WorldWideScience

Sample records for tillage crop rotation

  1. Soil tillage practices and crops rotations effects on yields and ...

    African Journals Online (AJOL)

    Methodology and Results: Three soil tillage practices in main plot (T1 = no tillage with direct sowing, T2 = minimum tillage by soil scarifying with IR12 tool and T3 = conventional tillage with animals drawn plough) were compared and combined to four crops rotation systems, in a split-plot experimental design. Soil chemical ...

  2. Influence of crop rotation and tillage intensity on soil physical properties and functions

    Science.gov (United States)

    Krümmelbein, Julia

    2013-04-01

    Soil tillage intensity can vary concerning tillage depth, frequency, power input into the soil and degree of soil turn-over. Conventional tillage systems where a plough is regularly used to turn over the soil can be differentiated from reduced tillage systems without ploughing but with loosening the upper soil and no tillage systems. Between conventional tillage and no tillage is a wide range of more or less reduced tillage systems. In our case the different tillage intensities are not induced by different agricultural machinery or techniques, but result from varying crop rotations with more or less perennial crops and therefore lower or higher tillage frequency. Our experimental area constitutes of quite unstructured substrates, partly heavily compacted. The development of a functioning soil structure and accumulation of nutrients and organic matter are of high importance. Three different crop rotations induce varying tillage intensities and frequencies. The first crop rotation (Alfalfa monoculture) has only experienced seed bed preparation once and subsequently is wheeled once a year to cut and chaff the biomass. The second crop rotation contains perennial and annual crops and has therefore been tilled more often, while the third crop rotation consists only of annual crops with annual seedbed preparation. Our results show that reduced tillage intensity/frequency combined with the intense root growth of Alfalfa creates the most favourable soil physical state of the substrate compared to increased tillage and lower root growth intensity of the other crop rotations. Soil tillage disturbs soil structure development, especially when the substrate is mechanically unstable as in our case. For such problematic locations it is recommendable to reduce tillage intensity and/or frequency to allow the development of soil structure enhanced by root growth and thereby the accumulation of organic matter and nutrients within the rooting zone.

  3. Long-term rotation and tillage effects on soil structure and crop yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2013-01-01

    to the soil quality estimates. We found significant effect of both rotation and tillage on visual soil structure at both times of assessment. Poor soil structure was found for NT except when combined with a diverse crop rotation (R6). The soil core pore characteristics data also displayed a significant effect...... of tillage but only a weak insignificant effect of rotation. The drop shatter results were in accordance with the visual assessment data. Crop yield correlated significantly with the visual soil structure scores. We conclude that a diverse crop rotation was needed for an optimal performance of NT......Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects of either tillage or rotation, but few have quantified the long term integrated effects of both. We studied the issue using a 30-year old...

  4. The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems

    Directory of Open Access Journals (Sweden)

    Strašil Zdeněk

    2015-09-01

    Full Text Available The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT method, minimum tillage (MT and a system with no tillage (NT. The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter of the primary product and the total harvested production. The energy effectiveness (energy output: energy input was selected for evaluation. The greatest energy effectiveness for the primary product was established as 6.35 for barley, 6.04 for wheat and 3.68 for mustard; in the case of total production, it was 9.82 for barley, 10.08 for wheat and 9.72 for mustard. When comparing the different tillage conditions, the greatest energy effectiveness was calculated for the evaluated crops under the MT operation and represented the primary product of wheat at 6.49, barley at 6.69 and mustard at 3.92. The smallest energy effectiveness for the primary product was found in wheat 5.77 and barley 6.10 under the CT option; it was 3.55 for mustard under the option of NT. Throughout the entire cropping pattern, the greatest energy effectiveness was established under the minimum tillage option – 5.70 for the primary product and 10.47 for the total production. On the other hand, the smallest values were calculated under CT – 5.22 for the primary product and 9.71 for total production.

  5. Soil total carbon and nitrogen and crop yields after eight years of tillage, crop rotation, and cultural practice

    Science.gov (United States)

    Information on the long-term effect of management practices on soil C and N stocks is lacking. An experiment was conducted from 2004 to 2011 in the northern Great Plains, USA to examine the effects of tillage, crop rotation, and cultural practice on annualized crop biomass (stems + leaves) residue r...

  6. Effect of no-tillage crop rotation systems on nutrient status of a rhodic ...

    African Journals Online (AJOL)

    In this study the effects of no-tillage and eight crop rotations (established in 1985) on chemical properties of a Rhodic Ferralsol (Typic Haplorthox, Soil Taxonomy) and on nutrient uptake by maize (Zea mays L.) and soybean (Glycine max L. Merrill) leaves were assessed in the state of São Paulo, Brazil, using a randomized ...

  7. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  8. Effects of crop rotation and soil tillage on weeds in organic farming

    Directory of Open Access Journals (Sweden)

    Schulz, Franz

    2014-02-01

    Full Text Available An organic long-term field experiment with two factors has been carried out since 1998 at the experimental station Gladbacherhof, University of Giessen. Effects of 3 different farm types (with lifestock raising, stockless farming with rotational set-aside, stockless farming only cash crops combined with 4 tillage treatments (mouldboard plough, two-layer-plough, reduced tillage depth and tillage without plough on plants, soil and environment have been investigated. This article presents results on the coverage rate of arable wild plants (weed coverage, the range of weed species, the abundance of C. arvense (L. Scop. (Canada thistle and the weed phytomass during harvest time of the main crops dependent on farm type and soil tillage. It can be concluded that, compared to conventional economic weed thresholds, the weed coverage was generally relatively low and only limited ranges of species were found. Wild arable plants probably did not have any impact on yields of the cultivated plants due to intensive mechanical regulatory measures. In stockless organic farming without alfalfa-grass in the crop rotation Cirsium arvense (L. Scop. (Canada thistle might become a problem whereas this perennial root-weed does not seem to raise a long term problem in a soil tillage system without ploughing. In all treatments the abundance of weeds like Galium aparine L. (catchweed bedstraw and Stellaria media L. (chickweed was high. However, none of the farm types or soil tillage systems succeeded in providing evidence of promoting rare species or encouraging biodiversity. In order to achieve this special support measures should be implemented.

  9. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J; Reule, Curtis A

    2008-01-01

    We evaluated the effects of irrigated crop management practices on nitrous oxide (N(2)O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha(-1) during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn-dry bean (Phaseolus vulgaris L.) (NT-CDb), and NT corn-barley (Hordeum distichon L.) (NT-CB). In 2005, half the N was subsurface band applied as urea-ammonium nitrate (UAN) at planting to all corn plots, with the rest of the N applied surface broadcast as a polymer-coated urea (PCU) in mid-June. The entire N rate was applied as UAN at barley and dry bean planting in the NT-CB and NT-CDb plots in 2005. All plots were in corn in 2006, with PCU being applied at half the N rate at corn emergence and a second N application as dry urea in mid-June followed by irrigation, both banded on the soil surface in the corn row. Nitrous oxide fluxes were measured during the growing season using static, vented chambers (1-3 times wk(-1)) and a gas chromatograph analyzer. Linear increases in N(2)O emissions were observed with increasing N-fertilizer rate, but emission amounts varied with growing season. Growing season N(2)O emissions were greater from the NT-CDb system during the corn phase of the rotation than from the other cropping systems. Crop rotation and N rate had more effect than tillage system on N(2)O emissions. Nitrous oxide emissions from N application ranged from 0.30 to 0.75% of N applied. Spikes in N(2)O emissions after N fertilizer application were greater with UAN and urea than with PCU fertilizer. The PCU showed potential for reducing N(2)O emissions from irrigated cropping systems.

  10. Crop rotation and tillage system effects on reducing ryegrass ...

    African Journals Online (AJOL)

    Under the Mediterranean climatic conditions of the Western Cape province, the Swartland region is intensively cropped, producing spring wheat (Triticum aestivum L.), but due to ryegrass competition, yield is reduced. In addition, ryegrass has developed resistance to herbicides. This necessitates the use of integrated weed ...

  11. Long-Term Effects of Rotational Tillage On Visual Evaluation of Soil Structure, Soil Quality and Crop Yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard; Deen, Bill

    structural quality was visually evaluated early June and mid October. Minimal disturbed soil cores early June and these were used for X-ray CT scanning and more traditional analysis. Soil friability was determined on the soil samples using a drop shatter test. Crop yield was determined and correlated...... to the soil quality estimates. We found significant effect of both rotation and tillage on visual soil structure at both times of assessment. Poor soil structure was found for NT except when combined with a versatile crop rotation (R6). The soil core pore characteristics data also displayed a significant...... effect of tillage but only a weak insignificant effect of rotation. The drop shatter results were in accordance with the visual assessment data. Crop yield correlated significantly with the visual soil structure scores. We conclude that a versatile crop rotation was needed for an optimal performance...

  12. Carbon stock and its compartments in a subtropical oxisol under long-term tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil organic matter (SOM plays a crucial role in soil quality and can act as an atmospheric C-CO2 sink under conservationist management systems. This study aimed to evaluate the long-term effects (19 years of tillage (CT-conventional tillage and NT-no tillage and crop rotations (R0-monoculture system, R1-winter crop rotation, and R2- intensive crop rotation on total, particulate and mineral-associated organic carbon (C stocks of an originally degraded Red Oxisol in Cruz Alta, RS, Southern Brazil. The climate is humid subtropical Cfa 2a (Köppen classification, the mean annual precipitation 1,774 mm and mean annual temperature 19.2 ºC. The plots were divided into four segments, of which each was sampled in the layers 0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m. Sampling was performed manually by opening small trenches. The SOM pools were determined by physical fractionation. Soil C stocks had a linear relationship with annual crop C inputs, regardless of the tillage systems. Thus, soil disturbance had a minor effect on SOM turnover. In the 0-0.30 m layer, soil C sequestration ranged from 0 to 0.51 Mg ha-1 yr-1, using the CT R0 treatment as base-line; crop rotation systems had more influence on soil stock C than tillage systems. The mean C sequestration rate of the cropping systems was 0.13 Mg ha-1 yr-1 higher in NT than CT. This result was associated to the higher C input by crops due to the improvement in soil quality under long-term no-tillage. The particulate C fraction was a sensitive indicator of soil management quality, while mineral-associated organic C was the main pool of atmospheric C fixed in this clayey Oxisol. The C retention in this stable SOM fraction accounts for 81 and 89 % of total C sequestration in the treatments NT R1 and NT R2, respectively, in relation to the same cropping systems under CT. The highest C management index was observed in NT R2, confirming the capacity of this soil management practice to improve the soil C

  13. Malt barley yield and quality affected by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little is known about the comparison of management practices on malt barley (Hordeum vulgare L.) yield and quality in irrigated and non-irrigated cropping systems. We evaluated the effects of irrigation, tillage, cropping system, and N fertilization on malt barley yield and quality in a sandy loam s...

  14. Effects of Crop Rotation, N Management, Tillage, and Controlled Drainage on nitrate-N Loss in Drain Flow

    Science.gov (United States)

    Ma, L.; Malone, R.; Ahuja, L.; Kanwar, R. S.

    2007-12-01

    Accurate simulation of agricultural management effects on N loss in tile drainage is vitally important for understanding hypoxia in the Gulf of Mexico. An experimental study was initiated in 1978 at Nashua, Iowa of the USA to study long-term effects of tillage, crop rotation, and N management practices on subsurface drainage flow and associated N losses. The Root Zone Water Quality Model (RZWQM) was applied to evaluate management effects (tillage, crop rotation, N application, and controlled drainage) on N loss in drain flow. RZWQM simulated the observed increase in N concentration in drain flow with increasing tillage intensity from NT (no-till) to RT (ridge till) to CP (chisel plow) and to MP (moldboard plow). It also adequately simulated tillage effects on yearly drain flow and yearly N loss in drain flow. On the other hand, RZWQM adequately simulated lower yearly drain flow and lower flow-weighted N concentration in drain flow under CS (corn-soybean) and SC (soybean-corn) than under CC (continuous corn). The model also simulated higher N loss from fertilizer-N applications than from manure-N applications. Applying the newly suggested N management practice for the Midwest of controlled drainage, the model simulated a 30% reduction in drain flow and a 29% decrease in N losses in drain flow under controlled drainage (CD) compared to free drainage (FD). With most of the simulations in reasonably close agreement with observations, we concluded that RZWQM is a promising tool for quantifying the relative effects of tillage, crop rotation, N application, and controlled drainage on N loss in drainage flow. Further improvements on simulated management effects on N mineralization and plant N uptake are needed, however.

  15. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem.

    Science.gov (United States)

    Smith, Chris R; Blair, Peter L; Boyd, Charlie; Cody, Brianne; Hazel, Alexander; Hedrick, Ashley; Kathuria, Hitesh; Khurana, Parul; Kramer, Brent; Muterspaw, Kristin; Peck, Charles; Sells, Emily; Skinner, Jessica; Tegeler, Cara; Wolfe, Zoe

    2016-11-01

    The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no-till, had a much greater impact on nearly everything measured compared to the crop planted. No-till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no-till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff-both of which have ecosystem-level effects and both direct and indirect effects on humans and other organisms.

  16. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  17. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes

    DEFF Research Database (Denmark)

    Scherner, Ananda; Melander, Bo; Kudsk, Per

    2016-01-01

    flora was recorded each year and the content and vertical location of individual weed seeds within the plough layer (0–20 cm) were determined after 11 years of continuous mouldboard ploughing (P), pre-sowing tine cultivation to 8–10 cm soil depth (H8-10) and direct drilling (D). The content of weed......Tillage methods and crop rotation are probably the two most important cropping factors affecting weed communities, particularly when herbicide use is restricted. This study examined weed dynamics following eleven years of different tillage and crop rotation treatments. The aboveground grass weed...... seeds, especially grass weeds, was determined for three distinct soil layers (0–5, 5–10 and 10–20 cm), reflecting the cultivation depths of the tillage treatments. The annual grass weeds, Apera spica-venti and Vulpia myuros, were promoted by non-inversion tillage and in the case of V. myuros also...

  18. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  19. Can non-inversion tillage and straw retainment reduce N leaching in cereal based crop rotations?

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Melander, Bo

    2010-01-01

    Finding ways of reducing nitrate leaching in Northern Europe has become an extremely important task, especially under the projected climate changes that are expected to exacerbate the problem. To this end, two field experiments were established under temperate coastal climate conditions to evaluate....../winter crop rotations, probably due to the spring/winter crop rotation including peas, which may be considered a high-risk crop. Our study highlights that management practices that improve biomass production throughout the year are crucial in order to tighten the nitrogen cycle and thereby reduce nitrate...

  20. Effect of no-tillage crop rotation systems on nutrient status of a rhodic ...

    African Journals Online (AJOL)

    The rotation crops, mucuna (Mucuna aterrima Piper&Tracy), cajanus (Cajanus cajan (L.) Millsp, rye (Secale cereale L)., oat (Avena sativa L.), pisum (Pisum sativum L.), wheat (Triticum aestivum L.), crotolaria (Crotolaria juncea L.), and black oats (Avena strigosa Scheib), were planted in winter whereas maize and soybean ...

  1. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    Full Text Available Introduction Winter wheat is an important, well-adapted grain crop under dryland condition of the northwest of Iran. Soil water is the most limiting resource for crop growth in dryland areas. Therefore, farmers need to use crop residues and minimum tillage to control the soil erosion and effectively store and to use the limited precipitation received for crop production. Crop rotation and tillage system could affect crop yield due to their effects on water conservation and soil chemical and physical properties. Galantini et al., (2000 studied the effect of crop rotation on wheat productivity in the Pampean semi-arid region of Argentina and found that a wheat–vetch (Vicia sativa L. rotation resulted in higher yield and protein content, and greater yield components than the other rotations.Payne et al. (2000 stated that where precipitation amount is marginal (400 mm, dry field pea offers a potential alternative to summer fallowing. The purpose of this study was to identify the optimal tillage system for increasing crop productivity in a vetch–wheat rotation in dryland farming of the northwest of Iran. Materials and Methods The field experiment was carried out from 2010 to 2014 at the Dryland Agricultural Research Station (latitude37° 12´N; longitude 46◦20´E; 1730 m a.s.l., 25 km east of Maragheh, East Azerbaijan Province, Iran. The long-term (10 years average precipitation, temperature and relative humidity of the station are 336.5 mm, 9.4 ◦C and 47.5%, respectively. The soil (Fine Mixed, Mesic, Vertic Calcixerepts, USDA system; Calcisols, FAO system at the study site had a clay loam texture in the 0–15 cm surface layer and a clay texture in the 15–80 cm depth. This study was conducted in vetch (Vicia pannonica- wheat (Triticum aestivum L. rotation. The experiment was arranged in a randomized complete block design with four replications. The tillage treatments consisted of (1 conventional tillage: moldboard plowing followed by one

  2. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape and maize in Europe. However, new regulations on pesticide use may hinder further expansion of reduced...... tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programmes based on integrated pest management (IPM) principles. Conventional non-inversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption...... is mostly higher as compared to plough-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in non-inversion tillage systems and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems...

  3. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    Conservation tillage and diversified crop rotations have been suggested as appropriate alternative soil management systems to sustain soil quality. The purpose of this study was to quantify the effect of implementing three crop rotations (R2–R4) on soil structural changes and the “productivity...... function” of soil. R2 is a winter-dominated crop rotation (winter wheat was the main crop) with straw residues incorporated. R3 is a mix of winter and spring crops with straw residues removed. R4 is the same mix of crops as in R3, but with straw residues incorporated. Three tillage systems were used...... the correlation between the soil quality indices and relative crop yield. Relevant soil properties for calculating the soil quality indices were measured or obtained from previous publications. Crop rotation affected the soil structure and RY. The winter-dominated crop rotation (R2) resulted in the poorest soil...

  4. Crop response to deep tillage - a meta-analysis

    Science.gov (United States)

    Schneider, Florian; Don, Axel; Hennings, Inga; Schmittmann, Oliver; Seidel, Sabine J.

    2017-04-01

    Subsoil, i.e. the soil layer below the topsoil, stores tremendous stocks of nutrients and can keep water even under drought conditions. Deep tillage may be a method to enhance the plant-availability of subsoil resources. However, in field trials, deep tillage effects on crop yields were inconsistent. Therefore, we conducted a meta-analysis of crop yield response to subsoiling, deep ploughing and deep mixing of soil profiles. Our search resulted in 1530 yield comparisons following deep and conventional control tillage on 67 experimental cropping sites. The vast majority of the data derived from temperate latitudes, from trials conducted in the USA (679 observations) and Germany (630 observations). On average, crop yield response to deep tillage was slightly positive (6% increase). However, individual deep tillage effects were highly scattered including about 40% yield depressions after deep tillage. Deep tillage on soils with root restrictive layers increased crop yields about 20%, while soils containing >70% silt increased the risk of yield depressions following deep tillage. Generally, deep tillage effects increased with drought intensity indicating deep tillage as climate adaptation measure at certain sites. Our results suggest that deep tillage can facilitate the plant-availability of subsoil nutrients, which increases crop yields if (i) nutrients in the topsoil are growth limiting, and (ii) deep tillage does not come at the cost of impairing topsoil fertility. On sites with root restrictive soil layers, deep tillage can be an effective measure to mitigate drought stress and improve the resilience of crops. However, deep tillage should only be performed on soils with a stable structure, i.e. <70% silt content. We will discuss the contribution of deep tillage options to enhance the sustainability of agricultural production by facilitating the uptake of nutrients and water from the subsoil.

  5. Sistemas de preparo do solo e rotação de culturas na produtividade de milho, soja e trigo Tillage systems and crop rotation on yield of corn, soybean and wheat

    Directory of Open Access Journals (Sweden)

    Pedro M. da Silveira

    2003-08-01

    Full Text Available Com este trabalho, objetivou-se determinar quanto os sistemas de preparo do solo e as rotações de culturas afetam a produtividade de grãos do milho, da soja e do trigo. O experimento foi conduzido em um Latossolo Vermelho distrófico, em área irrigada por pivô central, na EMBRAPA Arroz e Feijão, em Santo Antônio de Goiás, GO, por seis anos, setembro de 1992 a setembro de 1998, durante os quais foram feitos 12 cultivos e comparados três sistemas de preparo do solo: a aração com arado de aiveca, realizada em novembro-dezembro e em maio-junho; b aração com grade aradora, em ambos os períodos, e c plantio direto e quatro rotações de cultura: 1 milho-feijão; 2 soja-trigo; 3 soja-trigo-soja-feijão-arroz-feijão e 4 milho-feijão-milho-feijão-arroz-feijão. As culturas de arroz, soja e milho, foram semeadas em novembro-dezembro e as de feijão e trigo, em maio-junho. Para efeito do estudo, consideraram-se somente as culturas do milho, da soja e do trigo. O sistema de preparo do solo não afetou a produtividade de soja mas, sim, a de milho e de trigo, tendo o preparo com arado propiciado maiores produtividades em comparação com o plantio direto. As diferenças entre o plantio direto e os demais sistemas de preparo do solo, com relação à produtividade acumulada relativa de milho, diminuíram com o tempo de cultivo. Não houve efeito da rotação de culturas sobre a produtividade das culturas estudadas.The objective of this study was to determine how much soil tillage and crop rotation affected grain yield of corn, soybean and wheat. The study was carried out at EMBRAPA (Rice and Beans, in Santo Antônio de Goiás, GO, Brazil, in a Red Latosol (Oxisol, under center pivot irrigation system, for six consecutive years. During the experimentation, 12 crops were cultivated. The tillage treatments were a moldboard plough, b harrow disc and c no-tillage. The crop rotations were 1 corn-bean, 2 soybean-wheat, 3 soybean

  6. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment. Keywords: Atmosphere, Greenhouse gases, Conservation tillage, Sustainable crop yield

  7. Nitrate Leaching, Yields and Carbon Sequestration after Noninversion Tillage, Catch Crops, and Straw Retention

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E

    2015-01-01

    Crop management factors, such as tillage, rotation, and straw retention, need to be long-term to allow conclusions on effects on crop yields, nitrate leaching, and carbon sequestration. In 2002, two field experiments, each including four cash crop rotations, were established on soils with 9 and 15......% clay, under temperate, coastal climate conditions. Direct drilling and harrowing to two different depths were compared to plowing with respect to yield, nitrate N leaching, and carbon sequestration. For comparison of yields across rotations, grain and seed dry matter yields for each crop were converted...... fodder radish due to the efficient catch crop. Soil organic carbon (SOC) did not increase significantly after 7 yr of straw incorporation or noninversion tillage. There was no correlation between N balances calculated for each growing season and N leaching measured in the following percolation period....

  8. Propriedades físicas do solo sob preparo convencional e semeadura direta em rotação e sucessão de culturas, comparadas às do campo nativo Physical soil properties of conventional tillage and no-tillage, in crop rotation and succession, compared with natural pasture

    Directory of Open Access Journals (Sweden)

    I. Bertol

    2004-02-01

    sustentabilidade da semeadura direta no que se refere à estabilidade dos agregados em água. Os sistemas de cultivo não influenciaram as propriedades físicas do solo.In soils with naturally favorable characteristics for cultivation, conventional tillage degrades the physical soil properties, since this management system causes the rupture of aggregates, soil compaction, and eliminates soil cover. No-tillage, on the other hand, maintains soil cover and improves physical properties, but consolidates the surface layer. Our study was conducted on a Haplumbrept soil, from May 1995 to April 2001. Five soil tillage treatments were used: conventional tillage crop rotation (CTR, conventional tillage crop succession (CTS, no-tillage crop rotation (NTR, no-tillage crop succession (NTS, and natural pasture (NP, in four replications each. The crop sequences were bean/fallow/maize/fallow/soybean/fallow in CTR, maize/fallow/maize/fallow/maize/fallow in CTS, bean/oat/maize/turnip/soybean/vetch in NTR and maize/vetch/maize/vetch/maize/vetch in NTS. Soil density, macroporosity, microporosity, total porosity, organic carbon, and water aggregate stability (MWD were evaluated in April 2001 for the soil layers 0-2.5, 2.5-5, 5-10, 10-15, 15-20, and 20-30 cm. In the 0-10 cm layer, soil density was higher in no-tillage than conventional tillage and natural pasture, while macroporosity, total porosity, and the macroporosity/total porosity relation was higher in conventional tillage in the mean for cropping systems, in this layer. Organic carbon, MWD, and sensibility index for MWD means of layers and tillage systems were higher in no-tillage and natural pasture than in conventional tillage.

  9. Earthworm populations are affected from Long-Term Crop Sequences and Bio-Covers under No-Tillage

    Science.gov (United States)

    Earthworms are crucial for improving soil biophysical properties in cropping systems. Consequently, effects of cropping rotation and bio-covers were assessed on earthworm populations under no-tillage sites. Main effects of 6 different cropping sequences [corn (Zea mays), cotton (Gossypium hirsutum),...

  10. THE INFLUENCE OF MINIMUM TILLAGE SYSTEMS UPON THE SOIL PROPERTIES, YIELD AND ENERGY EFFICIENCY IN SOME ARABLE CROPS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2006-05-01

    Full Text Available The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control, yield and energy efficiency in the case of maize (Zea mays L., soyabean (Glycine hispida L. and winter wheat (Triticum aestivum L. in a three years crop rotation. For all cultures within the crop rotation, the weed encroachment is maximum for the disc harrow and rotary harrow soil tillage, followed by the chisel and paraplow. The weed encroachment is minimum for the conventional ploughing tillage technology. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control.

  11. INFLUÊNCIA DO PREPARO DE SOLO E DA ROTAÇÃO DE CULTURAS NA SEVERIDADE DE PODRIDÕES RADICULARES NO FEIJOEIRO COMUM EFFECTS OF SOIL TILLAGE SYSTEM AND CROP ROTATION ON DRY BEAN ROOT ROT SEVERITY

    Directory of Open Access Journals (Sweden)

    Pedro Marques da Silveira

    2007-09-01

    Full Text Available

    As podridões radiculares do feijoeiro são causadas pelos fungos Rhizoctonia solani Kühn e Fusarium solani f. sp. phaseoli Snyd. & Hans. Neste trabalho testou-se a combinação dos fatores preparo de solo e rotação de culturas, além de se avaliarem seus efeitos sobre as podridões radiculares do feijoeiro. Os tipos de preparo de solo consistiram em: arado+grade (P1, arado (P2, grade (P3 e plantio direto (P4. As rotações de culturas foram: arroz-feijão (R1, milho-feijão (R2, arroz/calopogônio (Calopogonium muconoides-feijão (R3 e milho-feijão-milho-feijão-arroz-feijão (R4. A severidade de F. solani f. sp. phaseoli, avaliada aos 25 dias após o plantio, apresentou interação significativa, sendo a maior severidade encontrada na combinação da rotação R3 com o preparo de solo P1, e a menor severidade, na combinação da rotação R2 com o preparo de solo P3. Diferenças estatísticas ocorreram na severidade da doença provocada por R. solani. O preparo de solo P3 apresentou maior severidade que P4, e, entre as rotações, R3 apresentou a maior severidade da doença.

    PALAVRAS-CHAVE: Rhizoctonia solani; Fusarium solani f. sp. phaseoli; práticas culturais; fungos.

    Dry bean root rot is caused by the fungi Rhizoctonia solani Kühn and Fusarium solani f. sp. phaseoli Snyd. & Hans.The effects of the interaction between soil tillage systems andcrop rotation on the severity of root rot was tested. The soiltillage systems consisted of plough+harrow (P1, plough (P2,harrow (P3 and no tillage (P4 and the crop rotation treatmentswere rice-bean (R1, corn-bean (R2, rice/Calopogonium muconoides-bean (R3 and corn

  12. European Perspectives on the Adoption of Non-Chemical Weed Management in Reduced Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, B.; Munier-Jolan, N.; Schwarz, J.

    2012-01-01

    consumption appears to be slightly higher as compared to plough based cropping systems. Annual grass weeds and stickywilly often constitute the principal weed problems when the soil is not inverted because crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign......Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape (canola) and maize (corn) in Europe. However, new regulations on pesticide use may hinder further...

  13. Effects of tillage on the activity density and biological diversity of carabid beetles in spring and winter crops.

    Science.gov (United States)

    Hatten, Timothy D; Bosque-Pérez, Nilsa A; Labonte, James R; Guy, Stephen O; Eigenbrode, Sanford D

    2007-04-01

    The effects of tillage regimen (conventional [CT] and no-tillage [NT]) on the activity density and diversity of carabid beetles (Coleoptera: Carabidae) was studied by pitfall trapping within a rain-fed cropping system in northwestern Idaho, 2000-2002. The cropping rotation consisted of a spring cereal (barley, Hordeum vulgare L., in 2000 and 2001; and wheat, Triticum aestivum L., in 2002), spring dry pea (Pisum sativum L.) 2000-2002, and wheat (T. aestivum), spring in 2000 and 2001, and winter in 2002. A total of 14,480 beetles comprised of 30 species was captured, with five numerically dominant species [Poecilus scitulus L., Poecilus lucublandus Say, Microlestes linearis L., Pterostichus melanarius Ill., and Calosoma cancellatum (Eschscholtz)], accounting for 98% of all captures. All species including the dominants responded idiosyncratically to tillage regimen. Adjusting for trapping biases did not significantly change seasonal activity density of Poecilus spp. or Pt. melanarius to tillage. More beetles were captured in CT than in NT crops because of the dominance of P. scitulus in CT, whereas species richness and biological diversity were generally higher in NT crops. Observed patterns suggest that direct effects of tillage affected some species, whereas indirect effects related to habitat characteristics affected others. CT may provide habitat preferable to xerophilic spring breeders. A relationship was found between beetle species size and tillage regimen in pea and to a lesser extent across all spring crops, with large species (>14 mm) conserved more commonly in NT, small species (tillage systems.

  14. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-01-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled -N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat–maize double-cropping systems in the North China Plain. PMID:25859321

  15. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems Atividade enzimática em solo sob plantio direto e rotações de culturas em agro-ecossistema subtropical

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2004-12-01

    Full Text Available Agricultural practices that reduce soil degradation and improve agricultural sustainability are needed particularly for tropical/subtropical soils. No-tillage planting causes minimal soil disturbance and combined with crop rotation may hold potential to meet these goals. Soil enzyme activities can provide information on how soil management is affecting the potential to perform the processes in soils such as decomposition and nutrient cycling. Soil enzyme activities were investigated in a split-plot experiment (3 replications where tillage (no till and conventional was the main plot and crop rotation (soybean/wheat, S/W; maize/wheat, M/W or cotton/wheat, C/W was the subplot. The experiment was established in 1976 in southern Brazil. Soil samples were taken at 0-5, 5-10 and 10-20 cm depths in 1997 and 1998. The 0-5 cm layer under NT system showed increases up 68% for amylase, 90% for cellulase, 219% for arylsulfatase, 46% for acid phosphatase, and 61% for alkaline phosphatase. There were significant correlations of soil enzyme activities with total organic C, and C and N microbial biomass. These results showed that NT increased microbial activity and that soil enzyme activity is a sensitive indicator of alteration soil quality by management.Práticas agrícolas que reduzam a degradação do solo e promovam sustentabilidade são importantes para os agrossistemas tropicais/subtropicais. O plantio direto (PD diminui as perdas de solo e, se combinado com rotação de culturas pode proteger o solo da degradação físico-química provocada pela agricultura intensiva. A atividade enzimática do solo pode fornecer importantes informações de como o manejo do solo está afetando a decomposição da material orgânica e a ciclagem dos nutrientes. Assim, avaliou-se a atividade das enzimas amilase, celulose, arilsulfatase, fosfatase ácida e fosfatase alcalina em um experimento a campo, instalado em 1976 em Londrina, PR, que tem como tratamentos o preparo

  16. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    soil features resulted in a positive impact on the water permeability of the soil. Availability of soil moisture during the crop growth resulted in better plant water status. Subsequent release of conserved soil water regulated proper plant water status, soil structure, and lowered soil penetrometer resistance. Productions obtained at STC did not have significant differences for the wheat and maize crop but were higher for soybean. The advantages of minimum soil tillage systems for Romanian pedo-climatic conditions can be used to improve methods in low producing soils with reduced structural stability on sloped fields, as well as measures of water and soil conservation on the whole agroecosystem. Presently, it is necessary to make a change concerning the concept of conservation practices and to consider a new approach regarding the good agricultural practice. We need to focus on an upper level concerning conservation by focusing on soil quality. Carbon management is necessary for a complexity of matters including soil, water management, field productivity, biological fuel and climatic change. In conclusion a Sustainable Agriculture includes a range of complementary agricultural practices: (i) minimum soil tillage (through a system of reduced tillage or no-tillage) to preserve the structure, fauna and soil organic matter; (ii) permanent soil cover (cover crops, residues and mulches) to protect the soil and help to remove and control weeds; (iii) various combinations and rotations of the crops which stimulate the micro-organisms in the soil and controls pests, weeds and plant diseases. Acknowledgements: This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change, and International Cooperation Program - Sub-3.1. Bilateral AGROCEO c. no. 21BM

  17. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    , penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K...... benefit of using a combination of cover crops and direct drilling to produce a better soil friability. The usefulness of the VESS method for soil structural evaluation was supported by the high positive correlation of MWD with VESS scores.......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  18. The effect of conservation tillage on crop yield in China

    Directory of Open Access Journals (Sweden)

    Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG

    2015-06-01

    Full Text Available Traditional agricultural practices have resulted in decreased soil fertility, shortage of water resources and deterioration of agricultural ecological environment, which are seriously affecting grain production. Conservation tillage (CT research has been developed and applied in China since the 1960s and 1970s, and a series of development policies have been issued by the Chinese government. Recent research and application have shown that CT has positive effects on crop yields in China. According to the data from the Conservation Tillage Research Center (CTRC, Chinese Ministry of Agriculture (MOA, the mean crop yield increase can be at least 4% in double cropping systems in the North China Plain and 6% in single cropping systems in the dryland areas of North-east and North-west China. Crop yield increase was particularly significant in dryland areas and drought years. The mechanism for the yield increase in CT system can be attributed to enhanced soil water content and improved soil properties. Development strategies have been implemented to accelerate the adoption of CT in China.

  19. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...... depths, pore characteristics did not differ significantly among tillage treatments. At the 12- to 16-cm depth, negative effects of reduced tillage (D and H) were recorded for total porosity and air-filled porosity at −10 kPa (that is, >30-μm pores). Generally, the use of a cover crop increased air......-filled porosity at −10 kPa, air permeability, and pore organization and reduced the value of blocked air porosity at all depths for all tillage treatments. Our results show that the cover crop created continuous macropores and in this way improved the conditions for water and gas transport and root growth...

  20. Nitrate Leaching From Grain Maize After Different Tillage Methods and Long/Short Term Cover Cropping

    DEFF Research Database (Denmark)

    Hansen, Elly Møller

    trial initiated in 1968 on a coarse sandy soil. The previous trial included spring sown crops undersown (with or without) perennial ryegrass (Lolium perenne L.) as cover crop, two N-rates (90 and 120 kg N ha-1) and different tillage methods (shallow tillage and ploughing autumn or spring). With maize......) previous history of long-term cover cropping, ii) soil tillage methods, iii) N rates and iv) present short-term use of cover cropping in maize. Preliminary results from 2009 – 2011 suggest that leaching after a history of cover cropping tended to be higher than after no history of cover cropping......, but the effect was insignificant. The effect of tillage and previous N rates were also insignificant but the present use of cover crops had a small but significant decreasing effect on leaching compared to no cover cropping. The cover crop was well established in both years but grew less vigorously during autumn...

  1. Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

    Science.gov (United States)

    Moraru, P. I.; Rusu, T.

    2012-04-01

    Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS

  2. Long-term Tillage and Nitrogen Fertilization Effects on Soil Properties and Crop Yields

    OpenAIRE

    Muhajir Utomo; Irwan Sukri Banuwa; Henrie Buchari; Yunita Anggraini; Berthiria

    2013-01-01

    The impact of agricultural intensification on soil degradation now is occurring in tropical countries. The objective of this study was to determine the effect of long-term tillage and N fertilization on soil properties and crop yields in corn-soybean rotation. This long-term study which initiated since 1987 was carried out on a Typic Fragiudult soil at Politeknik Negeri Lampung, Sumatra (105o13’45.5"-105o13’48.0"E, 05o21’19.6"-05o21’19.7"S) in 2010 and 2011. A factoria...

  3. Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management

    Directory of Open Access Journals (Sweden)

    Wilhelm Claupein

    2013-09-01

    Full Text Available A field experiment was performed in Southwest Germany to examine the effects of long-term reduced tillage (2000–2012. Tillage treatments were deep moldboard plow: DP, 25 cm; double-layer plow; DLP, 15 + 10 cm, shallow moldboard plow: SP, 15 cm and chisel plow: CP, 15 cm, each of them with or without preceding stubble tillage. The mean yields of a typical eight-year crop rotation were 22% lower with CP compared to DP, and 3% lower with SP and DLP. Stubble tillage increased yields by 11% across all treatments. Soil nutrients were high with all tillage strategies and amounted for 34–57 mg kg−1 P and 48–113 mg kg−1 K (0–60 cm soil depth. Humus budgets showed a high carbon input via crops but this was not reflected in the actual Corg content of the soil. Corg decreased as soil depth increased from 13.7 g kg−1 (0–20 cm to 4.3 g kg−1 (40–60 cm across all treatments. After 12 years of experiment, SP and CP resulted in significantly higher Corg content in 0–20 cm soil depth, compared to DP and DLP. Stubble tillage had no significant effect on Corg. Stubble tillage combined with reduced primary tillage can sustain yield levels without compromising beneficial effects from reduced tillage on Corg and available nutrient content.

  4. Controle de plantas daninhas em feijão num sistema de rotação culturas em plantio direto Weed control in beans in a no-tillage crop rotation system

    Directory of Open Access Journals (Sweden)

    Benedito N. Rodrigues

    1995-01-01

    Full Text Available O objetivo deste trabalho foi selecionar culturas de inverno para formação de cobertura morta que reduza a população de plantas daninhas na cultura do feijão (Phaseolus vulgaris. Ocupou-se o terreno durante o ano todo, com a sucessão, em plantio direto, de pousio ou cultura de inverno/feijão/cultura para silagem, estudando-se três modalidades de controle de plantas daninhas na cultura do feijão. A maior renda líquida acumulada após duas safras foi obtida com feijão semeado sobre palha de aveia-preta e controle de plantas daninhas com um gramicida pré-emergente, completando-se com capinas, quando necessário.This study was undertaken to select winter crops for mulching to reduce the weed infestation and to lower weed control costs in bean (Phaseolus vulgaris production. The soil was kept convered all the year under no-tillage with a sequence of a winter crop or fallow/beans/silage crop. Three weed control methods for beans were studied. After two complete crop sequences, the highest total net income was obtained with the beans directly drilled on the black oats (Avena strigosa mulching, spraying a pre-emergence grasskiller plus hoeing when needed.

  5. Weed control through crop rotation and alternative management practices

    Directory of Open Access Journals (Sweden)

    Böhm, Herwart

    2014-02-01

    Full Text Available Economic as well as agricultural and socio-political changes have an impact on crop management and thus also on crop rotation design and the related effects on the weed flora. Likewise other changes in cultivation such as reduced tillage practices, earlier sowing date, etc. cause an increase in weed infestation resp. an increased use of herbicides and if so contribute to herbicide resistance. The positive effects of crop rotation, but also of alternative management practices such as choice of varieties, catch crops, mixed cropping, green chop, and the share of predators, as well as methods of direct non-chemical weed control are presented and discussed for both, conventional and organic farming. If alternative management methods should be more practiced, especially trade-offs need to be broken, or incentives be offered.

  6. Crop rotation with no-till methods in cotton production of Uzbekistan

    Directory of Open Access Journals (Sweden)

    Botir Khaitov

    2014-01-01

    Full Text Available Many soils of Uzbekistan have low water and nutrient holding capacity because of their sandy texture, low organic matter concentrations and degradation caused by long years of cotton monoculture. Conservation tillage production systems have the potential to increase the productivity of these soils by increasing soil humus and nitrogen content. As practiced conservation tillage helped to lessen N leaching losses, holding more of these elements within the topsoil as well as increase crop productivity. Conventional tillage cotton/wheat/maize crop rotation has resulted very low humus and nitrogen content in soil by degreasing crop yield. Therefore, the effects of tillage, and crop rotation were examined on growth and yield of crops in three cotton-based rotation systems, (i cotton/wheat/maize, (ii cotton/wheat/sorghum and (iii cotton/wheat/soybean, in Tashkent region in middle east of Uzbekistan. This obtained result suggests that no tillage with inserting legumes in crop rotation is able to improve soil quality and plant productivity.

  7. Crop rotations and poultry litter impact dynamic soil chemical properties and soil biota long-term

    Science.gov (United States)

    Dynamic soil physiochemical interactions with conservation agricultural practices and soil biota are largely unknown. Therefore, this study aims to quantify long-term (12-yr) impacts of cover crops, poultry litter, crop rotations, and conservation tillage and their interactions on soil physiochemica...

  8. Reduced tillage and green manures for sustainable cropping systems - Overview of the TILMAN-ORG project

    OpenAIRE

    Mäder, Paul

    2013-01-01

    Reduced tillage and green manures are environmentally friendly practices that increase levels of soil organic matter and biological activity, improve soil stability, and reduce fuel consumption and may mitigate the climate impact of crop production. The avoidance of deep ploughing is successfully practiced as no-tillage agriculture in conventional farming systems. However, these no-tillage systems rely on herbicides for weed control and mineral fertilisers for plant nutrients. As these inputs...

  9. Atributos químicos de um Cambissolo Húmico após 12 anos sob preparo convencional e semeadura direta em rotação e sucessão de culturas Chemical properties of a Humic Dystrudept after 12 years under conventional and no tillage with crop succession and rotation

    Directory of Open Access Journals (Sweden)

    Andréia Patrícia Andrade

    2012-05-01

    Full Text Available O manejo adequado do solo é uma das bases para a sustentabilidade do sistema agrícola. O objetivo do estudo foi avaliar atributos químicos de um Cambissolo Húmico Alumínico após 12 anos em dois sistemas de preparo do solo, com rotação e sucessão de culturas. O experimento foi conduzido em Lages, SC, utilizando preparo convencional (PC e semeadura direta (SD, sob rotação (r e sucessão (s de culturas. O delineamento experimental foi inteiramente casualizado com quatro repetições. As sequências de cultivo foram: feijão-pousio-milho-pousio-soja-pousio no PCr; milho-pousio no PCs; feijão-aveia-milho-nabo-soja-ervilhaca na SDr; e milho-ervilhaca na SDs. As amostras de solo foram coletadas nas camadas 0-2,5; 2,5-5; 5-10; e 10-20cm. Avaliou-se carbono orgânico total (COT, cálcio, magnésio, alumínio trocável, fósforo, potássio, nitrogênio total (NT e pH em água. A SD aumentou os teores de COT e nutrientes em comparação ao PC, especialmente na camada superficial do solo. O cultivo de milho e ervilhaca em sucessão aumentou os teores de COT e NT na camada superficial do solo em comparação com a rotação sob semeadura direta.Suitable soil management is one of the bases for sustainability in agricultural systems. The study aimed to evaluate chemical properties of a Humic Dystrudept for 12 years under two tillage systems, with crops rotation and succession. The experiment was carried out in Lages, SC, under conventional tillage (CT and no-till (NT, with rotation (r and succession (s cropping systems, using crop sequences of beans-fallow-maize-fallow-soybean in CTr; maize-fallow in CTs; beans-oats-maize-fodder radish-soybean-vetch in NTr; and maize-vetch in NTs. The experimental design was completely randomized with four replicates. The soil samples were collected in the layers 0-2.5, 2.5-5, 5-10 and 10-20cm. The variables assessed were total organic carbon (TOC, calcium, magnesium, exchangeable aluminum, phosphorus, potassium

  10. Evaluating spectral indices for determining conservation and conventional tillage systems in a vetch-wheat rotation

    Directory of Open Access Journals (Sweden)

    Iraj Eskandari

    2016-06-01

    CAI had a linear relationship with crop residue cover, which the comparative intensity of cellulose and lignin absorption features near 2100 nm can be measure by it. Coefficients of determination (r2 for crop residue cover as a function of CAI and LCA were 0.89 and 0.79 respectively. Absorption specifications near 2.1 and 2.3 µm in the reflectance spectra of crop residues in minimum and no- tillage systems were related to cellulose and lignin. These specifications were not evident in the spectra of conventional tillage system. In this study the best index to use was CAI, which showed complete separation tillage systems, followed by LCA and NDTI. Four tillage intensity classes, corresponding to intensive (60% cover tillage, were recognized in this study.

  11. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions

    Science.gov (United States)

    Islam, Md. Monirul; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  12. Rotação de culturas no sistema plantio direto em Tibagi (PR: I - Sequestro de carbono no solo Crop rotation under no-tillage in Tibagi (Paraná State, Brazil: I - Soil carbon sequestration

    Directory of Open Access Journals (Sweden)

    Marcos Siqueira Neto

    2009-08-01

    Full Text Available Os manejos conservacionistas, como o sistema plantio direto (SPD, podem ser considerados uma atividade com potencial para sequestrar C no solo. Os objetivos deste trabalho foram quantificar os estoques de C no solo e, juntamente com a dedução das emissões de óxido nitroso (N2O, calcular o sequestro de C do solo sob SPD com diferentes tempos de implantação em duas sucessões de culturas. O experimento foi instalado na Fazenda Santa Branca, em Tibagi (PR, em um Latossolo Vermelho distroférrico de textura argilosa. Os tratamentos, dispostos em faixas não casualizadas com parcelas subdivididas, foram: plantio direto por 12 anos com sucessões milho/trigo e soja/trigo (PD12 M/T e PD12 S/T, respectivamente e por 22 anos (PD22 M/T e PD22 S/T, respectivamente. Os estoques de C no solo aumentaram com o tempo de implantação do SPD; o incremento no C do solo em 10 anos foi de 35 %, com uma taxa anual de acúmulo de 1,94 t ha-1 ano-1 . A simulação do estoque de C do solo com o uso do modelo unicompartimental mostrou que o elevado aporte de resíduos culturais e a rotação de culturas com uso de leguminosas reduziram a mineralização da matéria orgânica, o que favoreceu o acúmulo de C no solo. As emissões de N2O foram 25 % mais elevadas na sucessão milho/trigo, em relação à soja/trigo, e os diferentes tempos de SPD não promoveram aumento das emissões do N2O. O balanço entre a taxa de acúmulo de C e a emissão de óxido nitroso mostrou que o sistema apresentou saldo positivo no acúmulo de C no solo, o que significou o sequestro de CO2 de 6 t ha-1 ano-1 .Conservationist soil management systems such as no-tillage (NT can be considered activities with potential to increase soil carbon sequestration. The objective of this study was to quantify the soil C stocks and, along estimations of the nitrous oxide (N2O emissions, calculate the soil C sequestration under NT for different times of implantation in two crop successions. The

  13. Ammonium sulphate on maize crops under no tillage

    Directory of Open Access Journals (Sweden)

    Maria Anita Gonçalves da Silva

    2012-01-01

    Full Text Available The objectives of this work were to evaluate the management of N and S (as ammonium sulphate fertilization under no-tillage system on the components of maize productivity and on N and S accumulation in the crop, as well as to evaluate the minimum value of the Nitrogen Sufficiency Index (NSI 0.95 as an indicator for side dressing requirements. The experiment had a completely randomized block design with six treatments and four replications carried out in Red Latosol dystrophic soil (Hapludox, in Campo Mourão, Paraná State, where the following treatments in summer growth maize were applied: T1- 120 kg ha-1 N in seeding; T2- 120 kg ha-1 N in side dressing; T3- 40 kg ha-1 N in seeding and 80 kg ha-1 N in side dressing; T4- 30 kg ha-1 N in seeding and 90 kg ha-1 N in side dressing, monitored by a chlorophyll meter using the Nitrogen Sufficiency Index (NSI; T5- 120 kg ha-1 N anticipated in wheat seeding; T6- without nitrogen fertilization. NSI was determined by the relationship between the leaf chlorophyll index (ICF average of T4 plants and that one in the plot fertilized with 120 kg ha-1 N at the maize seed sowing (T1. During two years, ammonium sulphate was applied to the maize crop after wheat under no tillage system. In the first year, with adequate rainfall, the maize yield was similar to the one in which the complete ammonium sulphate dose application was done in maize seeding and side dressing. The anticipated fertilization to wheat seed sowing resulted in maize yield without difference from the parceled form. In the second year, with irregular rainfall, all treatments with N were similar and they increased maize yield compared to that without N fertilization. NSI of 0.95 was not efficient to evaluate maize N requirements in side dressing, and resulted in lower maize yield. N was accumulated mainly in the grains unlike S that accumulated in the plant shoots; both were highly correlated to maize productivity.

  14. Tillage, cropping sequence, and nitrogen fertilization effects on dryland soil carbon dioxide emission and carbon content.

    Science.gov (United States)

    Sainju, Upendra M; Jabro, Jalal D; Caesar-Tonthat, Thecan

    2010-01-01

    Management practices are needed to reduce dryland soil CO(2) emissions and to increase C sequestration. We evaluated the effects of tillage and cropping sequence combinations and N fertilization on dryland crop biomass (stems + leaves) and soil surface CO(2) flux and C content (0- to 120-cm depth) in a Williams loam from May to October, 2006 to 2008, in eastern Montana. Treatments were no-tilled continuous malt barley (Hordeum vulgaris L.) (NTCB), no-tilled malt barley-pea (Pisum sativum L.) (NTB-P), no-tilled malt barley-fallow (NTB-F), and conventional-tilled malt barley-fallow (CTB-F), each with 0 and 80 kg N ha(-1). Measurements were made both in Phase I (malt barley in NTCB, pea in NTB-P, and fallow in NTB-F and CTB-F) and Phase II (malt barley in all sequences) of each cropping sequence in every year. Crop biomass varied among years, was greater in the barley than in the pea phase of the NTB-P treatment, and greater in NTCB and NTB-P than in NTB-F and CTB-F in 2 out of 3 yr. Similarly, biomass was greater with 80 than with 0 kg N ha(-1) in 1 out of 3 yr. Soil CO(2) flux increased from 8 mg C m(-2) h(-1) in early May to 239 mg C m(-2) h(-1) in mid-June as temperature increased and then declined to 3 mg C m(-2) h(-1) in September-October. Fluxes peaked immediately following substantial precipitation (>10 mm), especially in NTCB and NTB-P. Cumulative CO(2) flux from May to October was greater in 2006 and 2007 than in 2008, greater in cropping than in fallow phases, and greater in NTCB than in NTB-F. Tillage did not influence crop biomass and CO(2) flux but N fertilization had a variable effect on the flux in 2008. Similarly, soil total C content was not influenced by treatments. Annual cropping increased CO(2) flux compared with crop-fallow probably by increasing crop residue returns to soils and root and rhizosphere respiration. Inclusion of peas in the rotation with malt barley in the no-till system, which have been known to reduce N fertilization rates and

  15. Nitrogen Transfer from Cover Crop Residues to Onion Grown under Minimum Tillage in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Leoncio de Paula Koucher

    2017-08-01

    Full Text Available ABSTRACT Nitrogen derived from cover crop residues may contribute to the nutrition of onion grown under minimum tillage (MT and cultivated in rotation. The aim of this study was to evaluate the N transferred from different cover crop residues to the onion crop cultivated under MT in southern Brazil. In June 2014, oilseed radish, black oat, and oilseed radish + black oat residues labeled with 15N were deposited on the soil surface before transplanting onions. During the growth season and at harvest, young expanded onion leaves, complete plants, and samples from different soil layers were collected and analyzed for recovery of 15N-labeled residue. Oilseed radish decomposed faster than other residues and 4 % of residue N was recovered in leaves and bulbs at harvest, but in general, N in plant organs was derived from sources other than the cover crop residues. In addition, leaf N was in the proper range for all treatments and was adequately mobilized to the bases for bulbing. The N derived from decomposing residues contributed little to onion development and the use of these plants should be chosen based on their advantages for physical and biological soil quality.

  16. Effect of stubble management, tillage and cropping sequence on the ...

    African Journals Online (AJOL)

    2 mai 2001 ... The adoption of conservation tillage practices for wheat production in Ethiopia should not be hindered for fear of spreading these specific trash-borne diseases, although, full stubble retention could increase the severity of eyespot. Key Words: Conservation tillage, Pseudocercosporella herpotrichoides ...

  17. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy

    DEFF Research Database (Denmark)

    Mutegi, James; Munkholm, Lars Juhl; Petersen, Bjørn Molt

    2010-01-01

      Mixed responses of soil nitrous oxide (N2O) fluxes to reduced tillage/no-till are widely reported across soil types and regions. In a field experiment on a Danish sandy loam soil we compared N2O emissions during winter barley growth following five years of direct drilling (DD), reduced tillage...... (RT) or conventional tillage (CT). Each of these tillage treatments further varied in respect to whether the resulting plot crop residues were retained (+Res) or removed (-Res). Sampling took place from autumn 2007 to the end of spring 2008. Overall N2O emissions were 27 and 26% lower in DD and RT......, respectively, relative to N2O emissions from CT plots (P tillage treatments, but in residue retention scenarios N2O emissions were significantly higher in CT than in either DD or RT (P 

  18. Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Kersebaum, Kurt C; Kollas, Chris

    2017-01-01

    simulating different treatments (catch crops, CO2 concentrations, irrigation, N application, residues and tillage) in four multi-year rotation experiments in Europe to assess modelling accuracy. Seven grain and seed crops in four rotation systems in Europe were included in the study, namely winter wheat...... than a random single model. Models correctly simulated the effects of enhanced N input on grain N of winter wheat and winter barley, whereas effects of tillage and irrigation were less well estimated. However, the use of continuous simulation did not improve the simulations as compared to single year......Realistic estimation of grain nitrogen (N; N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous...

  19. Tillage effects on N2O emissions as influenced by a winter cover crop

    DEFF Research Database (Denmark)

    Petersen, Søren O; Mutegi, James; Hansen, Elly Møller

    2011-01-01

    emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover...... application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250–400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop......Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O...

  20. Tillage as a tool to manage crop residue: impact on sugar beet production.

    Science.gov (United States)

    Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard

    2015-04-01

    Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.

  1. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  2. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality......This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... in field using a visual method, measured unsaturated hydraulic conductivity at -4 hPa in field and determined aggregate size distribution after a drop shatter test for soil taken from 10-20 cm depth. The drop shatter test data showed significantly lowest mean weight diameter (MWD) for P than for H and D...

  3. Variations in thematic mapper spectra of soil related to tillage and crop residue management - Initial evaluation

    Science.gov (United States)

    Seeley, M. W.; Ruschy, D. L.; Linden, D. R.

    1983-01-01

    A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.

  4. Sediment and PM10 flux from no-tillage cropping systems in the Pacific Northwest

    Science.gov (United States)

    Wind erosion is a concern in the Inland Pacific Northwest (PNW) United States where the emission of fine particulates from winter wheat – summer fallow (WW/SF) dryland cropping systems during high winds degrade air quality. Although no-tillage cropping systems are not yet economically viable, these ...

  5. Effects of tillage and cropping systems on yield and nitrogen fixation ...

    African Journals Online (AJOL)

    Published information is scanty on the response of crops in mixed cropping systems to the various tillage systems practised by farmers in the northern savanna zone of Ghana. A field experiment assessed the yield and nitrogen (N) fixation of cowpea (Vigna unguiculata (L.) Walp) intercropped with maize (Zea mays L.) on ...

  6. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  7. Tillage erosion and its effect on soil properties and crop yield in Denmark.

    Science.gov (United States)

    Heckrath, G; Djurhuus, J; Quine, T A; Van Oost, K; Govers, G; Zhang, Y

    2005-01-01

    Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.

  8. How do soil physical conditions for crop growth vary over time under established contrasting tillage regimes?

    Science.gov (United States)

    Hallett, Paul; Stobart, Ron; Valentine, Tracy; George, Timothy; Morris, Nathan; Newton, Adrian; McKenzie, Blair

    2014-05-01

    When plant breeders develop modern cereal varieties for the sustainable intensification of agriculture, insufficient thought is given to the impact of tillage on soil physical conditions for crop production. In earlier work, we demonstrated that barley varieties that perform best in ploughed soil (the approach traditionally used for breeding trials) were not the same as those performing best under shallow non-inversion or zero-tillage. We also found that the Quantitative Trait Loci (QTL) associated with improved phosphorus uptake, and hence useful for marker assisted breeding, were not robust between different tillage regimes. The impact of the soil environment had greater impact than the genetics in GxE interactions. It is obvious that soil tillage should be considered when breeding the next generation of crops. Tillage may also have important impacts on carbon storage, but we found that despite greater soil carbon at shallow depths under non-inversion tillage, the carbon stored throughout the soil profile was not affected by tillage. Studies on soil tillage impacts to crop productivity and soil quality are often performed in one season, on single sites that have had insufficient time to develop. Our current research explores multiple sites, on different soils, with temporal measurements of soil physical conditions under contrasting tillage regimes. We use the oldest established contemporary tillage experiments in the United Kingdom, with all sites sharing ploughed and shallow (7cm) non-inversion tillage treatments. In eastern Scotland (Mid Pilmore), the site also has zero tillage and deep ploughing (40 cm) treatments, and was established 11 years ago. In east England there are two sites, both also having a deep non-inversion tillage treatment, and they were established 6 (New Farm Systems) and 8 (STAR) years ago. We measure a range of crop and soil properties at sowing, one month after sowing and post-harvest, including rapid lab based assays that allow high

  9. Catch crop biomass production, nitrogen uptake and root development under different tillage systems

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller

    2012-01-01

    ). Above-ground biomass production and N uptake were measured in the catch crops and the main crop. Catch crop root growth was studied using both minirhizotron and core methods. Soil penetration resistance was recorded to 60 cm depth. Fodder radish and RG produced up to 1800 kg/ha dry matter and DW 900 kg...... tinctoria L.), perennial ryegrass (RG) (Lolium perenne L.) and fodder radish (FR) (Raphanus sativus L.) under three tillage systems. For that, we used a tillage experiment established in 2002 on a Danish sandy loam. The tillage treatments were direct drilling (D), harrowing to 8–10 cm (H) and ploughing (P...... significant in 2008. The minirhizotron root measurements showed that the crucifers FR and DW achieved better subsoil rooting than RG. In contrast, the soil core data showed no significant difference between FR and RG in subsoil root growth. Our study highlights the need for further studies on subsoil root...

