic loads while monitoring the sensors response. The fiber Bragg grating setup exhibited 1.15+/-0.0016 pm/kg static load response and reproduced dynamic excitation with 0.1% frequency uncertainty, while the polarimetric sensing system exhibited a sensitivity of 1.74+/-0.001 mV/kg and reproduced the dynamic excitation with 0.5% frequency uncertainty. It is shown that the polarimetric sensor technology represents a cheap yet efficient alternative to the fiber Bragg grating sensors in the case of vibration-monitoring of small structures at high frequency.

  14. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer

    Science.gov (United States)

    Arasu, P. T.; Noor, A. S. M.; Shabaneh, A. A.; Yaacob, M. H.; Lim, H. N.; Mahdi, M. A.

    2016-12-01

    A single mode fiber Bragg grating (FBG) is used to generate Surface Plasmon Resonance (SPR). The uniform gratings of the FBG are used to scatter light from the fiber optic core into the cladding thus enabling the interaction between the light and a thin gold film in order to generate SPR. Applying this technique, the cladding around the FBG is left intact, making this sensor very robust and easy to handle. A thin film of graphene oxide (GO) is deposited over a 45 nm gold film to enhance the sensitivity of the SPR sensor. The gold coated sensor demonstrated high sensitivity of approximately 200 nm/RIU when tested with different concentrations of ethanol in an aqueous medium. A 2.5 times improvement in sensitivity is observed with the GO enhancement compared to the gold coated sensor.

  15. Cure monitoring of epoxy resin by using fiber bragg grating sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuk [KEPCO, Naju (Korea, Republic of); Kim, Dae Hyun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

  16. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    OpenAIRE

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2013-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute ...

  17. RETRACTED ARTICLE: Quasi-distributed fiber bragg grating array sensor for furnace applications

    Science.gov (United States)

    Reddy, P. Saidi; Sai Prasad, R. L. N.; Sen Gupta, D.; Sai Shankar, M.; Srimannarayana, K.; Ravinder Reddy, P.

    2012-05-01

    An experimental work on distributed temperature sensing making use of the fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of the temperature profile in high temperature boilers is presented. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λ B1 =1545.8 nm, λ B2 =1547 nm, λ B3 =1550.8 nm, λ B4 =1555.5 nm at 30 °C) written in the hydrogen-loaded fiber in line. All the FBGs are encapsulated inside a stainless steel tube using the rigid probe technique for avoiding micro cracks. The spatial distribution of the temperature profile inside a prototype boiler was measured experimentally both in horizontal and vertical directions employing the above sensor, and the results are presented. Further, the finite element simulation has been carried out by using ANSYS R11 software to predict temperature contours in the boiler, and the experimental and predicted results were found to be closely matching.

  18. Creation of a microstructured polymer optical fiber with UV Bragg grating inscription for the detection of extensions at temperatures up to 125°C

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Stajanca, Pavol

    2016-01-01

    We describe the fabrication of a polycarbonate (PC) micro-structured polymer optical fiber (mPOF) and the writing offiber Bragg gratings (FBGs) in it to enable strain and temperature measurements. We demonstrate the photosensitivity ofa dopant-free PC fiber by grating inscription using a UV laser...

  19. Strain and temperature measurement in pultrusion processes by fiber Bragg grating sensors

    Science.gov (United States)

    Tucci, Fausto; Rubino, Felice; Carlone, Pierpaolo

    2018-05-01

    Injection Pultrusion (IP) is one of the most effective processes, in terms of productivity and costs, to manufacture fiber reinforced polymers. In IP roving of fiber are driven through an injection chamber in which they are impregnated by the resin and then formed in a shaped die. The die is heated in order to cure the resin. Pultruded products are in most cases characterized by constant cross-section profile, whereas unidirectional long fibers are mainly used as reinforcing material. Two relevant phenomena occur within the injection chamber and the heated die, namely the impregnation of the fibers and the polymerization of the resin. Furthermore, thermal expansion, resin chemical shrinkage and the interaction between the die and the impregnated fibers strongly influence the process [1]. Clearly, thermal and mechanical fields significantly impact on these strictly chained behaviours. The use of thermocouples to evaluate temperature within pultrusion die is already widespread, but they are not capable to acquire any information concerning stress-strain levels. In the present work Fibers Bragg Gratings (FBG) sensors were used to measure thermal and strain profiles in selected material location within the injection chamber and the curing die. Being the differences among the spectres transmitted and received are related to the variations in both temperature and strain, commercial FBG sensors were opportunely modified and calibrated. The optical fibers were hooked to the fibers entering into the injection pultrusion die. Taking the pulling speed into account, each waveform acquired was correlated to a position within the die. Obtained data highlight the effect of the heat generation due to resin reaction as well as longitudinal strains related to the pulling force, the thermal expansion and the chemical shrinkage of the resin system.

  20. Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge

    International Nuclear Information System (INIS)

    Ma, Y C; Liu, H Y; Yan, S B; Li, J M; Tang, J; Yang, Y H; Yang, M W

    2013-01-01

    This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency. (paper)

  1. Numerical analysis of the harmonic components of the Bragg wavelength content in spectral responses of apodized fiber Bragg gratings written by means of a phase mask with a variable phase step height.

    Science.gov (United States)

    Osuch, Tomasz

    2016-02-01

    The influence of the complex interference patterns created by a phase mask with variable diffraction efficiency in apodized fiber Bragg grating (FBGs) formation on their reflectance spectra is studied. The effect of the significant contributions of the zeroth and higher (m>±1) diffraction orders on the Bragg wavelength peak and its harmonic components is analyzed numerically. The results obtained for Gaussian and tanh apodization profiles are compared with similar data calculated for a uniform grating. It is demonstrated that when an apodized FBG is written using a phase mask with variable diffraction efficiency, significant enhancement of the harmonic components and a reduction of the Bragg wavelength peak in the grating spectral response are observed. This is particularly noticeable for the Gaussian apodization profile due to the substantial contributions of phase mask sections with relatively small phase steps in the FBG formation.

  2. Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber.

    Science.gov (United States)

    Hu, Xuehao; Pun, Chi-Fung Jeff; Tam, Hwa-Yaw; Mégret, Patrice; Caucheteur, Christophe

    2014-07-28

    During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 × 10(-6) is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser.

  3. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    Science.gov (United States)

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  4. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications

    Science.gov (United States)

    Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal

    2011-10-01

    This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.

  5. Strain measurements using Fiber Bragg Grating sensors in Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Daniela ENCIU

    2017-06-01

    Full Text Available The paper presents some results obtained within a project of the “NUCLEU” Program financed by the Ministry of Research and Innovation-ANCS. The project supposes, among others, the design and the realization of a demonstrator for strain and stress measurements made with Fiber Bragg Gratings optical sensors. The paper details the construction of the demonstrator. The strain measurements induced in a cantilevered aluminum plate are compared with the analytical values provided by a mathematical model, and with the numerical values obtained by FEM analysis. The consistency of these comparative data indicates the achievement within the project of a level of competence necessary for later use of FBG sensors in the applicative researches involving the aerospace structures monitoring.

  6. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    Science.gov (United States)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  7. Optical single sideband modulation radio over fiber system by using a fiber-Bragg-grating-based acousto-optic filter

    Science.gov (United States)

    Gao, Song; Pei, Li; Li, Zhuoxuan; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2013-03-01

    An optical single sideband (OSSB) modulation radio over a fiber system, by using an acousto-optic filter (AOF), is proposed and demonstrated. In the AOF, a uniform fiber Bragg grating is etched and modulated by an axially propagating acoustic wave. Due to the acousto-optic superlattice modulation, two secondary reflection peaks, centered on the primary reflection peak, are generated. In the scheme, an optical double-sideband signal passes though the AOF to realize OSSB modulation. Because the reflect depth of the primary peak is much deeper than those of the secondary peaks, the carrier experiences higher attenuation than the upper sideband, which means the carrier-to-sideband ratio (CSR) can be optimized at the same time. We demonstrate this scheme via simulations, and successfully reduce the CSR from 9.73 to 2.9 dB. As a result, the receiving sensitivity improved from -23.43 to -31.18 dBm at BER of 10-9 with 30 km long SMF.

  8. Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator.

    Science.gov (United States)

    Azaña, José

    2008-01-01

    It is demonstrated that a uniform fiber Bragg grating (FBG) working in the linear regime inherently behaves as an optical temporal integrator over a limited time window. Specifically, the reflected temporal waveform from a weak-coupling uniform FBG is proportional to the time integral of an (arbitrary) optical pulse launched at the component input. This integration extends over a time window fixed by the duration of the squarelike temporal impulse response of the FBG. Ultrafast all-optical integrators capable of accurate operation over nanosecond time windows can be implemented using readily feasible FBGs. The introduced concepts are demonstrated by numerical simulations.

  9. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques.

    Science.gov (United States)

    Ricchiuti, Amelia Lavinia; Barrera, David; Sales, Salvador; Thevenaz, Luc; Capmany, José

    2013-11-18

    A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes.

  10. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    Science.gov (United States)

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  11. Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.

    2016-01-01

    A high-performance fuel gauging sensor is described that uses five diaphragm-based pressure sensors, which are monitored using a linear array of polymer optical fiber Bragg gratings. The sensors were initially characterized using water, revealing a sensitivity of 98 pm/cm for four of the sensors...... of sensors manufactured with a polyurethane-based diaphragm showed no measurable deterioration over a three month period immersed in fuel. These sensors exhibited a sensitivity of 39 pm/cm, which is less than the silicone rubber devices due to the stiffer nature of the polyurethane material used....

  12. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    Science.gov (United States)

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  13. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  14. Detection of local birefringence in embedded fiber Bragg grating caused by concentrated transverse load using optical frequency domain reflectometry

    Science.gov (United States)

    Wada, D.; Murayama, H.; Igawa, H.

    2014-05-01

    We investigate the capability of local birefringence detection in an embedded fiber Bragg grating (FBG) using optical frequency domain reflectometry. We embed an FBG into carbon fiber reinforced plastic specimen, and conduct 3-point bending test. The cross-sectional stresses are applied to the FBG at the loading location in addition to the non-uniform longitudinal strain distribution over the length of the FBG. The local birefringence due to the cross-sectional stresses was successfully detected while the non-uniform longitudinal strain distribution was accurately measured.

  15. Development and Application of Smart Geogrid Embedded with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Zheng-fang Wang

    2015-01-01

    Full Text Available Smart geogrids embedded with fiber Bragg grating (FBG for reinforcement as well as measurement of geotechnical structures have been developed. After the fabricating process of the geogrids is detailed, finite element (FE simulations are conducted to analyze the strain distribution of geogrids and the strain transfer characteristics from geogrids to fiber optic. Results indicate that FBG should be deployed in the middle of the geogrids rib to make sure that uniform strain distribution along the FBG. Also, PVC protective sleeves, which are used to protect fiber optic when integrated with geogrids, have smaller strain transfer loss than nylon sleeves. Tensile experiments are conducted to test strain measurement performance of proposed geogrids, and the results demonstrate that proposed smart geogrids have good linearity and consistency. Temperature experiments show that FBG embedded in geogrids has higher temperature sensitivity, and the temperature induced error can be compensated by an extra FBG strain-independent sensor. Furthermore, designed smart geogrids are used in a geotechnical model test to monitor strain during tunnel excavation. The strain tendency measured by smart geogrids and traditional strain sensor agree very well. The results indicate that smart geogrids embedded with FBGs can be an effective method to measure strains for geological engineering related applications.

  16. Air and silica core Bragg fibers for radiation delivery in the wavelength range 0.6-1.5 μm

    Czech Academy of Sciences Publication Activity Database

    Frank, M.; Jelínek, M.; Kubeček, V.; Kašík, Ivan; Podrazký, Ondřej; Matějec, Vlastimil

    2016-01-01

    Roč. 31, September (2016), s. 36-41 ISSN 1068-5200 R&D Projects: GA ČR GAP102/12/2361; GA ČR GA16-10019S Institutional support: RVO:67985882 Keywords : Bragg fiber * Silica core * Laser power Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.678, year: 2016

  17. THz-bandwidth photonic Hilbert transformers based on fiber Bragg gratings in transmission.

    Science.gov (United States)

    Fernández-Ruiz, María R; Wang, Lixian; Carballar, Alejandro; Burla, Maurizio; Azaña, José; LaRochelle, Sophie

    2015-01-01

    THz-bandwidth photonic Hilbert transformers (PHTs) are implemented for the first time, to the best of our knowledge, based on fiber Bragg grating (FBG) technology. To increase the practical bandwidth limitation of FBGs (typically <200  GHz), a superstructure based on two superimposed linearly-chirped FBGs operating in transmission has been employed. The use of a transmission FBG involves first a conversion of the non-minimum phase response of the PHT into a minimum-phase response by adding an anticipated instantaneous component to the desired system temporal impulse response. Using this methodology, a 3-THz-bandwidth integer PHT and a fractional (order 0.81) PHT are designed, fabricated, and successfully characterized.

  18. Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings.

    Science.gov (United States)

    Kulishov, Mykola; Azaña, José

    2007-05-14

    A simple and general approach for designing practical all-optical (all-fiber) arbitrary-order time differentiators is introduced here for the first time. Specifically, we demonstrate that the Nth time derivative of an input optical waveform can be obtained by reflection of this waveform in a single uniform fiber Bragg grating (FBG) incorporating N &pi-phase shifts properly located along its grating profile. The general design procedure of an arbitrary-order optical time differentiator based on a multiple-phase-shifted FBG is described and numerically demonstrated for up to fourth-order time differentiation. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible FBG structures.

  19. Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario

    Science.gov (United States)

    Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele

    2018-03-01

    In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.

  20. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu

    2015-12-29

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved to efficiently characterize some material properties; for example, strain variations could be related physical change of the laminate, revealing key transition points such as the onset of melt or solidification. These results were confirmed through some comparison with traditional techniques such as differential scanning calorimetry. After the GFPP plate was released from the mold, residual strains were estimated. Because cooling rate is an important process parameter in thermoplastics, affecting crystallinity and ultimately residual strain, two different conditions (22 and 3 °C/min) were investigated. In the longitudinal direction, results were nearly identical while in the transverse direction results showed a 20% discrepancy. Coefficients of thermal expansion (CTE) were also identified during a post-process heating procedure using the embedded FBGs and compared to the results of a thermo-mechanical analysis. Again, dissimilarities were observed for the transverse direction. With regards to through the thickness properties, no differences were observed for residual strains or for CTEs.

  1. Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control.

    Science.gov (United States)

    Chung, K M; Dong, L; Lu, C; Tam, H Y

    2011-06-20

    We proposed and demonstrated a novel practical fiber Bragg grating (FBG) fabrication setup constructed with high performance linear stages, piezoelectric translation (PZT) stages, and a highly stable continuous wave laser. The FBG fabrication system enables writing of long FBGs by a continuous translate-and-write process and allows implementation of arbitrary chirp and apodization. A key innovation is that the local Bragg wavelength is controlled by a simple movement of the phase mask by a PZT in the direction perpendicular to its surface. The focus position of the two writing beams is not changed during the Bragg wavelength change, an intrinsic feature of the design, ensuring simplicity, robustness and stability. Apodization can be achieved by vibrating the phase mask in the direction parallel to its surface by a PZT. Phase steps can also be inserted in FBGs at any desired locations by stepping the same PZT. A long uniform FBG and a linearly chirped FBG are written to demonstrate the performance of the setup.

  2. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength......We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...

  3. Structural analysis and testing of a carbon-composite wing using fiber Bragg gratings

    Science.gov (United States)

    Nicolas, Matthew James

    The objective of this study was to determine the deflected wing shape and the out-of-plane loads of a large-scale carbon-composite wing of an ultralight aerial vehicle using Fiber Bragg Grating (FBG) technology. The composite wing was instrumented with an optical fiber on its top and bottom surfaces positioned over the main spar, resulting in approximately 780 strain sensors bonded to the wings. The strain data from the FBGs was compared to that obtained from four conventional strain gages, and was used to obtain the out-of-plane loads as well as the wing shape at various load levels using NASA-developed real-time load and displacement algorithms. The composite wing measured 5.5 meters and was fabricated from laminated carbon uniaxial and biaxial prepreg fabric with varying laminate ply patterns and wall thickness dimensions. A three-tier whiffletree system was used to load the wing in a manner consistent with an in-flight loading condition.

  4. Health monitoring system for a tall building with Fiber Bragg grating sensors

    Science.gov (United States)

    Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.

    2009-03-01

    Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.

  5. Fiber Bragg grating sensors in harsh environments: considerations and industrial monitoring applications

    Science.gov (United States)

    Méndez, Alexis

    2017-06-01

    Over the last few years, fiber optic sensors (FOS) have seen an increased acceptance and widespread use in industrial sensing and in structural monitoring in civil, aerospace, marine, oil & gas, composites and other applications. One of the most prevalent types in use today are fiber Bragg grating (FBG) sensors. Historically, FOS have been an attractive solution because of their EM immunity and suitability for use in harsh environments and rugged applications with extreme temperatures, radiation exposure, EM fields, high voltages, water contact, flammable atmospheres, or other hazards. FBG sensors have demonstrated that can operate reliably in many different harsh environment applications but proper type and fabrication process are needed, along with suitable packaging and installation procedure. In this paper, we review the impact that external factors and environmental conditions play on FBG's performance and reliability, and describe the appropriate sensor types and protection requirements suitable for a variety of harsh environment applications in industrial furnaces, cryogenic coolers, nuclear plants, maritime vessels, oil & gas wells, aerospace crafts, automobiles, and others.

  6. Full distortion induced by dispersion evaluation and optical bandwidth constraining of fiber Bragg grating demultiplexers over analogue SCM systems.

    Science.gov (United States)

    Martinez, Alfonso; Pastor, Daniel; Capmany, Jose

    2002-12-30

    We provide a full analysis of the distortion effects produced by the first and second order in-band dispersion of fiber Bragg grating based optical demultiplexers over analogue SCM (Sub Carrier Multiplexed) signals. Optical bandwidth utilization ranges for Dense WDM network are calculated considering different SCM system cases of frequency extension and modulation conditions.

  7. Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry-Perot interferometer.

    Science.gov (United States)

    Jiang, Yajun; Yang, Dexing; Yuan, Yuan; Xu, Jian; Li, Dong; Zhao, Jianlin

    2016-08-10

    A novel method for simultaneous measurement of strain and high temperature using a Type II fiber Bragg grating (FBG) and a miniature fiber Fabry-Perot interferometer (MFFPI) is proposed. The MFFPI is produced by fusion splicing a short section of quartz capillary tube with two single-mode fibers, and then it is exposed by a focused femtosecond laser and a phase mask to inscribe a Type II FBG nearby. The reflection spectrum of this sensor is the superposition of the reflection spectrum of the FBG and the interference fringe of the MFFPI. This sensor shows perfect high-temperature and strain responses. Because of the different responses to the uniform variations of strain and temperature, by measuring the reflection peak of FBG and one of the interference dips of the MFFPI, strain and temperature can be simultaneously determined. The resolutions of this particular sensor in measuring strain and temperature are estimated to be ±8.4  μϵ and ±3.3°C, respectively, in the range from 0 to 1122 μϵ and from 23°C to 600°C.

