WorldWideScience

Sample records for tile wall program

  1. Recycling Roof Tile Waste Material for Wall Cover Tiles

    Directory of Open Access Journals (Sweden)

    Ambar Mulyono

    2014-02-01

    Full Text Available Prior research on roof tile waste treatment has attempted to find the appropriate technology to reuse old roof tile waste by  create  wall  cladding  materials  from  it.  Through  exploration  and  experimentation,  a  treatment  method  has  been discovered  to  transform  the  tile  fragments  into  artificial  stone  that  resembles  the  shape  of  coral.  This  baked  clay artificial stone material is then processed as a decorative element for vertical surfaces that are not load-bearing, such as on the interior and exterior walls of a building. Before applying the fragments as wall tiles, several steps must be taken: 1  Blunting,  which  changes  the  look  of  tile  fragments  using  a  machine  created  specifically  to  blunt  the  roof-tile fragment  edges,  2  Closing  the  pores  of  the  blunted  fragments  as  a  finishing  step  that  can  be  done  with  a  transparent coat or a solid color of paint, 3 Planting the transformed roof-tile fragments on a prepared tile body made of concrete. In this study, the second phase is done using the method of ceramics glazing at a temperature of 700 °C. The finishing step is the strength of this product because it produces a rich color artificial pebble.

  2. Coal fly ash utilization: Low temperature sintering of wall tiles

    International Nuclear Information System (INIS)

    Chandra, Navin; Sharma, Priya; Pashkov, G.L.; Voskresenskaya, E.N.; Amritphale, S.S.; Baghel, Narendra S.

    2008-01-01

    We present here a study of the sintering of fly ash and its mixture with low alkali pyrophyllite in the presence of sodium hexa meta phosphate (SHMP), a complex activator of sintering, for the purpose of wall tile manufacturing. The sintering of fly ash with SHMP in the temperature range 925-1050 deg. C produces tiles with low impact strength; however, the incremental addition of low alkali pyrophyllite improves impact strength. The impact strength of composites with ≥40% (w/w) pyrophyllite in the fly ash-pyrophyllite mix satisfies the acceptable limit (19.6 J/m) set by the Indian Standards Institute for wall tiles. Increasing the pyrophyllite content results in an increase in the apparent density of tiles, while shrinkage and water absorption decrease. The strength of fly ash tiles is attributed to the formation of a silicophosphate phase; in pyrophyllite rich tiles, it is attributed to the formation of a tridymite-structured T-AlPO 4 phase. Scanning electron micrographs show that the reinforcing rod shaped T-AlPO 4 crystals become more prominent as the pyrophyllite content increases in the sintered tiles

  3. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  4. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel; Dumusc, Raphael; Bilgili, Ahmet; Hernando, Juan; Eilemann, Stefan

    2014-01-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  5. The Level-1 Tile-Muon Trigger in the Tile Calorimeter upgrade program

    International Nuclear Information System (INIS)

    Ryzhov, A.

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers due to slow charged particles (typically protons) without degrading the efficiency of the trigger. The main activity of the Tile-Muon Trigger in the ATLAS Phase-0 upgrade program was to install and to activate the TileCal signal processor module for providing trigger inputs to the Level-1 Muon Trigger. This report describes the Tile-Muon Trigger, focusing on the new detector electronics such as the Tile Muon Digitizer Board (TMDB) that receives, digitizes and then provides the signal from eight TileCal modules to three Level-1 muon endcap Sector-Logic Boards.

  6. The Level-1 Tile-Muon Trigger in the Tile Calorimeter Upgrade Program

    CERN Document Server

    Ryzhov, Andrey; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's last radial layer can assist in muon tagging using Level-1 muon trigger. It can help in the rejection of fake muon triggers arising from background radiation (slow charged particles - protons) without degrading the efficiency of the trigger. The TileCal main activity for Phase-0 upgrade ATLAS program (2013-2014) was the activation of the TileCal third layer signal for assisting the muon trigger at 1.0<|η|<1.3 (Tile-Muon Trigger). This report describes the Tile-Muon Trigger at TileCal upgrade activities, focusing on the new on-detector electronics such as Tile Muon Digitizer Board (TMDB) to provide (receive and digitize) the signal from eight TileCal modules to three Level-1 muon endcap sector logic blocks.

  7. Research on Reasons for Repeated Falling of Tiles in Internal Walls of Construction

    Science.gov (United States)

    Xu, LiBin; Chen, Shangwei; He, Xinzhou; Zhu, Guoliang

    2018-03-01

    In view of the quality problem of repeated falling of facing tiles in some construction, the essay had a comparative trial in laboratory on cement mortar which is often used to paste tiles, special tile mortar and dry-hang glue, and measured durability of tile adhesive mortar through freezing and thawing tests. The test results indicated that ordinary cement mortar cannot meet standards due to reasons like big shrinkage and low adhesive. In addition, the ten times of freezing and thawing tests indicated that ordinary cement mortar would directly shell and do not have an adhesive force, and moreover, adhesive force of special tile mortar would reduce. Thus, for tiles of large size which are used for walls, dry-hang techniques are recommended to be used.

  8. Seismic analysis and testing of clay tile walls at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Fricke, K.E.; Jones, W.D.

    1989-01-01

    The recent DOE 6430.1A General Design Criteria has emphasized the importance of determining the adequacy and, hence, safety of both new and old facilities to natural phenomenon hazards such as earthquakes and high winds. In order to meet the criteria, an existing unreinforced clay time wall, which is an integral part of a new facility being placed in an old building, has been evaluated for resistance to seismic events. Part I of this paper consists of the analytical studies. The facility was mathematically modeled and analyzed using a finite element program. The material properties used in the analysis are based exclusively on data available in the current engineering literature for masonry blocks and walls. The results of the analysis conclude that the wall is adequate to meet the seismic requirements per the new criteria, but the results of the testing program described in Part II will eventually need to be incorporated into the analysis. Part II documents the results of a testing program to obtain material properties of the masonry and verify the values used in the analysis of Part I. The fact that most of the available testing data is on brick and concrete block and that the condition of the walls throughout the plants is suspect led to the testing program. The following tests on clay-tile walls, units, and panels were performed: (1) in-situ mortar joint shear strength of existing 12-inch walls, (2) compression strength, (3) tensile strength, and (4) diagonal tension (shear) strength of panels taken from the existing walls. The test results at this time are fairly inconclusive and have high standard deviations. The testing program is ongoing and is currently being expanded

  9. Development of remote replacement system for armor tiles of first wall of FER

    International Nuclear Information System (INIS)

    Adachi, Junichi; Yoshizawa, Shunji; Nakano, Yasuo; Kuboyama, Takashi; Shibanuma, Kiyoshi; Kakudate, Satoshi; Oka, Kiyoshi.

    1993-01-01

    A remote system has been developed to replace automatically armor tiles of first walls with a single manipulator arm for the Fusion Experimental Reactor (FER). The system is composed of a manipulator arm and an end-effector (a tile replacement hand), which have a gripper of the tiles, a nutrunner to rotate attatching bolts of them and a vision sensor to measure positions of them. The system can replace the tiles by means of a visual feedback system using vision sensor, even if the positions of the tiles would have changed. As a result of tests, it has been proved that the end-effector is useful and the control system is practicable. (author)

  10. Analysis and design of the beryllium tiles for the JET ITER-like wall project

    International Nuclear Information System (INIS)

    Thompson, V.; Krivchenkov, Y.; Riccardo, V.; Vizvary, Z.

    2007-01-01

    Work is in progress to completely replace, in 2008/9, the existing JET CFC tiles with a configuration of plasma facing materials consistent with the ITER design. The ITER-like wall (ILW) will be created with a combination of beryllium (Be), tungsten (W), W-coated CFC and Be-coated inconel tiles, with the material depending on the local anticipated heat flux and geometry. Over 4000 tiles will be replaced and the ILW will accommodate additional heating up to at least 50 MW for 10 s. One of the objectives is to maintain or improve the existing CFC tile power handling performance which has been achieved in most cases by hiding bolt holes, optimising tile size and profile and introducing castellations on plasma facing surfaces. This paper describes the generic problems associated with the Be tiles (power handling capacity and disruption induced eddy currents) and illustrates the solution selected for the inner wall guard limiter (IWGL) where the present CFC tiles will be replaced with Be

  11. Mineralogical characterization of historical portuguese wall tiles of Sao Luis, Maranhao, Brazil

    International Nuclear Information System (INIS)

    Rivas Mercury, J.M.; Vasconcelos, N.S.L.S.; Cabral, A.A.; Pereira, D.J. Costa; Angelica, R.S.

    2010-01-01

    Portuguese wall tiles from centuries, XVII, XVIII and XIX, found in Sao Luis Maranhao has been studied by X-ray diffraction, in order to interpret the possible raw material and burning temperature. The mineral phases, Quartz, Wollastonite, Calcite and Gehlenite were identified in all samples. Based on the results it is possible to affirm that the main raw materials used to manufacture this materials was probably mixtures of kaolinite clay and calcite. Based on the mineralogical information it was also possible to state that burning temperature of this wall tiles was lower than 1000 deg C. (author)

  12. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    Science.gov (United States)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  13. Ancient Wall Tiles – The Importance of the Glaze/Ceramic Interface in Glaze Detachment

    Directory of Open Access Journals (Sweden)

    Marisa COSTA

    2014-04-01

    Full Text Available One of the most severe pathologies suffered by early industrially produced tiles in Portugal in late nineteenth century is glaze detachment in wall tiles placed in the lower part of the façade. It is known that salts crystallize provoking the glaze detachment, destroying the waterproofing and the beauty of the wall tile and this is one of the crucial factors towards this occurrence. The present work questions the importance of the thickness of glaze/ceramic body interface, in what concerns glaze detachment provoked by salt crystallization. SEM-EDS was used to perform all the observations that lead to the conclusion that the exuberance of the interface between glaze and ceramic body has no influence in the resistance of the glaze to salt crystallization though time, being the porous network more determinant. DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3815

  14. Multi-application inter-tile synchronization on ultra-high-resolution display walls

    KAUST Repository

    Nam, Sungwon

    2010-01-01

    Ultra-high-resolution tiled-display walls are typically driven by a cluster of computers. Each computer may drive one or more displays. Synchronization between the computers is necessary to ensure that animated imagery displayed on the wall appears seamless. Most tiled-display middleware systems are designed around the assumption that only a single application instance is running in the tiled display at a time. Therefore synchronization can be achieved with a simple solution such as a networked barrier. When a tiled display has to support multiple applications at the same time, however, the simple networked barrier approach does not scale. In this paper we propose and experimentally validate two synchronization algorithms to achieve low-latency, intertile synchronization for multiple applications with independently varying frame rates. The two-phase algorithm is more generally applicable to various highresolution tiled display systems. The one-phase algorithm provides superior results but requires support for the Network Time Protocol and is more CPU-intensive. Copyright 2010 ACM.

  15. The remote maintenance of mechanically attached first wall armour tiles in NET

    International Nuclear Information System (INIS)

    Reeve, T.; Shaw, R.; Suppan, A.; Haferkamp, B.

    1991-01-01

    Protection of a substantial proportion of the NET First Wall (FW) with low-Z armour is envisaged for at least the early operating period of the machine. This armour will take the form of carbon tiles directly attached to the FW. Complete coverage of the FW will require the installation of 20 000-40 000 tiles. The uncertainties existing in FW operating conditions make it difficult to predict the lifetime of the armour components. However, based on present experience, a number of component failures is to be expected in addition to the general wear by plasma erosion. Bearing in mind the hostile environment within the machine, the remote maintainability of these components is thus of fundamental importance and has strongly influenced their design. Mechanical attachment is considered to be the only viable approach for remotely maintainable armour tiles. A series of tools for mounting and demounting such tiles is currently under development at KfK, Karlsruhe. Handling trials are being carried out on a local FW mock-up to optimise the tile attachment designs for efficient remote handling, to provide input to the overall system design and to facilitate the progressive evolution of effective remote handling tools. Such, tools will subsequently be tested in conjunction with The NET Articulated Boom prototype articulated boom transporter to prove their fitness for purpose. The paper reports the current status of this work and outlines the design and principles of operation of the tools developed. The results and conclusions of the investigations to date, including any practical modifications considered necessary to either the original tile attachment arrangements or the preliminary tool designs, are presented. The philosophy behind the attachment and detachment procedures envisaged is also described. (orig.)

  16. Analyses of microstructure, composition and retention of hydrogen isotopes in divertor tiles of JET with the ITER-like wall

    Science.gov (United States)

    Masuzaki, S.; Tokitani, M.; Otsuka, T.; Oya, Y.; Hatano, Y.; Miyamoto, M.; Sakamoto, R.; Ashikawa, N.; Sakurada, S.; Uemura, Y.; Azuma, K.; Yumizuru, K.; Oyaizu, M.; Suzuki, T.; Kurotaki, H.; Hamaguchi, D.; Isobe, K.; Asakura, N.; Widdowson, A.; Heinola, K.; Jachmich, S.; Rubel, M.; contributors, JET

    2017-12-01

    Results of the comprehensive surface analyses of divertor tiles and dusts retrieved from JET after the first ITER-like wall campaign (2011-2012) are presented. The samples cored from the divertor tiles were analyzed. Numerous nano-size bubble-like structures were observed in the deposition layer on the apron of the inner divertor tile, and a beryllium dust with the same structures were found in the matter collected from the inner divertor after the campaign. This suggests that the nano-size bubble-like structures can make the deposition layer to become brittle and may lead to cracking followed by dust generation. X-ray photoelectron spectroscopy analyses of chemical states of species in the deposition layers identified the formation of beryllium-tungsten intermetallic compounds on an inner vertical tile. Different tritium retention profiles along the divertor tiles were observed at the top surfaces and at deeper regions of the tiles by using the imaging plate technique.

  17. Thermal load resistance of erosion-monitoring beryllium maker tile for JET ITER like wall project

    International Nuclear Information System (INIS)

    Hirai, T.; Linke, J.; Sundelin, P.; Rubel, M.; Coad, J.P.; Matthews, G.F.; Lungu, C.P.

    2007-01-01

    The ITER reference materials, beryllium (Be), carbon fibre composite (CFC) and tungsten (W), have been tested separately in tokamaks. An integrated test demonstrating both compatibility of metal plasma facing components with high-power operation and acceptable tritium retention has not yet been carried out. At JET, the size, magnetic field strength and high plasma current allow to conducting tests with the combination of the materials. Thus, the ITER-like Wall (ILW) project has been launched. In the project, Be will be the plasmafacing material on the main chamber wall of JET. To assess the erosion of the Be tiles, a Be marker tile was proposed and designed. The test samples which simulate the JET Be marker tile have been produced in MEdC, Romania in order to study the thermal load resistance of the JET Be marker (20 x 20 mm 2 size with 30 mm height). The marker tile sample consists of bulk Be, high-Z interlayer (2-3 μm Ni coating) and 8-9 μm Be coating. Thermionic Vacuum Arc (TVA) techniques based on the electron-induced evaporation have been selected for this purpose. In the present work, the global characterization of the maker tile samples and thermal load tests were performed. After the pre-characterization (microstructure observation by scanning electron microscope and elemental analysis by means of Wavelength Dispersive X-ray Spectroscopy and Energy Dispersive X-ray Spectroscopy), the thermal loading tests were performed in the electron beam facility JUDITH. The coating consisted of tiny platelets of ∝0.1 um in diameter and localized larger platelets of 1 um in diameter. The surface and bulk temperature were observed during the tests. In the screening thermal load test, the samples were loaded to 6 MW/m 2 for 10 s. The layers did not show any macroscopic damages at up to 4.5 MW/m 2 for 10 s (45 MJ/m 2 ). However, the coating delaminated and the maker was damaged when the thermal loading reached at 5 MW/m 2 (∝50 MJ/m 2 ). Cyclic heat load tests were

  18. Sintering behavior of porous wall tile bodies during fast single-firing process

    Directory of Open Access Journals (Sweden)

    Sidnei José Gomes Sousa

    2005-06-01

    Full Text Available In ceramic wall tile processing, fast single-firing cycles have been widely used. In this investigation a fast single-firing porous wall tile mixture was prepared using raw materials from the North Fluminense region.Specimens were obtained by uniaxial pressing and sintered in air at various temperatures (1080 - 1200 °C using a fast-firing cycle (60 minutes. Evolution of the microstructure was followed by XRD and SEM. The results revealed that the main phases formed during the sintering step are anorthite, gehlenite and hematite. It appears that the sintering process is characterized by the presence of a small amount of a liquid phase below 1140 °C. As a result, the microstructure of the ceramic bodies showed a network of small dense zones interconnected with a porous phase. In addition, the strength of the material below 1140 °C appeared to be related to the type and quantity of crystalline phases in the sintered bodies.

  19. Out-of-plane behavior of hollow clay tile walls infilled between steel frames

    International Nuclear Information System (INIS)

    Butala, M.B.; Jones, W.D.; Beavers, J.E.

    1991-01-01

    Several Buildings at the Department of Energy (DOE) Oak Ridge Y-1 2 Plant rely on unreinforced hollow clay tile walls (HCTW) infilled between unbraced, non-moment resisting steel frames to resist natural phenomena forces, seismic and wind. One critical building relies on moment resisting steel frames in one direction while relying on unreinforced HCTWs infilled between the columns in the orthogonal direction to resist these forces. The HCTWs must act as shear walls while maintaining out-of-plane lateral stability. In assessing the safety of these buildings to seismic forces, several models to study the in- and out-of-plane effects were made and analyzed. The study of the moment resisting steel framed building indicated that bending stresses in the walls were induced by building drift and not by inertial forces per se. The discovery of this phenomenon was some what of a surprise in that the analysis performed is not typically used in design of these structures. The study indicated that the walls began to crack at their interface with the foundation at a low open-quotes gclose quotes level and that horizontal cracking at different elevations continued until the walls exhibited little bending resistance

  20. Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Tokitani, M., E-mail: tokitani.masayuki@LHD.nifs.ac.jp [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, M. [Shimane University, Matsue, Shimane 690-8504 (Japan); Masuzaki, S. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Fujii, Y. [Shimane University, Matsue, Shimane 690-8504 (Japan); Sakamoto, R. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Oya, Y. [Shizuoka University, Shizuoka 422-8529 (Japan); Hatano, Y. [University of Toyama, Toyama 930-8555 (Japan); Otsuka, T. [Kindai University, Higashi-Osaka, Osaka, 577-8502 (Japan); Oyaidzu, M.; Kurotaki, H.; Suzuki, T.; Hamaguchi, D.; Isobe, K.; Asakura, N. [National Institute for Quantum and Radiological Science and Technology (QST), Rokkasho Aomori 039-3212 (Japan); Widdowson, A. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Rubel, M. [Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden)

    2017-03-15

    Highlights: • Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall were studied. • The stratified mixed-material deposition layer composed by W, C, O, Mo and Be with the thickness of ∼1.5 μm was formed on the apron of Tile 1. • The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. - Abstract: Micro-/nano-characterization of the surface structures on the divertor tiles used in the first campaign (2011–2012) of the JET tokamak with the ITER-like wall (JET ILW) were studied. The analyzed tiles were a single poloidal section of the tile numbers of 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. A sample from the apron of Tile 1 was deposition-dominated. Stratified mixed-material layers composed of Be, W, Ni, O and C were deposited on the original W-coating. Their total thickness was ∼1.5 μm. By means of transmission electron microscopy, nano-size bubble-like structures with a size of more than 100 nm were identified in that layer. They could be related to deuterium retention in the layer dominated by Be. The surface microstructure of the sample from Tile 4 also showed deposition: a stratified mixed-material layer with the total thickness of 200–300 nm. The electron diffraction pattern obtained with transmission electron microscope indicated Be was included in the layer. No bubble-like structures have been identified. The surface of Tile 3, originally coated by Mo, was identified as the erosion zone. This is consistent with the fact that the strike point was often located on that tile during the plasma operation. The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. In particular, a complex mixed-material deposition layer could affect hydrogen isotope retention and dust formation.

  1. The Pagoda Sequence: a Ramble through Linear Complexity, Number Walls, D0L Sequences, Finite State Automata, and Aperiodic Tilings

    Directory of Open Access Journals (Sweden)

    Fred Lunnon

    2009-06-01

    Full Text Available We review the concept of the number wall as an alternative to the traditional linear complexity profile (LCP, and sketch the relationship to other topics such as linear feedback shift-register (LFSR and context-free Lindenmayer (D0L sequences. A remarkable ternary analogue of the Thue-Morse sequence is introduced having deficiency 2 modulo 3, and this property verified via the re-interpretation of the number wall as an aperiodic plane tiling.

  2. Characterization of non-calcareous 'thin' red clay from south-eastern Brazil: applicability in wall tile manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, S. J.G.; Holanda, J. N.F., [Grupo de Materiais Ceramicos - LAMAV-CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ (Brazil)

    2012-04-15

    In this work the use of 'thin' red clay from south-eastern Brazil (Campos dos Goytacazes, RJ) as raw material for the manufacture of wall tile was investigated. A wide range of characterization techniques was employed, including X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), grain-size analysis, and thermogravimetric analysis. The wall tile body was prepared by the dry process. The tile pieces were uniaxially pressed and fired between 1080 - 1180 deg C using a fast-firing cycle. The following technological properties were determined: linear shrinkage, water absorption, apparent density, and flexural strength. The development of the microstructure was followed by SEM and XRD analyses. It was found that the 'thin' red clay is kaolinitic type containing a substantial amount of quartz. The results also showed that the 'thin' red clay could be used in the manufacture of wall tiles, as they present properties compatible with those specified for class BIII of ISO 13006 standard. (author)

  3. Progress in the design of mechanically attached, conductively cooled low-Z armour tiles for the NET integrated first wall

    International Nuclear Information System (INIS)

    Shaw, R.; Vieider, G.

    1991-01-01

    For the NET device complete or extensive coverage of the first wall with a low-Z armour is envisaged. This armour may comprise a general protection, ∝90% total first-wall surface, of low-temperature conductively cooled tiles, complemented by a local protection of radiatively cooled tiles in regions where near peak fluxes are incident. A low-temperature (∝1000deg C) carbon-based armour, cooled via conduction to the reference NET integrated first wall, has been developed using currently available materials. The armour comprises a small square tile fabricated in high-conductivity 3-D or random-fibre carbon fibre reinforced carbon composite attached to the steel first wall via a stainless-steel/refractory metal stud assembly. Attachment forces are maintained within acceptable limits, particularly during baking, through material selection and component geometry. To ensure effective heat transfer throughout the duty cycle an intermediate conductive layer of a highly compliant material is foreseen. The scope of the paper covers the design of the armour assembly for proof of principle testing with the NET first-wall test section, TS1, and reports the results of supporting thermomechanical analyses. (orig.)

  4. Fabrication of ceramic wall tiles and their use in the uptake of radioactive 137Cs, 90Sr and 57Co

    International Nuclear Information System (INIS)

    Khalil, T.K.; El-Gammal, B.; Abou El-Nour, F.; Bossert, J.

    2003-01-01

    Egyptian waste materials as air cooled blast furanace slag's were added in different quantities to mixtures of egyptian raw materials applying the single fast firing technique for producing wall tiles. The physico-chemical characteristics of the waste materials as well as the raw materials were studied before and after the thermal treatment. The reactions occurred during the firing procces and the formation of the end phases were followed using DTA-TG, X-ray diffractometry and heating microscopy. The effect of composition on bend strength, water absorption and firing shrinkage was studied. As a result, promising wall tiles with high bend strength, low water absorption and low firing shrinkage, containing high percentage of waste materials (50 wt% of the slag) and fired at 1100degree C for 30 minures were fabricated

  5. Upgrade of the protection system for the first wall at JET in the ITER Be and W tiles perspective

    International Nuclear Information System (INIS)

    Piccolo, F.; Sartori, F.; Zabeo, L.; Conte, G.; Gauthier, E.

    2006-01-01

    At JET the increase of the additional heating power and the first wall upgrade with a new Be and W tiles in preparation for ITER will require improving the protection system in order to guarantee the integrity of the wall. An accurate estimation of the power load and the temperature of the tiles during a discharge will become crucial to prevent damage to the structure. In that perspective the JET protection system (WALLS) has been substantially improved and is now running at JET. The plasma magnetic information and the input power to the plasma are used to evaluate the thermal load all along the first wall. The evolution of the power distribution and tile temperature during and after a discharge are then calculated by the system. A termination of the discharge is required if a thermal limit is reached or if a vulnerable area of the vessel is exposed to an excessive level of power. An improvement in the results has been obtained using more accurate plasma boundary and magnetic information [L.Zabeo et al.'A new approach to the solution of the vacuum magnetic problem in fusion machines' this conference], developing a detailed physical model (state space) for the heat diffusion for the tiles and having a better estimation of the power deposition and distribution. The real-time data provided by the bolometry has also been taken into the account in order to evaluate the radiated power. The calibration and validation of the system have been achieved with a systematic comparison between the implemented models and the temperatures provided by the thermocouples and the new Infrared Camera. In this paper a description of the structure of the system will be briefly summarized. The models adopted to estimate the power distribution and the thermal diffusion and the comparison with IR camera will be also reported, followed by some experimental examples. (author)

  6. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    Science.gov (United States)

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235

  7. Allowable heat load on the edge of the ITER first wall panel beryllium flat tiles

    Directory of Open Access Journals (Sweden)

    R. Mitteau

    2017-08-01

    Full Text Available Plasma facing components are usually qualified to a given heat load density applied at the top face of the armour tiles with normal incidence angle. When employed in tokamak fusion machines, heat loading on the tile sides is possible due to optimised shaping, that doesn't provide edge shadowing for all design situations. An edge heat load may occur both at the tile and component scales. The edge load needs to be controlled and quantified. The adequate control of edge heat loads is especially critical for water cooled components that uses armour tiles which are bonded to the heat sink, for ensuring the long-term integrity of the tile bonding. An edge heat load allowance criterion of 10% of the top heat load is proposed. The 10% criterion is supported by experimental heat flux tests.

  8. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    Science.gov (United States)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  9. Multi-application inter-tile synchronization on ultra-high-resolution display walls

    KAUST Repository

    Nam, Sungwon; Deshpande, Sachin; Vishwanath, Venkatram; Jeong, Byungil; Renambot, Luc; Leigh, Jason

    2010-01-01

    barrier. When a tiled display has to support multiple applications at the same time, however, the simple networked barrier approach does not scale. In this paper we propose and experimentally validate two synchronization algorithms to achieve low-latency

  10. Thermal load testing of erosion-monitoring beryllium marker tile for the ITER-Like Wall Project at JET

    International Nuclear Information System (INIS)

    Hirai, T.; Linke, J.; Rubel, M.; Coad, J.P.; Likonen, J.; Lungu, C.P.; Matthews, G.F.; Philipps, V.; Wessel, E.

    2008-01-01

    ITER-Like Wall Project has been launched at JET in order to perform a fully integrated test of plasma-facing materials. During the next major shutdown a full metal wall will be installed: tungsten in the divertor and beryllium in the main chamber. Beryllium erosion is one of key issues to be addressed. Special marker tiles have been designed for this purpose. Test coupons of such markers have been manufactured and examined. The performance test under high power deposition was carried in the electron beam facility JUDITH. The results of material characterization before and after high heat flux loads are presented. The samples survived, without macroscopic damage, power loads of up to 4.5 MW/m 2 for 10 s (surface temperature ∼650 deg. C) and 50 cyclic loads at 3.5 MW/m 2 lasting 10 s each (surface temperature ∼600 deg. C)

  11. Exploring Programming Paradigms with IoT and Tiles for End-Users

    OpenAIRE

    Satcher, Daniel Alexander

    2017-01-01

    This work explores visual, textual, and physical programming paradigms in order to create software that allows non-technical users to create applications using a rule-based engine. This rule-based engine prototype, Tiles Recorder, has been implemented and tested with initial users. Future research will have the possibly of expanding the current prototype or continue testing to assess further relevance.