  10. Determination of crop residues and the physical and mechanical properties of soil in different tillage systems

    Directory of Open Access Journals (Sweden)

    P Ahmadi Moghaddam

    2016-04-01

    Full Text Available Introduction: Monitoring and management of soil quality is crucial for sustaining soil function in ecosystem. Tillage is one of the management operations that drastically affect soil physical quality. Conservation tillage methods are one of the efficient solutions in agriculture to reduce the soil erosion, air pollution, energy consumption, and the costs, if there is a proper management on the crop residues. One of the serious problems in agriculture is soil erosion which is rapidly increased in the recent decades as the intensity of tillage increases. This phenomenon occurs more in sloping lands or in the fields which are lacking from crop residues and organic materials. The conservation tillage has an important role in minimizing soil erosion and developing the quality of soil. Hence, it has attracted the attention of more researchers and farmers in the recent years. Materials and Methods: In this study, the effect of different tillage methods has been investigated on the crop residues, mechanical resistance of soil, and the stability of aggregates. This research was performed on the agricultural fields of Urmia University, located in Nazloo zone in 2012. Wheat and barley were planted in these fields, consecutively. The soil texture of these fields was loamy clay and the factorial experiments were done in a completely randomized block design. In this study, effect of three tillage systems including tillage with moldboard (conventional tillage, tillage with disk plow (reduced tillage, chisel plow (minimum tillage and control treatment on some soil physical properties was investigated. Depth is second factor that was investigated in three levels including 0-60, 60-140, and 140-200 mm. Moreover, the effect of different percentages of crop residues on the rolling resistance of non-driving wheels was studied in a soil bin. The contents of crop residues have been measured by using the linear transects and image processing methods. In the linear

  11. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

    NARCIS (Netherlands)

    Melander, B.; Munier-Jolain, N.M.; Charles, R.; Wirth, J.; Schwarz, J.; Weide, van der R.Y.; Bonin, L.; Jensen, P.K.; Kudsk, P.K.

    2013-01-01

    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of

  12. Crop rotation modelling - A European model intercomparison

    DEFF Research Database (Denmark)

    Kollas, Chris; Kersebaum, Kurt C; Nendel, Claas

    2015-01-01

    crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types...... accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree...... representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects....

  13. Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical Chinese rice-wheat rotation ecosystems

    Science.gov (United States)

    Yao, Zhisheng; Zhou, Zaixing; Zheng, Xunhua; Xie, Baohua; Liu, Chunyan; Butterbach-Bahl, Klaus; Zhu, Jianguo

    2010-03-01

    Tillage practices result in major changes to soil environmental conditions and to the distribution of crop residues and nutrients in the soil profile, which may consequently affect the biogenic production and emission of N trace gases. To investigate the effects of tillage during the nonwaterlogged period on nitric oxide (NO) and nitrous oxide (N2O) emissions in rice-wheat rotation systems, we performed field experiments at three sites (Suzhou, Wuxi, and Jiangdu) in the Yangtze River Delta using static chamber techniques. The results showed that the effect of tillage on the emissions of both gases differed among the three field sites due to differences in agricultural management and soil texture. At the site with a light soil texture (Jiangdu: sandy loam), no tillage resulted in reduced NO emissions (0.5 kg N ha-1) as compared to conventionally tilled fields (0.9 kg N ha-1; p tillage plots showed significantly higher emissions (p tillage resulted in lower NO and higher N2O emissions from either N fertilized or unfertilized fields even though these results were not statistically significant. In the silty clay loam soils (Suzhou), which showed the highest soil organic carbon contents and the highest rates of N trace gas emissions in all three of the investigated sites, reduced tillage resulted in much higher NO emissions, whereas N2O emissions were not obviously influenced by tillage practices (reduced tillage versus tillage: NO, 9.5 versus 5.4 kg N ha-1; N2O, 10.6 versus 9.0 kg N ha-1). Similar effects of tillage were observed for the direct emission factors of the applied N during the wheat season. The observed emission factors for the different sites ranged from 0.3% to 2.4% for N2O (mean: 1.0%) and from 0.1% to 4.0% (mean: 0.9%) for NO, respectively. The observed site-to-site differences in emission factors are most likely the results of variations in soil properties (such as texture and pH) and agricultural practices (such as tillage and crop residue management

  14. Rotação de culturas no sistema plantio direto em Tibagi (PR: II - Emissões de CO2 e N2O Crop rotation under no-tillage in Tibagi (Paraná State, Brazil: II - CO2 and N2O emissions

    Directory of Open Access Journals (Sweden)

    Marcos Siqueira Neto

    2009-08-01

    Full Text Available A atividade agrícola pode alterar a quantidade e qualidade da matéria orgânica do solo (MOS, resultando em emissões de dióxido de carbono (CO2 e óxido nitroso (N2O do solo para a atmosfera. O sistema plantio direto (SPD com a utilização de leguminosas em sistemas de rotação é uma estratégia que deve ser considerada tanto para o aumento da quantidade de MOS como para seu efeito na redução das emissões dos gases de efeito estufa. Com o objetivo de determinar os fluxos de gases do efeito estufa (CO2 e N2O do solo, um experimento foi instalado em Tibagi (PR, em um Latossolo Vermelho distroférrico textura argilosa. Os tratamentos, dispostos em faixas não casualizadas com parcelas subdivididas, foram: sistema plantio direto por 12 anos com sucessões milho/trigo e soja/trigo (PD12 M/T e PD12 S/T, respectivamente e por 22 anos (PD22 M/T e PD22 S/T, respectivamente. As emissões de CO2 do solo foram aproximadamente 20 % mais elevadas no PD22 em relação ao PD12. As emissões de CO2 apresentaram correlação significativa (R² = 0,85; p The agricultural activity can change the quantity and quality of soil organic matter (SOM, resulting in CO2 and N2O emissions from the soil. No-tillage (NT with legume species in crop rotation is a strategy that should be considered not only to increase the SOM quantity, but also to reduce greenhouse gas emissions. The objective of this study was to determine the soil-atmosphere gas emissions with greenhouse effect (CO2 and N2O. For this purpose, an experiment was installed in Tibagi (Paraná State, Brazil, on a clayey Oxisol (Typic Hapludox. The treatments were conducted in non-random strips with subdivided plots: no-tillage crop successions corn/wheat and soybean/wheat (NT12 M/T and NT12 S/T, respectively for 12 years and no-tillage (NT22 M/T and NT22 S/T, respectively for 22 years. The CO2 soil emissions were nearly 20 % higher in NT22 than in NT12. The CO2 emissions were significantly correlated (R

  15. Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L. under maize-based cropping systems

    Directory of Open Access Journals (Sweden)

    J.R. Meena

    2015-12-01

    Full Text Available Effect of tillage and crop residue management on soil properties, crop performance, energy relations and economics in greengram (Vigna radiata L. was evaluated under four maize-based cropping systems in an Inceptisol of Delhi, India. Soil bulk density, hydraulic conductivity and aggregation at 0–15 cm layer were significantly affected both by tillage and cropping systems, while zero tillage significantly increased the soil organic carbon content. Yields of greengram were significantly higher in maize–chickpea and maize–mustard systems, more so with residue addition. When no residue was added, conventional tillage required 20% higher energy inputs than the zero tillage, while the residue addition increased the energy output in both tillage practices. Maize–wheat–greengram cropping system involved the maximum energy requirement and the cost of production. However, the largest net return was obtained from the maize–chickpea–greengram system under the conventional tillage with residue incorporation. Although zero tillage resulted in better aggregation, C content and N availability in soil, and reduced the energy inputs, cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.

  16. Tillage and crop residue effects on rainfed wheat and maize production in Northern China

    NARCIS (Netherlands)

    Wang Xiaobin,; Wu Huijin,; Dai Kuai,; Zhang Dingchen,; Feng Donghui,; Zhao Quansheng,; Wu Xueping,; Jin Ke,; Cai Diangxiong,; Oenema, O.; Hoogmoed, W.B.

    2012-01-01

    Dryland farming in the dry semi-humid regions of northern China is dominated by mono-cropping systems with mainly maize (Zea mays L.) or wheat (Triticum aestivum), constrained by low and variable rainfall, and by improper management practices. Addressing these problems, field studies on tillage and

  17. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China

    Science.gov (United States)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-09-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0-5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G+/G-). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G+/G- compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems.

  18. Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage

    Energy Technology Data Exchange (ETDEWEB)

    Silvestro, L. B.; Stenglein, S. A.; Forjan, H.; Dinolfo, M. I.; Aramburri, A. M.; Manso, L.; Moreno, M. V.

    2013-05-01

    The presence of Fusarium species in cultivated soils is commonly associated with plant debris and plant roots. Fusarium species are also soil saprophytes. The aim of this study was to examine the occurrence and distribution of soil Fusarium spp. at different soil depths in a zero tillage system after the wheat was harvested. Soil samples were obtained at three depths (0-5 cm, 5-10 cm and 10-20 cm) from five crop rotations: I, conservationist agriculture (wheat-sorghum-soybean); II, mixed agriculture/livestock with pastures, without using winter or summer forages (wheat-sorghum-soybean-canola-pastures); III, winter agriculture in depth limited soils (wheat-canola-barley-late soybean); IV, mixed with annual forage (wheat-oat/Vicia-sunflower); V, intensive agriculture (wheat-barley-canola, with alternation of soybean or late soybean). One hundred twenty two isolates of Fusarium were obtained and identified as F. equiseti, F. merismoides, F. oxysporum, F. scirpi and F. solani. The most prevalent species was F. oxysporum, which was observed in all sequences and depths. The Tukey's test showed that the relative frequency of F. oxysporum under intensive agricultural management was higher than in mixed traditional ones. The first 5 cm of soil showed statistically significant differences (p=0.05) with respect to 5-10 cm and 10-20 cm depths. The ANOVA test for the relative frequency of the other species as F. equiseti, F. merismoides, F. scirpi and F. solani, did not show statistically significant differences (p<0.05). We did not find significant differences (p<0.05) in the effect of crop rotations and depth on Shannon, Simpson indexes and species richness. Therefore we conclude that the different sequences and the sampling depth did not affect the alpha diversity of Fusarium community in this system. (Author) 51 refs.

  19. Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage

    Directory of Open Access Journals (Sweden)

    L. B. Silvestro

    2013-01-01

    Full Text Available The presence of Fusarium species in cultivated soils is commonly associated with plant debris and plant roots. Fusarium species are also soil saprophytes. The aim of this study was to examine the occurrence and distribution of soil Fusarium spp. at different soil depths in a zero tillage system after the wheat was harvested. Soil samples were obtained at three depths (0-5 cm, 5-10 cm and 10-20 cm from five crop rotations: I, conservationist agriculture (wheat-sorghum-soybean; II, mixed agriculture/livestock with pastures, without using winter or summer forages (wheat-sorghum-soybean-canola-pastures; III, winter agriculture in depth limited soils (wheat-canola-barley-late soybean; IV, mixed with annual forage (wheat-oat/Vicia-sunflower; V, intensive agriculture (wheat-barley-canola, with alternation of soybean or late soybean. One hundred twenty two isolates of Fusarium were obtained and identified as F. equiseti, F. merismoides, F. oxysporum, F. scirpi and F. solani. The most prevalent species was F. oxysporum, which was observed in all sequences and depths. The Tukey’s test showed that the relative frequency of F. oxysporum under intensive agricultural management was higher than in mixed traditional ones. The first 5 cm of soil showed statistically significant differences (p=0.05 with respect to 5-10 cm and 10-20 cm depths. The ANOVA test for the relative frequency of the other species as F. equiseti, F. merismoides, F. scirpi and F. solani, did not show statistically significant differences (p<0.05. We did not find significant differences (p<0.05 in the effect of crop rotations and depth on Shannon, Simpson indexes and species richness. Therefore we conclude that the different sequences and the sampling depth did not affect the alpha diversity of Fusarium community in this system.

  20. MAIZE YIELD AND ITS STABILITY AS AFFECTED BY TILLAGE AND CROP RESIDUE MANAGEMENT IN THE EASTERN ROMANIAN DANUBE PLAIN

    Directory of Open Access Journals (Sweden)

    Alexandru COCIU

    2015-10-01

    Full Text Available Rainfed crop management systems need to be optimized to provide more resilient options in order to cope with projected climatic scenarios which are forecasting a decrease in mean precipitation and more frequent extreme drought periods in the Eastern Romanian Danube Plain. This research, carried out in the period of 2011-2014, had as main purpose the determination of influence of tillage practices and residue management on rainfall use efficiency, maize yield and its stability, in order to evaluate the advantages of conservation agriculture (CA in the time of stabilization of direct seeding effects, in comparison with traditional chisel tillage. The maize grain yields are presented for each crop management practices, as follows: (1 chisel tillage, retained crop residues being chopped and incorporated (ciz; (2 zero tillage, retained crop residue chopped and kept on the field in short flat condition (rvt; (3 zero tillage, crop residues kept on the field in short root-anchored condition (1/2rva, and (4 zero tillage, crop residues kept on the field in tall root-anchored condition (1/1rva. In 2012, a year with prolonged drought during vegetative growth, yield differences between zero tillage with short root-anchored residue retention (1/2rva and chisel tillage with residue incorporation (ciz were positive, up to 840 kg ha-1. In average over 2011-2014, conservation agriculture (CA practices had a yield advantage over traditional chisel tillage practice. Zero tillage with residue retention used rainfall more efficiently so suggesting that it is a more resilient agronomic system than traditional (conventional practices involving chisel tillage with residue incorporation.

  1. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  2. Cowpea production as affected by dry spells in no-tillage and conventional crop systems

    Directory of Open Access Journals (Sweden)

    Rômulo Magno Oliveira de Freitas

    2013-12-01

    Full Text Available The objective of this study was to evaluate the effect of different periods of water shortage in no-tillage and conventional crop systems on cowpea yield components and grain yield in the Mossoró-RN region. For this, an experiment was conducted using two tillage systems (conventional and no-tillage subjected to periods of irrigation suspension (2; 6; 10; 14; 18 end 22 days, started at flowering (34 days after sowing. Plants were harvested 70 days after sowing, and the studied variables were: Pods length (CV, number of grains per pod (NGV, number of pods per plant (NPP, the hundred grains weight (PCG and grain yield (kg ha-1. The no-tillage system is more productive than the conventional under both irrigation and water stress treatments. The water stress length affected grain yield and all yield components studied in a negative way, except for the hundred grains weight. Among the systems studied, the no-tillage provides higher values for the yield components, except the hundred grains weight.

  3. Tillage systems and cover crops on soil physical properties after soybean cultivation

    Directory of Open Access Journals (Sweden)

    Rafael B. Teixeira

    Full Text Available ABSTRACT Soil management alters soil physical attributes and may affect crop yield. In order to evaluate soil physical attributes in layers from 0 to 0.40 m and soybean grain yield, in the 2012/2013 agricultural year, an essay was installed in the experimental area of the Federal University of Mato Grosso do Sul (UFMS/CPCS. Soil tillage systems were: conventional tillage (CT, minimum tillage (MT and no tillage (DS, the cover crops used were millet, sunn hemp and fallow. The experimental design was randomized blocks with split plots. For the layer of 0.20-0.30 m, millet provided the best results for soil bulk density, macro and microporosity. The resistance to penetration (RP was influenced in the layer of 0-0.10 m, and millet provided lower RP. The DS provided the lowest RP values for the layer of 0.10-0.20 m. The treatments did not influence yield or thousand-seed weight.

  4. Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Heng, K.L

    2012-01-01

    Soil water conservation through tillage is widely accepted as one of the ways of improving crop yields in rainfed agriculture. Field experiments were conducted between 2007 and 2009 to evaluate the effects of conservation tillage on the yields and crop water use efficiency of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in eastern Kenya. Experimental treatments were a combination of three tillage practices and four cropping systems. Tillage practices were tied-ridges, subsoiling-ripping and ox-ploughing. The cropping systems were single crop maize, single crop cowpea, intercropped maize.cowpea and single crop maize with manure. The treatments were arranged in split plots with tillage practices as the main plots and cropping systems as the sub-plots in a Randomized Complete Block Design (RCBD). The results showed that tied-ridge tillage had the greatest plant available water content while subsoiling-ripping tillage had the least in all seasons. Averaged across seasons and cropping season, tillage did not have a significant effects on maize grain yield but it did have a significant effect on crop grain and dry matter water use efficiency (WUE). Nevertheless, maize grain yields and WUE values were generally greater under tied-ridge tillage than under subsoiling-ripping and ox-plough tillages. The yields and WUE of cowpea under subsoiling-ripping tillage were less than those of ox-plough tillage. When averaged across the seasons and tillage systems, the cropping system with the manure treatment increased (P.0.05) maize grain yield, grain WUE and dry matter WUE by 36%, 30%, 26% respectively, compared to treatments without manure. Maize and cowpea when intercropped under ox-plough and ripping tillage systems did not have any yield advantage over the single crop

  5. N{sub 2}O and CH{sub 4} emissions from a fallow–wheat rotation with low N input in conservation and conventional tillage under a Mediterranean agroecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Tellez-Rio, Angela, E-mail: angela.tellez@upm.es [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); García-Marco, Sonia [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Navas, Mariela; López-Solanilla, Emilia [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Centro de Biotecnología y Genómica de Plantas UPM-INIA. Dpto Biotecnología. E.T.S.I. Agrónomos. Technical University of Madrid. Campus Montegancedo, UPM. Autovía M-40, Salida 38 N, 36S. 28223 Pozuelo de Alarcón. Madrid (Spain); Tenorio, Jose Luis [Dpto. de Medio Ambiente, INIA. Ctra. de La Coruña km. 7.5, 28040 Madrid (Spain); Vallejo, Antonio [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2015-03-01

    Conservation agriculture that includes no tillage (NT) or minimum tillage (MT) and crop rotation is an effective practice to increase soil organic matter in Mediterranean semiarid agrosystems. But the impact of these agricultural practices on greenhouse gases (GHGs), such as nitrous oxide (N{sub 2}O) and methane (CH{sub 4}), is variable depending mainly on soil structure and short/long-term tillage. The main objective of this study was to assess the long-term effect of three tillage systems (NT, MT and conventional tillage (CT)) and land-covers (fallow/wheat) on the emissions of N{sub 2}O and CH{sub 4} in a low N input agricultural system during one year. This was achieved by measuring crop yields, soil mineral N and dissolved organic C contents, and fluxes of N{sub 2}O and CH{sub 4}. Total cumulative N{sub 2}O emissions were not significantly different (P > 0.05) among the tillage systems or between fallow and wheat. The only difference was produced in spring, when N{sub 2}O emissions were significantly higher (P < 0.05) in fallow than in wheat subplots, and NT reduced N{sub 2}O emissions (P < 0.05) compared with MT and CT. Taking into account the water filled pore space (WFPS), both nitrification and denitrification could have occurred during the experimental period. Denitrification capacity in March was similar in all tillage systems, in spite of the higher DOC content maintained in the topsoil of NT. This could be due to the similar denitrifier densities, targeted by nirK copy numbers at that time. Cumulative CH{sub 4} fluxes resulted in small net uptake for all treatments, and no significant differences were found among tillage systems or between fallow and wheat land-covers. These results suggest that under a coarse-textured soil in low N agricultural systems, the impact of tillage on GHG is very low and that the fallow cycle within a crop rotation is not a useful strategy to reduce GHG emissions. - Highlights: • Tillage systems and land-covers with low N

  6. How do we cultivate in England? Tillage practices in crop production systems.

    Science.gov (United States)

    Townsend, T J; Ramsden, S J; Wilson, P

    2016-03-01

    Reducing tillage intensity offers the possibility of moving towards sustainable intensification objectives. Reduced tillage (RT) practices, where the plough is not used, can provide a number of environmental and financial benefits, particularly for soil erosion control. Based on 2010 harvest year data from the nationally stratified Farm Business Survey and drawing on a sub-sample of 249 English arable farmers, we estimate that approximately 32% of arable land was established under RT, with 46% of farms using some form of RT. Farms more likely to use some form of RT were larger, located in the East Midlands and South East of England and classified as 'Cereals' farms. Application of RT techniques was not determined by the age or education level of the farmer. Individual crops impacted the choice of land preparation, with wheat and oilseed rape being more frequently planted after RT than field beans and root crops, which were almost always planted after ploughing. This result suggests there can be limitations to the applicability of RT. Average tillage depth was only slightly shallower for RT practices than ploughing, suggesting that the predominant RT practices are quite demanding in their energy use. Policy makers seeking to increase sustainable RT uptake will need to address farm-level capital investment constraints and target policies on farms growing crops, such as wheat and oilseed rape, that are better suited to RT practices.

  7. [Effects of rotational tillage during summer fallow on wheat field soil water regime and grain yield].

    Science.gov (United States)

    Hou, Xian-qing; Wang, Wei; Han, Qing-fang; Jia, Zhi-kuan; Yan, Bo; Li, Yong-ping; Su, Qin

    2011-10-01

    In 2007-2010, a field experiment was conducted to study the effects of different rotational tillage practices during summer follow on the soil water regime and grain yield in a winter wheat field in Southern Ningxia arid area. Three treatments were installed, i.e., T1 (no-tillage in first year, subsoiling in second year, and no-tillage in third year), T2 (subsoiling in first year, notillage in second year, and subsoiling in third year), and CT (conventional tillage in the 3 years). Through the three years of the tillage practices, the soil water storage efficiency in treatments T1 and T2 was increased averagely by 15.2% and 26.5%, respectively, as compared to CT. In treatments T1 and T2, the potential rainfall use rate was higher, being 37.8% and 38.5%, respectively, and the rainfall use efficiency was increased averagely by 9.9% and 10.7%, respectively, as compared to CT. Rotational tillage during summer fallow could decrease the soil ineffective evaporation significantly, and save the soil water effectively in wheat growth season. At early growth stage, the water storage in 0-200 cm soil layer in treatments T1 and T2 was increased averagely by 6.8% and 9. 4%, as compared to CT; at jointing, heading, and filling stages, the water storage in 0-200 cm soil layer in treatments T1 and T2 had a significant increase, giving greater contribution to the wheat yield than the control. Different rotational tillage practices increased the water consumption by wheat, but in the meantime, increased the grain yield and water use efficiency. In treatments T1 and T2, the water consumption by wheat through the three years was increased averagely by 5.2% and 6.1%, whereas the grain yield and the water use efficiency were increased averagely by 9.9% and 10.6%, and by 4.5% and 4.3%, respectively, as compared to CT. Correlation analysis showed that in Southern Ningxia arid area, the soil water storage at sowing, jointing, heading, and filling stages, especially at heading stage, could

  8. Impact of tillage on N2O and CO2 efflux in an agricultural crop

    Science.gov (United States)

    Lognoul, Margaux; Theodorakopoulos, Nicolas; Hiel, Marie-Pierre; Heinesch, Bernard; Bodson, Bernard; Aubinet, Marc

    2016-04-01

    In an experiment conducted in the Belgian loess belt between June and October 2015, the effect of two tillage treatments (CT - conventional tillage and RT - reduced tillage) on CO2 and N2O fluxes exchanged by a maize crop were compared. The experimental site included two parcels subjected to crop residues incorporation and to their respective tillage treatment (CT and RT) since 2008. Fluxes were measured using two fully automated sets of dynamic closed chambers, allowing a 4.5h temporal resolution. Soil water content and temperature were also monitored as well as pH, total N (TN) and total organic C (TOC) content. Results suggest that tillage practices significantly impacted emissions of both gases, with average soil respiration twice as large for RT than CT (91 μg C.m-2.s-1 versus 44.5 μg C.m-2.s-1) and N2O fluxes 8 times greater for RT than CT (5.55 ng N2O_N.m-2.s-1 versus 0.68 ng N2O_N.m-2.s-1). These observations could be explained by an effect of tillage treatment on stratification of crop residues within the soil profile, as shown in our experiment. Indeed significantly higher TN and TOC content were measured in the surface layer (0-10cm) under RT and that might have enhanced microbial activity responsible for CO2 and N2O production. A single N2O emission burst was observed in both treatments, most likely triggered by a sudden and important increase of soil moisture with a time delay of 4.5h for RT and 27h for CT. Here again, peak mean emissions were 9 times larger for RT than for CT (13.3 ng N2O_N.m-2.s-1 versus 1.43 ng N2O_N.m-2.s-1 for CT). The absence of peak emissions later during the experiment, despite the occurrence of similar soil moisture increases suggests that such increase is not the sole condition to generate N2O bursts. In the present case, it is possible that the absence of further peaks was due to a non-availability of soil N caused by increased competition for N because of maize growth. The system of automated chambers proved it

  9. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity

    NARCIS (Netherlands)

    Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; Pulleman, M.M.

    2013-01-01

    Conservation agriculture is widely promoted for soil conservation and crop productivity increase, although rigorous empirical evidence from sub-Saharan Africa is still limited. This study aimed to quantify the medium-term impact of tillage (conventional and reduced) and crop residue management

  10. Impact of different cropping conditions and tillage practices on the soil fungal abundance of a Phaeozem luvico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R.P.; Aulicino, M.B.; Mónaco, C.I.; Kripelz, N.; Cordo, C.A.

    2015-07-01

    Fungal diversity seems to be a good indicator of ecosystem disturbance and functioning. The purpose of this work was to quantify the fungal population as a sensitive indicator of the changes caused by stubble placement in two tillage systems: reduced tillage (RT) and conventional tillage (CT) with and without cropping. To this end, we determined the effect of soil disturbances such as N fertilization, tillage practice, and cropped area on the soil fungal communities of a Phaeozem luvico of the El Salado river basin (Argentina). Soil samples (at 0-10 cm depth) were collected from a field cultivated with wheat at post-harvest, before sowing and at tillering. The relative abundance of individuals of the fungal population was studied on Nash Snyder and Oxgall agar media after different treatments and assessed as colony forming units (CFU/gof soil). The diversity of the fungal population was studied by Shannon´s index (H). The tillage system showed a marked effect only at post-harvest and the number of propagules was highest under RT for both culture media. The largest values of H were found only at post-harvest when Oxgall agar was used. A significant decrease in the values of H was observed when CT and high fertilization was applied in the wheat cropped area. The relative abundance of individuals of the fungal population was different in soils under the different tillage practices. (Author)

  11. Effects of the penetration of Artemisia vulgaris L. into maize crops as a result of the use of reduced tillage

    Directory of Open Access Journals (Sweden)

    Hanna Gołębiowska

    2014-07-01

    Full Text Available In recent years, a significant increase in weed infestation of agricultural crops with Artemisia vulgaris has been observed in the south-western region of Poland. The ease of migration of this expansive species results from the fact that it does not face competition from segetal weeds and therefore poses a great threat to the ecological balance. During the period 2008–2011, a floristic study was carried out using the Braun-Blanquet method in an abandoned field adjacent to a maize monoculture grown under two tillage systems: plough and ploughless tillage. These observations allowed an evaluation of the actual risk of spread of Artemisia vulgaris depending on tillage system. The vicinity of the abandoned field had a significant effect on the penetration of Artemisia vulgaris into maize crops. Higher numbers of individuals of this species were found under ploughless tillage compared to plough tillage, regardless of the distance from the field edge, and its increased competitive effects on Viola arvensis L. and Veronica persica L. could be observed. The lowest grain yield was obtained under ploughless tillage where the strong competitive effects of Artemisia vulgaris were observed even in the plot most distant from the abandoned field adjacent to the maize crop.

  12. Impact of different cropping conditions and tillage practices on the soil fungal abundance of a Phaeozem luvico

    Directory of Open Access Journals (Sweden)

    Romina P. Gómez

    2015-06-01

    Full Text Available Fungal diversity seems to be a good indicator of ecosystem disturbance and functioning. The purpose of this work was to quantify the fungal population as a sensitive indicator of the changes caused by stubble placement in two tillage systems: reduced tillage (RT and conventional tillage (CT with and without cropping. To this end, we determined the effect of soil disturbances such as N fertilization, tillage practice, and cropped area on the soil fungal communities of a Phaeozem luvico of the El Salado river basin (Argentina. Soil samples (at 0-10 cm depth were collected from a field cultivated with wheat at post-harvest, before sowing and at tillering. The relative abundance of individuals of the fungal population was studied on Nash Snyder and Oxgall agar media after different treatments and assessed as colony forming units (CFU/g of soil. The diversity of the fungal population was studied by Shannon´s index (H. The tillage system showed a marked effect only at post-harvest and the number of propagules was highest under RT for both culture media. The largest values of H were found only at post-harvest when Oxgall agar was used. A significant decrease in the values of H was observed when CT and high fertilization was applied in the wheat cropped area. The relative abundance of individuals of the fungal population was different in soils under the different tillage practices.

  13. Application of Multio-bjective Fuzzy Goal Programming to Optimize Cropping Pattern with Emphasis on Using Conservation Tillage Methods

    Directory of Open Access Journals (Sweden)

    samad erfanifar

    2014-10-01

    Full Text Available In this study, the optimal cropping patterns based on individual aims are presented and followed by a multi-objective cropping pattern with emphasize on the use of conservation tillage methods in Darab region presented. Individual goals consisted of maximizing gross margin and food secIn this study, the optimal cropping patterns based on individual aims were presented and followed by using a multi-objective fuzzy goal programming with emphasize on the use of conservation tillage methods in the Darab region. Individual goals consisted of maximizing gross margin and food security and minimizing water consumption and urea fertilizer use. The results showed that in the multi-objective cropping pattern, gross margin and food security increased by 23.5% and 6.1% , while water and energy consumption decreased by 4% and 5.1%, respectively as compared to the current cropping pattern. The fuzzy composite distance improved by %36, as compared to the current condition. Moreover, having replaced the conventional tillage methods with conservation tillage methods in the cropping pattern, the diesel fuel consumption reduced by 27%. Therefore, replacing multi-objective cropping pattern ,on which the conservation tillage methods are emphasized, with the conventional cropping patterns improves economic and environmental conditions. urity index and minimizing water and urea fertilizer.The results showed that in the multi-objective cropping pattern, gross margin and food security index respectively increase by 23.5% and 6.1% and water and energy consumption decrease by 4% and 5.1% respectively as compared to current cropping pattern. The fuzzy composite distance improves by %36 compares to current condition and represents better cropping pattern than the others. Morever in this cropping pattern, conventional tillage method will be replaced by conservation tillage practices, therefore the amount of diesel fuel consumption reduces by 27% that is equivalent to an

  14. Organic weed conrol and cover crop residue integration impacts on weed control, quality, and yield and economics in conservation tillage tomato - A case study

    Science.gov (United States)

    The increased use of conservation tillage in vegetable production requires more information be developed on the role of cover crops in weed control, tomato quality and yield. Three conservation-tillage systems utilizing crimson clover, brassica and cereal rye as winter cover crops were compared to ...

  15. TILLAGE EFFECTS ON SUNFLOWER (HELIANTHUS ANNUUS, L. EMERGENCE, YIELD, QUALITY, AND FUEL CONSUMPTION IN DOUBLE CROPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    ABDULLAH SESSIZ

    2009-06-01

    Full Text Available The relation between crop growing and soil tillage treatment are play important role in agricultural production. Soils under conventional tillage (CT generally have lower bulk density and associated higher total porosity within the plough layer than under no tillage (NT. No-till farming can reduce soil erosion, conserve soil moisture and minimize labor and fuel consumption. The aim of this study were to investigate the effects of conventional, reduced and notillage methods on soil physical properties, sunfl ower yield and yield components, protein and oil content and fuel consumption in Southeastern of Turkey. Six tillage methods for the second crop sunfl ower were tested and compared each other within after lentil harvesting at 2003 and 2004 years in a clay loam soil. According to results, the fi rst year, the bulk density had decreased from 1.29 to 1.09 g cm-3, the second year the δb had decreased from 1.41 to 1.23 g cm-3. Differences between years and tillage methods in terms of yield were found signifi cant (p<0.05. However, no differences were found between the NT and CT. There were also no signifi cance differences in content of protein, oil and ash among six tillage methods. The highest fuel consumption was measured in conventional method (CT whereas the lowest value was found in direct seeding method as 33.48 L ha-1 and 6.6 L ha-1, respectively.

  16. Soil microbial biomass and function are altered by 12 years of crop rotation

    Science.gov (United States)

    McDaniel, Marshall D.; Grandy, A. Stuart

    2016-11-01

    Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems

  17. Spatial methods for deriving crop rotation history

    Science.gov (United States)

    Mueller-Warrant, George W.; Trippe, Kristin M.; Whittaker, Gerald W.; Anderson, Nicole P.; Sullivan, Clare S.

    2017-08-01

    Benefits of converting 11 years of remote sensing classification data into cropping history of agricultural fields included measuring lengths of rotation cycles and identifying specific sequences of intervening crops grown between final years of old grass seed stands and establishment of new ones. Spatial and non-spatial methods were complementary. Individual-year classification errors were often correctable in spreadsheet-based non-spatial analysis, whereas their presence in spatial data generally led to exclusion of fields from further analysis. Markov-model testing of non-spatial data revealed that year-to-year cropping sequences did not match average frequencies for transitions among crops grown in western Oregon, implying that rotations into new grass seed stands were influenced by growers' desires to achieve specific objectives. Moran's I spatial analysis of length of time between consecutive grass seed stands revealed that clustering of fields was relatively uncommon, with high and low value clusters only accounting for 7.1 and 6.2% of fields.

  18. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (II Fumonisin Incidence on Kernels

    Directory of Open Access Journals (Sweden)

    Carolina Gavazzi

    2009-09-01

    Full Text Available Planting maize under no-tillage is an increasing farming practice for sustainable agriculture and sound environmental management. Although several studies on yield of no-till maize have been done, there is few information about the effect of tillage on fumonisin contamination. The present study was done to determine the effect of notillage and conventional tillage with two rates of nitrogen on fumonisin content in kernels of continuous maize. Average grain contamination with fumonisins B1 and B2 over the years 2004-06 was not significantly different, with mean values of 1682, 1984 and 2504 μg kg-1, respectively. Fumonisin B1 was the most abundant toxin found in the samples. No-tillage significantly affected the incidence of fumonisins during the first year of the trial, in which fumonisin content was significantly higher with no-till (2008 μg kg-1 compared with conventional tillage (1355 μg kg-1. However, no-tillage did not significantly affect the incidence of fumonisins in the second and third years of the study. Fumonisin content at the rate of 300 kg N ha-1 was not statistically different compared to that obtained without N fertilization. The interaction between the soil management system and the rate of applied nitrogen was only evident in the second year. Our results indicate that fumonisin contamination was affected by no-tillage only in the first year. Nitrogen fertilization had no significant effect on fumonisin content in any year. The weather conditions during susceptible stages of maize development have probably overridden the effect of nitrogen fertilization.

  19. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira

    2013-10-01

    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  20. Vegetation barrier and tillage effects on runoff and sediment in an alley crop system on a Luvisol in Burkina Faso

    NARCIS (Netherlands)

    Spaan, W.P.; Sikking, A.F.S.; Hoogmoed, W.B.

    2005-01-01

    The effects of vegetation barriers and tillage on runoff and soil loss were evaluated in an alley crop system at a research station in central Burkina Faso. On a 2% slope of a sandy loam various local species (grasses, woody species and a succulent) were planted as conservation barriers in order to

  1. Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage

    Directory of Open Access Journals (Sweden)

    Teodor Rusu

    2014-12-01

    Full Text Available The objective of this research was to determine the capacity of a soil tillage system in soil conservation, in productivity and in energy efficiency. The minimum tillage and no-tillage systems represent good alternatives to the conventional (plough system of soil tillage, due to their conservation effects on soil and to the good production of crops (Maize, 96%-98% of conventional tillage for minimum tillage, and 99.8% of conventional tillage for no till; Soybeans, 103%-112% of conventional tillage for minimum tillage and 117% of conventional tillage for no till; Wheat, 93%-97% of conventional tillage for minimum tillage and 117% of conventional tillage for no till. The choice of the right soil tillage system for crops in rotation help reduce energy consumption, thus for maize: 97%-98% energy consumption of conventional tillage when using minimum tillage and 91% when using no-tillage; for soybeans: 98% energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage; for wheat: 97%-98% energy consumption of conventional tillage when using minimum tillage and 92% when using no-tillage. Energy efficiency is in relation to reductions in energy use, but also might include the efficiency and impact of the tillage system on the cultivated plant. For all crops in rotation, energy efficiency (energy produced from 1 MJ consumed was the best in no-tillage — 10.44 MJ ha−1 for maize, 6.49 MJ ha−1 for soybean, and 5.66 MJ ha−1 for wheat. An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons, but must be supplemented by soil energy efficiency, based on the conservative effect of the agricultural system. Only then will the agricultural system be sustainable, durable in agronomic, economic and ecological terms. The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2% to 7.6% and water stable

  2. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  3. Tillage and cover cropping effects on soil properties and crop production in Illinois

    Science.gov (United States)

    Cover crops (CCs) have been heralded for their potential to improve soil properties, retain nutrients in the field, and increase subsequent crop yields yet support for these claims within the state of Illinois remains limited. We assessed the effects of integrating five sets of CCs into a corn-soybe...

  4. Regional variability of environmental effects of energy crop rotations

    Science.gov (United States)

    Prescher, Anne-Katrin; Peter, Christiane; Specka, Xenia; Willms, Matthias; Glemnitz, Michael

    2014-05-01

    The use of energy crops for bioenergy production is increasingly promoted by different frameworks and policies (ECCP, UNFCCC). Energy cropping decreases greenhouse gas emissions by replacing the use of fossil fuel. However, despite this, growing in monocultures energy crop rotations has low environmental benefit. It is broadly accepted consensus that sustainable energy cropping is only realizable by crop rotations which include several energy crop species. Four crop rotations consisting of species mixtures of C3, C4 and leguminous plants and their crop positions were tested to identify the environmental effect of energy cropping systems. The experimental design included four replicates per crop rotation each covering four cultivation years. The study took place at five sites across Germany covering a considerable range of soil types (loamy sand to silt loam), temperatures (7.5 ° C - 10.0 ° C) and precipitation (559 mm - 807 mm) which allow a regional comparison of crop rotation performance. Four indicators were used to characterize the environmental conditions: (1) greenhouse gas (GHG) emissions from the management actions; (2) change in humus carbon (Chum); (3) groundwater recharge (RGW) and (4) nitrogen dynamics. The indicators were derived by balance, by an empirical model and by a dynamic model, respectively, all based and calibrated on measured values. The results show that the crop rotation impact on environmental indicators varied between plant species mixtures and the crop positions, between sites and climate. Crop rotations with 100 % energy crops (including C4 plants) had negative influence on Chum, GHG emissions per area and RGW in comparison to the rotation of 50 % energy crops and 50 % cash crops, which were mainly due to the remaining straw on the field. However, the biogas yield of the latter rotation was smaller, thus GHG emissions per product were higher, pointing out the importance to distinguish between GHG emissions per product and per area

  5. Effect of tillage and crop residues management on mungbean (vigna radiata (L.) wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas

    International Nuclear Information System (INIS)

    Mohammad, W.; Shehzadi, S.; Shah, S.M.; Shah, Z.

    2010-01-01

    A field experiment was conducted to study the effect of crop residues and tillage practices on BNF, WUE and yield of mungbean (Vigna radiata (L.) Wilczek) under semi arid rainfed conditions at the Livestock Research Station, Surezai, Peshawar in North West Frontier Province (NWFP) of Pakistan. The experiment comprised of two tillage i) conventional tillage (T1) and ii) no-tillage (T0) and two residues i) wheat crop residues retained (+) and ii) wheat crop residues removed (-) treatments. Basal doses of N at the rate of 20: P at the rate of 60 kg ha-1 were applied to mungbean at sowing time in the form of urea and single super phosphate respectively. Labelled urea having 5% 15N atom excess was applied at the rate of 20 kg N ha-1 as aqueous solution in micro plots (1m2) in each treatment plot to assess BNF by mungbean. Similarly, maize and sorghum were grown as reference crops and were fertilized with 15N labelled urea as aqueous solution having 1% 15N atom excess at the rate of 90 kg N ha/sup -1/. The results obtained showed that mungbean yield (grain/straw) and WUE were improved in notillage treatment as compared to tillage treatment. Maximum mungbean grain yield (1224 kg ha/sup -1/) and WUE (6.61kg ha/sup -1 mm/sup -1/) were obtained in no-tillage (+ residues) treatment. The N concentration in mungbean straw and grain was not significantly influenced by tillage or crop residue treatments. The amount of fertilizer-N taken up by straw and grain of mungbean was higher under no-tillage with residues-retained treatment but the differences were not significant. The major proportion of N (60.03 to 76.51%) was derived by mungbean crop from atmospheric N2 fixation, the remaining (19.6 to 35.91%) was taken up from the soil and a small proportion (3.89 to 5.89%) was derived from the applied fertilizer in different treatments. The maximum amount of N fixed by mungbean (82.59 kg ha/sup -1/) was derived in no-tillage with wheat residue-retained treatment. By using sorghum as

  6. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Science.gov (United States)

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P temperature. Higher residue coverage caused lower soil temperature; the effect was greater for maize than soybean residue. Residue type had significant effect on soil temperature in 9 of 15 weekly periods with 0-1.9 °C lower soil temperature under maize than soybean residue. Both tillage and residue had small but inconsistent effect on soil temperature following planting in Northeast China representative of a cool to temperate zone.

  7. Effects of tropical ecosystem engineers on soil quality and crop performance under different tillage and residue management

    Science.gov (United States)

    Pulleman, Mirjam; Paul, Birthe; Fredrick, Ayuke; Hoogmoed, Marianne; Hurisso, Tunsisa; Ndabamenye, Telesphore; Saidou, Koala; Terano, Yusuke; Six, Johan; Vanlauwe, Bernard

    2014-05-01

    Feeding a future global population of 9 billion will require a 70-100% increase in food production, resulting in unprecedented challenges for agriculture and natural resources, especially in Sub-saharan Africa (SSA). Agricultural practices that contribute to sustainable intensification build on beneficial biological interactions and ecosystem services. Termites are the dominant soil ecosystem engineers in arid to sub-humid tropical agro-ecosystems. Various studies have demonstrated the potential benefits of termites for rehabilitation of degraded and crusted soils and plant growth in semi-arid and arid natural ecosystems. However, the contribution of termites to agricultural productivity has hardly been experimentally investigated, and their role in Conservation Agriculture (CA) systems remains especially unclear. Therefore, this study aimed to quantify the effects of termites and ants on soil physical quality and crop productivity under different tillage and residue management systems in the medium term. A randomized block trial was set up in sub-humid Western Kenya in 2003. Treatments included a factorial combination of residue retention and removal (+R/-R) and conventional and reduced tillage (+T/-T) under a maize (Zea mays L.) and soybean (Glyxine max. L.) rotation. A macrofauna exclusion experiment was superimposed in 2005 as a split-plot factor (exclusion +ins; inclusion -ins) by regular applications of pesticides (Dursban and Endosulfan) in half of the plots. Macrofauna abundance and diversity, soil aggregate fractions, soil carbon contents and crop yields were measured between 2005 and 2012 at 0-15 cm and 15-30 cm soil depths. Termites were the most important macrofauna species, constituting between 48-63% of all soil biota, while ants were 13-34%, whereas earthworms were present in very low numbers. Insecticide application was effective in reducing termites (85-56% exclusion efficacy) and earthworms (87%), and less so ants (49-81%) at 0-15 cm soil depth

  8. Effect of pre-sowing soil tillage for wheat on the crop structure and the yield components in Dobrudzha region

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2017-06-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute on slightly leached chernozem soil. In order to clarify the effect of some types of pre-sowing soil tillage for wheat on the crop structure and certain yield components, the following variants of a stationary field experiment were analyzed: double disking at depth 10-12 cm (check variant; ploughing at 14-16 cm + disking; no-tillage (direct sowing – pre-sowing treatment of the area with total herbicides. Wheat was sown after previous crop grain maize and was fertilized with N P K . Wheat cultivar Enola was planted at norm 550 germinating 140 120 80 2 seeds/m . The number of emerging wheat plants was read using square sampling frames sized 50 cm x 50 cm. Using the same sampling frames, the tillering in autumn prior to the wintering of the crops was followed, and in spring – prior to booting stage. The number of productive tillers was also read using these sampling frames. To determine the length of spike, the number of grains in it, and their weight, 30 spikes from 8 replications of each variant were analyzed. The emerging of the wheat plants, under the conditions of slightly leached chernozem soil in Dobrudzha region, was more uniform after sowing following disking, and after direct sowing. The minimal pre-sowing tillage and no-tillage for wheat ensured better autumn development of the crop and the plants. In these variants, higher number of overwintering plants and productive tillers per unit area were registered. Spike length was the highest after ploughing as pre-sowing tillage. Significant variations in the number of grains per spike of the investigated variants were not found. Grain weight per spike was the lowest under direct sowing.

  9. Selected soil physical and hydraulic properties for different crop successions under no tillage

    Science.gov (United States)

    Sasal, M. C.; Castiglioni, M.; Paz-Ferreiro, J.; Wilson, M. G.; Oszust, J.

    2009-04-01

    No tillage is now widely widespread in Argentina in response to several circumstances, including limited runoff and a drop in soil erosion. Crop residues left on the soil surface help both natural rainfall and irrigation water infiltrate and also limits evaporation, conserving water for plant growth. This notwithstanding, wide differences in runoff rates between crop succession have been observed under no tillage. The aim of this work was to assess the effect of the main crop successions of Entre Ríos province, Argentina on selected soil physic and hydraulic properties. Results obtained on no-till plots were compared with those recorded on a 10-years old grassland plot and on a conventionally tilled plot left bare, both of them taken as references. The study soil was classified as an Aquic Argiudoll. Treatments were: maize and soybean, both cropped as monoculture, succession wheat/soybean or wheat/maize, grassland and conventionally tilled soil left bare. Soil runoff was recorded on experimental plots 100 m2 in surface. Saturated hydraulic conductivity (Khc) and sorptivity were measured in field conditions using a disc permeameter. Bulk density (Bd), saturated hydraulic conductivity (Kh) total porosity (TP) and pore size distributions were determined on undisturbed cores sampled at the 0-4 and 4-8 cm depth with five replications. Maximum water losses were recorded in bare soils conventionally tilled. Under maize and soybean monocultures water losses were six time higher than under grassland. Water losses under successions wheat/soybean-maize were lower than under monoculture but not significantly different. Field saturated hydraulic conductivity (Khc) was highest under grassland and the remaining treatments don't showed significant differences. Differences in sorptivity between plots were not significantly different. A significant relationship was found between saturated hydraulic conductivity measured in field conditions (Khc) and determined in soil cores (Kh

  10. Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations

    Directory of Open Access Journals (Sweden)

    Peter Weißhuhn

    2017-12-01

    Full Text Available This review analyzes the potential role and long-term effects of field perennial polycultures (mixtures in agricultural systems, with the aim of reducing the trade-offs between provisioning and regulating ecosystem services. First, crop rotations are identified as a suitable tool for the assessment of the long-term effects of perennial polycultures on ecosystem services, which are not visible at the single-crop level. Second, the ability of perennial polycultures to support ecosystem services when used in crop rotations is quantified through eight agricultural ecosystem services. Legume–grass mixtures and wildflower mixtures are used as examples of perennial polycultures, and compared with silage maize as a typical crop for biomass production. Perennial polycultures enhance soil fertility, soil protection, climate regulation, pollination, pest and weed control, and landscape aesthetics compared with maize. They also score lower for biomass production compared with maize, which confirms the trade-off between provisioning and regulating ecosystem services. However, the additional positive factors provided by perennial polycultures, such as reduced costs for mineral fertilizer, pesticides, and soil tillage, and a significant preceding crop effect that increases the yields of subsequent crops, should be taken into account. However, a full assessment of agricultural ecosystem services requires a more holistic analysis that is beyond the capabilities of current frameworks.

  11. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production.

    Science.gov (United States)

    Chakraborty, Debashis; Ladha, Jagdish Kumar; Rana, Dharamvir Singh; Jat, Mangi Lal; Gathala, Mahesh Kumar; Yadav, Sudhir; Rao, Adusumilli Narayana; Ramesha, Mugadoli S; Raman, Anitha

    2017-08-24

    Alternative tillage and rice establishment options should aim at less water and labor to produce similar or improved yields compared with traditional puddled-transplanted rice cultivation. The relative performance of these practices in terms of yield, water input, and economics varies across rice-growing regions. A global meta and mixed model analysis was performed, using a dataset involving 323 on-station and 9 on-farm studies (a total of 3878 paired data), to evaluate the yield, water input, greenhouse gas emissions, and cost and net return with five major tillage/crop establishment options. Shifting from transplanting to direct-seeding was advantageous but the change from conventional to zero or reduced tillage reduced yields. Direct-seeded rice under wet tillage was the best alternative with yield advantages of 1.3-4.7% (p Direct-seeding under zero tillage was another potential alternative with high savings in water input and cost of cultivation, with no yield penalty. The alternative practices reduced methane emissions but increased nitrous oxide emissions. Soil texture plays a key role in relative yield advantages, and therefore refinement of the practice to suit a specific agro-ecosystem is needed.

  12. THE NUTRIENTS BALANCE OF CROP ROTATION AS AN INDICATOR OF SUSTAINABLE FARMING ON ARABLE LAND

    Directory of Open Access Journals (Sweden)

    Eva Hanáčková

    2009-03-01

    Full Text Available The nutrient balance of five crop rotation systems under conventional and minimal tillage with interaction of different fertilization treatments was investigated at the experimental station of Slovak Agricultural University in Nitra Dolná Malanta, during 2004-2005. The five-field crop rotation of maize (Zea mays L. - winter wheat (Triticum aestivum L. - spring barley (Hordeum vulgare L. underseeded with red clover - red clover (Trifolium pratense - common pea (Pisum sativum L. and mustard as catch crop was used. The most serious deficit of nitrogen (- 62.2 kg.ha-1.yr-1, phosphorus (- 24.0 kg.ha-1.yr-1 and potassium (- 89.2 kg.ha-1.yr-1 was on control treatments. Deficit of nitrogen was also found-out in treatments with mineral fertilizers application. However higher deficit of nitrogen (- 25.4 kg.ha-1.yr- 1 was registered under conventional tillage. In treatment fertilized with mineral fertilizers together with by - product of pre - crop incorporation into soil (PZ, small balance surplus of nitrogen (8 kg.ha-1.yr-1 - B1, 11.5 kg. ha-1.yr-1 - B2, respectively was calculated. The positive balance of phosphorus achieved in treatments with into soil incorporated by - products of pre - crops (in both systems of soil cultivation amounting value of 3.9 kg.ha-1.yr-1 can contribute to good supply of phosphorous in soil. The negative balance of potassium fluctuating from - 89.2 kg.ha-1.yr-1 (control treatment to - 22 kg.ha-1.yr-1 (PZ is acceptable owing to high content of available potassium in soil of experimental stand.

  13. [Effects of Short-time Conservation Tillage Managements on Greenhouse Gases Emissions from Soybean-Winter Wheat Rotation System].

    Science.gov (United States)

    Xie, Yan; Chen, Xi; Hu, Zheng-hua; Chen, Shu-tao; Zhang, Han; Ling, Hui; Shen, Shuang-he

    2016-04-15

    Field experiments including one soybean growing season and one winter-wheat growing season were adopted. The experimental field was divided into four equal-area sub-blocks which differed from each other only in tillage managements, which were conventional tillage (T) , no-tillage with no straw cover ( NT) , conventional tillage with straw cover (TS) , and no-tillage with straw cover (NTS). CO₂ and N₂O emission fluxes from soil-crop system were measured by static chamber-gas chromatograph technique. The results showed that: compared with T, in the soybean growing season, NTS significantly increased the cumulative amount of CO₂ (CAC) from soil-soybean system by 27.9% (P = 0.045) during the flowering-podding stage, while NT significantly declined CAC by 28.9% (P = 0.043) during the grain filling-maturity stage. Compared with T, NT significantly declined the cumulative amount of N₂O (CAN) by 28.3% (P = 0.042) during the grain filling-maturity stage. In the winter-wheat growing season, compared with T, TS and NT significantly declined CAC by 24.3% (P = 0.032) and 36.0% (P = 0.041) during the elongation-booting stage, and also declined CAC by 26.8% (P = 0.027) and 33.1% (P = 0.038) during the maturity stage. During the turning-green stage, compared with T treatment, NT, NTS, and TS treatments had no significant effect on CAN, while NTS significant declined CAN by 42.0% (P = 0.035) compared with NT. Our findings suggested that conservation tillage managements had a more significant impact on CO₂ emission than 20 emission from soil-crop system.

  14. Climate protection and energy crops. Potential for greenhouse gas emission reduction through crop rotation and crop planning; Klimaschutz und Energiepflanzenanbau. Potenziale zur Treibhausgasemissionsminderung durch Fruchtfolge- und Anbauplanung

    Energy Technology Data Exchange (ETDEWEB)

    Eckner, Jens [Thueringer Landesanstalt fuer Landwirtschaft (Germany); Peter, Christiane; Vetter, Armin

    2015-07-01

    The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.

  15. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    Science.gov (United States)

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-01-29

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  16. Qualidade de solo submetido a sistemas de cultivo com preparo convencional e plantio direto Soil quality under tillage and no-tillage cropping systems

    Directory of Open Access Journals (Sweden)

    Eusângela Antônia Costa

    2006-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a qualidade de um Latossolo Vermelho submetido a sistemas de cultivo com preparo convencional e plantio direto. Foram estudadas duas áreas experimentais, localizadas na Embrapa Cerrados, em Planaltina, DF, com oito e dez anos de cultivo. Foram coletadas amostras de solo, em diversas profundidades, nas parcelas experimentais e em área de cerrado nativo. Os seguintes atributos foram avaliados: densidade do solo, porosidade total, capacidade de água disponível, grau de floculação, resistência do solo à penetração, teor de matéria orgânica, capacidade de troca catiônica, fósforo remanescente, carbono da biomassa microbiana e respiração basal. Os dados obtidos foram comparados a valores referenciais quanto à qualidade do solo, mediante modelagem gráfica. Observou-se que a qualidade do solo, em ambos os sistemas de cultivo, é similar quanto aos atributos físicos; os teores de matéria orgânica e fósforo remanescente também são semelhantes, mas a capacidade de troca catiônica é mais alta no solo sob plantio direto. Em relação aos atributos biológicos, o solo sob plantio direto apresenta atividade biológica mais elevada. A qualidade do solo em ambos os sistemas é similar, em relação aos atributos avaliados.The objective of this study was to evaluate the quality of an Oxisol under tillage and no-tillage systems. Two experimental areas were studied, both located in Embrapa Cerrados, Planaltina, DF, Brazil, with eight and ten years of cropping. Soil samples were collected from different depth layers in the experimental plots and native cerrado vegetation area. The following soil atributes were evaluated: bulk density, soil porosity, available water capacity, degree of flocculation, soil resistance to penetration, organic matter content, cation exchange capacity, equilibrium phosphorus, microbial biomass carbon and basal respiration. The data obtained were compared with referential

  17. The effect of tillage system and herbicide application on weed infestation of crops of winter spelt wheat (Triticum aestivum ssp. spelta L. cultivars

    Directory of Open Access Journals (Sweden)

    Sylwia Andruszczak

    2014-01-01

    Full Text Available Based on a 3-year field experiment conducted on medium heavy mixed rendzina soil, the present study evaluated the effect of chemical plant protection on the species composition, number and air-dry weight of weeds infesting crops of winter spelt wheat cultivars (‘Frankenkorn’, ‘Badengold’, ‘Schwaben- speltz’, and ‘Oberkulmer Rotkorn’ sown under ploughing and ploughless tillage systems. Ploughing tillage involved skim- ming done after harvest of the previous crop and pre-sowing ploughing, while in the ploughless tillage system ploughing was replaced with cultivating. Chemical weed control included the application of the herbicides Mustang 306 SE and Attribut 70 WG. Plots where the herbicides were not used were the control treatment. On average, from 21 to 30 weed species colonised the winter spelt wheat crops compared. Galium aparine and Apera spica-venti occurred in greatest numbers and their percentage in the total number of weeds was estimated at 26–35% and 17–25%, respectively. The cultivar ‘Frankenkorn’ was the least weed-infested. Both the number of weeds in the crop of this cultivar and their above-ground dry weight were lower compared to the other cultivars. The use of reduced tillage significantly increased the air-dry weight of weeds compared to ploughing tillage. Nevertheless, it should be indicated under ploughless tillage conditions the application of chemical crop protection reduced weed biomass by 59% compared to the control treatments without crop protection.

  18. Análise multivariada da fauna edáfica em diferentes sistemas de preparo e cultivo do solo Multivariate analysis of soil fauna under different soil tillage and crop management systems

    Directory of Open Access Journals (Sweden)

    Dilmar Baretta

    2006-11-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de sistemas de preparo e cultivo do solo sobre a diversidade de animais da fauna edáfica, por meio de técnicas de análise multivariada. Na análise canônica discriminante, os preparos conservacionistas com sucessão de culturas foram separados em relação aos tratamentos com rotação de culturas. Os grupos Acarina, Hymenoptera, Isopoda e Collembola, e o índice de Shannon (H foram os atributos que mais contribuíram para separar os tratamentos. A análise de correspondência mostrou forte associação dos grupos Acarina e Hymenoptera com o tratamento semeadura direta com sucessão de culturas, e do grupo Collembola com o preparo convencional.The objective of this work was to evaluate the effect of different soil tillage and crop management systems on soil fauna groups, by means of multivariate analysis. In the canonical discriminant analysis the conservation soil management systems with crop succession were discriminated in relation to other treatments with crop rotation. The groups Acarina, Hymenoptera, Isopoda, and Collembola, and the Shannon index (H showed the highest contribution for the discrimination between treatments. The correspondence analysis showed a strong association between Acarina and Hymenoptera groups with the treatment no-tillage with crop succession, and between Collembola group with the conventional tillage system.

  19. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Science.gov (United States)

    Meisner, Matthew H; Rosenheim, Jay A

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  20. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  1. Biomass Production and Soil Carbon Level Changes in Various Tillage, Residue Management, and Cropping Systems in Moderately High Organic Matter Soils in Eastern South Dakota, U.S.A.

    Science.gov (United States)

    Woodard, H. J.; Bly, A.