  8. Micro-deformation measurement on the concrete roadway surface slabs using Fiber Bragg Grating and analysis by computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, C M; Gomez, N D [Instituto Tecnologico Metropolitano Institucion Universitaria (ITM), Medellin A. A. 54954 (Colombia); Velez, F J, E-mail: claudiaserpa@itm.edu.co [Universidad EAFIT, Medellin (Colombia)

    2011-01-01

    This work shows a non-invasive method for micro-deformation measurements on concrete structures using Bragg grating sensors in optical fibers adhered to the surface. We present the measurements on roadway slabs under a load of 10 kN, and we find an approximated ratio of 2:1 between the deformation registered by the sensors and the values from a computational simulation with the finite element method. We propose the use of these sensors for structural monitoring of the slabs and this installation shape for avoiding bends that can damage the edges in the optical fiber in embebed sensors in vertical shape.

  9. Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs

    Science.gov (United States)

    González-Vila, Álvaro; Kinet, Damien; Mégret, Patrice; Caucheteur, Christophe

    2017-11-01

    Gold-coated tilted fiber Bragg gratings can probe surface Plasmon polaritons with high resolution and sensitivity. In this work, we report two configurations to interrogate such plasmonic biosensors, with the aim of providing more efficient alternatives to the widespread spectrometer-based techniques. To this aim, the interrogation is based on measuring the optical power evolution of the cladding modes with respect to surrounding refractive index changes instead of computing their wavelength shift. Both setups are composed of a broadband source and a photodiode and enable a narrowband interrogation around the cladding mode that excites the surface Plasmon resonance. The first configuration makes use of a uniform fiber Bragg grating to filter the broadband response of the source in a way that the final interrogation is based on an intensity modulation measured in transmission. The second setup uses a uniform fiber grating too, but located beyond the sensor and acting as a selective optical mirror, so the interrogation is carried out in reflection. Both configurations are compared, showing interesting differential features. The first one exhibits a very high sensitivity while the second one has an almost temperature-insensitive behavior. Hence, the choice of the most appropriate method will be driven by the requirements of the target application.

  10. Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber

    Science.gov (United States)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, Patrice; Caucheteur, C.

    2013-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in Trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber characterized by a core diameter of 8.2 μm. Single-mode gratings were produced at ~1550 nm by the phase mask technique with a Helium-Cadmium emitting at 325 nm with an average power of 30 mW. The grating growth was monitored during the manufacturing process, showing that the reflected band is blue shifted by a few hundreds of picometers. Finally, the gratings were characterized in temperature in the range 25 - 50 °C. Their sensitivity has been computed equal to - 47 pm/°C.

  11. High-resolution low-frequency fluctuation map of a multimode laser diode subject to filtered optical feedback via a fiber Bragg grating.

    Science.gov (United States)

    Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A

    2016-07-01

    A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works.

  12. In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.

  13. Local characterization of fiber-Bragg gratings through combined use of low-coherence interferometry and a layer-peeling algorithm

    International Nuclear Information System (INIS)

    Chapeleau, Xavier; Leduc, Dominique; Lupi, Cyril; Lopez-Gejo, Francisco; Douay, Marc; Le Ny, Roger; Boisrobert, Christian

    2006-01-01

    The technique presented here allows us to obtain an accurate determination of the refractive index modulation amplitude, the mean effective index, and the chirp of fiber-Bragg gratings. A layer-peeling algorithm is used to extract this information from low-coherence interferometry measurements. Finally, we present a systematic study over 10 uniform and chirped gratings to proof the reliability and accuracy of this technique

  14. Dynamic strain measurement system with fiber Bragg gratings and noise mitigation techniques

    International Nuclear Information System (INIS)

    Tosi, D; Olivero, M; Perrone, G

    2009-01-01

    A low-cost fiber Bragg grating (FBG) vibrometer specifically suited for structural monitoring and aimed at the detection of low-amplitude vibrations is presented. The optical system exploits an intensity modulation principle of operation, while signal processing techniques are used to complement the transducer to improve the performances: a recursive least-squares adaptive filter improves the noise power mitigation by 14 dB, and an efficient spectral estimator permits operating spectral analysis even under high noise conditions. With these methods, a strain sensitivity of 5.6 nε has been achieved in the ±60 µε range. Experimental assessment tests carried out in typical structural monitoring contexts have demonstrated that the developed sensor is well suited to measure mechanical perturbations of different structures

  15. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    Science.gov (United States)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Jie; Zhang, Cheng-Cheng; Wang, Bao-Jun

    2014-09-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  16. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    International Nuclear Information System (INIS)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Cheng-Cheng; Wang, Bao-Jun; Zhang, Jie

    2014-01-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  17. GNOSIS: THE FIRST INSTRUMENT TO USE FIBER BRAGG GRATINGS FOR OH SUPPRESSION

    Energy Technology Data Exchange (ETDEWEB)

    Trinh, Christopher Q.; Ellis, Simon C.; Bland-Hawthorn, Joss; Bryant, Julia; O' Byrne, John [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Lawrence, Jon S.; Horton, Anthony J.; Shortridge, Keith; Case, Scott; Colless, Matthew; Gers, Luke; Lee, Steve; Miziarski, Stan [Australian Astronomical Observatory, 105 Delhi Road, North Ryde, P.O. Box 915, NSW 1670 (Australia); Leon-Saval, Sergio G. [Institute of Photonics and Optical Science, School of Physics, University of Sydney, NSW 2006 (Australia); Couch, Warrick; Glazebrook, Karl [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Freeman, Kenneth [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Loehmannsroeben, Hans-Gerd [innoFSPEC-Institut fuer Chemie/Physikalische Chemie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany); Haynes, Roger; Roth, Martin M., E-mail: c.trinh@physics.usyd.edu.au [innoFSPEC-Leibniz-Institut fuer Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); and others

    2013-02-01

    The near-infrared is an important part of the spectrum in astronomy, especially in cosmology because the light from objects in the early universe is redshifted to these wavelengths. However, deep near-infrared observations are extremely difficult to make from ground-based telescopes due to the bright background from the atmosphere. Nearly all of this background comes from the bright and narrow emission lines of atmospheric hydroxyl (OH) molecules. The atmospheric background cannot be easily removed from data because the brightness fluctuates unpredictably on short timescales. The sensitivity of ground-based optical astronomy far exceeds that of near-infrared astronomy because of this long-standing problem. GNOSIS is a prototype astrophotonic instrument that utilizes 'OH suppression fibers' consisting of fiber Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47 and 1.7 {mu}m. GNOSIS was commissioned at the 3.9 m Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibers, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput ( Almost-Equal-To 60%) and excellent suppression of the skylines by the OH suppression fibers, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS+IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise dominated. OH suppression fibers could potentially impact ground-based astronomy at the level of adaptive optics or

  18. GNOSIS: THE FIRST INSTRUMENT TO USE FIBER BRAGG GRATINGS FOR OH SUPPRESSION

    International Nuclear Information System (INIS)

    Trinh, Christopher Q.; Ellis, Simon C.; Bland-Hawthorn, Joss; Bryant, Julia; O'Byrne, John; Lawrence, Jon S.; Horton, Anthony J.; Shortridge, Keith; Case, Scott; Colless, Matthew; Gers, Luke; Lee, Steve; Miziarski, Stan; Leon-Saval, Sergio G.; Couch, Warrick; Glazebrook, Karl; Freeman, Kenneth; Löhmannsröben, Hans-Gerd; Haynes, Roger; Roth, Martin M.

    2013-01-01

    The near-infrared is an important part of the spectrum in astronomy, especially in cosmology because the light from objects in the early universe is redshifted to these wavelengths. However, deep near-infrared observations are extremely difficult to make from ground-based telescopes due to the bright background from the atmosphere. Nearly all of this background comes from the bright and narrow emission lines of atmospheric hydroxyl (OH) molecules. The atmospheric background cannot be easily removed from data because the brightness fluctuates unpredictably on short timescales. The sensitivity of ground-based optical astronomy far exceeds that of near-infrared astronomy because of this long-standing problem. GNOSIS is a prototype astrophotonic instrument that utilizes 'OH suppression fibers' consisting of fiber Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47 and 1.7 μm. GNOSIS was commissioned at the 3.9 m Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibers, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput (≈60%) and excellent suppression of the skylines by the OH suppression fibers, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS+IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise dominated. OH suppression fibers could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a

  19. Fabry-Pérot cavity based on chirped sampled fiber Bragg gratings.

    Science.gov (United States)

    Zheng, Jilin; Wang, Rong; Pu, Tao; Lu, Lin; Fang, Tao; Li, Weichun; Xiong, Jintian; Chen, Yingfang; Zhu, Huatao; Chen, Dalei; Chen, Xiangfei

    2014-02-10

    A novel kind of Fabry-Pérot (FP) structure based on chirped sampled fiber Bragg grating (CSFBG) is proposed and demonstrated. In this structure, the regular chirped FBG (CFBG) that functions as reflecting mirror in the FP cavity is replaced by CSFBG, which is realized by chirping the sampling periods of a sampled FBG having uniform local grating period. The realization of such CSFBG-FPs having diverse properties just needs a single uniform pitch phase mask and sub-micrometer precision moving stage. Compared with the conventional CFBG-FP, it becomes more flexible to design CSFBG-FPs of diverse functions, and the fabrication process gets simpler. As a demonstration, based on the same experimental facilities, FPs with uniform FSR (~73 pm) and chirped FSR (varying from 28 pm to 405 pm) are fabricated respectively, which shows good agreement with simulation results.

  20. Analysis of pH Sensitive Hydrogel Coating Effect to Fiber Bragg Grating Properties for pH Sensor Application

    Science.gov (United States)

    Yulianti, Ian; Supa'at, Abu Sahmah M.; Idrus, Sevia M.; Kurdi, Ojo

    2011-12-01

    This paper demonstrates the analysis of fiber Bragg grating properties due to hydrogel coating swelling effect. The modeling was done by simulating the hydrogel swelling behavior, and then carried out strain and stress analysis induced on the fiber due to hydrogel expansion. Meshless numerical method was adopted to solve the Poison Nernst Planck equation coupled to mechanical equation to simulate the hydrogel swelling. The hydrogel coating thickness was varied for 4 values, namely 30 μm, 40 μm, 50 μm and 60 μm. The strain and stress analysis were done numerically using finite element method. The results show that the strain on the fiber increases as the hydrogel coating thickness increased. The increase of hydrogel thickness results in the improvement of sensor sensitivity at the expense of stress value.

  1. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements

    Directory of Open Access Journals (Sweden)

    Wei Bai

    2017-06-01

    Full Text Available A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

  2. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements.

    Science.gov (United States)

    Bai, Wei; Yang, Minghong; Hu, Chenyuan; Dai, Jixiang; Zhong, Xuexiang; Huang, Shuai; Wang, Gaopeng

    2017-06-26

    A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG) array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

  3. A novel biomimetic whisker technology based on fiber Bragg grating and its application

    Science.gov (United States)

    Zhao, Chenlu; Jiang, Qi; Li, Yibin

    2017-09-01

    The paper describes a novel, biomimetic whisker-based sensing technology following the basic design of the facial whiskers of animals such as rats and mice. The sensor consists of a 3× 2 whisker array on each side of a robot. In experiments with the artificial whiskers, the motor drives rotating whiskers, and the center wavelength of a fiber Bragg grating pasted on the whisker will shift when the whisker touches an obstacle. The distance will be obtained by processing the wavelength shift data with algorithms. Then the shape recognition can be realized by postprocessing the distance data. The experimental results prove that the whisker array is capable of accurately gathering the distance and shape information of an object.

  4. A simple self-restored fiber Bragg grating (FBG)-based passive sensing ring network

    International Nuclear Information System (INIS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Wang, Chia-Husan; Shih, Fu-Yuan; Wu, Yu-Fu; Chi, Sien

    2009-01-01

    In this investigation, we propose and experimentally investigate a simple self-restored fiber Bragg grating (FBG)-based sensor ring system. This proposed multi-ring passive sensing architecture does not require active components in the network. In this experiment, the network survivability and capacity for the multi-point sensor systems are also enhanced. Besides, the tunable laser source (TLS) is adopted in a central office (CO) for FBG sensing. The survivability of an eight-point FBG sensor is examined and analyzed. It is cost effective since the sensing system is entirely centralized in the CO. Experimental results show that the proposed system can enhance the reliability of the FBG sensing network for large-scale and multi-point architecture. (rapid communication)

  5. Optical fiber Bragg gratings. Part II. Modeling of finite-length gratings and grating arrays.

    Science.gov (United States)

    Passaro, Vittorio M N; Diana, Roberto; Armenise, Mario N

    2002-09-01

    A model of both uniform finite-length optical fiber Bragg gratings and grating arrays is presented. The model is based on the Floquet-Bloch formalism and allows rigorous investigation of all the physical aspects in either single- or multiple-periodic structures realized on the core of a monomodal fiber. Analytical expressions of reflectivity and transmittivity for both single gratings and grating arrays are derived. The influence of the grating length and the index modulation amplitude on the reflected and transmitted optical power for both sinusoidal and rectangular profiles is evaluated. Good agreement between our method and the well-known coupled-mode theory (CMT) approach has been observed for both single gratings and grating arrays only in the case of weak index perturbation. Significant discrepancies exist there in cases of strong index contrast because of the increasing approximation of the CMT approach. The effects of intragrating phase shift are also shown and discussed.

  6. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.

    Science.gov (United States)

    Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J

    2017-05-29

    A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  7. Progress in miniaturization of a multichannel optical fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Lopatin, Craig M.; Mahmood, Shah; Mendoza, Edgar; Moslehi, Behzad; Black, Richard; Chau, Kelvin; Oblea, Levy

    2007-07-01

    An effort to develop a miniaturized multichannel optical fiber Bragg grating sensor interrogator was initiated in 2006 under the Small Business Innovative Research (SBIR) program. The goal was to develop an interrogator that would be sufficiently small and light to be incorporated into a health monitoring system for use on tactical missiles. Two companies, Intelligent Fiber Optic Systems Corporation (IFOS) and Redondo Optics, were funded in Phase I, and this paper describes the prototype interrogators that were developed. The two companies took very different approaches: IFOS focused on developing a unit that would have a high channel count and high resolution, using off-the-shelf components, while Redondo Optics chose to develop a unit that would be very small and lightweight, using custom designed integrated optical chips. It is believed that both approaches will result in interrogators that will be significantly small, lighter, and possibly even more precise than what is currently commercially available. This paper will also briefly describe some of the sensing concepts that may be used to interrogate the health of the solid rocket motors used in many missile systems. The sponsor of this program was NAVAIR PMA 280.

  8. Simultaneous measurement of temperature and pressure by a single fiber Bragg grating with a broadened reflection spectrum.

    Science.gov (United States)

    Guo, Tuan; Qiao, Xueguang; Jia, Zhenan; Zhao, Qida; Dong, Xiaoyi

    2006-05-01

    Simultaneous measurement of temperature and pressure with a single fiber Bragg grating (FBG) based on a broadened reflection spectrum is proposed and experimentally demonstrated. A novel double-hole structure of a cantilever beam is designed, and a FBG is affixed on the nonuniform strain area of the cantilever beam. The Bragg reflection bandwidth is sensitive to the spatially gradient strain but is free from the spatially uniform temperature. The wavelength peak shift and the bandwidth broadening of the FBG with a change of temperature and pressure allow for simultaneous discrimination between the temperature and the pressure effects. Standard deviation errors of 1.4 degrees C and 1.8 kPa were obtained with temperature and pressure ranges of 20 degrees C-100 degrees C and 0-80 kPa, respectively. This novel and low-cost sensor approach has considerable potential applications for temperature-insensitive strain measurement.

  9. Strain-temperature monitor of high speed railway switch by fiber Bragg grating gauges

    Science.gov (United States)

    Li, Weilai; Huang, Xiaomei; Cheng, Jian; Pan, Jianjun

    2010-10-01

    On the 350km/h high speed railway there is a seamless track switch on a bridge. 32 Fiber Bragg Grating (FGB) gauges are used along the neutral line of the tracks to monitor the strain generated by thermal, geological and vibrational factors, and these FBG strain gauges have the function of strain expansion. Meanwhile other 6 FBG sensors are used to measure the temperature for strain compensating purpose. The Finite Element Analysis method is used to analyze the special shape of the gauges. A testing unit was used to test the FBG gauges and bare FBG on the track samples under measurable pressure and tension. The fixing and encapsulating technology of FBG gauges on the surface of the track and to protect the fiber cable to survive in the harsh conditions are discussed. The strain status of switch tracks could be obtained by processing the data from FBG strain gauges and FBG temperature sensors. The results of measurement showed that in 9 days, the strain in the track shifted 350 μɛ, and the strain curves closely correlated with the temperature curves.

  10. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    Science.gov (United States)

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  11. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    Science.gov (United States)

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  12. Three-axial Fiber Bragg Grating Strain Sensor for Volcano Monitoring

    Science.gov (United States)

    Giacomelli, Umberto; Beverini, Nicolò; Carbone, Daniele; Carelli, Giorgio; Francesconi, Francesco; Gambino, Salvatore; Maccioni, Enrico; Morganti, Mauro; Orazi, Massimo; Peluso, Rosario; Sorrentino, Fiodor

    2017-04-01

    Fiber optic and FBGs sensors have attained a large diffusion in the last years as cost-effective monitoring and diagnostic devices in civil engineering. However, in spite of their potential impact, these instruments have found very limited application in geophysics. In order to study earthquakes and volcanoes, the measurement of crustal deformation is of crucial importance. Stress and strain behaviour is among the best indicators of changes in the activity of volcanoes .. Deep bore-hole dilatometers and strainmeters have been employed for volcano monitoring. These instruments are very sensitive and reliable, but are not cost-effective and their installation requires a large effort. Fiber optic based devices offer low cost, small size, wide frequency band, easier deployment and even the possibility of creating a local network with several sensors linked in an array. We present the realization, installation and first results of a shallow-borehole (8,5 meters depth) three-axial Fiber Bragg Grating (FBG) strain sensor prototype. This sensor has been developed in the framework of the MED-SUV project and installed on Etna volcano, in the facilities of the Serra La Nave astrophysical observatory. The installation siteis about 7 Km South-West of the summit craters, at an elevation of about 1740 m. The main goal of our work is the realization of a three-axial device having a high resolution and accuracy in static and dynamic strain measurements, with special attention to the trade-off among resolution, cost and power consumption. The sensor structure and its read-out system are innovative and offer practical advantages in comparison with traditional strain meters. Here we present data collected during the first five months of operation. In particular, the very clear signals recorded in the occurrence of the Central Italy seismic event of October 30th demonstrate the performances of our device.