  12. Mineralogical characterization of historical portuguese wall tiles of Sao Luis, Maranhao, Brazil; Caracterizacao mineralogica de azulejos portugueses do Centro Historico de Sao Luis do Maranhao

    Energy Technology Data Exchange (ETDEWEB)

    Rivas Mercury, J.M.; Vasconcelos, N.S.L.S.; Cabral, A.A., E-mail: rivascefetma@gmail.co [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranhao (IFMA), Sao Luis, MA (Brazil). Programa de Mestrado em Engenharia de Materiais; Pereira, D.J. Costa [Centro de Criatividade Odylo Costa Filho (SECMA), Sao Luis, MA (Brazil). Centro Historico; Angelica, R.S. [Universidade Federal do Para (CG/UFPA), Belem, PA (Brazil). Inst. de Geociencias

    2010-07-01

    Portuguese wall tiles from centuries, XVII, XVIII and XIX, found in Sao Luis Maranhao has been studied by X-ray diffraction, in order to interpret the possible raw material and burning temperature. The mineral phases, Quartz, Wollastonite, Calcite and Gehlenite were identified in all samples. Based on the results it is possible to affirm that the main raw materials used to manufacture this materials was probably mixtures of kaolinite clay and calcite. Based on the mineralogical information it was also possible to state that burning temperature of this wall tiles was lower than 1000 deg C. (author)

  13. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase~0 occurs during 2013-2014, Phase~1 during 2018-1019 and finally Phase~2, which is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 10$^{34}$ cm$^2$s$^{-1}$ (HL-LHC). The main TileCal upgrade is focused on the Phase~2 period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased radiation levels. An ambitious upgrade development program is pursued to study different electronics options. Three options are presently being investigated for the front-end electronic upgrade. The first option is an improved version of the present system built using comm...

  14. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2024 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  15. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase 0 occurs during 2013-2014 and prepares the LHC to reach peak luminosities of 1034 cm2s-1; Phase 1, foreseen for 2018-1019, prepares the LHC for peak luminosity up to 2-3 x 1034 cm2s-1, corresponding to 55 to 80 interactions per bunch-crossing with 25 ns bunch interval; and Phase 2 is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 1034 cm2s-1 (HL-LHC). With luminosity leveling, the average luminosity will increase with a factor 10. The main TileCal upgrade is focused on the HL-LHC period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased rad...

  16. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2023 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  17. Characterization of non-calcareous 'thin' red clay from south-eastern Brazil: applicability in wall tile manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, S.J.G.; Holanda, J.N.F., E-mail: sidnei_rjsousa@yahoo.com.br, E-mail: holanda@uenf.br [Grupo de Materiais Ceramicos - LAMAV-CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ (Brazil)

    2012-04-15

    In this work the use of 'thin' red clay from south-eastern Brazil (Campos dos Goytacazes, RJ) as raw material for the manufacture of wall tile was investigated. A wide range of characterization techniques was employed, including X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), grain-size analysis, and thermogravimetric analysis. The wall tile body was prepared by the dry process. The tile pieces were uniaxially pressed and fired between 1080 - 1180 deg C using a fast-firing cycle. The following technological properties were determined: linear shrinkage, water absorption, apparent density, and flexural strength. The development of the microstructure was followed by SEM and XRD analyses. It was found that the 'thin' red clay is kaolinitic type containing a substantial amount of quartz. The results also showed that the 'thin' red clay could be used in the manufacture of wall tiles, as they present properties compatible with those specified for class BIII of ISO 13006 standard. (author)

  18. Life cycle assessment and product category rules for the construction sector. The floor and wall tiles sector case study; Analisis de ciclo de vida y reglas de categoria de producto en la construccion. El caso de las baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Benveniste, G.; Gazulla, C.; Fullana, P.; Celades, I.; Ros, T.; Zaera, V.; Godes, B.

    2011-07-01

    This paper illustrates the Life Cycle Analysis (LCA) activities performed during the preparation of the Spanish Product Category Rules (PCR) relative to the construction sector. Specifically, the study presents the results obtained from the life cycle analysis of the floor and wall tile sector, which served as the basis for the drafting of the PCR required for the definition of Environmental Product Declarations (EPD). More than 50 Spanish companies in the ceramic tile sector participated in the study, providing inventory data on the manufacture of their products. Additionally, bibliographic information and the GaBi 4 software database by PE International were used to complete background and generic data, such as those related to energy and transportation processes. EPDs are voluntary declarations based on LCA studies that permit the disclosure and dissemination of environmental information quantified over the life cycle of a product. The definition of PCRs for ceramic tiles was performed in accordance to the UNE EN ISO 14025 and ISO 21930 standards and they have been submitted to industries and professional association public consultations. PCRs have been developed in the context of the DAPc program (promoted by the Catalan Government and CAATEEB) and represents the first eco labelling activity for building products in Spain. (Author) 18 refs.

  19. Status of the beryllium tile bonding qualification activities for the manufacturing of the ITER first wall

    International Nuclear Information System (INIS)

    Mitteau, Raphaël; Eaton, R.; Perez, G.; Zacchia, F.; Banetta, S.; Bellin, B.; Gervash, A.; Glazunov, D.; Chen, J.

    2015-01-01

    The preparation of the manufacturing of the ITER first wall involves a qualification stage. The qualification aims at demonstrating that manufacturers can deliver the needed reliability and quality for the beryllium to copper bond, before the manufacturing can commence. The qualification is done on semi-prototype, containing relevant features relative to the beryllium armour (about 1/6 of the panel size). The qualification is done by the participating parties, firstly by a manufacturing semi-prototype and then by testing it under heat flux. One semi-prototype is manufactured and is being tested, and further from other manufacturers are still to come. The qualification programme is accompanied by bond defect investigations, which aim at defining defect acceptance criteria. Qualification and defect acceptance programme are supported by thermal and stress analyses, with good agreement regarding the thermal results, and some insights about the governing factors to bond damage.

  20. Status of the beryllium tile bonding qualification activities for the manufacturing of the ITER first wall

    Energy Technology Data Exchange (ETDEWEB)

    Mitteau, Raphaël, E-mail: Raphael.mitteau@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Eaton, R.; Perez, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Zacchia, F.; Banetta, S.; Bellin, B. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Gervash, A.; Glazunov, D. [Efremov Research Institute, 189631 St. Petersburg (Russian Federation); Chen, J. [Southwestern Institute of Physics, Huangjing Road, Chengdu 610225 (China)

    2015-10-15

    The preparation of the manufacturing of the ITER first wall involves a qualification stage. The qualification aims at demonstrating that manufacturers can deliver the needed reliability and quality for the beryllium to copper bond, before the manufacturing can commence. The qualification is done on semi-prototype, containing relevant features relative to the beryllium armour (about 1/6 of the panel size). The qualification is done by the participating parties, firstly by a manufacturing semi-prototype and then by testing it under heat flux. One semi-prototype is manufactured and is being tested, and further from other manufacturers are still to come. The qualification programme is accompanied by bond defect investigations, which aim at defining defect acceptance criteria. Qualification and defect acceptance programme are supported by thermal and stress analyses, with good agreement regarding the thermal results, and some insights about the governing factors to bond damage.

  1. Tile-based self-assembly of a triple-helical polysaccharide into cell wall-like mesoporous nanocapsules.

    Science.gov (United States)

    Wu, Chaoxi; Wang, Xiaoying; Wang, Jianjing; Zhang, Zhen; Wang, Zhiping; Wang, Yifei; Tang, Shunqing

    2017-07-20

    Tile-based self-assembly is a robust system in the construction of three-dimensional DNA nanostructures but it has been rarely applied to other helical biopolymers. β-Glucan is an immunoactive natural polymer which exists in a triple helical conformation. Herein, we report that β-glucan, after modification using two types of short chain acyl groups, can self-assemble into tiles with inactivated sticky ends at the interface of two solvents. These tiles consist of a single layer of helices laterally aligned, and the sticky ends can be activated when a few acyl groups at the ends are removed; these tiles can further pack into mesoporous nanocapsules, in a similar process as the sticky DNA tiles pack into complex polyhedral nano-objects. These nanocapsules were found to have targeted effects to antigen presenting cells in a RAW264.7 cell model. Our study suggests that tile-based self-assembly can be a general strategy for helical biopolymers, and on fully exploiting this strategy, various new functional nanostructures will become accessible in the future.

  2. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  3. Development, installation, and initial operation of DIII-D graphite armor tiles

    International Nuclear Information System (INIS)

    Anderson, P.M.; Baxi, C.B.; Reis, E.E.; Smith, J.P.; Smith, P.D.

    1988-04-01

    An upgrade of the DIII-D vacuum vessel protection system has been completed. The ceiling, floor, and inner wall have been armored to enable operation of CIT-relevant doublenull diverted plasmas and to enable the use of the inner wall as a limiting surface. The all- graphite tiles replace the earlier partial coverage armor configuration which consisted of a combination of Inconel tiles and graphite brazed to Inconel tiles. A new all-graphite design concept was chosen for cost and reliability reasons. The 10 minute duration between plasma discharges required the tiles to be cooled by conduction to the water-cooled vessel wall. Using two and three- dimensional analyses, the tile design was optimized to minimize thermal stresses with uniform thermal loading on the plasma-facing surface. Minimizing the stresses around the tile hold-down feature and eliminating stress concentrators were emphasized in the design. The design of the tile fastener system resulted in sufficient hold-down forces for good thermal conductance to the vessel and for securing the tile against eddy current forces. The tiles are made of graphite, and a program to select a suitable grade of graphite was undertaken. Initially, graphites were compared based on published technical data. Graphite samples were then tested for thermal shock capacity in an electron beam test facility at the Sandia National Laboratory (SNLA) in Albuquerque, New Mexico, USA. 4 refs., 6 figs

  4. Tokamak first-wall coating program development

    International Nuclear Information System (INIS)

    Davis, M.J.; Langley, R.A.; Prevender, T.S.

    1977-08-01

    The development of a research program to study coatings for control of impurities originating from the first wall of a Tokamak reactor is extensively discussed. The first wall environment and sputtering, temperature, surface chemical, and bulk radiation damage effects are reviewed. Candidate materials and application techniques are discussed. The philosophy and flow chart of a recommended coating development plan are presented and discussed. Projected impacts of the proposed plan include benefits to other aspects of confinement experiments. A list of 45 references is appended

  5. Failure analysis of beryllium tile assembles following high heat flux testing for the ITER program

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C. H.; Yang, N. Y. C.

    2000-01-01

    The following document describes the processing, testing and post-test analysis of two Be-Cu assemblies that have successfully met the heat load requirements for the first wall and dome sections for the ITER (International Thermonuclear Experimental Reactor) fusion reactor. Several different joint assemblies were evaluated in support of a manufacturing technology investigation aimed at diffusion bonding or brazing a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Judicious selection of materials and coatings for these assemblies was essential to eliminate or minimize interactions with the highly reactive beryllium armor material. A thin titanium layer was used as a diffusion barrier to isolate the copper heat sink from the beryllium armor. To reduce residual stresses produced by differences in the expansion coefficients between the beryllium and copper, a compliant layer of aluminum or aluminum-beryllium (AlBeMet-150) was used. Aluminum was chosen because it does not chemically react with, and exhibits limited volubility in, beryllium. Two bonding processes were used to produce the assemblies. The primary process was a diffusion bonding technique. In this case, undesirable metallurgical reactions were minimized by keeping the materials in a solid state throughout the fabrication cycle. The other process employed an aluminum-silicon layer as a brazing filler material. In both cases, a hot isostatic press (HIP) furnace was used in conjunction with vacuum-canned assemblies in order to minimize oxidation and provide sufficient pressure on the assemblies for full metal-to-metal contact and subsequent bonding. The two final assemblies were subjected to a suite of tests including: tensile tests and electron and optical metallography. Finally, high heat flux testing was conducted at the electron beam testing system (EBTS) at Sandia National Laboratories, New Mexico. Here, test mockups were fabricated and subjected to normal heat loads to

  6. An investigation of pulsed phase thermography for detection of disbonds in HIP-bonded beryllium tiles in ITER normal heat flux first wall (NHF FW) components

    Energy Technology Data Exchange (ETDEWEB)

    Bushell, J., E-mail: joe.bushell@amec.com [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Sherlock, P. [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Mummery, P. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, England (United Kingdom); Bellin, B.; Zacchia, F. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona (Spain)

    2015-10-15

    Highlights: • Pulsed phase thermography was trialled on Be-tiled plasma facing components. • Two components, one with known disbonds, one intact, were inspected and compared. • Finite element analysis was used to verify experimental observations. • PPT successfully detected disbonds in the failed component. • Good agreement found with ultrasonic test, though defect geometry was uncertain. - Abstract: Pulsed phase thermography (PPT) is a non destructive examination (NDE) technique, traditionally used in the Aerospace Industry for inspection of composite structures, which combines characteristics and benefits of flash thermography and lock-in thermography into a single, rapid inspection technique. The aim of this work was to evaluate the effectiveness of PPT as a means of inspection for the bond between the beryllium (Be) tiles and the copper alloy (CuCrZr) heatsink of the ITER NHF FW components. This is a critical area dictating the functional integrity of these components, as single tile detachment in service could result in cascade failure. PPT has advantages over existing thermography techniques using heated water which stress the component, and the non-invasive, non-contact nature presents advantages over existing ultrasonic methods. The rapid and non-contact nature of PPT also gives potential for in-service inspections as well as a quality measure for as-manufactured components. The technique has been appraised via experimental trials using ITER first wall mockups with pre-existing disbonds confirmed via ultrasonic tests, partnered with finite element simulations to verify experimental observations. This paper will present the results of the investigation.

  7. An investigation of pulsed phase thermography for detection of disbonds in HIP-bonded beryllium tiles in ITER normal heat flux first wall (NHF FW) components

    International Nuclear Information System (INIS)

    Bushell, J.; Sherlock, P.; Mummery, P.; Bellin, B.; Zacchia, F.

    2015-01-01

    Highlights: • Pulsed phase thermography was trialled on Be-tiled plasma facing components. • Two components, one with known disbonds, one intact, were inspected and compared. • Finite element analysis was used to verify experimental observations. • PPT successfully detected disbonds in the failed component. • Good agreement found with ultrasonic test, though defect geometry was uncertain. - Abstract: Pulsed phase thermography (PPT) is a non destructive examination (NDE) technique, traditionally used in the Aerospace Industry for inspection of composite structures, which combines characteristics and benefits of flash thermography and lock-in thermography into a single, rapid inspection technique. The aim of this work was to evaluate the effectiveness of PPT as a means of inspection for the bond between the beryllium (Be) tiles and the copper alloy (CuCrZr) heatsink of the ITER NHF FW components. This is a critical area dictating the functional integrity of these components, as single tile detachment in service could result in cascade failure. PPT has advantages over existing thermography techniques using heated water which stress the component, and the non-invasive, non-contact nature presents advantages over existing ultrasonic methods. The rapid and non-contact nature of PPT also gives potential for in-service inspections as well as a quality measure for as-manufactured components. The technique has been appraised via experimental trials using ITER first wall mockups with pre-existing disbonds confirmed via ultrasonic tests, partnered with finite element simulations to verify experimental observations. This paper will present the results of the investigation.

  8. Tritium analysis of divertor tiles used in JET ITER-like wall campaigns by means of β-ray induced x-ray spectrometry

    Science.gov (United States)

    Hatano, Y.; Yumizuru, K.; Koivuranta, S.; Likonen, J.; Hara, M.; Matsuyama, M.; Masuzaki, S.; Tokitani, M.; Asakura, N.; Isobe, K.; Hayashi, T.; Baron-Wiechec, A.; Widdowson, A.; contributors, JET

    2017-12-01

    Energy spectra of β-ray induced x-rays from divertor tiles used in ITER-like wall campaigns of the Joint European Torus were measured to examine tritium (T) penetration into tungsten (W) layers. The penetration depth of T evaluated from the intensity ratio of W(Lα) x-rays to W(Mα) x-rays showed clear correlation with poloidal position; the penetration depth at the upper divertor region reached several micrometers, while that at the lower divertor region was less than 500 nm. The deep penetration at the upper part was ascribed to the implantation of high energy T produced by DD fusion reactions. The poloidal distribution of total x-ray intensity indicated higher T retention in the inboard side than the outboard side of the divertor region.

  9. Quantitative AMS depth profiling of the hydrogen isotopes collected in graphite divertor and wall tiles of the tokamak ASDEX-Upgrade

    International Nuclear Information System (INIS)

    Sun, G.Y.; Friedrich, M.; Groetzschel, R.; Buerger, W.; Behrisch, R.; Garcia-Rosales, C.

    1997-01-01

    The accelerator mass spectrometry (AMS) facility at the 3 MV Tandetron in Rossendorf has been applied for quantitative depth profiling of deuterium and tritium in samples cut from graphite protection tiles at the vessel walls of the fusion experiment ASDEX-Upgrade at the Max-Planck-Institut fuer Plasmaphysik in Garching. The tritium originates from D(d,p)T fusion reactions in the plasma and it is implanted in the vessel walls together with deuterium atoms and ions from the plasma. The T concentrations in the surface layers down to the analyzing depth of about 25 μm are in the range of 10 11 to 5 x 10 15 T-atoms/cm 3 corresponding to a tritium retention of 3 x 10 10 to 3.5 x 10 12 T-atoms/cm 2 . The much higher deuterium concentrations in the samples were simultaneously measured by calibrated conventional SIMS. In the surface layers down to the analyzing depth of about 25 μm the deuterium concentrations are between 3 x 10 18 and 8 x 10 21 atoms/cm 3 , corresponding to a deuterium retention of 2.5 x 10 16 to 2.5 x 10 18 atoms/cm 2 The estimated total amount of tritium in the vessel walls is of the same order of magnitude as the total number of neutrons produced in D(d,n) 3 He reactions. (orig.)

  10. Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.

    Science.gov (United States)

    Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan

    2015-01-01

    The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&A “Beautiful Math” articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry.

  11. Impact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, B., E-mail: b.spilker@fz-juelich.de; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-11-01

    Highlights: • Different surface qualities of S-65 beryllium are tested under high heat flux conditions. • After 1000 thermal shocks, the loaded area exhibits a crucial destruction. • Stress accelerated grain boundary oxidation/dynamic embrittlement effects are linked to the thermal shock performance of beryllium. • Thermally induced cracks form between 1 and 10 pulses and grow wider and deeper between 10 and 100 pulses. • Thermally induced cracks form and propagate independently from surface grooves and the surface quality. - Abstract: Beryllium will be applied as first wall armor material in ITER. The armor has to sustain high steady state and transient power fluxes. For transient events like edge localized modes, these transient power fluxes rise up to 1.0 GW m{sup −2} with a duration of 0.5–0.75 ms in the divertor region and a significant fraction of this power flux is deposited on the first wall as well. In the present work, the reference beryllium grade for the ITER first wall application S-65 was prepared with various surface conditions and subjected to transient power fluxes (thermal shocks) with ITER relevant loading parameters. After 1000 thermal shocks, a crucial destruction of the entire loaded area was observed and linked to the stress accelerated grain boundary oxidation (SAGBO)/dynamic embrittlement (DE) effect. Furthermore, the study revealed that the majority of the thermally induced cracks formed between 1 and 10 pulses and then grew wider and deeper with increasing pulse number. The surface quality did not influence the cracking behavior of beryllium in any detectable way. However, the polished surface demonstrated the highest resistance against the observed crucial destruction mechanism.

  12. Tile Patterns with Logo--Part I: Laying Tile with Logo.

    Science.gov (United States)

    Clason, Robert G.

    1990-01-01

    Described is a method for drawing periodic tile patterns using LOGO. Squares, triangles, hexagons, shape filling, and random tile laying are included. These activities incorporate problem solving, programing methods, and the geometry of angles and polygons. (KR)

  13. Electro-desalination of glazed tile panels - discussion of possibilities

    DEFF Research Database (Denmark)

    Dias-Ferreira, Célia; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2016-01-01

    . In the few experiments conducted on tiles with attached mortar, the mortar was desalinated to a higher degree than the biscuit and successful desalination of the biscuit through the mortar requires further research. In-situ pilot scale tests were performed on highly salt-contaminated walls without tiles...... by placing electrodes at the same side of the wall. Thus it may be possible to desalinate tile panels, without any physical damage of the fragile glaze, by placing electrodes on the back of the wall or by removing some tiles, placing electrodes in their spaces, and extracting the salts from there before...... the tiles are placed back again....

  14. OPTIMIZATION-BASED APPROACH TO TILING OF FINITE AREAS WITH ARBITRARY SETS OF WANG TILES

    Directory of Open Access Journals (Sweden)

    Marek Tyburec

    2017-11-01

    Full Text Available Wang tiles proved to be a convenient tool for the design of aperiodic tilings in computer graphics and in materials engineering. While there are several algorithms for generation of finite-sized tilings, they exploit the specific structure of individual tile sets, which prevents their general usage. In this contribution, we reformulate the NP-complete tiling generation problem as a binary linear program, together with its linear and semidefinite relaxations suitable for the branch and bound method. Finally, we assess the performance of the established formulations on generations of several aperiodic tilings reported in the literature, and conclude that the linear relaxation is better suited for the problem.

  15. Tank wall thinning -- Process and programs

    International Nuclear Information System (INIS)

    Greer, S.D.; McBrine, W.J.

    1994-01-01

    In-service thinning of tank walls has occurred in the power industry and can pose a significant risk to plant safety and dependability. Appropriate respect for the energy stored in a high-pressure drain tank warrants a careful consideration of this possibility and appropriate action in order to assure the adequate safety margins against leakage or rupture. Although it has not proven to be a widespread problem, several cases of wall thinning and at least one recent tank rupture has highlighted this issue in recent years, particularly in nuclear power plants. However, the problem is not new or unique to the nuclear power industry. Severe wall thinning in deaerator tanks has been frequently identified at fossil-fueled power plants. There are many mechanisms which can contribute to tank wall thinning. Considerations for a specific tank are dictated by the system operating conditions, tank geometry, and construction material. Thinning mechanisms which have been identified include: Erosion/Corrosion Impingement Erosion Cavitation Erosion General Corrosion Galvanic Corrosion Microbial-induced Corrosion of course there are many other possible types of material degradation, many of which are characterized by pitting and cracking. This paper specifically addresses wall thinning induced by Erosion/Corrosion (also called Flow-Accelerated Corrosion) and Impingement Erosion of tanks in a power plant steam cycle. Many of the considerations presented are applicable to other types of vessels, such as moisture separators and heat exchangers

  16. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  17. Ion Beam Analysis methods applied to the examination of Be//Cu joints in hipped Be tiles for ITER first wall mock- ups

    International Nuclear Information System (INIS)

    Vito, E. de; Cayron, C.; Hicham Khodja; Lorenzetto, P.

    2006-01-01

    A proposed fabrication route for ITER first wall components implies a diffusion welding step of Be tiles onto a Cu-based substrate. However, Be has a tendency to form particularly brittle intermetallics with Cu and a lot of other elements. Insertion of interlayers may be a solution to increase bond quality. Applying traditional analyses to this study can be problematic because of Be toxicity and low atomic number Z. Ion Beam Analysis methods have thus been considered together with scanning electron microscopy (SEM) and electron back-scattering diffraction (EBSD) as complementary techniques. The following work aims at demonstrating how such techniques (used in micro-beam mode), and in particular NRA (Nuclear Reaction Analysis) and PIXE (Particle Induced X-ray Emission) techniques, coupled with SEM/EBSD data, can bring valuable information in this area. Quantification of data allow to obtain concentration values (provided the hypotheses on the initial junction composition are valuable), then phase diagrams give clues about the composition and structure of the junction. SEM retro-diffused electrons chemical contrast images and EBSD allow to characterize the presence of the awaited intermetallics, and finally confirm or refine the conclusions of Ion Beam Analysis data quantification. A series of reference first wall mock-ups have been analysed. Interlayer-free mock-ups reveal intermetallics which are mainly BeCu (apparently mixed with lower quantities of BeCu 2 compound). While Cr or Ti interlayers seem to behave as good Be diffusion barriers in the sense that they prevent the formation of BeCu, they strongly interact with Cu to form CuTi 2 or Cr 2 Ti intermetallics. In the case of Cr, Be seems to be incorporated into the Cr layer. PIXE analysis has however been unable to characterize Al-based interlayers (Z=13, close to the lower PIXE sensibility limit) and emphasizes one limitation of Ion Beam Analysis methods for lighter metals, justifying the use of other

  18. Remotely replaceable Tokamak plasma limiter tiles

    International Nuclear Information System (INIS)

    Remy, G.

    1989-01-01

    U-shaped limiter tiles placed end-to-end over a pair of parallel runners secured to a wall have two rods which engage L-shaped slots in the runners. The short receiving legs of the L-shaped slots are perpendicular to the wall and open away from the wall, while long retaining legs are parallel to and adjacent the wall. A sliding bar between the runners has grooves with clips to retain the rods pressed into receiving legs of the L-shaped slots in the runners. Sliding the bar in the direction of retaining legs of the L-shaped slots latches the tiles in place over the runners. Resilient contact strips between the parallel arms of the U-shaped tiles and the wall assure thermal and electrical contact with the wall

  19. Topology of tiling spaces

    CERN Document Server

    Sadun, Lorenzo

    2008-01-01

    Aperiodic tilings are interesting to mathematicians and scientists for both theoretical and practical reasons. The serious study of aperiodic tilings began as a solution to a problem in logic. Simpler aperiodic tilings eventually revealed hidden "symmetries" that were previously considered impossible, while the tilings themselves were quite striking. The discovery of quasicrystals showed that such aperiodicity actually occurs in nature and led to advances in materials science. Many properties of aperiodic tilings can be discerned by studying one tiling at a time. However, by studying families of tilings, further properties are revealed. This broader study naturally leads to the topology of tiling spaces. This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to ...

  20. A program to evaluate the erosion on the CFC tiles of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    D' Agata, E. [ITER International Team, ITER Joint Work Site, Boltzmannstr 2, 85748 Garching (Germany)], E-mail: elio.dagata@iter.org; Ogorodnikova, O.V. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Tivey, R. [ITER International Team, ITER Joint Work Site, Boltzmannstr 2, 85748 Garching (Germany); Lowry, C.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2007-10-15

    The plasma-facing surfaces of the ITER divertor are armoured with tungsten in the upper part of the inner and outer vertical targets, and carbon fibre composite (CFC) in the lower part, the region where the scrape-off layer intercepts the divertor. The CFC in the form of a monoblock in the vertical target is the most loaded part of the plasma-facing surfaces, and hence it is subjected to high erosion and has a significant risk of failure. A program has been developed with the aim of understanding the impact on the erosion lifetime due to a combination of two main effects: the material property variations (particularly pronounced in CFC) and the presence of joining defects. The software allows the evolution of the surface profile of the armour to be predicted and the margin on critical heat flux at the heat-sink-to-coolant interface to be estimated for a range of postulated defects, from start-of-life through to end-of-life of the component. In assessing erosion, the code takes account of geometry and sublimation, and physical and chemical erosion of the CFC armour. The incident angle (a glancing angle of a few degrees) of the particle and heat flux onto the target is taken into account. The program has been validated by comparison with analytical approximations very well validated against experimental data. The code has been developed in the APDL language to operate inside a commercial and certificated finite element program such as ANSYS.