    2003-12-01

    A four-year replicated field study was conducted in eastern South Dakota to assess the impact of maize (Zea mays L.), soybean (Glycine max L.), and spring wheat (Triticum aestivum L.) on crop residue accumulation and soil carbon when various tillage, crop residue management, and crop rotation scenarios were applied. Before planting, half the plots were chisel plowed and harrowed (tilled vs. no-till treatments). Corn-soybean, soybean-wheat, or corn-wheat-soybean rotations were established (rotation treatments). After grain harvest, crop residues were removed on half of the plots (residue-removed vs. residue-retained treatments). The range of initial soil carbon levels (loss by ignition method) for the 0-15cm depth was 1.7-3.0%. Post-harvest crop residue accumulation was greatest for the residue-retained treatment compared to the residue-removed treatment and for the no-till treatment compared to the tilled treatment. In addition, surface biomass accumulation was greatest when maize was part of a crop rotation. Maize can produce greater levels of biomass compared to either spring wheat or soybean. The least surface biomass accumulation was measured in the soybean-wheat rotation.

  2. Fractions of soil organic matter under pasture, tillage system and crop-livestock integration

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Gazolla

    2015-04-01

    Full Text Available The aim of this study was to evaluate the total organic carbon and the chemical (humic acid – FAH, fulvic acid – FAF, humin – Hum and textural (organic carbon associated particles – COp, organic carbon associated with minerals – COam and carbon management index – IMC of soil organic matter (SOM in samples of an Oxisol under no-tillage (NT with crop-livestock integration (ILP, compared to one NT area without ILP and areas of natural Cerrado (CE and pasture (PA in southwestern Goiás. Soil samples were collected in the 0-5, 5-10, 10-20 and 20-40 cm in a completely randomized design. Among the cultivated areas the ILP presented in the upper soil layers the highest COT, COp, COam, Hum C-FAH/C-FAF and respect, having been checked in COT, COp, and COam Hum similar to those quantified in CE area in the deeper layers of the soil. In some depths evaluated, areas of NT and ILP had higher IMC compared to PA area. Areas of NT and PA showed no statistical difference in the COT, COam and C-FAH/C-FAF relationship, however, the NT area proved to be forwarding to greater stability of SOM, as it showed similarities in levels C of Hum, FAH, COp and IMC in relation to areas of CE and ILP in some depths evaluated.

  3. Nutrient cycling and soil biology in row crop systems under intensive tillage

    Science.gov (United States)

    Recent interest in management of the soil biological component to improve soil health requires a better understanding on how management practices (e.g., tillage) and environmental conditions influence soil organisms. Intensive tillage often results in reduced organic matter content in the surface so...

  4. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks

    NARCIS (Netherlands)

    Cooper, Julia; Baranski, Marcin; Stewart, Gavin; Nobel-de Lange, Majimcha; Bàrberi, Paolo; Fließbach, Andreas; Peigné, Josephine; Berner, Alfred; Brock, Christopher; Casagrande, Marion; Crowley, Oliver; David, Christophe; Vliegher, De Alex; Döring, Thomas F.; Dupont, Aurélien; Entz, Martin; Grosse, Meike; Haase, Thorsten; Halde, Caroline; Hammerl, Verena; Huiting, Hilfred; Leithold, Günter; Messmer, Monika; Schloter, Michael; Sukkel, Wijnand; Heijden, van der Marcel G.A.; Willekens, Koen; Wittwer, Raphaël; Mäder, Paul

    2016-01-01

    Reduced tillage is increasingly promoted to improve sustainability and productivity of agricultural systems. Nonetheless, adoption of reduced tillage by organic farmers has been slow due to concerns about nutrient supply, soil structure, and weeds that may limit yields. Here, we compiled the

  5. Carbon Storage and Carbon Dioxide Emission as Influenced by Long-term Conservation Tillage and Nitrogen Fertilization in Corn-Soybean Rotation

    Directory of Open Access Journals (Sweden)

    Rahmat Saleh

    2012-01-01

    Full Text Available Although agriculture is a victim of environmental risk due to global warming, but ironically it also contributes toglobal greenhouse gas (GHG emission. The objective of this experiment was to determine the influence of long-termconservation tillage and N fertilization on soil carbon storage and CO2 emission in corn-soybean rotation system. Afactorial experiment was arranged in a randomized completely block design with four replications. The first factorwas tillage systems namely intensive tillage (IT, minimum tillage (MT and no-tillage (NT. While the second factorwas N fertilization with rate of 0, 100 and 200 kg N ha-1 applied for corn, and 0, 25, and 50 kg N ha-1 for soybeanproduction. Samples of soil organic carbon (SOC after 23 year of cropping were taken at depths of 0-5 cm, 5-10cm and 10-20 cm, while CO2 emission measurements were taken in corn season (2009 and soybean season (2010.Analysis of variance and means test (HSD 0.05 were analyzed using the Statistical Analysis System package. At 0-5 cm depth, SOC under NT combined with 200 kg N ha-1 fertilization was 46.1% higher than that of NT with no Nfertilization, while at depth of 5-10 cm SOC under MT was 26.2% higher than NT and 13.9% higher than IT.Throughout the corn and soybean seasons, CO2-C emissions from IT were higher than those of MT and NT, whileCO2-C emissions from 200 kg N ha-1 rate were higher than those of 0 kg N ha-1 and 100 kg N ha-1 rates. With any Nrate treatments, MT and NT could reduce CO2-C emission to 65.2 %-67.6% and to 75.4%-87.6% as much of IT,respectively. While in soybean season, MT and NT could reduce CO2-C emission to 17.6%-46.7% and 42.0%-74.3% as much of IT, respectively. Prior to generative soybean growth, N fertilization with rate of 50 kg N ha-1could reduce CO2-C emission to 32.2%-37.2% as much of 0 and 25 kg N ha-1 rates.

  6. Effect of cover crops on emergence and growth of carrot (Daucus carota L. in no-plow and traditional tillage

    Directory of Open Access Journals (Sweden)

    Marzena Błażewicz-Woźniak

    2015-03-01

    Full Text Available The aim of the experiment was to determine the influence of cover crop biomass incorporated into the soil at different times and using different treatments on carrot emergence and growth. 7 species of cover crops were included in the study: Secale cereale, Avena sativa, Vicia sativa, Sinapis alba, Phacelia tanacetifolia, Fagopyrum esculentum, and Helianthus annuus.  Number of emerged carrot plants significantly depended on the cover crop used and on the method of pre-winter and spring pre-sowing tillage. Carrot emerged best after a rye or oats cover crop. Regardless of the cover crop species used, the largest number of carrots emerged in cultivation on ridges. In other variants of no-plow tillage, number of seedlings was significantly lower and did not differ from that under traditional plow tillage. The highest leaf rosettes were formed by carrot growing after a rye or oats cover crop. The highest rosettes were produced by carrots in the treatments where tillage was limited to the use of a tillage implement in spring and the lowest ones after pre-winter plowing. The effect of tillage on the emergence and height of carrot leaves largely depended on weather conditions in the successive years of the study. The largest number of leaves was found in carrots grown after a buckwheat cover crop and in cultivation without cover crop, while the smallest one after phacelia and white mustard. Carrots produced the largest number of leaves after a sunflower cover crop and the use of a tillage implement in spring, while the number of leaves was lowest when the mustard biomass was incorporated into the soil in spring. The use of cover crops significantly increased the mass of leaves produced by carrot as compared to the cultivation without cover crop. The largest mass of leaves was produced by carrots grown after the phacelia and mustard cover crops. Conventional plow tillage and pre-winter tillage using a stubble cultivator promoted an increase in the mass

  7. On-farm tillage trials for rice-wheat cropping system in Indo-Gangetic plains of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Prasad, L.K.; Prasad, S.S.; Bhupendra Singh; Singh, S.R.; Gaunt, J.L.

    2002-05-01

    Demonstration plots of deep summer ploughing (DSP) with rice followed by wheat and other winter crops and fields of zero tilled wheat have been established and monitored at head, middle and tail sections of RP distributory Channel - 5 of Patna Canal during kharif (wet) and rabi (winter) seasons of 2001 and 2002, respectively at four different villages. The DSP plots were large (6 acres, 2.42 ha) in each village enabling farmers and researchers to see and assess a new practice at a farming scale. Zero tillage of wheat has involved a total of 181 farmers and total area of 50.4 ha. The plots were not only monitored but also information from farmers on how they view the ploughing/tillage practices was gathered. This information indicates that farmers are assessing the practices from a range of view points relative to their usual practices including land preparation and sowing costs, quality of crop establishment, weed growth and species composition, pest and disease incidence. Main findings are that DSP does not significantly only alter the yield of rice, wheat, lentil and gram and but also reduces the weed burden. Participatory budgeting indicated cost savings for land preparation and crop management costs. Over 60 percent of farmers in a total sample of 86 farmers had a positive reaction to practice during wet season. Similarly farmers recognized cost savings and potential yield gains (due to early and good crop establishment) in zero tilled wheat. After the harvest of winter crops like wheat, lentil and gram in May 2002, farmers dropped their reservation about DSP and there was a change in their attitude from reluctance to partial agreement and now they are ready for tillage operations on self-payment. For both practices, there are some limitations in respect of availability of implements and suitable tractor couplings. Findings indicate that if tractor owners perceive a demand, they would take steps to offer these new practices as land preparation services. (author)

  8. Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields.

    Science.gov (United States)

    Biswas, Sagor; Kranz, William L; Shapiro, Charles A; Snow, Daniel D; Bartelt-Hunt, Shannon L; Mamo, Mitiku; Tarkalson, David D; Zhang, Tian C; Shelton, David P; van Donk, Simon J; Mader, Terry L

    2017-02-15

    Runoff generated from livestock manure amended row crop fields is one of the major pathways of hormone transport to the aquatic environment. The study determined the effects of manure handling, tillage methods, and rainfall timing on the occurrence and transport of steroid hormones in runoff from the row crop field. Stockpiled and composted manure from hormone treated and untreated animals were applied to test plots and subjected to two rainfall simulation events 30days apart. During the two rainfall simulation events, detection of any steroid hormone or metabolites was identified in 8-86% of runoff samples from any tillage and manure treatment. The most commonly detected hormones were 17β-estradiol, estrone, estriol, testosterone, and α-zearalenol at concentrations ranging up to 100-200ngL -1 . Considering the maximum detected concentrations in runoff, no more than 10% of the applied hormone can be transported through the dissolved phase of runoff. Results from the study indicate that hormones can persist in soils receiving livestock manure over an extended period of time and the dissolved phase of hormone in runoff is not the preferred pathway of transport from the manure applied fields irrespective of tillage treatments and timing of rainfall. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    Science.gov (United States)

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotationtillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  10. The occurrence of fungi on the stem base and roots of spring wheat (Triticum aestivum L. grown in monoculture depending on tillage systems and catch crops

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the period 2006-2008 based on an experiment established in 2005. The study evaluated the effect of conservation and plough tillage as well as of four catch crops on the level of infection by fungal pathogens of the stem base and roots of the spring wheat cultivar ‘Zebra’ grown in monoculture. The species composition of fungi colonizing the stem base and roots of spring wheat was determined. The split-plot design of the experiment set up on rendzina soil included plough tillage and conservation tillage with autumn and spring disking of catch crops. The experiment used four methods for regeneration of the spring wheat monoculture stand using the following: undersown red clover and Westerwolds ryegrass crops as well as lacy phacelia and white mustard stubble crops. Plots without catch crops were the control treatment. Red clover and Westerwolds ryegrass catch crops as well as lacy phacelia and white mustard stubble crops had a significant effect on the decrease in the stem base and root infection index of spring wheat compared to the control without catch crops. The disease indices in the tillage treatments under evaluation did not differ significantly from one another. The stem base and roots of spring wheat were most frequently infected by fungi of the genus Fusarium, with F. culmorum being the dominant pathogen of cereals. Compared to conservation tillage, in plough tillage the pathogenic fungus Bipolaris sorokiniana was not found to occur on the stem base and roots. The Westerwolds ryegrass catch crop promoted the occurrence of F. culmorum, both on the stem base and roots of spring wheat.

  11. Irrigation management of crops rotations in a changing climate

    Science.gov (United States)

    Rolim, J.; Teixeira, J.; Catalão, J.

    2012-04-01

    Due to climate change we cannot continue to perform irrigation systems design and irrigation management based only on historical records of weather stations, assuming that the statistical parameters of the meteorological data remains unchanged in time, being necessary to take into account the climatic data relative to climate change scenarios. For the Mediterranean basin the various climate models indicate an increase in temperature and a reduction in precipitation and a more frequent occurrence of extreme events which will increase the risk of crop failure. Thus, it is important to adopt strategies to ensure the sustainability of irrigated agriculture in a changing climate. A very interesting technique to achieve this is the adoption of crops rotations, since they increase the heterogeneity of farming systems distributing the risk between crops and minimizing costs. This study aims to evaluate the impact of climate change in the irrigation requirements of crop rotations for the Alentejo region in the South of Portugal, and the ability of crops rotation to reduce these impacts and stabilize crops production. The IrrigRotation software was used to estimate the water requirements of two crop rotations used in the Alentejo region, Sunflower-Wheat-Barley and Sugar beet-Maize-Tomato-Wheat. IrrigRotation is a soil water balance simulation model, continuous in time, based on the dual crop coefficients methodology, which allows to compute the irrigation requirements of crop rotations. The climate data used were the observed data of the Évora and Beja weather stations (1961-90), the A2 and B2 scenarios of the HadRM3P model and the A2 scenarios of the HIRHAMh and HIRHAMhh models (2071-2100). The consideration of a set of climate change scenarios produces as a result a range of values for the irrigation requirements which can be used to define safety margins in irrigation design. The results show that for the Beja clay soils, with high values of soil water storage capacity

  12. Benefits of annual and perennial forages in row crop rotations

    Science.gov (United States)

    Development of crop rotations that support sustainable agriculture depends on understanding complex relationships between soils, crops, and yield. Objectives were to measure how soil chemical and physical attributes as well as corn and soybean stover dry weight, stover mineral concentrations, seed ...

  13. The impact of different soil tillage on weed infestation of spring barley in conditions of dryer climatic areas Czech Republic

    OpenAIRE

    Jan Winkler

    2008-01-01

    The impact of soil tillage on weeds in spring barley was observed on the field trial. The field trial was established in very warm and dry climatic region (experimental field station in Žabčice, Mendel University of Agriculture and Forestry Brno, Czech Republic). In the experiment there was used 7-strip crop rotation and three variants of soil tillage: conventional tillage (CT), minimum tillage (MT), when soil is shallow loosened and no tillage (NT) what means direct sowing without any soil t...

  14. Soybean root growth and crop yield in reponse to liming at the beginning of a no-tillage system

    Directory of Open Access Journals (Sweden)

    Edson Campanhola Bortoluzzi

    2014-02-01

    Full Text Available Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation, soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity and plant parameters (root growth system, soybean grain yield, and oat dry matter production were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.

  15. Effectiveness of the GAEC standard of cross compliance Crop rotations in maintaining organic matter levels in soils

    Directory of Open Access Journals (Sweden)

    Lamberto Borrelli

    2011-08-01

    Full Text Available Our study was conducted in the framework of EFFICOND project, with the aim of evaluating the environmental effectiveness of GAEC (Good Agricultural and Environmental Conditions standards with particular focus to the maintenance of soil organic matter (SOM levels through the appropriate crop rotation. The study analyzed the effect of crop rotation on the build-up of soil organic matter in three different areas of Italy, located in the North (Lodi, Centre (Fagna, Firenze and South (Foggia of Italy, characterized by different climate, soil, and cropping systems. In the two experiments conducted in the South of Italy, in a dry Mediterranean climate, the stock of C was kept steady in most of the rotations compared with the monoculture of durum wheat. In such environment, with very dry and hot summers, introducing a year of fallow seems to improve SOM content, but these data need further investigation. In the Centre of Italy (Fagna, with less extreme climate than in Foggia, the effect of rotation compared to the monoculture of maize is negligible, but investigation on the soil organic matter composition, showed that in the rotation the SOM appeared to be more stable and, in the long term, probably more resistant to degradation. Eventually, experiments conducted in the North of Italy, showed that the monoculture, despite the application of FYM (Farm Yard Manure or semi-liquid manure, led to a decrease of SOM. To an increase of the rotation complexity, corresponded an increase in the stock of C in soil. Summarizing, results showed that crop rotation could guarantee the maintenance of SOM level, given that the input of C to the soil is maintained at a good level or, in other word, that productivity of the system is high. Other practices such as conservation tillage, appropriate management of residues, and manure application could enhance the positive effect of rotations. Moreover, preliminary investigation of soil microbial diversity, suggests the

  16. Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods

    Science.gov (United States)

    Li, Chengfang; Zhang, Zhisheng; Guo, Lijin; Cai, Mingli; Cao, Cougui

    2013-12-01

    A two-year field experiment was conducted to investigate the effects of different tillage (no-tillage [NT] and conventional tillage [CT]) and seeding methods (transplanting seedlings [TPS] and throwing of seedlings [ST]) on methane (CH4) and carbon dioxide (CO2) emissions from double rice cropping systems in central China. The CH4 and CO2 fluxes for early rice ranged from -2.52 mg m-2 h-1 to 125.0 mg m-2 h-1 and from 99.3 mg m-2 h-1 to 1463.6 mg m-2 h-1, respectively, whereas the fluxes for late rice varied from -7.22 mg m-2 h-1 to 242.3 mg m-2 h-1 and from 180.6 mg m-2 h-1 to 2219.0 mg m-2 h-1, respectively. Compared with NT, CT significantly increased (P rice and 1.64-1.79 times for late rice. Moreover, compared with the CT treatment, the NT treatment significantly reduced seasonal total CO2 emissions by 19%-33% for early rice (P rice (P seeding methods significantly affected CH4 and CO2 emissions. Compared with TPS, ST significantly decreased seasonal total CH4 and CO2 emissions by 15%-40% (P rice, and by 38%-47% (P rice, respectively. These results may be attributed to reduced root growth and aboveground biomass. Therefore, simplified cultivation technologies are effective for reducing carbon emissions from double rice cropping systems in central China, and the combination of NT with ST can more effectively decrease carbon emissions.

  17. Conversão e balanço energético de sistemas de rotação de culturas para triticale, sob plantio direto Energy and balance conversion of crop rotation systems for triticale , under no-tillage

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    2000-03-01

    Full Text Available Na agricultura moderna, interessam sistemas de produção eficientes no uso da energia. Objetivou-se avaliar a conversão e o balanço energético de cinco sistemas de rotação de culturas envolvendo o triticale. Os sistemas avaliados, no período de 1987 a 1991, foram: I (triticale/soja, II (triticale/soja e aveia preta/soja, III (triticale/soja e ervilhaca/milho, IV (triticale/ soja, ervilhaca/milho e aveia preta/soja e V (triticale/soja, triticale/soja, ervilhaca/milho e aveia preta/soja. Em 1990, nos sistemas II, IV e V, a aveia preta foi substituída por aveia branca. O experimento foi estabelecido em plantio direto, em delineamento de blocos ao acaso, com três repetições e parcelas com área útil de 24 m². Na média do período de 1987 a 1989, o sistema III apresentou conversão (9,30 e balanço energético (23.860 Mcal/ha maiores do que os demais sistemas estudados (I: 5,38, II: 5,02, IV: 8,12 e V: 7,37; I: 18.067 Mcal/ha, II: 13.790 Mcal/ha, IV: 19.875 Mcal/ha e V: 19.264 Mcal/ha, respectivamente. Nesse período, as condições climáticas transcorreram normalmente. Na média do período de 1990 a 1991, não houve diferenças significativas entre as médias para conversão e para balanço energético. Nesse período, as condições climáticas foram adversas às culturas em estudo.Efficient energy conversion production systems are important for modern agriculture. The objetive was to evaluate the energy conversion and balance of five rotation systems that included triticale. The evaluated systems, from 1987 to 1991, were: I (triticale/soybean, II (triticale/soybean and black oats/soybean, III (triticale/soybean and common vetch/corn, IV (triticale/soybean, common vetch/corn, and black oats/soybean, and V (triticale/soybean, triticale/soybean, common vetch/corn, and black oats/ soybean. In 1990, black oats was replaced by white oats in systems II, IV, and V. The experiment was set up under no-tillage, using a randomized block design

  18. Crop rotation with no-till methods in cotton production of Uzbekistan

    OpenAIRE

    Khaitov, Botir; Allanov, Kholik

    2014-01-01

    Many soils of Uzbekistan have low water and nutrient holding capacity because of their sandy texture, low organic matter concentrations and degradation caused by long years of cotton monoculture. Conservation tillage production systems have the potential to increase the productivity of these soils by increasing soil humus and nitrogen content. As practiced conservation tillage helped to lessen N leaching losses, holding more of these elements within the topsoil as well as increase crop produc...

  19. Distribution of nitrogen ammonium sulfate (15N) soil-plant system in a no-tillage crop succession

    International Nuclear Information System (INIS)

    Fernandes, Flavia Carvalho da Silva; Libardi, Paulo Leonel

    2012-01-01

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on 15 N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha -1 in the form of labeled 15 N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha -1 N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha -1 N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha -1 N. (author)

  20. Water erosion during a 17-year period under two crop rotations in four soil management systems on a Southbrazilian Inceptisol

    Science.gov (United States)

    Bertol, Ildegardis; Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    Soil erosion still remains a persistent issue in the world, and this in spite of the efforts to ameliorate soil management systems taken into account the point of view of environmental protection against soil losses. In South Brazil water erosion is mainly associated to rainfall events with a great volume and high intensity, which are more or less evenly distributed all over the year. Nowadays, direct drilling is the most widely soil management system used for the main crops of the region. However, some crops still are grown on conventionally tilled soils, which means mainly ploughing and harrowing and less frequently chisel ploughing. In Lages-Santa Catarina State, Brazil, a plot experiment under natural rain was started in 1992 on an Inceptisol with the aim of quantifying soil and water losses. Treatments included bare and vegetated plots. The crop succession was: oats (Avena strigosa), soybean (Glycine max), vetch (Vicia sativa), maize (Zea mays), fodder radish (Raphanus sativus) and beans (Phaseolus vulgaris). Soil tillage systems investigated in this study were: i) conventional tillage (CT), ii) reduced tillage (MT), iii) no tillage (NT) under crop rotation and iv) conventional tillage on bare soil (BS). Treatments CT and BS involved ploughing plus twice harrowing, whereas MT involved chisel ploughing plus harrowing. Rainfall erosivity from January 1 1992 to December 31 2009 was calculated. Soil losses from the BS treatment along the 17 year study period were higher than 1200 Mg ha-1. Crop cover significantly reduced erosion, so that under some crops soil losses in the CT treatment were 80% lower than in the BS treatment. In turn soil losses in the MT treatment, where tillage was performed by chiselling and harrowing, were on average about 50% lower than in the CT treatment. No tillage was the most efficient soil management system in reducing soil erosion, so that soil losses in the NT treatment were about 98% lower than in the BS treatment. The three

  1. The effect of tillage intensity on soil structure and winter wheat root/shoot growth

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E

    2008-01-01

    of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....... was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...

  2. Strip-tillage: A conservation alternative to full-width tillage systems

    Science.gov (United States)

    Wolkowski, Richard

    2015-04-01

    Historically no-till management has been a challenge for maize production in the Midwestern USA because crop residue slows the warming of the soil in the spring and can physically impair planting by plugging the planter. After trying no-till, producers often return to more aggressive tillage operations to address residue concerns; however these systems can cause soil erosion and can increase the cost of production. An alternative system known as strip-tillage has been suggested as a compromise between no-till and full-width tillage. This practice utilizes implements that loosen the soil and allow warming in the row area, yet maintain nearly as much residue as no-till. Strip-tillage is generally understood to be a single pass with a separate implement in the fall, although spring strip-tillage is possible if soil moisture and conditions permit. Strip-tillage can be accomplished in a shorter time, with lower energy and equipment inputs compared to full-width tillage. The first of two studies that examined the merits of strip-tillage was conducted the University of Wisconsin Lancaster Agricultural Research Station (42.84, -90.80). Natural runoff collectors were installed in a field having a silt loam soil with an 8% slope in fall chisel and fall strip-tillage system. The measured soil loss in a year that experienced substantial rainfall prior to canopy closure was 10.6 Mg ha-1 in chisel vs. 0.64 Mg ha-1 in strip-tillage. Soil loss was much less for both systems in the second year when early season rainfall was minimal. A second, ten year study was conducted at the University of Wisconsin Arlington Agricultural Research Station (43.30, -89.36) that compared fall strip-tillage with fall chisel/spring field cultivator and no-till systems in both a continuous maize and soybean-maize rotation. This work showed equal maize grain yield in maize after soybean when comparing chisel and strip-tillage. No-till yield was about 5 % lower. Yield in continuous maize was highest in

  3. Long-term effect of tillage and manure application on soil organic fractions and crop performance under Sudano-Sahelian conditions

    NARCIS (Netherlands)

    Mando, A.; Ouattara, B.; Sédogo, M.; Stroosnijder, L.; Ouattara, K.; Brussaard, L.; Vanlauwe, B.

    2005-01-01

    Human-induced degradation of natural resources in general and of soil in particular, is a major problem in many regions, including the Sudano-Sahelian zone. The combined effects of tillage and manure application on Lixisol properties and on crop performance were investigated at Saria, Burkina Faso,

  4. Growth and yield of cucumber under no-tillage cultivation using rye as a cover crop

    Directory of Open Access Journals (Sweden)

    Małgorzata Jelonkiewicz

    2012-12-01

    Full Text Available In the first two years of study, method of cultivation did not affect the emergence of cucumber seedlings. In the third year, a drought occurring during the spring was the cause of poor seedling emergence on no-tilled plots. Six weeks after seed sowing, the shoots of cucumbers grown on the no-tilled plots were much shorter, especially in the last study year. At the time of cucumber seed sowing, no-tilled soil contained less phosphorus and potassium and in the middle of the fructification period the content of these elements in cucumber leaves was higher under no-tillage cultivation. Additional spring fertilization of rye with ammonium nitrate resulted in a higher N-NO3 content in soil and later in a higher nitrogen content of cucumber leaves. The content of calcium and magnesium in soil and than in cucumber leaves was independent of the cultivation method. In the first two years, method of cultivation did not affect the yield of cucumber fruits and in the third year the yield was much lower under no-tillage because of poor seedling emergence. Moreover, in the third year the fruits were smaller and dry matter content of the fruit was significantly higer under no-tillage cultivation.

  5. Optimal weed management in crop rotations: incorporating economics is crucial

    NARCIS (Netherlands)

    Berg, van den F.; Gilligan, C.A.; Lemmen-Gerdessen, van J.C.; Gregoire, L.A.H.; Bosch, van den F.

    2010-01-01

    Although the effects of crop rotation sequence and length on weed population dynamics have been studied, it is not clear whether or not the best strategy, from a weed population dynamics point of view, is also the economic optimal strategy. It is also not clear which biological and economic

  6. Rendimento de milho em área de integração lavoura-pecuária sob o sistema plantio direto, em presença e ausência de trevo branco, pastejo e nitrogênio Corn yield on no tillage crop-pasture rotation in presence and absence of white clover, grazing and nitrogen

    Directory of Open Access Journals (Sweden)

    T. S. Assmann

    2003-08-01

    Full Text Available O trabalho experimental foi realizado no campo, na Estação Experimental da Fundação Agrária de Pesquisa Agropecuária (FAPA, em Guarapuava (PR, Brasil, nos anos agrícolas de 1999 e 2000, com o objetivo de verificar a influência da adubação nitrogenada residual na cultura do milho, em Sistema Plantio Direto, cultivado em seqüência, em áreas que no inverno tinham presença e ausência de trevo branco e de animais em pastejo. O delineamento experimental foi o de blocos ao acaso com três repetições. Os tratamentos foram arranjados em parcelas subdivididas. No inverno, nas parcelas, foram aplicados quatro doses de nitrogênio (N-TI = 0, 100, 200 e 300 kg ha-1 de N e, nas subparcelas, a combinação de presença e ausência de trevo branco e de pastejo (CT = com trevo; ST = sem trevo; CP = com pastejo e SP = sem pastejo. No verão, em cada subparcela proveniente do inverno, foram aplicadas cinco doses de N (N-TV = 0, 60, 120, 180 e 240 kg ha-1 de N, em cobertura, e cultivado o milho. A máxima eficiência técnica de rebrote da cultura de inverno, avaliada dezoito dias após a retirada dos animais, foi obtida com a aplicação de 231 kg ha-1 de N (N-TI. As áreas CP/N-TI apresentaram maiores produtividades do milho que as áreas SP; contudo, estes resultados não foram estatisticamente significativos. As áreas sem N-TI produziram mais milho em subparcelas SP. As parcelas que receberam 300 kg ha-1 de N N-TI não mostraram resposta do milho ao N-TV, comprovando o efeito residual do N-TI. Conclui-se que a interação entre pastejo e N-TI contribui para a nutrição nitrogenada da cultura do milho.This field experiment was carried out at the Fundação Agrária de Pesquisa Agropecuária [Agrarian Foundation for Agricultural and Cattle Research] (FAPA, in Guarapuava, State of Paraná, Brazil, during the growing seasons of 1999 and 2000. The objective was to verify residual effects of nitrogen fertilization on maize crop under a no tillage

  7. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China.

    Directory of Open Access Journals (Sweden)

    Hai-Lin Zhang

    Full Text Available Understanding greenhouse gases (GHG emissions is becoming increasingly important with the climate change. Most previous studies have focused on the assessment of soil organic carbon (SOC sequestration potential and GHG emissions from agriculture. However, specific experiments assessing tillage impacts on GHG emission from double-cropped paddy fields in Southern China are relatively scarce. Therefore, the objective of this study was to assess the effects of tillage systems on methane (CH4 and nitrous oxide (N2O emission in a double rice (Oryza sativa L. cropping system. The experiment was established in 2005 in Hunan Province, China. Three tillage treatments were laid out in a randomized complete block design: conventional tillage (CT, rotary tillage (RT and no-till (NT. Fluxes of CH4 from different tillage treatments followed a similar trend during the two years, with a single peak emission for the early rice season and a double peak emission for the late rice season. Compared with other treatments, NT significantly reduced CH4 emission among the rice growing seasons (P<0.05. However, much higher variations in N2O emission were observed across the rice growing seasons due to the vulnerability of N2O to external influences. The amount of CH4 emission in paddy fields was much higher relative to N2O emission. Conversion of CT to NT significantly reduced the cumulative CH4 emission for both rice seasons compared with other treatments (P<0.05. The mean value of global warming potentials (GWPs of CH4 and N2O emissions over 100 years was in the order of NTcropped regions.

  8. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China.

    Science.gov (United States)

    Zhang, Hai-Lin; Bai, Xiao-Lin; Xue, Jian-Fu; Chen, Zhong-Du; Tang, Hai-Ming; Chen, Fu

    2013-01-01

    Understanding greenhouse gases (GHG) emissions is becoming increasingly important with the climate change. Most previous studies have focused on the assessment of soil organic carbon (SOC) sequestration potential and GHG emissions from agriculture. However, specific experiments assessing tillage impacts on GHG emission from double-cropped paddy fields in Southern China are relatively scarce. Therefore, the objective of this study was to assess the effects of tillage systems on methane (CH4) and nitrous oxide (N2O) emission in a double rice (Oryza sativa L.) cropping system. The experiment was established in 2005 in Hunan Province, China. Three tillage treatments were laid out in a randomized complete block design: conventional tillage (CT), rotary tillage (RT) and no-till (NT). Fluxes of CH4 from different tillage treatments followed a similar trend during the two years, with a single peak emission for the early rice season and a double peak emission for the late rice season. Compared with other treatments, NT significantly reduced CH4 emission among the rice growing seasons (P<0.05). However, much higher variations in N2O emission were observed across the rice growing seasons due to the vulnerability of N2O to external influences. The amount of CH4 emission in paddy fields was much higher relative to N2O emission. Conversion of CT to NT significantly reduced the cumulative CH4 emission for both rice seasons compared with other treatments (P<0.05). The mean value of global warming potentials (GWPs) of CH4 and N2O emissions over 100 years was in the order of NTcropped regions.

  9. Yields of crops on a rhodic ferralsol in southern Brazil in relation to ...

    African Journals Online (AJOL)

    Even though no-tillage, crop rotation management systems have been accepted as useful for sustaining crop production, there is the need to identify which crops can be used for such rotations. This study evaluated the dry matter and grain yields of eight winter and two summer crops (maize, Zea mays L. and soybean, ...

  10. Simulated effects of crop rotations and residue management on wind erosion in Wuchuan, west-central Inner Mongolia, China.

    Science.gov (United States)

    Wang, Erda; Harman, Wyatte L; Williams, Jimmy R; Xu, Cheng

    2002-01-01

    For decades, wind erosion has triggered dust and sand storms, buffeting Beijing and areas of northwestern China to the point of being hazardous to human health while rapidly eroding crop and livestock productivity. The EPIC (Environmental Policy Integrated Climate) field-scale simulation model was used to assess long-term effects of improved crop rotations and crop residue management practices on wind erosion in Wuchuan County in Inner Mongolia. Simulation results indicate that preserving crop stalks until land is prepared by zone tillage for the next year's crop in lieu of using them as a source of heating fuel or livestock fodder significantly reduces wind erosion by 60%. At the same time, grain and potato (Solanum tuberosum L.) yields were maintained or improved. Significant reductions in erosion, 35 to 46%, also resulted from delaying stalk removal until late January through late April. Yearly wind erosion was concentrated in April and May, the windiest months. Additionally, the use of alternative crop rotations resulted in differences in wind erosion, largely due to a difference in residue stature and quality and differences in biomass produced. As a result, altering current crop rotation systems by expanding corn (Zea mays L.), wheat (Triticum aestivum L.), and millet [Sorghum bicolor (L.) Moench] and reducing potato and pea (Pisum sativum L.) production significantly reduced simulated wind erosion, thus diminishing the severity of dust and sand storms in northwestern China. Saving and protecting topsoil over time will sustain land productivity and have long-term implications for improving conditions of rural poverty in the region.

  11. PORE SIZE DISTRIBUTION AND SOIL HYDRO PHYSICAL PROPERTIES UNDER DIFFERENT TILLAGE PRACTICES AND COVER CROPS IN A TYPIC HAPLUSULT IN NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2017-05-01

    Full Text Available Tillage practices influence soil physical, chemical and biological qualities which in-turn alters plant growth and crop yield. In the Northern Guinea Savanna (NGS ecological zone of Nigeria, agricultural production is mainly constrained by low soil nutrient and water holding capacity, it is therefore, imperative to develop appropriate management practices that will give optimal soil hydro-physical properties for proper plant growth, effective soil and water management and environmental conservation. This study investigated the effect of three tillage practices (no till, reduced till and conventional till and four cover crops (Centrosema pascuorum, Macrotyloma uniflorum, Cucurbita maxima and Glyine max and a bare/control (no cover crop on some soil physical properties of a Typic Haplusult during the rainy seasons of 2011, 2012 and 2013 in Samaru, NGS ecological zone of Nigeria. The field trials were laid out in a split plot arrangement with tillage practices in the main plots and cover crops in the subplots, all treatments were replicated three times. Auger and core soil samples were collected at the end of each cropping season each year in three replicates from each treatment plot at four depths (0-5, 5-10, 10-15 and 15-20 cm. Particle size distribution, bulk density, total pore volume and water retention at various soil matric potentials were determined using standard methods. Data obtained were compared with optimum values and fitted into a RETC computer code for quantifying soil hydraulic behavior and physical quality. Results showed that different tillage practices had varied effect on soil physical properties. No-till had the highest water holding capacity at most suction points evaluated, it had 4.3 % and 12.9 % more soil moisture than the reduced till  and conventionally tilled systems across all matric potentials while Centrosema pascuorum (3.1% and Cucurbita maxima (5.5% were best among evaluated cover crops in retaining soil moisture

  12. Comparison of Polygonum aviculare L. seedling survival under different tillage systems in Mediterranean dryland agroecosystems

    Science.gov (United States)

    Verdú, Antoni M. C.; Teresa Mas, M.

    2004-03-01

    Weed community shifts in agroecosystems are influenced by multiple factors. Among them, tillage and crop rotation are very important. Polygonum aviculare survival at early plant stages and biomass and density at harvest time were compared under three tillage systems (conventional, CT; minimum, MT; and no tillage, NT). Field studies were conducted from 1997-1998 to 2000-2001, during a crop rotation (pea-wheat-wheat-barley). The layout of the tillage systems was not randomized, which led to confusion between the tillage effect and the site effect, although all three tillage systems were implemented as of 1993-1994 and the same agricultural practices had been employed in the entire field between 1981-1982 and 1992-1993. Seedling mortality was analysed in two monitored cohorts (2000 and 2001) using a generalized linear model of binomial probability distribution with a complementary log-log link function. Analyses of variance considering tillage system (or site) and block were performed on: (1) aboveground biomass at the harvest time of the four crops; (2) density and mean plant biomass at the end of the first two crops; (3) seedling density registered twice during the 1998-1999 campaign. The expected changes to estimated mortality showed that seedlings under NT had greater probabilities of failure than those growing under the other two tillage systems. These differences were found considering the tillage system apart from the crop and the accumulated precipitation effects, which also strongly affects seedling survival. Density, 1999-2000 biomass and 2000-2001 biomass were different under different tillage systems ( P density occurring under NT and the lowest values of biomass under MT. Mean seedling densities were similar between CT and MT, but both were higher than densities under NT.

  13. Morfologia e propriedades físicas de solo segundo sistemas de manejo em culturas anuais Morphology and physical properties of soil according to tillage systems in annual crops

    Directory of Open Access Journals (Sweden)

    Rafael Fuentes-Llanillo

    2013-05-01

    Full Text Available Qualidade física do solo é sua capacidade de sustentar o pleno desenvolvimento das plantas. O objetivo deste trabalho foi estudar diferentes sistemas de semeadura direta para a produção de grãos em áreas de agricultura familiar sob Latossolo Vermelho no norte do Paraná, Brasil, através do estudo da morfologia e de algumas propriedades físicas do solo. O estudo foi baseado na descrição da estrutura de solo de perfis culturais em áreas cultivadas com lavouras anuais sob diferentes sistemas de manejo de solo (semeadura direta com e sem rotação de culturas, semeadura direta com escarificação eventual e o cultivo mínimo. Concomitantemente à descrição dos perfis foi determinada a resistência do solo a penetração, a densidade do solo, a umidade do solo e o grau de floculação da argila. Cada manejo estudado foi caracterizado por um tipo de estrutura de solo a qualse correlacionou com os valores de resistência, densidade e grau de floculação e em todos os manejos estudados abaixo dos 0,30 m, os perfis analisados apresentavam condições estruturais satisfatórias ao desenvolvimento radicular.Soil physical quality is the ability to sustain the full development of plants. The aim of this research was to study different tillage systems for grain production in family farming enterprises on an Oxisol in northern Parana, Brazil, through the study of morphology and physical properties of soil. The study was based on description of soil structure of soil profiles in cultivated areas with annual crops under different soil management systems (no-tillage with and without crop rotation, no-tillage with eventual chisel ploughing and minimum tillage. Simultaneously with the profiles' description some physical properties were determined such as resistance to penetration, bulk density, soil moisture and the degree of clay flocculation. Each studied soil tillage system was characterized by a type of soil structure and correlated with values of

  14. Nitrate leaching from an organic dairy crop rotation: the effect of manure type, N-input and improved crop rotation

    OpenAIRE

    Eriksen, J.; Askegaard, M.; Kristensen, K.

    2004-01-01

    Four management systems combining high and low livestock densities (0.7 and 1.4 LU ha-1) and different types of organic manure (slurry and straw based FYM) were applied to an organic dairy crop rotation (barley [undersown] – grass-clover – grass-clover – barley/pea – oats – fodder beet) between 1998 and 2001. The effects of the management systems on crop yields and nitrate leaching were measured. In all four years nitrate leaching, as determined using ceramic suction cups, was higher in the t...

  15. Contributions of long-term tillage systems on crop production and soil properties in the semi-arid Loess Plateau of China.

    Science.gov (United States)

    Niu, Yining; Zhang, Renzhi; Luo, Zhuzhu; Li, Lingling; Cai, Liqun; Li, Guang; Xie, Junhong

    2016-06-01

    This study determined the long-term effect of tillage systems on soil properties and crop yields in a semi-arid environment. Field pea (Pisum sativum L.) and spring wheat (Triticum aestivum L.) were alternately grown in six tillage systems at Dingxi (35° 28' N, 104° 44' E), north-west China starting in 2001. After the first 6 years of experiments, conventional tillage with stubble incorporating (TS) and no-till with stubble cover (NTS) increased soil organic matter by 9.9% and 13.0%, respectively, compared to the conventional tillage with stubble removed (T); both TS and NTS also increased soil microbial counts, available K and P, and total N. No-till with stubble removed (NT), NTS and NTP (no-till with plastic mulching) had 20.7%, 62.6% and 43.7% greater alkaline phosphatase activity compared to the T treatment. Soil catalase, urease and invertase activities were all greater in the no-till treatments than in the T treatment. Averaged across 6 years, both wheat and pea achieved highest grain yields under NTS treatment. No-till with stubble retention is the most promising system for improving soil physical, biological and chemical properties, and increasing crop yields, and thus, this system can be adopted in areas with conditions similar to the semi-arid north-west China. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Decomposition of ground biomass of secondary forest and yield of annual crops in no tillage

    Directory of Open Access Journals (Sweden)

    Déborah Verçoza da Silva

    2015-12-01

    Full Text Available ABSTRACT The objective of this work was to evaluate the dynamics of decomposition process of chopped secondary forest system, previously enriched with legumes Inga velutina Willd. and Stryphnodendron pulcherrimum (Willd. Hochr. and the contribution of this process to the nutrient input to the cultivation of corn and bean under no-tillage. The experimental design was a randomized block, split plot with four replications. The plots were two species (I. velutina and S. pulcherrimum and the subplots were seven times of evaluation (0, 7, 28, 63, 189, 252, 294 days after experiment installation. There was no difference (p ≥ 0.05 between the secondary forest systems enriched and no interaction with times for biomass waste, decomposition constant and half-life time. The waste of S. pulcherrimum trees had higher (p 0.05 yield in both areas, regardless of the waste origin.

  17. Effects of different tillage systems and amendments on root properties

    Science.gov (United States)

    Gao, Mengyu; Yan, Yang; Li, Na; Luo, Peiyu; Yang, Jinfeng

    2017-06-01

    The object of this study was to investigate the effect of different tillage systems and amendments on root properties. There were five treatments: maize continuous cropping, maize and peanuts rotation, peanuts continuous cropping, peanuts continuous cropping with low level of amendment and peanuts continuous cropping with high level of amendment. The results showed that maize continuous cropping increased total root length by 118.95%, projected area by 204.86%, projected area by 150.70%, total root volume by 20.66%, and average root diameter by184.53%. The amendments also improved root properties and the high level of amendment had much more better effect.

  18. Changes in the fertility of a leached chernozem under different primary tillage technologies

    Science.gov (United States)

    Korolev, V. A.; Gromovik, A. I.; Borontov, O. K.

    2016-01-01

    Changes in the fertility of a leached chernozem under different tillage technologies (moldboard, non-inversive, and combined tillage) were studied in a multifactor stationary field experiment established in 1985 in Voronezh oblast on a low-humus medium-deep light clayey leached chernozem. The nine-field rotation of cereals and sugar beet was practiced. It was found that the major parameters of soil fertility—the content and qualitative composition of humus and the physicochemical and physical properties of the chernozem—remained relatively stable independently from the applied primary tillage technologies. However, taking into account economic characteristics (crop yields, production costs, energy expenses, etc.), the combined tillage system proved to be most efficient. It can be recommended for cereals-sugar beet rotation systems in the central chernozemic region, as it ensures the highest efficiency of crop growing and preserves the fertility of leached chernozems.

  19. Increasing crop diversity mitigates weather variations and improves yield stability.

    Directory of Open Access Journals (Sweden)

    Amélie C M Gaudin

    Full Text Available Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops and tillage (conventional or reduced tillage on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple

  20. Abundance and Diversity of Soil Macrofauna in Native Forest, Eucalyptus Plantations, Perennial Pasture, Integrated Crop-Livestock, and No-Tillage Cropping

    Directory of Open Access Journals (Sweden)

    Sheila Trierveiler de Souza

    2016-01-01

    Full Text Available ABSTRACT Intensive land use can affect macrofaunal biodiversity, which is a property that can be used as a soil quality indicator. This study evaluated the abundance and diversity of soil macrofauna and its relation to soil chemical and physical properties in five land use systems (LUS in the eastern region of Santa Catarina. The following LUS were studied: native forest (NF, eucalyptus plantations (EP, perennial pasture (PP, integrated crop-livestock (ICL, and no-tillage cropping (NT. The macrofauna was quantified in 0.25 × 0.25 m monoliths and sampled in the 0.00-0.20 m layer in the summer (Jan/2012 and winter (Jul/2012. For each LUS, nine points were sampled, distributed in a 30 × 30 m sampling grid. After screening the edaphic macrofauna organisms, the individuals were counted and identified at the species level when possible, or in major taxonomic groups. The Shannon diversity indices were calculated and the macrofaunal groups together with the physical and chemical properties were subjected to principal component (PCA and redundancy analysis (RDA. The abundance and diversity of macrofaunal groups are affected by the LUS. The properties of organic matter, macroporosity, bulk density, cation exchange capacity at pH 7.0, base saturation, potential acidity, and exchangeable Al were related to the abundance of soil macrofaunal groups. The stability and biodiversity of soil macrofauna were highest in the LUS of NF, PP, and EP.

  1. Re-plant problems in long-term no-tillage cropping systems : causal analysis and mitigation strategies

    OpenAIRE

    Afzal

    2016-01-01

    No-tillage is considered as a promising alternative for tillage-based conventional farming, by saving energy-input and time, reducing groundwater pollution and counteracting soil erosion and losses of the soil-organic matter. However, in the recent past, no-tillage farmers in Southwest Germany repeatedly reported problems particularly in winter wheat production, characterized by stunted plant growth in early spring, chlorosis, impaired fine root development and increased disease susceptibilit...

  2. Mycorrhizal colonization and grain Cd concentration of field-grown durum wheat in response to tillage, preceding crop and phosphorus fertilization.

    Science.gov (United States)

    Gao, Xiaopeng; Akhter, Fardausi; Tenuta, Mario; Flaten, Donald N; Gawalko, Eugene J; Grant, Cynthia A

    2010-04-15

    A 3-year field trial was conducted to investigate the effect of agricultural management practices including tillage, preceding crop and phosphate fertilization on root colonization by arbuscular mycorrhizal (AM) fungi and grain cadmium (Cd) concentration of durum wheat (Triticum turgidum L.). The relationship between grain Cd and soil and plant variables was explored to determine the primary factors affecting grain Cd concentration. Mycorrhizal colonization of the roots was reduced by conventional tillage or when the preceding crop was canola (Brassica napus L.), compared to minimum tillage or when the preceding crop was flax (Linum usitatissimum L.). In contrast, grain Cd was not consistently affected by any treatment. Grain Cd was generally below the maximum permissible concentration (MPC) of 100 microg Cd kg(-1) proposed by WHO. Grain Cd varied substantially from year to year, and could be predicted with 70% of variance accounted for by using the model: grain Cd concentration = - 321.9 + 44.5x ln(grain yield) + 0.26x soil DTPA-Cd + 182.5x soil electrical conductivity (EC)- 0.98x grain Zn concentration. These common agricultural management practices had no effect on grain Cd concentration in durum wheat though they impacted mycorrhizal colonization of roots. Grain yield and to a lesser extent soil conditions of EC and DTPA-Cd and grain Zn influenced grain Cd, whereas mycorrhizal colonization levels did not. (c) 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

  3. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    Science.gov (United States)

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  4. The impact of different soil tillage on weed infestation of spring barley in conditions of dryer climatic areas Czech Republic

    Directory of Open Access Journals (Sweden)

    Jan Winkler

    2008-01-01

    Full Text Available The impact of soil tillage on weeds in spring barley was observed on the field trial. The field trial was established in very warm and dry climatic region (experimental field station in Žabčice, Mendel University of Agriculture and Forestry Brno, Czech Republic. In the experiment there was used 7-strip crop rotation and three variants of soil tillage: conventional tillage (CT, minimum tillage (MT, when soil is shallow loosened and no tillage (NT what means direct sowing without any soil tillage. The weed infestation was evaluated by counting method before herbicide application. Analysis of va­rian­ce (ANOVA and then LSD methods, DCA (Detrended Correspondence Analysis and CCA (Canonical Correspondence Analysis were used for evaluation of results. The obtained results showed, that different soil tillage did not statistically influenced weed infestation in spring barley. The number of weed species depended on the depth of soil tillage, the variant of minimum tillage had lower number of weed species. These species were more common on the variant of conventional tillage: Chenopodium album, Silene noctiflora, Sinapis arvensis, Veronica polita. The variant of minimum tillage was more suitable for these species: Cirsium arvense, Convolvulus arvensis, Amaranthus sp., Galium aparine. On the variant of direct so­wing there appeared mainly these species: Sonchus oleraceus, Lactuca serriola, Tripleurospermum inodorum.

  5. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.) –Wheat (Triticum aestivum L.) Cropping System in Central China

    Science.gov (United States)

    Liu, Tian-Qi; Cao, Cou-Gui; Li, Cheng-Fang

    2016-01-01

    Investigating microbial metabolic characteristics and soil organic carbon (SOC) within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT) and no tillage (NT)] as main plots and straw returning methods [preceding crop residue returning (S, 2100−2500 kg C ha−1) and removal (NS, 0 kg C ha-1)] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC) fractions within aggregates and their relationships under a rice–wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%), and 0.25 mm aggregate, and 0.25 mm aggregate, and tillage (NT and S) increased microbial metabolic activities and Shannon index in >0.25 and directly improved SOC by promoting DOC in >0.25 mm aggregate in the upper (0−5 cm) soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities. PMID:26731654

  6. Water pressure head and temperature impact on isoxaflutole degradation in crop residues and loamy surface soil under conventional and conservation tillage management.

    Science.gov (United States)

    Alletto, Lionel; Coquet, Yves; Bergheaud, Valérie; Benoit, Pierre

    2012-08-01

    Laboratory incubations were performed in order to evaluate the dissipation of the proherbicide isoxaflutole in seedbed layer soil samples from conventional and conservation tillage systems and in maize and oat residues left at the soil surface under conservation tillage. The effects of temperature and water pressure head on radiolabelled isoxaflutole degradation were studied for each sample for 21d. Mineralisation of isoxaflutole was low for all samples and ranged from 0.0% to 0.9% of applied (14)C in soil samples and from 0.0% to 2.4% of applied (14)C in residue samples. In soil samples, degradation half-life of isoxaflutole ranged from 9 to 26h, with significantly higher values under conservation tillage. In residue samples, degradation half-life ranged from 3 to 31h, with significantly higher values in maize residues, despite a higher mineralisation and bound residue formation than in oat residues. Whatever the sample, most of the applied (14)C remained extractable during the experiment and, after 21d, less than 15% of applied (14)C were unextractable. This extractable fraction was composed of diketonitrile, benzoic acid derivative and several unidentified metabolites, with one of them accounting for more than 17% of applied (14)C. This study showed that tillage system design, including crop residues management, could help reducing the environmental impacts of isoxaflutole. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Benefits of Vetch and Rye Cover Crops to Sweet Corn under No-Tillage

    NARCIS (Netherlands)

    Zotarelli, L.; Avila, L.; Scholberg, J.M.S.; Alves, B.J.R.

    2009-01-01

    Leguminous cover crops (CCs) may reduce N fertilizer requirements by fixing N biologically and storing leftover N-fertilizer applied in the previous year. The objective of this study was to determine the contribution of CCs [rye (Secale cereal L.) and hairy vetch (Vicia villosa Roth)] on plant N

  8. Fuzzy multi attributive comparison of tillage crop and manure management systems

    Science.gov (United States)

    Determining the best alternative between cropping system options is often complicated by disparities in research results due to differences between years as a result of seasonal variability. The economic cost of the systems further complicates the determination of best alternative for sustainable c...

  9. Evaluation of tillage, cover crop, and herbicide effects on weed control, yield, and grade in peanut

    Science.gov (United States)

    Peanut production plays a large role in agriculture in the Southeastern United States. Weeds are detrimental to their production because of the competition that they create; weeds will compete with crops for resources such as nutrients and sunlight, among others. Therefore, it is important to reduce...

  10. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  11. Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems

    DEFF Research Database (Denmark)

    Krogh, P. H.; Griffiths, B.; Demsar, D.

    2007-01-01

    studies of Bt corn and a glufosinate ammonium tolerant corn and included a reduced tillage treatment (RT) and a conventional tillage treatment (CT) as examples of a likely concomitant change in the agricultural practise. At a French study site at Varois, (Bourgogne), a field grown with the Bt...

  12. Tillage system affects microbiological properties of soil

    Science.gov (United States)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  13. Long-term changes in soil organic carbon and nitrogen under semiarid tillage and cropping practices

    Science.gov (United States)

    Understanding long-term changes in soil organic carbon (SOC) and total soil nitrogen (TSN) is important for evaluating C fluxes and optimizing N management. We evaluated long-term SOC and TSN changes under dryland rotations for historical stubble-mulch (HSM) and graded terrace (GT) plots on a clay l...

  14. Soil Temperature Moderation by Crop Residue Mulch, Grevilla Robusta Tillage Mode

    International Nuclear Information System (INIS)

    Oteng'i, S.B.B.

    2006-01-01

    The effects of mulching with crop residues and shading by Grevillea robust trees on the soil temperatures of Mt. Kenya Volcanic soils at Matanya area, Laikipia district, were studied. Soil thermistors connected to data-loggers(type Grant squirrel)were used to record soil temperaturs. The soils were mulched and minimum tilled (depths of 0.04 till 0.05m), and unmulched and deep tilled (depths 0.20till 0.25m) in plots of pruned and unpruned trees and also to cotrol (non-agroforestry) plots. The results showed that closer tp the trees, canopy differences ionfluenced changes in soil temperatures of about ≠2.0 degrees centrigrade. The dumping depth and Stigters ratio values showed soil temperatures were modified by treatment and tree canopy differences. The modified soil temperatures resulted in better crop performance when the soil water was adequate.(author)

  15. Impact of tillage intensity on clay loam soil structure

    DEFF Research Database (Denmark)

    Daraghmeh, Omar; Petersen, Carsten; Munkholm, Lars Juhl

    Soil structure and structural stability are key parameters in sustainable soil management and optimum cropping practices. Locally and temporally adapted precision tillage may improve crop performance while at the same time reduce environmental impacts. The main objective of this study...... was to improve the knowledge of precision tillage practices through characterizing the effect of varied tillage intensities on structural properties of a clay loam soil. A field experiment was conducted using a randomized complete block design with two main factors, i.e. operational speed (OS, 2 levels...... tracked soil at T1 (9 mm). We conclude that precise combination of operation and rotation speeds will result in optimum seedbed in terms of permeability and stability of soil structure....

  16. Carbon storage and recycling in short-rotation energy crops

    International Nuclear Information System (INIS)

    Ranney, J.W.; Wright, L.L.; Mitchell, C.P.

    1991-01-01

    Short-rotation energy crops can play a significant role in storing carbon compared to the agricultural land uses they would displace. However, the benefits from these plantations in avoiding further use of fossil fuel and in taking pressure off of native forests for energy uses provides longer term carbon benetfits than the plantation carbon sequestration itself. The fast growth and harvest frequency of plantations tends to limit the amount of above and below-ground carbon storage in them. The primary components of plantation carbon sequestering compared to sustained agricultural practices involve above-ground wood, possible increased soil carbon, litter layer formation, and increased root biomass. On the average, short-rotation plantations in total may increase carbon inventories by about 30 to 40 tonnes per hectare over about a 20- to 56-year period when displacing cropland. This is about doubling in storage over cropland and about one-half the storage in human-impacted forests. The sequestration benefit of wood energy crops over cropland would be negated in about 75 to 100 years by the use of fossil fuels to tend the plantations and handle biomass. Plantation interactions with other land uses and total landscape carbon inventory is important in assessing the relative role plantations play in terrestrial and atmospheric carbon dynamics. It is speculated that plantations, when viewed in this context. could trencrate a global leveling of net carbon emissions for approximately 10 to 20 years

  17. Sistemas de preparo do solo para as culturas de soja e trigo Tillage management practices in soybean wheat double cropping

    Directory of Open Access Journals (Sweden)

    Gastão Moraes da Silveira

    1984-01-01

    Full Text Available No presente trabalho estudaram-se dois processos de semeadura, a direta e a convencional, para as culturas de soja (Glycine max (L. Merrill e trigo (Triticum aestivum L. plantadas num mesmo ano. Ênfase especial foi dada ao problema das máquinas utilizadas nos dois sistemas de semeadura, caracterizando-se os diversos parâmetros envolvidos. Montou-se um ensaio de campo na Fazenda Canadá, município de Assis, no período 1979-82, com três safras para as duas culturas. Para o trigo, os tratamentos foram: preparo convencional (grade pesada e grade niveladora e semeadura direta. Para a soja: convencional mais escarificação; convencional; aração e gradeação; aração e gradeação mais escarificação e semeadura direta. Os resultados mostraram que a interação entre os tratamentos aplicados numa cultura e os aplicados na cultura seguinte não foi significativa, não havendo também influência de preparo de solo para soja sobre a produção de trigo, exceto no ano agrícola 1981/82, em que as produções de soja sofreram influência do tipo de preparo de solo para a semeadura do trigo. A economia de combustível foi bastante significativa na semeadura direta das duas culturas. As máquinas para semeadura direta devem ser articuladas para que possam acompanhar as irregularidades do terreno.In a field experiment set up in Assis county, State of São Paulo, Brazil, two seeding processes namely no-till and conventional tillage systems for soybean (Glycine max (L. Merrill and wheat (Triticum aestivum L. (double cropping were studied. Special emphasis was given to the different seeding machines. Three crop yields were obtained. For wheat the treatments were: conventional seeding (heavy disking and leveling disking and no-till. For soybean we had: conventional seeding plus chiseling; conventional seeding; plowing and disking; plowing and disking plus scarifying and no-till. The results showed that the interaction among the treatments were not

  18. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.-Wheat (Triticum aestivum L. Cropping System in Central China.