  13. BRAGG GRATINGS MULTIPUSLE INSCRIPTION EFFICIENCY DEPENDENCE ON ANGULAR POSITION OF ELLIPTICAL STRESS CLADDING IN BIREFRINGENT OPTICAL FIBERS

    Directory of Open Access Journals (Sweden)

    Sergey V. Arkhipov

    2017-09-01

    Full Text Available Subject of Research.The paper deals with mutlipulse inscription comparative results of the type IBragg gratings in the birefringent optical fiber with elliptical stress cladding and increased GeO2 concentration at different birefringence axes positions. Method. The gratings were inscribed by the phase mask method. The excimer laser Coherent COMPexPro 102F, working with the gas mixture KrF (248 nm, was used as the radiation source. The phase mask Ibsen Photonics with a period of1065.3 nm was used. Main Results.The results have shown that the multipusle inscription is more effective and has better dynamics when the plane containing the fiber axis and its slow birefringence axis is parallel to the writing radiation incidence plane containing the fiber axis. Practical Relevance. The research results give the possibility to make recommendations for the multipulse Bragg gratings inscription efficiency enhancement in the specialty birefringent fibers. The preinscription positioning of birefringence axes also makes it possible to reduce the polarization fading that is the noise source in phase interferometric sensors.

  14. Proposal for arbitrary-order temporal integration of ultrafast optical signals using a single uniform-period fiber Bragg grating.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2008-07-01

    A simple and practical all-fiber design for implementing arbitrary-order temporal integration of ultrafast optical waveforms is proposed and numerically investigated. We demonstrate that an ultrafast photonics integrator of any desired integration order can be implemented using a uniform-period fiber Bragg grating (FBG) with a properly designed amplitude-only grating apodization profile. In particular, the grating coupling strength must vary according to the (N-1) power of the fiber distance for implementing an Nth-order photonics integrator (N=1,2,...). This approach requires the same level of practical difficulty for realizing any given integration order. The proposed integration devices operate over a limited time window, which is approximately fixed by the round-trip propagation time in the FBG. Ultrafast arbitrary-order all-optical integrators capable of accurate operation over nanosecond time windows can be implemented using readily feasible FBGs.

  15. Analysis for reflection peaks of multiple-phase-shift based sampled fiber Bragg gratings and application in high channel-count filter design.

    Science.gov (United States)

    Wen, Kun Hua; Yan, Lian Shan; Pan, Wei; Luo, Bin; Zou, Xi Hua; Ye, Jia; Ma, Ya Nan

    2009-10-10

    An analytical expression for calculating the reflection-peak wavelengths (RPWs) of a uniform sampled fiber Bragg grating (SFBG) with the multiple-phase-shift (MPS) technique is derived through Fourier transform of the index modulation. The new expression can accurately depict the RPWs incorporating various parameters such as the duty cycle and the DC index change. The effectiveness of the derived expression is further confirmed by comparing the RPWs estimated from the expression with the simulated reflective spectra using the piecewise uniform method. And the reflective spectrum has been well optimized by introducing the Gaussian apodization function to suppress the sidelobes without any wavelength shift on the RPWs. Then, a high-channel-count comb filter based on MPS is proposed by cascading two or more SFBGs with different Bragg periods but with the same RPWs. Noticeably, the RPWs of the new structured SFBG can also be accurately calculated through the expression. Furthermore, the number of spectral channels can be controlled by choosing gratings with specified difference Bragg periods.

  16. Smelling in chemically complex environments: an optofluidic Bragg fiber array for differentiation of methanol adulterated beverages.

    Science.gov (United States)

    Yildirim, Adem; Ozturk, Fahri Emre; Bayindir, Mehmet

    2013-07-02

    A novel optoelectronic nose for analysis of alcohols (ethanol and methanol) in chemically complex environments is reported. The cross-responsive sensing unit of the optoelectronic nose is an array of three distinct hollow-core infrared transmitting photonic band gap fibers, which transmit a specific band of IR light depending on their Bragg mirror structures. The presence of alcohol molecules in the optofluidic core quenches the fiber transmissions if there is an absorption band of the analyte overlapping with the transmission band of the fiber; otherwise they remain unchanged. The cumulative response data of the fiber array enables rapid, reversible, and accurate discrimination of alcohols in chemically complex backgrounds such as beer and fruit juice. In addition, we observed that humidity of the environment has no effect on the response matrix of the optoelectronic nose, which is rarely achieved in gas-sensing applications. Consequently, it can be reliably used in virtually any environment without precalibration for humidity or drying the analytes. Besides the discussed application in counterfeit alcoholic beverages, with its superior sensor parameters, this novel concept proves to be a promising contender for many other applications including food quality control, environmental monitoring, and breath analysis for disease diagnostics.

  17. Bite force measurement based on fiber Bragg grating sensor

    Science.gov (United States)

    Padma, Srivani; Umesh, Sharath; Asokan, Sundarrajan; Srinivas, Talabattula

    2017-10-01

    The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system. Measurement of voluntary bite force provides useful data for the jaw muscle function and activity along with assessment of prosthetics. This study proposes an in vivo methodology for the dynamic measurement of bite force employing a fiber Bragg grating (FBG) sensor known as bite force measurement device (BFMD). The BFMD developed is a noninvasive intraoral device, which transduces the bite force exerted at the occlusal surface into strain variations on a metal plate. These strain variations are acquired by the FBG sensor bonded over it. The BFMD developed facilitates adjustment of the distance between the biting platform, which is essential to capture the maximum voluntary bite force at three different positions of teeth, namely incisor, premolar, and molar sites. The clinically relevant bite forces are measured at incisor, molar, and premolar position and have been compared against each other. Furthermore, the bite forces measured with all subjects are segregated according to gender and also compared against each other.

  18. Reconfigurable architecture based on fiber bragg gratings for indoor networks (Arquitectura reconfigurable basada en redes de difracción de Bragg para redes convergentes indoor ópticas

    Directory of Open Access Journals (Sweden)

    Gustavo Adolfo Puerto-Leguizamón

    2016-01-01

    Full Text Available This paper presents an approach for dynamic reconfiguration of wavelength channels for future indoor network architectures. The approach exploits the tunability and the rejection profile of Fiber Bragg Gratings (FBG to implement service distribution strategies that includes Unicast, Broadcast and Multicast scenarios for fixed and mobile users. Experimental demonstrations based on two implementations show results with 1% average degradation for Error Vector Magnitude (EVM values and up to 2,2 dB for 1x10-12 Bit Error Rate (BER. In particular, the proposed architectures fit for large in-building networks

  19. Development and Testing of an Integrated Rotating Dynamometer Based on Fiber Bragg Grating for Four-Component Cutting Force Measurement.

    Science.gov (United States)

    Liu, Mingyao; Bing, Junjun; Xiao, Li; Yun, Kang; Wan, Liang

    2018-04-18

    Cutting force measurement is of great importance in machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this work, a novel integrated rotating dynamometer based on fiber Bragg grating (FBG) was designed, constructed, and tested to measure four-component cutting force. The dynamometer consists of FBGs that are pasted on the newly designed elastic structure which is then mounted on the rotating spindle. The elastic structure is designed as two mutual-perpendicular semi-octagonal rings. The signals of the FBGs are transmitted to FBG interrogator via fiber optic rotary joints and optical fiber, and the wavelength values are displayed on a computer. In order to determine the static and dynamic characteristics, many tests have been done. The results show that it is suitable for measuring cutting force.

  20. Microfiber Bragg grating hydrogen sensor base on co-sputtered Pd/Ni composite film

    Science.gov (United States)

    Wang, Gaopeng; Yang, Minghong; Dai, Jixiang; Cheng, Cheng; Yuan, Yinqian

    2015-07-01

    A novel hydrogen sensor based on Pd/Ni co-sputtered coating on micro fiber Bragg grating (MFBG) is proposed and experimentally demonstrated. The microfiber is stretched uniformly and the Bragg grating is directly inscribed on the microfiber without hydrogen loading using 193 nm ArF excimer laser and a phase mask. Palladium and nickel coatings are co-sputtered on the micro fiber Bragg grating for hydrogen sensing. The MFBG hydrogen sensors are characterized concerning their response to the hydrogen, ambient temperature and ambient refractive index, respectively. The performance of the proposed MFBG hydrogen sensor is obviously enhanced, especially when compared to standard FBG hydrogen sensors.

  1. Cartilage microindentation using cylindrical and spherical optical fiber indenters with integrated Bragg gratings as force sensors

    Science.gov (United States)

    Marchi, G.; Canti, O.; Baier, V.; Micallef, W.; Hartmann, B.; Alberton, P.; Aszodi, A.; Clausen-Schaumann, H.; Roths, J.

    2018-02-01

    Fiber optic microindentation sensors that have the potential to be integrated into arthroscopic instruments and to allow localizing degraded articular cartilage are presented in this paper. The indenters consist of optical fibers with integrated Bragg gratings as force sensors. In a basic configuration, the tip of the fiber optic indenter consists of a cleaved fiber end, forming a cylindrical flat punch indenter geometry. When using this indenter geometry, high stresses at the edges of the cylinder are present, which can disrupt the tissue structure. This is avoided with an improved version of the indenter. A spherical indenter tip that is formed by melting the end of the glass fiber. The spherical fiber tip shows the additional advantage of strongly reducing reflections from the fiber end. This allows a reduction of the length of the fiber optic sensor element from 65 mm of the flat punch type to 27 mm of the spherical punch. In order to compare the performance of both indenter types, in vitro stress-relaxation indentation experiments were performed on bovine articular cartilage with both indenter types, to assess biomechanical properties of bovine articular cartilage. For indentation depths between 60 μm and 300 μm, the measurements with both indenter types agreed very well with each other. This shows that both indenter geometries are suitable for microindentation measuremnts . The spherical indenter however has the additional advantage that it minimizes the risk to damage the surface of the tissue and has less than half dimensions than the flat indenter.

  2. A short baseline strainmeter using fiber-optic Bragg-Grating (FBG) sensor and a nano-optic interferometer

    Science.gov (United States)

    Coutant, O.; Demengin, M.; Le Coarer, E.; Gaffet, S.

    2013-12-01

    Strain recordings from tiltmeters or borehole volumetric strainmeters on volcanoes reveal extremely rich signal of deformation associated with eruptive processes. The ability to detect and record signals of the order of few tens of nanostrain is complementary to other monitoring techniques, and of great interest to monitor and model the volcanic processes. Strain recording remains however a challenge, for both the instrumental and the installation point of view. We present in this study the first results of strain recordings, using a new fiber-optic Bragg-Grating (FBG) sensor. FBG sensors are known for many years and used as strain gauges in civil engineering. They are however limited in this case to microstrain capability. We use here a newly developped interferometer named SWIFTS whose main characteristics are i) an extremely high optical wavelength precision and ii) a small design and low power requirements allowing an easy field deployment. Our FBG sensor uses a short baseline, 3cm long Bragg network. We show preliminary results obtained from a several months recordings in the low noise underground laboratory at Rustrel (LSBB), south of France.

  3. A Fiber Bragg Grating—Bimetal Temperature Sensor for Solar Panel Inverters

    Directory of Open Access Journals (Sweden)

    Mohd Afiq Ismail

    2011-09-01

    Full Text Available This paper reports the design, characterization and implementation of a Fiber Bragg Grating (FBG-based temperature sensor for an Insulted-Gate Bipolar Transistor (IGBT in a solar panel inverter. The FBG is bonded to the higher Coefficient of Thermal Expansion (CTE side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.

  4. Fiber Bragg grating sensors for real-time monitoring of evacuation process

    Science.gov (United States)

    Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.

    2010-03-01

    Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

  5. A fiber Bragg grating--bimetal temperature sensor for solar panel inverters.

    Science.gov (United States)

    Ismail, Mohd Afiq; Tamchek, Nizam; Hassan, Muhammad Rosdi Abu; Dambul, Katrina D; Selvaraj, Jeyrai; Rahim, Nasrudin Abd; Sandoghchi, Reza; Adikan, Faisal Rafiq Mahamd

    2011-01-01

    This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.

  6. Real time transverse-force sensor based on polarization properties of fiber Bragg grating and cross-sensitivity compensation

    International Nuclear Information System (INIS)

    Su, Yang; Zhu, Yong; Zhang, Baofu; Peng, Hui; Ye, Zhenxing

    2013-01-01

    We present a new method for real-time transverse force sensor based on the measurement of the polarization properties of a uniform fiber Bragg grating (FBG) written into standard single mode fiber. Unlike the usual spectral analysis of FBG sensors, we demonstrate here that the amplitude of the first Stokes parameters of a uniform FBG in transmission can be used to obtain transverse force value. The influences of incident angle of linear polarized light launched into FBG on sensor performance are analyzed. Experimental results measured by means of a tunable laser source and a polarimeter are presented. We also propose a kind of grating structure with triangular-shaped transmission spectrum to reduce the influences of cross-sensitivity. The compensation effect can satisfy the requirements of the practical application with optimized grating parameters. (paper)

  7. Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring.

    Science.gov (United States)

    Domingues, Maria Fátima; Tavares, Cátia; Leitão, Cátia; Frizera-Neto, Anselmo; Alberto, Nélia; Marques, Carlos; Radwan, Ayman; Rodriguez, Jonathan; Postolache, Octavian; Rocon, Eduardo; André, Paulo; Antunes, Paulo

    2017-09-01

    In an era of unprecedented progress in technology and increase in population age, continuous and close monitoring of elder citizens and patients is becoming more of a necessity than a luxury. Contributing toward this field and enhancing the life quality of elder citizens and patients with disabilities, this work presents the design and implementation of a noninvasive platform and insole fiber Bragg grating sensors network to monitor the vertical ground reaction forces distribution induced in the foot plantar surface during gait and body center of mass displacements. The acquired measurements are a reliable indication of the accuracy and consistency of the proposed solution in monitoring and mapping the vertical forces active on the foot plantar sole, with a sensitivity up to 11.06 ?? pm / N . The acquired measurements can be used to infer the foot structure and health condition, in addition to anomalies related to spine function and other pathologies (e.g., related to diabetes); also its application in rehabilitation robotics field can dramatically reduce the computational burden of exoskeletons’ control strategy. The proposed technology has the advantages of optical fiber sensing (robustness, noninvasiveness, accuracy, and electromagnetic insensitivity) to surpass all drawbacks verified in traditionally used sensing systems (fragility, instability, and inconsistent feedback).

  8. Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring

    Science.gov (United States)

    Domingues, Maria Fátima; Tavares, Cátia; Leitão, Cátia; Frizera-Neto, Anselmo; Alberto, Nélia; Marques, Carlos; Radwan, Ayman; Rodriguez, Jonathan; Postolache, Octavian; Rocon, Eduardo; André, Paulo; Antunes, Paulo

    2017-09-01

    In an era of unprecedented progress in technology and increase in population age, continuous and close monitoring of elder citizens and patients is becoming more of a necessity than a luxury. Contributing toward this field and enhancing the life quality of elder citizens and patients with disabilities, this work presents the design and implementation of a noninvasive platform and insole fiber Bragg grating sensors network to monitor the vertical ground reaction forces distribution induced in the foot plantar surface during gait and body center of mass displacements. The acquired measurements are a reliable indication of the accuracy and consistency of the proposed solution in monitoring and mapping the vertical forces active on the foot plantar sole, with a sensitivity up to 11.06 pm/N. The acquired measurements can be used to infer the foot structure and health condition, in addition to anomalies related to spine function and other pathologies (e.g., related to diabetes); also its application in rehabilitation robotics field can dramatically reduce the computational burden of exoskeletons' control strategy. The proposed technology has the advantages of optical fiber sensing (robustness, noninvasiveness, accuracy, and electromagnetic insensitivity) to surpass all drawbacks verified in traditionally used sensing systems (fragility, instability, and inconsistent feedback).

  9. Fiber Bragg grating sensor based on cantilever structure embedded in polymer 3D printed material

    Science.gov (United States)

    Lima, Rita; Tavares, R.; Silva, S. O.; Abreu, P.; Restivo, Maria T.; Frazão, O.

    2017-04-01

    A cantilever structure in 3D printed based on a fiber Bragg grating (FBG) sensor embedded in polymer material is proposed. The FBG sensor was embedded in 3D printed coating and was tested under three physical parameters: displacement, temperature and vibration. The sensor was tested in displacement in two different regions of the cantilever, namely, on its midpoint and end point. The maximum displacement sensitivity achieved was (3 +/- 0.1) pm/mm for end point displacement, and a temperature sensitivity of (30 +/- 1) pm/°C was also attained. In the case of vibration measurements it was possible to obtain a 10.23Hz-low frequency oscillation.

  10. Design and UV writing of advanced Bragg gratings in optical fibers

    DEFF Research Database (Denmark)

    Plougmann, Nikolai

    2004-01-01

    : · Development of a novel polarization control method for UV writing of advanced Bragg gratings with arbitrary refractive index modulation profile including multiple pi-phase shifts. · Development of a novel efficient technique for Bragg grating design which allows calculating an index modulation profile...

  11. Dual fiber Bragg gratings configuration-based fiber acoustic sensor for low-frequency signal detection

    Science.gov (United States)

    Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming

    2014-11-01

    We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.

  12. Determination of Terfenol-D magnetostriction characteristics for sensor application using fiber Bragg grating

    Science.gov (United States)

    de Morais Sousa, Kleiton; Zandonay, Ricardo; Vagner da Silva, Erlon; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2014-08-01

    Electric current sensor based on magnetostriction phenomenon has been reported in several papers. In common these previous papers used a fiber Bragg grating (FBG) to determine the strain of the magnetostrictive material. However, magnetostriction sensors present few disadvantages often neglected, such as the temperature dependence of magnetostriction. In this paper a Terfenol-D rod (a giant magnetostrictive material-GMM) is used for tests. For simultaneous measurement of temperature and strain two multiplexed FBGs are used. The first test presents unipolar characteristics of Terfenol-D magnetostriction. Other test determines the Terfenol-D response for different temperatures. The Terfenol-D sensitivity increase when the temperature increases, however the saturation of the material occurs in small field values. The characteristics presented in this paper must be taken into account in the development of magnetostrictive sensors and its limitations.

  13. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.

    Science.gov (United States)

    Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming

    2015-04-15

    Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.

  14. Microcavity-coupled fiber Bragg grating with tunable reflection spectra and speed of light.

    Science.gov (United States)

    Chen, Lei; Han, Ya; Liu, Qian; Liu, Yan-Ge; Zhang, Weigang; Chou, Keng C

    2018-04-15

    After a fiber Bragg grating (FBG) is fabricated, the reflection spectrum of the FBG is generally not tunable without mechanical deformation or temperature adjustment. Here we present a microcavity-coupled FBG with both a tunable reflection lineshape and dispersion using electromagnetically induced transparency. The Fano interference of light in the FBG and the microcavity allows for dramatic modification of the reflection spectrum. The phase of the reflected spectrum is continuously tunable between 0 and 2π to produce various Fano lineshapes. The dispersion of the output light is adjustable from normal dispersion to abnormal dispersion, consequently providing an adjustable speed of light. Additionally, it allows the FBG to switch from a notch filter to a bandpass filter at the resonant wavelength, which is not possible in a conventional uniform FBG.