  1. A program to evaluate the erosion on the CFC tiles of the ITER divertor

    International Nuclear Information System (INIS)

    D'Agata, E.; Ogorodnikova, O.V.; Tivey, R.; Lowry, C.; Schlosser, J.

    2007-01-01

    The plasma-facing surfaces of the ITER divertor are armoured with tungsten in the upper part of the inner and outer vertical targets, and carbon fibre composite (CFC) in the lower part, the region where the scrape-off layer intercepts the divertor. The CFC in the form of a monoblock in the vertical target is the most loaded part of the plasma-facing surfaces, and hence it is subjected to high erosion and has a significant risk of failure. A program has been developed with the aim of understanding the impact on the erosion lifetime due to a combination of two main effects: the material property variations (particularly pronounced in CFC) and the presence of joining defects. The software allows the evolution of the surface profile of the armour to be predicted and the margin on critical heat flux at the heat-sink-to-coolant interface to be estimated for a range of postulated defects, from start-of-life through to end-of-life of the component. In assessing erosion, the code takes account of geometry and sublimation, and physical and chemical erosion of the CFC armour. The incident angle (a glancing angle of a few degrees) of the particle and heat flux onto the target is taken into account. The program has been validated by comparison with analytical approximations very well validated against experimental data. The code has been developed in the APDL language to operate inside a commercial and certificated finite element program such as ANSYS

  2. A program to Evaluate the Erosion on the CFC tiles of the ITER Divertor

    International Nuclear Information System (INIS)

    DAgata, E.; Tivey, R.; Ogorodnikova, O.; Lowry, Ch.; Schlosser, J.

    2006-01-01

    The plasma-facing surfaces of the ITER divertor are armoured with tungsten in the upper part of the inner and outer vertical targets and carbon-fibre composite (CFC) in the lower part, the region where the scrape-off layer intercepts the divertor. The CFC in the form of a monoblock in the vertical target is the most loaded part of the plasma-facing surfaces, and hence it is subjected to high erosion and has a significant risk of failure. A program has been developed with the aim of understanding the impact on the erosion lifetime and on the probability of a critical heat flux event in the heat sink of a combination of two main effects: the material property variations (particularly pronounced in CFC) and the presence of joining defects. The software allows the evolution of the surface profile of the armour to be predicted and the margin on critical heat flux at the heat-sink-to-coolant interface to be estimated for a range of postulated defects, for start-of-life through to end-of-life of the component. In assessing erosion, the code takes account of geometry and sublimation, and physical and chemical erosion of the CFC armour. The code allows the computation of the effect of normal and off-normal (ELMs, etc.) operation. The incident angle (a glancing angle of a few degrees) of the particle and heat flux onto the target is taken into account. The program has been validated by comparison with analytical approximations and experimental data. The code has been developed in APDL language to operate inside a commercial and certificate finite element program such as ANSYS. (author)

  3. Beryllium coating on Inconel tiles

    International Nuclear Information System (INIS)

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M.; Rubel, M.; Coad, J.P.; Matthews, G.; Pedrick, L.; Handley, R.

    2007-01-01

    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 μm of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  4. Miles of tiles

    CERN Document Server

    Radin, Charles

    1999-01-01

    "In this book, we try to display the value (and joy!) of starting from a mathematically amorphous problem and combining ideas from diverse sources to produce new and significant mathematics--mathematics unforeseen from the motivating problem ..." --from the Preface The common thread throughout this book is aperiodic tilings; the best-known example is the "kite and dart" tiling. This tiling has been widely discussed, particularly since 1984 when it was adopted to model quasicrystals. The presentation uses many different areas of mathematics and physics to analyze the new features of such tilings. Although many people are aware of the existence of aperiodic tilings, and maybe even their origin in a question in logic, not everyone is familiar with their subtleties and the underlying rich mathematical theory. For the interested reader, this book fills that gap. Understanding this new type of tiling requires an unusual variety of specialties, including ergodic theory, functional analysis, group theory and ring the...

  5. Studies of impurity deposition/implantation in JET divertor tiles using SIMS and ion beam techniques

    International Nuclear Information System (INIS)

    Likonen, J.; Lehto, S.; Coad, J.P.; Renvall, T.; Sajavaara, T.; Ahlgren, T.; Hole, D.E.; Matthews, G.F.; Keinonen, J.

    2003-01-01

    At the end of C4 campaign at JET, a 1% SiH 4 /99% D 2 mixture and pure 13 CH 4 were injected into the torus from the outer divertor wall and from the top of the vessel, respectively, in order to study material transport and scrape-off layer (SOL) flows. A set of MkIIGB tiles was removed during the 2001 shutdown for surface analysis. The tiles were analysed with secondary ion mass spectrometry (SIMS) and time-of-flight elastic recoil detection analysis (TOF-ERDA). 13 C was detected in the inner divertor wall tiles implying material transport from the top of the vessel. Silicon was detected mainly at the outer divertor wall tiles and very small amounts were found in the inner divertor wall tiles. Si amounts in the inner divertor wall tiles were so low that rigorous conclusions about material transport from divertor outboard to inboard cannot be made

  6. Glazed Tiles as Floor Finish in Nigeria

    Directory of Open Access Journals (Sweden)

    Toyin Emmanuel AKINDE

    2013-09-01

    Full Text Available Tile is no doubt rich in antiquity; its primordial  show, came as mosaic with primary prospect in sacred floor finish before its oblivion, courtesy of, later consciousness towards wall finish in banquets, kitchens, toilets, restaurants and even bars. Today, its renaissance as floor finish is apparent in private and public architectural structures with prevalence in residential, recreational, commercial, governmental and other spaces. In Nigeria, the use of glazed tiles as floor finish became apparent, supposedly in mid-twentieth century; and has since, witnessed ever increasing demands from all sundry; a development that is nascent and has necessitated its mass  production locally with pockets of firms in the country. The latter however, is a resultant response to taste cum glazed tiles affordability, whose divergent sophistication in design, colour, size and shape is believed preferred to terrazzo, carpet and floor flex tile. Accessible as glazed tile and production is, in recent times; its dearth of a holistic literature in Nigeria is obvious. In the light of the latter, this paper examine glazed tiles as floor finish in Nigeria, its advent, usage, production, challenge, benefit and prospect with the hope of opening further frontier in discipline specifics.

  7. Characterization of avian eggshell waste aiming its use in a ceramic wall tile paste Caracterização de resíduo de casca de ovo visando seu aproveitamento em revestimento cerâmico poroso

    Directory of Open Access Journals (Sweden)

    M. N. Freire

    2006-12-01

    Full Text Available In Brazil, the food industry generates every year huge amounts of avian eggshell waste, and a critical question is to find an adequate use for this waste. The aim of this work is to determine the chemical, mineralogical and physical characteristics of a nonprocessed avian eggshell waste sample, as well as to investigate its use in wall tile paste. The sample was analyzed regarding to chemical composition, X-ray diffraction, morphology, particle size analysis, density, organic matter, soluble salts, and thermal analysis. The results indicated that the eggshell waste sample rich in CaCO3 can be used as an alternative raw material in the production of wall tile materials.No Brasil a indústria alimentícia gera enormes quantidades de resíduo de casca de ovo galináceo todo ano, e uma questão crítica é estabelecer um uso adequado para este resíduo. O objetivo deste trabalho é estudar as características química, mineralógica e física de uma amostra de resíduo de casca de ovo natural, bem como avaliar sua utilização em revestimento cerâmico poroso. A amostra de resíduo de casca de ovo foi caracterizada com relação à composição química, difração de raios X, morfologia, análise de tamanho de partícula, massa específica, matéria orgânica, sais solúveis e análise térmica. Os resultados mostraram que o resíduo de casca de ovo rico em CaCO3 pode ser usado como uma matéria-prima alternativa na produção de revestimento cerâmico poroso (azulejo.

  8. Shielding wall for thermonuclear device

    International Nuclear Information System (INIS)

    Uchida, Takaho.

    1989-01-01

    This invention concerns shielding walls opposing to plasmas of a thermonuclear device and it is an object thereof to conduct reactor operation with no troubles even if a portion of shielding wall tiles should be damaged. That is, the shielding wall tiles are constituted as a dual layer structure in which the lower base tiles are connected by means of bolts to first walls. Further, the upper surface tiles are bolt-connected to the layer base tiles. In this structure, the plasma thermal loads are directly received by the surface layer tiles and heat is conducted by means of conduction and radiation to the underlying base tiles and the first walls. Even upon occurrence of destruction accidents to the surface layer tiles caused by incident heat or electromagnetic force upon elimination of plasmas, since the underlying base tiles remain as they are, the first walls constituted with stainless steels, etc. are not directly exposed to the plasmas. Accordingly, the integrity of the first walls having cooling channels can be maintained and sputtering intrusion of atoms of high atom number into the plasmas can be prevented. (I.S.)

  9. Wang Tiles in Computer Graphics

    CERN Document Server

    Lagae, Ares

    2009-01-01

    Many complex signals in computer graphics, such as point distributions and textures, cannot be efficiently synthesized and stored. This book presents tile-based methods based on Wang tiles and corner tiles to solve both these problems. Instead of synthesizing a complex signal when needed, the signal is synthesized beforehand over a small set of Wang tiles or corner tiles. Arbitrary large amounts of that signal can then efficiently be generated when needed by generating a stochastic tiling, and storing only a small set of tiles reduces storage requirements. A tile-based method for generating a

  10. Triangular spiral tilings

    International Nuclear Information System (INIS)

    Sushida, Takamichi; Hizume, Akio; Yamagishi, Yoshikazu

    2012-01-01

    The topology of spiral tilings is intimately related to phyllotaxis theory and continued fractions. A quadrilateral spiral tiling is determined by a suitable chosen triple (ζ, m, n), where ζ element of D/R, and m and n are relatively prime integers. We give a simple characterization when (ζ, m, n) produce a triangular spiral tiling. When m and n are fixed, the admissible generators ζ form a curve in the unit disk. The family of triangular spiral tilings with opposed parastichy pairs (m, n) is parameterized by the divergence angle arg (ζ), while triangular spiral tilings with non-opposed parastichy pairs are parameterized by the plastochrone ratio 1/|ζ|. The generators for triangular spiral tilings with opposed parastichy pairs are not dense in the complex parameter space, while those with non-opposed parastichy pairs are dense. The proofs will be given in a general setting of spiral multiple tilings. We present paper-folding (origami) sheets that build spiral towers whose top-down views are triangular tilings. (paper)

  11. Optimization of the JET Beryllium tile profile for power handling

    International Nuclear Information System (INIS)

    Nunes, I.; Vries, P. de; Lomas, P.J.; Loarte, A.

    2006-01-01

    The primary objective of the ITER-like wall project is to install a beryllium main wall and a tungsten divertor. From the point of view of plasma operations, the power handling properties of the new Be tiles may affect the operational space. The tiles design has to be such that it allows routine plasma operation for ITER relevant scenarios, i.e., 3-5 MA ELMy H-modes with high power input (P in > 30 MW) for lengths of time of ∼ 10 s. Due to the constrains imposed by heat conductivity, eddy current and stress torques on a Be tile, a single Be tile must be an assembly of castellated slices [Thompson V. et al, this conference]. From the point of view of plasma operations, the power handling properties of the new Be tiles can restrict the operational space of JET, if considerable melting of the tiles is to be avoided. This paper describes the power handling studies for the beryllium wall tiles and the optimisation of their design to achieve the operation goal described above. The melting temperature for Be is 1289 o C, corresponding to a energy limit of 60 MJ/m 2 for 10 s [Thompson V. et al, this conference]. For low field line angles, the power density on the toroidally facing surfaces is several times higher than the power density on the tile face requiring these to be shadowed. Furthermore the poloidally facing surfaces also have to be shadowed from assembly to assembly due to the large gap between assemblies. The tiles have been designed taking into account these limits and with a geometrical design such as to avoid exposed surfaces at high angles to the magnetic field being melted due to the expected loads. This has been achieved after detailed studies of the power handling of the various limiters and protections, including the effect of the curvature of the flux surfaces, shadowing and tolerance to misalignment. The surface of the tiles is defined such that, when possible, there is an even distribution of power density over the entire tile surface, and that

  12. Physical principles for DNA tile self-assembly.

    Science.gov (United States)

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  13. Tritium in the DIII-D carbon tiles

    International Nuclear Information System (INIS)

    Taylor, P.L.; Kellman, A.G.; Lee, R.L.

    1993-06-01

    The amount of tritium in the carbon tiles used as a first wall in the DIII-D tokamak was measured recently when the tiles were removed and cleaned. The measurements were made as part of the task of developing the appropriate safety procedures for processing of the tiles. The surface tritium concentration on the carbon tiles was surveyed and the total tritium released from tile samples was measured in test bakes. The total tritium in all the carbon tiles at the time the tiles were removed for cleaning is estimated to be 15 mCi and the fraction of tritium retained in the tiles from DIII-D operations has a lower bound of 10%. The tritium was found to be concentrated in a narrow surface layer on the plasma facing side of the tile, was fully released when baked to 1,000 degree C, and was released in the form of tritiated gas (DT) as opposed to tritiated water (DTO) when baked

  14. Predicting tile drainage discharge

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes

    used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...... was based on a polynomial regression predicting yearly tile drain discharge values using site specific parameters such as soil type, catchment topography, etc. as predictors. Values of calibrated model parameters from the dynamic modelling were compared to the same site specific parameter as used...

  15. Tiling arbitrarily nested loops by means of the transitive

    Directory of Open Access Journals (Sweden)

    Bielecki Włodzimierz

    2016-12-01

    Full Text Available A novel approach to generation of tiled code for arbitrarily nested loops is presented. It is derived via a combination of the polyhedral and iteration space slicing frameworks. Instead of program transformations represented by a set of affine functions, one for each statement, it uses the transitive closure of a loop nest dependence graph to carry out corrections of original rectangular tiles so that all dependences of the original loop nest are preserved under the lexicographic order of target tiles. Parallel tiled code can be generated on the basis of valid serial tiled code by means of applying affine transformations or transitive closure using on input an inter-tile dependence graph whose vertices are represented by target tiles while edges connect dependent target tiles. We demonstrate how a relation describing such a graph can be formed. The main merit of the presented approach in comparison with the well-known ones is that it does not require full permutability of loops to generate both serial and parallel tiled codes; this increases the scope of loop nests to be tiled.

  16. Detection of beta radiation emitted from painted tiles

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    1988-06-01

    At the Kraftwerk Union (KWU), Erlangen, Federal Republic of Germany, it was confirmed that some types of painted tiles of italian origin were radioactive. In this work, performed at Institut fur Strahlenschutz, GSF, Munich, Germany, ultra-thin (60μm) thermoluminescent samples of CaSO 4 :Tm were used for the determination of absorved dose rates in air (at the tile surface and at the distance of 5 cm from it) and of transmission factors for different tissue equivalent material thicknesses. For comparison the absorved dose rates in air from cement walls without tile revestment and with simple tile revestment (tiles without painted ornaments) were also determined. In these cases the results were the same as those obtained normally from building materials. (author) [pt

  17. Detection of beta radiation emitted from painted tiles

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    1987-01-01

    At the Krafwerk Union (KWU), Erlangen, Germany, it was confirmed that some types of painted tiles of italian origin were radioactive. In this Work, performed at Institut fur Strahlenschutz, GSF, Germany, ultrathin 60μm) thermoluminescent samples of CaSO 4 :Tm were used for the determination of absorved dose rates in air (at the tile surface and at distance of 5cm from it) and of transmission factors for different tissue equivalent material thicknesses. For comparison the absorved dose rates in air from cement walls without tile revestment and with simple tile revestment (tiles without painted ornaments) were also determined. In these cases the results were the same as those obtained normally from building materials. (Author) [pt

  18. Qualification Test for Korean Mockups of ITER Blanket First Wall

    International Nuclear Information System (INIS)

    Kim, S. K.; Lee, D. W.; Bae, Y. D.; Hong, B. G.; Jung, H. K.; Jung, Y. I.; Park, J. Y.; Jeong, Y. H.; Choi, B. K.; Kim, B. Y.

    2009-01-01

    ITER First Wall (FW) includes the beryllium armor tiles joined to CuCrZr heat sink with stainless steel cooling tubes. This first wall panels are one of the critical components in the ITER machine with the surface heat flux of 0.5 MW/m 2 or above. So qualification program needs to be performed with the goal to qualify the joining technologies required for the ITER First Wall. Based on the results of tests, the acceptance of the developed joining technologies will be established. The results of this qualification test will affect the final selection of the manufacturers for the ITER First Wall

  19. An automated data management/analysis system for space shuttle orbiter tiles. [stress analysis

    Science.gov (United States)

    Giles, G. L.; Ballas, M.

    1982-01-01

    An engineering data management system was combined with a nonlinear stress analysis program to provide a capability for analyzing a large number of tiles on the space shuttle orbiter. Tile geometry data and all data necessary of define the tile loads environment accessed automatically as needed for the analysis of a particular tile or a set of tiles. User documentation provided includes: (1) description of computer programs and data files contained in the system; (2) definitions of all engineering data stored in the data base; (3) characteristics of the tile anaytical model; (4) instructions for preparation of user input; and (5) a sample problem to illustrate use of the system. Description of data, computer programs, and analytical models of the tile are sufficiently detailed to guide extension of the system to include additional zones of tiles and/or additional types of analyses

  20. Predicted effect of landscape position on wildlife habitat value of Conservation Reserve Enhancement Program wetlands in a tile-drained agricultural region

    Science.gov (United States)

    Otis, David L.; Crumpton, William R.; Green, David; Loan-Wilsey, Anna; Cooper, Tom; Johnson, Rex R.

    2013-01-01

    Justification for investment in restored or constructed wetland projects are often based on presumed net increases in ecosystem services. However, quantitative assessment of performance metrics is often difficult and restricted to a single objective. More comprehensive performance assessments could help inform decision-makers about trade-offs in services provided by alternative restoration program design attributes. The primary goal of the Iowa Conservation Reserve Enhancement Program is to establish wetlands that efficiently remove nitrates from tile-drained agricultural landscapes. A secondary objective is provision of wildlife habitat. We used existing wildlife habitat models to compare relative net change in potential wildlife habitat value for four alternative landscape positions of wetlands within the watershed. Predicted species richness and habitat value for birds, mammals, amphibians, and reptiles generally increased as the wetland position moved lower in the watershed. However, predicted average net increase between pre- and post-project value was dependent on taxonomic group. The increased average wetland area and changes in surrounding upland habitat composition among landscape positions were responsible for these differences. Net change in predicted densities of several grassland bird species at the four landscape positions was variable and species-dependent. Predicted waterfowl breeding activity was greater for lower drainage position wetlands. Although our models are simplistic and provide only a predictive index of potential habitat value, we believe such assessment exercises can provide a tool for coarse-level comparisons of alternative proposed project attributes and a basis for constructing informed hypotheses in auxiliary empirical field studies.

  1. Analysis of Parallel Algorithms on SMP Node and Cluster of Workstations Using Parallel Programming Models with New Tile-based Method for Large Biological Datasets

    Science.gov (United States)

    Shrimankar, D. D.; Sathe, S. R.

    2016-01-01

    Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today’s supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures. PMID:27932868

  2. Analysis of Parallel Algorithms on SMP Node and Cluster of Workstations Using Parallel Programming Models with New Tile-based Method for Large Biological Datasets.

    Science.gov (United States)

    Shrimankar, D D; Sathe, S R

    2016-01-01

    Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today's supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures.

  3. The ATLAS Tile Calorimeter

    CERN Document Server

    Henriques Correia, Ana Maria

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics.

  4. The ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Henriques, A.

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)

  5. Erosion and deposition on JET divertor and limiter tiles during the experimental campaigns 2005–2009

    International Nuclear Information System (INIS)

    Krat, S.; Coad, J.P.; Gasparyan, Yu.; Hakola, A.; Likonen, J.; Mayer, M.; Pisarev, A.; Widdowson, A.

    2013-01-01

    Erosion from and deposition on JET divertor tiles used during the 2007–2009 campaign and on inner wall guard limiter (IWGL) tiles used during 2005–2009 are studied. The tungsten coating on the divertor tiles was mostly intact with the largest erosion ∼30% in a small local area. Locally high erosion areas were observed on the load bearing divertor tile 5 and on the horizontal surface of the divertor tile 8. The IWGL tiles show a complicated distribution of erosion and deposition areas. The total amount of carbon deposited on the all IWGL tiles during the campaign 2005–2009 is estimated to be 65 g. The density of carbon deposits is estimated to be 0.67–0.83 g/cm 3

  6. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  7. Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven

    2005-01-01

    The design of sheet pile walls by lower bound limit analysis is considered. The design problem involves the determination of the necessary yield moment of the wall, the wall depth and the anchor force such that the structure is able to sustain the given loads. This problem is formulated...... as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe....

  8. Dolomite addition effects on the thermal expansion of ceramic tiles

    International Nuclear Information System (INIS)

    Marino, Luis Fernando Bruno; Boschi, Anselmo Ortega

    1997-01-01

    The thermal expansion of ceramic tiles is of greater importance in engineering applications because the ceramics are relatively brittle and cannot tolerate large internal strain imposed by thermal expansion. When ceramic bodies are produced for glazed ties the compatibility of this property of the components should be considered to avoid damage in the final products. Carbonates are an important constituent of ceramic wall-title bodies and its presence in formulations and the reactions that occur between them and other components modify body properties. The influence in expansivity by additions of calcium magnesium carbonate in a composition of wall tile bodies has been investigated. The relative content of mineralogical components was determined by X-ray diffraction and thermal expansion by dilatometric measurements. The results was indicated that with the effect of calcium-magnesium phases and porosity on thermal expansion of wall tile bodies. (author)

  9. Extended DNA Tile Actuators

    DEFF Research Database (Denmark)

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  10. Heat transfer to surface and gaps of RSI tile arrays in turbulent flow at Mach 10.3

    Science.gov (United States)

    Throckmorton, D. A.

    1974-01-01

    Heat transfer to gap walls and surface of a simulated reusable surface insulation (RSI) tile array are presented. The data were obtained in the thick, turbulent tunnel wall boundary layer of the Langley Continuous Flow Hypersonic Tunnel at a freestream Mach number of 10.3 and a freestream unit Reynolds number of one million. Pertinent test variables were: (1) tile array orientation (staggered and in-line), (2) gap width, (3) flow angularity, and (4) tile mismatch.

  11. Brane tilings and their applications

    International Nuclear Information System (INIS)

    Yamazaki, M.

    2008-01-01

    We review recent developments in the theory of brane tilings and four-dimensional N=1 supersymmetric quiver gauge theories. This review consists of two parts. In part I, we describe foundations of brane tilings, emphasizing the physical interpretation of brane tilings as fivebrane systems. In part II, we discuss application of brane tilings to AdS/CFT correspondence and homological mirror symmetry. More topics, such as orientifold of brane tilings, phenomenological model building, similarities with BPS solitons in supersymmetric gauge theories, are also briefly discussed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Plasma surface interactions at the JET X-point tiles

    International Nuclear Information System (INIS)

    Martinelli, A.P.; Behrisch, R.; Coad, J.P.; Kock, L. de

    1989-01-01

    Operation with a magnetic divertor, which leads to a zero poloidal field inside the volume of the discharge vessel (the X-point) has led to substantial improvements in confinement time in JET. In this mode the diverted plasma is conducted to a large number of graphite tiles (X-point tiles) near the top of the vessel. The power handling capability of these tiles limits the maximum additional heating power to the discharge. The study of the surface modifications of the X-point tiles of JET is therefore of interest both to correlate the magnetic configuration and plasma particle and energy fluxes with the surface modifications, and also to get information about the erosion and deposition at these wall areas. (author) 5 refs., 4 figs

  13. Self Cleanable Tile Grout

    Directory of Open Access Journals (Sweden)

    Mehmet CANBAZ

    2016-03-01

    Full Text Available In this study, In this study, self-cleaning tile grout and white cement specimens are produced and the effect of self-cleaning mechanism of TiO2 is tested. Effects of TiO2 amount and TiO2 type are tested and compared. Anatase form and rutile TiO2 additive are used in the study. In addition, effects of silicate additives on the self-cleaning mechanism is determined. Studies are conducted with respect to Italian UNI code. This study presents a method for solving rust between the tiles of ceramic wet floor coverings with photocatalysis method and then removing the dirt with secondary effects such as water, wind etc.

  14. ALBEMO, a program for the calculation of the radiation transport in void volumes with reflecting walls

    International Nuclear Information System (INIS)

    Mueller, K.; Vossebrecker, H.

    The Monte Carlo Program ALBEMO calculates the distribution of neutrons and gamma rays in void volumes which are bounded by reflecting walls with x, y, z coordinates. The program is based on the albedo method. The effect of significant simplifying assumptions is investigated. Comparisons with experiments show satisfying agreement

  15. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kizawa, Makoto; Koizumi, Makoto; Nishihara, Yoshihiro.

    1990-01-01

    The first wall of a thermonuclear device is constituted with inner wall tiles, e.g. made of graphite and metal substrates for fixing them. However, since the heat expansion coefficient is different between the metal substrates and intermediate metal members, thermal stresses are caused to deteriorate the endurance of the inner wall tiles. In view of the above, low melting metals are disposed at the portion of contact between the inner wall tiles and the metal substrates and, further, a heat pipe structure is incorporated into the metal substrates. Under the thermal load, for example, during operation of the thermonuclear device, the low melting metals at the portion of contact are melted into liquid metals to enhance the state of contact between the inner wall tiles and the metal substrate to reduce the heat resistance and improve the heat conductivity. Even if there is a difference in the heat expansion coefficient between the inner wall tiles and the metal substrates, neither sharing stresses not thermal stresses are caused. Further, since the heat pipe structure is incorporated into the metal substrates, the lateral unevenness of the temperature in the metal substrates can be eliminated. Thus, the durability of the inner wall tiles can be improved. (N.H.)

  16. Producing superhydrophobic roof tiles

    International Nuclear Information System (INIS)

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-01-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic–inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie–Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol–gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie–Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating. (paper)

  17. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    Science.gov (United States)

    Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong

    2015-09-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)

  18. The JET belt limiter tiles

    International Nuclear Information System (INIS)

    Deksnis, E.

    1988-09-01

    The belt limiter system, comprising two full toroidal rings of limiter tiles, was installed in JET in 1987. In consists of water-cooled fins with the limiter material in form of tile inbetween. The tiles are designed to absorb heat fluxes during irradiation without the surface temperature exceeding 2000 0 C and to radiate this heat between pulses to the water cooled sink whose temperature is lower than that of the vacuum vessel. An important feature of the design is to maximise the area of the radiating surface facing the water cooled fin. This leads to a tile depth much greater than the width of the tile facing the heat flux. Limiter tiles intercept particles flowing out of the plasma through the area between the two belt limiter rings and through remaining surface area of the plasma column. Power deposition to a limiter tile depends strongly on the shape of the plasma, the edge plasma properties as well as on the surface profile of the tiles. This paper will discuss the methodology that was followed in producing an optimized surface profile of the tiles. This shaped profile has the feature that the resulting power deposition profile is roughly similar for a wide range of plasma parameters. (author)

  19. Development of engineering program for integrity evaluation of pipes with local wall thinned defects

    International Nuclear Information System (INIS)

    Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong; Park, Sang Kyu

    2008-01-01

    Integrity evaluation of pipes with local wall thinning by erosion and corrosion is increasingly important in maintenance of wall thinned carbon steel pipes in nuclear power plants. Though a few program for integrity assessment of wall thinned pipes have been developed in domestic nuclear field, however those are limited to straight pipes and methodology proposed in ASME Sec.XI Code Case N-597. Recently, the engineering program for integrity evaluation of pipes with all kinds of local wall defects such as straight, elbow, reducer and branch pipes was developed successfully. The program was designated as PiTEP (Pipe Thinning Evaluation Program), which name was registered as a trademark in the Korea Intellectual Property Office. A developed program is carried out by sequential step of four integrity evaluation methodologies, which are composed of construction code, code case N-597, its engineering method and two developed owner evaluation method. As PiTEP program will be performed through GUI (Graphic User Interface) with user's familiarity, it would be conveniently used by plant engineers with only measured thickness data, basic operation conditions and pipe data

  20. Tile-in-ONE

    CERN Document Server

    Cunha, R; The ATLAS collaboration; Sivolella, A; Ferreira, F; Maidantchik, C

    2013-01-01

    The Tile calorimeter is one of the sub-detectors of ATLAS. In order to ensure its proper operation and assess the quality of data, many tasks are to be performed by means of many tools which were developed independently to satisfy different needs. Thus, these systems are commonly implemented without a global perspective of the detector and lack basic software features. Besides, in some cases they overlap in the objectives and resources with another one. It is therefore evident the necessity of an infrastructure to allow the implementation of any functionality without having to duplicate the effort while being possible to integrate with an overall view of the detector status.\

  1. Kinetics of DNA tile dimerization.

    Science.gov (United States)

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.