    Directory of Open Access Journals (Sweden)

    Li-Jin Guo

    Full Text Available Investigating microbial metabolic characteristics and soil organic carbon (SOC within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT and no tillage (NT] as main plots and straw returning methods [preceding crop residue returning (S, 2100-2500 kg C ha-1 and removal (NS, 0 kg C ha(-1] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC fractions within aggregates and their relationships under a rice-wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%, and 0.25 mm aggregate, and 0.25 mm aggregate, and 0.25 and 0.25 mm aggregate in the upper (0-5 cm soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in <0.25 mm aggregate. Our results suggested that conservation tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities.

  19. Avaliações qualitativas e quantitativas de plantas daninhas na cultura da soja submetida aos sistemas de plantio direto e convencional Quantitative and qualitative weed evaluation of soybean crop in no-tillage and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    Eduardo de Sá Pereira

    2000-08-01

    pré-emergência proporcionaram melhor controle de A. viridis do que de B. plantaginea; o controle com herbicidas pós-emergentes foi insatisfatório para ambas espécies. No plantio direto, o controle de E. heterophylla foi insatisfatório em todos os sistemas de controle testados. O plantio direto apresentou sempre menor número total de plantas daninhas, sobretudo de gramineas. A germinação de plantas daninhas limitou-se ao período de até 15 dias após a emergência da cultura, nos dois sistemas de cultivo.With the objective to evaluate the effects of different tillage systems and different methods of control on mulch of black oat (Avena strigosa on evolution and control of weeds in soybean crop (cultivar 'IAC 14', a field experiment was carried out in Fazenda Experimental Lageado - UNESP Botucatu - SP, in 1993/94. The different cultivation systems were no tillage and conventional tillage, and the last cultivation system was made with disk harrow and three tandem disk harrow. The weed control methods were: control (weedy check, pre-emergence herbicides (0,28 kg/ha of metribuzim + 1,29 kg/ha of oryzalin, post-emergence herbicides (0,25 kg/ha of Fluacifop-p-butil +0,25 kg/ha of fomesafen and pre and post-emergence treatments (with the four herbicides in the same rates. Glyphosate was applied for weed and black oat elimination before the crop establishment. The experimental design used was a randomized block arranged in split-plots scheme with four replications. The different cultivation systems were applied on plots and the different weed control on sub-plots. In the early stages of crop development, the rain was scarce, limiting crop growth and performance of the preemergence herbicides. The number the weeds/m2 was evaluated at 14, 28 and 35 days after soybean emergency, showing differences between cultivation systems and among different control systems. Brachiaria plantaginea and Amaranthus viridis were predominant on conventional tillage, and less important

  20. Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops

    DEFF Research Database (Denmark)

    De Notaris, Chiara; Rasmussen, Jim; Sørensen, Peter

    2018-01-01

    Components of the field nitrogen (N) balance (input and surplus) are often used to predict nitrate leaching from agricultural lands. However, management factors, such as use of catch crops, greatly affect the actual loss and are a key to reduce N leaching. The present study is based on the 4th...... cycle of a long-term crop rotation experiment in Denmark, and it aims to quantify, from a crop rotation perspective, the influence on N leaching from N input and surplus or management factors. The experiment included three cropping systems (two organic and one conventional) with or without use of animal......, with legume-based catch crops being as effective as non-legumes. Animal manure increased N leaching in one of the organic systems. The organic system with two years of green manure per rotation cycle was the one at highest risk of N leaching, especially from crops following green manure incorporation. Spring...

  1. Carbon stocks quantification in agricultural systems employing succession and rotation of crops in Rio Grande do Sul State, Brazil.

    Science.gov (United States)

    Walter, Michele K. C.; Marinho, Mara de A.; Denardin, José E.; Zullo, Jurandir, Jr.; Paz-González, Antonio

    2013-04-01

    Soil and vegetation constitute respectively the third and the fourth terrestrial reservoirs of Carbon (C) on Earth. C sequestration in these reservoirs includes the capture of the CO2 from the atmosphere by photosynthesis and its storage as organic C. Consequently, changes in land use and agricultural practices affect directly the emissions of the greenhouse gases and the C sequestration. Several studies have already demonstrated that conservation agriculture, and particularly zero tillage (ZT), has a positive effect on soil C sequestration. The Brazilian federal program ABC (Agriculture of Low Carbon Emission) was conceived to promote agricultural production with environmental protection and represents an instrument to achieve voluntary targets to mitigate emissions or NAMAS (National Appropriated Mitigation Actions). With financial resources of about US 1.0 billion until 2020 the ABC Program has a target of expand ZT in 8 million hectares of land, with reduction of 16 to 20 million of CO2eq. Our objective was to quantify the C stocks in soil, plants and litter of representative grain crops systems under ZT in Rio Grande do Sul State, Brazil. Two treatments of a long term experimental essay (> 20 years) were evaluated: 1) Crop succession with wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merril); 2) Crop rotation with wheat/soybean (1st year), vetch (Vicia sativa L.)/soybean (2nd year), and white oat (Avena sativa L.)/sorghum (Sorghum bicolor L.) (3rd year). C quantification in plants and in litter was performed using the direct method of biomass quantification. The soil type evaluated was a Humic Rhodic Hapludox, and C quantification was executed employing the method referred by "C mass by unit area". Results showed that soybean plants under crop succession presented greater C stock (4.31MgC ha-1) comparing with soybean plants cultivated under crop rotation (3.59 MgC ha-1). For wheat, however, greater C stock was quantified in plants under rotation

  2. Neutral hydrolysable sugars, OC and N content across soil aggregate size fractions, as an effect of two different crop rotations

    Science.gov (United States)

    Angeletti, Carlo; Giannetta, Beatrice; Kölbl, Angelika; Monaci, Elga; Kögel-Knabner, Ingrid; Vischetti, Costantino

    2016-04-01

    This paper presents the results regarding the effects of two 13 years long crop rotations, on the composition of mineral associated neutral sugars, organic carbon (OC) and N concentration, across different aggregate size fractions. The two cropping sequences were characterized by different levels of N input from plant residues and tillage frequency. We also analysed the changes that occurred in soil organic matter (SOM) chemical composition following the cultivation in the two soils of winter wheat and chickpea on the same soils. The analysis of OC and N content across soil aggregate fractions allowed getting an insight into the role played by SOM chemical composition in the formation of organo-mineral associations, while neutral sugars composition provided information on mineral associated SOM origin and decomposition processes, as pentoses derive mostly from plant tissues and hexoses are prevalently of microbial origin. Soil samples were collected from two adjacent fields, from the 0-10 cm layer, in November 2011 (T0). For 13 years before the beginning of the experiment, one soil was cultivated mostly with alfalfa (ALF), while a conventional cereal-sunflower-legume rotation (CON) was carried out on the other. Winter wheat and chickpea were sown on the two soils during the following 2 growing seasons and the sampling was repeated after 18 months (T1). A combination of aggregates size and density fractionation was used to isolate OM associated with mineral particles in: macro-aggregates (>212 μm), micro-aggregates ( 63 μm) and silt and clay size particles (carbohydrates contributions in every other fraction. GM/AX varied slightly between the soils. In conclusion, the crop rotation determined the accumulation of different levels of SOM in the two soils. The 18-months cultivation experiment determined an increase in the tillage intensity in ALF, and the introduction of N rich chickpea residues in CON. Consequently SOM chemical composition responded divergently in

  3. Do Rates and Splitting of Phosphogypsum Applications Influence the Soil and Annual Crops in a No-Tillage System?

    Directory of Open Access Journals (Sweden)

    Marcelo Vicensi

    2016-01-01

    Full Text Available ABSTRACT Applications of phosphogypsum (PG provide nutrients to the soil and reduce Al3+ activity, favoring soil fertility and root growth, but allow Mg2+ mobilization through the soil profile, resulting in variations in the PG rate required to achieve the optimum crop yield. This study evaluated the effect of application rates and splitting of PG on soil fertility of a Typic Hapludox, as well as the influence on annual crops under no-tillage. Using a (4 × 3 + 1 factorial structure, the treatments consisted of four PG rates (3, 6, 9, and 12 Mg ha-1 and three split applications (P1 = 100 % in 2009; P2 = 50+50 % in 2009 and 2010; P3 = 33+33+33 % in 2009, 2010 and 2011, plus a control without PG. The soil was sampled six months after the last PG application, in stratified layers to a depth of 0.8 m. Corn, wheat and soybean were sown between November 2011 and December 2012, and leaf samples were collected for analysis when at least 50 % of the plants showed reproductive structures. The application of PG increased Ca2+ concentrations in all sampled soil layers and the soil pH between 0.2 and 0.8 m, and reduced the concentrations of Al3+ in all layers and of Mg2+ to a depth of 0.6 m, without any effect of splitting the applications. The soil Ca/Mg ratio increased linearly to a depth of 0.6 m with the rates and were found to be higher in the 0.0-0.1 m layer of the P2 and P3 treatments than without splitting (P1. Sulfur concentrations increased linearly by application rates to a depth of 0.8 m, decreasing in the order P3>P2>P1 to a depth of 0.4 m and were higher in the treatments P3 and P2 than P1 between 0.4-0.6 m, whereas no differences were observed in the 0.6-0.8 m layer. No effect was recorded for K, P and potential acidity (H+Al. The leaf Ca and S concentration increased, while Mg decreased for all crops treated with PG, and there was no effect of splitting the application. The yield response of corn to PG rates was quadratic, with the maximum

  4. Physical properties of a humic cambisol under tillage and cropping systems after twelve years Atributos físicos e carbono orgânico de um cambissolo húmico dob sistemas de preparo e cultivo após doze anos

    Directory of Open Access Journals (Sweden)

    Andréia Patrícia Andrade

    2010-02-01

    Full Text Available Soil is the basis underlying the food production chain and it is fundamental to improve and conserve its productive capacity. Imbalanced exploitation can degrade agricultural areas physical, chemical and biologically. The objective of this study was to evaluate some soil physical properties and their relation with organic carbon contents of a Humic Dystrudept under conventional tillage (CT and no-tillage (NT, for 12 years in rotation (r and succession (s cropping systems. The experiment was carried out in Lages, SC (latitude 27 º 49 ' S and longitude 50 º 20 ' W, 937 m asl, using crop sequences of bean-fallow-maize-fallow-soybean in conventional tillage rotation; maize-fallow in conventional tillage succession; bean-oat-maize-turnip-soybean-vetch in no-tillage rotation; and maize-vetch in no-tillage succession. The experimental design was completely randomized with four replications. The soil samples were collected in the layers 0-2.5, 2.5-5, 5-10, and 10-20 cm. The following properties were analyzed: soil density, porosity, aggregate stability, degree of flocculation, water retention, infiltration, mechanical strength, and total organic carbon. Soil aggregation in the surface layer (0-5 cm was better in the no-tillage than the conventional system, related to higher microporosity, organic carbon contents and water retention capacity, indicating that a periodical tillage of this soil is unnecessary. Infiltration was highest in no-tillage with crop succession.O solo é a base da cadeia produtiva de alimentos, por isso tornam-se necessárias a conservação e manutenção de sua capacidade produtiva. Muitas áreas exploradas de forma incorreta podem apresentar degradação física, química e biológica. O objetivo deste estudo foi avaliar alguns atributos físicos e suas relações com os teores de carbono orgânico de um Cambissolo Húmico alumínico nos sistemas de preparo convencional (PC e semeadura direta (SD, após 12 anos com rotação (r

  5. The impact of no-tillage cultivation and white mustard as a cover crop on weed infestation and yield of carrot and red beet

    Directory of Open Access Journals (Sweden)

    Andrzej Borowy

    2015-03-01

    Full Text Available In a two-year field experiment, no-tillage cultivation using white mustard (Sinapis alba L. ‘Bardena’, 30 kg ha−1, as a cover crop did not influence emergence of red beet (Beta vulgaris L. ‘Czerwona Kula REW’ and had a favorable effect on emergence of carrot (Daucus carota L. ‘Berlikumer 2 – Perfekcja REW’. However, further growth of both vegetables was significantly slower under no-tillage cultivation. Both vegetables produced a higher yield of roots and the diameter of these roots was bigger under conventional cultivation. The effect of cultivation method on the content of total nitrogen, phosphorus, potassium, calcium and magnesium in carrot and red beet leaves varied, while the content of dry matter, monosaccharides and total sugars was significantly higher in the roots of both vegetables harvested under no-tillage cultivation. The number of weeds growing on no-tilled plots covered with mustard mulch 4 weeks after seed sowing was lower by about 75%, but their fresh weight was higher more than 6 times in comparison to that under conventional cultivation. This was caused by the emergence of wintering and winter hardy weeds in places not covered by mustard plants in the autumn of the year preceding the cultivation of vegetables. Next year, they started to grow in the early spring and some of them produced a considerable amount of fresh weight and attained the flowering stage in the middle of April.

  6. Effect of crop rotation on soil nutrient balance and weediness in soddy podzolic organic farming fields

    Science.gov (United States)

    Zarina, Livija; Zarina, Liga

    2017-04-01

    The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.

  7. The influence of cover crops and tillage on actual and potential soil erosion in an olive grove

    Science.gov (United States)

    Sastre, Blanca; Bienes, Ramón; García-Díaz, Andrés; Panagopoulos, Thomas; José Marqués, Maria

    2014-05-01

    The study was carried out in an olive grove in central Spain (South of Madrid; Tagus River Basin). In this semi-arid zone, the annual mean temperature is 13.8 ºC and the annual precipitation is 395 mm. Olive groves are planted in an erosion prone area due to steep slopes up to 15%. Soil is classified as Typic Haploxerept with clay loam texture. The land studied was formerly a vineyard, but it was replaced by the studied olive grove in 2004. It covers approximately 3 ha and olive trees are planted every 6 x 7 metres. They were usually managed by tillage to decrease weed competition. This conventional practice results in a wide surface of bare soil prone to erosion processes. In the long term soil degradation may lead to increase the desertification risk in the area. Storms have important consequences in this shallow and vulnerable soil, as more than 90 Mg ha-1 have been measured after one day with 40 mm of rainfall. In order to avoid this situation, cover crops between the olive trees were planted three years ago: sainfoin (Onobrychis viciifolia), barley (Hordeum vulgare), and purple false brome (Brachypodium distachyon), and they were compared with annual spontaneous vegetation after a minimum tillage treatment (ASV). The results regarding erosion control were positive. We observed (Oct. 2012/Sept. 2013) annual soil loss up to 11 Mg ha-1 in ASV, but this figure was reduced in the sown covers, being 8 Mg ha-1 in sainfoin treatment, 3,7 Mg ha-1 in barley treatment, and only 1,5 Mg ha-1 in false brome treatment. Those results are used to predict the risk of erosion in long term. Moreover, soil organic carbon (SOC) increased with treatments, this is significant as it reduces soil erodibility. The increases were found both in topsoil (up to 5 cm) and more in depth, in the root zone (from 5 to 10 cm depth). From higher to lower SOC values we found the false brome (1.05%), barley (0.92%), ASV (0.79%) and sainfoin (0.71%) regarding topsoil. In the root zone (5-10 cm depth

  8. [A long-term experiment on the complex influence of cultivating, fertilizing, and crop rotation measures on humic substances in soil and development of yield (author's transl)].

    Science.gov (United States)

    Heisig, W; Müller, G; Völker, U

    1977-01-01

    In a 10-year field experiment, the influence of fertilizing, cultivating, and crop rotation measures on the C-content of the soil, humus quality of the organic soil substance, and the yield was investigated. With cultivation of fodder plants only, the C-content of the soil can be improved by increased mineral and increased organo-mineral fertilization at any depth of cultivation. When in the same location there was a turn between cereals and green crops, a decrease of C-rate can only be prevented by increased organo-mineral fertilization. Continuous cultivation of root crops resulted in a decrease of the C-content. Deeper tillage of the soil generally decreased C-content. Within the years, a variability of the pure humin substances could be detected, depending on the rotation of crops and C-content. The composition of the fulvic acids is differentiated in dependence on the factors "time" and "cultivation". The effect of fertilization variants on the yield was different. Fertilization in that location with manure only, compared with mineral fertilization, caused in most cases depression in yield. Decrease on yield by deeper ploughing had the least influence with root crops.

  9. Biofuels, bioenergy, and bioproducts from sustainable agricultural and forest crops: proceedings of the short rotation crops international conference

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Rob Mitchell; Jim, eds. Richardson

    2008-01-01

    The goal of this conference was to initiate and provide opportunities for an international forum on the science and application of producing both agricultural and forest crops for biofuels, bioenergy, and bioproducts. There is a substantial global need for development of such systems and technologies that can economically and sustainably produce short rotation crops...

  10. ECONOMIC BACKGROUND CROP ROTATION AS A WAY TO PREVENT THE DEGRADATION OF AGRICULTURAL LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Shevchenko O.

    2017-05-01

    Full Text Available This article explores that to successfully combat land degradation on lands occupied in agriculture, it is necessary to conduct complex soil conservation measures constitute a single interconnected system and protect soil from degradation. Found that rotation – a reasonable compromise between the main requirements of production, organization of territory and environment, placing crops in view of a favorable combination; compliance with acceptable saturation parameters optimally varying cultures, and thus the possible timing of a return to their previous cultivation while taking into account the duration of the accepted rotation. Determined that the implementation and observance of crop rotation and better ensure the replenishment of nutrients of the soil, improving and maintaining its favorable physical properties, prevent the emergence of weeds, pests and pathogens cultivated crops and preventing the depletion of soil degradation processes and development. Found that scientifically based crop rotation is the basis for the use of all complex farming practices, differentiated cultivation, rational use of fertilizers and caring for plants. Rotation is correct – it agroecosystem, which created the best conditions for growth and development of various crops, thus providing a growing high and stable yields, obtaining high quality products. Soil and climatic conditions, specialty farms, crops structure and their biological characteristics defined as the type of crop rotation and crop rotation order. Each rotation should be selected such status, which would provide the greatest yield per unit area of rational use of all land. Therefore, proper placement crops in crop rotation must necessarily take into account the requirements of crops to their predecessor, thus it must evaluate not only the direct action of the first culture, but also take into account the impact of the latter on the following crops rotation. On unproductive and degraded lands is

  11. Effects of Crop Rotation and N-P Fertilizer Rate on Grain Yield and ...

    African Journals Online (AJOL)

    A trial was conducted to determine the effects of crop rotation with N-P rates on grain yield of maize and soil fertility in Bako over a period of five years. The experiment was laid out in a randomized complete block design in factorial arrangement with rotation crops (Niger seed, haricot bean and tef) as main factor and two ...

  12. Row and forage crop rotation effects on maize mineral nutrition and yield

    Science.gov (United States)

    Extended crop rotations provide many attributes in support of sustainable agriculture. Objectives were to investigate rotations that included row crops and forages in terms of their effects on soil characteristics as well as on maize (Zea mays L.) stover biomass, grain yield, and mineral components...

  13. Reducing tillage intensity affects the cumulative emergence dynamics of annual grass weeds in winter cereals

    DEFF Research Database (Denmark)

    Scherner, A; Melander, B; Jensen, P K

    2017-01-01

    Annual grass weeds such as Apera spica-venti and Vulpia myuros are promoted in non-inversion tillage systems and winter cereal-based crop rotations. Unsatisfactory weed control in these conditions is often associated with a poor understanding of the emergence pattern of these weed species. The ai...

  14. Use of nitrogen from fertilizer and cover crops by upland rice in an Oxisol under no-tillage in the Cerrado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Cabral da; Muraoka, Takashi; Bendassolli, Jose Alberto, E-mail: edsoncabralsilva@gmail.com, E-mail: muraoka@cena.usp.br, E-mail: jab@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franzini, Vinicius Ide, E-mail: vinicius.franzini@embrapa.br [Embrapa Amazonia Oriental, Belem, PA (Brazil); Sakadevan, Karuppan, E-mail: K.Sakadevan@iaea.org [Joint FAO/IAEA, Division of Nuclear Techniques in Food and Agriculture, Soil and Water Management and Crop Nutrition Subprogram, Vienna International Centre, Vienna (Austria); Buzetti, Salatier; Arf, Orivaldo, E-mail: sbuzetti@agr.feis.unesp.br, E-mail: arf@agr.feis.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia; Soares, Frederico Antonio Loureiro, E-mail: fredalsoares@hotmail.com [Instituto Federal Goiano, Rio Verde, GO (Brazil)

    2016-06-15

    The objective of this work was to evaluate the effects of cover crops on the yield of upland rice (Oryza sativa) grown under no-tillage system, in the presence and absence of N fertilizer, as well as to quantify, in the field, the use efficiency of N from urea and cover crops by upland rice, through the {sup 15}N isotope dilution technique. The field experiment was carried out in the municipality of Selviria, in the state of Mato Grosso do Sul, Brazil, in an Oxisol (Rhodic Hapludox) in the Cerrado (Brazilian savanna) region. The experimental design was a randomized complete block with 15 treatments and four replicates, in a 5 x 3 factorial arrangement. The treatments were four cover crops (Crotalaria juncea, Cajanus cajan, Mucuna pruriens, and Pennisetum glaucum) + spontaneous vegetation (fallow in off-season), combined with three forms of N fertilization: control treatment, without N fertilizer application; 20 kg ha{sup -1} N at sowing; and 20 kg ha{sup -1} N at sowing plus 60 kg ha{sup -1} N as topdressing. Rice is not affected by N fertilizer application as topdressing, when legume cover crops are used. The use of legume cover crops provides higher grain yield and use of fertilizer-N by rice than that of millet or fallow. Legume cover crops promote an effect equivalent to that of the application of 60 kg ha{sup -1} N as urea on rice yield. (author)

  15. Carbon dioxide emissions after application of different tillage systems for loam in northern China

    Science.gov (United States)

    Hongwen, Li; Lifeng, Hu; Fub, Chen; Xuemin, Zhang

    2010-05-01

    Tillage operations influence soil physical properties and crop growth, and thus both directly and indirectly the cropland CO2 exchange with the atmosphere. In this study, the results of CO2 flux measurements on cropland, under different tillage practices in northern China, are presented. CO2 flux on croplands with a winter wheat (Triticum aestivum L.) and maize (Zea may L.) rotation was monitored on plots with conventional tillage (CT), rotary tillage (RT) and no tillage (NT). Soil CO2 flux was generally greater in CT than in NT, and the RT CO2 flux was only slightly smaller than the CT. Daily soil CO2 emissions for CT, RT, and NT averaged 11.30g m-2, 9.63 g m-2 and 7.99 g m-2, respectively, during the growing period. Analysis of variance shows that these differences are significant for the three tillage treatments. Peak CO2 emissions were recorded on the CT and RT croplands after tillage operations. At the same time, no obviously increased emission of CO2 occurred on the NT plot. These differences demonstrate that tillage results in a rapid physical release of CO2.

  16. Comparison of the effects of different crop rotation systems on winter ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Southern Marmara Region, Turkey. In this study (1995-2001), two different crop rotation systems were carried out: winter wheat and sunflower as main crops experiments. Results were evaluated in terms of crop yielding ability, soil fertility and economic aspects. The sunflower-rapeseed-wheat, rapeseed-.

  17. Long-Term No-Tillage Direct Seeding Mode for Water-Saving and Drought-Resistance Rice Production in Rice-Rapeseed Rotation System

    Directory of Open Access Journals (Sweden)

    Xing-bin DU

    2014-07-01

    Full Text Available To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS mode and conventional tillage direct seeding (CTDS mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0–5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5–20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.

  18. Influence of tillage practices on soil biologically active organic matter content over a growing season under semiarid Mediterranean climate

    Directory of Open Access Journals (Sweden)

    D. Martín-Lammerding

    2013-02-01

    Full Text Available In semiarid areas, traditional, intensive tillage has led to the depletion of soil organic matter, which has resulted in reduced soil fertility. The aim of the present work was to evaluate the effects of different soil management systems, practised over 12 years, on soil organic carbon (SOC, nitrogen (SN and biologically active organic matter (particulate organic matter [POM]; potentially mineralisable nitrogen [PMN]; microbial biomass [MB]. A Mediterranean Alfisol, located in central Spain, was managed using combinations of conventional tillage (CT, minimum tillage (MT or no-tillage (NT, plus a cropping background of either continuous wheat (WW or a fallow/wheat/pea/barley rotation (FW. Soil was sampled at two depths on four occasions during 2006-2007. The results showed the sampling date and the cropping background to significantly affect the SOC (p<0.0057 and p<0.0001 respectively. Tillage practice, however, had no effect on SOC or SN. The C-and N-POM contents were significantly influenced by the date, tillage and rotation. These variables were significantly higher under NT than CT and under WW than FW. The PMN was influenced by date, tillage and rotation, while C-MB was significantly affected by tillage (p< 0.0063, but not by rotation. The NT plots accumulated 66% C-POM, 60% N-POM, 39% PMN and 84% C-MB more than the CT plots. After more than 12 years, the benefits of conservation practices were found in the considered soil properties, mainly under no tillage. In order to obtain a consistent data set to predict soil biological status, it is necessary further study over time.

  19. Crescimento e produtividade da cana planta cultivada em diferentes sistemas de preparo do solo e de colheita = Sugarcane growth and productivity under different tillage and crop systems

    Directory of Open Access Journals (Sweden)

    Orlando Carlos Huertas Tavares

    2010-01-01

    Full Text Available Este estudo teve como objetivo avaliar os efeitos de diferentes sistemas de preparo do solo e de colheita sobre o crescimento e produtividade da cana planta. O experimento foi conduzido em Linhares, Estado do Espírito Santo. Trata-se de um dos ensaios mais antigos no país que investiga os efeitos da Cana crua e queimada. Instalados num Argissolo Amarelo textura arenosa/média, os tratamentos consistiram de parcelas (preparo convencional e cultivo mínimo e subparcelas (Cana crua e Cana queimada. Foi avaliado o crescimento da cultura, o aporte de matéria orgânica e a quantificação do rendimento da cana-de-açúcar. O diâmetro foi maior para o cultivo mínimo, e o perfilhamento foi maior para o preparo convencional. A altura e o perfilhamento foram superiores no corte sem queima. Para produtividade de colmos, os tratamentos nãoapresentaram diferenças significativas. As folhas foram maiores em cultivo mínimo e pontas em Cana crua. O cultivo mínimo propicia, inicialmente, aumento do diâmetro e maior produtividade de folhas na colheita. O perfilhamento é favorecido pelo preparo convencional. A Cana crua não apresentou influência negativa da palhada na rebrota. Após 16 anos de cultivo da cana-de-açúcar com e sem queima do palhiço, observou-se maior produtividade de ponteiros, incrementando o rendimento dos colmos em Cana crua. This study had as its objective to evaluate the effects of different tillage and crop systems on the growth and productivity of sugarcane plants. The experiment was conducted in Linhares, ES. It is one of the oldest assays in the country investigating the effects ofunburned and burned sugarcane. Installed in a Yellow Latosol with sandy/medium texture, the treatments consisted of plots (conventional and minimum tillage and subplots (raw and burned sugarcane. Plant growth, contribution of organic matter and quantification ofsugarcane yield were evaluated. The diameter was larger for minimum tillage, and

  20. Evalution of the healthiness of winter wheat cultivated in conventional tillage, direct sowing and direct sowing with underplant crop of white clover

    Directory of Open Access Journals (Sweden)

    Ewa Moszczyńska

    2012-12-01

    Full Text Available Research of the healthiness of winter wheat depending on the soil tillage system and rate of nitrogen fertilization were carried out in 1998-2001. The largest threat to the healthiness of plants was tan spot, which was caused by Pyrenophora tritici-repentis, especially in cropping season 1999/2000. The soil tillage system diversified the intensification of occurence of this pathogen, only in two last years of research. The most infected by P. tritici-i was wheat, which was cultivated in the direct sowing. Application of underplant crop of white clover in the direct sowing contributed to the improvement of the plants healthiness. The highest rate of nitrogen fertilization (120 kg N.ha-1 in the highest degree favoured the damage of wheat by P. tritici-repentis, but only in two first years of research. The second pathogen Blumeria graminis, which caused powdery mildew of cereals, occured in small amount and didn't have any influence on the healthiness of winter wheat.

  1. Carbon footprints of crops from organic and conventional arable crop rotations – using a life cycle assessment approach

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Meyer-Aurich, A; Olesen, Jørgen E

    2014-01-01

    was incorporated in the soil in the ‘Mulching’ rotation and removed and used for biogas production in the ‘Biogas’ rotation (and residues from biogas production were simulated to be returned to the field). A method was suggested for allocating effects of fertility building crops in life cycle assessments......Many current organic arable agriculture systems are challenged by a dependency on imported livestock manure from conventional agriculture. At the same time organic agriculture aims at being climate friendly. A life cycle assessment is used in this paper to compare the carbon footprints of different...... organic arable crop rotations with different sources of N supply. Data from long-term field experiments at three different locations in Denmark were used to analyse three different organic cropping systems (‘Slurry’, ‘Biogas’ and ‘Mulching’), one conventional cropping system (‘Conventional’) and a “No...

  2. The full GHG balance of croplands under seven-year rotation scheme and conventional tillage practices in Poland

    Science.gov (United States)

    Juszczak, Radoslaw; Sakowska, Karolina; Ziemblinska, Klaudia; Uzdzicka, Bogna; Strozecki, Marcin; Polmanska, Daria; Chojnicki, Bogdan; Urbaniak, Marek; Augustin, Juergen; Necki, Jarek; Olejnik, Janusz

    2014-05-01

    Greenhouse gases fluxes were measured with chambers on the selected plots of the experimental arable station of Poznan University of Life Sciences in Brody (52o26'N, 16o18'E), Poland. This is a long term experiment, where the same crops are cultivated under the same fertilization treatment schemes (eleven combinations) since 1957. At the blocks of the full 7-year rotation, there are cultivated in permanent rotation: winter wheat ->winter rye -> potato ->spring barley -> triticale and alfalfa (till the second year). GHG fluxes have been measured on plots with the same fertilization level (Nmin-90kg, K2O-120 kg/ha, P2O5-60 kg/ha and Ca), which is very close to the average amount of mineral fertilization applied in western Poland. No catch crops were cultivated between the main crops. The soil was classified as Albic Luviosols according to FAO 2006 classification. CO2 fluxes have been measured monthly since March 2011, while N2O and CH4 fluxes since March 2012 (weekly) and measurements were continued till October 2013. CO2 fluxes were measured with dynamic chambers, while N2O and CH4 fluxes were measured with both static and dynamic chambers approaches (using LOSGATOS gas analyser). Carbon net ecosystem exchange (NEE) and ecosystem respiration (Reco) have been modelled for the entire period based on the measured fluxes (different management treatments were included in the model), while N2O and CH4 fluxes were linearly interpolated between campaigns. Taking into account the accumulation periods between 15th of October and 14th of October of the next year the cumulated NEE was negative only in case of alfalfa, winter rye and winter wheat, reaching in average -3.5 tCO2-C ha-1 for alfalfa and winter rye fields and around -0.4 tCO2-C ha-1 for winter wheat in seasons 2011-2012 and 2012-2013. While, cumulated NEE for spring crops (potato and spring barley) was positive for the same periods and reached in average 1.1 tCO2-C ha-1 and 2.5 tCO2-C ha-1 for spring barley and

  3. Soil carbon storage and stratification under different tillage/residue-management practices in double rice cropping system

    NARCIS (Netherlands)

    Chen, Z.; Zhang, H.; dikgwatlhe, S.B.; Xue, J.; Qiu, K.; Tang, H.; Chen, F.

    2015-01-01

    The importance of soil organic carbon (SOC) sequestration in agricultural soils as climate-change-mitigating strategy has become an area of focus by the scientific community in relation to soil management. This study was conducted to determine the temporal effect of different tillage systems and

  4. Conservation Tillage Impacts on Soil Quality

    Science.gov (United States)

    Hake, K.

    2012-04-01

    As recent as the 1970's in University lecture halls cotton production was vilified for being "hard on the soil". This stigma is still perpetuated today in the popular press, deserving a close scrutiny of its origin and its reality as soil quality is an essential but unappreciated component of cotton's unique tolerance to heat and drought. The objective of expanding food, feed and fiber production to meet the global demand, during forecast climate disruption requires that scientists improve both the above and below ground components of agriculture. The latter has been termed the "final frontier" for its inaccessibility and complexity. The shift to conservation tillage in the U.S.A. over the previous three decades has been dramatic in multiple crops. Cotton and its major rotation crops (corn, soybean, and wheat) can be grown for multiple years without tillage using herbicides instead to control weeds. Although pesticide resistant insects and weeds (especially to Bt proteins and glyphosate) are a threat to Integrated Pest Management and conservation tillage that need vigilance and proactive management, the role of modern production tools in meeting agricultural objectives to feed and clothe the world is huge. The impact of these tools on soil quality will be reviewed. In addition ongoing research efforts to create production practices to further improve soil quality and meet the growing challenges of heat and drought will be reviewed.

  5. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  6. A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example.

    Science.gov (United States)

    Lorenz, Marco; Fürst, Christine; Thiel, Enrico

    2013-09-01

    Regarding increasing pressures by global societal and climate change, the assessment of the impact of land use and land management practices on land degradation and the related decrease in sustainable provision of ecosystem services gains increasing interest. Existing approaches to assess agricultural practices focus on the assessment of single crops or statistical data because spatially explicit information on practically applied crop rotations is mostly not available. This provokes considerable uncertainties in crop production models as regional specifics have to be neglected or cannot be considered in an appropriate way. In a case study in Saxony, we developed an approach to (i) derive representative regional crop rotations by combining different data sources and expert knowledge. This includes the integration of innovative crop sequences related to bio-energy production or organic farming and different soil tillage, soil management and soil protection techniques. Furthermore, (ii) we developed a regionalization approach for transferring crop rotations and related soil management strategies on the basis of statistical data and spatially explicit data taken from so called field blocks. These field blocks are the smallest spatial entity for which agricultural practices must be reported to apply for agricultural funding within the frame of the European Agricultural Fund for Rural Development (EAFRD) program. The information was finally integrated into the spatial decision support tool GISCAME to assess and visualize in spatially explicit manner the impact of alternative agricultural land use strategies on soil erosion risk and ecosystem services provision. Objective of this paper is to present the approach how to create spatially explicit information on agricultural management practices for a study area around Dresden, the capital of the German Federal State Saxony. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The role of short-rotation woody crops in sustainable development

    International Nuclear Information System (INIS)

    Shepard, J.P.; Tolbert, V.R.

    1996-01-01

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society's needs

  8. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  9. Effects of Neonicotinoids and Crop Rotation for Managing Wireworms in Wheat Crops.

    Science.gov (United States)

    Esser, Aaron D; Milosavljević, Ivan; Crowder, David W

    2015-08-01

    Soil-dwelling insects are severe pests in many agroecosystems. These pests have cryptic life cycles, making sampling difficult and damage hard to anticipate. The management of soil insects is therefore often based on preventative insecticides applied at planting or cultural practices. Wireworms, the subterranean larvae of click beetles (Coleoptera: Elateridae), have re-emerged as problematic pests in cereal crops in the Pacific Northwestern United States. Here, we evaluated two management strategies for wireworms in long-term field experiments: 1) treating spring wheat seed with the neonicotinoid thiamethoxam and 2) replacing continuous spring wheat with a summer fallow and winter wheat rotation. Separate experiments were conducted for two wireworm species--Limonius californicus (Mannerheim) and Limonius infuscatus (Motschulsky). In the experiment with L. californicus, spring wheat yields and economic returns increased by 24-30% with neonicotinoid treatments. In contrast, in the experiment with L. infuscatus, spring wheat yields and economic returns did not increase with neonicotinoids despite an 80% reduction in wireworms. Thus, the usefulness of seed-applied neonicotinoids differed based on the wireworm species present. In experiments with both species, we detected significantly fewer wireworms with a no-till summer fallow and winter wheat rotation compared with continuous spring wheat. This suggests that switching from continuous spring wheat to a winter wheat and summer fallow rotation may aid in wireworm management. More generally, our results show that integrated management of soil-dwelling pests such as wireworms may require both preventative insecticide treatments and cultural practices. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Crop rotation modelling-A European model intercomparison

    Czech Academy of Sciences Publication Activity Database

    Kollas, C.; Kersebaum, K. C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.; Beaudoin, N.; Bindi, M.; Charefeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; de Cortazar-Atauri, I. G.; Giglio, L.; Hlavinka, Petr; Hoffman, H.; Hofmann, M.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J. E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P. P.; Roncossek, S.; Rötter, R. P.; Ruget, F.; Sharif, B.; Trnka, Miroslav; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H-J.; Wu, L.

    2015-01-01

    Roč. 70, oct (2015), s. 98-111 ISSN 1161-0301 Institutional support: RVO:67179843 Keywords : model ensemble * crop simulation models * catch crop * intermediate crop * treatment * Multi-year Subject RIV: GC - Agronomy Impact factor: 3.186, year: 2015

  11. A multiple soil ecosystem services approach to evaluate the sustainability of reduced tillage systems

    Science.gov (United States)

    Pérès, Guénola; Menasseri, Safya; Hallaire, Vincent; Cluzeau, Daniel; Heddadj, Djilali; Cotinet, Patrice; Manceau, Olivier; Pulleman, Mirjam

    2017-04-01

    In the current context of soil degradation, reduced tillage systems (including reduced soil disturbance, use of cover crops and crop rotation, and improved organic matter management) are expected to be good alternatives to conventional system which have led to a decrease of soil multi-functionality. Many studies worldwide have analysed the impact of tillage systems on different soil functions, but overran integrated view of the impact of these systems is still lacking. The SUSTAIN project (European SNOWMAN programme), performed in France and the Netherlands, proposes an interdisciplinary collaboration. The goals of SUSTAIN are to assess the multi-functionality of soil and to study how reduced-tillage systems impact on multiple ecosystem services such as soil biodiversity regulation (earthworms, nematodes, microorganisms), soil structure maintenance (aggregate stability, compaction, soil erosion), water regulation (run-off, transfer of pesticides) and food production. Moreover, a socio-economic study on farmer networks has been carried out to identify the drivers of adoption of reduced-tillage systems. Data have been collected in long-term experimental fields (5 - 13 years), representing conventional and organic farming strategies, and were complemented with data from farmer networks. The impact of different reduced tillage systems (direct seeding, minimum tillage, non-inverse tillage, superficial ploughing) were analysed and compared to conventional ploughing. Measurements (biological, chemical, physical, agronomical, water and element transfer) have been done at several dates which allow an overview of the evolution of the soil properties according to climate variation and crop rotation. A sociological approach was performed on several farms covering different production types, different courses (engagement in reduced tillage systems) and different geographical locations. Focusing on French trials, this multiple ecosystem services approach clearly showed that

  12. Modeling the potential benefits of catch-crop introduction in fodder crop rotations in a Western Europe landscape.

    Science.gov (United States)

    Moreau, P; Ruiz, L; Raimbault, T; Vertès, F; Cordier, M O; Gascuel-Odoux, C; Masson, V; Salmon-Monviola, J; Durand, P

    2012-10-15

    Among possible mitigation options to reduce agricultural-borne nitrate fluxes to water bodies, introduction of catch crop before spring crops is acknowledged as a cost-efficient solution at the plot scale, but it was rarely assessed at the catchment level. This study aims to evaluate a set of catch crop implantation scenarios and their consequences in a coastal catchment prone to eutrophication. The objectives are (i) to discuss the potential benefits of catch crop introduction taking into account the limitations due to the physiographic and agricultural context of the area (ii) to propose a multicriteria classification of these scenarios as a basis for discussion with stakeholders. We used the distributed agro-hydrological model TNT2 to simulate 25 scenarios of catch crop management, differing in length of catch crop growing period, place in the crop rotation and residue management. The scenarios were classified considering the variations in main crop yields and either nitrogen fluxes in stream or the global nitrogen mass balance at the catchment level. The simulations showed that in the catchment studied, little improvement can be expected from increasing the catch crop surface. Catch crop cultivation was always beneficial to reduce nitrogen losses, but led to adverse effects on main crop yields in some cases. Among the scenarios involving additional catch crop surface, introducing catch crop between two winter cereals appeared as the most promising. The classification of scenarios depended on the chosen criteria: when considering only the reduction of nitrogen fluxes in streams, exporting catch crop residues was the most efficient while when considering the global nitrogen mass balance, soil incorporation of catch crop residues was the most beneficial. This work highlights the interest, while using integrated models, of assessing simulated scenarios with multicriteria approach to provide stakeholder with a picture as complete as possible of the consequences of

  13. Overland flow connectivity in olive orchard plots with cover crops and conventional tillage, and under different rainfall scenarios

    Science.gov (United States)

    López-Vicente, Manuel; García-Ruiz, Roberto; Guzmán, Gema; Vicente-Vicente, José Luis; Gómez, José Alfonso

    2016-04-01

    The study of overland flow connectivity (QC) allows understanding the redistribution dynamics of runoff and soil components as an emergent property of the spatio-temporal interactions of hydrological and geomorphic processes. However, very few studies have dealt with runoff connectivity in olive orchards. In this study we simulated QC in four olive orchard plots, located on the Santa Marta farm (37° 20' 33.6" N, 6° 13' 44" W), in Seville province (Andalusia) in SW Spain. The olive plantation was established in 1985 with trees planted at 8 m x 6 m. Each bounded plot is 8 m wide (between 2 tree lines) and 60 m long (total area of 480 m2), laid out with the longest dimension parallel to the maximum slope and to the tree lines. The slope is uniform, with an average steepness of 11%. Two plots (P2 and P4) were devoted to conventional tillage (CT) consisting of regular chisel plow passes depending on weed growth. Another set of two plots had two types of cover crops (CC) in the inter tree rows (the area outside the vertical olive canopy projection): uniform CC of Lolium multiflorum (P3) and a mixture of L. rigidum and L. multiflorum together with other species (P5). The tree rows were treated with herbicide to keep bare soil. We selected the Index of runoff and sediment Connectivity (IC) of Borselli et al. (2008) to simulate three rainfall scenarios: i) low rainfall intensity (Sc-LowInt) and using the MD flow accumulation algorithm; ii) moderate rainfall intensity (Sc-ModInt) and using MD8; and iii) high rainfall intensity (Sc-HighInt) and using D8. After analysing the values of rainfall intensity during two hydrological years (Oct'09-Sep'10 and Oct'10-Sep'11) we associated the three scenarios with the followings months: Sc-LowInt during the period Jan-Mar, that summarizes 42% of all annual rainfall events; Sc-ModInt during Oct-Nov and Apr-May (32% of all events); and Sc-HighInt during the period Jun-Sep and in December (26% of all events). Instead of using the C

  14. Soil water and mineral nitrogen content as influenced by crop ...

    African Journals Online (AJOL)

    ) and wheat–medic rotation (McWMcW) and tillage, conventional-till (CT), minimum-till (MT), no-till (NT) and zero-till (ZT) were studied. Crop rotation did not influence soil moisture content. Soil water content in CT tended to be lower compared ...

  15. Estimation of above ground biomass for multi-stemmed short-rotation woody crops

    Science.gov (United States)

    Brian A. Byrd; Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway

    2015-01-01

    With the increasing interest in short-rotation woody crop (SRWC) systems, an accurate yet quick, non-destructive means for determining aboveground biomass is necessary from both management and research perspectives.

  16. The use of crop rotation for mapping soil organic content in farmland

    Science.gov (United States)

    Yang, Lin; Song, Min; Zhu, A.-Xing; Qin, Chengzhi

    2017-04-01

    Most of the current digital soil mapping uses natural environmental covariates. However, human activities have significantly impacted the development of soil properties since half a century, and therefore become an important factor affecting soil spatial variability. Many researches have done field experiments to show how soil properties are impacted and changed by human activities, however, spatial variation data of human activities as environmental covariates have been rarely used in digital soil mapping. In this paper, we took crop rotation as an example of agricultural activities, and explored its effectiveness in characterizing and mapping the spatial variability of soil. The cultivated area of Xuanzhou city and Langxi County in Anhui Province was chosen as the study area. Three main crop rotations,including double-rice, wheat-rice,and oilseed rape-cotton were observed through field investigation in 2010. The spatial distribution of the three crop rotations in the study area was obtained by multi-phase remote sensing image interpretation using a supervised classification method. One-way analysis of variance (ANOVA) for topsoil organic content in the three crop rotation groups was performed. Factor importance of seven natural environmental covariates, crop rotation, Land use and NDVI were generated by variable importance criterion of Random Forest. Different combinations of environmental covariates were selected according to the importance rankings of environmental covariates for predicting SOC using Random Forest and Soil Landscape Inference Model (SOLIM). A cross validation was generated to evaluated the mapping accuracies. The results showed that there were siginificant differences of topsoil organic content among the three crop rotation groups. The crop rotation is more important than parent material, land use or NDVI according to the importance ranking calculated by Random Forest. In addition, crop rotation improved the mapping accuracy, especially for the

  17. Effects of crop rotation on weed density, biomass and yield of wheat (Titicum aestivum L.)

    OpenAIRE

    A. Zareafeizabadi; H.R. Rostamzadeh

    2016-01-01

    In order to study the weed populations in wheat, under different crop rotations an experiment was carried out at Agricultural Research Station of Jolgeh Rokh, Iran. During growing season this project was done in five years, based on Randomized Complete Bloch Design with three replications, on Crop rotations included: wheat monoculture for the whole period (WWWWW), wheat- wheat- wheat- canola- wheat (WWWCW), wheat- sugar beet- wheat-sugar beet- wheat (WSWSW), wheat- potato- wheat- potato- whea...

  18. Crop rotation biomass and arbuscular mycorrhizal fungi effects on sugarcane yield

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose; Rossi, Fabricio; Guirado, Nivaldo; Teramoto, Juliana Rolim Salome [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicaba, SP (Brazil). Polo Regional Centro Sul; Azcon, Rozario [Consejo Superior de Investigaciones Cientificas (CSIC), Granada (Spain). Estacao Experimental de Zaidin; Cantarela, Heitor [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Solos e Recursos Ambientais; Ambrosano, Glaucia Maria Bovi [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Fac. de Odontologia. Dept. de Odontologia Social], Email: ambrosano@apta.sp.gov.br; Schammass, Eliana Aparecida [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IZ), Nova Odessa, SP (Brazil). Inst. de Zootecnia; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Ungaro, Maria Regina Goncalves [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Plantas Graniferas

    2010-07-01

    Sugarcane (Saccharum spp.) is an important crop for sugar production and agro-energy purposes in Brazil. In the sugarcane production system after a 4- to 8-year cycle crop rotation may be used before replanting sugarcane to improve soil conditions and give an extra income. This study had the objective of characterizing the biomass and the natural colonization of arbuscular mycorrhizal fungi (AMF) of leguminous green manure and sunflower (Helianthus annuus L.) in rotation with sugarcane. Their effect on stalk and sugar yield of sugarcane cv. IAC 87-3396 grown subsequently was also studied. Cane yield was harvested in three subsequent cuttings. Peanut cv. IAC-Caiapo, sunflower cv. IAC-Uruguai and velvet bean (Mucuna aterrimum Piper and Tracy) were the rotational crops that resulted in the greater percentage of AMF. Sunflower was the specie that most extracted nutrients from the soil, followed by peanut cv. IAC-Tatu and mung bean (Vigna radiata L. Wilczek). The colonization with AMF had a positive correlation with sugarcane plant height, at the first cut (p = 0.01 and R = 0.52) but not with the stalk or cane yields. Sunflower was the rotational crop that brought about the greatest yield increase of the subsequent sugarcane crop: 46% increase in stalk yield and 50% in sugar yield compared with the control. Except for both peanut varieties, all rotational crops caused an increase in net income of the cropping system in the average of three sugarcane harvests. (author)

  19. Effects of organic manure and crop rotation system on potato ...

    African Journals Online (AJOL)

    Lack of sustainable soil fertility management system is a critical challenge in the highlands of Awi Zone. Important physicochemical properties of the soil are below the critical level to support crop growth. Hence, a study was undertaken with the aim of improving the yield of potato through organic treatments and sound crop ...

  20. Environmental effects of growing short-rotation woody crops on former agricultural lands

    International Nuclear Information System (INIS)

    Tolbert, V.R.; Thornton, F.C.; Joslin, J.D.

    1997-01-01

    Field-scale studies in the Southeast have been addressing the environmental effects of converting agricultural lands to biomass crop production since 1994. Erosion, surface water quality and quantity and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops are being compared. Nutrient cycling, soil physical changes, and crop productivity are also being monitored at the three sites. Maximum sediment losses occurred in the spring and fall. Losses were greater from sweetgum planted without a cover crop than with a cover crop. Nutrient losses of N and P in runoff and subsurface water occurred primarily after spring fertilizer application. These field plot studies are serving as the basis for a water shed study initiated in 1997. Results from the two studies will be used to develop and model nutrient and hydrologic budgets for woody crop plantings to identify potential constraints to sustainable deployment of short-rotation woody crops in the southeastern United States. (author)

  1. Performance of process-based models for simulation of grain N in crop rotations across Europe

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Kersebaum, KC; Kollas, C

    2017-01-01

    and rainfed treatments. Moreover, the multi-model mean provided better predictions of grain N compared to any individual model. In regard to the Individual models, DAISY, FASSET, HERMES, MONICA and STICS are suitable for predicting grain N of the main crops in typical European crop rotations, which all...

  2. Crop rotations with annual and perennial forages under no-till soil management

    Science.gov (United States)

    Development of crop rotations that support sustainable agriculture depends on understanding complex relationships between soils, crops, and yield. Objectives were to measure how soil chemical and physical attributes as well as maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] stover dry weig...

  3. Comparison of tillage systems for paddy rice in the Mekong Delta of Vietnam

    NARCIS (Netherlands)

    Nguyen, V.L.; Hoogmoed, W.B.; Perdok, U.D.

    2007-01-01

    In the Mekong delta of Vietnam, wetland rice is the main crop. The traditional rice cropping system with one crop per year changed to a system with two or three crops per year, and mechanised tillage replaced traditional tillage by water buffaloes. Currently, three tillage systems can be

  4. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    Science.gov (United States)

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Using Water and Agrochemicals in the Soil, Crop and Vadose Environment (WAVE Model to Interpret Nitrogen Balance and Soil Water Reserve Under Different Tillage Managements

    Directory of Open Access Journals (Sweden)

    Zare Narjes

    2014-10-01

    Full Text Available Applying models to interpret soil, water and plant relationships under different conditions enable us to study different management scenarios and then to determine the optimum option. The aim of this study was using Water and Agrochemicals in the soil, crop and Vadose Environment (WAVE model to predict water content, nitrogen balance and its components over a corn crop season under both conventional tillage (CT and direct seeding into mulch (DSM. In this study a corn crop was cultivated at the Irstea experimental station in Montpellier, France under both CT and DSM. Model input data were weather data, nitrogen content in both the soil and mulch at the beginning of the season, the amounts and the dates of irrigation and nitrogen application. The results show an appropriate agreement between measured and model simulations (nRMSE < 10%. Using model outputs, nitrogen balance and its components were compared with measured data in both systems. The amount of N leaching in validation period were 10 and 8 kgha–1 in CT and DSM plots, respectively; therefore, these results showed better performance of DSM in comparison with CT. Simulated nitrogen leaching from CT and DSM can help us to assess groundwater pollution risk caused by these two systems.

  6. PERFORMANCE OF A GRAIN DRILL IN FUNCTION OF SOIL TILLAGE AND MAIZE CROP SPACING DESEMPENHO DE SEMEADORA-ADUBADORA EM FUNÇÃO DO PREPARO DE SOLO E ESPAÇAMENTO DA CULTURA DO MILHO

    Directory of Open Access Journals (Sweden)

    Flávio Hiroshi Kaneko

    2010-10-01

    Full Text Available

    The performance of machines and agricultural implements are of fundamental importance, especially when subjected to different types of soil tillage, and have to adapt to these conditions, in order to promote good operational performance. The objective of this study was to analyze the operational performance of a Marchesan Supreme Cop grain drill, equipped with four rows, spaced 0.90 m, according to three types of tillage: conventional tillage (plowing and two harrowing series, reduced tillage (scarification with a roller, and no-tillage, in areas previously seeded with maize (Zea mays L., at two spacing measures (0.90 m and 0.45 m. The results indicate that the demand for power, tensile stress, and motor rotation, in the sowing operation, were not influenced by tillage and maize crop. The tractor wheel slip showed different results, being lower in no-tillage

  7. Crop yield, weed infestation and soil fertility responses to contrasted ploughing intensity and manure additions in a Mediterranean organic crop rotation

    OpenAIRE

    Baldivieso-Freitas, P.; Blanco-Moreno, José Manuel; Armengot, Laura; Chamorro, Lourdes; Romanyà, Joan; Sans, F. Xavier

    2018-01-01

    Conservation agriculture and organic farming are two alternative strategies that aim to improve soil quality and fertility in arable cropping systems through the deployment of different practices, that are rarely combined. While conservation agriculture practices include reducing tillage intensity and maintaining soil cover all year round to prevent soil erosion, organic farming focuses on nutrient recycling, using farmyard manure and green manure to enhance soil quality. However, these pract...

  8. Impact of no-till and conventional tillage practices on soil chemical properties

    International Nuclear Information System (INIS)

    Aziz, A.; Bangash, N.

    2015-01-01

    There is a global concern about progressive increase in the emission of greenhouse gases especially atmosphere CO/sub 2/. An increasing awareness about environmental pollution by CO/sub 2/ emission has led to recognition of the need to enhance soil C sequestration through sustainable agricultural management practices. Conservation management systems such as no-till (NT) with appropriate crop rotation have been reported to increase soil organic C content by creating less disturbed environment. The present study was conducted on Vanmeter farm of The Ohio State University South Centers at Piketon Ohio, USA to estimate the effect of different tillage practices with different cropping system on soil chemical properties. Tillage treatments were comprised of conventional tillage (CT) and No-till (NT).These treatments were applied under continuous corn (CC), corn-soybean (CS) and corn soybean-wheat-cowpea (CSW) cropping system following randomized complete block design. No-till treatment showed significant increase in total C (30%), active C (10%), and passive salt extractable (18%) and microwave extractable C (8%) and total nitrogen (15%) compared to conventional tillage practices. Total nitrogen increased significantly 23 % in NT over time. Maximum effect of no-till was observed under corn-soybean-wheat-cowpea crop rotation. These findings illustrated that no-till practice could be useful for improving soil chemical properties. (author)

  9. Efeito de três sistemas de preparo do solo sobre a rentabilidade econômica da mandioca (Manihot esculenta Crantz = Effects of three tillage systems on economic profitability of cassava crop (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Manoel Genildo Pequeno

    2007-07-01

    Full Text Available O objetivo deste estudo foi avaliar a rentabilidade econômica da cultura damandioca em três sistemas de preparo de solo durante os anos agrícolas de 1999/2000 a2002/2003, em Araruna, Estado do Paraná. O delineamento experimental utilizado foi o deblocos completos casualizados, com oito repetições. Os tratamentos foram constituídos deplantio direto; preparo mínimo (escarificação e preparo convencional (aração + gradagemniveladora. A força de tração e o consumo de combustível requeridos nas operações depreparo do solo e de plantio da mandioca foram maiores no sistema de preparoconvencional. Os maiores custos com combustível, preparo do solo e plantio da mandioca, ecusto operacional relativo às culturas de inverno e à cultura da mandioca, bem como a maiorrenda bruta foram observados no sistema de preparo convencional, seguidos pelo preparomínimo e plantio direto. A maior renda líquida e a melhor relação benefício/custo foramobservadas no sistema de preparo convencional que proporcionou maior produtividade deraízes tuberosas em relação aos sistemas de preparo mínimo e de plantio direto.The objective of this paper was to evaluate the economicprofitability of cassava crop submitted to the three soil tillage systems during the years1999/2000 to 2002/2003, in Araruna, state of Parana. The treatments consisted of three soiltillage systems: no-tillage, minimum tillage using chiseling, and conventional tillage withmoldboard plow and disking, arranged in a randomized complete blocks with eightreplications. The traction strength and fuel consumption in the soil tillage and in the cassavasowed operation were more required in the conventional tillage system. The conventionaland the minimum tillage systems showed the highest costs for fuel, soil tillage and cassavasowed. They also presented the highest gross income. The greatest net income and the bestbenefit/cost relation were observed in the conventional tillage system, which

  10. Generation of multi annual land use and crop rotation data for regional agro-ecosystem modeling

    Science.gov (United States)

    Waldhoff, G.; Lussem, U.; Sulis, M.; Bareth, G.

    2017-12-01

    For agro-ecosystem modeling on a regional scale with systems like the Community Land Model (CLM), detailed crop type and crop rotation information on the parcel-level is of key importance. Only with this, accurate assessments of the fluxes associated with the succession of crops and their management are possible. However, sophisticated agro-ecosystem modeling for large regions is only feasible at grid resolutions, which are much coarser than the spatial resolution of modern land use maps (usually ca. 30 m). As a result, much of the original information content of the maps has to be dismissed during resampling. Here we present our mapping approach for the Rur catchment (located in the west of Germany), which was developed to address these demands and issues. We integrated remote sensing and geographic information system (GIS) methods to classify multi temporal images of (e.g.) Landsat, RapidEye and Sentinel-2 to generate annual crop maps for the years 2008-2017 at 15 m spatial resolution (accuracy always ca. 90 %). A key aspect of our method is the consideration of crop phenology for the data selection and the analysis. In a GIS, the annul crop maps were integrated to a crop sequence dataset from which the major crop rotations were derived (based on the 10-years). To retain the multi annual crop succession and crop area information at coarser grid resolutions, cell-based land use fractions, including other land use classes were calculated for each year and for various target cell sizes (1-32 arc seconds). The resulting datasets contain the contribution (in percent) of every land use class to each cell. Our results show that parcels with the major crop types can be differentiated with a high accuracy and on an annual basis. The analysis of the crop sequence data revealed a very large number of different crop rotations, but only relatively few crop rotations cover larger areas. This strong diversity emphasizes the importance of information on crop rotations to reduce

  11. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    Science.gov (United States)

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil.