  15. Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase.

    Science.gov (United States)

    Gagné, Mathieu; Loranger, Sébastien; Lapointe, Jerome; Kashyap, Raman

    2014-01-13

    The fabrication and characterization of high quality ultra-long (up to 1m) fiber Bragg gratings (FBGs) is reported. A moving phase mask and an electro-optic phase-modulation (EOPM) based interferometer are used with a high precision 1-meter long translation stage and compared. A novel interferometer position feedback scheme to simplify the fabrication process is proposed and analyzed. The ultra-long uniform FBGs show near perfect characteristics of a few picometers bandwidth, symmetrical, near theory-matching group-delay and transmission spectra. Grating characterization using optical backscattering reflectometry and chirped FBGs are also demonstrated. Limitations of the schemes are discussed.

  16. Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission.

    Science.gov (United States)

    Quoc Ngo, Nam

    2007-10-15

    We present a theoretical study of a new application of a simple pi-phase-shifted fiber Bragg grating (PSFBG) in transmission mode as a high-speed optical temporal integrator. The PSFBG consists of two concatenated identical uniform FBGs with a pi phase shift between them. When the reflectivities of the FBGs are extremely close to 100%, the transmissive PSFBG can perform the time integral of the complex envelope of an arbitrary input optical signal with high accuracy. As an example, the integrator is numerically shown to be able to convert an input Gaussian pulse into an optical step signal.

  17. Dynamic 3D strain measurements with embedded micro-structured optical fiber Bragg grating sensors during impact on a CFRP coupon

    Science.gov (United States)

    Goossens, Sidney; Geernaert, Thomas; De Pauw, Ben; Lamberti, Alfredo; Vanlanduit, Steve; Luyckx, Geert; Chiesura, Gabriele; Thienpont, Hugo; Berghmans, Francis

    2017-04-01

    Composite materials are increasingly used in aerospace applications, owing to their high strength-to-mass ratio. Such materials are nevertheless vulnerable to impact damage. It is therefore important to investigate the effects of impacts on composites. Here we embed specialty microstructured optical fiber Bragg grating based sensors inside a carbon fiber reinforced polymer, providing access to the 3D strain evolution within the composite during impact. We measured a maximum strain of -655 μɛ along the direction of impact, and substantially lower values in the two in-plane directions. Such in-situ characterization can trigger insight in the development of impact damage in composites.

  18. Feasibility of Fiber Bragg Grating and Long-Period Fiber Grating Sensors under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2010-11-01

    Full Text Available This paper presents the feasibility of utilizing fiber Bragg grating (FBG and long-period fiber grating (LPFG sensors for nondestructive evaluation (NDE of infrastructures using Portland cement concretes and asphalt mixtures for temperature, strain, and liquid-level monitoring. The use of hybrid FBG and LPFG sensors is aimed at utilizing the advantages of two kinds of fiber grating to implement NDE for monitoring strains or displacements, temperatures, and water-levels of infrastructures such as bridges, pavements, or reservoirs for under different environmental conditions. Temperature fluctuation and stability tests were examined using FBG and LPFG sensors bonded on the surface of asphalt and concrete specimens. Random walk coefficient (RWC and bias stability (BS were used for the first time to indicate the stability performance of fiber grating sensors. The random walk coefficients of temperature variations between FBG (or LPFG sensor and a thermocouple were found in the range of −0.7499 °C/ to −1.3548 °C/. In addition, the bias stability for temperature variations, during the fluctuation and stability tests with FBG (or LPFG sensors were within the range of 0.01 °C/h with a 15–18 h time cluster to 0.09 °C/h with a 3–4 h time cluster. This shows that the performance of FBG or LPFG sensors is comparable with that of conventional high-resolution thermocouple sensors under rugged conditions. The strain measurement for infrastructure materials was conducted using a packaged FBG sensor bonded on the surface of an asphalt specimen under indirect tensile loading conditions. A finite element modeling (FEM was applied to compare experimental results of indirect tensile FBG strain measurements. For a comparative analysis between experiment and simulation, the FEM numerical results agreed with those from FBG strain measurements. The results of the liquid-level sensing tests show the LPFG-based sensor could discriminate five stationary liquid

  19. Review of the Strain Modulation Methods Used in Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Kuo Li

    2016-01-01

    Full Text Available Fiber Bragg grating (FBG is inherently sensitive to temperature and strain. By modulating FBG’s strain, various FBG sensors have been developed, such as sensors with enhanced or reduced temperature sensitivity, strain/displacement sensors, inclinometers, accelerometers, pressure meters, and magnetic field meters. This paper reviews the strain modulation methods used in these FBG sensors and categorizes them according to whether the strain of an FBG is changed evenly. Then, those even-strain-change methods are subcategorized into (1 attaching/embedding an FBG throughout to a base and (2 fixing the two ends of an FBG and (2.1 changing the distance between the two ends or (2.2 bending the FBG by applying a transverse force at the middle of the FBG. This review shows that the methods of “fixing the two ends” are prominent because of the advantages of large tunability and frequency modulation.

  20. Fabrication and characterization of a metal-packaged regenerated fiber Bragg grating strain sensor for structural integrity monitoring of high-temperature components

    International Nuclear Information System (INIS)

    Tu, Yun; Tu, Shan-Tung

    2014-01-01

    Assessment of the structural integrity of components operating at high temperatures requires the development of novel sensors to measure strain. A metal-packaged regenerated fiber Bragg grating (RFBG) sensor is developed for measurement of strain using titanium–silver magnetron sputtering and nickel electroplating. The strain response of the sensor mounted onto a flat tensile specimen by spot welding is evaluated by uniaxial tensile tests at constant temperatures ranging from room temperature to 400 °C. Similar tests are performed on a bare RFBG sensor for comparison. The metal-packaged RFBG strain sensor exhibits higher strain sensitivity than that of the bare RFBG sensor, as well as good linearity, stability and repeatability of strain measurements. A three-dimensional finite element model of the sensor is established to predict the strain sensitivity based on the sensing principle of the fiber Bragg grating. Comparisons of the experimental results with the numerical predictions for the strain sensitivity show a satisfactory agreement. These results demonstrate that the metal-packaged RFBG strain sensors can be successfully fabricated by combining magnetron sputtering with electroplating, and provide great promise for structural integrity monitoring of high-temperature components. (paper)

  1. Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser

    Science.gov (United States)

    Jiang, Yajun; Liu, Chi; Li, Dong; Yang, Dexing; Zhao, Jianlin

    2018-04-01

    A novel method for simultaneous measurement of temperature and strain using a single phase-shifted fiber Bragg grating (PS-FBG) is proposed. The PS-FBG is produced by exposing the fusion-spliced fiber with a femtosecond laser and uniform phase mask. Due to the non-uniform structure and strain distribution in the fusion-spliced region, the phase-shift changes with different responses during increases to the temperature and strain; by measuring the central wavelengths and the loss difference of two transmission dips, temperature and strain can be determined simultaneously. The resolutions of this particular sensor in measuring temperature and strain are estimated to be  ±1.5 °C and  ±12.2 µɛ in a range from  -50 °C to 150 °C and from 0 µɛ to 2070 µɛ.

  2. Fiber Bragg grating for spectral phase optical code-division multiple-access encoding and decoding

    Science.gov (United States)

    Fang, Xiaohui; Wang, Dong-Ning; Li, Shichen

    2003-08-01

    A new method for realizing spectral phase optical code-division multiple-access (OCDMA) coding based on step chirped fiber Bragg gratings (SCFBGs) is proposed and the corresponding encoder/decoder is presented. With this method, a mapping code is introduced for the m-sequence address code and the phase shift can be inserted into the subgratings of the SCFBG according to the mapping code. The transfer matrix method together with Fourier transform is used to investigate the characteristics of the encoder/decoder. The factors that influence the correlation property of the encoder/decoder, including index modulation and bandwidth of the subgrating, are identified. The system structure is simple and good correlation output can be obtained. The performance of the OCDMA system based on SCFBGs has been analyzed.

  3. Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra.

    Science.gov (United States)

    Thomas, Jens; Jovanovic, Nemanja; Becker, Ria G; Marshall, Graham D; Withford, Michael J; Tünnermann, Andreas; Nolte, Stefan; Steel, M J

    2011-01-03

    The spectral characteristics of a fiber Bragg grating (FBG) with a transversely inhomogeneous refractive index profile, differs considerably from that of a transversely uniform one. Transmission spectra of inhomogeneous and asymmetric FBGs that have been inscribed with focused ultrashort pulses with the so-called point-by-point technique are investigated. The cladding mode resonances of such FBGs can span a full octave in the spectrum and are very pronounced (deeper than 20dB). Using a coupled-mode approach, we compute the strength of resonant coupling and find that coupling into cladding modes of higher azimuthal order is very sensitive to the position of the modification in the core. Exploiting these properties allows precise control of such reflections and may lead to many new sensing applications.

  4. Phase-Shifted Eccentric Core Fiber Bragg Grating Fabricated by Electric Arc Discharge for Directional Bending Measurement.

    Science.gov (United States)

    Ouyang, Yang; Liu, Jianxia; Xu, Xiaofeng; Zhao, Yujia; Zhou, Ai

    2018-04-11

    A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG) fabricated by electric arc discharge (EAD) is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m -1 and -51.5 pm/m -1 , respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.

  5. An Intrusion Detection System for the Protection of Railway Assets Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Angelo Catalano

    2014-09-01

    Full Text Available We demonstrate the ability of Fiber Bragg Gratings (FBGs sensors to protect large areas from unauthorized activities in railway scenarios such as stations or tunnels. We report on the technological strategy adopted to protect a specific depot, representative of a common scenario for security applications in the railway environment. One of the concerns in the protection of a railway area centers on the presence of rail-tracks, which cannot be obstructed with physical barriers. We propose an integrated optical fiber system composed of FBG strain sensors that can detect human intrusion for protection of the perimeter combined with FBG accelerometer sensors for protection of rail-track access. Several trials were carried out in indoor and outdoor environments. The results demonstrate that FBG strain sensors bonded under a ribbed rubber mat enable the detection of intruder break-in via the pressure induced on the mat, whereas the FBG accelerometers installed under the rails enable the detection of intruders walking close to the railroad tracks via the acoustic surface waves generated by footsteps. Based on a single enabling technology, this integrated system represents a valuable intrusion detection system for railway security and could be integrated with other sensing functionalities in the railway field using fiber optic technology.

  6. Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation

    OpenAIRE

    Pereira, L.; Pospori, A.; Antunes, Paulo; Domingues, Maria Fatima; Marques, S.; Bang, Ole; Webb, David J.; Marques, Carlos A.F.

    2017-01-01

    In this work we experimentally validate and characterize the first phase-shifted polymer optical fiber Bragg gratings (PS-POFBGs) produced using a single pulse from a 248 nm krypton fluoride laser. A single-mode poly (methyl methacrylate) optical fiber with a core doped with benzyl dimethyl ketal for photosensitivity improvement was used. A uniform phase mask customized for 850 nm grating inscription was used to inscribe these Bragg structures. The phase shift defect was created directly duri...

  7. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  8. Study on viscosity measurement using fiber Bragg grating micro-vibration

    International Nuclear Information System (INIS)

    Song, Le; Fang, Fengzhou; Zhao, Jibo

    2013-01-01

    It is now ascertained that traditional electric sensors are vulnerable to electromagnetic interference when measuring viscosity. Here, we propose a new viscosity-sensitive structure based on the fiber Bragg grating (FBG) sensing principle and a micro-vibration measurement method. The symmetric micro-vibration motivation method is also described, and a mathematical model for compensational voltage and fluid viscosity is established. The probe amplitude, which is produced by reciprocating stimulation, is accessible by means of an FBG sensor mounted on an equal-strength beam. Viscosity can be therefore calculated using a demodulation technique based on linear edge filtering with long period grating. After performing a group of verifying tests, the sensor has been subsequently calibrated with a series of standard fluids to determine uncertain parameters in the mathematical model. The results of the experiment show that the relative measurement error was less than 2% when the viscosity ranged from 200 to 500 mPa s. The proposed architecture utilizes the characteristics of anti-interference, fast response speed, high resolution and compact structure of FBG, thereby offering a novel modality to achieve an online viscosity measurement. (paper)

  9. A novel fast phase correlation algorithm for peak wavelength detection of Fiber Bragg Grating sensors.

    Science.gov (United States)

    Lamberti, A; Vanlanduit, S; De Pauw, B; Berghmans, F

    2014-03-24

    Fiber Bragg Gratings (FBGs) can be used as sensors for strain, temperature and pressure measurements. For this purpose, the ability to determine the Bragg peak wavelength with adequate wavelength resolution and accuracy is essential. However, conventional peak detection techniques, such as the maximum detection algorithm, can yield inaccurate and imprecise results, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. Other techniques, such as the cross-correlation demodulation algorithm are more precise and accurate but require a considerable higher computational effort. To overcome these problems, we developed a novel fast phase correlation (FPC) peak detection algorithm, which computes the wavelength shift in the reflected spectrum of a FBG sensor. This paper analyzes the performance of the FPC algorithm for different values of the SNR and wavelength resolution. Using simulations and experiments, we compared the FPC with the maximum detection and cross-correlation algorithms. The FPC method demonstrated a detection precision and accuracy comparable with those of cross-correlation demodulation and considerably higher than those obtained with the maximum detection technique. Additionally, FPC showed to be about 50 times faster than the cross-correlation. It is therefore a promising tool for future implementation in real-time systems or in embedded hardware intended for FBG sensor interrogation.

  10. Assessment of damage in composite laminates through dynamic, full-spectral interrogation of fiber Bragg grating sensors

    International Nuclear Information System (INIS)

    Propst, A; Peters, K; Zikry, M A; Schultz, S; Kunzler, W; Zhu, Z; Wirthlin, M; Selfridge, R

    2010-01-01

    In this study, we demonstrate the full-spectral interrogation of a fiber Bragg grating (FBG) sensor at 535 Hz. The sensor is embedded in a woven, graphite fiber–epoxy composite laminate subjected to multiple low-velocity impacts. The measurement of unique, time dependent spectral features from the FBG sensor permits classification of the laminate lifetime into five regimes. These damage regimes compare well with previous analysis of the same material system using combined global and local FBG sensor information. Observed transient spectral features include peak splitting, wide spectral broadening and a strong single peak at the end of the impact event. Such features could not be measured through peak wavelength interrogation of the FBG sensor. Cross-correlation of the measured spectra with the original embedded FBG spectrum permitted rapid visualization of average strains and the presence of transverse compressive strain on the optical fiber, but smeared out the details of the spectral profile

  11. Analysis of reflection-peak wavelengths of sampled fiber Bragg gratings with large chirp.

    Science.gov (United States)

    Zou, Xihua; Pan, Wei; Luo, Bin

    2008-09-10

    The reflection-peak wavelengths (RPWs) in the spectra of sampled fiber Bragg gratings with large chirp (SFBGs-LC) are theoretically investigated. Such RPWs are divided into two parts, the RPWs of equivalent uniform SFBGs (U-SFBGs) and the wavelength shift caused by the large chirp in the grating period (CGP). We propose a quasi-equivalent transform to deal with the CGP. That is, the CGP is transferred into quasi-equivalent phase shifts to directly derive the Fourier transform of the refractive index modulation. Then, in the case of both the direct and the inverse Talbot effect, the wavelength shift is obtained from the Fourier transform. Finally, the RPWs of SFBGs-LC can be achieved by combining the wavelength shift and the RPWs of equivalent U-SFBGs. Several simulations are shown to numerically confirm these predicted RPWs of SFBGs-LC.

  12. Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions

    Directory of Open Access Journals (Sweden)

    Marcelo Jaime

    2017-11-01

    Full Text Available In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L as low as a few parts in one hundred million (≈10−8. The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.

  13. Peak wavelength interrogation of fiber Bragg grating sensors during impact events

    International Nuclear Information System (INIS)

    Park, Chun; Peters, Kara; Zikry, Mohammed; Haber, Todd; Schultz, Stephen; Selfridge, Richard

    2010-01-01

    In this paper, we embed fiber Bragg grating (FBG) sensors in graphite fiber–epoxy woven composite laminates to detect evolving damage modes. The peak wavelengths of the FBG sensors are interrogated at 625 and 295 kHz, while the laminates are subjected to 11.0 J low-velocity impact events. It is demonstrated that 295 kHz interrogation is sufficient for accurately collecting the dynamic response of the sensors. The FBG sensors embedded at the laminate midplanes successfully reconstructed the global laminate response to impact. The maximum and full width at half-maximum (FWHM) for the relative strain histories demonstrated the same trends as the maximum and FWHM of the contact force histories measured from the impactor. More noise was present in the strain histories obtained from the FBG sensors than the contact force histories, as the embedded FBGs were sensitive to local perturbations in the stress state. The FBG sensors embedded below the midplane of the laminate were closer to the damage regions and measured complex strain histories. In one case, this strain history revealed the presence of delamination

  14. Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index.

    Science.gov (United States)

    Derevyanko, Stanislav

    2008-10-15

    The statistics of the reflection spectrum of a short-correlated disordered fiber Bragg grating are studied. The averaged spectrum appears to be flat inside the bandgap and has significantly suppressed sidelobes compared to the uniform grating of the same bandwidth. This is due to the Anderson localization of the modes of a disordered grating. This observation prompts a new algorithm for designing passband reflection gratings. Using the stochastic invariant imbedding approach it is possible to obtain the probability distribution function for the random reflection coefficient inside the bandgap and obtain both the variance of the averaged reflectivity as well as the distribution of the time delay of the grating.