  2. Deposition of deuterium and metals on divertor tiles in the DIII--D tokamak

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Jackson, G.L.

    1992-01-01

    Hydrogen recycling and impurity influx are important issues in obtaining high confinement discharges in the DIII--D tokamak. To reduce metallic impurities in DIII--D, 40% of the wall area, including the highest heat flux zones, have been covered with graphite tiles. However, erosion, redeposition, and hydrogen retention in the tiles, as well as metal transport from the remaining Inconel walls, can lead to enhanced recycling and impurity influx. Hydrogen and metal retention in divertor floor tiles have been measured using external ion beam analysis techniques following four campaigns where tiles were exposed to several thousand tokamak discharges. The areal density of deuterium retained following exposure to tokamak plasmas was measured with external nuclear reaction analysis. External proton-induced x-ray emission analysis was used to measure the areal densities of metallic impurities deposited upon the divertor tiles either by sputtering of metallic components during discharges or as contamination during tile fabrication. Measurements for both deuterium and metallic impurities were taken on both the tile surfaces which face the operating plasma and the surfaces on the sides of the tiles which form the small gaps separating each of the tiles in the divertor. The highest areal densities of both deuterium (from 2 to 8 x 10 18 atoms/cm 2 ) and metals (from 0.2 to 1 x 10 18 atoms/cm 2 ) were found on the plasma-facing surface near the inner strike point region of each set of divertor tiles. Significant deposits, extending as far as 1 cm from the plasma-facing surface and containing up to 40% of the total divertor deposition, were also observed on the gap-forming surfaces of the tiles

  3. Deposition of deuterium and metals on divertor tiles in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Jackson, G.L.

    1991-01-01

    Hydrogen recycling and impurity influx are important issues in obtaining high confinement discharges in the D3-D tokamak. To reduce metallic impurities in D3-D, 40% of the wall area, including the highest heat flux zones, have been covered with graphite tiles. However erosion, redeposition and hydrogen retention in the tiles, as well as metal transport from the remaining Inconel walls can lead to enhanced recycling and impurity influx. Hydrogen and metal retention in divertor floor tiles have been measured using external ion beam analysis techniques following four campaigns where tiles were exposed to several thousand tokamak discharges. The areal density of deuterium retained following exposure to tokamak plasmas was measured with external nuclear reaction analysis. External proton-induced x-ray emission analysis was used to measure the areal densities of metallic impurities deposited upon the divertor tiles either by sputtering of metallic components during discharges or as contamination during tile fabrication. Measurements for both deuterium and metallic impurities were taken on both the tile surfaces which face the operating plasma and the surfaces on the side of the tiles which form the small gaps separating each of the tiles in the divertor. The highest areal densities of both deuterium and metals were found on the plasma-facing surface near the inner strike point region of each set of divertor tiles. Significant deposits, extending as fast a 1 cm from the plasma-facing and containing up to forty percent of the total divertor deposition, were also observed on the gap-forming surfaces of the tiles

  4. Design study of an armor tile handling manipulator for the Fusion Experimental Reactor

    International Nuclear Information System (INIS)

    Shibanuma, K.; Honda, T.; Satoh, K.; Terakado, T.; Kondoh, M.; Sasaki, N.; Munakata, T.; Murakami, S.

    1991-01-01

    A conceptual design of the Fusion Experimental Reactor (FER), which is a D-T burning reactor following on JT-60 in Japan, has been developed by Japan Atomic Energy Research Institute (JAERI). In FER, a rail-mounted vehicle concept is planned to be adopted for in-vessel maintenance, such as maintenance of divertor plates and armor tiles. Advantages of this concept are the high stiffness of the rail as a base structure for maintenance and the high mobility of the vehicle along the rail. Twin armor tile handling manipulators installed on both sides of the vehicle have been designed. The respective manipulators for armor tile handling have 8 degrees of freedom in order to have access to any place of the first wall and to go through the horizontal port by operating manipulator joints. If the two types of manipulators for divertor plates and armor tiles are installed on the vehicle and the divertor handling manipulator carries a case filled with armor tiles, the replacement time of armor tiles will be reduced. In FER, moreover, maintenance of armor tiles, which is a scheduled maintenance, is planned to be carried out by the autonomous control using position sensors etc. In order to accumulate the data base for the development of the autonomous control of the manipulator in armor tile maintenance, the present paper describes basic mechanical characteristics (stress, deflection and natural frequency) of the armor tile handling manipulator calculated by static stress and dynamic eigenvalue analyses. (orig.)

  5. Tile-in-ONE.cern.ch

    CERN Document Server

    Sivolella Gomes, Andressa; The ATLAS collaboration; Ferreira, Fernando; Solans, Carlos; Solodkov, Alexander

    2015-01-01

    The ATLAS Tile Calorimeter assesses the quality of data in order to ensure its proper operation. A number of tasks are then performed by running several tools and systems, which were independently developed to meet distinct collaboration’s requirements and do not necessarily builds an effective connection among them. Thus, a program is usually implemented without a global perspective of the detector, requiring basic software features. In addition, functionalities may overlap in their objectives and frequently replicate resources retrieval mechanisms. Tile-in-ONE is a unique platform that assembles various web systems used by the calorimeter community through a single framework and a standard technology. It provides an infrastructure to support the code implementation, avoiding duplication of work while integrating with an overall view of the detector status. Database connectors smooth the process of information access since developers do not need to be aware of where records are placed and how to extract th...

  6. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Miki, Nobuharu.

    1992-01-01

    In a first wall of a thermonuclear device, armour tiles are metallurgically bonded to a support substrate only for the narrow area of the central portion thereof, while bonded by metallurgical bonding with cooling tubes of low mechanical toughness, separated from each other in other regions. Since the bonding area with the support substrate of great mechanical rigidity is limited to the narrow region at the central portion of the armour tiles, cracking are scarcely caused at the end portion of the bonding surface. In other regions, since cooling tubes of low mechanical rigidity are bonded metallurgically, they can be sufficiently withstand to high thermal load. That is, even if the armour tiles are deformed while undergoing thermal load from plasmas, since the cooling tubes absorb it, there is no worry of damaging the metallurgically bonded face. Since the cooling tubes are bonded directly to the armour tiles, they absorb the heat of the armour tiles efficiently. (N.H.)

  7. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Oreglia, M; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The main upgrade will occur for the High Luminosity LHC phase (phase 2) which is scheduled around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to use will be decided after extensive test beam studies. High speed optical links are used to read out all digitized data to the counting room. For the off-detector electronics a new back-end architecture is being developed, including the initial trigger processing and pipeline memories. A demonstrator prototype read-out for a slice of the ...

  8. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the luminosity will have increased 5-fold compared to the design luminosity (1034 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional luminosity increase by a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to u...

  9. Impact of the wall conditioning program on plasma performance in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Soukhanovskii, V.; Bell, M.; Blanchard, W.; Gates, D.; LeBlanc, B.; Maingi, R.; Mueller, D.; Na, H.K.; Paul, S.; Skinner, C.H.; Stutman, D.; Wampler, W.R.

    2003-01-01

    High performance operating regimes have been achieved on NSTX through impurity control and wall conditioning techniques. These techniques include HeGDC-aided boronization using deuterated trimethylboron, inter-discharge HeGDC, 350 deg. C PFC bake-out followed by D 2 and HeGDC, and experiments to test fueling discharges with either a He-trimethylboron mixture or pure trimethylboron. The impact of this impurity and density control program on recent advances in NSTX plasma performance is discussed

  10. Quality control in tile production

    Science.gov (United States)

    Kalviainen, Heikki A.; Kukkonen, Saku; Hyvarinen, Timo S.; Parkkinen, Jussi P. S.

    1998-10-01

    This work studies visual quality control in ceramics industry. In tile manufacturing, it is important that in each set of tiles, every single tile looks similar. For example, the tiles should have similar color and texture. Our goal is to design a machine vision system that can estimate the sufficient similarity or same appearance to the human eye. Currently, the estimation is usually done by human vision. Differing from other approaches our aim is to use accurate spectral representation of color, and we are comparing spectral features to the RGB color features. A laboratory system for color measurement is built. Experimentations with five classes of brown tiles are presented. We use chromaticity RGB features and several spectral features for classification with the k-NN classifier and with a neural network, called Self-Organizing Map. We can classify many of the tiles but there are several problems that need further investigations: larger training and test sets are needed, illuminations effects must be studied further, and more suitable spectral features are needed with more sophisticated classifiers. It is also interesting to develop further the neural approach.

  11. First wall for thermonuclear device

    International Nuclear Information System (INIS)

    Shibuya, Yoji.

    1988-01-01

    Purpose: To reduce the thermal stresses resulted to tiles and suppress the temperature rise for mounting jigs in first walls for a thermonuclear device. Constitution: A support mounting rod as a tile mounting and fixing jig and a fixing support connected therewith are disposed to the inside of an armour tile composed of high melting material and, further, a spring is disposed between the lower portion of the tile and the base plate. The armour tile can easily be fixed to the base plate by means of the resilient member by rotating the support member and abutting the support member against the support member abutting portion of the base plate. Further, since the contact and fixing surface of the armour tile and the fixing jig is situated below the tile inside the cooled base plate, the temperature rise can be suppressed as compared with the usual case. Since screw or like other clamping portion is not used for fixing the tile, heat resistant ceramics can be used with no restriction only to metal members, to thereby moderate the restriction in view of the temperature. (Kamimura, M.)

  12. Hierarchical Self Assembly of Patterns from the Robinson Tilings: DNA Tile Design in an Enhanced Tile Assembly Model.

    Science.gov (United States)

    Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C

    2012-06-01

    We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.

  13. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    Science.gov (United States)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  14. Impact of the Wall Conditioning Program on Plasma Performance in NSTX

    International Nuclear Information System (INIS)

    H.W. Kuge; V. Soukhanovskii; M. Bell; , W. Blanchard; D. Gates; B. LeBlanc; R. Maingi; D. Mueller; H.K. Na; S. Paul; C.H. Skinner; D. Stutman; and W.R. Wampler

    2002-01-01

    High performance operating regimes have been achieved on NSTX (National Spherical Torus Experiment) through impurity control and wall-conditioning techniques. These techniques include HeGDC-aided boronization using deuterated trimethylboron, inter-discharge HeGDC, 350 C PFC bake-out followed by D2 and HeGDC, and experiments to test fueling discharges with either a He-trimethylboron mixture or pure trimethylboron. The impact of this impurity and density control program on recent advances in NSTX plasma performance is discussed

  15. R and D and maintenance on graphite tile of divertor region at EAST

    International Nuclear Information System (INIS)

    Ji, X.; Song, Y.T.; Wu, S.T.; Hao, J.; Du, S.; Peng, Y.; Cao, L.; Wang, S.

    2012-01-01

    Highlights: ► Find out the reason of damage of graphite tile. ► Simulation the halo current. ► Stress analysis of graphite tile by ANSYS. ► Do the experiments to test the strength of graphite tile. ► Do the optimization and maintenance of graphite tile. - Abstract: EAST, with full superconducting magnetic coils, had been designed and constructed to address the scientific and engineering issues under steady state operation. The in-vessel components are full graphite tiles as first wall had been operated successfully. In the experiment campaign of 2010, the H mode operation and 1 MA operation have been gotten on EAST. However, in some case, some of the graphite tiles of divertor region are damaged with the plasma parameter enhanced. As most of the damaged graphite tiles are in the divertor region, they are probably damaged by the electro-magnetic force of the halo current when the VDEs occur. The force of the halo current is re-estimated. The structure analysis has been done by the ANSYS software. From the analysis result. It can be obtained that the stress is larger than the allowable stress when the halo current on the graphite tile is larger than 2.7 kA. The tensile testing of the graphite also has been done. As the result, the graphite tiles are damaged when the forces are up to 2400 N. To deal with the problem, two proposes are accepted. In the one hand, the new type graphite material is used, whose tensile strength is up to 45 MPa. In the other hand, the structure of the graphite tiles is optimized.

  16. Composite treatment of ceramic tile armor

    Science.gov (United States)

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  17. An overview of an experimental program for testing large reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Farrar, C.R.; Bennett, J.G.

    1989-01-01

    The Seismic Category I Structures Program is being carried out at the Los Alamos National Laboratory under sponsorship of the US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research. In the class of structure being investigated, the primary lateral load-resisting structural element is the reinforced concrete shear wall. Previous results from microconcrete models indicated that these structures responded to seismic excitations with initial frequencies that were reduced by factors of 2 or more over those calculated based on an uncracked cross-section strength-of-materials approach. Furthermore, though the structures themselves were shown to have sufficient reserve margins, the equipment and piping are designed to response spectra that are based on uncracked cross-sectional member properties, and these spectra may not be inappropriate for actual building responses. The current phase of the program is aimed at verification of these conclusions using conventional concrete structures to demonstrate that previous microconcrete results can be scaled to prototype structures. A new configuration of a shear wall structure was designed and tested to investigate the analytical-experimental differences observed during the previous model testing. Shear wall height-to-length aspect ratios were to vary from 1 to 0.25. Percentage steel ratios were to vary from 0.25% to 0.6% by area, in both horizontal and vertical directions. The test structures are shown in Fig. 1. TRG-1 and -2 were constructed with microconcrete. TRG-3, -4, -5, and -6 were constructed with conventional (19-mm aggregate) concrete. 11 refs., 4 figs

  18. Conceptual Design for a Bulk Tungsten Divertor Tile in JET

    International Nuclear Information System (INIS)

    Mertens, P.; Neubauer, O.; Philipps, V.; Schweer, B.; Samm, U.; Hirai, T.; Sadakov, S.

    2006-01-01

    With ITER on the verge of being build, the ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant to the support of decisions to the first wall construction and, from the point of view of plasma physics, to the corresponding investigations of possible plasma configuration and plasma-wall interaction. In both respects, tungsten plays a key role in the divertor cladding whereas beryllium will be used for the vessel's first wall. For the central tile, also called LB-SRP for '' Load-Bearing Septum Replacement Plate '', resort to bulk tungsten is envisaged in order to cope with the high loads expected (up to 10 MW/m 2 for about 10 s). This is indeed the preferred plasma-facing component for positioning the outer strike-point in the divertor. Forschungszentrum Juelich has developed a conceptual design for this tile, based on an assembly of tungsten blades or lamellae. It was selected in the frame of an extensive R-and-D study in search of a suitable, inertially cooled component(T. Hirai et al., R-and-D on full tungsten divertor and beryllium wall for JET ITER-like Wall Project: this conference). As reported elsewhere, the design is actually driven by electromagnetic considerations in the first place(S. Sadakov et al., Detailed electromagnetic analysis for optimisation of a tungsten divertor plate for JET: this conference). The lamellae are grouped in four stacks per tile which are independently attached to an equally re-designed supporting structure. A so-called adapter plate, also a new design, takes care of an appropriate interface to the base carrier of JET, onto which modules of two tiles are positioned and screwed by remote handling (RH) procedures. The compatibility of the design on the whole with RH requirements is another essential ingredient which was duly taken into account throughout. The concept and the underlying philosophy will be presented along with important

  19. Use of ornamental rock waste to fabricate rustic ceramic tile: industrial test

    International Nuclear Information System (INIS)

    Pacheco, A.T.; Monteiro, S.N.

    2011-01-01

    This work has as its objective to produce rustic wall tiles with the use of a waste from the sawing of gnaisse rock mixed with kaolinitic replacing sand. Compositions were prepared using clay, sand and waste, The wall tiles were fire in a industrial dome type furnace at 850 deg C.The physical and mechanical properties determined were water absorption and flexural rupture strength. The results indicated that the waste did not improve the evaluated properties by replacing sand. This is mainly due to the low temperature used in the experiment. (author)

  20. TileDCS web system

    International Nuclear Information System (INIS)

    Maidantchik, C; Ferreira, F; Grael, F

    2010-01-01

    The web system described here provides features to monitor the ATLAS Detector Control System (DCS) acquired data. The DCS is responsible for overseeing the coherent and safe operation of the ATLAS experiment hardware. In the context of the Hadronic Tile Calorimeter Detector (TileCal), it controls the power supplies of the readout electronics acquiring voltages, currents, temperatures and coolant pressure measurements. The physics data taking requires the stable operation of the power sources. The TileDCS Web System retrieves automatically data and extracts the statistics for given periods of time. The mean and standard deviation outcomes are stored as XML files and are compared to preset thresholds. Further, a graphical representation of the TileCal cylinders indicates the state of the supply system of each detector drawer. Colors are designated for each kind of state. In this way problems are easier to find and the collaboration members can focus on them. The user selects a module and the system presents detailed information. It is possible to verify the statistics and generate charts of the parameters over the time. The TileDCS Web System also presents information about the power supplies latest status. One wedge is colored green whenever the system is on. Otherwise it is colored red. Furthermore, it is possible to perform customized analysis. It provides search interfaces where the user can set the module, parameters, and the time period of interest. The system also produces the output of the retrieved data as charts, XML files, CSV and ROOT files according to the user's choice.

  1. Conceptual design for a bulk tungsten divertor tile in JET

    International Nuclear Information System (INIS)

    Mertens, Ph.; Hirai, T.; Linke, J.; Neubauer, O.; Pintsuk, G.; Philipps, V.; Sadakov, S.; Samm, U.; Schweer, B.

    2007-01-01

    The ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant for the actual first wall construction on ITER. Tungsten plays a key role in the divertor cladding. For the central tile, also called LB-SRP for 'load-bearing septum replacement plate', bulk tungsten is envisaged in order to cope with the high heat loads expected (up to 10 MW/m 2 for 10 s). The outer strike-point in the divertor will be positioned on this tile for the most relevant configurations. Forschungszentrum Juelich (FZJ) has developed a conceptual design based on an assembly of tungsten blades or lamellae. An appropriate interface with the base carrier of JET, on which modules of two tiles are positioned and fixed by remote handling procedures, is a substantial part of the integral design. Important issues are the electromagnetic forces and expected temperature distributions. Material choices combine tungsten, TZM TM , Inconel and ceramic parts. The completed design has been finalised in a proposal to the ILW project, with utmost ITER-relevance

  2. Standard Test Method for Bond Strength of Ceramic Tile to Portland Cement Paste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the ability of glazed ceramic wall tile, ceramic mosaic tile, quarry tile, and pavers to be bonded to portland cement paste. This test method includes both face-mounted and back-mounted tile. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Construction and Performance of an Iron-Scintillator Hadron Calorimeter with Longitudinal Tile Configuration

    CERN Multimedia

    2002-01-01

    % RD34 \\\\ \\\\ In a scintillator tile calorimeter with wavelength shifting fiber readout significant simplifications of the construction and the assembly are possible if the tiles are oriented $^{\\prime\\prime}$longitudinally$^{\\prime\\prime}$, i.e.~in a r-$\\phi$ planes for a barrel configuration. For a hybrid calorimeter consisting of a scintillator tile hadron compartment and a sufficiently containing liquid argon electromagnetic (EM) compartment, as proposed for the ATLAS detector, good jet resolution is predicted by simulations, which is not affected by this particular orientation of the tiles. \\\\ \\\\The aim of the proposed development program is to construct a calorimeter test module with longitudinal tiles and to check the simulation results by test beam measurements. In addition several component tests and further simulations and engineering studies are needed to optimize the design of a large calorimeter structure to be used in collider experiments. The construction of a test module will also provide valua...

  4. In-situ Tritium Measurements of the Tokamak Fusion Test Reactor Bumper Limiter Tiles Post D-T Operations

    International Nuclear Information System (INIS)

    C.A. Gentile; C.H. Skinner; K.M. Young; M. Nishi; S. Langish; et al

    1999-01-01

    The Princeton Plasma Physics Laboratory (PPPL) Engineering and Research Staff in collaboration with members of the Japan Atomic Energy Research Institute (JAERI), Tritium Engineering Laboratory have commenced in-situ tritium measurements of the TFTR bumper limiter. The Tokamak Fusion Test Reactor (TFTR) operated with tritium from 1993 to 1997. During this time ∼ 53,000 Ci of tritium was injected into the TFTR vacuum vessel. After the cessation of TFTR plasma operations in April 1997 an aggressive tritium cleanup campaign lasting ∼ 3 months was initiated. The TFTR vacuum vessel was subjected to a regimen of glow discharge cleaning (GDC) and dry nitrogen and ''moist air'' purges. Currently ∼ 7,500 Ci of tritium remains in the vacuum vessel largely contained in the limiter tiles. The TFTR limiter is composed of 1,920 carbon tiles with an average weight of ∼ 600 grams each. The location and distribution of tritium on the TFTR carbon tiles are of considerable interest. Future magnetically confined fusion devices employing carbon as a limiter material may be considerably constrained due to potentially large tritium inventories being tenaciously held on the surface of the tiles. In-situ tritium measurements were conducted in TFTR bay L during August and November 1998. During the bay L measurement campaign open wall ion chambers and ultra thin thermoluminscent dosimeters (TLD) affixed to a boom and end effector were deployed into the vacuum vessel. The detectors were designed to make contact with the surface of the bumper limiter tile and to provide either real time (ion chamber) or passive (TLD) indication of the surface tritium concentration. The open wall ion chambers were positioned onto the surface of the tile in a manner which employed the surface of the tile as one of the walls of the chamber. The ion chambers, which are (electrically) gamma insensitive, were landed at four positions per tile. The geometry for landing the TLD's provided measurement at 24

  5. MASHUP SCHEME DESIGN OF MAP TILES USING LIGHTWEIGHT OPEN SOURCE WEBGIS PLATFORM

    Directory of Open Access Journals (Sweden)

    T. Hu

    2018-04-01

    Full Text Available To address the difficulty involved when using existing commercial Geographic Information System platforms to integrate multi-source image data fusion, this research proposes the loading of multi-source local tile data based on CesiumJS and examines the tile data organization mechanisms and spatial reference differences of the CesiumJS platform, as well as various tile data sources, such as Google maps, Map World, and Bing maps. Two types of tile data loading schemes have been designed for the mashup of tiles, the single data source loading scheme and the multi-data source loading scheme. The multi-sources of digital map tiles used in this paper cover two different but mainstream spatial references, the WGS84 coordinate system and the Web Mercator coordinate system. According to the experimental results, the single data source loading scheme and the multi-data source loading scheme with the same spatial coordinate system showed favorable visualization effects; however, the multi-data source loading scheme was prone to lead to tile image deformation when loading multi-source tile data with different spatial references. The resulting method provides a low cost and highly flexible solution for small and medium-scale GIS programs and has a certain potential for practical application values. The problem of deformation during the transition of different spatial references is an important topic for further research.

  6. Flexible and efficient genome tiling design with penalized uniqueness score

    Directory of Open Access Journals (Sweden)

    Du Yang

    2012-12-01

    Full Text Available Abstract Background As a powerful tool in whole genome analysis, tiling array has been widely used in the answering of many genomic questions. Now it could also serve as a capture device for the library preparation in the popular high throughput sequencing experiments. Thus, a flexible and efficient tiling array design approach is still needed and could assist in various types and scales of transcriptomic experiment. Results In this paper, we address issues and challenges in designing probes suitable for tiling array applications and targeted sequencing. In particular, we define the penalized uniqueness score, which serves as a controlling criterion to eliminate potential cross-hybridization, and a flexible tiling array design pipeline. Unlike BLAST or simple suffix array based methods, computing and using our uniqueness measurement can be more efficient for large scale design and require less memory. The parameters provided could assist in various types of genomic tiling task. In addition, using both commercial array data and experiment data we show, unlike previously claimed, that palindromic sequence exhibiting relatively lower uniqueness. Conclusions Our proposed penalized uniqueness score could serve as a better indicator for cross hybridization with higher sensitivity and specificity, giving more control of expected array quality. The flexible tiling design algorithm incorporating the penalized uniqueness score was shown to give higher coverage and resolution. The package to calculate the penalized uniqueness score and the described probe selection algorithm are implemented as a Perl program, which is freely available at http://www1.fbn-dummerstorf.de/en/forschung/fbs/fb3/paper/2012-yang-1/OTAD.v1.1.tar.gz.

  7. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.

    Science.gov (United States)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-02-21

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.

  8. Thermal-stress analysis and testing of DIII-D armor tiles

    International Nuclear Information System (INIS)

    Baxi, C.B.; Anderson, P.M.; Reis, E.E.; Smith, J.P.; Smith, P.D.; Croesmann, C.; Watkins, J.; Whitley, J.

    1987-10-01

    It is planned to install about 1500 new armor tiles in the DIII-D tokamak. The armor tiles currently installed in DIII-D are made by brazing Poco AXF-5Q graphite onto Inconel X-750 stock. A small percentage of these have failed by breakage of graphite. These failures were believed to be related to significant residual stress remaining in graphite after brazing. Hence, an effort was undertaken to improve the design with all-graphite tiles. Three criteria must be satisfied by the armor tiles and the hardware used to attach the tiles to the vessel walls: tiles should not structurally fail, peak tile temperature must be less than 2500 K, and peak vessel stresses must be below acceptable levels. A number of alternate design concepts were first analyzed with the two-dimensional finite element codes TOPAZ2D and NIKE2D. Promising designs were optimized for best parameters such as thicknesses, etc. The two best designs were further analyzed for thermal stresses with the three-dimensional codes P/THERMAL and P/STRESS. Prototype tiles of a number of materials were fabricated by GA and tested at the Plasma Materials Test Facility of the Sandia National Laboratory at Albuquerque. The tests simulated the heat flux and cooling conditions in DIII-D. This paper describes the 2-D and 3-D thermal stress analyses, the test results and logic which led to the selected design of the DIII-D armor tiles. 5 refs., 7 figs., 3 tabs

  9. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    OpenAIRE

    Carrio Argos, Fernando; Valero, Alberto

    2015-01-01

    The Tile Calorimeter PreProcessor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the front-end electronics of the TileCal Demonstrator module, as well as for configur...

  10. Geometrical tile design for complex neighborhoods.

    Science.gov (United States)

    Czeizler, Eugen; Kari, Lila

    2009-01-01

    Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle.