  12. Diversity of segetal weeds in pea (Pisum sativum L. depending on crops chosen for a crop rotation system

    Directory of Open Access Journals (Sweden)

    Marta K. Kostrzewska

    2014-04-01

    Full Text Available This study, lasting from 1999 to 2006, was conducted at the Research Station in Tomaszkowo, which belongs to the University of Warmia and Mazury in Olsztyn. The experiment was set up on brown rusty soil classified as good rye complex 5 in the Polish soil valuation system. The analysis comprised weeds in fields sown with pea cultivated in two four-field crop rotation systems with a different first crop: A. potato – spring barley – pea – spring barley; B. mixture of spring barley with pea – spring barley – pea – spring barley. Every year, at the 2–3 true leaf stage of pea, the species composition and density of individual weed species were determined; in addition, before harvesting the main crop, the dry matter of weeds was weighed. The results were used to analyze the constancy of weed taxa, species diversity, and the evenness and dominance indices, to determine the relationships between all biological indicators analyzed and weather conditions, and to calculate the indices of similarity, in terms of species composition, density and biomass of weeds, between the crop rotations compared. The species richness, density and biomass of weeds in fields with field pea were not differentiated by the choice of the initial crop in a given rotation system. In the spring, the total number of identified taxa was 28 and it increased to 36 before the harvest of pea plants. Chenopodium album and Echinochloa crus-galli were the most numerous. Chenopodium album, Echinochloa crus-galli, Sonchus arvensis, Fallopia convolvulus and Viola arvensis were constant in all treatments, regardless of what the first crop in rotation was or when the observations were made. The species diversity and the evenness and species dominance indices varied significantly between years and dates of observations. Species diversity calculated on the basis of the density of weed species was higher in the rotation with a mixture of cereals and legumes, while that calculated on

  13. EVALUATION OF DIFFERENT PHENOLOGICAL INFORMATION TO MAP CROP ROTATION IN COMPLEX IRRIGATED INDUS BASIN

    Directory of Open Access Journals (Sweden)

    A. Ismaeel

    2018-04-01

    Full Text Available Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI and Leaf Area Index (LAI of Moderate Resolution Imaging Spectroradiometer (MODIS sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering to supervised (area knowledge and phenology behavior classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 % and NDVI*LAI (10.83, 39.45 %. The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.

  14. Irrigation treatments, water use efficiency and crop sustainability in cereal-forage rotations in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2012-10-01

    Full Text Available Agricultural systems based on crop rotation are beneficial to crop sustainability and productivity. Wheat-forage rotations combined with irrigation are the agronomic techniques best able to exploit Mediterranean environmental conditions. This paper describes a long-term field trial to ascertain the effect of combined irrigation and durum wheat-forage rotations on crop yield and soil chemical properties. The two forage crops: annual grass-clover winter binary mixture and perennial lucerne were carried out through 1991-2008 under rainfed and irrigated treatments. The experiments were used to highlight the effect of irrigation and wheat-forage crop rotations on water use efficiency (WUE and sustainability of organic matter (OM in topsoil. Irrigation increased the dry matter (DM of annual binary mixture and lucerne by 49.1% and 66.9%, respectively. Continuous wheat rotation reduced seed yield (SY, stability of production, and crude protein (CP characteristics of kernel and OM in topsoil. The yearly gain in wheat after forage crops was 0.04 t (ha yr-1 under rainfed and 0.07 t (ha yr-1 under irrigation treatments. The CP and soil OM of wheat forage crops rotations, compared with those of continuous wheat under rainfed and irrigated was a 0.8 and 0.5 % increase in CP and 5.1 and 4.4 in OM, respectively. The rotations of annual grass-clover winter binary mixture and lucerne meadow under both irrigated treatments increased the OM over continuous wheat (9.3 % and 8.5 in annual grass-clover winter binary mixture and 12.5 and 9.5 lucerne meadow under rainfed and irrigation, respectively. Irrigation reduced the impact of weather on crop growing, reducing water use efficiency (mean over rotations for DM production (15.5 in meadow and 17.5 in annual grass-clover winter binary mixture [L water (kg DM-1] and wheat SY. However, the agronomic benefits achieved by forage crops in topsoil are exhausted after three years of continuous wheat rotation.

  15. Culturas de cobertura e qualidade física de um Latossolo em plantio direto Cover crops and physical quality of a Latosol under no-tillage

    Directory of Open Access Journals (Sweden)

    Rui da S. Andrade

    2009-08-01

    Full Text Available Com este trabalho se objetivou determinar o efeito de culturas de cobertura na qualidade física de um Latossolo Vermelho distrófico em plantio direto. O experimento foi irrigado por pivô central e conduzido na Embrapa Arroz e Feijão, em Santo Antônio de Goiás, GO, no delineamento de blocos ao acaso, com oito repetições. Os tratamentos consistiram de oito culturas de cobertura: braquiária; milho consorciado com braquiária; guandu anão; milheto; mombaça; sorgo; estilosantes e crotalária. As sete primeiras vêm sendo cultivadas no verão desde dezembro de 2001 e a crotalária a partir de novembro de 2003. No inverno de cada ano e após dessecação dessas culturas, foi implantado o feijoeiro irrigado e, em fevereiro de 2006, determinados o conteúdo de matéria orgânica do solo, alguns atributos físicos e sua qualidade física, por meio do índice S. As culturas de cobertura, especialmente as gramíneas, favoreceram a agregação do solo na camada superficial. O cultivo do solo modificou a sua estrutura comparativamente à mata nativa, aumentando sua densidade e reduzindo a macroporosidade, porosidade total e qualidade física. Entre as culturas de cobertura guandu, crotalária e milho consorciado com braquiária, foram as que mantiveram a camada superficial do solo com boa qualidade física.The objective of this study was to determine the effect of cover crop mulches on the physical quality of a distrophic Red Latosol (Oxisol under no-tillage. The experiment was carried out under center pivot at Embrapa Rice & Beans, in Santo Antônio de Goiás, GO, in a randomized block design, with eight replications. The treatments consisted of eight cover crops: Brachiaria brizantha; corn associated with B. brizantha; pigeon pea; millet; Panicum maximum; sorghum; Stylosanthes guianensis; and Crotalaria juncea. The first seven crops had been cultivated in summer season since December 2001 and C. juncea since November 2003. In the winter season

  16. Crop sequences in no-tillage system: effects on soil fertility and soybean, maize and rice yield Sequências de culturas em semeadura direta: efeitos sobre a fertilidade do solo e a produtividade de soja, milho e arroz

    Directory of Open Access Journals (Sweden)

    Adolfo Valente Marcelo

    2009-04-01

    Full Text Available Decomposing crop residues in no-tillage system can alter soil chemical properties, which may consequently influence the productivity of succession crops. The objective of this study was to evaluate soil chemical properties and soybean, maize and rice yield, grown in the summer, after winter crops in a no-tillage system. The experiment was carried out in Jaboticabal, SP, Brazil (21 ° 15 ' 22 '' S; 48 ° 18 ' 58 '' W on a Red Latosol (Oxisol, in a completely randomized block design, in strip plots with three replications. The treatments consisted of four summer crop sequences (maize monocrop, soybean monocrop, soybean/maize rotation and rice/bean/cotton rotation combined with seven winter crops (maize, sunflower, oilseed radish, pearl millet, pigeon pea, grain sorghum and sunn hemp. The experiment began in September 2002. After the winter crops in the 2005/2006 growing season and before the sowing of summer crops in the 2006/2007 season, soil samples were collected in the layers 0-2.5; 2.5-5.0; 5-10; 10-20; and 20-30 cm. Organic matter, pH, P, K+, Ca2+, Mg2+, and H + Al were determined in each soil sample. In the summer soybean/maize rotation and in maize the organic matter contents and P levels were lower, in the layers 0-10 cm and 0-20 cm, respectively. Summer rice/bean/cotton rotation increased soil K levels at 0-10 cm depth when sunn hemp and oilseed radish had previously been grown in the winter, and in the 0-2.5 cm layer for millet. Sunn hemp, millet, oilseed radish and sorghum grown in the winter increased organic matter contents in the soil down to 30 cm. Higher P levels were found at the depths 0-2.5 cm and 0-5 cm, respectively, when sunn hemp and oilseed radish were grown in the winter. Highest grain yields for soybean in monoculture were obtained in succession to winter oilseed radish and sunn hemp and in rotation with maize, after oilseed radish, sunn hemp and millet. Maize yields were highest in succession to winter oilseed radish

  17. Economic evaluation of a crop rotation portfolio for irrigated farms in central Chile

    Directory of Open Access Journals (Sweden)

    Jorge González U

    2013-09-01

    Full Text Available The sustainable use of productive resources by agricultural producers in the central valley of Chile should be compatible with economic results so that producers can select an appropriate rotation or succession of annual crops and pasture. The objective of this work was to evaluate the economic behavior of four food crop and supplementary forage rotations using indicators of profitability and profit variability. Productive data were used from a long-term experiment (16 yr in the central valley of Chile under conditions of irrigation. With productive data and information on historic input/output prices, the real net margin per rotation (RNMR and its coefficient of variation (CV were determined. The results indicated that the highest economic benefits and greatest economic stability were obtained with rotations that only included crops, namely sugar beet (Beta vulgaris L. subsp. vulgaris-wheat (Triticum aestivum L.-bean (Phaseolus vulgaris L.-barley (Hordeum vulgare L. (CR2 and corn (Zea mays L.-wheat-bean-barley (CR4. These rotations included crops with low CV of the net margin, such as wheat, barley and beans, with values between 0.31 and 0.34. The rotations with crops and pasture, sugar beet-wheat-red clover (Trifolium pratense L. (2 (CR1 and corn-wheat-red clover (2 (CR3 had lower net margins and more variability of this indicator. Red clover had the highest CV value (1.00. The selection of crops for rotations and their sequence were determining factors in the economic behavior of rotations, affecting the level of RNMR and the degree of inter-annual variability of this indicator. Thus, differences among rotations of 47% in net margin were determined (CR2 vs. CR1, which only differed in the replacement of pasture with red clover (2 by bean-barley. The economic analysis based on the net margin and its variability allow for discriminating among rotations, providing valuable information for producers in deciding which crops to use in rotations.

  18. Effects of Different Soil Tillage Intensity on Yields of Spring Barley

    Directory of Open Access Journals (Sweden)

    Alena Pernicová

    2014-01-01

    Full Text Available Within the period 1990–2012, effects of different soil tillage intensity on yields of spring barley were studied in a field experiment in the sugar-beet producing region (Ivanovice na Hané, Czech Republic. The forecrop of the spring barley was always sugar beet; following in three different crop rotations, after maize for silage, winter wheat and spring barley. Four variants of tillage were evaluated: Variant 1 – ploughing to the depth of 0.22 m; Variant 2 – shallow ploughing to the depth of 0.15 m; Variant 3 – no tillage; Variant 4 – shallow loosening soil to the depth of 0.10 m.Effect of different tillage on yields of spring barley was statistically insignificant. In all three crop rotations, the highest and the lowest average yields were obtained in Variant 2 (ploughing to the depth of 0.15 m and Variant 1 (ploughing to the depth of 0.22 m, respectively. Average yields in variants of soil tillage were these: variant 1 – 6.42 t.ha−1; variant 2 – 6.57 t.ha−1, variant 3 – 6.53 t.ha−1, variant 4 – 6.50 t.ha−1. The obtained results indicate that in these pedo-climatic conditions reduction of intensity soil tillage represented a very suitable alternative in case of growing spring barley after sugar beet as compared with the conventional method of tillage by ploughing to the depth of 0.22 m.

  19. PRACT (Prototyping Rotation and Association with Cover crop and no Till) - a tool for designing conservation agriculture systems

    NARCIS (Netherlands)

    Naudin, K.; Husson, M.O.; Scopel, E.; Auzoux, S.; Giller, K.E.

    2015-01-01

    Moving to more agroecological cropping systems implies deep changes in the organization of cropping systems. We propose a method for formalizing the process of innovating cropping system prototype design using a tool called PRACT (Prototyping Rotation and Association with Cover crop and no Till)

  20. Crop rotation-dependent yield responses to fertilization in winter oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2015-10-01

    Full Text Available Differences in soil physical, chemical and biological properties between paddy–upland and continuous upland rotations will influence nutrient relations and crop growth. With the aim of estimating rapeseed yield performance in response to fertilization in rice–rapeseed (RR and cotton–rapeseed (CR rotations, on-farm experiments were conducted at 70 sites across Hubei province, central China. The economically optimal fertilizer rates of winter oilseed rape in different rotations were determined. Field experiments showed that previous crops significantly influenced seed yields. Without N fertilization, seed yields were significantly lower for the RR rotation than for the CR rotation. The average yield increase ratio and agronomic efficiency associated with nitrogen (N fertilization in the RR rotation were 96.6% and 6.56 kg kg− 1, significantly higher than those in the CR rotation. No seed yield differences were detected between the two rotations under phosphorus (P and potassium (K fertilization. In contrast to the CR rotation, N fertilizer played a more vital role in maintaining high seed yields in the RR rotation owing to the lower indigenous soil N supply. Compared with local N fertilizer recommendation rates for the RR rotation, on average an additional 18 kg N ha− 1 was recommended according to the economically optimal N fertilizer rate (EONFR. In contrast, the EONFR was 14 kg N ha− 1 lower than the locally recommended N fertilizer rate for the CR rotation. There were no differences between the two rotations for the average economically optimal P and K fertilization rates. Consequently, the average EONFR of winter oilseed rape could be reduced if cotton rather than rice preceded the winter oilseed rape.

  1. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  2. [Effects of crop rotation and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system].

    Science.gov (United States)

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-06-01

    We conducted a field experiment to evaluate the effects of rotation system and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system. Taking Chrysanthemum morifolium Ramat and wheat as experimental plants, treatments under Chrysanthemum continuous cropping system (M1), conventional Chrysanthemum-wheat rotation system (M2), and Chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg · 667 m(-2) (M3) were designed. Soil chemical properties, soil microbial biomass carbon (MBC) and nitrogen (MBN), and the amounts of different types of soil microorganisms were determined. Results showed that compared with M1, treatments of M2 and M3 significantly increased soil pH, organic matter, available N, P, and K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, but decreased the ratio of MBC/MBN, and the relative percentage of fungi in the total amount of microorganisms. Treatment of M3 had the highest contents of soil organic matter, available N, available P, available K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, with the values being 15.62 g · kg(-1), 64.75 mg · kg(-1), 83.26 mg · kg(-1), 96.72 mg · kg(-1), 217.40 mg · kg(-1), 38.41 mg · kg(-1), 22.31 x 10(6) cfu · g(-1), 56.36 x 10(3) cfu · g(-1), 15.90 x 10(5) cfu · g(-1), respectively. We concluded that rational crop rotation and bio-organic manure application could weaken soil acidification, improve soil fertility and microbial community structure, increase the efficiency of nutrition supply, and have a positive effect on reducing the obstacles of continuous cropping.

  3. Mulch tillage for conserving soil water

    Science.gov (United States)

    Mulching is the practice of maintaining organic or inorganic materials on or applying them to the soil surface. It is an ancient practice, but through the years clean tillage that incorporated crop residues and also controlled weeds became the norm. Frequent and deep tillage often was promoted to co...

  4. Precipitation partitioning in short rotation bioenergy crops: implications for downstream water availability.

    Science.gov (United States)

    Peter Caldwell; Chelcy F. Miniat; Doug Aubrey; Rhett Jackson; Jeff McDonnell; Ken W. Krauss; James S. Latimer

    2016-01-01

    The southern United States is a potential leader in producing biofuels from intensively managed, short rotation (8–12 years) woody crops such as southern pines, and native and non-native hardwoods. However, their accelerated development under intensive management has raised concerns that fast-growing bioenergy crops could reduce recharge to stream flows and groundwater...

  5. Performance of process-based models for simulation of grain N in crop rotations across Europe

    Czech Academy of Sciences Publication Activity Database

    Xiaogang, Y.; Kesebaum, K. C.; Kollas, C.; Manevski, K.; Baby, S.; Beaudoin, N.; Öztürk, I.; Gaiser, T.; Wu, L.; Hoffmann, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; de Cortazar-Atauri, I. G.; Giglio, L.; Hlavinka, Petr; Hoffmann, H.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Nendel, C.; Pacholski, A.; Palouso, T.; Ripoche-Wachter, D.; Rötter, R. P.; Ruget, F.; Sharif, B.; Trnka, Miroslav; Ventrella, D.; Weigel, H-J.; Olesen, J. E.

    2017-01-01

    Roč. 154, JUN (2017), s. 63-77 ISSN 0308-521X R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1310123 Institutional support: RVO:67179843 Keywords : Calibration * Crop model * Crop rotation * Grain N content * Model evaluation * Model initialization Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.571, year: 2016

  6. Plantas de cobertura, manejo da palhada e produtividade da mamoneira no sistema plantio direto Cover crops, straw mulch management and castor bean yield in no-tillage system

    Directory of Open Access Journals (Sweden)

    Jayme Ferrari Neto

    2011-12-01

    Full Text Available Espécies de cobertura que apresentem elevada produção de fitomassa e reciclagem de nutrientes são essenciais para maximizar a produtividade das culturas em sucessão, no sistema plantio direto. O presente trabalho teve por objetivo avaliar a produção de massa de matéria seca e o acúmulo de nutrientes pelo guandu-anão (Cajanus cajan e o milheto (Pennisetum glaucum, em cultivo solteiro e consorciado, e o efeito do manejo mecânico da palhada na produtividade da mamoneira de safrinha, na fase de implantação do sistema plantio direto. O experimento foi instalado em um Nitossolo Vermelho, em Botucatu, SP. O delineamento foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. As parcelas foram constituídas por três coberturas vegetais (guandu-anão, milheto e o cultivo consorciado das duas espécies e as subparcelas pela ausência ou presença do manejo mecânico da palhada com triturador horizontal, 20 dias após o manejo químico. O milheto solteiro produziu maior quantidade de massa de matéria seca (14.040 kg ha-1, apresentou maiores concentrações de K e Mg e acumulou maiores quantidades de macronutrientes na parte aérea. A mamoneira apresentou maior produtividade de grãos em sucessão ao consórcio guandu-anão + milheto. A produtividade de grãos da mamoneira foi maior na ausência do manejo mecânico da palhada.Cover crops that have high phytomass production and nutrient cycling are essential to maximize the crop yields in succession under no-tillage system. This study aimed to evaluate dry matter production and nutrients accumulation by pigeonpea (Cajanus cajan and pearl millet (Pennisetum glaucum, in sole crop and intercropped, and the effect of straw mulch mechanical management on out-of-season castor bean performance, in no-tillage system establishment. The experiment was carried out on a Rhodic Nitisol, in Botucatu, SP, Brazil. A randomized blocks design, in a split-plot scheme, with four replications

  7. Short rotation woody crops: Using agroforestry technology for energy in the United States

    International Nuclear Information System (INIS)

    Wright, L.L.; Ranney, J.W.

    1991-01-01

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described

  8. Impact of climate change on water balance components in Mediterranean rainfed olive orchards under tillage or cover crop soil management

    Science.gov (United States)

    Rodríguez-Carretero, María Teresa; Lorite, Ignacio J.; Ruiz-Ramos, Margarita; Dosio, Alessandro; Gómez, José A.

    2013-04-01

    The rainfed olive orchards in Southern Spain constitute the main socioeconomic system of the Mediterranean Spanish agriculture. These systems have an elevated level of complexity and require the accurate characterization of crop, climate and soil components for a correct management. It is common the inclusion of cover crops (usually winter cereals or natural cover) intercalated between the olive rows in order to reduce water erosion. Saving limited available water requires specific management, mowing or killing these cover crops in early spring. Thus, under the semi-arid conditions in Southern Spain the management of the cover crops in rainfed olive orchards is essential to avoid a severe impact to the olive orchards yield through depletion of soil water. In order to characterize this agricultural system, a complete water balance model has been developed, calibrated and validated for the semi-arid conditions of Southern Spain, called WABOL (Abazi et al., 2013). In this complex and fragile system, the climate change constitutes a huge threat for its sustainability, currently limited by the availability of water resources, and its forecasted reduction for Mediterranean environments in Southern Spain. The objective of this study was to simulate the impact of climate change on the different components of the water balance in these representative double cropping systems: transpiration of the olive orchard and cover crop, runoff, deep percolation and soil water content. Four climatic scenarios from the FP6 European Project ENSEMBLES were first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) and, subsequently, used as inputs for the WABOL model for five olive orchard fields located in Southern Spain under different conditions of crop, climate, soils and management, in order to consider as much as possible of the variability detected in the Spanish olive orchards. The first results indicate the significant effect of the cover

  9. Soil organic carbon dynamics in typical durum wheat-based crop rotations of Southern Italy

    Directory of Open Access Journals (Sweden)

    Claudia Di Bene

    2016-08-01

    Full Text Available Mediterranean agricultural areas are dominated by cropping systems based on winter cereals crops, summer irrigated crops, foragebased systems, and mixed succession with bare fallow. Soil organic carbon (SOC is widely used to assess the environmental performance of these cropping systems, since it is strongly influenced by management practices and environmental conditions. This study evaluates the sustainability of representative intensive cropping systems of Southern Italy, in terms of SOC stock changes and CO2 emissions in the long-term perspective, using a process-based model (RothC10N combined with a GIS-based spatialization procedure. On the basis of SOC modelling, results showed that crop management practices currently adopted by farmers did not guarantee SOC sequestration in all the rotations (–4.29 Mg C ha–1. The sustainability of cropping systems can be improved through management practices such as the retention of crop residues into the field and/or the rational use of irrigation for the summer crop (6.73 Mg C ha–1. This finding could help policy makers to provide suggestions for a more effective local implementation of agro-environmental measures.

  10. Water availability for winter wheat affected by summer fallow tillage practices in sloping dryland

    NARCIS (Netherlands)

    Wang, X.B.; Cai, D.X.; Jin, K.; Wu, H.J.; Bai, Z.G.; Zhang, C.J.; Yao, Y.Q.; Lu, J.J.; Wang, Y.H.; Yang, B.; Hartman, R.; Gabriels, D.

    2003-01-01

    The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang,Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods inclu-ding reduced tillage (RT), no-till (NT), 2 crops/year (2C), subsoiling(SS), and conventional tillage

  11. Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation

    DEFF Research Database (Denmark)

    Brozyna, Michal Adam; Petersen, Søren O; Chirinda, Ngoni

    2013-01-01

    Nitrogen (N) supply in stockless organic farming may be improved through use of grass-clover for anaerobic digestion, producing biogas and digested manure for use as fertilizer in the crop rotation. We studied the effects of grass-clover management on N cycling, nitrous oxide (N2O) emissions...... and cash-crop yields in an organic arable crop rotation on a sandy loam soil in a cool temperate climate. The four-course crop rotation included spring barley (with undersown grass-clover), grass-clover, potato and winter wheat (with undersown cover crop). Two fertilization treatments were compared: “−M...... in the rotation (spring barley, potato and winter wheat); actual digestion of grass-clover cuttings was not possible, instead digested pig manure was used as substitute for digested grass-clover. Nitrous oxide fluxes were monitored between April 2008 and May 2009. In general, application of digested manure had...

  12. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    Science.gov (United States)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  13. Influence of conservation tillage and zero tillage on arable weeds in organic faba bean production

    Directory of Open Access Journals (Sweden)

    Jung, Rüdiger

    2016-02-01

    Full Text Available The field experiments were conducted in 2008, 2009 and 2010 on a Gleyic Cambisol near Goettingen, Lower Saxony, Germany. A crop sequence of summer barley, winter cover crops (intercropped oat and sunflower and summer faba bean was examined under organic farming conditions. Emphasis was given to the studying of arable weeds in faba beans. However, enhancing symbiotic nitrogen fixation of summer faba beans by accumulation of soil-nitrogen by winter cover crops was a second objective in these experiments. The faba bean field plots had been cultivated with three different tillage systems: 1. zero tillage, sowing with cross-slottechnique, 2. conservation tillage (wing share cultivator, rotary harrow sowing with cross-slot-technique and 3. conventional tillage with mouldboard plough followed by rotary harrow, sowing with precision monoseeder. In plots with zero tillage preceding cover crops were left as mulch on the soil surface. Cover crops accumulated adequate nitrogen amounts and following faba beans reacted with significant increase (up to 10% in symbiotic nitrogen fixation. Maximum of arable weed biomass was observed in zero tillage-plots at the end of May or early in June. The abundance of the predominant weed wild mustard (Sinapis arvensis increased with tillage intensity, whereas the abundance of creeping thistle (Cirsium arvense increased in 2010 with decreasing tillage intensity. Average grain yield of faba beans was low with only 3.0 and 2.4 t ha-1 in 2009 and 2010, respectively.

  14. Atributos físicos de um argissolo em sistemas de culturas de longa duração sob semeadura direta Physical properties of a typic paleudalf under long-term no-tillage and cropping systems

    Directory of Open Access Journals (Sweden)

    Mastrângello Enívar Lanzanova

    2010-08-01

    assessed soil bulk density, porosity, penetration resistance, and water infiltration of a PALEUDALF, in the Experimental Area of the Soil Science Department of the Federal University of Santa Maria, in Santa Maria, RS, Brazil, in an experiment started in 1991, with the following crop successions and rotations: (1 Corn/Soybean - Jackbean - MFP; (2 Bare soil - SDES; (3 Corn/Soybean - Fallow -POU; (4 Corn/Soybean - Ryegrass + Vetch - AZEV; (5 Corn/Soybean - Mucuna - MUC; (7 Natural Grass - CNA; (6 Corn/Soybean - Oilseed radish - NFO. Soil bulk density was affected in the 0-0.10 m layer; values were highest in the SDES. Total soil porosity and soil macroporosity were closely correlated to a depth of 0.10 m. Major restriction to root penetration occurred in the surface layer (0-0.03 m in the SDES treatment, and NFO had greatest values at 0.16-0.18 m depth. The water infiltration rate was lowest in SDES and CNA treatments in all evaluations, while in the others infiltration was constant and statistically equal. Constantly uncovered soil induces degradation in soil physical properties. The studied cropping systems confirmed significant benefits in soil density, porosity, resistance, and water infiltration rate under long term no-tillage.

  15. Environmental enchancement using short-rotation tree crops: research results and directions

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, V.R.; Schiller, A.

    1996-10-01

    Short-rotation woody crops (SRWC) and perennial grasses used as biomass feedstocks for energy and fiber can provide multiple economic and environmental benefits. Site-specific environmental studies are providing information needed to help evaluate the economic and environmental impacts of biomass production at both local and regional scales. Erosion and chemical movement from an annual row crop, switchgrass, and tree crop with and without a groundcover are being compared in the Southeast. Studies of SRWC productivity on the South Carolina coastal plain are comparing surface and subsurface movement of chemicals applied under different fertilization and irrigation regimes, and addressing use of mill and agricultural residues to enhance crop production. Results are helping to assess the effects of biomass crops produced on different principal soil types and to match tree species with appropriate sites to maximize productivity and minimize environmental impacts. Studies are comparing wildlife use of biomass crops to row crops, grasslands, and natural forests. Results to date show that SRWCs support greater bird diversity than row crops, but less than natural forests; switchgrass plantings extend habitat for grasslands birds. Collaboration with an industrial partner on diverse SRWC plantings in the Southeast is addressing the relationship between plantings of different acreage, age, tree species, and landscape context and breeding bird use. Information from wildlife diversity, water, and soil quality studies can be used by the Biofuels Feedstock Development Program (BFDP), researchers, producers, and industry to identify management strategies to maintain productivity While enhancing the environment.

  16. Wind erosion potential influenced by tillage in an irrigated potato-sweet corn rotation in the Columbia Basin

    Science.gov (United States)

    Wind erosion is a concern within the Columbia Basin of the Inland Pacific Northwest (PNW) United States due to the sandy texture of soils and small amount of residue retained on the soil surface after harvest of vegetable crops like potato. This study assessed potential wind erosion of an irrigated ...

  17. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1

  18. Effect of Cropping Practices on Weed Species Composition in a ...

    African Journals Online (AJOL)

    The effect of rotation and weeding practices on weed species composition were evaluated in a groundnut (Arachis hypogaea, L.) crop in a three-year field experiment in Central Malawi under ridge-tillage practices. Weeding practices consisted of weeding twice including earthing-up, weeding once, and no weeding, ...

  19. Perennial Grass Based Crop Rotations in Virginia: Effects on Soil Quality, Disease Incidence, and Cotton and Peanut Growth.

    OpenAIRE

    Weeks, Jr., James Michael

    2008-01-01

    In 2003 eight peanut and cotton crop rotations were established in southeastern Virginia, 4 of which included 2 or 3 years of tall fescue or orchardgrass grown as high-value hay crops. Each crop rotation was evaluated for changes in soil quality indicators including soil carbon and nitrogen, water stable soil aggregates, plant available water content, bulk density, cone index values, and soil moisture. Cotton and peanut growth and yield were also observed to evaluate ch...

  20. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  1. Temperatura do solo em função do preparo do solo e do manejo da cobertura de inverno Soil temperature as affected by soil tillage and management of winter cover crops

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Angeli Furlani

    2008-02-01

    Full Text Available Com o objetivo de avaliar o efeito do preparo do solo e do manejo da cobertura de inverno (consórcio aveia-preta + nabo forrageiro sobre a temperatura do solo, realizou-se um experimento em um Nitossolo em Botucatu-SP no outono/inverno de 2000. Utilizou-se um delineamento em blocos casualizados em esquema fatorial 3 x 3 (três preparos e três manejos. O preparo do solo constou de: preparo convencional, preparo conservacionista com escarificação e plantio direto, e o manejo da cobertura: consórcio dessecado, rolado e triturado. Foram avaliados a temperatura do solo (termopares a 5 cm de profundidade, de hora em hora, aos 7, 14, 30, 45 e 60 dias após a emergência das plantas do consórcio; o teor de água do solo na profundidade de 10 cm, nas mesmas épocas; e a cobertura do solo (massa seca e índice de cobertura, imediatamente após aplicação dos tratamentos. O sistema plantio direto apresentou temperaturas do solo menores que as do preparo convencional, até o 14º dia após emergência (DAE das plantas. A partir do 30° DAE das plantas, a temperatura não foi mais influenciada pelos tratamentos, devido à cobertura do consórcio e ocorrência de boa disponibilidade de água no solo. Os manejos da cobertura com rolo-faca, triturador e herbicida não influenciaram a temperatura do solo. A temperatura do solo não interferiu no crescimento e desenvolvimento das culturas de cobertura.To evaluate the effect of soil tillage and management of winter cover crops (black oat + radish intercrop on the soil temperature, an experiment was conducted in a Nitossol (Alfisol in Botucatu, state of São Paulo, Brazil, in the 2000 fall/winter season. A design in randomized blocks was used in a 3 x 3 factorial scheme (three tillage and three cover crop managements. Soil tillage consisted of: conventional tillage, conservation tillage with chiseling, and no-tillage. The cover crops managements included plant killing with post-emergence herbicide, rolling

  2. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    Science.gov (United States)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    Crop fertilization provides vital plant nutrients (e.g. NPK) to ensure yield security but is also associated with negative environmental impacts. In particular, inorganic, mineral nitrogen (Nmin) fertilization leads to emissions during its energy intensive production as well as Nmin leaching to receiving waters. Incorporating legumes into crop rotations can provide organic N to the soil and subsequent crops, reducing the need for mineral N fertilizer and its negative environmental impacts. An added bonus is the potential to enhance soil organic carbon stocks, thereby reducing atmospheric CO2 concentrations. In this study we assessed the effects of legumes in rotation and fertilization regimes on the depth distribution - down to 1 m - of total soil nitrogen (Ntot), soil organic carbon (SOC) as well as isotopic composition (δ13C, δ15N), electrical conductivity and bulk density as well as agricultural yields at a long-term field experiment in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the soil profile. N fertilization, in particular, significantly increased yields, whereas PK fertilizer had only marginal yield effects, indicating that these systems are N limited. This N limitation was confirmed by significant yield benefits with leguminous crops in rotation, even in combination with mineral N fertilizer. The soil was physically and chemically influenced by the choice of crop rotation. Adding clover as a green mulch crop once every 4 years resulted in an enrichment of total N and SOC at the surface compared with fava beans and maize, but only in combination with PK fertilization. In contrast, fava beans and to a lesser extent maize in rotation lowered bulk densities in the subsoil compared with clover

  3. Performance of fall and winter crops in a no tillage system in west Paraná State

    Directory of Open Access Journals (Sweden)

    Leandro Paiola Albrecht

    2017-11-01

    Full Text Available The long-term exploitation of natural resources by agricultural activities has resulted in the need for alternative measures to restore degraded soil. The cultivation of cover crops can generate great benefits for agricultural systems, enabling the exploitation of natural resources, including water, light and nutrients, as well as the recovery of degraded soils. This work aimed to assess the coverage rate, fresh mass and dry mass of cover crops from fall and winter as well as the floristic composition of the weeds. The work was conducted in field conditions in soil classified as eutroferric Red Oxisol in the region of the city of Palotina, Paraná State, Brazil, using a random block experimental design with four replications. The treatments consisted of seven cover cultures: wild radish, linseed, triticale, rye, rapeseed, crambe, oats and fallow. The species with the highest coverage rates and fresh mass and dry mass values were wild radish, rapeseed and crambe. In the floristic and phytosociological data, the species with the highest incidence were Amaranthus retroflexus, Commelina benghalensis L., Brachiaria plantaginea and Gnaphalium spicatum.

  4. Does crop rotational diversity increase soil microbial resistance and resilience to drought and flooding?

    Science.gov (United States)

    Schnecker, Jörg; Calderon, Francisco; Cavigelli, Michel; Lehman, Michael; Tiemann, Lisa; Grandy, Stuart

    2017-04-01

    Future climate scenarios indicate more frequent and stronger extreme weather events. This includes more severe droughts but also an increase in heavy rain events and flooding. Agricultural systems are of special interest in this context because of their role in food security but also because of their potentially changing role in global carbon and nutrient cycling under these extreme conditions. Plant diversification strategies like more complex crop rotations which support more diverse soil microbial communities with higher functional redundancy might be more resistant to drought and flooding and could help to reduce impacts on microbial carbon and nutrient cycling. To test how crop diversification affects the response of soil microbial processes to drought and flooding and reoccurring drought and flooding, we manipulated water regimes in lab incubation experiments using soils from four long term rotation experiments across the USA, including a low (one or two crops) vs. high (>3 crops) diversity rotations at each site. The sites range from low precipitation (Colorado), over intermediate precipitation (Michigan and South Dakota) to high precipitation in Maryland. Replicate sets of samples were either allowed to dry out, were gradually flooded or kept at a constant water content (control). We monitored CO2 production during five stress cycles. Additionally, we determined microbial biomass, enzyme activities and N pools during the first and last stress cycle in soils from the precipitation extremes. After a total incubation length of 165 days and five stress cycles only the soils from short rotations in Maryland and South Dakota that had been subjected to reoccurring drought showed significantly less cumulative CO2 loss compared to their respective controls. All the other sites and rotation length did not significantly differ from control when subjected to reoccurring drought or flooding. A Principal component analysis using all measured parameters of Colorado and

  5. Agregação de Latossolo Vermelho sob diferentes sistemas de preparo do solo, após um único cultivo com girassol Soil aggregation of Red Latosols under different tillage systems after sunflower cropping

    Directory of Open Access Journals (Sweden)

    Maria R. G. Ungaro

    2005-06-01

    Full Text Available Avaliou-se, no presente trabalho, o efeito de um único cultivo de girassol na agregação de Latossolo Vermelho submetidos a diferentes sistemas de preparo, em número de quatro: grade aradora + grade niveladora (GA, grade niveladora (GN, semeadura direta na palha (SP e plantio direto (PD, no outono-inverno; exceto no PD, foi passado o escarificador + grade niveladora na primavera-verão semeando-se, em seguida, a soja e, no outono-inverno o girassol. As avaliações dos agregados de solo foram feitas antes do plantio e após a colheita do girassol, em propriedades particulares em Cândido Mota e Pedrinhas Paulista, SP, cujo cultivo do girassol melhorou a agregação, independentemente do sistema de preparo utilizado.The objective of the present research was to evaluate the effect of single sunflower crop on soil aggregation under different tillage systems. Four tillage systems were used: heavy disk harrow + leveling harrow (GA, leveling harrow (GN, sowing on straw (SP without tillage (PD, in the autumn-winter, and chisel plow + leveling harrow in the spring-summer cultivation, except for PD treatment. The research was conducted under field conditions in Candido Mota and Pedrinhas Paulista, Sao Paulo State. Soybean was sowed in the spring-summer season and sunflower in the autumn-winter. The soil aggregates were evaluated before sowing and after sunflower harvest. The use of sunflower crop induced a better soil aggregation in both places, for all tillage systems.

  6. Influence of Tillage and Poultry Manure on the Physical Properties of ...

    African Journals Online (AJOL)

    User

    with split plot arrangement, keeping the tillage practices in the main plots; zero tillage (direct seed sowing with ... data trend regarding maize grain length was observed in 2011, with the longer grain in the tilled crop and ... fashion was in 2011, with the maximum area in the deep tillage sown crop (91. 30 mm2) statistically at ...

  7. Improving maize productivity through tillage and nitrogen management

    African Journals Online (AJOL)

    Continuous cultivation of fields with same implement (cultivator) creates a hard pan in the subsoil which adversely affects crop productivity. In addition to tillage, nitrogen management is a key factor for better crop growth and yield. Impact of different tillage systems and nitrogen management on yield attributes and grain yield ...

  8. Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models

    DEFF Research Database (Denmark)

    Doltra, Jordi; Nuñoz, P

    2010-01-01

    Two different modeling approaches were used to simulate the N leached during an intensively fertigated crop rotation: a recently developed crop-based simulation model (EU-Rotate_N) and a widely recognized solute transport model (Hydrus-2D). Model performance was evaluated using data from an exper......-scaling the quantification of N leaching from a field level to regional and national levels, identifying best management strategies in relation to N use from an environmental and economic perspective...

  9. CO2 fluxes exchanged by a 4-year crop rotation cycle.

    Science.gov (United States)

    Aubinet, M.; Moureaux, C.; Bodson, B.; Dufranne, D.; Heinesch, B.; Suleau, M.; Vancutsem, F.; Vilret, A.

    2009-04-01

    This study analyses carbon fluxes exchanged by a production crop during a four year cycle. Between 2004 and 2008, the successive crops were sugar beet, winter wheat, potato and again winter wheat. Eddy covariance, automatic and manual soil chamber, leaf diffusion and biomass measurements were performed continuously in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), Total Ecosystem Respiration (TER), Net Primary Productivity (NPP), Autotrophic Respiration, Heterotrophic Respiration and Net Biome Production (NBP). The whole cycle budget showed that NEE was negative and the rotation behaved as a sink of 1.59 kgC m-2 over the 4-year rotation. However, if exports were deducted from the budget, the crop would become a small source of 0.22 (+/- 0.14) kgC m-2, which also suggests that the crop soil carbon content decreased. This could partly be explained by the crop management, as neither farmyard manure nor slurry had been applied to the crop for more than 10 years and as cereal straw had been systematically exported for livestock. This result is also strongly dependent on climate: the fluxes were subjected to a large inter-annual variability due to differences between crops but also to climate variability. In particular, the mild winter and the dry spring underwent in 2007 induced an increase of the biomass fraction that returned to the soil, at the expense of harvested biomass. If 2007 had been a ‘normal' year, the carbon emission by the crop rotation would have been twice as great. This is analysed more in detail in a companion presentation (Dufranne et al., this session). The impacts of some farmer interventions were quantified. In particular, the impact of ploughing was found to be limited both in intensity (1 to 2 micromol m-2 s-1) and duration (not more than 1 day). Seasonal budgets showed that, during cropping periods, the TER/GPP ratio varied between 40 and 60% and that TER was dominated mainly by the

  10. Soil respiration in cucumber field under crop rotation in solar greenhouse

    Directory of Open Access Journals (Sweden)

    Yinli Liang

    2014-08-01

    Full Text Available Crop residues are the primary source of carbon input in the soil carbon pool. Crop rotation can impact the plant biomass returned to the soil, and influence soil respiration. To study the effect of previous crops on soil respiration in cucumber (Cucumis statirus L. fields in solar greenhouses, soil respiration, plant height, leaf area and yield were measured during the growing season (from the end of Sept to the beginning of Jun the following year from 2007 to 2010. The cucumber was grown following fallow (CK, kidney bean (KB, cowpea (CP, maize for green manure (MGM, black bean for green manure (BGM, tomato (TM, bok choy (BC. As compared with CK, KB, CP, MGM and BGM may increase soil respiration, while TM and BC may decrease soil respiration at full fruit stage in cucumber fields. Thus attention to the previous crop arrangement is a possible way of mitigating soil respiration in vegetable fields. Plant height, leaf area and yield had similar variation trends under seven previous crop treatments. The ratio of yield to soil respiration revealed that MGM is the crop of choice previous to cucumber when compared with CK, KB, CP, BGM, TM and BC.

  11. Short-rotation woody-crops program. Quarterly progress report for period ending August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Ranney, J.W.

    1982-04-01

    Progress of twenty-one projects in the Short Rotation Woody Crops Program is summarized for the period June 1 through August 31, 1981. Individual quarterly reports included from each of the projects discuss accomplishments within specific project objectives and identify recent papers and publications resulting from the research. The major program activities are species screening and genetic selection, stand establishment and cultural treatment, and harvest, collection, transportation, and storage.

  12. Short-rotation woody-crops program. Quarterly progress report for period ending May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Ranney, J.W.

    1982-04-01

    Progress of twenty projects in the Short Rotation Woody Crops Program is summarized for the period March 1 through May 31, 1981. Individual quarterly reports included from each of the projects discuss accomplishments within specific project objectives and identify recent papers and publications resulting from the research. The major project activities are species screening and genetic selection, stand establishment and cultural treatment, and harvest, collection, transportation, and storage.

  13. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation

    DEFF Research Database (Denmark)

    Acharya, Bharat Sharma; Rasmussen, Jim; Eriksen, Jørgen

    2012-01-01

    Grasslands are potential carbon sinks to reduce unprecedented increase in atmospheric CO2. Effect of age (1–4-year-old) and management (slurry, grazing multispecies mixture) of a grass phase mixed crop rotation on carbon sequestration and emissions upon cultivation was compared with 17-year...... with age but indifference in CO2 emissions across the age and management in temporary grasslands, thus, indicates potential for long-term sequestration of soil C....

  14. Tropical Legume Crop Rotation and Nitrogen Fertilizer Effects on Agronomic and Nitrogen Efficiency of Rice

    Directory of Open Access Journals (Sweden)

    Motior M. Rahman

    2014-01-01

    Full Text Available Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m−2 preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m−2. No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE, nitrogen recovery efficiency (NRE, N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m−2 achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13–23% higher grain yield than rice after fallow rotation with 8 g N m−2. The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m−2 can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m−2. The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.

  15. A Data-driven Approach to Integrate Crop Rotation Agronomic Practices in a Global Gridded Land-use Forcing Dataset

    Science.gov (United States)

    Sahajpal, R.; Hurtt, G. C.; Chini, L. P.; Frolking, S. E.; Izaurralde, R. C.

    2016-12-01

    Agro-ecosystems are the dominant land-use type on Earth, covering more than a third of ice-free land surface. Agricultural practices have influenced the Earth's climate system by significantly altering the biogeophysical and biogeochemical properties from hyper-local to global scales. While past work has focused largely on characterizing the effects of net land cover changes, the magnitude and nature of gross transitions and agricultural management practices on climate remains highly uncertain. To address this issue, a new set of global gridded land-use forcing datasets (LUH2) have been developed in a standard format required by climate models for CMIP6. For the first time, this dataset includes information on key agricultural management practices including crop rotations. Crop rotations describe the practice of growing crops on the same land in sequential seasons and are essential to agronomic management as they influence key ecosystem services such as crop yields, water quality, carbon and nutrient cycling, pest and disease control. Here, we present a data-driven approach to infer crop rotations based on crop specific land cover data, derived from moderate resolution satellite imagery and created at an annual time-step for the continental United States. Our approach compresses the more than 100,000 unique crop rotations prevalent in the United States from 2013 - 2015 to about 200 representative crop rotations that account for nearly 80% of the spatio-temporal variability. Further simplification is achieved by mapping individual crops to crop functional types, which identify crops based on their photosynthetic pathways (C3/C4), life strategy (annual/perennial) and whether they are N-fixing or not. The resulting matrix of annual transitions between crop functional types averages 41,000 km2/yr for rotations between C3 and C4 annual crops, and 140,000 km2/yr between C3 N-fixing and C4 annual crops. The crop rotation matrix is combined with information on other land

  16. Water use and onion crop production in no-tillage and conventional cropping systems Uso de água e produção de cebola em sistemas de plantio direto e convencional

    Directory of Open Access Journals (Sweden)

    Waldir Aparecido Marouelli

    2010-03-01

    Full Text Available The objective of the present study was to evaluate the effects of crop residue covers (0.0; 4.5; 9.0; 13.5 t ha-1 millet dry matter on water use and production of onion cultivated in no-tillage planting system (NT as compared to conventional tillage system (CT. The study was carried out at Embrapa Hortaliças, Brazil, under the typical Savanna biome. Irrigations were performed using a sprinkle irrigation system when soil-water tension reached between 25 and 30 kPa. The experimental design was randomized blocks with three replications. Total net water depth applied to NT treatment was 19% smaller than the CT treatment, however, water savings increased to 30% for the first 30 days following seedlings transplant. Crop biomass, bulb size and yield, and rate of rotten bulbs were not significantly affected by treatments. The water productivity index increased linearly with increasing crop residue in NT conditions. Water productivity index of NT treatments with crop residue was on average 30% higher than that in the CT system (8.13 kg m-3.O objetivo do presente estudo foi avaliar o efeito do nível de palhada no solo (0,0; 4,5; 9,0; 13,5 t ha-1 de matéria seca de milheto em sistema de plantio direto (PD sobre o uso de água e produção de cebola, tendo como controle o sistema de plantio convencional (PC. O ensaio foi conduzido na Embrapa Hortaliças, em região típica do bioma Cerrado. As irrigações foram realizadas por aspersão a todo o momento que a tensão de água no solo atingiu entre 25 e 30 kPa. O delineamento experimental foi blocos ao acaso com três repetições. A lâmina de água aplicada em PD foi de até 19% menor que no tratamento PC durante o ciclo da cultura, sendo que durante os primeiros 30 dias do ciclo após o transplante das mudas a economia chegou a 30%. O desenvolvimento de plantas, o tamanho e o rendimento de bulbos, e a taxa de bulbos podres não foram afetados significativamente pelos tratamentos. O índice de

  17. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    Directory of Open Access Journals (Sweden)

    Rongyan Bu

    Full Text Available Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N mineralization. The quantity and quality of particulate organic matter (POM and potentially mineralizable-N (PMN contents were measured in soils from 16 paired rice-rapeseed (RR/cotton-rapeseed (CR rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile, intermediate (25th and 75th percentiles, and high (90th percentile levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C and N (POM-N contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively than CR rotations (45.6% and 19.5%, respectively. Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  18. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    Science.gov (United States)

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  19. Produção orgânica de rabanete em plantio direto sobre cobertura morta e viva Organic cropping of radish in no-tillage under died and live mulching

    Directory of Open Access Journals (Sweden)

    Regina Lúcia F Ferreira

    2011-09-01

    to the conventional soil tillage, both superior to the crop on the no-tillage with live mulch. The productivity of the radish cv. Cometa, was not affected by increasing doses of organic compost, being possible to apply only 5 t ha-1, whereas in the conventional tillage, the increasing productivity was higher compared to the direct planting only in the higher dose of compost (15 t ha-1.

  20. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  1. Resposta de culturas à aplicação de enxofre e a teores de sulfato num solo de textura arenosa sob plantio direto Crop responses for sulphur application and sulfate levels in a sandy soil under no-tillage

    Directory of Open Access Journals (Sweden)

    Danilo dos Santos Rheinheimer

    2005-06-01

    Full Text Available A quantidade total de enxofre é menor em solos com baixos teores de argila e matéria orgânica e a disponibilidade de sulfato da camada superficial do solo às plantas é diminuída pela aplicação de calcário e de fertilizantes fosfatados em superfície no plantio direto. O objetivo do presente trabalho foi avaliar a resposta de algumas culturas à aplicação de enxofre e os teores de sulfato num solo com textura superficial arenosa sob plantio direto. Um experimento em esquema de subparcelas em blocos ao acaso e com quatro repetições foi instalado a campo sobre um Argissolo Vermelho distrófico arênico. Nas parcelas principais, foram adicionadas quatro doses de SO4-2 (0, 15, 30 e 60 kg ha-1. As subparcelas constituíram-se de duas rotações de culturas: uma com nabo/ milho+crotalária/ trigo e outra com soja/ canola/ milho+mucuna. Cada subparcela foi dividida em duas, sendo que, numa delas, não foi adicionado SO4-2 e na outra se adicionou o equivalente a 1/3 das doses iniciais, antes do segundo cultivo. Avaliaram-se os teores de SO4-2 em amostras de solo coletadas em diferentes camadas e a produção de matéria seca e de grãos e o teor de enxofre no tecido. As maiores doses de SO4-2 aplicadas propiciaram pequenos incrementos nos seus teores na camada 0-60 cm. Somente as culturas do nabo forrageiro e milho, quando sob irrigação, responderam à aplicação de SO4-2.The total sulfur amount is lower in soils with low contents of clay and organic matter, and the aplications of limestone and fosfate fertilizers on the surface in no-tillage have reduced the sulfur disponibility through plants on the superficial layer of the soil. This study was carried out to evaluate the sulphate dynamic and the crop responses to S-SO4-2 application. The experiment was carried out at field using a sandy surface soil (Tipic Hapludult, and was a trifactorial with complete randomized blocks and four replications. Four S-SO4-2 levels (0, 15, 20 and 60kg ha

  2. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason......, crop management technologies have been developed, with a special focus on the Mediterranean region, to enhance crop production by increasing land productivity and sustaining soil fertility under influence of climate changes and population increases. The main objective of this study was to analyse...... dryland Mediterranean cropping systems, and to discuss and recommend sustainable cropping technologies that could be used at the small-scale farm level. Four crop management practices were evaluated: crop rotations, reduced tillage, use of organic manure, and supplemental and deficit irrigation. Among...

  3. What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis

    NARCIS (Netherlands)

    Aravindakshan, S.; Rossi, F.J.; Krupnik, T.J.

    2015-01-01

    Escalating energy costs are an increasing concern for South Asian farmers growing rice and wheat in rotation. Millions of people in the IGP (Indo-Gangetic Plains) depend on this cropping system for food and income security. CT (conservation tillage) practices, including mechanical BP (bed planting),

  4. Potential effect of conservation tillage on sustainable land use : a review of global long-term studies

    NARCIS (Netherlands)

    Wang Xiaobin,; Cai, D.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D.

    2006-01-01

    Although understood differently in different parts of the world, conservation tillage usually includes leaving crop residues on the soil surface to reduce tillage. Through a global review of long-term conservation tillage research, this paper discusses the long-term effect of conservation tillage on

  5. Carbon balance of the typical grain crop rotation in Moscow region assessed by eddy covariance method

    Science.gov (United States)

    Meshalkina, Joulia; Yaroslavtsev, Alexis; Vassenev, Ivan

    2017-04-01

    Croplands could have equal or even greater net ecosystem production than several natural ecosystems (Hollinger et al., 2004), so agriculture plays a substantial role in mitigation strategies for the reduction of carbon dioxide emissions. In Central Russia, where agricultural soils carbon loses are 9 time higher than natural (forest's) soils ones (Stolbovoi, 2002), the reduction of carbon dioxide emissions in agroecosystems must be the central focus of the scientific efforts. Although the balance of the CO2 mostly attributed to management practices, limited information exists regarding the crop rotation overall as potential of C sequestration. In this study, we present data on carbon balance of the typical grain crop rotation in Moscow region followed for 4 years by measuring CO2 fluxes by paired eddy covariance stations (EC). The study was conducted at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Two fields of the four-course rotation were studied in 2013-2016. Crop rotation included winter wheat (Triticum sativum L.), barley (Hordeum vulgare L.), potato crop (Solanum tuberosum L.) and cereal-legume mixture (Vicia sativa L. and Avena sativa L.). Crops sowing occurred during the period from mid-April to mid-May depending on weather conditions. Winter wheat was sown in the very beginning of September and the next year it occurred from under the snow in the phase of tillering. White mustard (Sinapis alba) was sown for green manure after harvesting winter wheat in mid of July. Barley was harvested in mid of August, potato crop was harvested in September. Cereal-legume mixture on herbage was collected depending on the weather from early July to mid-August. Carbon uptake (NEE negative values) was registered only for the fields with winter wheat and white

  6. Effect of conservation tillage and peat application on weed infestation on a clay soil

    Directory of Open Access Journals (Sweden)

    P. VANHALA

    2008-12-01

    Full Text Available Amendment of soil with peat is an attempt to avoid crop yield variation in the transition to conservation tillage, as it improves seedbed conditions and crop growth in drought-sensitive clay soils. Weed infestations were compared in 1999-2000 between the original and peat-amended clay (Typic Cryaquept, very fine, illitic or mixed under different autumn tillage systems in an oats-barley rotation. In a field experiment, sphagnum peat (H = 4 had been spread (0.02 m 3 m -2 on the soil surface in August 1995. Tillage treatments included mouldboard ploughing (to 20 cm and stubble cultivations of different working depths (8 or 15 cm and intensity (once or twice. Weed biomass and density were assessed by an area of 1 m 2 per field plot in August 1999-2000 and June 2000. The 1999 season was dry, but soil moisture conditions were more favourable in 2000. Peat application tended to increase the number of volunteer oats and Chenopodium album in 1999, while decreasing Galium spurium biomass. Ploughing significantly increased the abundance of Chenopodium album and Lamium purpureum in barley (Hordeum vulgare in 1999. Weed infestation was much lower in 2000, and tillage effect on Chenopodium album was minor in oats (Avena sativa. Growth of Lamium purpureum and Fumaria officinalis was stimulated in ploughed soils both years. Intensity and working depth of stubble cultivation had no significant effect on weeds.;

  7. Forms of carbon in an oxisol under no-tillage and crop-livestock integration systems in the cerrado, Goias State, Brazil

    Directory of Open Access Journals (Sweden)

    Régis Pinheiro Martins Bezerra

    2013-12-01

    Full Text Available The no-tillage system (NTS and more recently, the crop-livestock integration (CLI are very used for grain production in the Cerrado biome. This, the soil organic matter (SOM is one of the main components responsible for maintaining the quality of tropical soils. This study aimed to quantify the levels of total organic carbon (TOC, total nitrogen (total N, water soluble carbon (WSC and carbon of humic fractions in areas with different land use systems in the Cerrado of Goias. The farming systems were used: CLI (brachiaria + corn/beans/cotton/soybean and NTS (sunflower/millet/soybean/corn andas a reference, area native Cerrado vegetation (Cerradão. We collected soil samples at 0-10, 10- 20, 20-30 and 30-40 cm. The contents of TOC, total N, WSC, humin fraction carbon (C-HUM, humic acid fraction (C-HAF and fulvic acid fraction (C-FAF. The area of Cerradão had the highest TOC, total N, C-HUM and C-FAH in the surface layer (0-10 cm. The levels of WSC and humic fractions of SOM showed significant differences between the systems of land use and sampling depths. The highest levels of C-HAF were found in the area of CLI, at 0-10 and 20-30 cm. The CLI systems and NTS did not differ for the TOC and total N except for N in layer 20-30 cm. The system CLI favors the formation of C-HUM compared to the NTS. The CLI system leads to lower levels of WSC and higher C-FAF compared with the NTS, which has higher levels of WSC and C-FAH. The use of WSC and carbon of humic fractions was more efficient to identify differences from the land use systems evaluated (NTS, CLI and Cerradão when compared to the TOC for the climatic conditions of this study.

  8. Crop rotation in the Valle Calido del Alto Magdalena a sustainable focus of high yield

    International Nuclear Information System (INIS)

    Alfaro Rodriguez, Ricardo; Maria Caicedo, Antonio; Amezquita Collazos, Edgar; Castro Franco, Hugo Eduardo

    1996-01-01

    Experiments were carried out during five years at the Nataima Research Center, located at 431 m.a.s.l, with average temperature of 28 Celsius degrades and annual rainfall of 1274 Boyaca mm, on a soil classified as Arenic Haplustalf, to evaluate different crops rotation based on rice and sorghum; the combinations used were as follows; rice-rice (R-R), rice-- soybean (R-SY), rice-crotalaria-sorghum (R-C-S), sorghum-sorghum (S-S), sorghum-soybean (S-SY) and cotton-sorghum (Al-S). Simultaneously it was evaluated the response to four nitrogen levels, which allowed to find out yield functions and optimum economical. The rotations S-SY, R-SY and AI-S have been the best qualified from an environmental perspective. Sorghum-soybean rotation presents increases in yield compared with expected values, which allows thinking that it is a truly sustainable rotation. This rotation also had an excellent profitability and for that reason is considered the best option within the goals of this work

  9. Problems Associated with Crop Rotation for Management of Pratylenchus penetrans on Easter Lily.

    Science.gov (United States)

    Westerdahl, B B; Giraud, D; Etter, S; Riddle, L J; Anderson, C A

    1998-12-01

    In Humboldt and Del Norte counties of California and Curry County, Oregon, Easter lilies (Lilium longiflotum) are grown commercially in a 3- to 6-year rotation with pasture for cattle and sheep. Bulbs are sold to greenhouse operations to produce flowering plants. The lesion nematode, Pratylenchus penetrans, is a serious detriment to Easter lily production. Both soil and planting stock are often infested; typically, a dual nematicide application is used consisting of a preplant soil fumigation followed by an at-planting application of an organophosphate or carbamate. Nematicide usage has resulted in ground-water contamination. Several factors that could lead to an improved crop rotation program were examined in five field trials in Oregon. Examining the relative nematode host status of crops for feeding cattle and sheep indicated differences in host suitability among clovers and fescues that could prove useful in development of pasture mixes. Populations of P. penetrans under continuous fallow and pasture were monitored for 4 years following harvest of Easter lilies. Populations fluctuated in both situations but generally increased on pasture plants and decreased under fallow. Nematodes were still detectable at the end of 4 years of weed-free fallow. Populations of P. penetrans on Easter lilies were followed over two successive crops. Numbers in soil peaked in July and then decreased while numbers within roots continued to increase until harvest in October.