  15. A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements

    International Nuclear Information System (INIS)

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Cripton, Peter A

    2008-01-01

    We present an in-fiber Bragg grating (FBG) based intervertebral disc (IVD) pressure sensor that has pressure sensitivity seven times greater than that of a bare fiber, and a major diameter and sensing area of only 400 µm and 0.03 mm 2 , respectively. This is the only optical, the smallest and the most mechanically compliant disc pressure sensor reported in the literature. This is also an improvement over other FBG pressure sensors that achieve increased sensitivity through mechanical amplification schemes, usually resulting in major diameters and sensing lengths of many millimeters. Sensor sensitivity is predicted using numerical models, and the predicted sensitivity is verified through experimental calibrations. The sensor is validated by conducting IVD pressure measurements in porcine discs and comparing the FBG measurements to those obtained using the current standard sensor for IVD pressure. The predicted sensitivity of the FBG sensor matched with that measured experimentally. IVD pressure measurements showed excellent repeatability and agreement with those obtained from the standard sensor. Unlike the current larger sensors, the FBG sensor could be used in discs with small disc height (i.e. cervical or degenerated discs). Therefore, there is potential to conduct new measurements that could lead to new understanding of the biomechanics

  16. Combustor deployments of femtosecond laser written fiber Bragg grating arrays for temperature measurements surpassing 1000°C

    Science.gov (United States)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan; Yandon, Robert; Yun, Sangsig; Ramachandran, Nanthan; Charbonneau, Michel

    2017-05-01

    Femtosecond Infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to advanced power plant technologies and gas turbine engines, under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper reviews our fabrication and deployment of hundreds of fs-IR written FBGs, for monitoring temperature gradients of an oxy-fuel fluidized bed combustor and an aerospace gas turbine combustor simulator.

  17. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  18. Response of a uniform optical fiber Bragg grating to strain with a non-smooth distribution: measurements and simulations

    Science.gov (United States)

    Detka, Małgorzata

    2017-08-01

    The paper presents results of numerical analyses of the response of a uniform fiber Bragg grating subjected to a strain with non-smooth profile. Results of measurements of the response of the grating to a compressive strain correspond well with results of the simulation and show, that the induced strain profile of the grating causes a widening of its reflection spectrum with a considerable shape irregularity, dependent on the location of the point where slope of the strain profile changes abruptly, and on the maximum value of the strain.

  19. Fiber Bragg grating based notch filter for bit-rate-transparent NRZ to PRZ format conversion with two-degree-of-freedom optimization

    International Nuclear Information System (INIS)

    Cao, Hui; Zuo, Jun; Xiong, Bangyun; Cheng, Jianqun; Shu, Xuewen; Shen, Fangcheng; Liu, Xin; Atai, Javid

    2015-01-01

    We propose a novel notch-filtering scheme for bit-rate transparent all-optical NRZ-to-PRZ format conversion. The scheme is based on a two-degree-of-freedom optimally designed fiber Bragg grating. It is shown that a notch filter optimized for any specific operating bit rate can be used to realize high-Q-factor format conversion over a wide bit rate range without requiring any tuning. (paper)

  20. Synthesis of 1D Bragg gratings by a layer-aggregation method.

    Science.gov (United States)

    Capmany, José; Muriel, Miguel A; Sales, Salvador

    2007-08-15

    We present what we believe to be a novel method for the synthesis of complex 1D (fiber and waveguide) Bragg gratings, which is based on an impedance reconstruction layer aggregation technique. The main advantage brought by the method is the possibility of synthesizing structures containing defects or discontinuities of the size of the local period, a feature that is not possible with prior reported methods. In addition, this enhanced spatial resolution allows the synthesis of very strong fiber Bragg grating devices providing convergent solutions. The method directly renders the refractive index profile n(z) as it does not rely on the coupled-mode theory.

  1. Simulations of Micropumps Based on Tilted Flexible Fibers

    Science.gov (United States)

    Hancock, Matthew; Elabbasi, Nagi; Demirel, Melik

    2015-11-01

    Pumping liquids at low Reynolds numbers is challenging because of the principle of reversibility. We report here a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla valves, check valves). We demonstrate proof-of-concept with 2D and 3D fluid-structure interaction (FSI) simulations in COMSOL Multiphysics®of micropumps consisting of a source for oscillatory fluidic motion, e.g. a piston, and a channel lined with tilted flexible rods or sheets to provide rectification. When flow is against the rod tilt direction, the rods bend backward, narrowing the channel and increasing flow resistance; when flow is in the direction of rod tilt, the rods bend forward, widening the channel and decreasing flow resistance. The 2D and 3D simulations involve moving meshes whose quality is maintained by prescribing the mesh displacement on guide surfaces positioned on either side of each flexible structure. The prescribed displacement depends on structure bending and maintains mesh quality even for large deformations. Simulations demonstrate effective pumping even at Reynolds numbers as low as 0.001. Because rod rigidity may be specified independently of Reynolds number, in principle, rod rigidity may be reduced to enable pumping at arbitrarily low Reynolds numbers.

  2. Tailoring Chirped Moiré Fiber Bragg Gratings for Wavelength-Division-Multiplexing and Optical Code-Division Multiple-Access Applications

    Science.gov (United States)

    Chen, Lawrence R.; Smith, Peter W. E.

    The design and fabrication of chirped Moiré fiber Bragg gratings (CMGs) are presented, which can be used in either (1) transmission as passband filters for providing wavelength selectivity in wavelength-division-multiplexed (WDM) systems or (2) reflection as encoding/decoding elements to decompose short broadband pulses in both wavelength and time in order to implement an optical code-division multiple-access (OCDMA) system. In transmission, the fabricated CMGs have single or multiple flattened passbands ( 12 dB isolation and near constant in-band group delay. It is shown that these filters do not produce any measurable dispersion-induced power penalties when used to provide wavelength selectivity in 2.5 Gbit/s systems. It is also demonstrated how CMGs can be used in reflection to encode/decode short pulses from a wavelength-tunable mode-locked Er-doped fiber laser.

  3. Dynamic Landslide Deformation Monitoring with Fiber Bragg Grating Sensors

    Science.gov (United States)

    Moore, J. R.; Gischig, V.; Button, E.; Loew, S.

    2009-12-01

    Fiber optic (FO) strain sensors are a promising new technology for in-situ landslide monitoring. General performance advantages include high resolution, fast sampling rate, and insensitivity to electrical disturbances. Here we describe a new FO monitoring system based on long-gage fiber Bragg grating sensors installed at the Randa Rockslide Laboratory in southern Switzerland. We highlight the advantages and disadvantages of the system, describe relevant first results, and compare FO data to that from traditional instruments already installed on site. The Randa rock slope has been the subject of intensive research since its failure in 1991. Around 5 million cubic meters of rock remains unstable today, moving at rates up to 20 mm / year. Traditional in-situ monitoring techniques have been employed to understand the mechanics and driving forces of the currently unstable rock mass, however these investigations are limited by the resolution and low sampling rate of the sensors. The new FO monitoring system has micro-strain resolution and offers the capability to detect sub-micrometer scale deformations in both triggered-dynamic and continuous measurements. Two types of sensors have been installed: fully-embedded borehole sensors encased in grout at depths of 38, 40, and 68 m, and surface extensometers spanning active tension cracks. Dynamic measurements are triggered by sensor deformation and recorded at 100 Hz, while continuous measurements are logged every 5 minutes. Since installation in August 2008, the FO monitoring system has been operational 90% of the time. Time series deformation data show movement rates consistent with previous borehole extensometer surveys. Accelerated displacements following installation are likely related to long-term curing and dewatering of the grout. A number of interesting transients have been recorded, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new

  4. Fiber Bragg Grating sensors for deformation monitoring of GEM foils in HEP detectors

    CERN Document Server

    AUTHOR|(CDS)2071648; Bianco, S; Caponero, M; Muhammad, S; Passamonti, L; Piccolo, D; Pierluigi, D; Raffone, G; Russo, A; Saviano, G

    2015-01-01

    Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy physics (HEP) as high precision positioning and re-positioning sensors and as low cost, easy to mount, radiation hard and low space- consuming temperature and humidity devices. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide Gas Electron Multiplier (GEM) foils of the GE1/1 chambers of the Compact Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) of CERN. A network of FBG sensors has been used to determine the optimal mechanical tension applied and to characterize the mechanical stress applied to the foils. The preliminary results of the test performed on a full size GE1/1 final prototype and possible future developments will be discussed.

  5. Monitoring static shape memory polymers using a fiber Bragg grating as a vector-bending sensor

    Science.gov (United States)

    Li, Peng; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Leng, Jinsong

    2013-01-01

    We propose and demonstrate a technique for monitoring the recovery deformation of the shape-memory polymers (SMP) using a surface-attached fiber Bragg grating (FBG) as a vector-bending sensor. The proposed sensing scheme could monitor the pure bending deformation for the SMP sample. When the SMP sample undergoes concave or convex bending, the resonance wavelength of the FBG will have red-shift or blue-shift according to the tensile or compressive stress gradient along the FBG. As the results show, the bending sensitivity is around 4.07 nm/cm-1. The experimental results clearly indicate that the deformation of such an SMP sample can be effectively monitored by the attached FBG not just for the bending curvature but also the bending direction.

  6. Phase-Shifted Eccentric Core Fiber Bragg Grating Fabricated by Electric Arc Discharge for Directional Bending Measurement

    Directory of Open Access Journals (Sweden)

    Yang Ouyang

    2018-04-01

    Full Text Available A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG fabricated by electric arc discharge (EAD is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m−1 and −51.5 pm/m−1, respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.

  7. WDM-Coherent OCDMA over one single device based on short chip Super Structured Fiber Bragg Gratings.

    Science.gov (United States)

    Amaya, Waldimar; Pastor, Daniel; Baños, Rocio; Garcia-Munoz, Victor

    2011-11-21

    We theoretically propose and demonstrate experimentally a Coherent Direct Sequence OCDMA en/decoder for multi-channel WDM operation based on a single device. It presents a broadband spectral envelope and a periodic spectral pattern that can be employed for en/decoding multiple sub-bands simultaneously. Multi-channel operation is verified experimentally by means of Multi-Band Super Structured Fiber Bragg Gratings with binary phase encoded chips fabricated with 1mm inter-chip separation that provides 4x100 GHz ITU sub-band separation at 1.25 Gbps. The WDM-OCDMA system verification was carried out employing simultaneous encoding of four adjacent sub-bands and two different OCDMA codes. © 2011 Optical Society of America

  8. Bare Fiber Bragg Gratings embedded into concrete buffer Supercontainer concept for nuclear waste storage [ANIMMA--2015-IO-337

    Energy Technology Data Exchange (ETDEWEB)

    Kinet, Damien; Chah, Karima; Megret, Patrice; Caucheteur, Christophe [University of Mons, Boulevard Dolez 31, 7000 Mons (Belgium); Gusarov, Andrei [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Faustov, Alexey [University of Mons, Boulevard Dolez 31, 7000 Mons (Belgium); SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Areias, Lou [Department Mechanics of Materials and Constructions - MeMC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); EIG EURIDICE - European Underground Research Infrastructure for Disposal of nuclear waste In Clay Environment, Boeretang 200, 2400 Mol (Belgium)

    2015-07-01

    Nuclear power plants have been generating electricity for more than 50 years. In Belgium, 55% of the current energy supply comes from nuclear power. Providing for the safe storage of nuclear waste, including spent fuel (SF) and vitrified high level radioactive waste (HLW), remains an important challenge in the life cycle of nuclear fuel. In this context, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) is investigating a reference conceptual design called the Supercontainer (SC) for the packaging of SF and HLW. This conceptual design is based on a multiple-barrier system consisting of a hermetically-sealed carbon steel overpack and a surrounding highly-alkaline concrete buffer. The first one is developed to retain the radionuclides. The two main functions of the buffer are (a) to create a high pH environment around the carbon steel overpack in order to passivate the metal surface and so to slow down the corrosion propagation during the thermal phase and (b) to provide a radiological shielding during the construction and the handling of the Supercontainer. A recent test has been performed to investigate the feasibility to construct the SC. This test incorporated several kinds of sensors including Digital Image Correlation (DIC), Acoustic Emission (AE), corrosion sensing techniques and optical fibers with and without fiber Bragg gratings (FBGs). In particular, several single-mode optical fibers with 4 mm long FBGs with different Bragg wavelengths and distributed along the optical fibers were used. For casting and curing condition monitoring, a number of gratings were incorporated inside the concrete buffer during the first stage of construction. Then other sensors were embedded near a heat source installed in the second stage to simulate the effects of heat generated by radioactive waste. The FBGs were designed to measure both temperature and strain effects in the concrete. To discriminate between these effects special packaging

  9. Spectral tuning of the diameter-dependent-chirped Bragg gratings written in microfibers.

    Science.gov (United States)

    Xiao, Peng; Liu, Tong; Feng, Fu-Rong; Sun, Li-Peng; Liang, Hao; Ran, Yang; Jin, Long; Guan, Bai-Ou

    2016-12-26

    Chirped fiber Bragg gratings can straightforwardly and efficiently be fabricated onto microfibers with a uniform phase mask. Due to the variation of the propagating constant, which depends on the fiber diameter, the broadband spectrum of the grating can be formed. Depending on the different responses to the ambient refractive index in different parts of the grating, the bandwidth of the grating can be tuned by changing the surrounding solution. In addition, by being partly immersed in a liquid, the diameter-chirped Bragg grating can act as a broadband Fabry-Perot interferometer, whose spectrum can be tuned by means of controlling the liquid level and ambient refractive index.

  10. Regeneration of FBGs during the HFCVD diamond-fiber coating process

    Science.gov (United States)

    Alberto, Nélia J.; Kalinowski, Hypolito J.; Neto, Victor F.; Nogueira, Rogério N.

    2014-08-01

    In this work, the regeneration of saturated fiber Bragg gratings during the diamond coating of the fiber is presented. Due to the high temperatures characteristic of the hot filament chemical vapor deposition (HFCVD) process (around 800 ºC), uniform fiber Bragg gratings (FBGs) are not appropriate to be coated. Nevertheless, regenerated Bragg gratings are a suitable solution for this drawback. Its production process involves the inscription of a saturated FBG followed by a time consuming heat treatment. Here it is proposed to take advantage of the high temperatures characteristic of the HFCVD process to simultaneous regenerate the grating and coat the fiber with diamond.

  11. Tunable dispersion compensator based on uniform fiber Bragg grating and its application to tunable pulse repetition-rate multiplication.

    Science.gov (United States)

    Han, Young-Geun; Lee, Sang

    2005-11-14

    A new technique to control the chromatic dispersion of a uniform fiber Bragg grating based on the symmetrical bending is proposed and experimentally demonstrated. The specially designed two translation stages with gears and a sawtooth wheel can simultaneously induce the tension and compression strain corresponding to the bending direction. The tension and compression strain can effectively control the chirp ratio along the fiber grating attached on a flexible cantilever beam and consequently the dispersion value without the center wavelength shift. We successfully achieve the wide tuning range of chromatic dispersion without the center wavelength shift, which is less than 0.02 nm. We also reduce the group delay ripple as low as ~+/-5 ps. And we also demonstrate the application of the proposed tunable dispersion compensation technique to the tunable pulse repetition-rate multiplication and obtain high-quality pulses at repetition rates of 20 ~ 40 GHz.

  12. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron–Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Yun Tu

    2017-02-01

    Full Text Available Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG fabricated in hydrogen (H2-loaded boron–germanium (B–Ge co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H2-loaded B–Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H2-loaded B–Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging.

  13. An optomechatronic curvature measurement array based on fiber Bragg gratings

    International Nuclear Information System (INIS)

    Chang, Hsing-Cheng; Lin, Shyan-Lung; Hung, San-Shan; Chang, I-Nan; Chen, Ya-Hui; Lin, Jung-Chih; Liu, Wen-Fung

    2014-01-01

    This study investigated an optomechatronic array-integrated signal processing module and a human–machine interface based on fiber Bragg grating sensing elements embedded in an elastic support matrix that involves using a self-located electromagnetic mechanism for curvature sensing and solid contour reconstruction. Using bilinear interpolation and average calculation methods, the smooth and accurate surface contours of convex and concave lenses are reconstructed in real-time. The elastic supporting optical sensing array is self-balanced to reduce operational errors. Compared with our previous single-head sensor, the sensitivity of the proposed array is improved by more than 15%. In the curvature range from −20.15 to +27.09 m −1 , the sensitivities are 3.53 pm m for the convex measurement and 2.15 pm m for the concave measurement with an error rate below 8.89%. The curvature resolutions are 0.283 and 0.465 m −1 for convex and concave lenses, respectively. This array could be applied in the curvature measurement of solar collectors to monitor energy conversion efficiency or could be used to monitor the wafer-level thin-film fabrication process. (paper)

  14. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    Science.gov (United States)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-03-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  15. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    Science.gov (United States)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  16. Structural Health Monitoring of Superconducting Magnets at CERN Using Fiber Bragg Grating Sensors

    CERN Document Server

    Chiuchiolo, A; Perez, J C; Bajas, H; Guinchard, M; Giordano, M; Breglio, G; Consales, M; Cusano, A

    2014-01-01

    The use of Fiber Bragg Grating sensors is becoming particularly challenging for monitoring different parameters in extreme operative conditions such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses. This work reports the use of the FBG for a new generation of accelerator magnets with the goal to develop an adequate sensing technology able to provide complementary or alternative information to the conventional strain gauges through the whole service life of the magnet. The study is focused on the mechanical performances of the magnet structure, which has to preserve the sensitive coils from any damage during the entire magnet fabrication process preventing even microscopic movements of the winding that can eventually initiate a transition from superconducting to normal conducting state of the material used (called in the specific literature as “quench”). The FBGs have been glued on the aluminium structure of two magnets prototypes by using an adhesive suitable for cryog...

  17. Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers.

    Science.gov (United States)

    Ma, G M; Jiang, J; Li, C R; Song, H T; Luo, Y T; Wang, H B

    2015-04-01

    Compared with conventional DGA (dissolved gas analysis) method for on-line monitoring of power transformers, FBG (fiber Bragg grating) hydrogen sensor represents marked advantages over immunity to electromagnetic field, time-saving, and convenience to defect location. Thus, a novel FBG hydrogen sensor based on Pd/Ag (Palladium/Silver) along with polyimide composite film to measure dissolved hydrogen concentration in large power transformers is proposed in this article. With the help of Pd/Ag composite coating, the enhanced performance on mechanical strength and sensitivity is demonstrated, moreover, the response time and sensitivity influenced by oil temperature are solved by correction lines. Sensitivity measurement and temperature calibration of the specific hydrogen sensor have been done respectively in the lab. And experiment results show a high sensitivity of 0.055 pm/(μl/l) with instant response time about 0.4 h under the typical operating temperature of power transformers, which proves a potential utilization inside power transformers to monitor the health status by detecting the dissolved hydrogen concentration.

  18. Load Identification for a Cantilever Beam Based on Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Xuegang Song

    2017-07-01

    Full Text Available Load identification plays an important role in structural health monitoring, which aims at preventing structural failures. In order to identify load for linear systems and nonlinear systems, this paper presents methods to identify load for a cantilever beam based on dynamic strain measurement by Fiber Bragg Grating (FBG sensors. For linear systems, the proposed inverse method consists of Kalman filter with no load terms and a linear estimator. For nonlinear systems, the proposed inverse method consists of cubature Kalman filter (CKF with no load terms and a nonlinear estimator. In the process of load identification, the state equations of the beam structures are constructed by using the finite element method (FEM. Kalman filter or CKF is used to suppress noise. The residual innovation sequences, gain matrix, and innovation covariance generated by Kalman filter or CKF are used to identify a load. To prove the effectiveness of the proposed method, numerical simulations and experiments of the beam structures are employed and the results show that the method has an excellent performance.