  11. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason; Johnson, Andrew; Renambot, Luc; Peterka, Tom; Jeong, Byungil; Sandin, Daniel J.; Talandis, Jonas; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung; Sun, Yiwen

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  12. Principal minors and rhombus tilings

    International Nuclear Information System (INIS)

    Kenyon, Richard; Pemantle, Robin

    2014-01-01

    The algebraic relations between the principal minors of a generic n × n matrix are somewhat mysterious, see e.g. Lin and Sturmfels (2009 J. Algebra 322 4121–31). We show, however, that by adding in certain almost principal minors, the ideal of relations is generated by translations of a single relation, the so-called hexahedron relation, which is a composition of six cluster mutations. We give in particular a Laurent-polynomial parameterization of the space of n × n matrices, whose parameters consist of certain principal and almost principal minors. The parameters naturally live on vertices and faces of the tiles in a rhombus tiling of a convex 2n-gon. A matrix is associated to an equivalence class of tilings, all related to each other by Yang–Baxter-like transformations. By specializing the initial data we can similarly parameterize the space of Hermitian symmetric matrices over R,C or H the quaternions. Moreover by further specialization we can parametrize the space of positive definite matrices over these rings. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras mathematical physics’. (paper)

  13. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy

    International Nuclear Information System (INIS)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-01-01

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA ‘sub-tile’ strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs. (paper)

  14. TECHNOLOGY OF PRODUCTION OF CERAMIC TILES BASED ON DOLERITE AND FUSIBLE CLAY

    Directory of Open Access Journals (Sweden)

    Pleshko Marianna Viktorovna

    2018-02-01

    Full Text Available The paper presents a completely new composition of the ceramic mass for production of ceramic tiles for interior lining of walls, on the basis of fusible clay. The optimal compositions of jade engobe and glossy glaze, the most suitable for this composition, are determined. A new technological scheme is developed for production of ceramic tiles for interior lining based on dolerite and fusible clay. The curve of firing, which is the most suitable for charge masses and decorative coating compositions being used, has been constructed. Subject: ceramic mass for the production of ceramic facing tiles. Ceramic tiles are the most popular building material in Russia. The most promising technology for its production from the standpoint of technical and economic efficiency is the technology of rapid single firing, which is rarely used at the plants of our country. In this regard, the development and implementation of new effective compositions of ceramic masses and decorative coatings that are the most compatible with the specifics of rapid single firing technology, based on new unconventional raw materials, are very relevant and promising. Research objectives: development of technological parameters, compositions of ceramic masses and decorative coatings of ceramic tiles for the internal wall lining that provide an increase in tiles production efficiency using the technology of rapid single firing through the use of non-traditional plagioclase-pyroxene raw materials: dolerites, loam and technogenic raw materials. Materials and methods: technological, numerical and experimental studies were conducted. To select the optimal composition of the ceramic mass, the method of mathematical planning was used, namely the simplex-centroid design of Scheffe. To identify the scientific foundations of the energy-efficient production technology being developed, differential thermal and X-ray phase, optical, electron microscopic and dilatometric studies were applied

  15. Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method.

    Science.gov (United States)

    Huh, Kyung-Hoe; Baik, Jee-Seon; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo

    2011-06-01

    This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm.

  16. ATLAS TileCal LVPS Upgrade Hardware and Testing

    CERN Document Server

    Hibbard, Michael James; The ATLAS collaboration; Hadavand, Haleh Khani

    2018-01-01

    UTA (University of Texas at Arlington) has been designing and producing new testing stations to ensure the reliability and quality of new TileLVPS (Low Voltage Power Supplies), also produced at UTA, which will power the next generation of upgraded hardware in the TileCal (Tile Calorimeter) system of ATLAS at CERN. UTA has produced two new types of testing stations, which build upon the previous generation of testing stations used in the initial production of the TileCal system. The first station is the Initial Test Station, and quickly quantifies a multitude of performance metrics of a LVPS. We have developed our own PC based program which graphically display and records onto file these metrics. A few notable metrics we are measuring are the system clock and its jitter. Excessive clock jitter in LVPS can affect system stability and derate the working range of the system duty cycle. This station also verifies protection circuitry of LVPS, which protects it from over temperature, current and voltage. The second...

  17. An Effective NoSQL-Based Vector Map Tile Management Approach

    Directory of Open Access Journals (Sweden)

    Lin Wan

    2016-11-01

    Full Text Available Within a digital map service environment, the rapid growth of Spatial Big-Data is driving new requirements for effective mechanisms for massive online vector map tile processing. The emergence of Not Only SQL (NoSQL databases has resulted in a new data storage and management model for scalable spatial data deployments and fast tracking. They better suit the scenario of high-volume, low-latency network map services than traditional standalone high-performance computer (HPC or relational databases. In this paper, we propose a flexible storage framework that provides feasible methods for tiled map data parallel clipping and retrieval operations within a distributed NoSQL database environment. We illustrate the parallel vector tile generation and querying algorithms with the MapReduce programming model. Three different processing approaches, including local caching, distributed file storage, and the NoSQL-based method, are compared by analyzing the concurrent load and calculation time. An online geological vector tile map service prototype was developed to embed our processing framework in the China Geological Survey Information Grid. Experimental results show that our NoSQL-based parallel tile management framework can support applications that process huge volumes of vector tile data and improve performance of the tiled map service.

  18. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation.

    Directory of Open Access Journals (Sweden)

    Ruiqin Zhong

    Full Text Available Wood is mainly composed of secondary walls, which constitute the most abundant stored carbon produced by vascular plants. Understanding the molecular mechanisms controlling secondary wall deposition during wood formation is not only an important issue in plant biology but also critical for providing molecular tools to custom-design wood composition suited for diverse end uses. Past molecular and genetic studies have revealed a transcriptional network encompassing a group of wood-associated NAC and MYB transcription factors that are involved in the regulation of the secondary wall biosynthetic program during wood formation in poplar trees. Here, we report the functional characterization of poplar orthologs of MYB46 and MYB83 that are known to be master switches of secondary wall biosynthesis in Arabidopsis. In addition to the two previously-described PtrMYB3 and PtrMYB20, two other MYBs, PtrMYB2 and PtrMYB21, were shown to be MYB46/MYB83 orthologs by complementation and overexpression studies in Arabidopsis. The functional roles of these PtrMYBs in regulating secondary wall biosynthesis were further demonstrated in transgenic poplar plants showing an ectopic deposition of secondary walls in PtrMYB overexpressors and a reduction of secondary wall thickening in their dominant repressors. Furthermore, PtrMYB2/3/20/21 together with two other tree MYBs, the Eucalyptus EgMYB2 and the pine PtMYB4, were shown to differentially bind to and activate the eight variants of the 7-bp SMRE consensus sequence, composed of ACC(A/TA(A/C(T/C. Together, our results indicate that the tree MYBs, PtrMYB2/3/20/21, EgMYB2 and PtMYB4, are master transcriptional switches that activate the SMRE sites in the promoters of target genes and thereby regulate secondary wall biosynthesis during wood formation.

  19. Status of the ATLAS hadronic tile calorimeter

    International Nuclear Information System (INIS)

    Leitner, R.

    2005-01-01

    Short status of the Tile Calorimeter project is given. Major achievements in the mechanical construction of the detector modules, their instrumentation, cylinders assembly, as well as the principles of the detector front-end electronics, are described. The ideas of Tile Calorimeter module calibration are presented

  20. The Sad Case of the Columbine Tiles.

    Science.gov (United States)

    Dowling-Sendor, Benjamin

    2003-01-01

    Analyzes free-speech challenge to school district's guidelines for acceptable expressions on ceramic tiles painted by Columbine High School students to express their feelings about the massacre. Tenth Circuit found that tile painting constituted school-sponsored speech and thus district had the constitutional authority under "Hazelwood School…

  1. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  2. Investigating critical success factors in tile industry

    Directory of Open Access Journals (Sweden)

    Davood Salmani

    2014-04-01

    Full Text Available This paper presents an empirical investigation to determine critical success factors influencing the success of tile industry in Iran. The study designs a questionnaire in Likert scale, distributes it among some experts in tile industry. Using Pearson correlation test, the study has detected that there was a positive and meaningful relationship between marketing planning and the success of tile industry (r = 0.312 Sig. = 0.001. However, there is not any meaningful relationship between low cost production and success of tile industry (r = 0.13 Sig. = 0.12 and, there is a positive and meaningful relationship between organizational capabilities and success of tile industry (r = 0.635 Sig. = 0.000. Finally, our investigation states that technology and distributing systems also influence on the success of tile industry, positively. The study has also used five regression analyses where the success of tile industry was the dependent variable and marketing planning, low cost production and organizational capabilities are independent variables and the results have confirmed some positive and meaningful relationship between the successes of tile industry with all independent variables.

  3. Tiling by rectangles and alternating current

    KAUST Repository

    Prasolov, M. V.; Skopenkov, Mikhail

    2011-01-01

    This paper is on tilings of polygons by rectangles. A celebrated physical interpretation of such tilings by R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte uses direct-current circuits. The new approach of this paper is an application

  4. Latest news from the Tiles

    CERN Multimedia

    Costanzo, D

    The Tile hadronic calorimeter will be installed in the central region of ATLAS with an inner radius of 2.28 m, an outer radius of 4.25 m, a total length of about 12 m and a weight of about 2300 tons. The calorimeter is mechanically divided in one central barrel and two extended barrels, with a gap in between for the services of the internal part of ATLAS. The construction of the calorimeter is advanced, and installation in the ATLAS pit is foreseen to start in December 2003. After mechanical assembly the modules are instrumented with all the optical components. Scintillating tiles are inserted into the slots, and the read-out Wave Length Shifting fibers are coupled to scintillators and bundled to achieve the quasi-projective cell geometry of the calorimeter. The final modules are stored in bldg 185, shown in the first photo, and in bldg 175 at CERN. The barrel modules are mechanically assembled in Dubna and then transported to CERN to be optically instrumented, while the extended barrels are constructed in t...

  5. Electrokinetic desalination of glazed ceramic tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Ferreira, Celia; Christensen, Iben Vernegren

    2010-01-01

    Electrokinetic desalination is a method where an applied electric DC field is the driving force for removal of salts from porous building materials. In the present paper, the method is tested in laboratory scale for desalination of single ceramic tiles. In a model system, where a tile...... was contaminated with NaCl during submersion and subsequently desalinated by the method, the desalination was completed in that the high and problematic initial Cl(-) concentration was reduced to an unproblematic concentration. Further conductivity measurements showed a very low conductivity in the tile after...... treatment, indicating that supply of ions from the poultice at the electrodes into the tile was limited. Electroosmotic transport of water was seen when low ionic content was reached. Experiments were also conducted with XVIII-century tiles, which had been removed from Palacio Centeno (Lisbon) during...

  6. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00304670; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  7. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how walls...... have encouraged architectural thinking of enclosure, materiality, construction and inhabitation in architectural history, the paper’s aim is to define new directions for the integration of LEDs in walls, challenging the thinking of inhabitation and program. This paper introduces the notion...... of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...

  8. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00306349; The ATLAS collaboration

    2017-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  9. FORMATION OF ANTIBACTERIAL EFFECT ON CERAMIC TILE SURFACES

    Directory of Open Access Journals (Sweden)

    Selçuk ÖZCAN

    2017-03-01

    Full Text Available Biocidal antimicrobial molecular barrier (BAMB solutions are known to provide antimicrobial effect on the surfaces in industrial applications. However, there has been a lack of scientific reports about the subject in the literature. In this study, in order to impart an antimicrobial surface property on ceramic surfaces, a BAMB solution was applied on gloss fired ceramic wall tile substrates and the surface antimicrobial activity results were compared with that of plain wall tiles (without BAMB application. The ceramic surfaces were cleaned, and stove dried at120°C prior to spray coating with a BAMB solution. The coated substrates were dried in the ambient. The intactness of the coatings was checked with the bromophenol blue test. The microstructural and molecular characterization of the BAMB coated surfaces were carried out with SEM imaging and surface FTIR, respectively. The antimicrobial activity tests of the surfaces were conducted according to ASTM E2180-07 (Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent in Polymeric or Hydrophobic Materials. The microorganisms used were Staphylococcus aureus (ATCC 6538 and Pseudomonas aeruginosa (ATCC 15442 bacteria. The BAMB coated surfaces showed less flocculent bacterial growth in comparison to uncoated ceramic surfaces leading to the conclusion that the BAMB improved the antimicrobial property.

  10. Event filter monitoring with the ATLAS tile calorimeter

    CERN Document Server

    Fiorini, L

    2008-01-01

    The ATLAS Tile Calorimeter detector is presently involved in an intense phase of subsystems integration and commissioning with muons of cosmic origin. Various monitoring programs have been developed at different levels of the data flow to tune the set-up of the detector running conditions and to provide a fast and reliable assessment of the data quality already during data taking. This paper focuses on the monitoring system integrated in the highest level of the ATLAS trigger system, the Event Filter, and its deployment during the Tile Calorimeter commissioning with cosmic ray muons. The key feature of Event Filter monitoring is the capability of performing detector and data quality control on complete physics events at the trigger level, hence before events are stored on disk. In ATLAS' online data flow, this is the only monitoring system capable of giving a comprehensive event quality feedback.

  11. Analysis and Design of the Beryllium Tiles for the JET ILW Project

    International Nuclear Information System (INIS)

    Thompson, V.; Krivchenkov, Y.; Riccardo, V.; Vizvary, Z.

    2006-01-01

    Work is in progress to completely replace, in 2008, the JET existing CFC tiles with a configuration of plasma facing materials consistent with the ITER design. The ITER-like Wall (ILW) will be created with a combination of beryllium (Be), tungsten (W), W-Coated CFC and Be-Coated inconel tiles, with the material depending on the local anticipated heat flux and geometry required. Over 2000 tiles will be replaced and the ILW will accommodate additional heating up to at least 50 MW for 10 s. This paper describes the generic problems associated with Be tiles (power handling capacity and disruption induced eddy currents) and illustrates specific design cases. As with the existing first wall components, the Be tiles will be inertially cooled and the Be melting temperature of only 1289 o C will drive their power handling performance. At 40 mm typical thickness, the tiles are '' thermally thick '' for typical 10 s. shots and will handle about 60 MJ/m 2 without melting. Surface castellations and kinematic restraints minimise thermally induced stresses. As the thermal flux arrives along near toroidal directions, the design keeps the exposed depth of poloidally running edges to low levels: down to 40 microns in the most severe positions. This limit strongly constrains the dimensions of the castellation grooves and the placing of the cuts described below. During disruptions, Be tiles are subjected to eddy current torques due to the combination of large changes in magnetic field (typically 100 T/s), high magnetic fields (B(tor) ∼ 4 T in the centre of the plasma) and the low resistivity of Be (8 E-8 Ohm-m at 200 o C, the minimum operating temperature of JET). The ILW Be tiles will manage these torques via a combination of the castellations, along with cuts which will interrupt the eddy current loops. The cuts result in the division of the tiles into several slices which require inconel carrier '' toast racks '' for support. Example cases will show FEA results of eddy current

  12. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  13. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  14. Electrochemical desalination of historic Portuguese tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Dias-Ferreira, Celia; Ribeiro, Alexandra B.

    2015-01-01

    Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were...... the electrochemical treatment. The removal rate was similar for the two anions so the chloride concentration reached the lowest concentration level first. At this point the electric resistance increased, but the removal of nitrate continued unaffected till similar low concentration. The sulfate concentration...... was successful. Based on the obtained results an important step is taken towards development of an electrochemical technique for desalination of tile panels....

  15. Introductory Tiling Theory for Computer Graphics

    CERN Document Server

    Kaplan, Craig

    2009-01-01

    Tiling theory is an elegant branch of mathematics that has applications in several areas of computer science. The most immediate application area is graphics, where tiling theory has been used in the contexts of texture generation, sampling theory, remeshing, and of course the generation of decorative patterns. The combination of a solid theoretical base (complete with tantalizing open problems), practical algorithmic techniques, and exciting applications make tiling theory a worthwhile area of study for practitioners and students in computer science. This synthesis lecture introduces the math

  16. Tile-Packing Tomography Is NP-hard

    DEFF Research Database (Denmark)

    Chrobak, Marek; Dürr, Christoph; Guíñez, Flavio

    2010-01-01

    Discrete tomography deals with reconstructing finite spatial objects from their projections. The objects we study in this paper are called tilings or tile-packings, and they consist of a number of disjoint copies of a fixed tile, where a tile is defined as a connected set of grid points. A row...

  17. Flaw detection device for plasma facing wall in thermonuclear device

    International Nuclear Information System (INIS)

    Doi, Akira.

    1996-01-01

    The present invention concerns plasma facing walls of a thermonuclear device and provides a device for detecting a thickness of amour tiles accurately and efficiently with no manual operation. Namely, the position of the plasma facing surface of the amour tile is measured using a structure to which the amour tiles are to be disposed as a reference. Also in a case of disposing new armor tiles, the position of the plasma facing surface of the armor tiles is measured to thereby measure the wearing amount of the amour tiles based on the difference between the reference and the measured value. If a measuring means capable of measuring a plurality of amour tiles at once is used efficiency of the measurement and the detection can be enhanced. Several ten thousands of amour tiles are disposed to the plasma facing wall in a large scaled thermonuclear device, and a plenty of time was required for the detection. However, the present invention can improve the accuracy for the measurement and detection and provide time and labors-saving. (I.S.)

  18. On residual gas analysis during high temperature baking of graphite tiles

    International Nuclear Information System (INIS)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C; Chauhan, N; Raole, P M

    2008-01-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles

  19. On residual gas analysis during high temperature baking of graphite tiles

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C [Institute for Plasma Research, Bhat, Gandhinagar - 382 428 (India); Chauhan, N; Raole, P M [Facilitation Center for Industrial Plasma Technologies, IPR, Gandhinagar (India)], E-mail: arun@ipr.res.in

    2008-05-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles.

  20. Modeling the effects of tile drain placement on the hydrologic function of farmed prairie wetlands

    Science.gov (United States)

    Werner, Brett; Tracy, John; Johnson, W. Carter; Voldseth, Richard A.; Guntenspergen, Glenn R.; Millett, Bruce

    2016-01-01

    The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection programs. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wetland boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change.

  1. VB Platinum Tile & Carpet, Inc. Information Sheet

    Science.gov (United States)

    VB Platinum Tile & Carpet, Inc. (the Company) is located in Bristow, Virginia. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Washington, DC.

  2. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  3. GIBS Web Map Tile Service (WMTS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The WMTS implementation standard provides a standards-based solution for serviing digital maps using predefined image tiles. Through the constructs of the...

  4. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Marjanovic, Marija; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of the full readout chain during the data taking, a set of calibration sub-systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements, and an integrator based readout system. Combined information from all systems allows to monitor and to equalize the calorimeter response at each stage of the signal evolution, from scintillation light to digitization. Calibration runs are monitored from a data quality perspective and u...

  5. 2011 Las Conchas Post Fire Tile Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set consists of an orthophotography tile index based on multi-spectral (red, green, blue, near-infrared) digital aerial imagery, collected and processed by...

  6. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  7. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  8. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  9. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  10. Hearing Threshold Level Inworkers of Meybod Tile Factory

    Directory of Open Access Journals (Sweden)

    F Nourani

    2008-04-01

    Full Text Available Introduction: Occupational exposure to excessive noise is commonly encountered in a large number of industries in Iran. This study evaluated the hearing threshold and hearing loss in Meybod tile factory workers. Methods: This cross-sectional study included 371 tile factoryworkers during summer and autumn of 2005. Current noise exposure was estimated using sound level meter .A specially formatted questionnaire was used. Totoscophc examination and conductive air audiometery were used to assess the hearing loss in each subject .Finally data was analyzed using SPSS version 11.5. Results: Occupational noise increased mean of hearing threshold at all frequencies which was significant at 3, 4 KHz in both ears (p<0.05.Prevalence of hearing impairment at high and low frequencies were 39.2% and 46.5%.Prevalence of occupational NIHL was 12.9% and the odds of NIHL significantly increased with noise exposure of more than 10 years. The hearing threshold was worse in both ears of workers with tinnitus. Conclusion: High prevalence of hearing loss and NIHL emphasizes on the necessity of hearing conservational programs in tile factory workers.

  11. Comparison of medieval decorated floor-tiles with clay and tile fragments from the kilns at Bistrup

    International Nuclear Information System (INIS)

    Als Hansen, B.; Aaman Soerensen, M.; McKerrell, H.; Mejdahl, V.

    1977-01-01

    In 1976 two tile kilns with numerous wasters of ornamented tiles were excavated at Bistrup near Roskilde. Identical ornaments had earlier been found on floor-tiles from seven sites, mainly churches, in north and east Zealand. The question arose whether some of these tiles were made locally or whether all tiles carrying this particular ornamentation were made at Bistrup. Preliminary results obtained from a comparison of the tiles with material from Bistrup means of neutron activation analysis indicate that not all tiles were made at Bistrup. (author)

  12. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    International Nuclear Information System (INIS)

    1982-08-01

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program

  13. Porcelain tiles by the dry route

    International Nuclear Information System (INIS)

    Melchiades, F. G.; Daros, M. T.; Boschi, A. O.

    2010-01-01

    In Brazil, the second largest tile producer of the world, at present, 70% of the tiles are produced by the dry route. One of the main reasons that lead to this development is the fact that the dry route uses approximately 30% less thermal energy them the traditional wet route. The increasing world concern with the environment and the recognition of the central role played by the water also has pointed towards privileging dry processes. In this context the objective of the present work is to study the feasibility of producing high quality porcelain tiles by the dry route. A brief comparison of the dry and wet route, in standard conditions industrially used today to produce tiles that are not porcelain tiles, shows that there are two major differences: the particle sizes obtained by the wet route are usually considerably finer and the capability of mixing the different minerals, the intimacy of the mixture, is also usually better in the wet route. The present work studied the relative importance of these differences and looked for raw materials and operational conditions that would result in better performance and glazed porcelain tiles of good quality. (Author) 7 refs.

  14. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  15. Programmable disorder in random DNA tilings

    Science.gov (United States)

    Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu

    2017-03-01

    Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures.

  16. Carbon tiles as spectral-shifter for long-life liquid blanket in LHD-type reactor FFHR

    International Nuclear Information System (INIS)

    Sagara, A.; Imagawa, S.; Tanaka, T.; Muroga, T.; Kubota, Y.; Dolan, T.; Hashizume, H.; Kunugi, T.; Fukada, S.; Shimizu, A.; Terai, T.; Mitarai, O.

    2006-01-01

    In terms of engineering feasibility for long-life Flibe blanket in LHD-type reactor FFHR, the Spectral-shifter and Tritium breeder Blanket (STB) concept is evaluated by taking neutron irradiation effects into account under system integration such as Flibe cooling and components replacement. FEM calculations for the neutron wall loading of 1.5 MW/m 2 show that the temperature of the STB armor tile can be kept below 2000 K by optimizing the first metal wall thickness. The heat load experiment on the STB armor mockup confirms feasibility of the temperature control and mechanical joining. Degradation of STB armor tiles due to neutron irradiation requires replacement of them every few years by means of remote handling 'screw coasters' using helical winding, where the replaced tiles are low level wastes. Although the STB concept is feasible within nuclear and thermal properties, more detailed structural optimization is needed including the mechanical and chemical properties

  17. Fast wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kitamura, Kazunori.

    1990-01-01

    A protruding molten metal reservoir is disposed to a sealing vessel embedded in the armour tile of fast walls, and molten metal of low melting point such as tin, lead or alloy thereof is filled in the sealing vessel. The volume of the molten metal reservoir is determined such that the surface level of the molten metal is kept within the molten metal reservoir even when the sealed low melting point metal is solidified at room temperature. When the temperature is lowered during plasma interruption period and the sealed low melting molten metal is solidified to reduce the volume, most of the molten metal reservoir regioin constitutes a vacuum gap. However, the inner wall of the sealing vessel other than the molten metal reservior region can be kept into contact with the sealed metal. Accordingly, the temperature and the sublimation loss of the armour tile can be kept low even upon plasma heat application. (I.N.)

  18. ATLAS Rewards Russian Supplier for Scintillating Tile Production

    CERN Multimedia

    2001-01-01

    At a ceremony held at CERN on 30 July, the ATLAS collaboration awarded Russian firm SIA Luch from Podolsk in the Moscow region an ATLAS Suppliers Award. This follows delivery by the company of the final batch of scintillating tiles for the collaboration's Tile Calorimeter some six months ahead of schedule.   Representatives of Russian firm Luch Podolsk received the ATLAS Suppliers Award in the collaboration's Tile Calorimeter instrumentation plant at CERN on 30 July. In front of one Tile Calorimeter module instrumented by scintillating tiles are (left to right) IHEP physicists Evgueni Startchenko and Andrei Karioukhine, Luch Podolsk representatives Igor Karetnikov and Yuri Zaitsev, Tile Calorimeter Project Leader Rupert Leitner, ATLAS spokesperson Peter Jenni, and CERN Tile Calorimeter group leader Ana Henriques-Correia. Scintillating tiles form the active part of the ATLAS hadronic Tile Calorimeter, which will measure the energy and direction of particles produced in LHC collisions. They are emb...

  19. Initial progress in the first wall, blanket, and shield Engineering Test Program for magnetically confined fusion-power reactors

    International Nuclear Information System (INIS)

    Herman, H.; Baker, C.C.; Maroni, V.A.

    1981-10-01

    The first wall/blanket/shield (FW/B/S) Engineering Test Program (ETP) progressed from the planning stage into implementation during July, 1981. The program, generic in nature, comprises four Test Program Elements (TPE's), the emphasis of which is on defining the performance parameters for the Fusion Engineering Device (FED) and the major fusion device to follow FED. These elements are: (1) nonnuclear thermal-hydraulic and thermomechanical testing of first wall and component facsimiles with emphasis on surface heat loads and heat transient (i.e., plasma disruption) effects; (2) nonnuclear and nuclear testing of FW/B/S components and assemblies with emphasis on bulk (nuclear) heating effects, integrated FW/B/S hydraulics and mechanics, blanket coolant system transients, and nuclear benchmarks; (3) FW/B/S electromagnetic and eddy current effects testing, including pulsed field penetration, torque and force restraint, electromagnetic materials, liquid metal MHD effects and the like; and (4) FW/B/S Assembly, Maintenance and Repair (AMR) studies focusing on generic AMR criteria, with the objective of preparing an AMR designers guidebook; also, development of rapid remote assembly/disassembly joint system technology, leak detection and remote handling methods

  20. Microstructural characterization of ceramic floor tiles with the incorporation of wastes from ceramic tile industries

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2010-09-01

    Full Text Available Ceramic floor tiles are widely used in buildings. In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The introduction of the crustiness surface on the ceramic floor tiles interfere in the contact temperature and also it can be an strategy to obtain ceramic tiles more comfortable. In this work, porous ceramic tiles were obtained by pressing an industrial atomized ceramic powder incorporated with refractory raw material (residue from porcelainized stoneware tile polishing and changing firing temperature. Raw materials and obtained compacted samples were evaluated by chemical analysis, scanning electron microscopy (SEM, energy-dispersive spectrometry (EDS, thermogravimetric analysis (TGA, and differential thermal analysis (DTA. Thermal (thermal conductivity and effusivity and physical (porosity measurements were also evaluated.

  1. TiArA: a virtual appliance for the analysis of Tiling Array data.

    Directory of Open Access Journals (Sweden)

    Jason A Greenbaum

    2010-04-01

    Full Text Available Genomic tiling arrays have been described in the scientific literature since 2003, yet there is a shortage of user-friendly applications available for their analysis.Tiling Array Analyzer (TiArA is a software program that provides a user-friendly graphical interface for the background subtraction, normalization, and summarization of data acquired through the Affymetrix tiling array platform. The background signal is empirically measured using a group of nonspecific probes with varying levels of GC content and normalization is performed to enforce a common dynamic range.TiArA is implemented as a standalone program for Linux systems and is available as a cross-platform virtual machine that will run under most modern operating systems using virtualization software such as Sun VirtualBox or VMware. The software is available as a Debian package or a virtual appliance at http://purl.org/NET/tiara.