  10. Yield trends in the long-term crop rotation with organic and inorganic fertilisers on Alisols in Mata (Rwanda)

    NARCIS (Netherlands)

    Rutunga, V.; Neel, H.

    2006-01-01

    A crop rotation system with various species was established on Alisols at Mata grassland site, oriental side of Zaire-Nile Watershed Divide (CZN), Rwanda. Inorganic and organic fertilizers were applied in various plots under randomized complete blocs with three replicates. Crop yield data for each

  11. A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation

    Science.gov (United States)

    Ying Ouyang; Jiaen Zhang; Theodor D. Leininger; Brent R. Frey

    2015-01-01

    Although short-rotation woody crop biomass production technology has demonstrated a promising potential to supply feedstocks for bioenergy production, the water and nutrient processes in the woody crop planation ecosystem are poorly understood. In this study, a computer model was developed to estimate the dynamics of water and nitrogen (N) species (e.g., NH4...

  12. Influence of Soil Management on Water Retention from Saturation to Oven Dryness and Dominant Soil Water States in a Vertisol under Crop Rotation

    Science.gov (United States)

    Vanderlinden, Karl; Pachepsky, Yakov; Pederera, Aura; Martinez, Gonzalo; Espejo, Antonio Jesus; Giraldez, Juan Vicente

    2014-05-01

    Unique water transfer and retention properties of Vertisols strongly affect their use in rainfed agriculture in water-limited environments. Despite the agricultural importance of the hydraulic properties of those soils, water retention data dryer than the wilting point are generally scarce, mainly as a result of practical constraints of traditional water retention measurement methods. In this work we provide a detailed description of regionalized water retention data from saturation to oven dryness, obtained from 54 minimally disturbed topsoil (0-0.05m) samples collected at a 3.5-ha experimental field in SW Spain where conventional tillage (CT) and direct drilling (DD) is compared in a wheat-sunflower-legume crop rotation on a Vertisol. Water retention was measured from saturation to oven dryness using sand and sand-kaolin boxes, a pressure plate apparatus and a dew point psychrometer, respectively. A common shape of the water retention curve (WRC) was observed in both tillage systems, with a strong discontinuity in its slope near -0.4 MPa and a decreasing spread from the wet to the dry end. A continuous function, consisting of the sum of a double exponential model (Dexter et al, 2008) and the Groenevelt and Grant (2004) model could be fitted successfully to the data. Two inflection points in the WRC were interpreted as boundaries between the structural and the textural pore spaces and between the textural and the intra-clay aggregate pore spaces. Water retention was significantly higher in DD (ptillage and compaction, increasing and decreasing the amount of the largest pores in CT and DD, respectively, but resulting in a proportionally larger pore space with relevant pore-sizes for water dynamics and agronomic performance. Significant differences in water retention and equivalent pore-sizes at the dry end of the WRC could be associated with the higher organic matter content found in DD. These results explain the superior performance of DD over CT in satisfying

  13. Evolution of physical properties of soils according to tillage systems on annual crops/ Evolução de propriedades físicas do solo em função dos sistemas de manejo em culturas anuais

    Directory of Open Access Journals (Sweden)

    Rogério R. M. Ferreira

    2006-06-01

    Full Text Available Soil management must keep the soil physical properties next to the original conditions in natural systems to assure the sustainability of agricultural systems. This review synthesizes the effects of conventional tillage, minimum tillage and no-tillage systems of annual crops, on soil physical properties as bulk density, porosity, soil resistance to root penetration, infiltration speed, hydraulic conductivity,compressibility, organic matter level, soil aggregate size and stability. No-tillage presents advantages on organic matter level, size and stability of aggregates, compressibility and hydraulic conductivity but has limitations on bulk density and resistance to root penetration. Minimum tillage with chisel plow is specially efficient in relation to infiltration speed and hydraulic conductivity, and intermediate between conventional and no-tillage in other aspects. Conventional tillage with total pulverization of soil surface,mainly on tropical conditions, presents the less favorable scores on soil physical properties, close to minimum tillage and no-till only in few circumstances, and frequently the most different from the natural conditions. The conservation systems by their side, despite of similarities in some aspects with natural conditions, are not able to reproduce the conditions of natural forests, savannas or natural pastures, but are in the sustainability direction.Para assegurar a sustentabilidade do sistema produtivo, o manejo do solo deve manter as propriedades físicas do solo o mais próximo das condições originais em que este se encontrava na natureza. Esta revisão sintetiza os efeitos de três sistemas de manejo de solo (convencional, mínimo e direto em culturas anuais sobre as propriedades físicas do solo como densidade, porosidade, resistência à penetração, velocidade de infiltração, condutividade hidráulica, compressibilidade, nível de matéria orgânica, tamanho e estabilidade de agregados. O plantio direto

  14. Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and winter wheat

    International Nuclear Information System (INIS)

    Drury, C.F.; Yang, X.M.; Reynolds, W.D.; McLaughlin, N.B.

    2008-01-01

    Nitrous oxide (N 2 O) and carbon dioxide (CO 2 ) emissions from agricultural soils are influenced by different types of crops, the amounts and types of nitrogen fertilizers used, and the soil and climatic conditions under which the crops are grown. Crop rotation also has an impact on N 2 O emissions, as the crop residues used to supply soluble carbon to soil biota often differ from the crops being grown. This study compared the influence of crops and residues from preceding crops on N 2 O and CO 2 emissions from monoculture crops of soybeans, corn, and winter wheat at a site in Ontario. The phases of different rotations were compared with 2- and 3-year crop rotations. Results of the study showed that N 2 O emissions were approximately 3.1 to 5.1 times higher in monoculture corn than levels observed in winter wheat or soybean crops. When corn followed corn, average N 2 O emissions twice as high as when corn followed soybeans, and 65 per cent higher than when corn followed winter wheat. The higher levels of both N 2 O and CO 2 were attributed to higher inorganic nitrogen (N) application rates in corn crops. In the corn phase, CO 2 levels were higher when the preceding crop was winter wheat. It was concluded that N 2 O and CO 2 emissions from agricultural fields are influenced by both current and preceding crops, a fact which should be considered and accounted for in estimates and forecasts of agricultural greenhouse gas (GHG) emissions. 21 refs., 3 tabs., 10 figs

  15. Effects of tillage, organic resources and nitrogen fertiliser on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa

    NARCIS (Netherlands)

    Ouédraogo, E.; Mando, A.; Stroosnijder, L.

    2006-01-01

    Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as

  16. Biological nitrogen fixation in three long-term organic and conventional arable crop rotation experiments in Denmark

    DEFF Research Database (Denmark)

    Pandey, Arjun; Li, Fucui; Askegaard, Margrethe

    2017-01-01

    Biological nitrogen (N) fixation (BNF) by legumes in organic cropping systems has been perceived as a strategy to substitute N import from conventional sources. However, the N contribution by legumes varies considerably depending on legumes species, as well as local soil and climatic conditions...... of legumes. Therefore, this study aimed to estimate BNF in long-term experiments with a range of organic and conventional arable crop rotations at three sites in Denmark varying in climate and soils (coarse sand, loamy sand and sandy loam) and to identify possible causes of differences in the amount of BNF....... The experiment included 4-year crop rotations with three treatment factors in a factorial design: (i) rotations, i.e. organic with a year of grass-clover (OGC), organic with a year of grain legumes (OGL), and conventional with a year of grain legumes (CGL), (ii) with (+CC) and without (−CC) cover crops, and (iii...

  17. Energy partitioning and GPP values in a rotating crop in the Spanish Plateau

    Science.gov (United States)

    Sánchez, María Luisa; Pardo, Nuria; Perez, Isidro A.; Garcia, M. Angeles

    2016-04-01

    In order to assess crop ability to act as a CO2 sink and to describe GPP dynamic evolution, in 2008 we installed an eddy correlation station located in an agricultural plot of the Spanish plateau. Continuous measurements of 30-min NEE fluxes and other common variables have been measured over four years. Agricultural practices at the selected plot consisted of annual rotation of non-irrigated rapeseed, wheat, peas, rye. The maximum canopy height of rapeseed, wheat and rye was 1.3, 0.6 and 1.6 m respectively, the values being reached at the end of May. Although no measurements were performed in the pea crop, according to the farmer's information the maximum height was approximately 0.45-0.5 m. The quality of long-term eddy covariance data was evaluated by calculating the energy balance closure. This paper presents and compares the seasonal variation of major components involved in the energy balance as well as GPP for each type of crop. An energy balance closure of 92% was found when using the global dataset. On a four-year basis, the sensible heat flux, H, played the main role in the energy balance with a ratio of 52%. Latent heat flux, LE, accounted for 40% of the energy, with soil heat flux contributing around 8% to the energy balance. These values changed during the period of maximum interest. For this period LE played the main role, using over half of the available energy, 51%, related to evapotranspiration processes. Over the four years of study annual accumulated GPP exhibited a great variability, 1680, 710, 730 and 1410 g C m-2 for rapeseed, wheat, peas and rye, respectively. The influence of crop architecture, phenology and climatic conditions dominated crop-to-crop seasonal evolution. The highest LE contributions to the energy balance were found for rapeseed and rye. Higher GPP were also obtained for denser and higher canopy height crops, rapeseed and rye, yielding annuals almost comparable to C4 plants. Both crops exhibited a marked seasonal variation of

  18. Determining the Appropriate Crop Rotation Plan in a Farm Scale Using Fuzzy Goal Programming Model

    Directory of Open Access Journals (Sweden)

    A. Alizadeh Zoeram

    2016-03-01

    Full Text Available Introduction One of the important subject in the field of agricultural programming is reaching to a pattern or appropriate crop rotation to plant. Existing constraints, including the amount of available resources, and different goals, makes the decision to optimize the use of resources and production factors a complicated task. Therefore, applying mathematical models can be a grate help in this field. The goal of this study is to determine the appropriate patterns of crop cultivation in a farm in the North Khorasan province. Materials and Methods Implem enting fuzzy goal programming (FGP model based on different scenarios was employed to achieve our goals. According to results ,represented process , constraints and problem goals, four plant patterns are offered based on eight proposed scenarios for crop products in this farm or this study. These proposed cultivation pattern can help to make better decision for determination the appropriate rotation of crops in different conditions and different goals by decision makers. Results Discussion Finally, proposed cultivation patterns were prioritized according to maximum amount of reaching the desired level of total goals. Based on maximum level of reaching goals, different scenarios consisted of income, cost, production resources, income-cost, income-production resources, cost-production resources, income-cost-production resources with equal weights, and income-cost-production resources with different weights have been prioritized and four cropping pattern have been detected. In first pattern, three scenario consisted of scenario 1 (income, scenario 4 (income-cost and scenario 5 (income-production resources have combined. The second pattern have made scenario 2 (cost. In third pattern, scenario 3 (production resources, scenario 6 (cost-production resources and scenario 7 (income-cost-production resources with equal weights have combined. The scenario 8 (income-cost-production resources with different

  19. Assessing Energy Flow in Rainfed and Irrigated Wheat Fields of Shahrekourd Township under two Tillage Systems

    Directory of Open Access Journals (Sweden)

    hossein kazemi

    2016-11-01

    Full Text Available Introduction Energy analysis of agricultural ecosystem is essential for sustainable production. The relation between agriculture and energy is very close. Agriculture is an energy consumer and the energy supplier. Agriculture’s use of energy is recognized in three external inputs: labor, machines, and fertilizers (Connor et al., 2011. Significant gains in energy efficiency were arisen in agriculture following the phenomenal increase in energy prices in the 1970s. Greater use of diesel motors, larger tractors, using conservation tillage methods and optimized fertilizer use efficiency were the main causes (Ozkan et al., 2004. Safa & Samarasinghe (2013 were reported that fuel consumption in tillage and harvesting was more than other operations in wheat fields of Canterbury, New Zealand. Effective application of agricultural techniques and efficient use of support inputs can minimize environmental problems and in consequence promote sustainable agricultural intensification. In this study, the energy flow investigated in irrigated and rain-fed wheat cropping systems under two tillage and no-tillage methods in the Shahrekourd city, during 2013. Materials and methods The study was carried out in the Sharekourd city (Chaharmahal Bakhteyari province. This region is located within 32º 20' and 32º 21' Lat. N, 50º 48' and 50º 50' Lon. E. Data were collected from 40 farmers with questionnaire method. In this study, a randomized complete design with four scenarios (rain-fed and irrigated farming with tillage and no-tillage systems was used, that 10 farms were considered as a replication in each scenario. All data detail information on the questionnaire were averaged and arranged. First, all inputs and outputs of wheat production were determined, quantified and entered into Microsoft Excel spreadsheets, and then transformed into energy units and expressed in MJ.ha-1. Based on the total energy equivalents of the inputs and output and the energy use

  20. [Effect of Crop Rotation and Biological Manure on Quality and Yield of "Chuju" Chrysanthemum morifolium and Continuous Cropping Soil Enzyme Activities].

    Science.gov (United States)

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-05-01

    To investigate the effects of chrysanthemum-wheat rotation system and biological manure on continuous cropping soil enzyme activities and quality and yield of Chrysanthemum morifolium. Field experiments were conducted at the research base of Anhui Jutai Chuju Chrysanthemum morifolium Herbal Technology Co. , Ltd. ,in Shiji Town, Nanqiao Country, Anhui Province. Samples were collected from treatments under chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg/667 m2, conventional chrysanthemum-wheat rotation system and chrysanthemum continuous cropping system. Chrysanthemum-wheat rotation system and biological manure obviously influenced the quality and yield of Chrysanthemum morifolium and continuous cropping soil enzyme activities. Compared with chrysanthemum continuous cropping system, total flavonoids, chlorogenic acid, soluble sugar and free amino acid contents, quantitative of ray floret, inflorescence diameter, diameter of tubular floret, number of branch, number of flower and yield of Chrysanthemum morifolium and the activities of urease, acid phosphatase, invertase and protease in soil were increased to 42.59 mg/g, 2.52 mg/g, 4.04 mg/g, 73.33 mg/100 g, 179.56, 5.57 cm, 1.43 cm, 36.10, 330.00 and 400.09 kg/667 m2, respectively, while hydrogen peroxidase of soil under chrysanthemum-wheat rotation system was decreased. Bio-organic manure application of 200 kg/667 m2 is benefit to soil environment establishment of chrysanthemum-wheat rotation system and enhancement of quality and yield of Chrysanthemum morifolium while reducing the obstacles of continuous cropping.

  1. Atributos físicos de um Latossolo Vermelho e produtividade de culturas cultivadas em sucessão e rotação Physical properties of an Oxisol and crops yield under succession and rotation

    Directory of Open Access Journals (Sweden)

    Silvio Aymone Genro Junior

    2009-02-01

    Full Text Available Este estudo objetivou avaliar os efeitos da sucessão e rotação de culturas nos atributos físicos e na produtividade dos cultivos agrícolas de um Latossolo Vermelho sob plantio direto, localizado no Estado do Rio Grande do Sul. Os tratamentos contaram de quatro seqüências de culturas cultivadas de 1998 a 2001: 1 sucessão trigo / soja; 2 rotação milho / aveia / milho+guandu anão / trigo / soja / trigo; 3 rotação guandu anão / trigo / soja / trigo / soja / aveia; e 4 rotação Crotalária / trigo / soja / aveia / milho / trigo. Em outubro de 2000 e de 2001, foram coletadas amostras de solo para determinar os atributos físicos do solo. Em todas as safras foi medida a produtividade das culturas. O Latossolo Vermelho cultivado com plantio direto apresenta um grau de compactação elevado, com densidade do solo acima e volume de macroporos abaixo do limite crítico para a classe textural muito argiloso. As maiores limitações ocorrem abaixo da camada de 0 a 0,03m, pois na camada mais superficial, apesar das pressões exercidas, a mobilização do solo nas operações de semeadura e adubação em linha aumenta a porosidade e reduz a densidade do solo. Nessa camada, houve maior volume de poros entre a saturação e a capacidade de campo, responsáveis pela aeração do solo, e entre a capacidade de campo e o ponto de murcha permanente, responsáveis pelo armazenamento da água disponível para as plantas. A introdução de plantas de cobertura a cada três anos não foi eficiente para reduzir a compactação. A produtividade das culturas foi influenciada positivamente na rotação com Crotalária, enquanto os demais sistemas não diferiram da sucessão de culturas.This study had as objective to evaluate the effects of crops succession and rotation on physical properties and crops yield on an Oxisol (clayey Haplortox under no tillage system, in Rio Grande do Sul State, Brazil. The treatments included four cropping sequences, used from 1998

  2. The effects of no-tillage practice on soil physical properties ...

    African Journals Online (AJOL)

    As a result of soil agitation, the soil aggregate rate under conventional tillage cropland was generally lower than that under the no-tillage practiced cropland. The studies of no-tillage on soil temperature and on crop yield also have conflicting results because of the absence of systemically long term monitoring, and there was ...

  3. Tillage Effects on Maize Performance and Physical Properties of a ...

    African Journals Online (AJOL)

    The effects of six tillage methods on soil physical properties maize (Zea mays L.) germination, growth and yield were evaluated in field experiments during 1995 and 1996 cropping seasons. The selected treatments represented both conventional and conservation tillage practices common within the study area. The soil ...

  4. Tillage Effects on Maize Performance and Physical Properties of a ...

    African Journals Online (AJOL)

    Abstract. The effects of six tillage methods on soil physical properties maize (Zea mays L.) germination, growth and yield were evaluated in field experiments during 1995 and 1996 cropping seasons. The selected treatments represented both conventional and conservation tillage practices common within the study area.

  5. Crop Rotational Effects on Yield Formation in Current Sugar Beet Production – Results From a Farm Survey and Field Trials

    Directory of Open Access Journals (Sweden)

    Heinz-Josef Koch

    2018-03-01

    Full Text Available In Europe, the framework for sugar beet (Beta vulgaris L. production was subject to considerable changes and for the future it is expected that sugar beet cultivation might concentrate around the sugar factories for economic reasons. Based on data from a national sugar beet farmers’ survey and multi-year crop rotation trials, the effects of cropping interval (number of years in between two subsequent sugar beet crops and of preceding crops on sugar yield were elucidated under current Central European management conditions. The dominating sugar beet cropping interval was ≥4 years in the farm survey with pronounced differences between regions. However, the cropping intervals 2, 3, and ≥4 years did not affect the sugar yield. Therefore, significant differences in sugar yield between regions were assumed to be caused by multiple interactions between year, site, and farmers’ skills. Throughout Germany, the dominating preceding crops in sugar beet cultivation were winter wheat (Triticum aestivum L. and winter barley (Hordeum vulgare L.. In the field trials, the sugar yield was 5% higher after pea (Pisum sativum L. compared to maize (Zea mays L. as preceding crop, while differences between the preceding crops pea and winter wheat, and wheat and maize were not significant. Repeated measurements of canopy development and leaf color during the growing season revealed a higher N-availability after pea as preceding crop. However, decreased growth after maize was not completely compensated for by high N-fertilizer doses. Overall, the causes for the differences in sugar yield between the preceding crops remained open. The results do not support concerns about substantial yield losses in sugar beet production due to a reduction in the cropping interval from 3 to 2 years. Nevertheless, short rotations with maize and sugar beet might increase the risk of Rhizoctonia solani crown and root rot infestation. Leguminous crops such as pea offer the potential

  6. Crop Rotational Effects on Yield Formation in Current Sugar Beet Production – Results From a Farm Survey and Field Trials

    Science.gov (United States)

    Koch, Heinz-Josef; Trimpler, Kerrin; Jacobs, Anna; Stockfisch, Nicol

    2018-01-01

    In Europe, the framework for sugar beet (Beta vulgaris L.) production was subject to considerable changes and for the future it is expected that sugar beet cultivation might concentrate around the sugar factories for economic reasons. Based on data from a national sugar beet farmers’ survey and multi-year crop rotation trials, the effects of cropping interval (number of years in between two subsequent sugar beet crops) and of preceding crops on sugar yield were elucidated under current Central European management conditions. The dominating sugar beet cropping interval was ≥4 years in the farm survey with pronounced differences between regions. However, the cropping intervals 2, 3, and ≥4 years did not affect the sugar yield. Therefore, significant differences in sugar yield between regions were assumed to be caused by multiple interactions between year, site, and farmers’ skills. Throughout Germany, the dominating preceding crops in sugar beet cultivation were winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.). In the field trials, the sugar yield was 5% higher after pea (Pisum sativum L.) compared to maize (Zea mays L.) as preceding crop, while differences between the preceding crops pea and winter wheat, and wheat and maize were not significant. Repeated measurements of canopy development and leaf color during the growing season revealed a higher N-availability after pea as preceding crop. However, decreased growth after maize was not completely compensated for by high N-fertilizer doses. Overall, the causes for the differences in sugar yield between the preceding crops remained open. The results do not support concerns about substantial yield losses in sugar beet production due to a reduction in the cropping interval from 3 to 2 years. Nevertheless, short rotations with maize and sugar beet might increase the risk of Rhizoctonia solani crown and root rot infestation. Leguminous crops such as pea offer the potential for higher

  7. Zero tillage: A potential technology to improve cotton yield

    Directory of Open Access Journals (Sweden)

    Abbas Hafiz Ghazanfar

    2016-01-01

    Full Text Available Zero tillage technology revealed with no use of any soil inverting technique to grow crops. The crop plant seed is planted in the soil directly after irrigation to make the soil soft without any replenishing in soil layers. A study was conducted to evaluate cotton genotypes FH-114 and FH-142 for the consecutive three years of growing seasons from 2013-15. The seed of both genotypes was sown with two date of sowing, 1 March and 1 May of each three years of sowing under three tillage treatments (zero tillage, minimum tillage and conventional tillage in triplicate completely randomized split-split plot design. It was found from results that significant differences were recorded for tillage treatments, date of sowing, genotypes and their interactions. Multivariate analysis was performed to evaluate the yield and it attributed traits for potential of FH-114 and FH-142 cotton genotypes. The genotype FH-142 was found with higher and batter performance as compared to FH-114 under zero tillage, minimum tillage and conventional tillage techniques. The traits bolls per plant, boll weight, fibre fineness, fibre strength, plant height, cotton yield per plant and sympodial branches per plant were found as most contributing traits towards cotton yield and production. It was also found that FH-142 gives higher output in terms of economic gain under zero tillage with 54% increase as compared to conventional tillage technique. It was suggested that zero tillage technology should be adopted to improve cotton yield and quality. It was also recommended that further study to evaluate zero tillage as potential technology should be performed with different regions, climate and timing throughout the world.

  8. Sanitary state and yielding of spring barley as dependent on soil tillage method

    Directory of Open Access Journals (Sweden)

    Tomasz P. Kurowski

    2012-12-01

    Full Text Available The effects of traditional tillage cultivation (control treatment, no tillage (instead of tillage the soil was loosened with scruff, and direct sowing (with a special drill into unploughed soil on the health of spring barley cultivar. Klimek were compared in three-field crop rotation (field bean, winter wheat, spring barley in an experiment performed in the years 1997-1999 on the soil of a good wheat complex. The results of phytopathological observations carried out over the vegetation season are presented in the form of an injury index. The following diseases were recorded on spring barley: net blotch (Drechslera teres - net type and spot type, powdery mildew (Blumeria graminis, leaf blotch (Rhynchosporium secalis, eyespot (Tapesia yallundae and foot rot (fungal complex. Tillage system had no a significant influence on the occurrence of both types of net blotch. The intensity of powdery mildew and leaf blotch was the highest in the case of traditional tillage cultivation, and the lowest - in that of no tillage. Direct sowing was conductive to the development of eyespot, and no tillage - to foot rot. Fungi of the genus Fusarium, mainly F. culmorum, and the species Bipolaris sorokiniana, were isolated most frequently from infested stem bases. The weather conditions differed during spring barley grown in the three years analyzed. Mean air temperature in 1997 and 1998 was similar to the many-year average for the city of Olsztyn and its surroundings (13.8°C. In the vegetation season 1999 mean air temperature reached 14.6°C, and was considerably higher than the many-year average. Taking into account total precipitation and distribution in the three-year experimental cycle, 1997 and 1998 can be considered average, and 1999 - wet.The weather conditions had a significant effect on the intensity of all diseases observed on spring barley. The highest yield grain was obtained in the case of traditional tillage cultivation (on average 3.06 t·ha-1 for the

  9. Soil Labile Organic Matter under Long-term Crop Rotation System

    Science.gov (United States)

    Saljnikov, E.

    2009-04-01

    Temperate grassland soils, typically Mollisols, have remained agriculturally productive with limited inputs for many years, despite the mining of energy and nutrients reserves contained within the soil organic fraction (Janzen, 1987; Tiessen et al., 1994). Such system can be considered resilient, at least initially, but one must question for how long such systems can be sustained. Effect of long-term land-use on biologically active fractions of soil organic matter is not well understood. Investigations were conducted in more than 40-year static experiments in northern Kazakhstan. We examined five fallow-wheat (Triticum aestivum L.) cropping systems with different frequencies of the fallow phase: continuous wheat (CW), 6-y rotation (6R), 4-y rotation (4R), 2-y rotation (2R) and continuous fallow (CF). A unique sample from nationally protected virgin steppe near the experimental field was sampled for comparison with long-term cultivated soils. Soil samples were collected from the two phases of each rotation, pre- and post-fallow, and analyzed for biological soil properties that are potentially mineralizable C (PMC), potentially mineralizable N (PMN), microbial biomass C (MBC) and N (MBN) and "light fraction" C (LFC) and N (LFN). Potentially mineralizable C was inversely proportional to the frequency of fallow and was highest in CW. Potentially mineralizable N was more responsive to rotation phase than other indices of SOM. Light fraction OM was negatively correlated to the frequency of fallow and was higher in pre-fallow than in post-fallow phases. All studied biological characteristics were drastically greater in the soil from the natural steppe. The results suggested that the yearly input of plant residues in a less frequently fallowed system built up more PMC, whereas PMN was closely correlated to recent inputs of substrate added as plant residue. We concluded that a frequent fallowing for long period may deplete SOM via accelerated mineralization. The results may

  10. Influence of Conservation Tillage and Soil Water Content on Crop Yield in Dryland Compacted Alfisol of Central Chile Influencia de la Labranza de Conservación y el Contenido de Agua sobre el Rendimiento del Cultivo en un Alfisol compactado del Secano Central de Chile

    Directory of Open Access Journals (Sweden)

    Ingrid Martinez G

    2011-12-01

    Full Text Available Chilean dryland areas of the Mediterranean climate region are characterized by highly degraded and compacted soils, which require the use of conservation tillage systems to mitigate water erosion as well as to improve soil water storage. An oat (Avena sativa L. cv. Supernova-INIA - wheat (Triticum aestivum L. cv. Pandora-INIA crop rotation was established under the following conservation systems: no tillage (Nt, Nt + contour plowing (Nt+Cp, Nt + barrier hedge (Nt+Bh, and Nt + subsoiling (Nt+Sb, compared to conventional tillage (Ct to evaluate their influence on soil water content (SWC in the profile (10 to 110 cm depth, the soil compaction and their interaction with the crop yield. Experimental plots were established in 2007 and lasted 3 yr till 2009 in a compacted Alfisol. At the end of the growing seasons, SWC was reduced by 44 to 51% in conservation tillage systems and 60% in Ct. Soil water content had a significant (p En Chile, las zonas de clima mediterráneo se caracterizan por suelos altamente degradados y compactados por erosión, lo que requiere el uso de sistemas de labranza conservacionista para mitigar la erosión hídrica, así como incrementar el contenido de agua en el suelo. Se evaluó una rotación avena (Avena sativa L. cv. Supernova-INIA - trigo (Triticum aestivum L. cv. Pandora-INIA establecida bajo los siguientes sistemas conservacionistas: cero labranza (Nt, Nt + curvas de nivel (Nt+Cp, Nt + franjas vivas (Nt+Bh y Nt + subsolado (Nt+Sb, las que fueron comparadas al sistema de labranza convencional (Ct, para evaluar su influencia en el contenido de agua en el suelo (SWC en el perfil (10 a 110 cm profundidad, la compactación del suelo y su interacción con el rendimiento del cultivo. Las parcelas experimentales fueron establecidas 3 años seguidos (2007 al 2009 en un Alfisol compactado. Al final de la temporada, el SWC disminuyó 44 a 51% en los sistemas conservacionistas y 60% en el sistema convencional. El sistema de

  11. Pesticide Interactions with N source and Tillage: Effects on soil biota and ecosystem services

    DEFF Research Database (Denmark)

    Jensen, John; Petersen, Søren O; Elsgaard, Lars

    Pesticide effects on soil biota must be interpreted in the context of the specific management practice, including rotation, fertilization, tillage, and pest control. Tillage, foe example, has been shown to reduce earthworm populations by up to 80%, depending on timing and specific tillage techniq...

  12. Strip Tillage and Early-Season Broadleaf Weed Control in Seeded Onion (Allium cepa)

    OpenAIRE

    Sarah Gegner-Kazmierczak; Harlene Hatterman-Valenti

    2016-01-01

    Field experiments were conducted in 2007 and 2008 near Oakes, North Dakota (ND), USA, to evaluate if strip tillage could be incorporated into a production system of seeded onion (Allium cepa) to eliminate the standard use of a barley (Hordeum vulgare) companion crop with conventional, full width tillage, yet support common early-season weed control programs. A split-factor design was used with tillage (conventional and strip tillage) as the main plot and herbicide treatments (bromoxynil, DCPA...

  13. Effects of agricultural tillage practise on green house gas balance of an arable soil in a long term field experiment

    Science.gov (United States)

    Munch, Jean Charles; Schilling, Rolf; Ruth, Bernhard; Fuss, Roland

    2010-05-01

    Soils are an important part of the global carbon cycle. A large proportion of global carbon dioxide (CO2) emissions is released from soils, though carbon sequestration occurs. Nitrous oxide (N2O) emissions of soils are also believed to contribute significantly to the green house effect as well as the stratospheric ozone depletion. An important source of N2O emissions is denitrification of nitrate from nitrogen fertilized soils. Although it is desirable to minimize these emissions while maintaining high crop yields it is still poorly understood how green house gas emissions may be steered by agricultural management practise, i.e. tillage and fertilization systems . In an ongoing long term field experiment at the research farm Scheyern, Bavaria, a arable field with one homogenous soil formation was transformed into plots in a randomized design 14 years ago. Since then, they are managed using conventional tillage (CT) and no tillage (NT) as well as low and high fertilization. A conventional crop rotation is maintained on the field. Starting 2007, CO2 and N2O emissions were monitored continuously for 2.5 years. Furthermore water content, temperature and redox potential were measured in-situ as they are major factors on microbial activity and denitrification. Soil was sampled from the Ap horizons of the plots about twice a month and extracts from these soil samples were analyzed for dissolved organic carbon (DOC), ammonium, nitrate/nitrite, and dissolved organic nitrogen (DON). According to the results soil density and hydrology are clearly affected by tillage practise. DOC is more affected by tillage while concentration of nitrogen species is controlled mainly by fertilization. There are distinct differences in redox potential between CT and NT plots with CT plots having more anaerobic periods. CO2 and N2O emissions exhibit a clear seasonal pattern and are affected by both tillage system and fertilization

  14. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.)

    Science.gov (United States)

    Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012–2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality. PMID:27258145

  15. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.).

    Science.gov (United States)

    Yang, Ruiping; Mo, Yanling; Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012-2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality.

  16. Precise tillage systems for enhanced non-chemical weed management

    NARCIS (Netherlands)

    Kurstjens, D.A.G.

    2007-01-01

    Soil and residue manipulation can assist weed management by killing weeds mechanically, interfering in weed lifecycles, facilitating operations and enhancing crop establishment and growth. Current tillage systems often compromise these functions, resulting in heavy reliance on herbicides,

  17. Effect of zone and crops rotation on Ischaemum rugosum and resistance to bispyribac-sodium in Ariari, Colombia

    OpenAIRE

    Plaza, G.; Hernández, F.A.

    2014-01-01

    The objectives of this research were to evaluate (1) weed species presented in rice fields in relation to the geographical zone and crop rotation and (2) the resistance level of Ischaemum rugosum to the herbicide bispyribac-sodium. For the first objective, were sampled 79 commercial fields of rice to establish weed density, coverage, and rotation system in the evaluated fields with record of bispyribac-sodium application of at least five years. To reach the second objective, the seeds were co...

  18. Water Quality Changes in a Short-Rotation Woody Crop Riparian Buffer

    Science.gov (United States)

    Rosa, D.; Clausen, J.; Kuzovkina, J.

    2016-12-01

    Converting riparian buffers in agricultural areas from annual row crops to short rotation woody crops (SRWCs) grown for biofuel can provide both water quality benefits and a financial incentive for buffer adoption among agricultural producers. A randomized complete block design was used to determine water quality changes resulting from converting plots previously cultivated in corn to SRWC willow (Salix. spp) adjacent to a stream in Storrs, CT. Both overland flow and ground water samples were analyzed for total nitrogen (TN), nitrate + nitrite (NO2+NO3-N), and total phosphorus (TP). Overland flow was also analyzed for suspended solids concentration (SSC). Lower (p = 0.05) concentrations of TN (56%) and TP (61%) were observed in post-coppice surface runoff from willow plots than from corn plots. Shallow ground water concentrations at the edge of willow plots were lower in TN (56%) and NO3+NO2-N (64%), but 35% higher in TP, than at the edge of corn plots. SSC was also lower (72%) in overland flow associated with willow compared to corn. The treatment had no effect on discharge or mass export. These results suggest conversion from corn to a SRWC in a riparian area can provide water quality benefits similar to those observed in restored and established buffers.

  19. Modeling poplar growth as a short rotation woody crop for biofuels in the Pacific Northwest

    International Nuclear Information System (INIS)

    Hart, Q.J.; Tittmann, P.W.; Bandaru, V.; Jenkins, B.M.

    2015-01-01

    Predicting the economic viability and environmental sustainability of a biofuels industry based on intensively cultivated short rotation woody crops (SRWC) requires spatial predictions of growth and yield under various environmental conditions and across large regions. The Physiological Principles in Predicting Growth (3PG) model was modified to evaluate the growth and yield of coppiced poplar (Populus spp). This included an additional biomass partitioning method and developing a sub-model which takes into account the impact of coppicing on post harvest regeneration, extending the applicability of the 3PG model to coppice management regimes. The parameterized model was applied to the entire Pacific Northwest of the United States, using appropriate climate and soil input data. Results predict the yield of poplar cultivation at a spatial resolution of ≈64 km 2 throughout the ≈8,000,000 km 2 of the study region. Existing agricultural cultivation patterns were used to estimate regional water availability for irrigation, and for non-irrigated regions, land cover features including ownership, slope, soil salinity and water table depth where used to select areas with a real potential to support a SRWC plantation. Results can be integrated with other models that allow for optimizing crop selection and biorefinery site selection. Important results include; an updated 3PG model for coppiced SRWC plantings, estimates of biomass feedstock yields under different irrigation patterns and weather conditions, and estimates for feedstock availability when combined with crop adoption scenarios. - Highlights: • A poplar growth model was applied to the Pacific Northwest of the US. • We included a coppicing module to the exsiting 3PG growth model. • We investigated growth under irrigated and non-irrigated conditions. • We developed Geospatial yield estimates. • We discuss changes in yield from climate change

  20. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  1. Mecanismos de abertura do sulco e adubação nitrogenada no cultivo do feijoeiro em sistema plantio direto Furrows opening mechanism for nitrogen fertilizer application in common bean crop under no-tillage

    Directory of Open Access Journals (Sweden)

    Orivaldo Arf

    2008-01-01

    Full Text Available Algumas culturas têm pouca adaptação ao sistema plantio direto, em vista da maior compactação da camada superficial do solo e, nesse caso, o mecanismo utilizado na semeadora para a abertura dos sulcos para deposição do fertilizante pode ter grande importância no sentido de facilitar a penetração das raízes. Este experimento foi desenvolvido em Selvíria (MS, com o objetivo de avaliar a produtividade do feijão de inverno cultivado em sistema plantio direto, em função da utilização de mecanismos de abertura para distribuição de fertilizantes na semeadura e da adubação nitrogenada em cobertura. O delineamento experimental utilizado foi em blocos casualizados, utilizando-se esquema fatorial 2 x 6, constituído por mecanismos de distribuição de fertilizante (haste escarificadora e disco duplo e doses de N em cobertura (0, 25, 50, 75, 100 e 125 kg ha-1, com quatro repetições. Recomenda-se o uso da haste escarificadora como mecanismo de distribuição do fertilizante, para o cultivo do feijoeiro de inverno. A adubação nitrogenada em cobertura proporciona incrementos à produtividade do feijoeiro de inverno.Some crops have shown no adaptation to no-tillage system as a function of compaction soil superficial layer. In way, the mechanism used in seeder to open furrows for deposition of fertilizer can have great importance to facilitate the penetration of roots. This experiment was carried in Selvíria (MS, with the objective to evaluate the winter common bean crop yield under no-tillage system, as function of fertilizer distribution opening mechanisms in sowing (chisel and coulter blade and sidedressing nitrogen application (0, 25, 50, 75, 100 and 125 kg ha-1. The experimental design was a randomized block, arranged in a 2 x 6 factorial scheme, constituted by fertilizer distribution opening mechanisms in sowing (chisel and coulter blade and sidedressing nitrogen doses (0, 25, 50, 75, 100 and 125 kg ha-1, with four replications

  2. Impact of crop rotation and soil amendments on long-term no-tilled soybean yields

    Science.gov (United States)

    Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...

  3. Measuring and partitioning soil respiration in sharkey shrink-swell clays under plantation grown short-rotation woody crops

    Science.gov (United States)

    Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway Dillaway; Theodor D. Leininger

    2015-01-01

    The Lower Mississippi Alluvial Valley (LMAV) offers an ecological niche for short-rotation woody crop (SRWC) production by mating marginal agricultural land with optimal growing conditions. Approximately 1.7 million ha within the LMAV consist of Sharkey shrink-swell clays. They are considered marginal in terms of traditional agricultural productivity due to their...

  4. Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability

    Science.gov (United States)

    Felipe G. Sanchez; Mark Coleman; Charles T. Garten; Robert J. Luxmoore; John A. Stanturf; Carl Trettin; Stan D. Wullschleger

    2007-01-01

    Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was...

  5. [Effects of different multiple cropping systems on paddy field weed community under long term paddy-upland rotation].

    Science.gov (United States)

    Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin

    2013-09-01

    Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.

  6. Infiltration capacity and macroporosity of a silty-loamy soil under different tillage systems

    Science.gov (United States)

    Wahl, N. A.; Buczko, U.; Bens, O.; Hüttl, R. F.

    2003-04-01

    For soils under both agricultural and forest use, management and tillage practice have significant influence on different hydraulic properties. Under agricultural land use, the properties of the macropore system are, amongst others, a function of the applied management and tillage system (i.e. conventional vs. conservation tillage). Macropores are crucial to rapid infiltration of surface water and aeration of the soil. Low macroporosity will give rise to higher surface flow rates especially on sloping areas, thus enhancing the risk for higher erosion. Investigations were carried out near the town of Adenstedt (52^o00', 9^o56'), app. 50 km S of Hannover in Lower Saxony. The predominant soil in the study area is an eroded orthic Luvisol from glacial deposits with a predominant silty-loamy texture. The experimental site with two crop rotations has been run with two different tillage systems (e.g. conventional and conservative tillage) since 1990. In this study, the minimum radius of a macropore is set to r = 0.5 cm. Dye tracer experiments were performed with methylene blue that was sprayed on a confined irrigation plot. Staining patterns were recorded two hours later at defined depth increments and results of stained and unstained areas were manually digitized and processed with an appropriate GIS-software. Tension infiltrometer experiments were performed simultaneously with the dye tracer experiments using a tension infiltrometer (hood infiltrometer) at different hydraulic supply potentials and soils depths. Dye tracer experiments with methylene blue indicate a penetration depth of 120 cm on the reduced tilled plot as compared to the conventionally tilled plot (60 cm). Both tillage systems exhibit the highest density of macropores in the topsoil, ranging between 100 and 1.000 macropores per square meter. The conventionally tilled plot exhibits a higher number of macropores in the upper 20 cm than the reduced tilled plot while at greater soil depth, this holds true

  7. Nitrate leaching and residual effect in dairy crop rotations with grass-clover leys as influenced by sward age, grazing, cutting and fertilizer regimes

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Askegaard, Margrethe; Rasmussen, Jim

    2015-01-01

    Intensive dairy farming, with grass-arable crop rotations is challenged by low N use efficiency that may have adverse environmental consequences. We investigated nitrate leaching and N fertility effects of grass–clover leys for five years in two organic crop rotations with different grassland...

  8. Predacion de semillas de Amaranthus quitensis H.B.K. en un cultivo de soja: influencia del sistema de siembra Predation of Amaranthus quitensis H.B.K. seeds in soybean crops: influence of the tillage system

    Directory of Open Access Journals (Sweden)

    Luisa Nisensohn

    1999-03-01

    Full Text Available El objetivo fue evaluar las pérdidas del banco superficial de semillas de Amaranthus quitensis H.B.K. (yuyo colorado debidas a la predación por insectos en un cultivo de soja y en el barbecho posterior, en dos sistemas de laboreo. Los experimentos se realizaron durante las campañas 94/95 y 95/96. Para calcular la tasa de predación se emplearon bandejas cubiertas con tejido para evitar el ingreso de roedores y con tela de tul en los tratamientos testigos; en cada una se sembraron 100 semillas de la maleza y cada 15 días se registró el número de semillas remanentes. Para determinar los insectos presentes y su abundancia se emplearon trampas "pitfall". Entre los insectos capturados se encontró el carábido Notiobia cupripennis, su mayor abundancia se registró en marzo (4,5 y 5,8 insectos/trampa en convencional y 2,7 y 3,3 insectos/trampa en siembra directa, coincidiendo con las tasas de predación más altas (5,6% y 8% en convencional y 2,7% y 3,8% en siembra directa; tanto en abundancia como en predación se observaron diferencias significativas entre ambos sistemas. A partir de este mes, las diferencias no fueron significativas, el número de insectos y la tasa de predación disminuyeron. En ambos años existió una correlación positiva entre estas variables.The objective was to evaluate the losses of the superficial bank of Amaranthus quitensis seeds, due to insect predation, in a soybean crop and in the subsequent fallow, in two tillage systems. Experiments were conducted during 1994/95 and 1995/96. To estimate predation rates, trays covered with wire meshes to prevent rodent predation, and with fine sheer net (tulle in the control treatment were used; 100 weed seeds were sown in each tray, and the number of remaining seeds was registered every 15 days. Pitfall traps were used to identify insects species occurring in the field and to estimate their abundance. The carabid Notiobia cupripennis was captured in pitfall traps, the higher

  9. Adubação nitrogenada no feijoeiro em sistema de semeadura direta e preparo convencional do solo = Nitrogen fertilization in common bean crops under no-tillage and conventional systems

    Directory of Open Access Journals (Sweden)

    Francisco Guilhien Gomes Junior

    2008-12-01

    . The experiment was conducted over two years (2002 and 2003 in no-tillage onmillet crop residues and conventional plow system. It was concluded that N fertilizer at the V4 stadium of common bean promotes similar seed yields in no-tillage and conventional systems. Yield differences between no-tillage and conventional systems are inconsistent inthe same agricultural area.

  10. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    OpenAIRE

    D. Jug; Mihaela Blažinkov; S. Redžepović; Irena Jug; B. Stipešević

    2005-01-01

    The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth), together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage). Accordingly, the main goal of this resear...

  11. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    Science.gov (United States)

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system to C-R, R-R and B-R rotation patterns had good effect in terms of improving total yield and economic benefits, and soil

  12. Impacts of projected climate change on productivity and nitrogen leaching of crop rotations in arable and pig farming systems in Denmark

    DEFF Research Database (Denmark)

    Doltra, Jordi; Lægdsmand, Mette; Olesen, Jørgen E

    2014-01-01

    with and without catch crops, with field operation dates adapted to baseline and future climate change. Model projections showed an increase in the productivity and N leaching in the future that would be dependent on crop rotation and crop management, highlighting the importance of considering the whole rotation...... efficient strategies are required in the future. The uncertainty of climate change scenarios was assessed by using two different climate projections for predicting crop productivity and N leaching in Danish crop rotations, and this showed the consistency of the projected trends when used with the same crop......The effects of projected changes in climate and atmospheric CO2 concentration on productivity and nitrogen (N) leaching of characteristic arable and pig farming rotations in Denmark were investigated with the FASSET simulation model. The LARS weather generator was used to provide climatic data...

  13. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    Directory of Open Access Journals (Sweden)

    D. Jug

    2005-12-01

    Full Text Available The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth, together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage. Accordingly, the main goal of this research was to determine effects of conventional and reduced soil tillage systems on yield components and nodulation ability of nitrogen fixing bacteria in soybean crop. The research was established at chernozem soil type of northern Baranja as monofactorial completely randomized block design in four repetitions. The soil tillage variants were as follows: CT Conventional Tillage (primary soil tillage by moldboard ploughing at 25-30 cm depth, DH Multiple Diskharrowing at 10-15 cm as primary tillage, and NT No-tillage system. Results show significantly lower plant density, mass of 1000 grains and grain yield at variants with reduced soil tillage in both investigation years. However, reduced tillage systems had positive trend on nitrogen-fixing bacteria nodulation, since the highest values of number and mass of nodules per plant were recorded. This research was run during the years 2002 and 2003, the last one extremely droughty, thus it requires continuation.

  14. Tillage and residue burning affects weed populations and seed banks.

    Science.gov (United States)

    Narwal, S; Sindel, B M; Jessop, R S

    2006-01-01

    An integrated weed management approach requires alternative management practices to herbicide use such as tillage, crop rotations and cultural controls to reduce soil weed seed banks. The objective of this study was to examine the value of different tillage practices and stubble burning to exhaust the seed bank of common weeds from the northern grain region of Australia. Five tillage and burning treatments were incorporated in a field experiment, at Armidale (30 degrees 30'S, 151 degrees 40'E), New South Wales, Australia in July 2004 in a randomized block design replicated four times. The trial was continued and treatments repeated in July 2005 with all the mature plants from the first year being allowed to shed seed in their respective treatment plots. The treatments were (i) no tillage (NT), (ii) chisel ploughing (CP), (iii) mould board ploughing (MBP), (iv) wheat straw burning with no tillage (SBNT) and (v) wheat straw burning with chisel ploughing (SBC). Soil samples were collected before applying treatments and before the weeds flowered to establish the seed bank status of the various weeds in the soil. Wheat was sown after the tillage treatments. Burning treatments were only initiated in the second year, one month prior to tillage treatments. The major weeds present in the seed bank before initiating the trial were Polygonum aviculare, Sonchus oleraceus and Avena fatua. Tillage promoted the germination of other weeds like Hibiscus trionum, Medicago sativa, Vicia sp. and Phalaris paradoxa later in the season in 2004 and Convolvulus erubescens emerged as a new weed in 2005. The MBP treatment in 2004 reduced the weed biomass to a significantly lower level of 55 g/m2 than the other treatments of CP (118 g/m2) and NT plots (196 g/m2) (P < 0.05). However, in 2005 SBC and MBP treatments were similar in reducing the weed biomass. In 2004, the grain yield trend of wheat was significantly different between CP and NT, and MBP and NT (P < 0.05) with maximum yield of 5898

  15. Tillage and planting date effects on weed dormancy, emergence, and early growth in organic corn

    Science.gov (United States)

    Weed management is a major constraint to adoption of reduced-tillage practices for organic grain production. Tillage, cover crop management, and crop planting date are all factors that influence the periodicity and growth potential of important weed species in these systems. Therefore, we assessed...

  16. Sustainable semiarid dryland production in relation to tillage effects on Hydrology: 1983-2013

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch tillage, SM, as a result of improved soil conditions or water conservation, but knowledge of long-term tillage effects on the comprehensive field hydrology and sustained crop production is needed. ...

  17. A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity

    NARCIS (Netherlands)

    Vanlauwe, B.; Wendt, J.; Giller, K.E.; Corbeels, M.; Gerard, B.; Nolte, C.

    2014-01-01

    Intensification of agricultural systems in sub-Saharan Africa (SSA) is considered a pre-condition for alleviation of rural poverty. Conservation Agriculture (CA) has been promoted to achieve this goal, based on three principles: minimum tillage, soil surface cover, and diversified crop rotations. CA

  18. Adubação nitrogenada no feijoeiro cultivado sob plantio direto em sucessão de culturas Nitrogen fertilization of common bean grown under no-tillage system after several cover crops

    Directory of Open Access Journals (Sweden)

    Pedro Marques da Silveira

    2005-04-01

    Full Text Available O nitrogênio é um nutriente essencial ao feijoeiro e sua carência é observada em quase todos os solos. O objetivo deste trabalho foi avaliar a resposta do feijoeiro irrigado por aspersão à adubação nitrogenada em cobertura, num Latossolo Vermelho distrófico. O cultivo foi realizado em sistema pivô central, em condições de plantio direto com sucessão de diferentes culturas. Os tratamentos constituíram-se de sete culturas: braquiária cv. Marandu, milho em consórcio com braquiária, guandu, milheto, mombaça, sorgo granífero e estilosantes cv. Mineirão. Sobre as palhadas picadas das culturas, foi semeado o feijão cv. Pérola e aplicados em cobertura 0, 30, 60 e 120 kg ha-1 de N (uréia. Houve efeito das palhadas sobre a produtividade de grãos e as maiores produtividades alcançadas foram sobre as palhadas de milheto e do guandu. O feijoeiro responde à aplicação de N em cobertura em todas as sucessões, com resposta quadrática sobre o milheto e o guandu, e linear nas demais.Nitrogen is an essential nutrient to common bean and its shortage is observed in almost all types of soils. The objective of this work was to evaluate the performance of irrigated common bean grown under no-tillage in succession to different cover crops and in relation to nitrogen topdressing fertilization in a Dystrophic Red Latosol (Typic Hapludox. The treatments were seven cover crops: Brachiaria brizantha cv. Marandu, B. brizantha associated with corn (Zea mays L., pigeon pea (Cajanus cajan L. Millisp, millet (Pennisetum glaucum L. R. Br., Panicum maximum cv. Mombaça, sorghum (Sorghum bicolor L. Moench and Stylosanthes guianensis cv. Mineirão. The bean crop (cv. Perola was seeded on the cover crop and 0, 30, 60, and 120 kg ha-1 of N (urea were topdressed. The cover crops affected the common bean grain yield. The highest grain yields were attained on millet and pigeon pea mulches. The common bean grain yield showed response to nitrogen topdressing

  19. [Effects of rotations and different green manure utilizations on crop yield and soil fertility].

    Science.gov (United States)

    Yao, Zhi-yuan; Wang, Zheng; Li, Jing; Yu, Chang-wei; Cao, Qun-hu; Cao, Wei-dong; Gao, Ya-jun

    2015-08-01

    A 4-year field experiment was conducted to investigate the influence of three rotation systems and three corresponding leguminous green manure (LGM) application methods on wheat yield and soil properties. The rotation patterns were summer fallow--winter wheat (SW), LGM-- winter wheat (LW) and LGM--spring maize--winter wheat (LMW). The three LGM application methods of LW included: early mulch, early incorporation and late incorporation while the three LGM application methods of LMW were: stalk mulch, stalk incorporation and stalk move-away. The results indicated that for LW, LGM consumed more soil water, thus the wheat yield was not stable. The nitrate storage in 0-200 cm soil after wheat harvest was significantly higher than that of the others, indicating an increasing risk of nitrate leaching. Early mulch under LW had the highest soil organic carbon (SOC) content and storage of SOC (SSOC) in 0-20 cm soil. For LMW, wheat yield was comparatively stable among years, because of higher water storage before wheat seeding, and the nitrate storage in 0-200 cm soil after wheat harvest was significantly lower than LW, which decreased the risk of nitrate leaching. Stalk mulch had higher SOC content in 0-20 cm soil after wheat harvest compared with move-away. In addition, compared with the soil when the experiment started, stalk much also increased SSOC in 0-20 cm soil. In conclusion, LMW with stalk mulch could increase soil water storage, stabilize crop yield, improve soil fertility and decrease 0-200 cm soil nitrate storage. This system could be treated as a good alternative for areas with similar climate.

  20. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now

    Energy Technology Data Exchange (ETDEWEB)

    Dickmann, Donald I. [Department of Forestry, Michigan State University, East Lansing, MI 48824-1222 (United States)

    2006-08-15

    Although its roots are in antiquity, the current concept of short-rotation woody crops (SRWC) for fiber and energy evolved scientifically from pioneering tree breeding work begun in the early 20th century. A natural outgrowth of this work was the culture of fast-growing trees on rotations of 1-15 years. Close-spaced tree culture received further impetus with the introduction of the 'silage sycamore' concept in the southeastern US in the mid-1960s and the OPEC oil embargo in 1973, leading to statistically designed trials at numerous locations in North America, Europe, and Scandinavia. Early silvicultural research focused on spacing and species trials, propagation methods, site preparation, weed management, nutrition, growth, and yield. Because these trials were based on small plots, and the importance of pest depredations or site variation were not fully recognized, early biomass yield predictions tended to be overly optimistic. Soon physiologists and ecologists began to unravel the biological characteristics of SRWC plantations and their responses to environment. Knowledge of the influence and diversity of pests-insects, diseases, and animals-provided a necessary reality check. Many hardwood tree species and a few conifers have been evaluated over the years for SRWC in temperate regions of the world. Clones of Populus and Salix, however, became the dominant plantation material because of their inherently rapid growth and ease of propagation by hardwood cuttings. Among conifers, loblolly pine (Pinus taeda) also shows promise. Because genetic variation is readily exploitable in the dominant SRWC taxa, strongly focused breeding programs began to provide highly productive genotypes and seed sources in the last decades of the 20th century. A new plateau, with significant practical potential, was reached in the late 20th century when biotechnological methods were applied to tree taxa. Recently, the DNA in the Populus genome was sequenced. Thus, the few current

  1. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    Science.gov (United States)

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  2. Upland rice yield as affected by previous summer crop rotation (soybean or upland rice and glyphosate management on cover crops Produtividade do arroz de terras altas afetada pela rotação de cultura e pelo manejo de glifosato nas plantas de cobertura do solo

    Directory of Open Access Journals (Sweden)

    A.S Nascente

    2013-03-01

    Full Text Available The appropriate chemical management of cover crops in no-tillage aims to obtain greater benefits with its employment in agricultural systems. The objective of this study was to assess upland rice yield as affected by the previous summer crop, species and desiccation timing of cover crops by glyphosate. Sown cover crops were sown (November 2007, followed by rice in half of the experimental area and soybean in the other half (November 2008. After the harvesting of these crops, the same cover crops were sown again (March 2009 and followed by upland rice in the total area (November 2009. The experiment consisted of the combination of five cover crops (fallow, Panicum maximum, Brachiaria ruziziensis, B. brizantha and Pennisetum glaucum, four desiccation timings (30, 20, 10 and 0 days before rice sowing, and two antecedents of the summer crop (rice or soybean under no-tillage system (NTS, plus two control treatments at conventional tillage system (CTS. Cover crops significantly affect rice grain yield and its components. There is a significant tendency to highest yield when cover crop desiccation is conducted farther from the rice sowing date (from 2,577.1 kg ha-1 - desiccation at rice sowing to 3,115.30 kg ha-1 - desiccation 30 days before rice sowing. Soybean as an antecedent of summer crop allows better upland rice yield (3,754 kg ha-1 than rice as an antecedent of summer crop (2,635 kg ha-1; fallow/soybean/fallow (4,507 kg ha-1 and millet/soybean/millet (4,765 kg ha-1 rotation at no-tillage system, and incorporated fallow /soybean/ incorporated fallow (4,427 kg ha-1 at conventional tillage system allow the highest rice yield; upland rice yield is similar at no-till (3,194 kg ha-1 and till system (2,878 kg ha-1.O correto manejo químico das plantas de cobertura visa obter maiores benefícios com a sua introdução nos sistemas agrícolas. O objetivo deste estudo foi avaliar como a produção do arroz de terras altas é afetada pela safra de ver

  3. The Impact of Volunteer Corn on Crop Yields and Insect Resistance Management Strategies

    Directory of Open Access Journals (Sweden)

    Paul T. Marquardt

    2013-06-01

    Full Text Available Volunteer corn (VC has reemerged as a problematic weed in corn/soybean rotational cropping systems. This reemergence and increasing prevalence of volunteer corn has been correlated to an increased adoption of herbicide-resistant (HR corn hybrids and the adoption of conservation tillage. Since the introduction of HR crops, control options, weed/crop competition, and other concerns (i.e., insect resistance management of Bt traits have increased the amount of attention that volunteer corn is receiving. The objective of this review is to discuss what is known about VC prior to and after the introduction of HR crops, and to discuss new information about this important weed.

  4. Stem Weight Ratios of Siberian Elm (Ulmus Pumila L.) Grown as a Short Rotation Crop

    Energy Technology Data Exchange (ETDEWEB)

    Iriarte, Leyre; Fernandez, Jesus [Univ. Politecnica de Madrid (Spain). Dept. de Produccion Vegetal

    2006-07-15

    Siberian elm (Ulmus pumila L.) is a fast growing tree which has not been studied extensively for short rotation crop (SRC) purposes. Seedlings were planted in Madrid (Spain) in the year 2000 at a density of 1 plant/m{sup 2}. Trials were carried out in order to evaluate the biomass production in high-density plantations. The plantation was cut after the fourth growing season and evaluated for height, diameter, and dry weight. The same measurements were repeated for the sprouts of the 1st and 2nd year that followed. The mean biomass yield after 4 years was 101.6 g dw/m{sup 2} year-1; 269 g dw /m{sup 2} for 1-year-old sprouts and 480.4 g dw /m{sup 2} for 2-year-old sprouts. Correlations between height and basal diameter with dry weight were calculated for each year. There was a close correlation between the 4th year original plant weight and the 1-year-old sprouts but less than with the 2nd year. Water efficiency for biomass production was higher during the 2nd sprouting cycle.

  5. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    Science.gov (United States)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  6. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  7. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    King, Alison E.; Hofmockel, Kirsten S.