  19. Biosensing with optical fiber gratings

    Science.gov (United States)

    Chiavaioli, Francesco; Baldini, Francesco; Tombelli, Sara; Trono, Cosimo; Giannetti, Ambra

    2017-06-01

    Optical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  20. Biosensing with optical fiber gratings

    Directory of Open Access Journals (Sweden)

    Chiavaioli Francesco

    2017-06-01

    Full Text Available Optical fiber gratings (OFGs, especially long-period gratings (LPGs and etched or tilted fiber Bragg gratings (FBGs, are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors, and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  1. Demonstration of optical rogue waves using a laser diode emitting at 980  nm and a fiber Bragg grating.

    Science.gov (United States)

    Lee, Min Won; Baladi, Fadwa; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A

    2016-10-01

    Rogue waves are observed for the first time, to the best of our knowledge, in a 980 nm laser diode subject to filtered optical feedback via a fiber Bragg grating. By counting the number of rogue waves in a fixed time window, a rogue wave map is established experimentally as a function of both the optical feedback ratio and the laser current. The comparison with low frequency fluctuations (LFFs) reveals that the rogue waves observed in our system are, in fact, LFF jump-ups.

  2. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James

    1998-01-01

    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  3. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    Science.gov (United States)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  4. Tunable superstructure fiber Bragg grating with chirp-distribution modulation based on the effect of external stress.

    Science.gov (United States)

    Huang, Yize; Li, Yi; Zhu, Huiqun; Tong, Guoxiang; Fang, Baoying; Li, Liu; Shen, Yujian; Zheng, Qiuxin; Liang, Qian; Yan, Meng; Wang, Feng; Qin, Yuan; Ding, Jie; Wang, Xiaohua

    2012-09-15

    We report an external stress modulation method for producing a superstructure fiber Bragg grating (FBG) with approximate cascaded resonant cavities composed of different index chirp distributions. The 15 mm uncoated apodized uniform-period FBG is pressed by the vertical stress from the upper 11 pieces of the pattern plate controlled by a piezoelectric ceramic actuator. The piece length is 1 mm, and the interval of the adjacent pieces is 0.4 mm. The reflectivity of the modulated FBG gradually shows six obvious multichannel 75%-85% reflection peaks with the increase of the vertical stress of each pattern-plate piece from 0 to 30 N. The channel spacing is steady at about 10 GHz for a C-band wavelength division multiplexing system.

  5. Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation

    DEFF Research Database (Denmark)

    Pereira, L.; Pospori, A.; Antunes, Paulo

    2017-01-01

    In this work we experimentally validate and characterize the first phase-shifted polymer optical fiber Bragg gratings (PS-POFBGs) produced using a single pulse from a 248 nm krypton fluoride laser. A single-mode poly (methyl methacrylate) optical fiber with a core doped with benzyl dimethyl ketal...... for photosensitivity improvement was used. A uniform phase mask customized for 850 nm grating inscription was used to inscribe these Bragg structures. The phase shift defect was created directly during the grating inscription process by placing a narrow blocking aperture in the center of the UV beam. The produced high...

  6. Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide.

    Science.gov (United States)

    Sridevi, S; Vasu, K S; Sampath, S; Asokan, S; Sood, A K

    2016-07-01

    An enhanced optical detection of D-glucose and glycated hemoglobin (HbA1c ) has been established in this study using etched fiber Bragg gratings (eFBG) coated with aminophenylboronic acid (APBA)-functionalized reduced graphene oxide (RGO). The read out, namely the shift in Bragg wavelength (ΔλB ) is highly sensitive to changes that occur due to the adsorption of glucose (or HbA1c ) molecules on the eFBG sensor coated with APBA-RGO complex through a five-membered cyclic ester bond formation between glucose and APBA molecules. A limit of detection of 1 nM is achieved with a linear range of detection from 1 nM to 10 mM in the case of D-glucose detection experiments. For HbA1c , a linear range of detection varying from 86 nM to 0.23 mM is achieved. The observation of only 4 pm (picometer) change in ΔλB even for the 10 mM lactose solution confirms the specificity of the APBA-RGO complex coated eFBG sensors to glucose molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    Science.gov (United States)

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  8. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    Science.gov (United States)

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  9. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Veronica De Miguel-Soto

    2017-11-01

    Full Text Available In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG, and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  10. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  11. High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems

    Science.gov (United States)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  12. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  13. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  14. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor

    International Nuclear Information System (INIS)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B.; May A, M.; Shlyagin, M.; Marquez B, I.

    2004-01-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  15. Benchmark for Peak Detection Algorithms in Fiber Bragg Grating Interrogation and a New Neural Network for its Performance Improvement

    Science.gov (United States)

    Negri, Lucas; Nied, Ademir; Kalinowski, Hypolito; Paterno, Aleksander

    2011-01-01

    This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. PMID:22163806

  16. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    Science.gov (United States)

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  17. Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.

    Science.gov (United States)

    Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G

    2014-10-15

    We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10  pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1  mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.

  18. Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding

    2018-03-01

    A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.

  19. Dynamic performance of a C/C composite finger seal in a tilting mode

    Directory of Open Access Journals (Sweden)

    Hailin ZHAO

    2017-08-01

    Full Text Available The complex operating state of aeroengines has an impact on the performance of finger seals. However, little work has been focused on the issue and the dynamic performance of finger seals is also rarely studied. Therefore, a distributed mass equivalent model considering working conditions is proposed in this paper for solving the existing problems. The effects of the fiber bundle density and the preparation direction of the fiber bundle of a C/C composite on the dynamic performance of a finger seal are investigated in rotor tilt based on the proposed model. The difference between the C/C composite finger seal performances under the rotor precession and nutation tilt cases is also investigated. The results show that the fiber bundle density and the preparation direction of the fiber bundle have an influence on the dynamic performance of the finger seal as rotor tilt is considered, and the dynamic performance of the finger seal is different in the two kinds of tilting modes. In addition, a novel method for design of finger seals is presented based on the contact pressure between finger boots and the rotor. Finger seals with good leakage rates and low wear can be acquired in this method.

  20. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    Science.gov (United States)

    Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok

    2014-01-01

    A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803

  1. Research on non-uniform strain profile reconstruction along fiber Bragg grating via genetic programming algorithm and interrelated experimental verification

    Science.gov (United States)

    Zheng, Shijie; Zhang, Nan; Xia, Yanjun; Wang, Hongtao

    2014-03-01

    A new heuristic strategy for the non-uniform strain profile reconstruction along Fiber Bragg Gratings is proposed in this paper, which is based on the modified transfer matrix and Genetic Programming(GP) algorithm. The present method uses Genetic Programming to determine the applied strain field as a function of position along the fiber length. The structures that undergo adaptation in genetic programming are hierarchical structures which are different from that of conventional genetic algorithm operating on strings. GP regress the strain profile function which matches the 'measured' spectrum best and makes space resolution of strain reconstruction arbitrarily high, or even infinite. This paper also presents an experimental verification of the reconstruction of non-homogeneous strain fields using GP. The results are compared with numerical calculations of finite element method. Both the simulation examples and experimental results demonstrate that Genetic Programming can effectively reconstruct continuous profile expression along the whole FBG, and greatly improves its computational efficiency and accuracy.

  2. Fiber Bragg grating fabrication for the implementation of sensors in the electronics and optoelectronics laboratory at BUAP

    Science.gov (United States)

    Bracamontes Rodríguez, Y. E.; Beltrán Pérez, G.; Castillo Mixcóatl, J.; Muñoz Aguirre, S.

    2011-09-01

    Fiber Bragg gratings (FBG) are important optical devices since they have been quite successful not only in the field of communications but also in sensor systems and optical fiber lasers. In the sensors area they are generally used as detection elements for different physical parameters such as temperature, strain, flow, etc. In the electronics and optoelectronics laboratory at Benemérita Universidad Autónoma de Puebla (LEyO-BUAP), there are already experimental setups of sensors as well as laser systems, where FBGs are fundamental elements for their adequate performance. However, these FBGs are commercial devices and they present limited characteristics in their transmission profiles, bandwidth and reflectivity. On the other hand, in some occasions, the delivery time from the fabricant to the customer is quite long. Therefore, it is important for LEyO to implement a system to fabricate this kind of devices, which would mean LEyO independence in the technological development. In this work, results of FBGs fabrication based on the phase mask technique are presented. Such mask is optimized for UV and it has a period of 1060 nm. A Nd:YAG pulsed laser with a 5 ns pulse length and an energy of 40 mJ was used as the UV source employing the 4th harmonic generation to obtain a 266 nm wavelength. Ge-doped fiber was used to fabricate the devices.

  3. Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Alfredo Lamberti

    2015-10-01

    Full Text Available The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. Sensors 2015, 15 27175 The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e. it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection and modal parameter estimation techniques (Peak-Picking, some of the modes were not successfully identified.

  4. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors.

    Science.gov (United States)

    Voisin, Valérie; Pilate, Julie; Damman, Pascal; Mégret, Patrice; Caucheteur, Christophe

    2014-01-15

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. The biosensor configuration reported in this work uses nanometric-scale gold-coated tilted fiber Bragg gratings (TFBGs) interrogated by light polarized radially to the optical fiber outer surface, so as to maximize the optical coupling with the SPR. These gratings were recently associated to aptamers to assess their label-free biorecognition capability in buffer and serum solutions. In this work, using the well-acknowledged biotin-streptavidin pair as a benchmark, we go forward in the demonstration of their unique sensitivity. In addition to the monitoring of the self-assembled monolayer (SAM) in real time, we report an unprecedented limit of detection (LOD) as low as 2 pM. Finally, an immunosensing experiment is realized with human transferrin (dissociation constant Kd~10(-8) M(-1)). It allows to assess both the reversibility and the robustness of the SPR-TFBG biosensors and to confirm their high sensitivity. © 2013 Published by Elsevier B.V.

  5. Hollow core MOEMS Bragg grating microphone for distributed and remote sensing

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    ) combined with the low transmission loss of modern optical fibers [1], frequency modulated optical sensors are ideal for remote and distributed sensing. While several all-optical and high sensitivity MOEMS pressure sensors are found in literature, these sensors are typically based on amplitude (intensity......) modulation. Amplitude modulation is inherently sensitive to transmission loss and requires a unique transmission line for each sensor. Though fiber Bragg gratings (FBGs) are based on frequency modulation the relatively large dimensions of optical fibers and their low refractive index modulation makes them...

  6. Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array

    Science.gov (United States)

    Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.

    2018-02-01

    Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.

  7. Grating writing and growth at 325nm in non-hydrogenated silica fiber

    DEFF Research Database (Denmark)

    Town, Graham E; Yuan, Scott Wu; Stefani, Alessio

    We report on the writing and growth dynamics of Bragg gratings written in standard silica fiber using a 325nm He:Cd laser.......We report on the writing and growth dynamics of Bragg gratings written in standard silica fiber using a 325nm He:Cd laser....

  8. Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer.

    Science.gov (United States)

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-20

    This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0  μϵ to 12,000  μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12  pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.

  9. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  10. Microfiber-Based Bragg Gratings for Sensing Applications: A Review

    Directory of Open Access Journals (Sweden)

    Jun-Long Kou

    2012-06-01

    Full Text Available Microfiber-based Bragg gratings (MFBGs are an emerging concept in ultra-small optical fiber sensors. They have attracted great attention among researchers in the fiber sensing area because of their large evanescent field and compactness. In this review, the basic techniques for the fabrication of MFBGs are introduced first. Then, the sensing properties and applications of MFBGs are discussed, including measurement of refractive index (RI, temperature, and strain/force. Finally a summary of selected MFBG sensing elements from previous literature are tabulated.

  11. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Qiao, Xueguang; Li, JiaCheng; Shao, Zhihua; Tong, Rongxin; Rong, Qiangzhou

    2017-01-01

    A fiber-optic interferometer is proposed and demonstrated experimentally for ultrasonic detection. The sensor consists of a compact Michelson interferometer (MI), which is fixed in a tilted-tube end-face (45°). Thin gold films are used for the reflective coatings of two arms and one of the interference arms is etched serving as the sensing arm. The spectral sideband filter technique is used to interrogate the continuous and pulse ultrasonic signals (with frequency of 300 KHz). Furthermore, because of the asymmetrical structure of the sensor, it presents strong direction-dependent ultrasonic sensitivity, such that the sensor can be considered a vector detector. The experimental results show that the sensor is highly sensitive to ultrasonic signals, and thus it can be a candidate for ultrasonic imaging of seismic physical models.

  12. Optical fibres sensor based in the intensity switch of a linear laser with two Bragg gratings

    International Nuclear Information System (INIS)

    Basurto P, M.A.; Kuzin, E.A.; Archundia B, C.; Marroquin, E.; May A, M.; Cerecedo N, H.H.; Sanchez M, J.J.; Tentori S, D.; Marquez B, I.; Shliagin, M.; Miridonov, S.

    2000-01-01

    In this work we propose a new configuration for an optical fiber temperature sensor, based on a linear type Er-doped fiber laser. The laser cavity consists of an Er-doped fiber and two identical Bragg gratings at the fiber ends (working as reflectors). Temperature changes are detected by measuring, through one of the gratings, the intensity variations at the system's output. When the temperature of one of the Bragg gratings is modified, a wavelength shift of its spectral reflectivity is observed. Hence, the laser emission intensity of the system is modified. We present experimental results of the intensity switch observed when the temperature difference between the gratings detunes their spectral reflectance. Making use of this effect it is possible to develop limit comparators to bound the temperature range for the object under supervision. This limiting work can be performed with a high sensitivity using a very simple interrogation procedure. (Author)

  13. Optical fibres sensor based in the intensity switch of a linear laser with two Bragg gratings; Sensor de fibra optica basado en el salto de intensidad de un laser lineal con dos rejillas de Bragg

    Energy Technology Data Exchange (ETDEWEB)

    Basurto P, M.A.; Kuzin, E.A.; Archundia B, C.; Marroquin, E.; May A, M.; Cerecedo N, H.H.; Sanchez M, J.J. [Departamento de Fotonica y Fisica Optica, Instituto Nacional de Astrofisica, Optica y Electronica (INAOE). Apartado Postal 51 y 216, 72000 Puebla (Mexico); Tentori S, D.; Marquez B, I.; Shliagin, M.; Miridonov, S. [Centro de Investigacion CESE (Mexico)

    2000-07-01

    In this work we propose a new configuration for an optical fiber temperature sensor, based on a linear type Er-doped fiber laser. The laser cavity consists of an Er-doped fiber and two identical Bragg gratings at the fiber ends (working as reflectors). Temperature changes are detected by measuring, through one of the gratings, the intensity variations atthe system's output. When the temperature of one of the Bragg gratings is modified, a wavelength shift of its spectral reflectivity is observed. Hence, the laser emission intensity of the system is modified. We present experimental results of the intensity switch observed when the temperature difference between the gratings detunes their spectral reflectance. Making use of this effect it is possible to develop limit comparators to bound the temperature range for the object under supervision. This limiting work can be performed with a high sensitivity using a very simple interrogation procedure. (Author)

  14. Polarization control method for UV writing of advanced bragg gratings

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm

    2002-01-01

    We report the application of the polarization control method for the UV writing of advanced fiber Bragg gratings (FBG). We demonstrate the strength of the new method for different apodization profiles, including the Sinc-profile and two designs for dispersion-free square filters. The method has...

  15. Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull-push mechanism

    Science.gov (United States)

    Jiang, Qi; Yang, Meng

    2013-11-01

    A three-axis fiber Bragg grating accelerometer, which has uniform sensitivities to three axes, has been developed for seismic application. This paper presents the design, simulation and calibration of the three-axis accelerometer. A series of experiments were performed to measure harmonic vibration and shock vibration. The precise acceleration was measured by a PZT accelerometer which provided high sensitivity. The fully described dynamic sensitivity of three-axis accelerometers represented by a 3-by-3 matrix is given. The results indicate that the accelerometer has a sensitivity of 0.068 V g-1 in a measured full scale of ±2.5 m s-2. The cross-axis sensitivity was measured as -75.5 dB, -75.5 dB and -78.2 dB, respectively.

  16. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    Science.gov (United States)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the

  17. Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System

    Science.gov (United States)

    1994-05-01

    for an ideal AOTF, at 833 and 838 nm using a TeO2 crystal ............................ 33 Figure 3.12. Frequency characteristics of Equation (3.43...multiple channels in an AOTF requires the presence of multiple RF frequencies to establish the complex grating. Since the crystal used in the AOTF ( TeO2 ) is...in germano- silicate glass . This index modulation, Bragg grating, acts as an optical band rejection filter for those wavelengths that meet the Bragg

  18. Deformation Monitoring for Chinese Traditional Timber Buildings Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Ni-Lei Li

    2018-06-01

    Full Text Available The Fiber Bragg Grating (FBG sensing technique is suitable for a wide variety of measurements, including temperature, pressure, acceleration, liquid level, etc., and has been applied to many bridges and buildings in the past two decades. The fact that the FBG technique can only monitor and measure strain data for most cases when it is used for deformation measurements impedes application of the FBG sensing technique in civil infrastructures. This paper proposes FBG sensing-based deformation monitoring methods that are applicable to monitoring beam deflection, column inclination angle and mortise-tenon joint dislocation for Chinese traditional timber structures. On the basis of improved conjugated beam theory and geometrical trigonometric function relationship, the relationships between the FBG sensing strain values and the deflection of beam, inclination angle of column, as well as the amount of dislocation of mortise-tenon joint are deducted for Chinese traditional buildings. A series of experiments were conducted to verify the applicability and effectiveness of the proposed deformation monitoring methods. The results show that a good agreement is obtained between the values given by the methods proposed in this paper and other methods. This implies that the proposed deformation monitoring methods are applicable and effective in the health monitoring of Chinese traditional timber structures.

  19. High-resolution fast temperature mapping of a gas turbine combustor simulator with femtosecond infrared laser written fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Ramachandran, Nanthan; Mihailov, Stephen J.

    2017-02-01

    Femtosecond infrared (fs-IR) written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to the advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring the sidewall and exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients contrasted with thermocouple data, discussion of deployment strategies and comments on reliability.