  2. Measurement of Gross Alpha and Beta Emission Rates from Ceramic Tiles

    International Nuclear Information System (INIS)

    Wudthicharoonpun, Piyasak; Chankow, Nares

    2007-08-01

    Full text: Ceramic tiles normally used to cover floors and walls contain naturally occurring radioactive elements i.e. potassium-40, uranium, thorium and their daughters from raw materials. Thus, radioactivity was dependent upon source of raw materials and the amount used. The objective of this research was to measure gross alpha and beta emission rates to be used as a database for safety assessment and for selection of rooms to measure radioactive radon-222 gas

  3. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    Science.gov (United States)

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All

  4. Compact Ignition Tokamak Program: R and D needs

    International Nuclear Information System (INIS)

    Flanagan, C.A.

    1985-01-01

    This report on the Compact Ignition Tokamak Program supplies information concerning: segmented vacuum vessel joint development; first wall tile attachments; first wall/tile development - composite materials; vacuum leak detection; high frequency rf sources; Faraday shield development; design and testing of rf launchers for high power, ling pulse operation; radiation hardened, low loss, dielectric windows for rf, IR, visible, UV and X-rays, mirrors for changing direction and focusing IR, visible and UV radiation; radiation resistant optical dielectric wave guides; radiation resistant HV insulation for diagnostic magnetic pickup coils; compact radiation and/or magnetic shielding for in-vault diagnostics that need some attenuation to reduce S/N ratio; radiation hardened line-of-sight sensors such as bolometers, UV and soft X-ray detectors, neutral particle analyzers, torus pressure gauges; special maintenance fixtures and tools; material properties - design data base - all materials; and insulation - electrical/thermal and mechanical properties

  5. The Mu3e Tile Detector

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Hans Patrick

    2015-05-06

    The Mu3e experiment is designed to search for the lepton flavour violating decay μ→e{sup +}e{sup +}e{sup -} with a sensitivity of one in 10{sup 16} decays. An observation of such a decay would be a clear sign of physics beyond the Standard Model. Achieving the targeted sensitivity requires a high precision detector with excellent momentum, vertex and time resolution. The Mu3e Tile Detector is a highly granular sub-detector system based on scintillator tiles with Silicon Photomultiplier (SiPM) readout, and aims at measuring the timing of the muon decay products with a resolution of better than 100 ps. This thesis describes the development of the Tile Detector concept and demonstrates the feasibility of the elaborated design. In this context, a comprehensive simulation framework has been developed, in order to study and optimise the detector performance. The central component of this framework is a detailed simulation of the SiPM response. The simulation model has been validated in several measurements and shows good agreement with the data. Furthermore, a 16-channel prototype of a Tile Detector module has been constructed and operated in an electron beam. In the beam tests, a time resolution up to 56 ps has been achieved, which surpasses the design goal. The simulation and measurement results demonstrate the feasibility of the developed Tile Detector design and show that the required detector performance can be achieved.

  6. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Van Daalen, Tal Roelof; The ATLAS collaboration

    2018-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for the reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized every 25 ns by sampling the signal. About 10000 channels of the front-end electronics measure the signals of the calorimeter with energies ranging from ~30 MeV to ~2 TeV. Each step of the signal reconstruction from scintillation light to the digital pulse reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations...

  7. Performance of the ATLAS Tile calorimeter

    CERN Document Server

    Bertoli, Gabriele; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau­particles and missing transverse energy. TileCal is a scintillator­steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front­end electronics read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read­out system is responsible for reconstructing the data in real­time. The digitized signals are reconstructed with the Optimal Filtering algorithm, which computes for each channel the signal amplitude, time and quality factor at the required high rate. Each stage of the signal production from scintillation light to the signal reconstruc...

  8. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum fro...

  9. Performance of the ATLAS Tile Calorimeter

    Science.gov (United States)

    Hrynevich, A.

    2017-06-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC . Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV . Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response and its modelling by the Monte Carlo simulations. The calorimeter time resolution is studied with multijet events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  10. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum from elec...

  11. 40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile subcategory... manufacture of asbestos floor tile. ...

  12. Fiber-tile optical studies at Argonne

    International Nuclear Information System (INIS)

    Underwood, D.G.; Morgan, D.J.; Proudfoot, J.

    1991-01-01

    In support of a fiber-tile calorimeter for SDC, we have done studies on a number of topics. The most basic problems were light output and uniformity of response. Using a small electron beam, we have studied fiber placement, tile preparation, wrapping and masking, fiber splicing, fiber routing, phototube response, and some degradation factors. We found two configurations which produced more light output than the others and reasonably uniform response. We have chosen one of these to go into production for the EM test module on the basis of fiber routing for ease of assembly of the calorimeter. We have also applied some of the tools we developed to CDF end plug tile uniformity, shower max testing and development for a couple of detectors, and development of better techniques for radiation damage studies. 18 figs

  13. The ATLAS Tile Calorimeter Performance at LHC

    CERN Document Server

    Molander, S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment at LHC. The TileCal pays a major role in detecting hadrons, jets, hadronic decays of tau leptons and measuring the missing transverse energy. Due to the very good signal to noise ratio it assists the muon spectrometer in the identification and reconstruction of muons, which are also a tool for the in situ energy scale validation. The results presented here stem from the data collection in dedicated calibration runs, in cosmic rays data-taking and in LHC collisions along 3 years of operation. The uniformity, stability and precision of the energy scale, the time measurement capabilities and the robustness of the performance against pile-up are exposed through the usage of hadronic and muon final states and confirm the design expectations.

  14. Upgrading the Atlas Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    Tile Calorimeter is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2024, after the upgrade of the LHC the peak luminosity will increase by a factor of 5 compared to the design value, thus requiring an upgrade of the Tile Calorimeter readout electronics. Except the photomultipliers tubes (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at the front-end level and sending them with 10 Gb/s optical links to the back-end electronics. One demonstrator prototype module is planned to be inserted in Tile Calorimeter in 2015 that will include hybrid electronic components able to probe the new design.

  15. Improvement of PVC floor tiles by gamma radiation

    International Nuclear Information System (INIS)

    Plessis, T.A. du; Badenhorst, F.

    1988-01-01

    Gamma radiation presents a unique method of transforming highly plasticized PVC floor tiles, manufactured at high speed through injection moulding, into a high quality floor covering at a cost at least 30% less than similarly rated rubber tiles. A specially formulated PVC compound was developed in collaboration with a leading manufacturer of floor tiles. These tiles are gamma crosslinked in its shipping cartons to form a dimensionally stable product which is highly fire resistant and inert to most chemicals and solvents. These crosslinked tiles are more flexible than the highly filled conventional PVC floor tiles, scratch resistant and have a longer lifespan and increased colour fastness. These tiles are also less expensive to install than conventional rubber tiles. (author)

  16. TileCal TDAQ/DCS communication

    CERN Document Server

    Solans, C; Arabidze, G; Carneiro Ferreira, B; Sotto-Maior Peralva, B

    2007-01-01

    This document describes the communication between the TDAQ and DCS systems of the Hadronic Tile Calorimeter detector of the ATLAS experiment, currently under commissioning phase at CERN. It is a further step on the TDAQ and DCS communication for TileCal operation. The aim of the implementation is to increase the robustness and understanding of the detector from the two systems involved. The basic principle observed is that the two systems operate independently in parallel. Hence, the knowledge of the status of the whole detector from each of the two systems is required for further analysis of the archived data.

  17. Quick installation/removal technology for first wall

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro; Horie, Tomoyoshi; Seki, Yasushi; Fujisawa, Noboru; Kondoh, Mitsunori; Uchida, Takao.

    1989-07-01

    Fusion Next Step Device (FER) plans to experiment Deutrium-Tritium (D-T) reaction, remote handling and other fusion engineering issues. The fast neutron of 14 MeV caused by D-T reaction does not only activate the structural components inside the vacuum vessel, but also damages some first walls. The technique to remove the armour tiles of first walls by simple and quick operation is a key technology for the D-T burning Next Step Device. To establish the rational remote tile handling technology, consideration of consistency between the reactor structure and remote equipments should be made. The report comprises mainly the joint structures of armour tiles, design conditions (electro-magnetic force, cooling systems and so forth) and remote equipments. In addition, it is referred in shape memory alloy (SMA) applications, transportation of damaged tiles from the vacuum vessel and inspection systems for the first wall integrity. Hereafter, furthermore study in depth for the tile handling must be made in parallel with verification of remote systems and tile attachment structures using partial mockups. (author)

  18. Ultimate Limit State Design Of Sheet Pile Walls By Finite Elements And Nonlinear Programming

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven

    2002-01-01

    Limit analysis has been used for decades in civil and mechanical engineering practice as a means of analyzing structures of materials which with reasonable accuracy can be described as being rigid-perfectly plastic. Such materials include steel, concrete and soils. Traditionally, most attention has...... been given to the problem which consists of determining the ultimate magnitude of a given set of loads acting on a structure with a given geometry. This problem is relevant when determining e.g. the necessary extrusion pressure in metal forming problems, when evaluating the bearing capacity...... is the load intensity. In the paper we consider the latter of these problems with particular reference to the design of sheet pile walls....

  19. Study on structural integrity of thinned wall piping against seismic loading-overview and future program

    International Nuclear Information System (INIS)

    Nakamura, Izumi; Otani, Akihito; Shiratori, Masaki

    2005-01-01

    In order to clarify the behavior of thinned wall pipes under seismic events, cyclic in-plane and/or out-of-plane bending tests on thinned straight pipe and elbow and also shaking table tests using degraded piping system models were conducted. Relation between the failure mode and thinned condition and the influence of the final failure mode of degraded piping systems were investigated. In addition to these experiments, elastic-plastic FEM analysis using ABAQUS were conducted on thinned piping elements. It has been found that the strain concentrated point could be predicted and the cause of its generation could be explained by the simulated deformation behavior of the pipe. In order to predict the piping system's maximum response under elastic-plastic response, a simple response prediction method was proposed. Further tests and safety margin analyses of thinned pipes against seismic loading will be performed. (T. Tanaka)

  20. Application of numerical analysis technique to make up for pipe wall thinning prediction program

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2009-01-01

    Flow Accelerated Corrosion (FAC) leads to wall thinning of steel piping exposed to flowing water or wet steam. Experience has shown that FAC damage to piping at fossil and nuclear plants can lead to costly outages and repairs and can affect plant reliability and safety. CHEWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data to prevent piping failures caused by FAC. However, CHECWORKS may be occasionally left out local susceptible portions owing to predicting FAC damage by pipeline group after constructing a database for all secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of the CHECWORKS prediction results in terms of numerical analysis. FAC susceptible locations based on CHECWORKS for the two pipeline groups of a nuclear plant was compared with those of numerical analysis based on FLUENT.

  1. Using Qualitative Research to Assess Teaching and Learning in Technology-Infused TILE Classrooms

    Science.gov (United States)

    Van Horne, Sam; Murniati, Cecilia Titiek; Saichaie, Kem; Jesse, Maggie; Florman, Jean C.; Ingram, Beth F.

    2014-01-01

    This chapter describes the results of an assessment project whose purpose was to improve the faculty-development program for instructors who teach in technology-infused TILE (Transform, Interact, Learn, Engage) classrooms at the University of Iowa. Qualitative research methods were critical for (1) learning about how students and instructors…

  2. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  3. Characterization of ancient ceramic tiles using XRF = = = =

    International Nuclear Information System (INIS)

    Ben Abdelwahed, Haifa

    2002-01-01

    The measurement of energies and intensities of fluorescent X-rays emitted from a given material when atoms are bombarded with suitable projectiles like electrons, protons, particles or photons has been successfully used for non-destructive elemental analysis in many applications, especially in the analysis of ceramic glasses. Use of radioisotopes as a source of excitation radiation in combination with high resolution semiconductor detectors in x-ray fluorescence has found wide applications in elemental analysis. A radioisotope excited X-ray fluorescence spectrometer consisting of a standard 5.45mm Si(Li) detector having a resolution of 200 eV at 5.9 keV coupled to a TRUMP-8K multichannel analyzer has been used. Tow sources of annular geometry using 10 mCi 109Cd and 10 mCi 55Fe together with PC AXIL software have been used for this study of tile-pavement glasses of ''Ksar Said'' in Tunisia. Analytical data shows that those tile pavement witch are broken in the 19th century from France (Marseille) have not the same composition of Tunisian tile pavement. Referring to our data, The kind of that analyzed glasses is of alkaline lead. we found also, through this study, the elemental compositions of different pigments (green, blue, brownish, yellow, white and red) used to color that tile-pavement glasses. (author). 21 refs

  4. Sacroiliac screw fixation for tile B fractures.

    NARCIS (Netherlands)

    Bosch, E.W. van den; Zwienen, C.M. van; Hoek van Dijke, G.A.; Snijders, C.J.; Vugt, A.B. van

    2003-01-01

    BACKGROUND: The purpose of this comparative cadaveric study was to investigate whether the stability of partially unstable pelvic fractures can be improved by combining plate fixation of the symphysis with a posterior sacroiliac screw. METHODS: In six specimens, a Tile B1 (open-book) pelvic fracture

  5. The ATLAS Tile Calorimeter gets into shape!

    CERN Multimedia

    2002-01-01

    The last of the 64 modules for one of the ATLAS Hadron tile calorimeter barrels has just arrived at CERN. This arrival puts an end to two and a half years work assembling and testing all the modules in the Institut de Física d'Altes Energies (IFAE), in Barcelona.

  6. L-Tromino Tiling of Multilated Chessboards

    Science.gov (United States)

    Gardner, Martin

    2009-01-01

    An "n" x "n" chessboard is called deficient if one square is missing from any spot on the board. Can all deficient boards with a number of cells divisible by 3 be tiled by bent (or L-shaped) trominoes? The answer is yes, with exception of the order-5 board. This paper deals with the general problem plus numerous related puzzles and proofs…

  7. From open fireplaces to tile hearths

    Energy Technology Data Exchange (ETDEWEB)

    Madaus, C

    1979-10-01

    The history and technology of tile hearths are reviewed. It is shown that naked fires were used until the 6th century; by the 8th century, these had been replaced by open hearth fires which were used until the 18th and even 19th century. The first 'modern' hearth with a closed combustion space was constructed in 1790.

  8. ATLAS: First rehearsal for the tile calorimeter

    CERN Multimedia

    2003-01-01

    The dry run assembly of the first barrel of the ATLAS tile hadron calorimeter has been successfully completed. It is now being dismantled again so that it can be lowered into the ATLAS cavern where it will be reassembled in October 2004.

  9. TILE at Iowa: Adoption and Adaptation

    Science.gov (United States)

    Florman, Jean C.

    2014-01-01

    This chapter introduces a University of Iowa effort to enhance and support active learning pedagogies in technology-enhanced (TILE) classrooms and three elements that proved essential to the campus-wide adoption of those pedagogies. It then describes the impact of those professional development efforts on the curricula and cultures of three…

  10. Radioactivity level in Chinese building ceramic tile

    International Nuclear Information System (INIS)

    Xinwei, L.

    2004-01-01

    The activity concentrations of 226 Ra, 232 Th and 40 K have been determined by gamma ray spectrometry. The concentrations of 226 Ra, 232 Th and 40 K range from 158.3 to 1087.6, 91.7 to 1218.4, and 473.8 to 1031.3 Bq kg -1 for glaze, and from 63.5 to 131.4, 55.4 to 106.5, and 386.7 to 866.8 Bq kg -1 for ceramic tile, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and with the typical world values. The radium equivalent activities (Ra eq ), external hazard index (H ex ) and internal hazard index (H in ) associated with the radionuclides were calculated. The Ra eq values of all ceramic tiles are lower than the limit of 370 Bq kg -1 . The values of Hex and H in calculated according to the Chinese criterion for ceramic tiles are less than unity. The Ra eq value for the glaze of glazed tile collected from some areas are >370 Bq kg -1 . (authors)

  11. Similarity of eigenstates in generalized labyrinth tilings

    International Nuclear Information System (INIS)

    Thiem, Stefanie; Schreiber, Michael

    2010-01-01

    The eigenstates of d-dimensional quasicrystalline models with a separable Hamiltonian are studied within the tight-binding model. The approach is based on mathematical sequences, constructed by an inflation rule P = {w → s,s → sws b-1 } describing the weak/strong couplings of atoms in a quasiperiodic chain. Higher-dimensional quasiperiodic tilings are constructed as a direct product of these chains and their eigenstates can be directly calculated by multiplying the energies E or wave functions ψ of the chain, respectively. Applying this construction rule, the grid in d dimensions splits into 2 d-1 different tilings, for which we investigated the characteristics of the wave functions. For the standard two-dimensional labyrinth tiling constructed from the octonacci sequence (b = 2) the lattice breaks up into two identical lattices, which consequently yield the same eigenstates. While this is not the case for b ≠ 2, our numerical results show that the wave functions of the different grids become increasingly similar for large system sizes. This can be explained by the fact that the structure of the 2 d-1 grids mainly differs at the boundaries and thus for large systems the eigenstates approach each other. This property allows us to analytically derive properties of the higher-dimensional generalized labyrinth tilings from the one-dimensional results. In particular participation numbers and corresponding scaling exponents have been determined.

  12. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Reed, Robert; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter covering the central region of the ATLAS experiment at LHC. TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC operation (Phase 2 around 2023) where the peak luminosity will increase 5x compared to the design luminosity (10^{34} cm^{-2}s^{-1}) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims to replace the majority of the on- and off-detector electronics so that all calorimeter signals can be digitized and directly sent to the off-detector electronics in the counting room. This will reduce pile-up problems and allow more complex trigger algorithms. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to t...

  13. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5x compared to the design luminosity (10^34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade is expected to happen around 2023. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 ...

  14. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase 2) where the peak luminosity will increase 5$\\times$ compared to the design luminosity ($10^{34} cm^{-2}s^{-1}$) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, c...

  15. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2023, after the upgrade of the LHC (High Luminosity LHC, phase 2) the peak luminosity will increase by a factor of 5 compared to the design value (1034 cm-2 s-1), thus requiring an upgrade of the TileCal readout electronics. Except the 9852 photomultipliers (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at 40 MHz at the front-end level and sending them with 10 Gbps optical links to the back-end electronics. Moreover, to increase reliability, redundancy will be introduced at different levels. Three different options are currently being investigated for the front-end electronics and extensive test beam studies are planned to select the best option. One demonstrator prototype module is also planned to be inserted in TileCal in 2014 that will include hybrid electronic components able to probe the new design, but still compatible with the presen...

  16. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (P hase - II ) where the pea k luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expe cted to happen around 202 4 . The TileCal upgrade aims at replacing the majority of the on - and off - detector electronics to the extent that all calorimeter signals will be digitized and sent to the off - detector electronics in the counting room. To achieve th e required reliability, redundancy has been introduced at different levels. Three different options are presently being investiga...

  17. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Hrynevich, Aliaksei; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadr...

  18. ATLAS Tile calorimeter calibration and monitoring systems

    Science.gov (United States)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  19. An efficient pseudomedian filter for tiling microrrays.

    Science.gov (United States)

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-06-07

    Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result

  20. An efficient pseudomedian filter for tiling microrrays

    Directory of Open Access Journals (Sweden)

    Gerstein Mark B

    2007-06-01

    Full Text Available Abstract Background Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. Results We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn from O(n2logn. For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Conclusion Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that

  1. ATLAS rewards Russian supplier for scintillating tile production

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The ATLAS collaboration has awarded Russian firm SIA Luch from Podolsk in the Moscow region an ATLAS Supplier Award. This follows delivery by the company of the final batch of scintillating tiles for the collaboration's tile calorimeter some six months ahead of schedule. Representatives of the firm are seen here receiving the award at a ceremony held in the collaboration's tile calorimeter instrumentation plant at CERN on 30 July. In front of one tile calorimeter module instrumented by scintillating tiles are (left to right) IHEP physicists Evgueni Startchenko and Andrei Karioukhine, Luch Podolsk representatives Igor Karetnikov and Yuri Zaitsev, tile calorimeter project leader Rupert Leitner, ATLAS spokesperson Peter Jenni, and CERN tile calorimeter group leader Ana Henriques-Correia.

  2. Solving Vertex Cover Problem Using DNA Tile Assembly Model

    Directory of Open Access Journals (Sweden)

    Zhihua Chen

    2013-01-01

    Full Text Available DNA tile assembly models are a class of mathematically distributed and parallel biocomputing models in DNA tiles. In previous works, tile assembly models have been proved be Turing-universal; that is, the system can do what Turing machine can do. In this paper, we use tile systems to solve computational hard problem. Mathematically, we construct three tile subsystems, which can be combined together to solve vertex cover problem. As a result, each of the proposed tile subsystems consists of Θ(1 types of tiles, and the assembly process is executed in a parallel way (like DNA’s biological function in cells; thus the systems can generate the solution of the problem in linear time with respect to the size of the graph.

  3. Increased FDG uptake in the wall of the right atrium in people who participated in a cancer screening program with whole-body PET

    International Nuclear Information System (INIS)

    Fujii, Hirofumi; Ide, Michiru; Yasuda, Seiei; Takahashi, Wakoh; Shohtsu, Akira; Kubo, Atsushi

    1999-01-01

    The purpose of this study was to evaluate the characteristics of patients who showed increased FDG uptake in the wall of the right atrium. We have encountered 10 patients with increased activity in the wall of the right atrium among a total of 2,367 examinees who participated in our cancer screening program with whole-body PET. The mean age of these examinees was 62.9 yr, higher than that of the total population. All suffered from cardiac disorders, especially atrial fibrillation. FDG accumulated almost exclusively in the wall of the right atrium, whereas only slight activity was seen in the wall of the left atrium. Although the average size of the right atria was significantly enlarged, left atria were more severely dilated than right ones. Therefore overload does not seem to account for the FDG accumulation in the wall of the right atrium. In conclusion, the increased activity in the wall of the right atrium was a rare finding that was made in older people who suffered from cardiac disease. Although the mechanism of induction of the high metabolic state of glucose in the wall of the right atrium remains unclear, this unusual activity would be another false positive finding in cancer screening with whole-body FDG PET. (author)

  4. The ATLAS hadronic tile calorimeter from construction toward physics

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Binet, S; Biscarat, C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, Yu A; Caloba, L; Calvet, D; Carvalho, J; Castelo, J; Castillo, M V; Sforza, M C; Cavasinni, V; Cerqueira, A S; Chadelas, R; Costanzo, D; Cogswell, F; Constantinescu, S; Crouau, M; Cuenca, C; Damazio, D O; Daudon, F; David, M; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Fedorko, I; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Fullana, E; Garde, V; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giangiobbe, V; Giokaris, N; Gomes, A; González, V; Grabskii, V; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Henriques, A; Higón, E; Holmgren, S O; Hurwitz, M; Huston, J; Iglesias, C; And, K J; Junk, T; Karyukhin, A N; Khubua, J; Klereborn, J; Korolkov, I Ya; Krivkova, P; Kulchitskii, Yu A; Kurochkin, Yu; Kuzhir, P; Lambert, D; Le Compte, T; Lefèvre, R; Leitner, R; Lembesi, M; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Amengual, J M L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Montarou, G; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I A; Miralles, L; Némécek, S; Nessi, M; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M J; Pantea, D; Pallin, D; Pilcher, J E; Pina, J; Pinhão, J; Podlyski, F; Portell, X; Poveda, J; Price, L E; Pribyl, L; Proudfoot, J; Ramstedt, M; Reinmuth, G; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Rumiantsau, V; Russakovich, N; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Satsunkevich, I S; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shevtsov, P; Shochet, M; Da Silva, P; Silva, J; Simaitis, V; Sissakian, A N; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Stanek, R; Starchenko, E A; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tsulaia, V; Underwood, D; Usai, G; Valkár, S; Valls, J A; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2006-01-01

    The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. The construction phase of the calorimeter is nearly complete, and most of the effort now is directed toward the final assembly and commissioning in the underground experimental hall. The layout of the calorimeter and the tasks carried out during construction are described, first with a brief reminder of the requirements that drove the calorimeter design. During the last few years a comprehensive test-beam program has been followed in order to establish the calorimeter electromagnetic energy scale, to study its uniformity, and to compare real data to Monte Carlo simulation. The test-beam setup and first results from the data are described. During the test-beam period in 2004, lasting several months, data have been acquired with a complete slice of the central ATLAS calorimeter. The data collected in the test-beam are crucial in order to study...

  5. SIGNAL RECONSTRUCTION PERFORMANCE OF THE ATLAS HADRONIC TILE CALORIMETER

    CERN Document Server

    Do Amaral Coutinho, Y; The ATLAS collaboration

    2013-01-01

    "The Tile Calorimeter for the ATLAS experiment at the CERN Large Hadron Collider (LHC) is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are readout by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front-end electronics allows to read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read-out system is responsible for reconstructing the data in real-time fulfilling the tight time constraint imposed by the ATLAS first level trigger rate (100 kHz). The main component of the read-out system is the Digital Signal Processor (DSP) which, using an Optimal Filtering reconstruction algorithm, allows to compute for each channel the signal amplitude, time and quality factor at the required high rate. Currently the ATLAS detector and the LHC are undergoing an upgrade program tha...

  6. Porcelain tiles by the dry route

    Directory of Open Access Journals (Sweden)

    Boschi, A. O.

    2010-10-01

    Full Text Available In Brazil, the second largest tile producer of the world, at present, 70% of the tiles are produced by the dry route. One of the main reasons that lead to this development is the fact that the dry route uses approximately 30% less thermal energy them the traditional wet route. The increasing world concern with the environment and the recognition of the central role played by the water also has pointed towards privileging dry processes. In this context the objective of the present work is to study the feasibility of producing high quality porcelain tiles by the dry route. A brief comparison of the dry and wet route, in standard conditions industrially used today to produce tiles that are not porcelain tiles, shows that there are two major differences: the particle sizes obtained by the wet route are usually considerably finer and the capability of mixing the different minerals, the intimacy of the mixture, is also usually better in the wet route. The present work studied the relative importance of these differences and looked for raw materials and operational conditions that would result in better performance and glazed porcelain tiles of good quality.

    En Brasil, en este momento segundo productor mundial, el 70% de los pavimentos cerámicos se obtiene por vía seca. Una de las razones fundamentales se debe a que esta vía supone un consumo energético inferior, en un 30%, a la via húmeda tradicional. La creciente preocupación mundial sobre los problemas medioambientales y el reconocimiento del papel central que juega el agua en este proceso han favorecido el desarrollo de la vía seca. En este contexto, el objetivo del presente trabajo es estudiar la viabilidad de la producción de pavimentos porcelánicos de alta calidad por vía seca. Una breve comparación entre ambas vías, en las condiciones standard de producción vigentes para producciones que no son de porcelánico, indican que existen dos diferencias substanciales; el tamaño de

  7. Design of a 2 x 2 scintillating tile package for the SDC barrel electromagnetic tile/fiber calorimeter

    International Nuclear Information System (INIS)

    Hara, K.; Maekoba, H.; Minato, H.; Miyamoto, Y.; Nakano, I.; Okabe, M.; Seiya, Y.; Takano, T.; Takikawa, K.; Yasuoka, K.

    1996-01-01

    We describe R and D results on optical properties of a scintillating tile/fiber system for the SDC barrel electromagnetic calorimeter. The tile/fiber system uses a wavelength shifting fiber to read out the signal of a scintillating plate (tile) and a clear fiber to transmit the signal to a phototube. In the SDC calorimeter design, four of tile/fiber systems are grouped as a 2 x 2 tile package so that the gap width between and the location of the tiles in the absorber slot can be controlled. Optical properties of the tile package such as the light yield, its uniformity, and cross talk were measured in a test bench with a β-ray source and in a 2-GeV/c π + test beam. The performance as an electromagnetic calorimeter was evaluated by a GEANT simulation using the measured response map. We discuss a method of correction for the calorimeter non-uniformity. (orig.)