    2017-03-01

    Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesized that the interaction of crop rotation, N source, and tillage in diversified cropping systems would promote microbially-mediated soil C and N cycling while attenuating inorganic N pools. We studied a cropping systems trial in its 10th year in Iowa, USA, which tested a 2-yr cropping system of corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] managed with conventional fertilizer N inputs and conservation tillage, a 3-yr cropping system of corn/soybean/small grain + red clover (Trifolium pratense L.), and a 4-yr cropping system of corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa. Three year and 4-yr cropping systems were managed with composted manure, reduced N fertilizer inputs, and periodic moldboard ploughing. We assayed soil microbial biomass carbon (MBC) and N (MBN), soil extractable NH4 and NO3, gross proteolytic activity of native soil, and potential activity of six hydrolytic enzymes eight times during the growing season. At the 0-20cm depth, native protease activity in the 4-yr cropping system was greater than in the 2-yr cropping system by a factor of 7.9, whereas dissolved inorganic N pools did not differ between cropping systems (P = 0.292). At the 0-20cm depth, MBC and MBN the 4-yr cropping system exceeded those in the 2-yr cropping system by factors of 1.51 and 1.57. Our findings suggest that diversified crop cropping systems, even when periodically moldboard ploughed, support higher levels of microbial biomass, greater production of bioavailable N from SOM, and a deeper microbially active layer than less diverse cropping systems.

  8. INFLUENCE OF CROP SEQUENCES ON AGRONOMIC CHARACTERISTICS OF CORN (Zea mays L. UNDER NO-TILLAGE INFLUÊNCIA DE SUCESSÃO DE CULTURAS SOBRE CARACTERÍSTICAS AGRONÔMICAS DO MILHO (Zea mays L. EM PLANTIO DIRETO

    Directory of Open Access Journals (Sweden)

    Liovando Marciano da Costa

    2007-09-01

    Full Text Available

    Evoluated agronomic characteristics of corn in six crop sequences (corn-corn, soybean-corn, sunflower-corn, pearl milletcorn, sorghum-corn and pigeon pea-corn under no-tillage for three years, in Rio Verde, Goiás State. Significance was observed by the test F for plant height, 100 grain weight and grain moisture. Pigeon pea, soybean, sunflower and pearl millet, resulted in taller corn plants. No statistical differences were found between crop sequences for corn grain yield and other characteristics.

    KEY-WORDS: Crop sequences; corn; agronomic characteristics.

    Avaliaram-se características agronômicas na cultura do milho em seis sucessões de culturas (milho-milho, soja-milho,girassol-milho, milheto-milho, sorgo-milho e guandu milho em plantio direto, durante três anos, em Rio Verde, Goiás. Observou-se significância, pelo teste F, para altura de planta, peso de 100 grãos e umidade dos grãos na colheita. Guandu, soja, girassol e milheto proporcionaram maior altura da planta de milho. Não foram observadas diferenças estatísticas entre as sucessões para produtividades de grãos e demais características avaliadas.

    PALAVRAS-CHAVE: Sucessão de culturas; milho; características agronômicas.

  9. Atributos físicos do solo sob diferentes preparos e coberturas influenciados pela distribuição de poros Soil physical attributes under different tillage systems and cover crops, as influenced by pore distribution

    Directory of Open Access Journals (Sweden)

    Eurâimi de Q. Cunha

    2010-11-01

    Full Text Available Com este trabalho se propõe avaliar a influência da distribuição de poros sobre alguns atributos físicos do solo sob semeadura direta (SD e preparo convencional (PC, cultivado com diferentes culturas de cobertura, no sistema de produção orgânica de feijão e milho. O trabalho foi conduzido em Santo Antônio de Goiás, GO, em Latossolo Vermelho distrófico. Em novembro de 2003 foram instalados quatro experimentos, dois em SD e dois em PC, um em cada manejo com feijão e o outro com milho. Foram comparados em blocos ao acaso com quatro repetições, crotalária, guandu, mucuna-preta, sorgo e pousio. Amostragens de solo das parcelas e de uma mata próxima foram realizadas nas profundidades de 0-0,10 e 0,10-0,20 m, em novembro de 2007, para determinação do teor de matéria orgânica (M.O. e de atributos físicos do solo. O uso do solo sob vegetação de cerrado para a produção agrícola, independentemente do sistema de cultivo, resultou em redução na porosidade total (Pt, macroporosidade (Mp e capacidade de aeração do solo (CAS. Os atributos físicos do solo foram afetados favoravelmente pela M.O. As variações em Pt, Mp, CAS e capacidade de água disponível do solo podem ser explicadas pela variação na distribuição do tamanho de poros do solo, principalmente daqueles com ∅ > 0,075 mm.This study aimed to evaluate the influence of pore distribution on some physical attributes of soil under no-tillage (NT and conventional tillage (CT systems, cultivated with different cover crops, in organic production of common bean and corn. The work was carried out in Santo Antônio de Goiás, GO, on an Oxisol. In November 2003 four experiments were installed, two of them under NT and the other two under CT. In each soil tillage system, an experiment was conducted with corn and another with common bean. Sunn hemp, pigeon pea, velvet bean, sorghum, and fallow were compared in a randomized block design, with four replications. Samples were

  10. Tillage effects on N2O emission from soils under corn and soybeans in eastern Canada

    International Nuclear Information System (INIS)

    Gregorich, E.G.; St-Georges, P.; McKim, U.F.; Chan, C.; Rochette, P.

    2008-01-01

    New research has suggested that no-till agricultural practices will result in higher levels of nitrous oxide (N 2 O) emissions due to increased levels of denitrification. This study was evaluated and compared N 2 O emissions from tilled and no-till soils. Data used in the study were comprised of more than 1500 flux measurements of N 2 O taken between April and October over a period of 3 years at a site in Ottawa, Ontario. Soybean and corn crop rotations were used. Treatment effects of tillage, crop, and time of season on N 2 O fluxes were assessed using analysis of variance (ANOVA) methods. The study evaluated the responses of tillage during periods when soil temperatures were above 0 degrees C. Results of the studies demonstrated that fertilization management practices contributed to the higher N 2 O emissions observed in soils planted with corn when compared with soils planted with soybeans. Biological nitrogen (N) fixation in soybeans did not contribute to annual N 2 O emissions, and the effects of tillage on N 2 O emissions varied from year to year. The tilled soils typically had better aeration, higher temperatures, and lower water content than no-till soils. N 2 O emissions from no-till soils were lower than rates observed in tilled soils in 2 of the 3 years studied. Higher emissions observed in no-till soils were attributed to timing and the method of fertilizer placement. It was concluded that further studies are needed to develop methods of improving N use efficiency within tillage systems. 30 refs., 5 tabs., 2 figs

  11. Monitoring of Conservation Tillage and Tillage Intensity by Ground and Satellite Imagery

    Directory of Open Access Journals (Sweden)

    M.A Rostami

    2014-09-01

    Full Text Available Local information about tillage intensity and ground residue coverage is useful for policies in agricultural extension, tillage implement design and upgrading management methods. The current methods for assessing crop residue coverage and tillage intensity such as residue weighing methods, line-transect and photo comparison methods are tedious and time-consuming. The present study was devoted to investigate accurate methods for monitoring residue management and tillage practices. The satellite imagery technique was used as a rapid and spatially explicit method for delineating crop residue coverage and as an estimator of conservation tillage adoption and intensity. The potential of multispectral high-spatial resolution WorldView-2 local data was evaluated using the total of eleven satellite spectral indices and Linear Spectral Unmixing Analysis (LSUA. The total of ninety locations was selected for this study and for each location the residue coverage was measured by the image processing method and recorded as ground control. The output of indices and LSUA method were individually correlated to the control and the relevant R2 was calculated. Results indicated that crop residue cover was related to IPVI, RVI1, RVI2 and GNDVI spectral indices and satisfactory correlations were established (0.74 - 0.81. The crop residue coverage estimated from the LSUA approach was found to be correlated with the ground residue data (0.75. Two effective indices named as Infrared Percentage Vegetation Index (IPVI and Ratio Vegetation Index (RVI with maximum R2 were considered for classification of tillage intensity. Results indicated that the classification accuracy with IPVI and RVI indices in different conditions varied from 78-100 percent and therefore in good agreement with ground measurement, observations and field records.

  12. Agronomic performance of common bean in straw mulch systems and topdressing nitrogen rates in no-tillage

    Directory of Open Access Journals (Sweden)

    Tatiana Pagan Loeiro da Cunha

    2015-10-01

    Full Text Available ABSTRACTIn no-tillage systems, straw coverage on soil surface is the key to success, and the choice of crops for rotation is crucial to achieve the sustainability and quality that conservation agriculture requires. The objective of this study was to evaluate the agronomic performance of the common bean cultivar IAC Formoso sown in succession to three straw mulch systems (corn alone, corn/Urochloa ruziziensisintercrop and U. ruziziensisalone and topdress nitrogen rates (0; 40; 80; 120 and 160 kg ha-1N, at the four-leaf stage, three years after the implementation of no-tillage. The experiment was arranged in a randomized block split plot design, with three replications. Common bean highest yields were achieved in succession to U. ruziziensisalone and intercropped with corn. The corn/U. ruziziensisintercrop provided both straw and seed production, allowing for quality no-tillage. Topdressed nitrogen influenced the common bean yield when in succession to corn alone, U. ruziziensisalone and corn/U. ruziziensisintercrop in no-tillage.

  13. Desenvolvimento da cultura do feijoeiro submetida a dois sistemas de manejo de irrigação e de cultivo = Growth of dry bean crop submitted to two water management and tillage systems

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Pavani

    2009-07-01

    Full Text Available A cultura do feijoeiro apresenta elevada importância no contexto agrícola nacional. Além de ser uma cultura que atende às características da agricultura familiar, também é cultivada em áreas extensivas com alta tecnologia. Pesquisas relacionadas ao desenvolvimento do feijoeiro frente às variantes edafoclimáticas regionais vêm assumindo papel de destaque, principalmentepor se tratar de uma planta sensível tanto ao déficit quanto ao excesso hídrico. O objetivo deste trabalho foi avaliar a cultura do feijoeiro de ‘inverno’ submetida a dois métodos de manejo deirrigação, em pivô central, um via solo por meio de tensiômetros, outro via clima por meio do tanque Classe ‘A’, em dois sistemas de plantio, convencional e direto, no primeiro ano. Foram avaliados o índice de área foliar (IAF, massa seca total (MS de plantas e a variação do potencial mátrico de água no solo. Concluiu-se que os manejos de irrigação e os sistemas de plantio não resultaram em diferenças no IAF e nem no acúmulo de matéria seca total ao longo do ciclo da cultura; o manejo da irrigação por tensiometria acarretou maior variação no potencial mátrico de água no solo do que o método via clima por meio do tanque Classe ‘A’.The dry bean has great importance to Brazilian agriculture. In addition to being a crop that meets the characteristics of family agriculture, it is also cultivated in extensive areas using high technology. Research related to the behavior and development ofthe bean crop in relation to regional soil and climatic variants have assumed a prominent role, especially because it is a plant that is sensitive both to the lack and excess of water in the soil. The objective of this research was to compare two methods of management ofcenter pivot irrigation: a soil sensor (tensiometry and b simplified climatological water balance – Class A pan; in conventional and no-tillage systems of soil cultivate (first year, onthe irrigated

  14. Yield trends in the long-term crop rotation with organic and inorganic fertilisers on Alisols in Mata (Rwanda

    Directory of Open Access Journals (Sweden)

    Neel H.

    2006-01-01

    Full Text Available A crop rotation system with various species was established on «Alisols» at Mata grassland site, oriental side of Zaire-Nile Watershed Divide (CZN, Rwanda. Inorganic and organic fertilisers were applied in various plots led in randomised complete blocs with three replicates. Crop yield data were each season recorded over a 9-year period. Results showed that there was very low or no harvest in plots without fertilisers. Where fertilisers were applied, the yield generally increased but remained relatively low: only few crops and varieties adapted to the Mata ecology such as potatoes and fi nger millet responded well to fertilisers. Liming was absolutely necessary to get any acceptable crop yield improvement with NPK. High rate of rich farmyard manure was effi cient alone and its effect was seen up to 4 seasons after its four regular seasonal applications. Mata compost (C/N>25, 0,3 g P.kg-1 had little benefi cial effect. One, four and half, and eight tons of lime per ha applied 3 times in 8 years increased soil pH (in water but not up to 6,5. It is then concluded that to succeed improving food production at the CZN area, selection of crops and varieties to fi t ecological conditions and amending soils to fi t crops be combined, but not opposed.

  15. Cultivation-Based and Molecular Assessment of Bacterial Diversity in the Rhizosheath of Wheat under Different Crop Rotations

    Science.gov (United States)

    Tahir, Muhammad; Mirza, M. Sajjad; Hameed, Sohail; Dimitrov, Mauricio R.; Smidt, Hauke

    2015-01-01

    A field study was conducted to compare the formationand bacterial communities of rhizosheaths of wheat grown under wheat-cotton and wheat-rice rotation and to study the effects of bacterial inoculation on plant growth. Inoculation of Azospirillum sp. WS-1 and Bacillus sp. T-34 to wheat plants increased root length, root and shoot dry weight and dry weight of rhizosheathsoil when compared to non-inoculated control plants, and under both crop rotations. Comparing both crop rotations, root length, root and shoot dry weight and dry weight of soil attached with roots were higher under wheat-cotton rotation. Organic acids (citric acid, malic acid, acetic acid and oxalic acid) were detected in rhizosheaths from both rotations, with malic acid being most abundant with 24.8±2 and 21.3±1.5 μg g-1 dry soil in wheat-cotton and wheat-rice rotation, respectively. Two sugars (sucrose, glucose) were detected in wheat rhizosheath under both rotations, with highest concentrations of sucrose (4.08±0.5 μg g-1and 7.36±1.0 μg g-1) and glucose (3.12±0.5 μg g-1 and 3.01± μg g-1) being detected in rhizosheaths of non-inoculated control plants under both rotations. Diversity of rhizosheath-associated bacteria was evaluated by cultivation, as well as by 454-pyrosequencing of PCR-tagged 16S rRNA gene amplicons. A total of 14 and 12 bacterial isolates predominantly belonging to the genera Arthrobacter, Azospirillum, Bacillus, Enterobacter and Pseudomonaswere obtained from the rhizosheath of wheat grown under wheat-cotton and wheat-rice rotation, respectively. Analysis of pyrosequencing data revealed Proteobacteria, Bacteriodetes and Verrucomicrobia as the most abundant phyla in wheat-rice rotation, whereas Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, Planctomycetes and Cyanobacteria were predominant in wheat-cotton rotation. From a total of 46,971 sequences, 10.9% showed ≥97% similarity with 16S rRNA genes of 32 genera previously shown to include isolates with plant

  16. Cultivation-Based and Molecular Assessment of Bacterial Diversity in the Rhizosheath of Wheat under Different Crop Rotations.

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir

    Full Text Available A field study was conducted to compare the formationand bacterial communities of rhizosheaths of wheat grown under wheat-cotton and wheat-rice rotation and to study the effects of bacterial inoculation on plant growth. Inoculation of Azospirillum sp. WS-1 and Bacillus sp. T-34 to wheat plants increased root length, root and shoot dry weight and dry weight of rhizosheathsoil when compared to non-inoculated control plants, and under both crop rotations. Comparing both crop rotations, root length, root and shoot dry weight and dry weight of soil attached with roots were higher under wheat-cotton rotation. Organic acids (citric acid, malic acid, acetic acid and oxalic acid were detected in rhizosheaths from both rotations, with malic acid being most abundant with 24.8±2 and 21.3±1.5 μg g(-1 dry soil in wheat-cotton and wheat-rice rotation, respectively. Two sugars (sucrose, glucose were detected in wheat rhizosheath under both rotations, with highest concentrations of sucrose (4.08±0.5 μg g(-1 and 7.36±1.0 μg g(-1 and glucose (3.12±0.5 μg g(-1 and 3.01± μg g(-1 being detected in rhizosheaths of non-inoculated control plants under both rotations. Diversity of rhizosheath-associated bacteria was evaluated by cultivation, as well as by 454-pyrosequencing of PCR-tagged 16S rRNA gene amplicons. A total of 14 and 12 bacterial isolates predominantly belonging to the genera Arthrobacter, Azospirillum, Bacillus, Enterobacter and Pseudomonaswere obtained from the rhizosheath of wheat grown under wheat-cotton and wheat-rice rotation, respectively. Analysis of pyrosequencing data revealed Proteobacteria, Bacteriodetes and Verrucomicrobia as the most abundant phyla in wheat-rice rotation, whereas Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, Planctomycetes and Cyanobacteria were predominant in wheat-cotton rotation. From a total of 46,971 sequences, 10.9% showed ≥97% similarity with 16S rRNA genes of 32 genera previously shown to include

  17. TILLAGE OPERATIONS IN AGRICULTURAL LANDSCAPES IN THE CONTEXT OF GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    G. N. Gasanov

    2016-01-01

    Full Text Available Aim. The aim was to identify the possibility of recycling the carbon in the atmosphere and the efficient use of photosynthetically active radiation (PAR coming to the soil surface by means of the formation of highly natural phytocenosis in the back half of the summer and to minimize soil preparation period for the next crop in the rotation.Methods. We studied two systems of soil management in the stubble period, they cause: Firstly, CO2 emissions from the soil under the existing soil cultivation methods for crop rotation in the region. Secondly, the accumulation of CO2 in the organic mass of natural phytocenosis followed by plowing the green mass in the stage of milk-wax ripeness of the seeds – the dominants, and minimizing the period of preparing the ground for the next crop rotation.Result. According to the obtained data, it shows that a nutritious regime of soil under the winter wheat during plowing of green mass of natural phytocenosis is substantially improved compared to the tillage system. Similar findings were obtained by other researchers that justify the fact that the green manure crops, in this case natural phytocoenosis, throughout its life involves hard compound subarable soil layers in the biological cycle which is used to create organic matter.Conclusion. We provide a scientific rationale for the inexpediency of the use of existing tillage systems in agricultural landscapes, which are causing systematic destruction of weed - field vegetation during the periods free from agrocenoses.

  18. The potential for short-rotation woody crops to reduce US CO2 emissions

    International Nuclear Information System (INIS)

    Graham, R.L.; Wright, L.L.; Turhollow, A.F.

    1992-01-01

    Short-rotation woody crops (SRWC) could potentially displace fossil fuels and thus mitigate CO 2 buildup in the atmosphere. To determine how much fossil fuel SRWC might displace in the United States and what the associated fossil carbon savings might be, a series of assumptions must be made. These assumptions concern the net SRWC biomass yields per hectare (after losses); the amount of suitable land dedicated to SRWC production; wood conversion efficiencies to electricity or liquid fuels; the energy substitution properties of various fuels; and the amount of fossil fuel used in growing, harvesting, transporting, and converting SRWC biomass. Assuming the current climate, present production, and conversion technologies and considering a conservative estimate of the US land base available for SRWC (14 x 10 6 ha), it is calculated that SRWC energy could displace 33.2 to 73.1 x 10 6 Mg of fossil carbon releases, 3-6% of the current annual US emissions. The carbon mitigation potential per unit of land is larger with the substitution of SRWC for coal-based electricity production than for the substitution of SRWC-derived ethanol for gasoline. Assuming current climate, predicted conversion technology advancements, an optimistic estimate of the US land base available for SRWC (28 x 10 6 ha), and an optimistic average estimate of net SRWC yields (22.4 dry Mg/ha), it is calculate that SRWC energy could displace 148 to 242 x 10 6 Mg of annual fossil fuel carbon releases. Under this scenario, the carbon migration potential of SRWC-based electricity production would be equivalent to about 4.4% of current global fossil fuel emissions and 20% of current US fossil fuel emissions. 21 refs., 5 tabs

  19. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water

    Directory of Open Access Journals (Sweden)

    Antônia Leila Rocha Neves

    2015-05-01

    Full Text Available This study aimed to evaluate the effect of management strategies of irrigation with saline water on growth and yield of cowpea and sunflower in a crop rotation. The experiment was conducted in randomized blocks with thirteen treatments and five replications. The treatments consisted of: T1 (control, T2, T3 and T4 using water of 0.5 (A1, 2.2 (A2, 3.6 (A3 and 5.0 (A4 dS m-1, respectively, during the entire crop cycle; T5, T6 and T7, use of A2, A3 and A4 water, respectively, only in the flowering and fructification stage of the crop cycle; using different water in a cyclic way, six irrigations with A1 followed by six irrigations with A2 (T8, A3 (T9 and A4, (T10, respectively; T11, T12 and T13, using water A2, A3 and A4, respectively, starting at 11 days after planting (DAP and continuing until the end of the crop cycle. These treatments were employed in the first crop (cowpea, during the dry season, and the same plots were used for the cultivation of sunflower as succeeding crop during rainy season. The strategies of use of saline water in the salt tolerant growth stage (treatments T5, T6 and T7 or cyclically (treatments T8, T9 and T10 reduced the amount of good quality water used in the production of cowpea by 34 and 47%, respectively, without negative impacts on crop yield, and did not show the residual effects of salinity on sunflower as a succeeding crop. Thus, these strategies appear promising to be employed in areas with water salinity problems in the semiarid region of Brazil.

  20. Effects of Monoculture, Crop Rotation, and Soil Moisture Content on Selected Soil Physicochemical and Microbial Parameters in Wheat Fields

    Directory of Open Access Journals (Sweden)

    A. Marais

    2012-01-01

    Full Text Available Different plants are known to have different soil microbial communities associated with them. Agricultural management practices such as fertiliser and pesticide addition, crop rotation, and grazing animals can lead to different microbial communities in the associated agricultural soils. Soil dilution plates, most-probable-number (MPN, community level physiological profiling (CLPP, and buried slide technique as well as some measured soil physicochemical parameters were used to determine changes during the growing season in the ecosystem profile in wheat fields subjected to wheat monoculture or wheat in annual rotation with medic/clover pasture. Statistical analyses showed that soil moisture had an over-riding effect on seasonal fluctuations in soil physicochemical and microbial populations. While within season soil microbial activity could be differentiated between wheat fields under rotational and monoculture management, these differences were not significant.

  1. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I grain yields and nutrient use efficiencies

    NARCIS (Netherlands)

    Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Perdok, U.D.; Oenema, O.

    2007-01-01

    The rapidly increasing population and associated quest for food and feed in China has led to increased soil cultivation and nitrogen (N) fertilizer use, and as a consequence to increased wind erosion and unbalanced crop nutrition. In the study presented here, we explored the long-term effects of

  2. Atributos químicos de solo sob produção orgânica influenciados pelo preparo e por plantas de cobertura Chemical attributes of soil under organic production as affected by cover crops and soil tillage

    Directory of Open Access Journals (Sweden)

    Eurâimi de Q Cunha

    2011-10-01

    Full Text Available Este trabalho objetivou determinar a influência das plantas de cobertura crotalária (Crotalaria juncea, guandu (Cajanus cajan (L. Millsp, mucuna-preta (Mucuna aterrima, sorgo vassoura (Sorgum technicum e pousio, nos atributos químicos de solo cultivado com feijão e milho orgânicos, sob semeadura direta (SD e preparo convencional (PC. O trabalho foi conduzido em Santo Antônio de Goiás, GO, em Latossolo Vermelho distrófico, no delineamento de blocos ao acaso, com quatro repetições. Em novembro de 2003 foram instalados quatro experimentos, dois em SD e dois em PC. Em cada preparo do solo um experimento foi conduzido com feijão e outro com milho. Amostragens de solo foram realizadas em setembro de 2003 e em novembro de 2007, nas camadas de 0-0,10 e 0,10-0,20 m. O pH e os teores de P, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Mn2+, H+ + Al³+ e M.O. foram analisadas e calculadas a capacidade de troca catiônica e a saturação por bases. Após quatro anos as plantas de cobertura não diferiram entre si quanto aos seus efeitos nos atributos químicos do solo; no entanto, elevaram o teor de M.O. em relação à condição inicial, seja sob SD ou sob PC. Em geral, a reciclagem dos nutrientes pelas plantas de cobertura não foi suficiente para a manutenção dos teores de P, K+, Fe3+ e Mn2+ no solo.This study aimed to determine the influence of the cover crops sunhemp (Crotalariajuncea, pigeon pea (Cajanus cajan (L. Millsp, velvet bean (Mucuna aterrima, sorghum (Sorgum technicum, and fallow on chemical attributes of soil cultivated with organic common bean and corn, under no-tillage (NT and conventional tillage (CT systems. The work was conducted in Santo Antônio de Goiás-GO, in Oxisol, in a randomized block design, with four replications. In November 2003 four experiments were installed, two of them under NT and the other two in CT. In each soil management system, an experiment was carried out with common bean crop and another with corn. Samples

  3. Weed seed germination in winter cereals under contrasting tillage systems

    DEFF Research Database (Denmark)

    Scherner, Ananda

    2015-01-01

    Grass weeds and Gallium aparine are major weed problems in North European arable cropping systems with high proportions of winter crops, especially winter wheat (Clarke et al., 2000; Melander et al., 2008). Problems are accentuated where inverting tillage is omitted, as weed seeds tend to accumul...

  4. Effect of sugarcane cropping systems on herbicide losses in surface runoff.

    Science.gov (United States)

    Nachimuthu, Gunasekhar; Halpin, Neil V; Bell, Michael J

    2016-07-01

    Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14μgL(-1)) recorded in runoff that occurred >2.5months after herbicide application in a 1(st) ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and

  5. Estrategias de fertilización fosforada en una rotación de cultivos en el sudeste bonaerense Phosphorus fertilization strategies in a Buenos Aires southeast crop rotation

    Directory of Open Access Journals (Sweden)

    Guillermo Adrián Divito

    2010-07-01

    la aplicación anual y a la rotación, respectivamente. Se encontró una débil asociación entre la variación anual en el nivel de P-Bray y el balance de P correspondiente al cultivo implantado dicho año. Para el tratamiento testigo, se elaboró un modelo para predecir la disminución en el P disponible considerando el nivel inicial de P-Bray y la exportación de P de los cultivos como variables.In the soils of southeast Buenos Aires, fertilizer phosphorus (P forms medium to high solubility products, making it possible to define different fertilization strategies based on application frequency. The effect of P application rates capable of fulfilling all crop requirements in intensive rotations in the region is unknown. The objectives of this work were to: (1 assess yields in crops fertilized with P annually and once during the crop rotation and (2 determine P use efficiency and P recovery for each fertilization strategy. The experiment was conducted at the E.E.A. I.N.T.A. Balcarce on a Typic Argiudoll and Petrocalcic Paleudoll complex, under no-tillage and with high P-Bray (Bray & Kurts, 1945 content (28.7 mg kg-1. During the two rotation cycles for maize, soybean, and double wheat/soybean crop, three treatments were assessed: application of P annually, application once during the rotation cycle, and a control without P application. The experimental design was in randomized blocks with four repetitions. No crop yield differences were found between annual and rotation fertilization strategies across the two cycles evaluated. The control crop yield did not differ from the fertilized crop during the first rotation cycle but did during the second. The crop rotation P use efficiency (EUProt did not differ between nutrient applications strategies (19.4 and 32.4 kg kg-1 during the first cycle and 32.9 and 37.4 kg kg-1 during the second for annually and rotation fertilized treatments respectively. There were no differences between strategies in the crop P use efficiency

  6. Winter effect on soil microorganisms under different tillage and phosphorus management practices in eastern Canada.

    Science.gov (United States)

    Shi, Yichao; Lalande, Roger; Hamel, Chantal; Ziadi, Noura

    2015-05-01

    Determining how soil microorganisms respond to crop management systems during winter could further our understanding of soil phosphorus (P) transformations. This study assessed the effects of tillage (moldboard plowing or no-till) and P fertilization (0, 17.5, or 35 kg P·ha(-1)) on soil microbial biomass, enzymatic activity, and microbial community structure in winter, in a long-term (18 years) corn (Zea mays L.) and soybean (Glycine max L.) rotation established in 1992 in the province of Quebec, Canada. Soil samples were collected at 2 depths (0-10 and 10-20 cm) in February 2010 and 2011 after the soybean and the corn growing seasons, respectively. Winter conditions increased the amounts of soil microbial biomasses but reduced the overall enzymatic activity of the soil, as compared with fall levels after corn. P fertilization had a quadratic effect on the amounts of total, bacterial, arbuscular mycorrhizal fungi phospholipid fatty acid markers after corn but not after soybean. The soil microbial community following the soybean and the corn crops in winter had a different structure. These findings suggest that winter conditions and crop-year could be important factors affecting the characteristics of the soil microbial community under different tillage and mineral P fertilization.

  7. The effects of one-time inversion tillage on soil physical properties after long-term reduced tillage

    Science.gov (United States)

    Kuhwald, Michael; Augustin, Katja; Duttmann, Rainer

    2017-04-01

    The positive effects of reduced tillage on soil stability and on various soil functions such as infiltrability or saturated hydraulic conductivity are known in general. However, long-term employment of conservation tillage can increase weed pressure, damage by mice and soil compaction. Thus, the application of one-time inversion tillage (occasional or strategic tillage) is customarily used as a method for overcoming these drawbacks. Hitherto, the effects of one-time inversion tillage on soil physical properties have not been investigated. This study focuses on analysing whether the improved soil physical properties derived by long-term reduced tillage remain after one-time inversion tillage by mouldboard plough. The study was carried out in a 5.5 ha field in the southern part of Lower Saxony, Germany. Since 1996, this field has been subdivided into three plots, one managed conventionally by using a mouldboard plough (CT), while in the others a chisel plough (RT1) and a disk harrow (RT2) were employed. In October 2014, the entire field was ploughed by mouldboard plough to a depth of 30 cm. During the following year, four field studies were conducted to analyse the effects of this one-time inversion tillage on volumetric soil water content, bulk density, saturated hydraulic conductivity and infiltration rate. Additionally, penetration resistance measurements taken across the entire field were interpolated by kriging to analyse the spatial distribution of soil characteristics. The surveys of RT1 and RT2 were compared with CT and with analyses conducted before the one-time inversion tillage. This study shows that positive effects of long-term conservation tillage on several soil physical characteristics still remain after one-time mouldboard ploughing. Throughout the entire cropping season, the topsoil tilled under former conservation tillage practices revealed significantly higher (p < 0.05) values of saturated hydraulic conductivities and infiltration rates compared

  8. Sistemas de cultivo no cerrado e dinâmica de populações de plantas daninhas Tillage systems in the cerrado and dinamics of weed populations

    Directory of Open Access Journals (Sweden)

    F.A.R. Pereira

    2003-12-01

    Full Text Available O trabalho teve como objetivo avaliar os efeitos de sistemas de plantio direto, utilizando diferentes programas de rotação de culturas, de preparo convencional e de cultivo mínimo sobre a dinâmica de populações de plantas daninhas nas condições edafoclimáticas do cerrado. Utilizou-se o delineamento experimental de blocos ao acaso, com quatro repetições e cinco tratamentos, sendo dois de plantio direto que constaram de programas de rotação constituídos por culturas de verão e de outono/inverno e dois em monocultivo, nos sistemas de preparo convencional e cultivo mínimo respectivamente. Avaliou-se a dinâmica das populações de plantas daninhas. A maior eficiência de controle cultural da comunidade infestante foi obtida com o sistema de plantio direto, por meio dos seguintes programas de rotação: (sorgo/soja - crotalária/milho - milheto/soja - milho safrinha/soja; (milho safrinha/soja - girassol/milho - sorgo/soja - girassol/milho e (guandu/soja - milheto/soja - milho safrinha/milho - girassol/soja.This research aimed to evaluate the effects of no-tillage systems using crop rotation variations, conventional tillage, and minimum tillage on the dynamics of weed populations in the cerrado region in Brazil. The experiment was arranged in a randomized block design, four replications and five treatments, (two no tillage treatments consisting of summer and fall/winter crop rotations and two single crop treatments under conventional tillage and minimum tillage. Weed population dynamics was evaluated. The results showed that the no-tillage system was the most efficient for weed control with the following programs: soybean/sorghum - Crotalaria/corn - millet/soybean, winter corn/soybean; (winter corn/soybean - sunflower/corn - sorghum/soybean - sunflower/corn and (Pigeon/pea/soybean - millet/soybean - winter corn/corn - sunflower/soybean .

  9. Effects of Tillage on Yield and Economic Returns of Maize and Cowpea in Semi-Arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Nyamwaro, S.O; Heng, K.L

    2014-01-01

    Crop yields and financial returns are important criteria for adoption of conservation tillage by farmers. A study was conducted between 2007-2010 to compare the financial returns of subsoiling-ripping and tied-ridge tillage with the conventional ox-plough tillage in the production of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) under semi-arid subsistence farming conditions in lower eastern Kenya. Four cropping systems namely maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure were evaluated in a split-plot treatments arrangement with tillage practices as the main plots and cropping systems as the sub-plots. The grain yields of maize and cowpea, prevailing market prices for cowpea and maize grains, labour, inputs applied and other relevant socio-economic data were collected every season, to enable estimation of economic returns and acceptability of the technologies. The results showed that average grain yield for maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure cropping systems under tied-ridge were 5, 9, 97 and 27% greater than the yields under oxplough tillage, respectively. Crop yields produced under subsoiling-ripping and ox-plough tillage were generally similar. However, land preparation and weeding labour expenses (KES 4240 / ha) for ox-plough tillage were 34% greater than those for subsoiling-ripping tillage but 40% lower than those for tied-ridge tillage. When averaged across seasons and tillage systems, the highest gross margins (KES 8567 / ha) were obtained in sole cowpea cropping system, followed by sole maize with manure (KES 4070 / ha), intercrop (KES 864 / ha) and least (loss of KES 1330 / ha) in sole maize without manure cropping system. (author)

  10. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Luigi Sartori

    2011-02-01

    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  11. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Directory of Open Access Journals (Sweden)

    Sangchul Lee

    Full Text Available The adoption rate of winter cover crops (WCCs as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE reduced NO3-N loads by ~49.3% compared to the baseline (no WCC. The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean, with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  12. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  13. Tillage practices in the conterminous United States, 1989-2004-Datasets Aggregated by Watershed

    Science.gov (United States)

    Baker, Nancy T.

    2011-01-01

    This report documents the methods used to aggregate county-level tillage practices to the 8-digit hydrologic unit (HU) watershed. The original county-level data were collected by the Conservation Technology Information Center (CTIC). The CTIC collects tillage data by conducting surveys about tillage systems for all counties in the United States. Tillage systems include three types of conservation tillage (no-till, ridge-till, and mulch-till), reduced tillage, and intensive tillage. Total planted acreage for each tillage practice for each crop grown is reported to the CTIC. The dataset includes total planted acreage by tillage type for selected crops (corn, cotton, grain sorghum, soybeans, fallow, forage, newly established permanent pasture, spring and fall seeded small grains, and 'other' crops) for 1989-2004. Two tabular datasets, based on the 1992 enhanced and 2001 National Land Cover Data (NLCD), are provided as part of this report and include the land-cover area-weighted interpolation and aggregation of acreage for each tillage practice in each 8-digit HU watershed in the conterminous United States for each crop. Watershed aggregations were done by overlying the 8-digit HU polygons with a raster of county boundaries and a raster of either the enhanced 1992 or the 2001 NLCD for cultivated land to derive a county/land-cover area weighting factor. The weighting factor then was applied to the county-level tillage data for the counties within each 8-digit HU and summed to yield the total acreage of each tillage type within each 8-digit HU watershed.

  14. Effect of tillage system and straw management on organic matter dynamics

    OpenAIRE

    Hazarika , Samarendra; Parkinson , Robert; Bol , Roland; Dixon , Liz; Russell , Peter; Donovan , Sarah; Allen , Debbie

    2009-01-01

    International audience; The choice of cultivation system in arable agriculture exerts a strong influence not only on soil health and crop productivity but also on the wider environment. Conservation tillage using non-inversion methods conserves soil carbon, reduces erosion risk and enhances soil quality. In addition, conservation tillage has been shown to sequester more carbon within the soil than inversion tillage, reducing carbon dioxide losses to the atmosphere. Stable, well structured top...

  15. Comparison of effects of machine performance parameters and energy indices of soybean production in conservation and conventional tillage systems

    OpenAIRE

    A Sharifi; H. R Sadeghnezhad; A Faraji

    2016-01-01

    Introduction Nowadays, agricultural systems are seeking economic, ecological and bioenvironmental goals for production of agricultural crops with protection and sustainability of the environment. Therefore, there is need to extend sustainable agricultural systems such as conservation agriculture. One of the principles of conservation agriculture is conservation tillage. Conservation tillage is a kind of tillage that retains crop residues on the soil surface or mixes it with soil using rela...

  16. Interferencia de malezas en el cultivo de frijol en dos sistemas de labranzas Weeds influence in bean crop in two tillage systems

    Directory of Open Access Journals (Sweden)

    M.C. Parreira

    2013-06-01

    Full Text Available Con este trabajo, se busco determinar el período anterior a la interferencia de las malezas que conviven con el cultivo de frijol, en ausencia o presencia de residuos vegetales de Crotalaria juncea. Los tratamientos estaban constituidos de siete períodos de convivencia del cultivo con las malezas: 0-10, 0-20, 0-30, 0-40, 0-50, 0-60 y 0-70 días después de la emergencia y también de un testigo sin presencia de las malezas en ausencia o presencia de crotalaria. El diseño experimental utilizado fue de bloques completos seleccionados al azar, con cuatro repeticiones por tratamiento. Hubo reducciones de 40,6% y 55,1% en la productividad de granos de frijol en convivencia con malezas durante todo el ciclo del cultivo, en ausencia y presencia de los residuos vegetales, respectivamente. Se concluyó que la productividad de granos fue afectada negativamente a partir de 29 y 38 días después de la emergencia, sin y con residuos, respectivamente, y eso constituyó los períodos anteriores a la interferencia.The research aim to determine the period prior to weed interference on common beans (Phaseolus vulgaris. The treatments had been made out of seven periods of coexisting by the culture with the weed 0-10, 0-20, 0-30, 0-40, 0-50, 0-60, and 0 70 days after crop emergence in absence and presence crop residue. It had reduction of 40.56% and 55.12%, the productivity of grains in the culture of the common bean when the coexistence with the weed was during all the cycle of the culture, in absence and presence crop residue, respectively. It was concluded that grain yield was negatively affected from the 29th and 38th days after emergence, in the absence and presence of crop residue, respectively.

  17. RESEARCH REGARDING THE INFLUENCE WEED CONTROL TREATMENTS ON PRODUCTION AND QUALITATIVE INDICATORS SOYBEAN CULTIVATED IN MINIMUM TILLAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Cornel Chetan

    2016-11-01

    Full Text Available The use of herbicides abused, without a thorough knowledge can be dangerous for the environment through the introduction of toxic waste in agricultural ecosystems. It is necessary to reduce the doses used in relation to the use of conservative technology, finding solutions optimized for effective weed control. Research conducted at ARDS Turda in the years 2013 and 2014 have followed the effect of 12 variants of herbicides used to control weeds in soybean crop, sown in two tillage systems (classical system and minimal tillage system, on the soybean production and quality indicators. Tillage system significantly influenced both qualitative indices and soybean crop production (being 2635 kg/ha to the classical and 2131 kg/ha minimum tillage system. The significant influence of tillage soybeans in fat content (20.34% in minimum tillage system; 19.94% to the classical and on protein (39.89% minimum tillage system; 40.56% in the classic.

  18. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbies, Mark [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Volk, Timothy [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Abrahamson, Lawrence [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Shuren, Richard [GreenWood Resources, Inc., Portland, OR (United States); Stanton, Brian [GreenWood Resources, Inc., Portland, OR (United States); Posselius, John [Case New Holland, New Holland, PA (United States); McArdle, Matt [Mesa Reduction Engineering and Processing, Inc., Auburn, NY (United States); Karapetyan, Samvel [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Patel, Aayushi [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Shi, Shun [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Zerpa, Jose [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States)

    2014-10-03

    Biomass for biofuels, bioproducts and bioenergy can be sourced from forests, agricultural crops, various residue streams, and dedicated woody or herbaceous crops. Short rotation woody crops (SRWC), like willow and hybrid poplar, are perennial cropping systems that produce a number of environmental and economic development benefits in addition to being a renewable source of biomass that can be produced on marginal land. Both hybrid poplar and willow have several characteristics that make them an ideal feedstock for biofuels, bioproducts, and bioenergy; these include high yields that can be obtained in three to four years, ease of cultivar propagation from dormant cuttings, a broad underutilized genetic base, ease of breeding, ability to resprout after multiple harvests, and feedstock composition similar to other sources of woody biomass. Despite the range of benefits associated with SRWC systems, their deployment has been restricted by high costs, low market acceptance associated with inconsistent chip quality (see below for further explanation), and misperceptions about other feedstock characteristics (see below for further explanation). Harvesting of SRWC is the largest single cost factor (~1/3 of the final delivered cost) in the feedstock supply system. Harvesting is also the second largest input of primary fossil energy in the system after commercial N fertilizer, accounting for about one third of the input. Therefore, improving the efficiency of the harvesting system has the potential to reduce both cost and environmental impact. At the start of this project, we projected that improving the overall efficiency of the harvesting system by 25% would reduce the delivered cost of SRWC by approximately $0.50/MMBtu (or about $7.50/dry ton). This goal was exceeded over the duration of this project, as noted below.

  19. Plantas de cobertura e adubação nitrogenada na produção de milho em sistema de plantio direto Cover crops and nitrogen fertilization in corn production under no-tillage system

    Directory of Open Access Journals (Sweden)

    Abel W. de Albuquerque

    2013-07-01

    Full Text Available A utilização de plantas de cobertura do solo pode otimizar o aporte de material orgânico e nutrientes e proteger o solo dos processos erosivos enquanto o N é um dos nutrientes mais exigidos pelas culturas agrícolas, podendo tornar-se um fator limitante de seu rendimento. Neste contexto, realizou-se um experimento para avaliar a influência de três diferentes leguminosas usadas como plantas de cobertura sobre os componentes morfológicos e de produção do milho cultivado em sucessão sob sistema de plantio direto, na ausência e na presença de adubação nitrogenada mineral (80 kg ha-1 de N na forma de sulfato de amônio. O estudo foi desenvolvido em Latossolo Amarelo nos tabuleiros costeiros do estado de Alagoas. Os componentes de produção do milho apresentaram melhores resultados em sucessão à crotalária spectabilis. Constatou-se efeito da interação entre adubação verde e adubação nitrogenada resultando em maior produtividade de grãos para a cultura do milho.The cultivation of cover crops can optimize the input of organic material and nutrients and protect the soil from erosion, while the N is one of the most required nutrient by agricultural crops and may become a limiting fator in its productivity. In this context, an experiment was carried out to evaluate the influence of three different legumes used as cover crops on morphological components and production of corn grown in succession under no-tillage system, in the absence and presence of mineral N fertilization (80 kg N ha-1, in the form of ammonium sulfate. This study was conducted in an Oxissol of the Coastal Tablelands in the State of Alagoas. The components of maize production showed better results in succession to Crotalaria spectabilis. Significant interaction was found between green manure and N fertilization, resulting in higher grain productivity.

  20. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  1. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    OpenAIRE

    H.A., Reddy, K. and Pettigrew, W.T.

    2018-01-01

    The effects of cotton (Gossypium hirsutum L.): soybean [Glycine max (L.) Merr.] rotation on the soil fertility levels are limited. An irrigated soybean: cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, Mississippi, USA. The crop rotation sequences were included continuous cotton (CCCC), continuous soybean (SSSS), cotton-soybean-cotton-soybean (CSCS), cotton-soybean-soybean-cotton (CSSC), soybean-cotton-cotton-soybean (SCCS), soybean-cotton-soybean-cotton (SCSC)....

  2. On weed competition and population dynamics : considerations for crop rotations & organic farming

    NARCIS (Netherlands)

    Mertens, S.K.

    2002-01-01

    Key words: organic farming, weeds, weed management, weed ecology, weed diversity, matrix population model, elasticity analysis, neighbourhood model, survey, crop row spacing, mechanical hoe, harrow, Polygonum convolvulus ,

  3. Modeling impacts of water and fertilizer management on ecosystem services from rice rotated crop systems in China

    Science.gov (United States)

    Chen, Han; Yu, Chaoqing; Li, Changsheng; Huang, Xiao; Zhang, Jie; Yue, Yali; Huang, Guorui

    2015-04-01

    Sustainable intensification in agriculture has stressed the need for management practices that could increase crop yields while simultaneously reducing environmental impacts. It is well recognized that water and nutrient management hold great promise to address these goals. This study uses the DNDC biogeochemical model to stimulate the impacts of water regime and nitrogen fertilizer management interactions on ecosystem services of rice rotated crop systems in China. County-level optimal nitrogen fertilizer application rates under various water management practices were captured and then multiple scenarios of water and nitrogen fertilizer management were set to more than 1600 counties with rice rotations in China. Results indicate that an national average of 15.7±5.9% (the mean value and standard deviation derive from variability of three water management practices) reduction of nitrogen fertilizer inputs can be achieved without significantly sacrificing rice yields. On a national scale, shallow flooding with optimal N application rates appear most potential to enhance ecosystem services, which led to 10.6% reduction of nitrogen fertilizer inputs, 34.3% decrease of total GHG emissions, 2.8% less of overall N loss (NH3 volatilization, denitrification and N leaching) and a 1.7% increase of rice yields compared to the baseline scenario. Regional GHG emissions mitigation derived from water regime change vary with soil properties and the multiple crop index. Among the main production regions of rice in China, the highest reduction happened in Jiangxu, Yunnan, Guizhou and Hubei (more than 40% reduction) with high SOC, high multiple crop index and low clay fraction. The highest reduction of GHG emissions derived from reducing current N application rate to optimal rate appeared in Zhejiang, Guangdong, Jiangsu where the serious over-application of mineral N exit. It was concluded that process models like DNDC would act an essential tool to identify sustainable agricultural

  4. Soil aggregation in a crop-livestock integration system under no-tillage Agregação do solo em sistema de integração lavoura-pecuária em plantio direto

    Directory of Open Access Journals (Sweden)

    Edicarlos Damacena de Souza

    2010-08-01

    Full Text Available Grazing intensities can influence soil aggregation, which can be temporarily and permanently affected. The objective of this study was to evaluate the aggregate stability in water at the end of a soybean cycle and during pasture development in a crop-livestock integration system under no-tillage and grazing intensities. The experiment was initiated in 2001, in a dystrophic Red Latosol, after soybean harvest. Treatments consisted of pasture (black oat + Italian ryegrass at heights of 10, 20 and 40 cm, grazed by young cattle, and a control (no grazing, followed by soybean cultivation, in a randomized block design. Soil samples were collected at the end of the soybean cycle (May/2007, during animal grazing (September/2007 and at the end of the grazing cycle (November/2007. The grazing period influences aggregate distribution, since in the September sampling (0-5 cm layer, there was a higher proportion of aggregates > 4.76 mm at all grazing intensities. Soil aggregation is higher in no-tillage crop-livestock integration systems in grazed than in ungrazed areas.As intensidades de pastejo podem influenciar o estado de agregação do solo, que pode sofrer alterações temporárias ou permanentes. O objetivo deste estudo foi avaliar a estabilidade dos agregados em água ao final do ciclo da soja e durante o desenvolvimento da pastagem em sistema de integração lavoura-pecuária em plantio direto submetido a intensidades de pastejo. O experimento foi iniciado em 2001, em um Latossolo Vermelho distrófico, após a colheita da soja. Os tratamentos constaram de alturas de manejo da pastagem (aveia-preta + azevém: 10, 20 e 40 cm, com bovinos jovens, e sem pastejo, seguido do cultivo de soja, em delineamento de blocos ao acaso. Amostras de solo foram retiradas nas camadas de 0 a 5, 5 a 10 e 10 a 20 cm. As amostras foram coletadas ao final do ciclo da soja (maio/2007, em pleno pastejo pelos animais (setembro/2007 e ao final do pastejo (novembro/2007. O tempo

  5. Macrofauna edáfica associada a plantas de cobertura em plantio direto em um Latossolo Vermelho do Cerrado Soil macrofauna communities and cover crops in a Cerrado Oxisol under no tillage

    Directory of Open Access Journals (Sweden)

    Glenio Guimarães Santos

    2008-01-01

    Full Text Available O objetivo deste trabalho foi caracterizar a macrofauna edáfica e avaliar o efeito de plantas de cobertura em plantio direto, nos principais grupos da macrofauna do solo, em duas épocas de avaliação em um Latossolo Vermelho distroférrico. O delineamento experimental foi o de blocos ao acaso, com oito tratamentos (plantas de cobertura e quatro repetições. As plantas de cobertura: Crotalaria juncea, guandu-anão (Cajanus cajan, Stylosanthes guianensis, Brachiaria brizantha, B. brizantha consorciada com milho (Zea mays, milheto (Pennisetum glaucum, mombaça (Panicum maximum e Sorghum bicolor foram cultivadas de novembro a abril. Em setembro de cada ano, foi realizado o plantio de feijão, em cultivo irrigado por pivô central. A área útil em cada parcela foi de 60 m². Amostras de solo na forma de monólitos (25x25 cm foram retiradas aleatoriamente em cada parcela, para contagem da macrofauna, às profundidades de 0-10 cm e 10-20 cm, em abril e em setembro de 2005. Os grupos taxonômicos, identificados em ordem decrescente de densidade relativa, são: Formicidae, Oligochaeta, Dermaptera, Coleoptera, Hemiptera, Miriapoda, Isoptera, Araneae, Lepidoptera, Blattodea e larvas de Diptera. Crotalaria juncea apresentou maior densidade de macrofauna, seguida por B. Brizantha, B. Brizantha consorciada com milho, Sorghum bicolor, Stylosanthes guianensis, Cajanus Cajans, Pennisetum Glaucum e Panicum maximum. O uso das plantas de cobertura, associado à irrigação na avaliação de setembro, favorece a colonização do solo pela macrofauna.The objective of this work was to characterize soil fauna groups and to evaluate the effects of cover crops under no-tillage system, in a Cerrado Oxisol, in two evaluation periods. The cover crops: Crotalaria juncea, Cajanus cajan, Stylosanthes guianensis, Brachiaria brizantha, Brachiaria brizantha/ Zea mays association, Pennisetum glaucum, Panicum maximum and Sorghum bicolor were cultivated from November to April

  6. Tillage effects on physical qualities of a vertisol in the central ...

    African Journals Online (AJOL)

    user

    In the highlands of Ethiopia, tillage methods and frequency affect drainage, soil erosion, moisture conservation, weeding and harvesting of crops. This is through their effects on soil physical, chemical and biological qualities. In this study, four tillage methods for land preparation, “broad bed and furrows”,” green manure” ...

  7. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.

    Science.gov (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G

    2014-02-01

    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.

  8. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, USA

    Science.gov (United States)

    Conservation tillage (CsT) involves management that reduces soil erosion by maintaining crop residue cover on farm fields. Typically, both infiltration and soil organic matter increase over time with CsT practices. We compared the impact of a commonly used CsT practice, strip tillage (ST), to conven...

  9. Tillage effects on physical qualities of a vertisol in the central ...

    African Journals Online (AJOL)

    In the highlands of Ethiopia, tillage methods and frequency affect drainage, soil erosion, moisture conservation, weeding and harvesting of crops. This is through their effects on soil physical, chemical and biological qualities. In this study, four tillage methods for land preparation, “broad bed and furrows”,” green manure”, ...

  10. Effect Of Depth Of Tillage On Soil Physical Conditions, Growth And ...

    African Journals Online (AJOL)

    Penetrometer values were 54, 66, 74 and 78 % significantly higher on 10, 20, 30 and 40cm tillage depth plots than the untilled plots. The gravimetric moisture content was 20, 33, and 43 % significantly higher in the zero than the 20, 30, and 40 cm tillage depths respectively. Tilling the soil significantly increased crop growth ...

  11. Effects of strip and full-width tillage on soil carbon IV oxide-carbon ...

    African Journals Online (AJOL)

    ... determine the effects of strip tillage and full-width tillage treatments on soil carbon IV oxide-carbon (CO2-C) fluxes, bacterial and fungal populations in growing period of sunflower (Helianthus annus). A row-crop rotary hoe with C type blades was used to create three strip widths by changing the connection of blades of the ...

  12. ¿La práctica de la siembra directa en cultivos de soja favorece las poblaciones de acridios (Orthoptera: Acrididae en el partido de Benito Juárez? Does the direct tillage practice in soybean crops favour grasshopper populations (Orthoptera: Acrididae, in Benito Juárez county?

    Directory of Open Access Journals (Sweden)

    Daniel Scuffi

    2012-12-01

    Full Text Available Considerando el desarrollo del cultivo de soja en siembra directa en el partido de Benito Juárez, y que algunos autores sostienen que esta práctica favorece los acridios, se evaluó la riqueza de especies y la abundancia en soja con siembra directa y convencional. Se registraron siete especies (Aleuas lineatus Stål, Covasacris pallidinota (Bruner, Baeacris pseudopunctulatus (Ronderos, Dichroplus elongatus Giglio-Tos, Dichroplus maculipennis (Blanchard, Dichroplus pratensis Bruner y Scotussa lemniscata (Stål. La riqueza de especies acumulada en los diferentes cultivos fue similar (p> 0,05. En soja de primera con siembra directa, se registraron 2,3 ± 0,19 especies, en soja de primera con siembra convencional 1,45 ± 0,15 especies y en soja de segunda con siembra directa 2,25 ± 0,28 especies. Dichroplus elongatus fue la especie más abundante en todos los cultivos y en todos los momentos. Las restantes presentaron baja abundancia y se registraron en algunos momentos. No existió diferencia (p> 0,05 en la abundancia de tucuras entre los cultivos y en las diferentes fechas de muestreo. La baja riqueza de especies registrada estaría relacionada con la baja diversidad vegetal de los cultivos. Este estudio no mostró diferencias en la abundancia y riqueza de especies de acuerdo a la labranza utilizada.Considering the development of the soybean crops using direct tillage in Benito Juárez county, and taking into account that for some authors this practice favours the grasshopper populations, the abundance and species richness in soybean with direct and conventional tillage were evaluated. Seven species were registered (Aleuas lineatus Stål, Covasacris pallidinota (Bruner, Baeacris pseudopunctulatus (Ronderos, Dichroplus elongatus Giglio-Tos, Dichroplus maculipennis (Blanchard, Dichroplus pratensis Bruner and Scotussa lemniscata (Stål. The accumulated richness was similar (p> 0.05, along the different crops; 2.3 ± 0.19 species were registered in

  13. Strip Tillage and Early-Season Broadleaf Weed Control in Seeded Onion (Allium cepa

    Directory of Open Access Journals (Sweden)

    Sarah Gegner-Kazmierczak

    2016-03-01

    Full Text Available Field experiments were conducted in 2007 and 2008 near Oakes, North Dakota (ND, USA, to evaluate if strip tillage could be incorporated into a production system of seeded onion (Allium cepa to eliminate the standard use of a barley (Hordeum vulgare companion crop with conventional, full width tillage, yet support common early-season weed control programs. A split-factor design was used with tillage (conventional and strip tillage as the main plot and herbicide treatments (bromoxynil, DCPA, oxyfluorfen, and pendimethalin as sub-plots. Neither tillage nor herbicide treatments affected onion stand counts. Common lambsquarters (Chenopodium album densities were lower in strip tillage compared to conventional tillage up to three weeks after the post-emergence applied herbicides. In general, micro-rate post-emergence herbicide treatments provided greater early-season broadleaf weed control than pre-emergence herbicide treatments. Onion yield and grade did not differ among herbicide treatments because the mid-season herbicide application provided sufficient control/suppression of the early-season weed escapes that these initial weed escapes did not impact onion yield or bulb diameter. In 2007, onion in the strip tillage treatment were larger in diameter resulting in greater total and marketable yields compared to conventional tillage. Marketable onion yield was 82.1 Mg ha−1 in strip tillage and 64.9 Mg ha−1 in conventional tillage. Results indicate that strip tillage use in direct-seeded onion production was beneficial, especially when growing conditions were conducive to higher yields and that the use of strip tillage in onion may provide an alternative to using a companion crop as it did not interfere with either early-season weed management system.

  14. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana.