  20. Stimulus responsive hydrogel-coated etched fiber Bragg grating for carcinogenic chromium (VI) sensing

    Science.gov (United States)

    Kishore, Pabbisetti Vayu Nandana; Madhuvarasu, Sai Shankar; Moru, Satyanarayana

    2018-01-01

    This paper proposes a chemo-mechanical-optical sensing approach for the detection of carcinogenic chromium (VI) metal ion using an etched fiber Bragg grating (FBG) coated with stimulus responsive hydrogel. Hydrogel synthesized from the blends of (3-acrylamidopropyl)-trimethylammonium chloride, which is highly responsive to chromium ions suffers a volume change when placed in Cr solution. When the proposed sensor system is exposed to various concentrations of Cr (VI) ion solution, FBG peak shifts due to the mechanical strain induced by the swelling of the hydrogel. The peak shift is correlated with the concentration of the Cr (VI) metal ion. Due to the reduction in the cladding diameter of FBG, wastage of swelling force due to hydrogel on FBG is lowered and utilized for more wavelength peak shift of FBG resulting in the increase in the sensitivity. The resolution of the sensor system is found to be 0.072 ppb. Trace amounts of chromium (VI) ion as low as 10 ppb can be sensed by this method. The sensor has shown good sensitivity, selectivity, and repeatability. The salient features of the sensors are its compact size, light weight, and adoptability for remote monitoring.

  1. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature.

    Science.gov (United States)

    Han, Young-Geun; Tran, T V A; Kim, Sang-Hyuck; Lee, Sang Bae

    2005-06-01

    We propose a simple and flexible multiwavelength Raman-fiber-laser-based long-distance remote-sensing scheme for simultaneous measurement of strain and temperature by use of fiber Bragg gratings. By combining two uniform fiber Bragg gratings with a tunable chirped fiber grating, we readily achieve simultaneous two-channel sensing probes with a high extinction ratio of more than approximately 50 dB over a 50-km distance. When strain and temperature are applied, lasing wavelength separation and shift occur, respectively, since the two uniform fiber Bragg gratings have identical material composition and different cladding diameters. This allows simultaneous measurement of strain and temperature for long-distance sensing applications of more than 50 km.

  2. Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors

    CERN Document Server

    Abbaneo, D.; Abbrescia, M.; Abdelalim, A.A.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F.R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M.M.; De Lentdecker, G.; De Oliveira, R.; De Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R.M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y.G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P.K.; Mandal, K.; Marchioro, A.; Marinov, A.; Masod, R.; Majumdar, N.; Merlin, J.A.; Mitselmakher, G.; Mohanty, A.K.; Mohamed, S.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L.M.; Paolucci, P.; Park, I.; Passeggio, G.; Passamonti, L.; Pavlov, B.; Philipps, B.; Piccolo, D.; Pierluigi, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Russo, A.; Ryu, G.; Ryu, M.S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A.H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S.K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2016-01-01

    A novel approach which uses Fibre Bragg Grating (FBG) sensors has been utilised to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.

  3. Multi-dimensional fiber-optic radiation sensor for ocular proton therapy dosimetry

    International Nuclear Information System (INIS)

    Jang, K.W.; Yoo, W.J.; Moon, J.; Han, K.T.; Park, B.G.; Shin, D.; Park, S-Y.; Lee, B.

    2012-01-01

    In this study, we fabricated a multi-dimensional fiber-optic radiation sensor, which consists of organic scintillators, plastic optical fibers and a water phantom with a polymethyl methacrylate structure for the ocular proton therapy dosimetry. For the purpose of sensor characterization, we measured the spread out Bragg-peak of 120 MeV proton beam using a one-dimensional sensor array, which has 30 fiber-optic radiation sensors with a 1.5 mm interval. A uniform region of spread out Bragg-peak using the one-dimensional fiber-optic radiation sensor was obtained from 20 to 25 mm depth of a phantom. In addition, the Bragg-peak of 109 MeV proton beam was measured at the depth of 11.5 mm of a phantom using a two-dimensional sensor array, which has 10×3 sensor array with a 0.5 mm interval.

  4. Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity

    Science.gov (United States)

    Ahmed, Tanvir; Atai, Javid

    2017-09-01

    The existence and stability of quiescent Bragg grating solitons are systematically investigated in a dual-core fiber, where one of the cores is uniform and has Kerr nonlinearity while the other one is linear and incorporates a Bragg grating with dispersive reflectivity. Three spectral gaps are identified in the system, in which both lower and upper band gaps overlap with one branch of the continuous spectrum; therefore, these are not genuine band gaps. However, the central band gap is a genuine band gap. Soliton solutions are found in the lower and upper gaps only. It is found that in certain parameter ranges, the solitons develop side lobes. To analyze the side lobes, we have derived exact analytical expressions for the tails of solitons that are in excellent agreement with the numerical solutions. We have analyzed the stability of solitons in the system by means of systematic numerical simulations. We have found vast stable regions in the upper and lower gaps. The effect and interplay of dispersive reflectivity, the group velocity difference, and the grating-induced coupling on the stability of solitons are investigated. A key finding is that a stronger grating-induced coupling coefficient counteracts the stabilization effect of dispersive reflectivity.

  5. Analysis of circular fibers with an arbitrary index profile by the Galerkin method.

    Science.gov (United States)

    Guo, Shangping; Wu, Feng; Ikram, Khalid; Albin, Sacharia

    2004-01-01

    We propose a full-vectorial Galerkin method for the analysis of circular symmetric fibers with arbitrary index profiles. A set of orthogonal Laguerre-Gauss functions is used to calculate the dispersion relation and mode fields of TE and TM modes. Examples are given for both standard step-index fibers and Bragg fibers. For standard step-index fiber with low or high index contrast, the Galerkin method agrees well with the analytical results. In the case of the TE mode of a Bragg fiber it agrees well with the asymptotic results.

  6. Monitoring of pipeline deformations using optical fiber sensors based on Bragg lattices; Monitoracao de deformacoes em dutos utilizando sensores a fibra optica com base em redes de Bragg

    Energy Technology Data Exchange (ETDEWEB)

    Moszkowica, Viktor Nigri [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)]. E-mail: vnigri@bol.com.br

    2002-06-01

    In the petroleum sector there is a growing need for the use of pipelines as well as for their monitoring. A way to avoid leaks that can cause great damage to the environment is by the monitoring of deformations. In case failures can not be avoided through operational procedures, the monitoring of deformations can identify the initial moment and location of the leak, allowing for quick action on the part of the cleaning and depollution teams. Also important is the monitoring of slopes and soil movements. The same thing applies to production and transfer submarine pipelines subject to complex dynamic loadings that combine internal and external pressure, torsion, axial stress and, the most common of all, flexion loading. For this type of application, optical fiber sensors present a number of interesting features. Multiplexing, remote operation and long distance distribution of sensors are characteristics that attract their use in deformation monitoring systems. Presented herein are the research results of works that had the objective of developing deformation monitoring techniques in pipelines using optical fiber sensors based on Bragg grating. The technical feasibility of this technology is demonstrated through laboratorial tests. Also discussed herein are methods for field implementation of sensors, optical signal multiplexing techniques and potential advantages of applying this technology. (author)

  7. Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector.

    Science.gov (United States)

    Kim, Kyung-Jo; Seo, Jun-Kyu; Oh, Min-Cheol

    2008-02-04

    A tunable wavelength filter is demonstrated by imposing a strain on a polymeric Bragg reflection waveguide fabricated on a flexible substrate. The highly elastic property of flexible polymer device enables much wider tuning than the silica fiber. To produce a uniform grating pattern on a flexible plastic substrate, a post lift-off process along with an absorbing layer is incorporated. The flexible Bragg reflector shows narrow bandwidth, which is convincing the uniformity of the grating structure fabricated on plastic film. By stretching the flexible polymer device, the Bragg reflection wavelength is tuned continuously up to 45 nm for the maximum strain of 31,690 muepsilon, which is determined by the elastic expansion limit of waveguide polymer. From the linear wavelength shift proportional to the strain, the photoelastic coefficient of the ZPU polymer is found.

  8. Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating.

    Science.gov (United States)

    Zhang, Yu; Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Wang, Guanghui; Shum, Ping; Zhang, Xinliang

    2010-12-06

    A fiber Bragg grating written in a photosensitive microfiber using KrF excimer laser via a uniform phase mask is demonstrated. We have successfully fabricated two Bragg gratings in microfibers having different diameters. In the reflection spectrum of a microfiber Bragg grating (MFBG), we observed two reflection peaks,which agrees with our numerical simulation results. Compared with the fundamental mode reflection, the higher-order reflection mode is more sensitive to the refractive index (RI) variation of the surrounding fluid due to its larger evanescent field. The measured maximum sensitivity is ~102 nm/RIU (RI unit) at an RI value of 1.378 in an MFBG with a diameter of 6 μm.

  9. Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull–push mechanism

    International Nuclear Information System (INIS)

    Jiang, Qi; Yang, Meng

    2013-01-01

    A three-axis fiber Bragg grating accelerometer, which has uniform sensitivities to three axes, has been developed for seismic application. This paper presents the design, simulation and calibration of the three-axis accelerometer. A series of experiments were performed to measure harmonic vibration and shock vibration. The precise acceleration was measured by a PZT accelerometer which provided high sensitivity. The fully described dynamic sensitivity of three-axis accelerometers represented by a 3-by-3 matrix is given. The results indicate that the accelerometer has a sensitivity of 0.068 V g −1 in a measured full scale of ±2.5 m s −2 . The cross-axis sensitivity was measured as −75.5 dB, −75.5 dB and −78.2 dB, respectively. (paper)

  10. High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection.

    Science.gov (United States)

    Jelger, P; Wang, P; Sahu, J K; Laurell, F; Clarkson, W A

    2008-06-23

    In this work a volume Bragg grating is used as a wavelength selective element in a high-power cladding-pumped Yb-doped silica fiber laser. The laser produced 138 W of linearly-polarized single-spatial-mode output at 1066 nm with a relatively narrow linewidth of 0.2 nm for approximately 202 W of launched pump power at 976 nm. The beam propagation factor (M(2)) for the output beam was determined to be 1.07. Thermal limitations of volume Bragg gratings are discussed in the context of power scaling for fiber lasers.

  11. Fiber Optic Thermal Health Monitoring of Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  12. Characterization of Early Age Curing and Shrinkage of Metakaolin-Based Inorganic Binders with Different Rheological Behavior by Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Palumbo, Giovanna; Iadicicco, Agostino; Messina, Francesco; Ferone, Claudio; Campopiano, Stefania; Cioffi, Raffaele; Colangelo, Francesco

    2017-12-22

    This paper reports results related to early age temperature and shrinkage measurements by means fiber Bragg gratings (FBGs), which were embedded in geopolymer matrices. The sensors were properly packaged in order to discriminate between different shrinkage behavior and temperature development. Geopolymer systems based on metakaolin were investigated, which dealt with different commercial aluminosilicate precursors and siliceous filler contents. The proposed measuring system will allow us to control, in a very accurate way, the early age phases of the binding systems made by metakaolin geopolymer. A series of experiments were conducted on different compositions; moreover, rheological issues related to the proposed experimental method were also assessed.

  13. 2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating.

    Science.gov (United States)

    Lee, Ju Han; Chang, You; Han, Young-Geun; Kim, Sang; Lee, Sang

    2004-08-23

    We experimentally demonstrate a simple scheme for the tunable pulse repetition-rate multiplication based on the fractional Talbot effect in a linearly tunable, chirped fiber Bragg grating (FBG). The key component in this scheme is our linearly tunable, chirped FBG with no center wavelength shift, which was fabricated with the S-bending method using a uniform FBG. By simply tuning the group velocity dispersion of the chirped FBG, we readily multiply an original 8.5 ps, 10 GHz soliton pulse train by a factor of 2 ~ 5 to obtain high quality pulses at repetition-rates of 20 ~ 50 GHz without significantly changing the system configuration.

  14. Fiber Bragg Gratings, IT Techniques and Strain Gauge Validation for Strain Calculation on Aged Metal Specimens

    Directory of Open Access Journals (Sweden)

    Ander Montero

    2011-01-01

    Full Text Available This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG sensors and infrared thermography (IT techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT techniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 °C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM and Non Destructuve Evaluation (NDE research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA and the University of the Basque Country (UPV/EHU.

  15. 100 MHz high-speed strain monitor using fiber Bragg grating and optical filter applied for magnetostriction measurements of cobaltite at magnetic fields beyond 100 T

    Science.gov (United States)

    Ikeda, Akihiko; Nomura, Toshihiro; Matsuda, Yasuhiro H.; Tani, Shuntaro; Kobayashi, Yohei; Watanabe, Hiroshi; Sato, Keisuke

    2018-05-01

    High-speed 100 MHz strain monitor using fiber Bragg grating (FBG) and an optical filter has been devised for the magnetostriction measurements under ultrahigh magnetic fields. The longitudinal magnetostriction of LaCoO 3 has been measured at room temperature, 115, 7 and 4.2 K up to the maximum magnetic field of 150 T. The field-induced lattice elongations are observed, which are attributed to the spin-state crossover from the low-spin ground state to excited spin-states.

  16. Demonstration of a Rocket-Borne Fiber-Optic Measurement System: The FOVS Experiment of REXUS 15

    Science.gov (United States)

    Rossner, M. R.; Benes, N.; Grubler, T.; Plamauer, S.; Koch, A. W.

    2015-09-01

    As an in-flight experiment in the REXUS 15 programme, the “Fiber-Optic Vibration Sensing Experiment (FOVS)” aimed at the application of so-called fiber Bragg grating sensors. Fiber Bragg gratings are optical gratings inscribed into the core of an optical fiber. They allow for entirely optical measurements of temperatures, mechanical strain and of deduced quantities, such as vibration. Due to their properties - mechanical robustness, high dynamic range etc. - fiber Bragg gratings are particularly suited for withstanding the harsh environmental conditions in a rocket vehicle (very high and very low temperatures, intense vibrations, presence of flammable propellants, etc.). Measurement systems based on fiber Bragg gratings have the potential to contribute to emerging technologies in the commercial launcher segment. Particularly, large sets of measurement data can be acquired with minor mass contribution. This can be applied to techniques such as structural health monitoring, active vibration damping, and actuator monitoring, enabling lighter structures without compromising on reliability. The FOVS experiment demonstrated a fiber-optic vibration and temperature measurement system in an actual flight, and evaluated its benefits compared to conventional electrical sensing in the challenging launcher environment. As a side product, measurements regarding the environmental conditions on the REXUS platform have been acquired.

  17. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  18. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding

    Science.gov (United States)

    Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei

    2016-06-01

    A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.

  19. Improved Fiber Bragg Grating Array OFFH-CDMA System Using a Novel Frequency-Overlapping Multigroup Method

    Science.gov (United States)

    Peng, Wei-Ren; Lin, Wen-Piao; Chi, Sien

    2006-03-01

    The authors propose a novel frequency-overlapping multigroup scheme for a passive all-optical fast-frequency hopped code-division multiple-access (OFFH-CDMA) system based on fiber Bragg grating array (FBGA). In the conventional scheme, the users are assigned those codes constructed on the nonoverlapping frequency slots, and therefore the bandgaps between the adjacent gratings are wasted. To make a more efficient use of the optical spectrum, the proposed scheme divided the users into several groups, and assigned the codes, which interleaved to each other to the different groups. In addition to the higher utilization of the spectrum, the interleaved nature of the frequency allocations of different groups will make the groups less correlated and, hence, lower the multiple-access interference (MAI). The corresponding codeset and its constraints for this new scheme are also developed and analyzed. The performance of the system in terms of the correlation functions and bit error rate (BER) are given in both the conventional and the proposed schemes. The numerical results show that, with the multigroup scheme, performance is much improved compared to the conventional scheme.

  20. Center of gravity estimation using a reaction board instrumented with fiber Bragg gratings

    Science.gov (United States)

    Oliveira, Rui; Roriz, Paulo; Marques, Manuel B.; Frazão, Orlando

    2018-03-01

    The purpose of the present work is to construct a reaction board based on fiber Bragg gratings (FBGs) that could be used for estimation of the 2D coordinates of the projection of center of gravity (CG) of an object. The apparatus is consisted of a rigid equilateral triangular board mounted on three supports at the vertices, two of which have cantilevers instrumented with FBGs. When an object of known weight is placed on the board, the bending strain of the cantilevers is measured by a proportional wavelength shift of the FBGs. Applying the equilibrium conditions of a rigid body and proper calibration procedures, the wavelength shift is used to estimate the vertical reaction forces and moments of force at the supports and the coordinates of the object's CG projection on the board. This method can be used on a regular basis to estimate the CG of the human body or objects with complex geometry and density distribution. An example is provided for the estimation of the CG projection coordinates of two orthopaedic femur bone models, one intact, and the other with a hip stem implant encased. The clinical implications of changing the normal CG location by means of a prosthesis have been discussed.

  1. Reconstruction of structural damage based on reflection intensity spectra of fiber Bragg gratings

    International Nuclear Information System (INIS)

    Huang, Guojun; Wei, Changben; Chen, Shiyuan; Yang, Guowei

    2014-01-01

    We present an approach for structural damage reconstruction based on the reflection intensity spectra of fiber Bragg gratings (FBGs). Our approach incorporates the finite element method, transfer matrix (T-matrix), and genetic algorithm to solve the inverse photo-elastic problem of damage reconstruction, i.e. to identify the location, size, and shape of a defect. By introducing a parameterized characterization of the damage information, the inverse photo-elastic problem is reduced to an optimization problem, and a relevant computational scheme was developed. The scheme iteratively searches for the solution to the corresponding direct photo-elastic problem until the simulated and measured (or target) reflection intensity spectra of the FBGs near the defect coincide within a prescribed error. Proof-of-concept validations of our approach were performed numerically and experimentally using both holed and cracked plate samples as typical cases of plane-stress problems. The damage identifiability was simulated by changing the deployment of the FBG sensors, including the total number of sensors and their distance to the defect. Both the numerical and experimental results demonstrate that our approach is effective and promising. It provides us with a photo-elastic method for developing a remote, automatic damage-imaging technique that substantially improves damage identification for structural health monitoring. (paper)

  2. Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings.

    Science.gov (United States)

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-24

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength shifts and transmission changes in the spectrum of the TFBG. The peak amplitude of the dominant spectral fringes over a certain window of the transmission spectrum, obtained by FFT analysis, has a near-linear pH sensitivity of 117 arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the range of pH 4.66 to pH 6.02). The thickness and surface morphology of the sensing multilayer film were characterized to investigate their effects on the sensor's performance. The dynamic response of the sensor also has been studied (10 s rise time and 18 s fall time for a sensor with six bilayers of PDDA/PAA).

  3. The effect of humidity on annealing of polymer optical fibre bragg gratings

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Bang, Ole

    2015-01-01

    The effect of humidity on annealing of PMMA based microstructured polymer optical fiber (mPOF) Bragg gratings is studied. Polymer optical fibers (POFs) are annealed in order to release stress formed during the fabrication process. Un-annealed fibers will have high hysteresis and low sensitivity...... to humidity, particularly when operated at high temperature. Typically annealing of PMMA POFs is done at 80oC in an oven with no humidity control and therefor at low humidity. The response to humidity of PMMA FBGs annealed at different levels of humidity at the same temperature has also been studied. PMMA...