  8. Large-Aperture Grating Tiling by Interferometry for Petawatt Chirped-Pulse--Amplification Systems

    International Nuclear Information System (INIS)

    Qiao, J.; Kalb, A.; Guardalben, M.J.; King, G.; Canning. D.; Kelly, J.H.

    2007-01-01

    A tiled-grating assembly with three large-scale gratings is developed with real-time interferometric tiling control for the OMEGA EP Laser Facility. An automatic tiling method is achieved and used to tile a three-tile grating assembly with the overall wavefront reconstructed. Tiling parameters sensitivity and focal-spot degradation from all combined tiling errors are analyzed for a pulse compressor composed of four such assemblies

  9. In service experience feed back of the tore supra actively cooled inner first wall

    International Nuclear Information System (INIS)

    Schlosser, J.; Chappuis, P.; Chatelier, M.; Cordier, J.J.; Deschamps, P.; Garampon, L.; Guilhem, D.; Lipa, M.; Mitteau, R.

    1994-01-01

    Over 12000 plasma shots (some of them up to 8 MW of additional power and same as long as 60 s) have been achieved in TORE SUPRA (TS) with a significant number of them limited by thr inner first wall. This actively water cooled wall is covered with brazed graphite tiles. High power - high energy experiments have shown that a reliability of the graphite tile/heat sink joint and an accurate alignment of the wall are needed. This paper summarizes the experience gained with this component and developments in progress in order to improve the performance of such a inner first wall. (authors). 9 refs., 13 figs., 2 tabs

  10. In service experience feed back of the tore supra actively cooled inner first wall

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J; Chappuis, P; Chatelier, M; Cordier, J J; Deschamps, P; Garampon, L; Guilhem, D; Lipa, M; Mitteau, R

    1994-12-31

    Over 12000 plasma shots (some of them up to 8 MW of additional power and same as long as 60 s) have been achieved in TORE SUPRA (TS) with a significant number of them limited by thr inner first wall. This actively water cooled wall is covered with brazed graphite tiles. High power - high energy experiments have shown that a reliability of the graphite tile/heat sink joint and an accurate alignment of the wall are needed. This paper summarizes the experience gained with this component and developments in progress in order to improve the performance of such a inner first wall. (authors). 9 refs., 13 figs., 2 tabs.

  11. Laser calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile calorimeter is achieved with a set of calibration procedures. One step of the calibrtion procedure is based on measurements of the response stability to laser excitation of the photomultipliers (PMTs) that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the test in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the resonse drifts seen with the PMT mounted on the Tile calorimeter in its normal operation during LHC run I and run II. A new statistical approach was developed to measure the drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to the data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  12. Optics robustness of the ATLAS Tile Calorimeter

    CERN Document Server

    Costa Batalha Pedro, Rute; The ATLAS collaboration

    2018-01-01

    TileCal, the central hadronic calorimeter of the ATLAS detector is composed of plastic scintillators interleaved by iron plates, and wavelength shifting optical fibres. The optical properties of these components are known to suffer from natural ageing and degrade due to exposure to radiation. The calorimeter was designed for 10 years of LHC operating at the design luminosity of $10^{34}$ cm$^{-1}$s$^{-1}$. Irradiation tests of scintillators and fibres shown that their light yield decrease about 10 for the maximum dose expected after the 10 years of LHC operation. The robustness of the TileCal optics components is evaluated using the calibration systems of the calorimeter: Cs-137 gamma source, laser light, and integrated photomultiplier signals of particles from collisions. It is observed that the loss of light yield increases with exposure to radiation as expected. The decrease in the light yield during the years 2015-2017 corresponding to the LHC Run 2 will be reported.

  13. Large TileCal magnetic field simulation

    International Nuclear Information System (INIS)

    Nessi, M.; Bergsma, F.; Vorozhtsov, S.B.; Borisov, O.N.; Lomakina, O.V.; Karamysheva, G.A.; Budagov, Yu.A.

    1994-01-01

    The ATLAS magnetic field map has been estimated in the presence of the hadron tile calorimeter. This is an important issue in order to quantify the needs for individual PMT shielding, the effect on the scintillator light yield and its implications on the calibration. The field source is based on a central solenoid and 8 superconducting air-core toroidal coils. The maximum induction value in the scintillating tiles does not exceed 6 mT. When an iron plate is used to close the open drawer window the field inside the PMT near to the extended barrel edge does not exceed 0.6 mT. Estimation of ponder motive force distribution, acting on individual units of the system was performed. VF electromagnetic software OPERA-TOSCA and CERN POISCR code were used for the field simulation of the system. 10 refs., 4 figs

  14. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  15. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  16. Tiling by rectangles and alternating current

    KAUST Repository

    Prasolov, M. V.

    2011-04-01

    This paper is on tilings of polygons by rectangles. A celebrated physical interpretation of such tilings by R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte uses direct-current circuits. The new approach of this paper is an application of alternating-current circuits. The following results are obtained: •a necessary condition for a rectangle to be tilable by rectangles of given shapes;•a criterion for a rectangle to be tilable by rectangles similar to it but not all homothetic to it;•a criterion for a "generic" polygon to be tilable by squares. These results generalize those of C. Freiling, R. Kenyon, M. Laczkovich, D. Rinne, and G. Szekeres. © 2010 Elsevier Inc.

  17. 2-D tiles declustering method based on virtual devices

    Science.gov (United States)

    Li, Zhongmin; Gao, Lu

    2009-10-01

    Generally, 2-D spatial data are divided as a series of tiles according to the plane grid. To satisfy the effect of vision, the tiles in the query window including the view point would be displayed quickly at the screen. Aiming at the performance difference of real storage devices, we propose a 2-D tiles declustering method based on virtual device. Firstly, we construct a group of virtual devices which have same storage performance and non-limited capacity, then distribute the tiles into M virtual devices according to the query window of 2-D tiles. Secondly, we equably map the tiles in M virtual devices into M equidistant intervals in [0, 1) using pseudo-random number generator. Finally, we devide [0, 1) into M intervals according to the tiles distribution percentage of every real storage device, and distribute the tiles in each interval in the corresponding real storage device. We have designed and realized a prototype GlobeSIGht, and give some related test results. The results show that the average response time of each tile in the query window including the view point using 2-D tiles declustering method based on virtual device is more efficient than using other methods.

  18. Evaluation of tile layer productivity in construction project

    Science.gov (United States)

    Aziz, Hamidi Abdul; Hassan, Siti Hafizan; Rosly, Noorsyalili; Ul-Saufie, Ahmad Zia

    2017-10-01

    Construction is a key sector of the national economy for countries all over the world. Until today, construction industries are still facing lots of problems concerning the low productivity, poor safety and insufficient quality. Labour productivity is one of the factors that will give impact to the quality of projects. This study is focusing on evaluating the tile layer productivity in the area of Seberang Perai, Penang. The objective of this study is to determine the relationship of age and experience of tile layers with their productivity and to evaluate the effect of nationality to tile layers productivity. Interview and site observation of tile layers has been conducted to obtain the data of age, experience and nationality of tile layers. Site observation is made to obtain the number of tiles installed for every tile layer for the duration of 1 hour, and the data were analysed by using Statistical Package for Social Science (IBM SPSS Statistic 23) software. As a result, there is a moderate linear relationship between age and experience of tile layers with their productivity. The age of 30 and the experience of 4 years give the highest productivity. It also can be concluded that the tile layers from Indonesia tend to have higher productivity compared to tile layers from Myanmar.

  19. An efficient pseudomedian filter for tiling microrrays

    OpenAIRE

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-01-01

    Abstract Background Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities nat...

  20. Upgrade of the ATLAS Tile Calorimeter Electronics

    International Nuclear Information System (INIS)

    Carrió, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year

  1. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  2. Foam-on-Tile Damage Model

    Science.gov (United States)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  3. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Souza, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5-fold compared to the design luminosity (10exp34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2023. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. The smallest independent on-detector electronics module has been reduced from 45 channels to 6, greatly reducing the consequences of a failure in the on-detector electronics. The size of t...

  4. Simulations of the Response of the Cluster Detector/Scintillator Wall for the 4π facility at SIS/ESR using the GEANT Detector program

    International Nuclear Information System (INIS)

    Herrmann, N.; Maguire, C.F.; Cerruti, C.; Coffin, J.P.; Fintz, P.; Guillaume, G.; Jundt, F.; Rami, F.; Tezkratt, R.; Wagner, P.

    1990-01-01

    The expected response of the cluster detector/scintillator wall of the SIS/ESR 4π facility has been investigated with the use of the GEANT detector program and the FREESCO event generator code. Results are presented and discussed. It is shown in particular that the efficiency of the track reconstruction method should be acceptable

  5. Military Curriculum Materials for Vocational and Technical Education. Builders School, Ceramic Tile Setting 3-9.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, for individualized or group instruction on ceramic tile setting, was developed from military sources for use in vocational education. The course provides students with skills in mortar preparation, surface preparation, tile layout planning, tile setting, tile cutting, and the grouting of tile joints. Both theory and shop assignments…

  6. Reduction of recycling in DIII-D by degassing and conditioning of the graphite tiles

    International Nuclear Information System (INIS)

    Jackson, G.L.; Taylor, T.S.; Allen, S.L.

    1988-05-01

    Reduced recycling, reduced edge neutral pressure, improved density control, and improved discharge reproducibility have been achieved in the DIII-D tokamak by in situ helium conditioning of the graphite tiles. An improvement in energy confinement has been observed in hydrogen discharges with hydrogen beam injection after helium preconditioning. After the graphite wall coverage in DIII-D was increased to 40%, helium glow wall conditioning, routinely applied before each tokamak discharge, has been necessary to reduce recycling and obtain H-mode. The utilization of helium glow wall conditioning was an important factor in the achievement of an ohmic H-mode, i.e. no auxillary heating, with significant improvement in ohmic energy confinement. 16 refs., 8 figs

  7. Modular robotic tiles: experiments for children with autism

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Dam Pedersen, Martin; Beck, Richard

    2009-01-01

    rehabilitation), and with the proper radio communication mechanism they may give unique possibilities for documentation of the physical activity (e.g., therapeutic treatment). A major point of concern in modular robotics is the connection mechanism, so we investigated different solutions for the connection......We developed a modular robotic tile and a system composed of a number of these modular robotic tiles. The system composed of the modular robotic tiles engages the user in physical activities, e.g., physiotherapy, sports, fitness, and entertainment. The modular robotic tiles motivate the user...... to perform physical activities by providing immediate feedback based upon their physical interaction with the system. With the modular robotic tiles, the user is able to make new physical set-ups within less than a minute. The tiles are applicable for different forms of physical activities (e.g., therapeutic...

  8. "Finger" structure of tiles in CMS Endcap Hadron Calorimeters

    CERN Document Server

    Afanasiev, Sergey; Danilov, Mikhail; Emeliantchik, Igor; Ershov, Yuri; Golutvin, Igor; Grinyov, B.V; Ibragimova, Elvira; Levchuk, Leonid; Litomin, Aliaksandr; Makankin, Alexander; Malakhov, Alexander; Moisenz, Petr; Nuritdinov, I; Popov, V.F; Rusinov, Vladimir; Shumeiko, Nikolai; Smirnov, Vitaly; Sorokin, Pavlo; Tarkovskiy, Evgueni; Tashmetov, A; Vasiliev, S.E; Yuldashev, Bekhzod; Zamyatin, Nikolay; Zhmurin, Petro

    2015-01-01

    Two CMS Endcap hadron calorimeters (HE) have been in operation for several years and contributed substantially to the success of the CMS Physics Program. The HE calorimeter suffered more from the radiation than it had been anticipated because of rapid degradation of scintillator segments (tiles) which have a high radiation flux of secondary particles. Some investigations of scintillators have shown that the degradation of plastic scintillator increases significantly at low dose rates. A proposal to upgrade up-grade the HE calorimeter has been prepared to provide a solution for survivability of the future LHC at higher luminosity and higher energy. A finger-strip plastic scintillator option has many advantages and is a lower cost alternative to keep the excellent HE performance at high luminosity. Measurements have been performed and this method has proved to be a good upgrade strategy.

  9. Evaluation of the cool-down behaviour of ITER FW beryllium tiles for an early failure detection

    Directory of Open Access Journals (Sweden)

    Thomas Weber

    2016-12-01

    Full Text Available The design of the first wall in ITER foresees several hundred thousand beryllium tiles, which are bonded to the water-cooled CuCrZr supporting structure. Due to the nature of a Tokamak reactor this bonding is faced to thermal fatigue. Since the failure of a single tile might already have a major impact on the operability of ITER, comprehensive high heat flux tests are performed on prototypes prior to the acceptance of manufacturing procedures. For a deeper understanding of the temperature curves, which were and will be measured by IR devices of these first wall prototypes, thermo-mechanical FEM simulations shall demonstrate the possibilities of an early bonding failure detection. Hereby, the maximum temperatures for each cycle as well as the cool-down behaviour are the input data.

  10. Some comments on pinwheel tilings and their diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Uwe [Department of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Deng Xinghua, E-mail: u.g.grimm@open.ac.uk [University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)

    2011-03-01

    The pinwheel tiling is the paradigm for a substitution tiling with circular symmetry, in the sense that the corresponding autocorrelation is circularly symmetric. As a consequence, its diffraction measure is also circularly symmetric, so the pinwheel diffraction consists of sharp rings and, possibly, a continuous component with circular symmetry. We consider some combinatorial properties of the tiles and their orientations, and a numerical approach to the diffraction of weighted pinwheel point sets.

  11. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    International Nuclear Information System (INIS)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained

  12. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    Energy Technology Data Exchange (ETDEWEB)

    Blagoev, K., E-mail: kblagoev@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Grozeva, M., E-mail: margo@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Malcheva, G., E-mail: bobcheva@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Neykova, S., E-mail: sevdalinaneikova@abv.bg [National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 2 Saborna, 1000 Sofia (Bulgaria)

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained.

  13. Geopolymers as potential repair material in tiles conservation

    Science.gov (United States)

    Geraldes, Catarina F. M.; Lima, Augusta M.; Delgado-Rodrigues, José; Mimoso, João Manuel; Pereira, Sílvia R. M.

    2016-03-01

    The restoration materials currently used to fill gaps in historical architectural tiles (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness or durability. The existing solutions do not fully protect Portuguese faïence tiles ( azulejos) in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for tile lacunae infill, given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in tiles or to act as "cold" cast ceramic tile surrogates reproducing missing tile fragments. The formulation of geopolymers, namely the type of activators, the alumino-silicate source, the quantity of water required for adequate workability and curing conditions, was studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor historical architectural tiles frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of tiles are also discussed. The results obtained reveal that geopolymers pastes are a promising material for the restoration of tiles, when compared to other solutions currently in use.

  14. Tiling as a Durable Abstraction for Parallelism and Data Locality

    Energy Technology Data Exchange (ETDEWEB)

    Unat, Didem [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Cy P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Weiqun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bell, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shalf, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-11-18

    Tiling is a useful loop transformation for expressing parallelism and data locality. Automated tiling transformations that preserve data-locality are increasingly important due to hardware trends towards massive parallelism and the increasing costs of data movement relative to the cost of computing. We propose TiDA as a durable tiling abstraction that centralizes parameterized tiling information within array data types with minimal changes to the source code. The data layout information can be used by the compiler and runtime to automatically manage parallelism, optimize data locality, and schedule tasks intelligently. In this study, we present the design features and early interface of TiDA along with some preliminary results.

  15. Uranium City radiation reduction program: further studies on remedial measures and radon infiltration routes for houses with block walls

    International Nuclear Information System (INIS)

    Leung, M.K.

    1980-01-01

    This report describes the results of tests of partial sealing of concrete block walls to prevent radon infiltration into houses in Uranium City, and gives the results of studies of radon migration through concrete block walls. Results of some laboratory tests on the effectiveness of concrete blocks as a radon barrier are included

  16. The Production and Qualification of Scintillator Tiles for the ATLAS Hadronic Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; Diakov, E; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Konsnantinov, V; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitskii, Yu A; Kurochkin, Yu; Kuzhir, P; Lapin, V; LeCompte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, a L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Rusakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tischenko, M; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zaytsev, Yu; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The production of the scintillator tiles for the ATLAS Tile Calorimeter is presented. In addition to the manufacture and production, the properties of the tiles will be presented including light yield, uniformity and stability.

  17. Tiling a Pyramidal Polycube with Dominoes

    Directory of Open Access Journals (Sweden)

    Olivier Bodini

    2007-05-01

    Full Text Available The notion of pyramidal polycubes, namely the piling-up of bricks of a non-increasing size, generalizes in ℝ n the concept of trapezoidal polyominoes. In the present paper, we prove that n-dimensional dominoes can tile a pyramidal polycube if and only if the latter is balanced, that is, if the number of white cubes is equal to the number of black ones for a chessboard-like coloration, generalizing the result of [BC92] when n=2

  18. The broad utility of Trizac diamond tile

    Science.gov (United States)

    Gagliardi, John I.; Romero, Vincent D.; Sventek, Bruce; Zu, Lijun

    2017-10-01

    Sample finishing data from a broad range of materials — glasses, sapphire, silicon carbide, silicon, zirconium oxide, lithium tantalate, and flooring materials — are shown effectively processed with Trizact™ Diamond Tile (TDT). This data should provide the reader with an understanding of what to expect when using TDT on hard to grind or brittle materials. Keys to maintaining effective TDT pad wear rates, and therefore cost effect and stable processes, are described as managing 1) the proper lubricant flow rate for glasses and silicon-type materials and 2) the conditioning particle concentration for harder-to-grind materials

  19. ALT-II armor tile design for upgraded TEXTOR operation

    International Nuclear Information System (INIS)

    Newberry, B.L.; McGrath, R.T.; Watson, R.D.; Kohlhaas, W.; Finken, K.H.

    1994-01-01

    The upgrade of the TEXTOR tokamak at KFA Juelich was recently completed. This upgrade extended the TEXTOR pulse length from 5 seconds to 10 seconds. The auxiliary heating was increased to a total of 8.0 MW through a combination of neutral beam injection and radio frequency heating. Originally, the inertially cooled armor tiles of the full toroidal belt Advanced Limiter Test -- II (ALT-II) were designed for a 5-second operation with total heating of 6.0 MW. The upgrade of TEXTOR will increase the energy deposited per pulse onto the ALT-II by about 300%. Consequently, the graphite armor tiles for the ALT-II had to be redesigned to avoid excessively high graphite armor surface temperatures that would lead to unacceptable contamination of the plasma. This redesign took the form of two major changes in the ALT-II armor tile geometry. The first design change was an increase of the armor tile thermal mass, primarily by increasing the radial thickness of each tile from 17 mm to 20 mm. This increase in the radial tile dimension reduces the overall pumping efficiency of the ALT-II pump limiter by about 30%. The reduction in exhaust efficiency is unfortunate, but could be avoided only by active cooling of the ALT-II armor tiles. The active cooling option was too complicated and expensive to be considered at this time. The second design change involved redefining the plasma facing surface of each armor tile in order to fully utilize the entire surface area. The incident charged particle heat flux was distributed uniformly over the armor tile surfaces by carefully matching the radial, poloidal and toroidal curvature of each tile to the plasma flow in the TEXTOR boundary layer. This geometry redefinition complicates the manufacturing of the armor tiles, but results in significant thermal performance gains. In addition to these geometry upgrades, several material options were analyzed and evaluated

  20. On the possibilities of reduction in emission caused by home tile stoves in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Szewczyk, W. [Academy of Mining and Metallurgy, Cracow (Poland)

    1995-12-31

    The coal-fired tile stoves are still very popular in Poland. The estimated total number of such home stoves operated in Cracow reaches ca. 100 000. Operation of these stoves during the heating season belongs to the most significant sources of air pollution. Type and scale of emission of the most important pollutants, caused by coal combustion in home stoves in Cracow has been determined basing upon the investigations carried out at the laboratory of the Department of Power Engineering Machines and Devices, Academy of Mining and Metallurgy, Cracow, Poland within the American-Polish Program of Elimination of Low Emission Sources in Cracow. Further experiments included in this Program allowed to estimate the attainable efficiency of home tile stoves and possible reduction in pollutant emission resulting from their operation. A short discussion of these data and capacities is presented in this lecture.

  1. Surface chemistry analysis of lithium conditioned NSTX graphite tiles correlated to plasma performance

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.N., E-mail: chase.taylor@inl.gov [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Luitjohan, K.E. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Heim, B. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Kollar, L. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Skinner, C.H.; Kugel, H.W.; Kaita, R.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-12-15

    Lithium wall conditioning in NSTX has resulted in reduced divertor recycling, improved energy confinement, and reduced frequency of edge-localized modes (ELMs), up to the point of complete ELM suppression. NSTX tiles were removed from the vessel following the 2008 campaign and subsequently analyzed using X-ray photoelectron spectroscopy as well as nuclear reaction ion beam analysis. In this paper we relate surface chemistry to deuterium retention/recycling, develop methods for cleaning of passivated NSTX tiles, and explore a method to effectively extract bound deuterium from lithiated graphite. Li–O–D and Li–C–D complexes characteristic of deuterium retention that form during NSTX operations are revealed by sputter cleaning and heating. Heating to ∼850 °C desorbed all deuterium complexes observed in the O 1s and C 1s photoelectron energy ranges. Tile locations within approximately ±2.5 cm of the lower vertical/horizontal divertor corner appear to have unused Li-O bonds that are not saturated with deuterium, whereas locations immediately outboard of this region indicate high deuterium recycling. X-ray photo electron spectra of a specific NSTX tile with wide ranging lithium coverage indicate that a minimum lithium dose, 100–500 nm equivalent thickness, is required for effective deuterium retention. This threshold is suspected to be highly sensitive to surface morphology. The present analysis may explain why plasma discharges in NSTX continue to benefit from lithium coating thickness beyond the divertor deuterium ion implantation depth, which is nominally <10 nm.

  2. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    Science.gov (United States)

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  3. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    Science.gov (United States)

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  4. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    Science.gov (United States)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  5. Radioactive sources for ATLAS hadron tile calorimeter calibration

    International Nuclear Information System (INIS)

    Budagov, Yu.; Cavalli-Sforza, M.; Ivanyushenkov, Yu.

    1997-01-01

    The main requirements for radioactive sources applied in the TileCal calibration systems are formulated; technology of the sources production developed in the Laboratory of Nuclear Problems, JINR is described. Design and characteristics of the prototype sources manufactured in Dubna and tested on ATLAS TileCal module 0 are presented

  6. Independent review of Oak Ridge HCTW test program and development of seismic evaluation criteria

    International Nuclear Information System (INIS)

    1995-05-01

    Many of the existing buildings at the Oak Ridge Y-12 Plant are steel frame construction with unreinforced hollow clay tile infill walls (HCTW). The HCTW infill provides some lateral seismic resistance to the design/evaluation basis earthquake; however acceptance criteria for this construction must be developed. The basis for the development of seismic criteria is the Oak Ridge HCTW testing and analysis program and the target performance goals of DOE 5480.28 and DOE-STD-1020-94. This report documents and independent review of the testing and analysis program and development of recommended acceptance criteria for Oak Ridge HCTW construction. The HCTW test program included ''macro'' wall in-plane and out-of-plane tests, full-scale wall in-plane and out-of-plane tests, in-situ out-of-plane test, shake table tests, and masonry component tests

  7. The TileCal Barrel Test Assembly

    CERN Multimedia

    Leitner, R

    On 30th October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It started on 23rd June and is the second wheel for the Tilecal completely assembled this year. The ATLAS engineers and technicians are quick: instead of the 27 weeks initially foreseen for assembling the central barrel of the tile hadronic calorimeter (Tilecal) in building 185, they inserted the last of the 64 modules on 30th October after only 19 weeks. In part, this was due to the experience gained in the dry run assembly of the first extended barrel, produced in Spain, in spring this year (see Bulletin 23/2003); however, the central barrel is twice as long - and twice as heavy. With a length of 6.4 metres, an outer diameter of 8.5 metres and an inner diameter of 4.5 metres, the object weight is 1300 tonnes. The whole barrel cylinder is supported by the stainless steel support structure weighing only 27 tons. The barrel also has to have the right shape: over the whole 8...

  8. Terminating DNA Tile Assembly with Nanostructured Caps.

    Science.gov (United States)

    Agrawal, Deepak K; Jiang, Ruoyu; Reinhart, Seth; Mohammed, Abdul M; Jorgenson, Tyler D; Schulman, Rebecca

    2017-10-24

    Precise control over the nucleation, growth, and termination of self-assembly processes is a fundamental tool for controlling product yield and assembly dynamics. Mechanisms for altering these processes programmatically could allow the use of simple components to self-assemble complex final products or to design processes allowing for dynamic assembly or reconfiguration. Here we use DNA tile self-assembly to develop general design principles for building complexes that can bind to a growing biomolecular assembly and terminate its growth by systematically characterizing how different DNA origami nanostructures interact with the growing ends of DNA tile nanotubes. We find that nanostructures that present binding interfaces for all of the binding sites on a growing facet can bind selectively to growing ends and stop growth when these interfaces are presented on either a rigid or floppy scaffold. In contrast, nucleation of nanotubes requires the presentation of binding sites in an arrangement that matches the shape of the structure's facet. As a result, it is possible to build nanostructures that can terminate the growth of existing nanotubes but cannot nucleate a new structure. The resulting design principles for constructing structures that direct nucleation and termination of the growth of one-dimensional nanostructures can also serve as a starting point for programmatically directing two- and three-dimensional crystallization processes using nanostructure design.

  9. User's Guide: Computer Program for Simulation of Construction Sequence for Stiff Wall Systems With Multiple Levels of Anchors (CMULTIANC)

    National Research Council Canada - National Science Library

    Dawkins, William

    2003-01-01

    .... Top-down construction is assumed in this analysis procedure. The retaining wall system is modeled using beam on inelastic foundation methods with elastoplastic soil- pressure deformation curves (R-y curves...

  10. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    International Nuclear Information System (INIS)

    Chen Lei; Liu Xiang; Lian Youyun; Cai Laizhong

    2015-01-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal–mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. (paper)

  11. Tritium Decontamination of TFTR D-T Graphite Tiles Employing Ultra Violet Light and a Nd:YAG Laser

    International Nuclear Information System (INIS)

    Gentile, C.A.; Skinner, C.H.; Young, K.M.; Ciebiera, L.

    1999-01-01

    The use of an ultra violet (UV) light source (wavelength = 172 nm) and a Nd:YAG Laser for the decontamination of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles will be investigated at the Princeton Plasma Physics Laboratory (PPPL). The development of this form of tritium decontamination may be useful for future D-T burning fusion devices which employ carbon plasma-facing components on the first wall. Carbon tiles retain hydrogen isotopes, and the in-situ tritium decontamination of carbon can be extremely important in maintaining resident in-vessel tritium inventory to a minimum. A test chamber has been designed and fabricated at PPPL. The chamber has the ability to be maintained under vacuum, be baked to 200 *C, and provides sample ports for gas analyses. Tiles from TFTR that have been exposed to D-T plasmas will be placed within the chamber and exposed to either an UV light source or the ND:YAG Laser. The experiment will determine the effectiveness of these two techniques for the removal of tritium. In addition, exposure rates and scan times for the UV light source and/or Nd:YAG Laser will be determined for tritium removal optimization from D-T tiles

  12. Ceramic tiles: above and beyond traditional applications

    Directory of Open Access Journals (Sweden)

    Moreno, A.