    Science.gov (United States)

    Naab, Jesse B; Mahama, George Y; Yahaya, Iddrisu; Prasad, P V V

    2017-01-01

    Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean-maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers' managed trials, maize yield ranged from 520 to 2700 kg ha -1 and 300 to 2000 kg ha -1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20-29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean along

  15. Green manures and levels of nitrogen topdressing in wheat crop under no-tillageAdubos verdes e doses de nitrogênio em cobertura na cultura do trigo sob plantio direto

    Directory of Open Access Journals (Sweden)

    Anísio da Silva Nunes

    2011-10-01

    Full Text Available Green manure is still a not widely used practice in wheat crop, although economic benefits and conservation of natural resources can be observed due to the adoption of this practice. This study was carried out at the Dourados, Mato Grosso do Sul State, Brazil, with the objective of evaluating the effect of sunn hemp (Crotalaria juncea and hairy vetch (Vicia villosa, associated with levels of mineral nitrogen topdressing in the agronomic performace of wheat crop under no-tillage. The treatments were constituted by green manures, fallow as a treatment-control and six doses of mineral nitrogen topdressing: zero, 30, 60, 90, 120 and 150 kg ha-1. Urea was used as nitrogen source. Evaluations of dry mass of cover crops, nitrogen contents in green manures shoot and in wheat leaves, plant height, number of productive tillers per plant, one thousand-grains weight, hectolitric weight and yield were made. It was concluded that the use of green manures before wheat seeding promotes significant increases in crop yield, mainly when planted over to sunn hemp. The wheat yield response to mineral nitrogen application varied according to the preceding crop.A adubação verde ainda é uma prática pouco utilizada na cultura do trigo, embora proporcione benefícios do ponto de vista econômico e da preservação dos recursos naturais. Este estudo foi realizado em Dourados-MS, Brasil, com o objetivo de avaliar o efeito do cultivo de crotalária (Crotalaria juncea e ervilhaca peluda (Vicia villosa como adubos verdes, associados a doses de nitrogênio mineral em cobertura, no desempenho agronômico do trigo em sistema plantio direto. Os tratamentos foram constituídos pelos adubos verdes, um tratamento-testemunha em pousio e seis doses de nitrogênio mineral em adubação de cobertura do trigo: zero, 30, 60, 90, 120 e 150 kg ha-1, utilizando-se a ureia como fonte de nitrogênio. Foram realizadas avaliações de massa seca das coberturas vegetais, teores de nitrog

  16. Demand and energy efficiency in the soybean crop in no tillage; Demanda e eficiencia energetica no cultivo da soja em plantio direto

    Energy Technology Data Exchange (ETDEWEB)

    Riquetti, Neilor Bugoni; Seki, Andre Satoshi [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Programa Energia na Agricultura], E-mail: neilor@fca.unesp.br; Sousa, Saulo Fernando Gomes de [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Fazenda de Ensino Pesquisa e Producao; Silva, Paulo Roberto Arbex; Benez, Sergio Hugo [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas

    2010-07-01

    The increase in energy use in agriculture, combined with rising costs and possible stores for the future have led to the need for farming systems more efficient in the use of non-renewable resource. Based on this work was undertaken to determine the efficiency of cultivation of soybean in no-till system. For the calculations were quantified all operations that involve expenditure of energy from the drying up of the harvest, including depreciation of machinery energy, calculated in accordance with its life, weight, and the days of actual use. Energy efficiency was calculated by dividing the total energy produced by the grain and dry matter divided by the total input energy. The highest spending power in this culture system were due to the use of pesticides and fertilizers. The demand for energy was 7956.54 MJ.ha{sup 1} from the harvest desiccation. Energy efficiency was calculated at 5.95, ie for each unit of energy used was taken from 5.95 units in the form of grain. When calculated the energy of matter left by the crop after harvest coupled with the energy of the grains, the efficiency was 7.94. (author)

  17. Manejo de nitrogênio no milho sob plantio direto com diferentes plantas de cobertura, em Latossolo Vermelho Nitrogen management in corn under no-tillage with different cover crops in a Rhodic Hapludox soil

    Directory of Open Access Journals (Sweden)

    Edson Cabral da Silva

    2006-03-01

    Full Text Available O objetivo deste trabalho foi definir a melhor dose e época de aplicação, e a eficiência de utilização do N, utilizando-se uréia marcada com 15N, pelo milho cultivado sob plantio direto, em sucessão à crotalária (Crotalaria juncea, ao milheto (Pennisetum americanum e à vegetação espontânea (pousio, em um Latossolo Vermelho no Cerrado. O delineamento experimental foi o de blocos ao acaso, com 24 tratamentos e quatro repetições, em esquema fatorial incompleto, 3x3x2 + 6: três doses de N (80, 130 e 180 kg ha-1; três sistemas de cobertura do solo (crotalária, milheto e pousio; duas épocas de aplicação do N (estádio quatro ou oito folhas; e seis tratamentos adicionais (três sem aplicação de N e três que receberam 30 kg ha-1 de N na semeadura. O cultivo do milho em sucessão à crotalária proporciona maior quantidade na planta e aproveitamento pela planta do N proveniente do fertilizante e maior produtividade de grãos. A aplicação do N ao milho com quatro folhas proporciona maior produtividade de grãos, comparada à aplicação com oito folhas, quando em sucessão ao milheto.The objective of this work was to evaluate the best rate and time for N application, and N utilization using urea-15N, by corn crop grown under no-tillage system, in succession to sun hemp (Crotalaria juncea L., millet (Pennisetum americanum and to the spontaneous vegetation (fallow ground, in a Rhodic Hapludox soil in Cerrrado. The experimental design was randomized complete blocks, with 24 treatments and four replications, in an incomplete factorial 3x3x2 + 6: three N rates (80, 130 and 180 kg ha-1 N; three preceding cover crops (sun hemp, millet and fallow ground; two N application time (four leaves or eight leaves stage; and six additional treatments (three without N application and three that received 30 kg ha-1 N at seeding. The corn grown in succession to sun hemp provided higher amount of N derived from fertilizer, N utilization efficiency

  18. Relation between N fertilization and N{sub 2}O release in different crop rotations

    Energy Technology Data Exchange (ETDEWEB)

    Stoeven, K.; Kohrs, K.; Schnug, E. [Federal Research Central Agency, Braunschweig (Germany)

    2002-07-01

    The influence of N-fertilization and crop species on the release of the greenhouse gas N{sub 2}O was investigated at two sites in northern Germany from June 1994 till October 1996. The N{sub 2}O release was measured daily. The results were correlated to the nitrate and ammonia content of the soil as well as to fertilizer type, crop species and soil moisture. The results of the investigations showed no effect of N-fertilizer type or crop species on the N{sub 2}O release. Main result of this work is that lowering the N fertilization to about 50% of the standard could reduce the N{sub 2}O release.

  19. Soil organic carbon sequestration potential of conservation vs. conventional tillage

    Science.gov (United States)

    Meurer, Katharina H. E.; Ghafoor, Abdul; Haddaway, Neal R.; Bolinder, Martin A.; Kätterer, Thomas

    2017-04-01

    Soil tillage has been associated with many negative impacts on soil quality, especially a reduction in soil organic carbon (SOC). The benefits of no tillage (NT) on topsoil SOC concentrations have been demonstrated in several reviews, but the effect of reduced tillage (RT) compared to conventional tillage (CT) that usually involves soil inversion through moldboard ploughing is still unclear. Moreover, the effect of tillage on total SOC stocks including deeper layers is still a matter of considerable debate, because the assessment depends on many factors such as depth and method of measurement, cropping systems, soil type, climatic conditions, and length of the experiments used for the analysis. From a recently published systematic map database consisting of 735 long-term field experiments (≥ 10 years) within the boreal and temperate climate zones (Haddaway et al. 2015; Environmental Evidence 4:23), we selected all tillage studies (about 80) reporting SOC concentrations along with dry soil bulk density and conducted a systematic review. SOC stocks were calculated considering both fixed soil depths and by using the concept of equivalent soil mass. A meta-analysis was used to determine the influence of environmental, management, and soil-related factors regarding their prediction potential on SOC stock changes between the tillage categories NT, RT, and CT. C concentrations and stocks to a certain depth were generally highest under NT, intermediate under RT, and lowest under CT. However, this effect was mainly limited to the first 15 cm and disappeared or was even reversed in deeper layers, especially when adjusting soil depth according to the equivalent soil mineral mass. Our study highlights the impact of tillage-induced changes in soil bulk density between treatments and shows that neglecting the principles of equivalent soil mass leads to overestimation of SOC stocks for by conservation tillage practices.

  20. Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, César R.; Manowitz, David H.; Zhang, Xuesong

    2011-01-01

    This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary by crop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007–09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007–2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2–3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. -- Highlights: ► A new bioeconomic model predicts biomass supply and its environmental impacts. ► The model captures the opportunity cost of switching to new cellulosic crops. ► Biomass from crop residues is supplied at lower biomass price than cellulosic crops. ► Biomass from cellulosic crops has

  1. Diversifying cereal-based rotations to improve weed control. Evaluation with the AlomySys model quantifying the effect of cropping systems on a grass weed

    Directory of Open Access Journals (Sweden)

    Colbach Nathalie

    2010-09-01

    Full Text Available Simplified rotations often select weed flora consisting of one or several dominant species. In rotations consisting mainly of winter cereals, one of the most frequent weeds in Atlantic European countries is blackgrass (Alopecurus myosuroides Huds.. In order to reduce environmental impacts and avoid the selection of herbicide-resistant populations, alternative weed management strategies are necessary. The objective of the present study was to develop a methodology for using a weed dynamics model called ALOMYSYS for evaluating prospective diversified crop rotations based on expert opinion. These prospective rotations were developed for a particular region aiming at reducing herbicide use while keeping weed infestation similar to that in current cropping systems. The prospective systems were also evaluated economically by calculating costs and margins for the farmer. The simulations showed that the more diverse the rotation, the better blackgrass was controlled and the less herbicides (rates and frequencies were necessary. Optimal herbicide spraying conditions and mouldboard ploughing were also less essential in diverse rotations. It was though essential to reason herbicide programs over the whole rotation and not simply as function of the preceding crop. The economic evaluation identified the interest of spring or winter pea either replacing or preceding oilseed rape (OSR in OSR/wheat/barley rotations.

  2. Variabilidade espacial e temporal da produtividade de culturas sob sistema plantio direto Spatial and temporal variability of grain yield under no-tillage cropping system

    Directory of Open Access Journals (Sweden)

    Telmo Jorge Carneiro Amado

    2007-08-01

    Full Text Available O objetivo deste trabalho foi avaliar a variabilidade espacial e temporal da produtividade de soja, milho e trigo, em uma lavoura comercial de 57 ha, não irrigada, manejada há mais de dez anos sob sistema plantio direto, em um Latossolo Vermelho distrófico típico, em Palmeira das Missões, RS. A coleta de dados de produtividade de seis cultivos, entre 2000 e 2005, foi realizada por colhedora equipada com monitor de produtividade. Análises estatísticas e geoestatísticas foram realizadas a fim de avaliar a variabilidade espacial e a presença de dependência espacial ao longo dos anos. A produtividade da soja, do milho e do trigo alcançada apresenta variabilidade com continuidade espacial, correlacionando-se entre si, ao longo dos anos. Em anos de deficit hídrico, verifica-se aumento da variabilidade espacial da produtividade. A cultura do milho é mais eficiente do que a da soja em detectar a variabilidade espacial da produtividade existente na lavoura.The objective of this work was to analyze the spatial and temporal yield variability of soybean, corn and wheat in a 57 ha cropland, without irrigation, under no-till for more than ten years in a Typic Hapludox, located in Palmeira das Missões, RS. Yield data of crops from 2000 to 2005 were collected using a combine equipped with yield monitor. Statistical and geostatistical analysis were performed to monitor the range of the spatial variability and its spatial dependence, as well as its behavior over the years. Soybean, corn and wheat yield present spatial variability, which is maintained over time. In dry years, yield variance coefficient increases compared to wet years. Corn was more efficient than soybean to identify spatial yield variability in the cropland.

  3. Eficiência no uso da água e interferência de plantas daninhas no meloeiro cultivado nos sistemas de plantio direto e convencional Water use efficiency and weed interference in melon crop under conventional and no-tillage systems

    Directory of Open Access Journals (Sweden)

    T.M.S. Teófilo

    2012-09-01

    filme de polietileno nos dois sistemas de plantio ou com cobertura morta no plantio direto aumentou a eficiência no uso da água em relação ao solo sem cobertura. No tratamento sem capinas no sistema de plantio convencional, além da perda total na produtividade comercial, a interferência das plantas daninhas aumentou o consumo de água em 9,6%.The objective of this work was to evaluate the effect of the conventional and no-tillage systems and weed management strategies on water use efficiency in melon crop (Cucumis melo. Thus, an experiment was carried out in a randomized block design in split-plots in Mossoró-RN. The plots were constituted of two tillage systems (conventional and no-tillage and the sub-plots of three weed management systems (plastic mulch, weeding, and no weeding. Density and dry weight of the weeds at 30 days after transplanting, commercial and total yield and daily consumption of water were evaluated. Irrigation management was performed by the characteristic soil water curve for each cropping system at 15 and 30 cm of depth and water control by daily reading a set of tensiometers installed to keep the soil above 75% of field capacity. Water use efficiency (USA, given in kg of fruit per m3, was determined based on the crop's yield and water consumption. It was found that the no-tillage system reduced weed density and dry matter in 86.7 and 61%, respectively, compared to conventional tillage, and weed interference reduced commercial yield by 100% under conventional tillage and 36.5% under no-tillage. Soil with plastic mulch under no-tillage and conventional systems, and straw mulching under no-tillage reduced water consumption by 23% (388.8 m3 ha-1, 21% (363.0 m3 ha-1 and 13% (215.0 m3 ha-1, respectively, compared to the weeding treatment under conventional tillage. Soil with plastic mulch under the two tillage systems, or straw mulching under no-tillage increased the efficiency of water use from the ground without cover. In the no

  4. Effect of tillage practices on least limiting water range in Northwest India

    Science.gov (United States)

    Kahlon, Meharban S.; Chawla, Karitika

    2017-04-01

    Tillage practices affect mechanical and hydrological characteristics of soil and subsequently the least limiting water range. This quality indicator under the wheat-maize system of northwest India has not been studied yet. The treatments included four tillage modes, namely conventional tillage, no-tillage without residue, no-tillage with residue, and deep tillage as well as three irrigation regimes based on the irrigation water and pan evaporation ratio i.e. 1.2, 0.9, and 0.6. The experiment was conducted in a split plot design with three replications. At the end of cropping system, the mean least limiting water range (m3 m-3) was found to be highest in deep tillage (0.26) and lowest in notillage without residue (0.15). The field capacity was a limiting factor for the upper range of the least limiting water range beyond soil bulk density 1.41 Mg m-3 and after that 10% air filled porosity played a major role. However, for the lower range, the permanent wilting point was a critical factor beyond soil bulk density 1.50 Mg m-3 and thereafter, the penetration resistance at 2 MPa becomes a limiting factor. Thus, deep tillage under compaction and no-tillage with residue under water stress is appropriate practice for achieving maximum crop and water productivity.

  5. Adubação nitrogenada em cobertura na cultura do trigo em sistema de plantio direto após diferentes culturas Nitrogen fertilization of wheat grown under no-tillage after different cover crops

    Directory of Open Access Journals (Sweden)

    Antônio Joaquim Braga Pereira Braz

    2006-04-01

    Full Text Available Avaliou-se o comportamento do trigo irrigado, cultivado em sistema de plantio direto em sucessão a diferentes culturas de cobertura, em relação a adubação nitrogenada em cobertura. O experimento foi conduzido na Embrapa Arroz e Feijão, no município de Santo Antônio de Goiás, GO, em Latossolo Vermelho distrófico. Os tratamentos aplicados às parcelas do experimento foram constituídos pelas seguintes culturas plantas de cobertura: braquiária, milho em consórcio com braquiária, guandu, milheto, mombaça, sorgo granífero e estilosantes. Sobre as palhadas das culturas, após picadas, foi semeado o trigo para estudar a sua resposta à adubação nitrogenada em cobertura. Foram utilizadas quatro doses de nitrogênio em cobertura: 0, 30, 60 e 120 kg ha-1, usando como fonte a uréia.O rendimento de grãos do trigo após o cultivo de milho em consórcio com braquiária, guandu, sorgo e estilosantes obedeceu a uma função quadrática em resposta a adubação nitrogenada e após de braquiária e milheto a resposta foi linear. Não houve resposta na produtividade do trigo cultivado sobre mombaça à adubação nitrogenada em cobertura. As maiores produtividades do trigo em resposta à adubação nitrogenada em cobertura foram obtidas quando o mesmo foi cultivado em sucessão às gramíneas sorgo e braquiária.The performance of irrigated wheat grown under no-tillage in succession to different cover crops were evaluated in relation to nitrogen topdressing fertilization. The experiment was carried out at Embrapa Rice & Beans, in the municipality of Santo Antônio de Goiás, GO, on a Dystrophic Red Latosol. The treatments applied to the main plots were seven cover crops: (Brachiaria brizantha (Hochst. ex. A. Rich. Stapf. cv. Marandu; B.brizantha associated with corn (Zea mays L.; pigeon pea (Cajanus cajan (L. Millisp; millet (Pennisetum glaucum (L. R. Br.; Panicum maximum (Jacq. cv. Mombaça; sorghum (Sorghum bicolor (L. Moench; and

  6. Comparison of energy and yield parameters in maize crop

    International Nuclear Information System (INIS)

    Memon, S.Q.; Mirjat, M.S.; Amjad, N.

    2013-01-01

    The aim of this study was to determine direct and indirect input energy in maize production and to investigate the efficiency of energy consumption in maize crop. Result showed that emergence percent, plant height, number of grains per cob and grain yield were the highest in deep tillage as compared to conventional and zero tillage. Total energy input and output were the highest in deep tillage with NPK at the rate 150-75-75kg/ha. The net energy gain was found the highest in deep tillage followed by conventional tillage and the lowest net energy gain in zero tillage. (author)

  7. Produção de biomassa por cultivos de cobertura do solo e produtividade do algodoeiro em plantio direto Cover crops biomass production and cotton yield in no-tillage system

    Directory of Open Access Journals (Sweden)

    Alexandre Cunha de Barcellos Ferreira

    2010-06-01

    Full Text Available O objetivo deste trabalho foi avaliar a produção, a persistência da matéria seca e a eficiência da dessecação em espécies vegetais utilizadas para cultivos de cobertura do solo, e quantificar seus efeitos sobre a produtividade do algodoeiro em plantio direto. O trabalho foi realizado em Santa Helena de Goiás, GO, com 16 tratamentos: Panicum maximum, cultivares Mombaça, Tanzânia e Massai; Urochloa brizantha, cultivares Piatã, Xaraés, Marandu e MG4; U. decumbens; Paspalum atratum cv. Pojuca; Sorghum bicolor cultivares Santa Eliza e BRS 700; Pennisetum glaucum cv. ADR 500; Raphanus sativus; Eleusine coracana, Crotalaria spectabilis, além da testemunha em pousio. As espécies foram semeadas no início de março (2007. As espécies com menores produtividades e persistência da matéria seca foram C. spectabilis, E. coracana e R. sativus. As produtividades de algodão em caroço e fibra foram maiores no cultivo sobre palhas residuais das cultivares Tanzânia e Mombaça de P. maximum, em comparação às observadas com uso de P. atratum cv. Pojuca, R. sativus e pousio. Em geral, S. bicolor, P. glaucum e as cultivares Tanzânia e Mombaça de P. maximum, e MG4, Piatã e Xaraés de U. brizantha apresentam produção e persistência da matéria seca adequadas para o cultivo do algodoeiro no sistema de plantio direto, no cerrado brasileiro.The objectives of this work were to evaluate biomass production and persistence and the desiccation efficiency in plant species used as cover crops, and to quantify its effects on cotton yield in a no-tillage system. The study was carried out in Santa Helena de Goiás, GO, Brazil, using 16 plant species: Panicum maximum, cultivars Mombaça, Tanzânia and Massai; Urochloa brizantha, cultivars Piatã, Xaraés, Marandu and MG4; U. decumbens; Paspalum atratum cv. Pojuca; Sorghum bicolor cultivars Santa Eliza and BRS 700; Pennisetum glaucum cv. ADR 500; Raphanus sativus; Eleusine coracana, Crotalaria spectabilis

  8. Forms of phosphorus transfer in runoff under no-tillage in a soil treated with successive swine effluents applications.

    Science.gov (United States)

    Lourenzi, Cledimar Rogério; Ceretta, Carlos Alberto; Tiecher, Tadeu Luis; Lorensini, Felipe; Cancian, Adriana; Stefanello, Lincon; Girotto, Eduardo; Vieira, Renan Costa Beber; Ferreira, Paulo Ademar Avelar; Brunetto, Gustavo

    2015-04-01

    Successive swine effluent applications can substantially increase the transfer of phosphorus (P) forms in runoff. The aim of this study was to evaluate P accumulation in the soil and transfer of P forms in surface runoff from a Hapludalf soil under no-tillage subjected to successive swine effluent applications. This research was carried out in the Agricultural Engineering Department of the Federal University of Santa Maria, Brazil, from 2004 to 2007, on a Typic Hapludalf soil. Swine effluent rates of 0, 20, 40, and 80 m3 ha(-1) were broadcast over the soil surface prior to sowing of different species in a crop rotation. Soil samples were collected in stratified layers, and the levels of available P were determined. Samples of water runoff from the soil surface were collected throughout the period, and the available, soluble, particulate, and total P were measured. Successive swine effluent applications led to increases in P availability, especially in the soil surface, and P migration through the soil profile. Transfer of P forms was closely associated with runoff, which is directly related to rainfall volume. Swine effluent applications also reduced surface runoff. These results show that in areas with successive swine effluent applications, practices that promote higher water infiltration into the soil are required, e.g., crop rotation and no-tillage system.

  9. Black locust (Robinia pseudoacacia L. Short-Rotation Crops under Marginal Site Conditions

    Directory of Open Access Journals (Sweden)

    RÉDEI, Károly

    2011-01-01

    Full Text Available The improvement of the reliability of renewable resources and the decline in reserves offossile raw material in the coming decades will lead to increasing demands for wood material andconsequently to a greater role of short rotation forestry (SRF. Particular efforts have been made inEurope to substitute fossils with renewables, in this context the proportion of renewable energy shouldbe increased to 20% by 2020. SRF can be provide relatively high dendromass (biomass incrementrates if the short rotation tree plantations are grown under favourable site conditions and for anoptimum rotation length. However, in many countries only so-called marginal sites are available forsetting up tree plantations for energy purpose. For SRF under marginal site conditions black locust(Robinia pseudoacacia L. can be considered as one of the most promising tree species thanks to itsfavourable growing characteristics. According to a case study presented in the paper black locust canproduce a Mean Annual Increment (MAI of 2.9 to 9.7 oven-dry tons ha–1 yr–1 at ages between 3 and7 years using a stocking density of 6667 stems ha–1. On the base of the presented results and accordingto international literature the expected dendromass volume shows great variation, depending upon site,species, their cultivars, initial spacing and length of rotation cycle.

  10. Algal derivatives may protect crops from residual soil salinity: a case study on a tomato-wheat rotation

    Science.gov (United States)

    Di Stasio, Emilio; Raimondi, Giampaolo; Van Oosten, Michael; Maggio, Albino

    2017-04-01

    In coastal areas, summer crops are frequently irrigated with saline water. As a consequence, salts may accumulate in the root zone with detrimental effects on the following winter crops if the rainfall is insufficient to leach them. Two field experiments were performed in 2015-2016 on a field used for tomato (summer) wheat (winter) rotation cropping. The spring-summer experiment was carried in order to evaluate the effect of two algal derivatives (Ascophyllum nodosum), Rygex and Super Fifty, on a tomato crop exposed to increasing salinity and reduced nutrient availability. In the autumn-winter experiment we investigated the effect of residual salts from the previous summer irrigations on plant growth and yield of wheat treated with the same two algal extracts. The salt treatment for the irrigated summer crop was 80 mM NaCl plus a non-salinized control. The nutrient regimes were 100% and 50% of the tomato nutritional requirements. With both the seaweeds applications the salt stressed plants were demonstrated improved Relative Water Content and water potential. Nevertheless the total fresh biomass and the fruit fresh weight were enhanced only in the non salinized controls. Application of algal derivatives increased the total fresh weight over controls in the non salinized plants. The seaweed treatments enhanced the fruit fresh weight with an increase of 30% and 46% for Rygex and Super Fifty, respectively. Preliminary analysis of the ion profile in roots, shoots and leaves, indicates that the seaweed extracts may enhance the assimilation of ions in fruits affecting their nutritional value. The residual salinity of the summer experiment reduced the wheat biomass production. However, the seaweed extracts treatments improved growth under salinity. In the salt stressed plants the Super Fifty application increased shoots and ears by 34% and 23% respectively, compared to the non treated plants. Plant height was increased by application of seaweeds extracts for both the

  11. The Importance of Rotational Crops for Biodiversity Conservation in Mediterranean Areas

    Science.gov (United States)

    Chiatante, Gianpasquale; Meriggi, Alberto

    2016-01-01

    Nowadays we are seeing the largest biodiversity loss since the extinction of the dinosaurs. To conserve biodiversity it is essential to plan protected areas using a prioritization approach, which takes into account the current biodiversity value of the sites. Considering that in the Mediterranean Basin the agro-ecosystems are one of the most important parts of the landscape, the conservation of crops is essential to biodiversity conservation. In the framework of agro-ecosystem conservation, farmland birds play an important role because of their representativeness, and because of their steady decline in the last Century in Western Europe. The main aim of this research was to define if crop dominated landscapes could be useful for biodiversity conservation in a Mediterranean area in which the landscape was modified by humans in the last thousand years and was affected by the important biogeographical phenomenon of peninsula effect. To assess this, we identify the hotspots and the coldspots of bird diversity in southern Italy both during the winter and in the breeding season. In particular we used a scoring method, defining a biodiversity value for each cell of a 1-km grid superimposed on the study area, using data collected by fieldwork following a stratified random sampling design. This value was analysed by a multiple linear regression analysis and was predicted in the whole study area. Then we defined the hotspots and the coldspots of the study area as 15% of the cells with higher and lower value of biodiversity, respectively. Finally, we used GAP analysis to compare hotspot distribution with the current network of protected areas. This study showed that the winter hotspots of bird diversity were associated with marshes and water bodies, shrublands, and irrigated crops, whilst the breeding hotspots were associated with more natural areas (e.g. transitional wood/shrubs), such as open areas (natural grasslands, pastures and not irrigated crops). Moreover, the

  12. The Importance of Rotational Crops for Biodiversity Conservation in Mediterranean Areas.

    Science.gov (United States)

    Chiatante, Gianpasquale; Meriggi, Alberto

    2016-01-01

    Nowadays we are seeing the largest biodiversity loss since the extinction of the dinosaurs. To conserve biodiversity it is essential to plan protected areas using a prioritization approach, which takes into account the current biodiversity value of the sites. Considering that in the Mediterranean Basin the agro-ecosystems are one of the most important parts of the landscape, the conservation of crops is essential to biodiversity conservation. In the framework of agro-ecosystem conservation, farmland birds play an important role because of their representativeness, and because of their steady decline in the last Century in Western Europe. The main aim of this research was to define if crop dominated landscapes could be useful for biodiversity conservation in a Mediterranean area in which the landscape was modified by humans in the last thousand years and was affected by the important biogeographical phenomenon of peninsula effect. To assess this, we identify the hotspots and the coldspots of bird diversity in southern Italy both during the winter and in the breeding season. In particular we used a scoring method, defining a biodiversity value for each cell of a 1-km grid superimposed on the study area, using data collected by fieldwork following a stratified random sampling design. This value was analysed by a multiple linear regression analysis and was predicted in the whole study area. Then we defined the hotspots and the coldspots of the study area as 15% of the cells with higher and lower value of biodiversity, respectively. Finally, we used GAP analysis to compare hotspot distribution with the current network of protected areas. This study showed that the winter hotspots of bird diversity were associated with marshes and water bodies, shrublands, and irrigated crops, whilst the breeding hotspots were associated with more natural areas (e.g. transitional wood/shrubs), such as open areas (natural grasslands, pastures and not irrigated crops). Moreover, the

  13. Agroforestry systems in northern Vietnam with Tephrosia candida as an alternative to short-fallow crop rotations

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Fagerstroem, M.H. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    2000-07-01

    Tephrosia candida was experimentally tested on-farm as an improved fallow species (TepFa), in hedgerows, (TepAl) and in a mulch transfer system (TepMu) in an upland rice (Oryza sativa) system on sloping land in northern Vietnam during the period 1996-1999. The objectives of this study were: (1) to investigate whether the existing monocropping (Mono) and short-fallow crop rotations (NaFa) are sustainable systems with respect to soil erosion and concomitant nutrient losses; (2) to determine whether agroforestry systems with Tephrosia (TepFa, TepAl, TepMu) can improve nutrient cycling and nutrient balances, for instance by preventing nutrient losses through erosion, as well as sustaining upland rice yields. A criteria system, including soil and nutrient losses, nutrient balances, changes of P-available pools, returns on labour and farmers' response, was used for comparing the systems tested. Only TepFa gave a positive input-output balance for both P and N. TepFa increased soil N and seemed to positively affect the release of soil labile P. However, the cost of Tephrosia seeds made the Net Present Value (NPV) of the Tephrosia fallow crop rotation system negative. TepMu increased upland rice yield by 50% compared to Mono. As a result, NPV was positive and sufficient rice for one more person could be produced per ha and year. However, the yield increase could cause a depletion of plant-available P, and the timing for pruning and mulching activities coincided with the farming activities in paddy fields. TepAl increased soil N, gave a neutral overall effect on crop yield but a negative NPV. NaFa gave a positive and highest NPV. In general, TepFa and TepMu were shown to increase crop yield per hectare with acceptable returns on labour and also to do better than Mono and NaFa with respect to preventing soil and nutrient losses through erosion. Recommendations are made for further research to focus on alternatives to maintain soil P, mechanisms of P pool reallocation and

  14. Infiltração de água no solo sob escarificação e rotação de culturas Water infiltration in soil as influenced by chiseling and crop rotations

    Directory of Open Access Journals (Sweden)

    Maryara Buriola Prando

    2010-06-01

    Full Text Available Nos solos com restrições físicas e, ou, físico-hídricas ao crescimento de raízes, aumentar o potencial de armazenagem de água por meio de melhorias na infiltração pode ser uma estratégia viável para aumento da produtividade das culturas. Nesse sentido, este trabalho teve como objetivo avaliar a infiltração de água em um Nitossolo Vermelho distrófico, com três sistemas de rotação de culturas sob semeadura direta com e sem escarificação inicial. O sistema de rotação de culturas constou de: (1 milheto/soja/sorgo/milho/sorgo (M/S/So/Mi/So, (2 milheto/soja/Brachiaria ruziziensis/milho/Brachiaria ruziziensis (M/S/B/Mi/B e (3 milheto/soja/Brachiaria ruziziensis + mamona/milho/Brachiaria ruziziensis + mamona (M/S/B+Ma/Mi/B+Ma. A infiltração de água no solo foi avaliada em campo com anéis concêntricos instalados na superfície, a 0,10 e 0,20 m de profundidade, em 2006 e 2007. Após o primeiro ano, o manejo com escarificação inicial do solo apresentou a maior infiltração de água. A rotação Brachiaria ruziziensis + mamona proporcionou maior infiltração da água no solo. A atividade do sistema radicular das espécies nas parcelas sem escarificação inicial aumentou a velocidade de infiltração da água no solo.In soils with physical and/or physical hydric restrictions for root growth, it may be a viable strategy to increase crop productivity by increasing water storage potential through improvements in water infiltration. Accordingly, the objective of this study was to determine water infiltration in a Hapludult in three crop rotations under no-tillage, with and without initial chiseling. Crop rotations consisted of: millet/soybean/sorghum/maize/sorghum; millet/soybean/Brachiaria ruziziensis/corn/Brachiaria ruziziensis; and millet/soybean/Brachiaria ruziziensis + castor bean/corn/Brachiaria ruziziensis + castor bean. Water infiltration in soil was evaluated in the field, using concentric discs at the soil surface and at

  15. Glyphosate sustainability in South American cropping systems.

    Science.gov (United States)

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it. Copyright (c) 2008 Society of Chemical Industry.

  16. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Directory of Open Access Journals (Sweden)

    Shi-ping LIU

    2007-09-01

    Full Text Available The interplanting with zero-tillage of rice, i.e. direct sowing rice 10–20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting, ZI (Zero-tillage, no straw manure and rice interplanting, PTS (Plowing tillage, straw manure and rice transplanting, and PT (Plowing tillage, no straw manure and rice transplanting, were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002, there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003. Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments

  17. The effects of mulching, tillage, and herbicides on weed control and watermelon yield

    Science.gov (United States)

    Currently few producers in the Southeast US have adopted conservation tillage practices in specialty crop production. The lack of conservation adoption is likely due to the added challenges in producing vegetables in cover crop residues, especially high biomass cover crop systems. The objective of t...

  18. Assessing the Influence of Summer Organic Fertilization Combined with Nitrogen Inhibitor on a Short Rotation Woody Crop in Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Anita Maienza

    2014-01-01

    Full Text Available The European Union Directive 91/676/EEC, known as Nitrates Directive, has dictated basic agronomic principles regarding the use of animal manure source as well as livestock and waste waters from small food companies. The use of nitrification inhibitors together with animal effluents as organic fertilizers could be beneficial for nutrient recycling, plant productivity, and greenhouse gas emission and could offer economic advantages as alternative to conventional fertilizers especially in the Mediterranean region. The aim of the present study was to investigate differences in plant productivity between bovine effluent treatments with (or without addition of a nitrification inhibitor (3,4 DMPP in a short rotation woody crop system. Results of the field experiment carried out in a Mediterranean dry environment indicated that the proposed strategy could improve tree growth with indirect, beneficial effects for agroforestry systems.

  19. Low disturbance seeding suppresses weeds in no-tillage soyabean

    NARCIS (Netherlands)

    Theisen, Giovani; Bastiaans, L.

    2015-01-01

    Germination is a key process in the dynamics of weed populations. In no-tillage systems, crop seeding is often found to induce seed germination in the seeding strip. In this research, experiments to investigate options for reducing weed seedling establishment were conducted in no-till soyabean

  20. Effects of tillage and fertilizer application methods on the ...

    African Journals Online (AJOL)

    A field experiment was conducted at the Teaching and Research Farm of the University of Ibadan, Nigeria, in 2002 and 2003 cropping seasons to evaluate the effects of tillage, fertilizer application method, and the interaction between these two factors on the performance of maize. The experiment was laid out in a ...

  1. Effect of Winged Subsoiler and Traditional Tillage Integrated with ...

    African Journals Online (AJOL)

    Effect of Winged Subsoiler and Traditional Tillage Integrated with Fanya Juu on Selected Soil Physico-Chemical and Soil Water Properties in the Northwestern ... Soil evaporation was estimated by a conceptual model whereby leaf area index, canopy cover, crop root length, moisture at saturation and field capacity were ...

  2. Effect of tillage, rhizobium inoculation in maize-soybean based ...

    African Journals Online (AJOL)

    Field experiment was conducted at Research Farm of Institute for Agricultural Research, Ahmadu Bello University, Samaru, Nigeria, to investigate the effect of tillage, rhizobium inoculation in maize-soybeanbased cropping systems and nitrogen fertilizer application on chemical fertility status of a savanna Alfisol. The study ...

  3. Tillage and Fertilizer Effects on Maize Production in Northern ...

    African Journals Online (AJOL)

    Maize (Zea mays L.) is a major food crop in Ghana but grain yield is often constrained by low soil fertility and water deficits during grain fill. Response of maize to tillage and fertilizer treatments was evaluated in a field experiment from 2000 through 2002 on a sandy loam soil (Typic-plinthic Paleustalf) in Wa in the northern ...

  4. [Effects of different tillage measures on upland soil respiration in Loess Plateau].

    Science.gov (United States)

    Sun, Xiao-hua; Zhang, Ren-zhi; Cai, Li-qun; Chen, Qiang-qiang

    2009-09-01

    A field experiment was conducted in Lijiabu Town of Dingxi City, Gansu Province to study the soil respiration and its relations with the canopy temperature and soil moisture content in a rotation system with spring wheat and pea under effects of different tillage measures. Six treatments were installed, i.e., tillage with no straw- or plastic mulch (conventional tillage, T), tillage with straw mulch (TS), tillage with plastic mulch (TP), no-tillage (NT), no-tillage with straw mulch (NTS), and no-tillage with plastic mulch (NTP). During the growth periods of spring wheat and pea, soil respiration had different change patterns, with the peaks appeared at the early jointing, grain-filling, and maturing stages of spring wheat, and at the 5-leaf, silking, flowering and poding, in spring wheat field between treatments NTS and T, and the soil respiration rate was significantlyand maturing stages of pea. There was an obvious difference in the diurnal change of soil respiration lower in NTS than in T; while the soil respiration in pea field had less diurnal chan ge. Soil respiration rate had a significant linear relationship with the canopy temperature of both spring wheat andpea, the correlation coefficient being the highest at booting stage of spring wheat and at flowering and poding stage of pea, followed by at grain-filling stage of spring wheat and at branching stage of pea. There was also a significant parabola relationship between soil respiration rate and soil moisture content, the correlation coefficient being higher under conservation tillage than under conventional tillage, with the highest under NTS. The moisture content in 10-30 cm soil layer of spring wheat field and that in 5-10 cm soil layer of pea field had the greatest effects on soil respiration. Comparing with conventional tillage, all the five conservation tillage measures decreased soil respiration, with the best effects of no-tillage with straw mulch.

  5. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    Science.gov (United States)

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  6. Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

    Czech Academy of Sciences Publication Activity Database

    Yin, X.; Kersebaum, K. C.; Kollas, C.; Baby, S.; Beaudoin, N.; Manevski, K.; Palosuo, T.; Nendel, C.; Wu, L.; Hoffmann, M.; Hoffmann, H. D.; Sharif, B.; Armas-Herrera, C.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; de Cortazar-Atauri, I. G.; Giglio, L.; Hlavinka, Petr; Lana, M.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Oeztuerk, M.; Pacholski, A.; Ripoche-Wachter, D.; Roetter, R. P.; Ruget, F.; Trnka, Miroslav; Ventrella, D.; Weigel, H-J.; Olesen, J. E.

    2017-01-01

    Roč. 84, mar (2017), s. 152-165 ISSN 1161-0301 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : air co2 enrichment * climate-change * catch crops * nitrogen-fertilization * wheat production * winter-wheat * model stics * sugar-beet * wide-range * growth * Continuous simulation * Grain N * Model calibration * Model ensemble * Model inter-comparison * Single year simulation Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 3.757, year: 2016

  7. The consequent influence of crop rotation and six-year-long spring barley monoculture on yields and weed infestation of white mustard and oats

    Directory of Open Access Journals (Sweden)

    Cezary Kwiatkowski

    2012-12-01

    Full Text Available The present study was conducted in the years 2007- 2008, after 6-year-long experiments in the cultivation of spring barley in a crop rotation system and in monoculture. The other experimental factor was the spring barley protection method. Intensive protection involved comprehensive treatment of barley (in-crop harrowing, seed dressing, application of herbicides, fungicides, a retardant and an insecticide. Extensive protection consisted only in in-crop harrowing, without the application of crop protection agents, except for seed dressing. The above mentioned factors formed the background for the study on the cultivation of white mustard and oats, as phytosanitary species, in successive years. In the test plants, no mineral fertilization and crop protection were applied. Such agricultural method enabled an objective assessment of the consequent effect of monoculture, crop rotation and crop treatments. A hypothesis was made that the cultivation of the phytosanitary plants in the stand after 6-year-long barley monoculture would allow obtaining the level of yields and weed infestation similar to those of the crop rotation treatments. It was also assumed that the cultivation of white mustard and oats would eliminate differences in plant productivity caused by the negative influence of extensive protection. It was proved that the cultivation of the phytosanitary plants eliminated the negative influence of monoculture on the level of their yields and weed infestation. However, the test plants did not compensate negative consequences of extensive protection. In spite of this, white mustard and oats effectively competed with weeds, and the number and weight of weeds in a crop canopy did not cause a dramatic decline in yields. In the test plant canopy, the following short-lived weeds were predominant: Chenopodium album, Galinsoga parviflora, Echinochloa crus-galli. The absence of herbicide application resulted in the compensation of perennial species

  8. Changes in bird community composition in response to growth changes in short-rotation woody crop planting

    International Nuclear Information System (INIS)

    Tolbert, V.R.; Hanowski, J.; Schiller, A.; Hoffman, W.; Christian, D.; Lindberg, J.

    1997-01-01

    Hybrid poplar established as intensively managed short-rotation woody crops (SRWC) on former agricultural lands can provide habitat for wildlife. Studies of bird use of SRWC for nesting and during fall migration have shown that the numbers and kinds of breeding birds using mature plantings of hybrid poplar are similar to natural forested lands. In Minnesota, the number of species of breeding birds using habitat provided by clonal-trial plantings and young larger-scale plantings (12-64 ha) of hybrid poplar were initially most similar to those using grasslands and row-crops. As the plantings approached canopy closure, successional species became predominant. In the Pacific Northwest, breeding bird composition and density were very similar for mature plantings and forested areas; however, fall migrants were found primarily in forested areas. In the Southeast, preliminary comparisons of breeding bird use of plantings of sweetgum and sycamore with naturally regenerating forests of different ages and sizes and vegetation structure are showing no size effect on use. As with hybrid poplar, species use of the more mature plantings of sweetgum and sycamore was most similar to that of natural forests. (author)

  9. Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation

    International Nuclear Information System (INIS)

    Njakou Djomo, S.; El Kasmioui, O.; De Groote, T.; Broeckx, L.S.; Verlinden, M.S.; Berhongaray, G.; Fichot, R.; Zona, D.; Dillen, S.Y.; King, J.S.; Janssens, I.A.; Ceulemans, R.

    2013-01-01

    Highlights: • A full energy and GHG balance of bioelectricity from SRWC was performed. • Bioelectricity was efficient; it reduced GHG by 52–54% relative to the EU non-renewable grid mix. • Bioelectricity required 1.1 m 2 of land kWh −1 ; land conversion released 2.8 ± 0.2 t CO 2e ha −1 . • SRWC reduced GHG emission when producing electricity during the 1st rotation period. - Abstract: Short-rotation woody crops (SRWCs) are a promising means to enhance the EU renewable energy sources while mitigating greenhouse gas (GHG) emissions. However, there are concerns that the GHG mitigation potential of bioelectricity may be nullified due to GHG emissions from direct land use changes (dLUCs). In order to evaluate quantitatively the GHG mitigation potential of bioelectricity from SRWC we managed an operational SRWC plantation (18.4 ha) for bioelectricity production on a former agricultural land without supplemental irrigation or fertilization. We traced back to the primary energy level all farm labor, materials, and fossil fuel inputs to the bioelectricity production. We also sampled soil carbon and monitored fluxes of GHGs between the SRWC plantation and the atmosphere. We found that bioelectricity from SRWCs was energy efficient and yielded 200–227% more energy than required to produce it over a two-year rotation. The associated land requirement was 0.9 m 2 kWh e -1 for the gasification and 1.1 m 2 kWh e -1 for the combustion technology. Converting agricultural land into the SRWC plantation released 2.8 ± 0.2 t CO 2e ha −1 , which represented ∼89% of the total GHG emissions (256–272 g CO 2e kWh e -1 ) of bioelectricity production. Despite its high share of the total GHG emissions, dLUC did not negate the GHG benefits of bioelectricity. Indeed, the GHG savings of bioelectricity relative to the EU non-renewable grid mix power ranged between 52% and 54%. SRWC on agricultural lands with low soil organic carbon stocks are encouraging prospects for

  10. Effects of crop rotation and management system on water-extractable organic matter concentration, structure, and bioavailability in a chernozemic agricultural soil.

    Science.gov (United States)

    Xu, Na; Wilson, Henry F; Saiers, James E; Entz, Martin

    2013-01-01

    Water-extractable organic matter (WEOM) in soil affects contaminant mobility and toxicity, heterotrophic production, and nutrient cycling in terrestrial and aquatic ecosystems. This study focuses on the influences of land use history and agricultural management practices on the water extractability of organic matter and nutrients from soils. Water-extractable organic matter was extracted from soils under different crop rotations (an annual rotation of wheat-pea/bean-wheat-flax or a perennial-based rotation of wheat-alfalfa-alfalfa-flax) and management systems (organic or conventional) and examined for its concentration, composition, and biodegradability. The results show that crop rotations including perennial legumes increased the concentration of water-extractable organic carbon (WEOC) and water-extractable organic nitrogen (WEON) and the biodegradability of WEOC in soil but depleted the quantity of water-extractable organic phosphorus (WEOP) and water-extractable reactive phosphorus. The 30-d incubation experiments showed that bioavailable WEOC varied from 12.5% in annual systems to 22% for perennial systems. The value of bioavailable WEOC was found to positively correlate with WEON concentrations and to negatively correlate with C:N ratio and the specific ultraviolet absorbance of WEOM. No significant treatment effect was present with the conventional and organic management practices, which suggested that WEOM, as the relatively labile pool in soil organic matter, is more responsive to the change in crop rotation than to mineral fertilizer application. Our results indicated that agricultural landscapes with contrasting crop rotations are likely to differentially affect rates of microbial cycling of organic matter leached to soil waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Im, Jungho; Jensen, John R.; Coleman, Mark; Nelson, Eric

    2009-08-01

    Abstract - Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized difference vegetation index based simple linear regression (NSLR), (2) partial least squares regression (PLSR) and (3) machine-learning regression trees (MLRT) to predict the biophysical and biochemical characteristics of the crops (leaf area index, stem biomass and five leaf nutrients concentrations). The calibration and cross-validation results were compared between the three techniques. The PLSR approach generally resulted in good predictive performance. The MLRT approach appeared to be a useful method to predict characteristics in a complex environment (i.e. many tree species and numerous fertilization and/or irrigation treatments) due to its powerful adaptability.

  12. Soil tillage, water erosion, and calcium, magnesium and organic carbon losses

    Directory of Open Access Journals (Sweden)

    Bertol Ildegardis

    2005-01-01

    Full Text Available Soil tillage influences water erosion, and consequently, losses of calcium, magnesium and organic carbon in surface runoff. Nutrients and organic carbon are transported by surface runoff in particulate form, adsorbed to soil colloids or soluble in water, depending on the soil tillage system. This study was carried out on an Inceptisol, representative of the Santa Catarina highlands, southern Brazil, between November 1999 and October 2001, under natural rainfall. The soil tillage treatments (no replications were: no-tillage (NT, minimum soil tillage with chiseling + disking (MT, and conventional soil tillage with plowing + two diskings (CT. The crop cycles sequence was soybean (Glycine max, oats (Avena sativa, beans (Phaseolus vulgaris and vetch (Vicia sativa. Conventional soil tillage treatment with plowing + two disking in the absence of crops (BS was also studied. Calcium and magnesium concentrations were determined in both water and sediments of the surface runoff, while organic carbon was measured only in sediments. Calcium and magnesium concentrations were greater in sediments than in surface runoff, while total losses of these elements were greater in surface runoff than in sediments. The greatest calcium and magnesium concentrations in surface runoff were obtained under CT, while in sediments the greatest concentration occurred under MT. Organic carbon concentration in sediments did not differ under the different soil tillage systems, and the greatest total loss was under CT system.

  13. Nitrogen Use and Carbon Sequestered by Corn Rotations in the Northern Corn Belt, U.S.

    Directory of Open Access Journals (Sweden)

    Joseph L. Pikul

    2001-01-01

    Full Text Available Diversified crop rotation may improve production efficiency, reduce fertilizer nitrogen (N requirements for corn (Zea mays L., and increase soil carbon (C storage. Objectives were to determine effect of rotation and fertilizer N on soil C sequestration and N use. An experiment was started in 1990 on a Barnes clay loam (U.S. soil taxonomy: fine-loamy, mixed, superactive, frigid Calcic Hapludoll near Brookings, SD. Tillage systems for corn–soybean (Glycine max [L.] Merr. rotations were conventional tillage (CS and ridge tillage (CSr. Rotations under conventional tillage were continuous corn (CC, and a 4-year rotation of corn–soybean–wheat (Triticum aestivum L. companion-seeded with alfalfa (Medicago sativa L.–alfalfa hay (CSWA. Additional treatments included plots of perennial warm season, cool season, and mixtures of warm and cool season grasses. N treatments for corn were corn fertilized for a grain yield of 8.5 Mg ha–1 (highN, of 5.3 Mg ha–1 (midN, and with no N fertilizer (noN. Total (1990–2000 corn grain yield was not different among rotations at 80.8 Mg ha–1 under highN. Corn yield differences among rotations increased with decreased fertilizer N. Total (1990–2000 corn yields with noN fertilizer were 69 Mg ha–1 under CSWA, 53 Mg ha–1 under CS, and 35 Mg ha–1 under CC. Total N attributed to rotations (noN treatments was 0.68 Mg ha–1 under CSWA, 0.61 Mg ha–1 under CS, and 0.28 Mg ha–1 under CC. Plant carbon return depended on rotation and N. In the past 10 years, total C returned from above- ground biomass was 29.8 Mg ha–1 under CC with highN, and 12.8 Mg ha–1 under CSWA with noN. Soil C in the top 15 cm significantly increased (0.7 g kg–1 with perennial grass cover, remained unchanged under CSr, and decreased (1.7 g kg–1 under CC, CS, and CSWA. C to N ratio significantly narrowed (–0.75 with CSWA and widened (0.72 under grass. Diversified rotations have potential to increase N use efficiency and reduce

  14. Energy indices in irrigated wheat production under conservation and conventional tillage and planting methods

    Directory of Open Access Journals (Sweden)

    S. M Hosseini

    2016-04-01

    Full Text Available Introduction: Conservation tillage system was recommended for soil erosion control in North America for the first time 60 years ago (Wang et al., 2006. Using this tillage system including minimum and zero tillage has been rapidly developed in recent years. Thearea covered by zero tillage in 2006 was 95 million ha all over the world (Dumanski et al., 2006. In addition to saving soil and water resources, conservation tillage system reduces energy consumption and improves energy indices by combining different tillage and planting operations. Results of research conducted in Fars province shows that conservation tillage saves fuel consumption for 77% compared to the conventional system (Afzalinia et al., 2009. Conservation tillage also reduces energy consumption from 23.6 to 42.8% in comparison to the conventional tillage (Rusu, 2005. Since energy indices would be affected by reduced input energies in conservation tillage, this research was conducted to evaluate the effect of different tillage and planting methods on energy inputs and energy indices in irrigated wheat production in Eghlid region. Materials and Methods: This research was performed to evaluate and compare the energy indices in irrigated wheat production under different tillage and planting methods. The study was conducted in the form of a randomized complete block experimental design with five treatments and three replications in Eghlid region. The treatments were included, conventional tillage and seed broadcasting (A, conventional tillage and planting with Machine Barzegar grain drill (B, reduced tillage and seeding with Roto-seeder (C, direct seeding with Jairan Sanaat grain drill (D, and direct seeding with Sfoggia direct drill (E. Experimental plots with 10 by 50 m dimensions were used in this study. Loss crop residues were taken out of the experimental plots and standing crop residues were retained in the plots. In the conventional tillage method, primary tillage was performed

  15. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes

    Directory of Open Access Journals (Sweden)

    Florine Degrune

    2017-06-01

    Full Text Available Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum below the seedbed (15–20 cm. Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional

  16. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes.

    Science.gov (United States)

    Degrune, Florine; Theodorakopoulos, Nicolas; Colinet, Gilles; Hiel, Marie-Pierre; Bodson, Bernard; Taminiau, Bernard; Daube, Georges; Vandenbol, Micheline; Hartmann, Martin

    2017-01-01

    Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( Vicia faba and Triticum aestivum ) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas

  17. How short rotation forest crops can be used for sustainable remediation of contaminated areas

    Energy Technology Data Exchange (ETDEWEB)

    Thiry, I.

    1996-09-18

    In large territories of the CIS, it becomes obvious from the factual consequences of the Chernobyl environmental contamination that no successful remediation actions can be achieved without considering realistic technical and economical issues. In these conditions, the Short Rotation Forestry concept for energy purposes is proposed as an alternative and integrated approach for the recovery of agricultural practices on waste farm land. This corrective option will be examined with respect to this ecological, economical, and social relevancy. Different aspects of the culture in contaminated areas and of energy production from biomass remain to be investigated, developed and validated in the light of radiation protection criteria. In particular, attention will be drawn on the opportunity of this new concept to be integrated in the development of the site remediation research activities at SCK.CEN.

  18. Sub-soil microbial activity under rotational cotton crops in Australia

    Science.gov (United States)

    Polain, Katherine; Knox, Oliver; Wilson, Brian; Pereg, Lily

    2016-04-01

    Soil microbial communities contribute significantly to soil organic matter formation, stabilisation and destabilisation, through nutrient cycling and biodegradation. The majority of soil microbial research examines the processes occurring in the top 0 cm to 30 cm of the soil, where organic nutrients are easily accessible. In soils such as Vertosols, the high clay content causes swelling and cracking. When soil cracking is coupled with rain or an irrigation event, a flush of organic nutrients can move down the soil profile, becoming available for subsoil microbial community use and potentially making a significant contribution to nutrient cycling and biodegradation in soils. At present, the mechanisms and rates of soil nutrient turnover (such as carbon and nitrogen) at depth under cotton rotations are mostly speculative and the process-response relationships remain unclear, although they are undoubtedly underpinned by microbial activity. Our research aims to determine the contribution and role of soil microbiota to the accumulation, cycling and mineralisation of carbon and nitrogen through the whole root profile under continuous cotton (Gossypium hirsutum) and cotton-maize rotations in regional New South Wales, Australia. Through seasonal work, we have established both baseline and potential microbial activity rates from 0 cm to 100 cm down the Vertosol profile, using respiration and colourimetric methods. Further whole soil profile analyses will include determination of microbial biomass and isotopic carbon signatures using phospholipid fatty acid (PLFA) methodology, identification of microbial communities (sequencing) and novel experiments to investigate potential rates of nitrogen mineralisation and quantification of associated genes. Our preliminary observations and the hypotheses tested in this three-year study will be presented.

  19. Distribution of nitrogen ammonium sulfate ({sup 15}N) soil-plant system in a no-tillage crop succession; Distribuicao do nitrogenio do sulfato de amonio ({sup 15}N) no sistema solo-planta, em uma sucessao de culturas, sob sistema plantio direto

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Flavia Carvalho da Silva, E-mail: flcsfernandes@gmail.com [Universidade Estadual de Maringa - Campus de Umuarama, PR (Brazil); Libardi, Paulo Leonel, E-mail: pllibard@esalq.usp.br [Departamento de Engenharia de Biossistemas, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP (Brazil)

    2012-05-15

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on {sup 15}N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha{sup -1}in the form of labeled {sup 15}N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha{sup -1}N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha{sup -1}N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha{sup -1}N. (author)

  20. Efeito de sistemas de preparo do solo e métodos de irrigação sobre a cultura do caupi em várzeas em Roraima Effect of tillage systems and irrigation methods on cowpea crop on wetland soil in Roraima

    Directory of Open Access Journals (Sweden)

    Roberto D. de Medeiros

    2005-06-01

    Full Text Available Dois experimentos foram conduzidos no Campo Experimental Bom Intento em Boa Vista, RR, de dezembro a março de 1995/96 e 1996/97, com o objetivo de se avaliar os diferentes sistemas de preparo do solo e de irrigação sobre a densidade do solo, e a cultura do feijão caupi cultivado em áreas de várzea. O delineamento experimental foi em blocos casualizados, no esquema de parcelas subdivididas com quatro repetições. O feijão cv. Sempre Verde foi testado sob os sistemas de irrigação por sulcos e aspersão convencional, em dois sistemas de preparo do solo: grade aradora + grade niveladora, grade aradora + arado de aiveca + grade niveladora. Não houve diferenças significativas nos componentes de produção nem na produtividade do feijão caupi irrigado, obtendo-se o rendimento médio de grãos de 1.853 kg ha-1, porém a densidade do solo aumentou significativamente (p Two experiments were carried out during December, 1995 to March, 1996 and from December, 1996 to March, 1997 at the Experimental Station of Bom Intento, Boa Vista, RR. The objective was to evaluate the effects of different irrigation systems and tillage on soil bulk density and cowpea crop on wetland soils. The experimental design consisted of a split plot in a randomized block design, with four replications. The cowpea cv. Sempre Verde was tested under furrow and sprinkler irrigation in two soil tillage systems, as follows: disc harrow + leveling disc harrow and plough grid + leveller grid + moldboard plough. There were no significant differences among treatments with respect to production components and the crop yield. The mean grain yield was 1,853 kg ha-1. The soil bulk density after tillage with plough grid + leveller grid was significantly (p < 0.05 increased in comparison with the other tillage practices.

  1. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter , gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less

  2. Crop Rotation Studies with Velvetbean (Mucuna deeringiana) for the Management of Meloidogyne spp.

    Science.gov (United States)

    Rodríguez-Kábana, R; Pinochet, J; Robertson, D G; Wells, L

    1992-12-01

    Results from a greenhouse experiment at Cabrils, Spain, with two velvetbean (Mucuna deeringiana) accessions (Florida and Mozambique) growing in sterilized sandy loam and inoculated with Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica revealed that the legume was not a host for these nematodes. In contrast, roots of 'Clemson Spineless' okra (Hibiscus esculentum), 'Summer Crookneck' squash (Cucurbita pepo), and 'Davis' soybean (Glycine max) were galled by all three root-knot nematodes. Greenhouse experiments at Auburn, Alabama, using soils infested with Heterodera glycines (race 14) + M. incognita or with H. glycines + M. arenaria (race 2) showed that, in contrast to Davis soybean, a Mexican and the Florida velvetbean accessions were not hosts for the nematodes. An experiment with 'Florunner' peanut (Arachis hypogaea) and the Florida velvetbean in a field infested with M. arenaria (race 1), near Headland, Alabama, showed that significant juvenile populations of the nematode at peanut harvest time were present only in plots with peanut. A microplot rotation experiment demonstrated that 'Black Beauty' eggplant (Solanum melongena) following the Florida velvetbean had heavier shoots and lower numbers of M. arenaria juveniles in the roots and in the soil than eggplant after Summer Crookneck squash or Davis soybean.

  3. In Situ Groundwater Denitrification in the Riparian Zone of a Short-Rotation Woody Crop Experimental Watershed

    Science.gov (United States)

    Jeffers, J. B.; Jackson, C. R.; Rau, B.; Pringle, C. M.; Matteson, C.

    2017-12-01

    The southeastern United States has potential to become a major producer of short rotation woody crops (SRWC) for the production of biofuels, but this will require converting to more intensive forest management practices that will increase nitrate (NO3-) loading and alter nitrogen cycling in nearby freshwater ecosystems. Water quality monitoring in an experimental short-rotation woody crop watershed in the Coastal Plain of South Carolina has shown increased concentrations of NO3- in groundwater but no evidence of increased NO3- in riparian groundwater or surface waters. Forested riparian areas established as streamside management zones (SMZ) are known to act as buffers to surface water bodies by mitigating nutrients. The objectives of this study were to quantify denitrification by measuring dinitrogen (N2) and nitrous oxide (N2O) concentrations along groundwater flow paths and analyze relationships between denitrification estimates, nutrients, and water chemistry parameters. A network of piezometers has been established in the Fourmile Experimental Watershed at the Department of Energy - Savannah River Site. Water samples were collected monthly and were analyzed for concentrations of nutrients (temperature, specific conductivity, dissolved oxygen, pH, dissolved organic carbon) and dissolved gases (N2, Ar, N2O). Preliminary data showed greater dissolved N2O concentrations than dissolved N2 concentrations in groundwater. The ratios of N2O to combined end products of denitrification (N2O / N2O+N2) ranged from 0.33 to 0.99. Mean N2O+N2 concentrations were greater in groundwater samples in the SRWC plot and along the SMZ boundary than along the ephemeral stream within the riparian zone. Correlations between water chemistry parameters and N2 concentrations are indicative of known biogeochemical driving factors of denitrification. Continued monthly sampling will be coupled with analysis of nutrient concentrations (NO3-, NH4+, TN) to help determine transport and processing

  4. Effects of ridge tillage on photosynthesis and root characters of rice

    Di