  4. Advances in the Echidna fiber-positioning technology

    Science.gov (United States)

    Sheinis, Andrew; Saunders, Will; Gillingham, Peter; Farrell, Tony J.; Muller, Rolf; Smedley, Scott; Brzeski, Jurek; Waller, Lewis G.; Gilbert, James; Smith, Greg

    2014-07-01

    We present advances in the patented Echidna 'tilting spine' fiber positioner technology that has been in operation since 2007 on the SUBARU telescope in the FMOS system. The new Echidna technology is proposed to be implemented on two large fiber surveys: the Dark Energy Spectroscopic Instrument (DESI) (5000 fibers) as well the Australian ESO Positioner (AESOP) for 4MOST, a spectroscopic survey instrument for the VISTA telescope (~2500 fibers). The new 'superspine' actuators are stiffer, longer and more accurate than their predecessors. They have been prototyped at AAO, demonstrating reconfiguration times of ~15s for errors of <5 microns RMS. Laboratory testing of the prortotype shows accurate operation at temperatures of -10 to +30C, with an average heat output of 200 microwatts per actuator during reconfiguration. Throughput comparisons to other positioner types are presented, and we find that losses due to tilt will in general be outweighed by increased allocation yield and reduced fiber stress FRD. The losses from spine tilt are compensated by the gain in allocation yield coming from the greater patrol area, and quantified elsewhere in these proceedings. For typical tilts, f-ratios and collimator overspeeds, Echidna offers a clear efficiency gain versus current r-that or theta-phi positioners.

  5. Fiber Optic Temperature Sensors for Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems Corporation (IFOS), in collaboration with North Carolina State University, successfully demonstrated a Fiber Bragg...

  6. Prototype fiber Bragg Grattings (FBG) sensor based on intensity modulation of the laser diode low frequency vibrations measurement

    Science.gov (United States)

    Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri

    2016-02-01

    In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.

  7. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  8. Nuclear Power Plant Prestressed Concrete Containment Vessel Structure Monitoring during Integrated Leakage Rate Testing Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Jinke Li

    2017-04-01

    Full Text Available As the last barrier of nuclear reactor, prestressed concrete containment vessels (PCCVs play an important role in nuclear power plants (NPPs. To test the mechanical property of PCCV during the integrated leakage rate testing (ILRT, a fiber Bragg grating (FBG sensor was used to monitor concrete strain. In addition, a finite element method (FEM model was built to simulate the progress of the ILRT. The results showed that the strain monitored by FBG had the same trend compared to the inner pressure variation. The calculation results showed a similar trend compared with the monitoring results and provided much information about the locations in which the strain sensors should be installed. Therefore, it is confirmed that FBG sensors and FEM simulation are very useful in PCCV structure monitoring.

  9. Single-longitudinal-mode BEFL incorporating a Bragg grating written in EDF

    Science.gov (United States)

    Gao, Ya; Sun, Junqiang; Chen, Guodong; Xie, Heng

    2015-06-01

    A stable and tunable single-longitudinal-mode (SLM) Brillouin/Erbium fiber laser (BEFL) with narrow linewidth is proposed and experimentally demonstrated. A uniform Bragg grating written in a segment of unpumped Erbium-doped fiber (EDF) is incorporated as an auto-tracking filter to achieve SLM operation. A length of 5 m pumped EDF is used to provide both Brillouin and linear gain in the cavity. The linewidth is measured to be 18 kHz and the lasing peak power fluctuation and wavelength shift are monitored less than 0.027 dB and 2 pm respectively.

  10. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials.

    Science.gov (United States)

    Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura

    2015-06-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.

  11. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings.

    Science.gov (United States)

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-04-01

    We propose and demonstrate hydrogen peroxide (H 2 O 2 ) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 10 5 ) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H 2 O 2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H 2 O 2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H 2 O 2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H 2 O 2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H 2 O 2 and glucose detection in human serum.

  12. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings

    Science.gov (United States)

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-01-01

    We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum. PMID:29675315

  13. Fiber Optic Thermal Detection of Composite Delaminations

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  14. Bragg Curve Spectroscopy

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1981-05-01

    An alternative utilization is presented for the gaseous ionization chamber in the detection of energetic heavy ions, which is called Bragg Curve Spectroscopy (BCS). Conceptually, BCS involves using the maximum data available from the Bragg curve of the stopping heavy ion (HI) for purposes of identifying the particle and measuring its energy. A detector has been designed that measures the Bragg curve with high precision. From the Bragg curve the range from the length of the track, the total energy from the integral of the specific ionization over the track, the dE/dx from the specific ionization at the beginning of the track, and the Bragg peak from the maximum of the specific ionization of the HI are determined. This last signal measures the atomic number, Z, of the HI unambiguously

  15. HF-based clad etching of fibre Bragg grating and its utilization in ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Abstract. This paper presents a fiber Bragg grating (FBG) based sensor to study the concentration of laser dye in dye–ethanol solution. The FBG used in this experiment is indigenously developed using 255 nm UV radiations from copper vapour laser. The cladding of the FBG was partially removed using ...

  16. Impact Localization Method for Composite Plate Based on Low Sampling Rate Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Zhuo Pang

    2017-01-01

    Full Text Available Fiber Bragg Grating (FBG sensors have been increasingly used in the field of Structural Health Monitoring (SHM in recent years. In this paper, we proposed an impact localization algorithm based on the Empirical Mode Decomposition (EMD and Particle Swarm Optimization-Support Vector Machine (PSO-SVM to achieve better localization accuracy for the FBG-embedded plate. In our method, EMD is used to extract the features of FBG signals, and PSO-SVM is then applied to automatically train a classification model for the impact localization. Meanwhile, an impact monitoring system for the FBG-embedded composites has been established to actually validate our algorithm. Moreover, the relationship between the localization accuracy and the distance from impact to the nearest sensor has also been studied. Results suggest that the localization accuracy keeps increasing and is satisfactory, ranging from 93.89% to 97.14%, on our experimental conditions with the decrease of the distance. This article reports an effective and easy-implementing method for FBG signal processing on SHM systems of the composites.

  17. Precise measurements of neutral gas temperature using Fiber Bragg Grating sensor in Argon capacitively coupled plasmas

    Science.gov (United States)

    Han, Daoman; Liu, Zigeng; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-09-01

    Neutral gas temperature was measured using Fiber Bragg Grating sensor (FBGs) in capacitively coupled argon plasmas. Thermometry is based on the thermal equilibrium between the sensor and neutral gases, which is found to become faster with increasing pressure. It is also observed that the neutral gas temperature is higher than the room temperature by 10 120 °depending on the experiental conditions, and gas temperature shows significant non-uniformity in space. In addition, radial profiles of neutral temperature at different pressures, resemble these of ion density, obtained by a floating double probe. Specifically, at low pressure, neutral gas temperature and ion density peak at the center of the reactor, while the peak appears at the edge of the electrode at higher pressure. The neutral gas heating is mainly caused by the elastic collisions of Ar + with neutral gas atoms in the sheath region after Ar + gaining a certain energy. This work was supported by the National Natural Science Foundation of China (NSFC) (Grants No. 11335004, 11405018, and 61137005).

  18. Novel adaptive fiber-optics collimator for coherent beam combination.

    Science.gov (United States)

    Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2014-12-15

    In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.

  19. High-power, cladding-pumped all-fiber laser with selective transverse mode generation property.

    Science.gov (United States)

    Li, Lei; Wang, Meng; Liu, Tong; Leng, Jinyong; Zhou, Pu; Chen, Jinbao

    2017-06-10

    We demonstrate, to the best of our knowledge, the first cladding-pumped all-fiber oscillator configuration with selective transverse mode generation based on a mode-selective fiber Bragg grating pair. Operating in the second-order (LP 11 ) mode, maximum output power of 4.2 W is obtained with slope efficiency of about 38%. This is the highest reported output power of single higher-order transverse mode generation in an all-fiber configuration. The intensity distribution profile and spectral evolution have also been investigated in this paper. Our work suggests the potential of realizing higher power with selective transverse mode operation based on a mode-selective fiber Bragg grating pair.

  20. Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

    Science.gov (United States)

    Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung

    2013-01-01

    We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744

  1. Response of fiber Bragg gratings bonded on a glass/epoxy laminate subjected to static loadings

    KAUST Repository

    Mulle, Matthieu

    2015-04-22

    Fiber Bragg gratings (FBG) may be used to monitor strain over the surface of a structure as an alternative technology to conventional strain gauges. However, FBG bonding techniques have still not been established to yield satisfactory surface measurements. Here, two adhesives were investigated, one with low viscosity and the other with high viscosity for bonding FBGs on glass/epoxy sandwich skins. First, instrumented elementary specimens were tested under tension. FBG strain results were analyzed together with digital image correlation (DIC) measurements. The influence of the bonding layer on the measured strain and on the integrity of the sensor was investigated by considering different regions of interest. Next, an instrumented structural sandwich beam was tested under four-point bending. FBG rosettes were compared to conventional strain gauge rosettes. The high viscosity adhesive demonstrated behaviors that affected FBG accuracy. Brittleness of the bonding layer and poor interface adhesion were observed using DIC and X-ray tomography. By contrast, the low viscosity adhesive demonstrated satisfactory results. The FBG strain measurements appeared to be consistent with those of DIC. The accuracy is also adequate as the FBGs and the conventional strain gauges had similar results in three directions, under tension and under compression.

  2. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Susana Novais

    2016-08-01

    Full Text Available The integration of fiber Bragg grating (FBG sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells.

  3. A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    Science.gov (United States)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferrini, M.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lalli, A.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passamonti, L.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Pierluigi, D.; Postema, H.; Primavera, F.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Russo, A.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Valente, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2018-02-01

    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.

  4. Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers

    International Nuclear Information System (INIS)

    Liu, X M; Lin, A; Zhao, W; Lu, K Q; Wang, Y S; Zhang, T Y; Chung, Y

    2008-01-01

    We have proposed a novel multi-wavelength erbium-doped fiber laser by using two polarization controllers and a sampled chirped fiber Bragg grating(SC-FBG). On the assistance of SC-FBG, the proposed fiber lasers with excellent stability and uniformity are tunable and switchable by adjusting the polarization controllers. Our laser can stably lase two waves and up to eight waves simultaneously at room temperature

  5. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  6. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    Science.gov (United States)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  7. Miniature and low cost fiber Bragg grating interrogator for structural monitoring in nano-satellites

    Science.gov (United States)

    Toet, P. M.; Hagen, R. A. J.; Hakkesteegt, H. C.; Lugtenburg, J.; Maniscalco, M. P.

    2017-11-01

    In this paper we present a newly developed Fiber Optic measurement system, consisting of Fiber Bragg Grating (FBG) sensors and an FBG interrogator. The development of the measuring system is part of the PiezoElectric Assisted Smart Satellite Structure (PEASSS) project, which was initiated at the beginning of 2013 and is financed by the Seventh Framework Program (FP7) of the European Commission. Within the PEASSS project, a Nano-Satellite is being designed and manufactured to be equipped with new technology that will help keep Europe on the cutting edge of space research, potentially reducing the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. After on ground testing the satellite is planned to be launched at the end of 2015. Within the satellite, different technologies will be demonstrated on orbit to show their capabilities for different in-space applications. For our application the FBG interrogator monitors the structural and thermal behaviour of a so called "smart panel". These panels will enable fine angle control and thermal and vibration compensation in order to improve all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. The Fiber Optic (FO) system in PEASSS includes four FBG strain sensors and two FBG temperature sensors. The 3 channel interrogator has to have a small footprint (110x50x40mm), is low cost, low in mass and has a low power consumption. In order to meet all these requirements, an interrogator has been designed based on a tunable Vertical-Cavity Surface-Emitting Laser (VCSEL) enabling a wavelength sweep of around 7 nm. To guarantee the absolute and relative performance, two reference methods are included internally in the interrogator. First, stabilized reference FBG sensors are used to obtain absolute wavelength calibrations. This method is used for the temperature

  8. A high-temperature fiber sensor using a low cost interrogation scheme.

    Science.gov (United States)

    Barrera, David; Sales, Salvador

    2013-09-04

    Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity.

  9. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    Science.gov (United States)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  10. Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating.

    Science.gov (United States)

    Descamps, Frédéric; Bette, Sébastien; Kinet, Damien; Caucheteur, Christophe

    2016-06-01

    The determination of stress profiles created by transverse loads was proved to be important in different domains, such as structural health monitoring and biomechanics, and, more specifically, in the prostheses domain. In this paper, we report an original method to estimate the transverse load profile from the polarization-dependent loss (PDL) spectrum of a chirped fiber Bragg grating (CFBG). This method makes use of the relationship between the integration of the PDL of a CFBG, and the force profile has the advantage of not requiring any iterative method to estimate the transverse load profile. The relationship linking the integration of the PDL and the force profile is demonstrated using an analytical approximation of the transmission spectrum of CFBGs. The validity of this method for the determination of non-uniform load profiles is then shown using a numerical analysis. An experimental demonstration is finally reported using a 48 mm-long CFBG subject to different step transverse load profiles.

  11. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  12. Medición de microdeformaciones en losas viales usando sensores de redes de Braggen fibras ópticas Microdeformation measurement of concrete roadway slabs using fiber Bragg gratings

    Directory of Open Access Journals (Sweden)

    Francisco Javier Vélez Hoyos

    2010-06-01

    Full Text Available En este trabajo se presenta un método no invasivo para la medición de microdeformaciones en estructuras de concreto usando sensores de redes de Bragg en fibras ópticas adheridos a su superficie. Se realizan mediciones en losas viales de concreto bajo una carga estática de 10 kN, encontrándose una relación aproximada de 2 : 1 entre la deformación registrada por los sensores y los valores arrojados por una simulación computacional con el método de elementos finitos. Se propone el uso de estos sensores para el monitoreo estructural de losas en una malla vial con sensores distribuidos y multiplexados por longitud de onda. Este es el primer reporte en Colombia de medición de deformación de losas viales usando sensores de fibra óptica.This work shows a non–invasive method for micro–deformation measurements of concrete structures using Bragg grating sensors in optical fibers adhered to the surface. Measurements on roadway slabs under a 10 kN static load are made, finding an approximated ratio of 2 : 1 between the deformation registered by the sensors and the values from a computational simulation with the finite element method. We propose the use of these sensors for slab structural monitoring in a road network employing distributed and wavelength multiplexed sensors. This is a first report in Colombia of roadway slabs microdeformation measurement using fiber optic sensors.

  13. High Power Compact Single-Frequency Volume Bragg Er-Doped Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is based on successful results of Phase I project where it was shown that the use of volume Bragg gratings in PTR glass as selectors of transverse and...

  14. Embedded fiber Bragg grating sensors for true temperature monitoring in Nb3Sn superconducting magnets for high energy physics

    Science.gov (United States)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Consales, M.; Giordano, M.; Perez, J. C.; Cusano, A.

    2016-05-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process.

  15. Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water.

    Science.gov (United States)

    Pham, Thanh Binh; Bui, Huy; Le, Huu Thang; Pham, Van Hoi

    2016-12-22

    The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG) sensing probe-which integrated in fiber laser structure-are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0-80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10 -3 nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB), narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work.

  16. Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water

    Directory of Open Access Journals (Sweden)

    Thanh Binh Pham

    2016-12-01

    Full Text Available The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG sensing probe—which integrated in fiber laser structure—are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0–80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10−3 nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB, narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work.

  17. Depth Dose Measurement using a Scintillating Fiber Optic Dosimeter for Proton Therapy Beam of the Passive-Scattering Mode Having Range Modulator Wheel

    Science.gov (United States)

    Hwang, Ui-Jung; Shin, Dongho; Lee, Se Byeong; Lim, Young Kyung; Jeong, Jong Hwi; Kim, Hak Soo; Kim, Ki Hwan

    2018-05-01

    To apply a scintillating fiber dosimetry system to measure the range of a proton therapy beam, a new method was proposed to correct for the quenching effect on measuring an spread out Bragg peak (SOBP) proton beam whose range is modulated by a range modulator wheel. The scintillating fiber dosimetry system was composed of a plastic scintillating fiber (BCF-12), optical fiber (SH 2001), photo multiplier tube (H7546), and data acquisition system (PXI6221 and SCC68). The proton beam was generated by a cyclotron (Proteus-235) in the National Cancer Center in Korea. It operated in the double-scattering mode and the spread out of the Bragg peak was achieved by a spinning range modulation wheel. Bragg peak beams and SOBP beams of various ranges were measured, corrected, and compared to the ion chamber data. For the Bragg peak beam, quenching equation was used to correct the quenching effect. On the proposed process of correcting SOBP beams, the measured data using a scintillating fiber were separated by the Bragg peaks that the SOBP beam contained, and then recomposed again to reconstruct an SOBP after correcting for each Bragg peak. The measured depth-dose curve for the single Bragg peak beam was well corrected by using a simple quenching equation. Correction for SOBP beam was conducted with a newly proposed method. The corrected SOBP signal was in accordance with the results measured with an ion chamber. We propose a new method to correct for the SOBP beam from the quenching effect in a scintillating fiber dosimetry system. This method can be applied to other scintillator dosimetry for radiation beams in which the quenching effect is shown in the scintillator.

  18. Nineteen-port photonic lantern with multimode delivery fiber

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M. W.; Sandberg, Rasmus Kousholt

    2012-01-01

    We demonstrate efficient multimode (MM) to single-mode (SM) conversion in a 19-port photonic lantern with a 50 μm core MM delivery fiber. The photonic lantern can be used within the field of astrophotonics for coupling MM starlight to an ensemble of SM fibers in order to perform fiber-Bragg-grati....... The coupling loss from a 50 μm core MM fiber to an ensemble of 19 SM fibers and back to a 50 μm core MM fiber is below 1.1 dB....

  19. Analytical investigation of response of birefringent fiber Bragg grating sensors in distributed monitoring system based on optical frequency domain reflectometry

    Science.gov (United States)

    Wada, D.; Murayama, H.

    2014-01-01

    When Fiber Bragg gratings (FBGs) are used as strain sensors, both longitudinal and lateral strain can be applied uniformly or non-uniformly over the length of the FBGs. In order for the demodulation of such FBG signal, this paper investigates the response of birefringent FBGs which are monitored by distributed measurement system based on optical frequency domain reflectometry. A numerical model of the distributed measurement system is built based on piece-wise uniform approach, which considers polarization states of propagating lights. The numerical model simulates analytical response of birefringent FBGs especially when birefringence induces power fluctuations in the distributed spectra, which can be noise or new opportunity for sensitive monitoring of birefringence. Simulation results show the relationships between the power fluctuations and the polarization states of the propagating lights. Consequently, appropriate methods of polarization control for sensitive distributed birefringent FBG monitoring are discussed.

  20. A novel application of Fiber Bragg Grating (FBG sensors in MPGD

    Directory of Open Access Journals (Sweden)

    Abbaneo D.

    2018-01-01

    Full Text Available We present a novel application of Fiber Bragg Grating (FBG sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD, with particular attention to the realisation of the largest triple (Gas electron Multiplier GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.