    2006-04-01

    Full Text Available At present ceramic tiles are already being marketed with characteristics and performance features that make them products whose applications go far beyond traditional tile uses. These are not just future possibilities: their industrial and commercial reality already makes them immediately serviceable in multiple environments. And this is precisely the key concept in these new tile applications: their features make them useable for wholly different functions – functions till now reserved for other products – or, in certain cases, for entirely novel functions. In addition, the functionalities involved are destined to improve aspects directly related to the quality of life, conditions of habitability or, for instance, to using such a vital natural source of energy as solar radiation. It should, therefore, be stressed that these new generations of ceramic tiles are to be considered part of the range of architectural elements for both external and internal uses, since, as the following will show, they provide the surfaces they clad with a broad spectrum of properties and functions without detriment to the aesthetic qualities, always so characteristic, of ceramic tile. To illustrate the above, the present paper describes three new families of ceramic products. These groups of products are conceptually different and many-sided, which makes them serviceable as functional elements in different contexts.

    En estos momentos, ya hay en el mercado baldosas cerámicas dotadas de características y prestaciones que hacen de ellas productos con aplicaciones que van mucho más allá de los usos a que tradicionalmente han estado asociadas. No se trata tan sólo de posibilidades futuras, sino de productos con una realidad industrial y comercial, que permite su implantación inmediata en los diferentes ámbitos en los que pueden desarrollar su funcionalidad. Y este es precisamente el concepto clave de estas nuevas aplicaciones de las baldosas cer

  13. Ultrasonic characterization of defective porcelain tiles

    Directory of Open Access Journals (Sweden)

    Eren, E.

    2012-08-01

    Full Text Available The aim of this work is the optimization of ultrasonic methods in the non-destructive testing of sintered porcelain tiles containing defects. For this reason, a silicon nitride ball, carbon black and PMMA (Polymethylmethacrylate were imbedded in porcelain tile granules before pressing to make special defects in tiles. After sintering at 1220ºC, the time of flight of the ultrasonic waves and ultrasonic signal amplitudes through the sintered porcelain tiles were measured by a contact ultrasonic transducer operating on pulse-echo mode. This method can allow for defect detection using the A-scan. The results of the test showed that the amplitude of the received peak for a defective part is smaller than for a part which has no defects. Depending on the size, shape and position of the defect, its peak can be detected. Additionally, an immersion pulse-echo C-scan method was also used to differentiate between defects in porcelain tiles. By using this technique, it is possible to determine the place and shape of defects. To support the results of the ultrasonic investigation, a SEM characterization was also made.

    El fin principal de este trabajo es la optimización de métodos ultrasónicos en la prueba no destructiva de azulejos sinterizados de porcelana que contienen defectos. Por lo tanto, bolas del nitruro de silicio, negros de carbón y PMMA (polimetilmetacrilato fueron encajados en gránulos del azulejo de porcelana antes de presionar para hacer defectos especiales en azulejos. Después de sinterizado en 1220ºC, el tiempo de vuelo de las ondas ultrasónicas fue medido a través del azulejo sinterizado de la porcelana. El tiempo del vuelo de ondas ultrasónicas fue medido por un transductor de contacto ultrasónico operando en modo eco-pulso. Este método puede permitir la detección de defectos usando escaneo-A. Los resultados de la prueba demostraron que la amplitud del pico recibido por partes defectuosas es más pequeño que la parte

  14. Swimming pools and shower rooms - sealing directly under the tiles avoids hygienically serious water accumulations. Schwimmbecken und Duschraeume - Abdichtung direkt unter den Fliesen vermeidet hygienisch bedenkliche Wasseransammlungen

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1990-12-14

    Swimming pool seals are to carry out according to the DIN 18195 part 7 in which sealing with strips and foils is required; at the bottom of the pool a sufficiently dimensioned protective coating under the tiles and in the wall area using the following construction from the outside to the inside: tiles, mortar, face brickwork of at least half brick thickness and behind it a 4 cm shell joint. Then as the next layer follows the seal with foils or sealing strips. The total construction facing the water is thus with a total layer thickness of about 10 cm permanently exposed to water with all the thus resulting consequences. (orig.).

  15. Modular Interactive Tiles for Rehabilitation – Evidence and Effect

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2010-01-01

    years) in daily use in a hospital rehabilitation unit e.g. for cardiac patients. Also, the tiles were tested for performing physical rehabilitation of stroke patients both in hospital, rehabilitation centre and in their private home. In all test cases qualitative feedback indicate that the patients find......We developed modular interactive tiles to be used for playful physiotherapy, which is supposed to motivate patients to engage in and perform physical rehabilitation exercises. We report on evidence for elderly training. We tested the modular interactive tiles for an extensive period of time (4...... the playful use of modular interactive tiles engaging and motivating for them to perform the rehabilitation. Also, test data suggest that some playful exercises on the tiles demand an average heart rate of 75% and 86% of the maximum heart rate....

  16. A design of a first wall for a demo reactor

    International Nuclear Information System (INIS)

    Bond, A.; Bond, R.A.; Cooke, P.I.H.

    1985-01-01

    A design of a first wall for a Demonstration reactor is reported based on an analysis of heat trasnport, sputtering damage, blanket neutronics and vacuum characteristics. The design comprises replaceable tungsten tiles radiatively cooled to a copper substrate, which in turn is cooled by high pressure helium. The overall engineering design of the first wall is described together with a discussion of the factors influencing the choice of design and materials

  17. R(and)D on full tungsten divertor and beryllium wall for JET ITER-like Wall Project

    International Nuclear Information System (INIS)

    Hirai, T.; Maier, H.; Rubel, M.

    2006-01-01

    The ITER-like Wall Project was initiated at JET, with the goal of testing the reference material combination chosen for ITER: beryllium (Be) in the main chamber (wall and limiters) and tungsten (W) in the divertor. The major aims are to study the tritium retention, material mixing, melt layer behavior and to optimize plasma operation scenarios with a full metal wall. The project requires major design and engineering efforts in R(and)D: (i) bulk W tile, (ii) W coatings on carbon fibre composites (CFC) (iii) Be coatings on Inconel, (iv) Be marker tiles. For the W divertor, two R(and)D tasks were initiated: (1) development of a conceptual design for a bulk W tile as the main outer divertor target plate, and (2) W coating selection from 14 different samples produced by various techniques for the other divertor plates and neutral beam shine. The bulk W tile must withstand power loads of 7 MW/m 2 for 10 s. JET divertor plates are not actively cooled, therefore, heat capacity of the tiles is an important design parameter. In addition to power handling, mechanical structural stability under electromagnetic forces and compatibility with remote handling are the key requirements in the design. The design has been completed. The test-tile survived 100 pulses at 7 MW/m 2 for 10 s in the electron beam facility, JUDITH. The W coatings with different thickness, thin ( 2 and 200 pulses at 10 MW/m 2 for 5 s. In all tested samples cracks developed perpendicularly to the fiber bundles in CFC because of contraction of the coating in the cooling phase. Coatings were also exposed to 1000 ELM-like loading pulses. The thin coatings showed fatigue leading to delamination, whereas for thick coatings better resistance in ELM-like loading. As a result of R(and)D a full W divertor was decided: bulk metal at the outer divertor and W coating at other areas. Be-related R(and)D activities are in two areas. Production of 8-9 μm layers on inner wall cladding Inconel tiles ensures the full coating of

  18. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors

    Science.gov (United States)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.

    2017-04-01

    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  19. Tile Drainage Expansion Detection using Satellite Soil Moisture Dynamics

    Science.gov (United States)

    Jacobs, J. M.; Cho, E.; Jia, X.

    2017-12-01

    In the past two decades, tile drainage installation has accelerated throughout the Red River of the North Basin (RRB) in parts of western Minnesota, eastern North Dakota, and a small area of northeastern South Dakota, because the flat topography and low-permeability soils in this region necessitated the removal of excess water to improve crop production. Interestingly, streamflow in the Red River has markedly increased and six of 13 major floods during the past century have occurred since the late 1990s. It has been suggested that the increase in RRB flooding could be due to change in agricultural practices, including extensive tile drainage installation. Reliable information on existing and future tile drainage installation is greatly needed to capture the rapid extension of tile drainage systems and to locate tile drainage systems in the north central U.S. including the RRB region. However, there are few reliable data of tile drainage installation records, except tile drainage permit records in the Bois de Sioux watershed (a sub-basin in southern part of the RRB where permits are required for tile drainage installation). This study presents a tile drainage expansion detection method based on a physical principle that the soil-drying rate may increase with increasing tile drainage for a given area. In order to capture the rate of change in soil drying rate with time over entire RRB (101,500 km2), two satellite-based microwave soil moisture records from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and AMSR2 were used during 2002 to 2016. In this study, a sub-watershed level (HUC10) potential tile drainage growth map was developed and the results show good agreement with tile drainage permit records of six sub-watersheds in the Bois de Sioux watershed. Future analyses will include improvement of the potential tile drainage map through additional information using optical- and thermal-based sensor products and evaluation of its

  20. Surface Abrasion of Glazed Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    Esposito, L.

    2000-02-01

    Full Text Available The characteristics of the proper surface of glazed ceramic tiles have a considerable influence on their mechanical response to the various stresses coming from the environment. In this regard, one of the most important parameters to define the correct use of these products is the wear behaviour of the proper surface. Since the glaze layer is the physical interface between the environment and ceramic body, its characteristics also determine the service life of the tile. The objective of the research reported here was to assess the influence of hardness, fracture toughness and porosity of the glaze layer on the wear behaviour of the proper surface of glazed ceramic tiles. The results obtained show a clear relationship between the characteristics of the glaze layer and the material removal in the form of normalised weight loss, which can be considered a useful tool to predict the wear behaviour of these products.

    Las características de la propia superficie de los azulejos cerámicos esmaltados tiene una influencia considerable en la respuesta mecánica de éstos a las distintas tensiones provenientes del entorno. De acuerdo con esto, uno de los parámetros más importantes que definen la correcta utilización de estos productos es el comportamiento ante el desgaste de la propia superficie. Debido a que la capa de esmalte es la conexión física entre el entorno y el cuerpo cerámico, sus características también determinan vida útil del azulejo. El objetivo de la investigación de la que damos cuenta aquí fue calcular la influencia de la dureza, resistencia a la fractura y porosidad de la capa de esmalte en el comportamiento ante el desgaste de la propia superficie de los azulejos cerámicos esmaltados. Los resultados obtenidos muestran una clara relación entre las características de la capa de esmalte y la eliminación del material en forma de pérdida de peso normalizada, que puede ser considerada como una herramienta útil para

  1. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    Science.gov (United States)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  2. Work on a ATLAS tile calorimeter Barrel

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The Tile Calorimeter is designed as one barrel and two extended barrel hadron parts. The calorimeter consists of a cylindrical structure with inner and outer radius of 2280 and 4230 mm respectively. The barrel part is 5640 mm in length along the beam axis, while each of the extended barrel cylinders is 2910 mm long. Each detector cylinder is built of 64 independent wedges along the azimuthal direction. Between the barrel and the extended barrels there is a gap of about 600 mm, which is needed for the Inner Detector and the Liquid Argon cables, electronics and services. The barrel covers the region -1.0

  3. Upgrading the ATLAS Tile Calorimeter Electronics

    Directory of Open Access Journals (Sweden)

    Carrió Fernando

    2013-11-01

    Full Text Available This work summarizes the status of the on-detector and off-detector electronics developments for the Phase 2 Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in the middle of 2014 during the first Long Shutdown. For the on-detector readout, three different front-end boards (FEB alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The Main Board will provide communication and control to the FEBs and the Daughter Board will transmit the digitized data to the off-detector electronics in the counting room, where the super Read-Out Driver (sROD will perform processing tasks on them and will be the interface to the trigger levels 0, 1 and 2.

  4. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2014-01-01

    This presentation summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2024. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  5. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2013-01-01

    This work summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  6. Condensate oscillations in a Penrose tiling lattice

    Science.gov (United States)

    Akdeniz, Z.; Vignolo, P.

    2017-07-01

    We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a lattice, the potential energy at each site depends on the neighbour sites, accordingly to the model introduced by Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible), on the potential energy landscape dispersion, and on the interaction strength. The condensate-width oscillates at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping dynamics.

  7. Spectral response data for development of cool coloured tile coverings

    Science.gov (United States)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  8. Data Quality system of the ATLAS hadronic Tile calorimeter

    International Nuclear Information System (INIS)

    Nemecek, Stanislav

    2012-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. It is subdivided into a large central barrel and two smaller lateral extended barrels. Each barrel consists of 64 wedges, made of iron plates and scintillating tiles. Two edges of each scintillating tile are air-coupled to wave-length shifting (WLS) fibres which collect the scintillating light and transmit it to photo-multipliers. The total number of channels is about 10000. An essential part of the TileCal detector is the Data Quality (DQ) system. The DQ system is designed to check the status of the electronic channels. It is designed to provide information at two levels - online and offline. The online TileCal DQ system monitors continuously the data while they are recorded and provides a fast feedback. The offline DQ system allows a detailed study, if needed it provides corrections to be applied to the recorded data and it allows to validate the data for physics analysis. In addition to the check of physics data the TileCal DQ systems also operate with calibration data. The TileCal calibration system provides well defined signals and the response to the calibration signals allows checking the behaviour of the electronic channels in detail. The Monitoring and Calibration Web System supports data quality analyses at the level of channels. All online, offline and calibration versions of the TileCal DQ system also provide automatic tests, the results of which allow fast and robust feedback.

  9. Kinetic calculation of plasma deposition in castellated tile gaps

    International Nuclear Information System (INIS)

    Dejarnac, R.; Gunn, J.P.

    2007-01-01

    Plasma-facing divertors and limiters are armoured with castellated tiles to withstand intense heat fluxes. Recent experimental studies show that a non-negligible amount of deuterium is deposited in the gaps between tiles. We present here a numerical study of plasma deposition in this critical region. For this purpose we have developed a particle-in-cell code with realistic boundary conditions determined from kinetic calculations. We find a strong asymmetry of plasma deposition into the gaps. A significant fraction of the plasma influx is expelled from the gap to be deposited on the leading edge of the downstream tile

  10. LASER monitoring system for the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Viret, S.

    2010-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) at CERN uses a scintillator-iron technique for its hadronic Tile Calorimeter (TileCal). Scintillating light is readout via 9852 photomultiplier tubes (PMTs). Calibration and monitoring of these PMTs are made using a LASER based system. Short light pulses are sent simultaneously into all the TileCal photomultiplier's tubes (PMTs) during ATLAS physics runs, thus providing essential information for ATLAS data quality and monitoring analyses. The experimental setup developed for this purpose is described as well as preliminary results obtained during ATLAS commissioning phase in 2008.

  11. Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level.

    Science.gov (United States)

    Evans, Constantine G; Hariadi, Rizal F; Winfree, Erik

    2012-06-27

    While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.

  12. Direct Atomic Force Microscopy Observation of DNA Tile Crystal Growth at the Single-Molecule Level

    OpenAIRE

    Evans, Constantine G.; Hariadi, Rizal F.; Winfree, Erik

    2012-01-01

    While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detach...

  13. CFD analysis and experimental comparison of novel roof tile shapes

    Directory of Open Access Journals (Sweden)

    Michele Bottarelli

    2017-06-01

    Using an experimental rig, the air pressure difference and the volumetric flow rate between tiles have been measured for an existing Portoghese tile design over a range of pressures. Then, in order to understand the air flows under different conditions, a three-dimensional computational fluid dynamics (CFD model has been implemented to recreate the full geometry of the rig. The model was calibrated against the aforementioned experimental results, and run with boundary conditions simulating different wind directions. Even in the low velocities typical of average local wind patterns, the fluid dynamic problem remains complex because of the geometry of the gaps between the tiles. However, it has been possible to assess the coefficient of local head loss and then apply it in an analytical relationship between pressure drop and flow rate, taking into account the open area. The results have shown how the wind direction affects the air permeability and, therefore, important insights have been gathered for the design of novel tiles.

  14. Measurement of Tritium Surface Distribution on TFTR Bumper Limiter Tiles

    International Nuclear Information System (INIS)

    Sugiyama, K.; Tanabe, T.; Skinner, C.H.; Gentile, C.A.

    2004-01-01

    The tritium surface distribution on graphite tiles used in the Tokamak Fusion Test Reactor (TFTR) bumper limiter and exposed to TFTR deuterium-tritium (D-T) discharges from 1993 to 1997 was measured by the Tritium Imaging Plate Technique (TIPT). The TFTR bumper limiter shows both re-/co-deposition and erosion. The tritium images for all tiles measured are strongly correlated with erosion and deposition patterns, and long-term tritium retention was found in the re-/co-depositions and flakes. The CFC tiles located at erosion dominated areas clearly showed their woven structure in their tritium images owing to different erosion yields between fibers and matrix. Significantly high tritium retention was observed on all sides of the erosion tiles, indicating carbon transport via repetition of local erosion/deposition cycles

  15. Calibration and monitoring of the ATLAS Tile calorimeter

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40~MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  16. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  17. The optical instrumentation of the ATLAS Tile Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J [IFIC, Centro Mixto Universidad de Valencia-CSIC, E46100 Burjassot, Valencia (Spain); Adragna, P; Bosi, F [Pisa University and INFN, Pisa (Italy); Alexa, C; Boldea, V [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Alves, R [LIP and FCTUC Univ. of Coimbra (Portugal); Amaral, P; Andresen, X [CERN, Geneva (Switzerland); Ananiev, A [LIP and IDMEC-IST, Lisbon (Portugal); Anderson, K [University of Chicago, Chicago, Illinois 60637 (United States); Antonaki, A [University of Athens, Athens (Greece); Batusov, V [JINR, Dubna (Russian Federation); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas, E; Bohm, C [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal / CNRS-IN2P3, Clermont-Ferrand (France); Blanch, O; Blanchot, G; Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, Michigan 48824 (United States); others, and

    2013-01-15

    The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of {+-}1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.

  18. The optical instrumentation of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Abdallah, J; Adragna, P; Bosi, F; Alexa, C; Boldea, V; Alves, R; Amaral, P; Andresen, X; Ananiev, A; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Bohm, C; Biscarat, C; Blanch, O; Blanchot, G; Bosman, M; Bromberg, C

    2013-01-01

    The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of ±1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.

  19. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices

    Science.gov (United States)

    Yan, Hao; Labean, Thomas H.; Feng, Liping; Reif, John H.

    2003-07-01

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.

  20. Scheduling Two-Sided Transformations Using Tile Algorithms on Multicore Architectures

    Directory of Open Access Journals (Sweden)

    Hatem Ltaief

    2010-01-01

    Full Text Available The objective of this paper is to describe, in the context of multicore architectures, three different scheduler implementations for the two-sided linear algebra transformations, in particular the Hessenberg and Bidiagonal reductions which are the first steps for the standard eigenvalue problems and the singular value decompositions respectively. State-of-the-art dense linear algebra softwares, such as the LAPACK and ScaLAPACK libraries, suffer performance losses on multicore processors due to their inability to fully exploit thread-level parallelism. At the same time the fine-grain dataflow model gains popularity as a paradigm for programming multicore architectures. Buttari et al. (Parellel Comput. Syst. Appl. 35 (2009, 38–53 introduced the concept of tile algorithms in which parallelism is no longer hidden inside Basic Linear Algebra Subprograms but is brought to the fore to yield much better performance. Along with efficient scheduling mechanisms for data-driven execution, these tile two-sided reductions achieve high performance computing by reaching up to 75% of the DGEMM peak on a 12000×12000 matrix with 16 Intel Tigerton 2.4 GHz processors. The main drawback of the tile algorithms approach for two-sided transformations is that the full reduction cannot be obtained in one stage. Other methods have to be considered to further reduce the band matrices to the required forms.

  1. Timing distribution and Data Flow for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    AUTHOR|(SzGeCERN)713745; The ATLAS collaboration

    2016-01-01

    The Hadronic Tile Calorimeter (TileCal) detector is one of the several subsystems composing the ATLAS experiment at the Large Hadron Collider (LHC). The LHC upgrade program plans an increase of order five times the LHC nominal instantaneous luminosity culminating in the High Luminosity LHC (HL-LHC). In order to accommodate the detector to the new HL-LHC parameters, the TileCal read out electronics is being redesigned introducing a new read out strategy with a full-digital trigger system. In the new read out architecture, the front-end electronics allocates the MainBoards and the DaughterBoards. The MainBoard digitizes the analog signals coming from the PhotoMultiplier Tubes (PMTs), provides integrated data for minimum bias monitoring and includes electronics for PMT calibration. The DaughterBoard receives and distributes Detector Control System (DCS) commands, clock and timing commands to the rest of the elements of the front-end electronics, as well as, collects and transmits the digitized data to the back-e...

  2. FATALIC: a fully integrated electronics readout for the ATLAS tile calorimeter at the HL-LHC

    CERN Document Server

    Angelidakis, Stylianos; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration has started a vast program of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. The current readout electronics of every sub-detector, including the Tile Calorimeter (TileCal), must be upgraded to comply with the extreme HL-LHC operating conditions. The ASIC described in this document, named Front-end ATlAs tiLe Integrated Circuit (FATALIC), has been developed to fulfill these requirements. FATALIC is based on a $130\\,$nm CMOS technology and performs the complete processing of the signal, including amplification, shaping and digitization on a large dynamic range from $25\\,$fC to $1.2\\,$nC. The overall architecture of this current-reading ASIC is composed by current conveyors, shapers, 12-bits pipeline analog-to-digital converters operating at $40\\,$Mhz and a digital block dealing with the three gains implemented in this electronics. A dedicated channel for low current is also designed in order to be able to perform absolute calibration with radioactive cesium so...

  3. FATALIC: a fully integrated electronics readout for the ATLAS tile calorimeter at the HL-LHC

    CERN Document Server

    Angelidakis, Stylianos; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration has started a vast program of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. The current readout electronics of every sub-detector, including the Tile Calorimeter (TileCal), must be upgraded to comply with the extreme HL-LHC operating conditions. The ASIC described in this document, named Front-end ATlAs tiLe Integrated Circuit (FATALIC), has been developed to fulfill these requirements. FATALIC is based on a $130\\,$nm CMOS technology and performs the complete processing of the signal, including amplification, shaping and digitization on a large dynamic range A dedicated channel for low current is also designed in order to perform absolute calibration with radioactive cesium source, producing a known but low signal with a typical frequency of $100\\,$Hz. In this document, the design of FATALIC is described and the measured performances as well as results of tests using beam of particles at CERN are discussed.

  4. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and transmitted to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronics are based on the Advanced Telecommunications Computing Architecture (ATCA) standard and are equipped with high performance optical connectors. The system is designed to operate in a high radiation envi...

  5. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS cover-ing the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronic is based on the Advanced Telecommunications Computing Architecture (ATCA) standard and is equipped with high performance optical connectors. The system is designed to operate in a high radiation environmen...

  6. Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management.

    Science.gov (United States)

    Schmidt, P J; Pintar, K D M; Fazil, A M; Flemming, C A; Lanthier, M; Laprade, N; Sunohara, M D; Simhon, A; Thomas, J L; Topp, E; Wilkes, G; Lapen, D R

    2013-06-15

    Human campylobacteriosis is the leading bacterial gastrointestinal illness in Canada; environmental transmission has been implicated in addition to transmission via consumption of contaminated food. Information about Campylobacter spp. occurrence at the watershed scale will enhance our understanding of the associated public health risks and the efficacy of source water protection strategies. The overriding purpose of this study is to provide a quantitative framework to assess and compare the relative public health significance of watershed microbial water quality associated with agricultural BMPs. A microbial monitoring program was expanded from fecal indicator analyses and Campylobacter spp. presence/absence tests to the development of a novel, 11-tube most probable number (MPN) method that targeted Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. These three types of data were used to make inferences about theoretical risks in a watershed in which controlled tile drainage is widely practiced, an adjacent watershed with conventional (uncontrolled) tile drainage, and reference sites elsewhere in the same river basin. E. coli concentrations (MPN and plate count) in the controlled tile drainage watershed were statistically higher (2008-11), relative to the uncontrolled tile drainage watershed, but yearly variation was high as well. Escherichia coli loading for years 2008-11 combined were statistically higher in the controlled watershed, relative to the uncontrolled tile drainage watershed, but Campylobacter spp. loads for 2010-11 were generally higher for the uncontrolled tile drainage watershed (but not statistically significant). Using MPN data and a Bayesian modelling approach, higher mean Campylobacter spp. concentrations were found in the controlled tile drainage watershed relative to the uncontrolled tile drainage watershed (2010, 2011). A second-order quantitative microbial risk assessment (QMRA) was used, in a relative way, to identify

  7. SPECTRAL SETS AND TILES IN CARTESIAN PRODUCTS OVER ...

    Indian Academy of Sciences (India)

    41

    Spectral set conjecture: A Borel set Ω ⊂ Rd of positive and finite. Lebesgue measure is a spectral set if and only if it ... Ω ⊂ G of positive and finite Haar measure is a spectral set if and only if it is a translational tile. ... Key words and phrases. p-adic number field, Cartesian product, tile, spectral set. This work was supported by ...

  8. Reusing Ceramic Tile Polishing Waste In Paving Block Manufacturing

    OpenAIRE

    Giordano Penteado; Carmenlucia Santos; de Carvalho; Eduardo Viviani; Cecche Lintz; Rosa Cristina

    2016-01-01

    Ceramic companies worldwide produce large amounts of polishing tile waste, which are piled up in the open air or disposed of in landfills. These wastes have such characteristics that make them potential substitutes for cement and sand in the manufacturing of concrete products. This paper investigates the use of ceramic tile polishing waste as a partial substitute for cement and sand in the manufacturer of concrete paving blocks. A concrete mix design was defined and then the sand was replaced...

  9. Characterization of double face adhesive sheets for ceramic tile installation

    International Nuclear Information System (INIS)

    Nascimento, Otavio L.; Mansur, Alexandra A.P.; Mansur, Herman S.

    2011-01-01

    The main goal of this work was the characterization of an innovative ceramic tile installation product based on double face adhesive sheets. Density, hardness, tensile strength, x-ray diffraction, infrared spectroscopy, and scanning electron microscopy coupled with spectroscopy of dispersive energy assays were conducted. The results are in agreement with some manufacture specifications and the obtained information will be crucial in the analysis of durability and stability of the ceramic tile system installed with this new product. (author)

  10. Hydrogen isotope behavior in the first wall of JT-60U after deuterium plasma operation

    International Nuclear Information System (INIS)

    Oya, Y.; Tanabe, T.; Oyaidzu, M.; Shibahara, T.; Sugiyama, K.; Yoshikawa, A.; Onishi, Y.; Hirohata, Y.; Ishimoto, Y.; Yagyu, J.; Arai, T.; Masaki, K.; Okuno, K.; Miya, N.; Tanaka, S.

    2007-01-01

    Retention of hydrogen isotopes in the carbon (isotropic graphite) first wall tiles of JT-60U was studied by secondary ion mass spectrometry and thermal desorption spectroscopy. The surface morphology and erosion/deposition profiles of the tiles were characterized using scanning electron microscope and X-ray photoelectron spectroscopy. The upper area is mainly eroded, while the bottom area of the inboard wall is dominated by deposition. In contrast to the divertor area, hydrogen isotope retention in the eroded wall area was generally larger than that in the deposition dominated area. Measured near surface concentrations of hydrogen isotopes in the wall tiles, as well as the D/H ratios, were a little higher than those in the divertor area. This indicates direct implantation of high-energy D from NBI into the first wall. The lower temperature of the first wall relative to the divertor tiles would reduce desorption and/or replacement of implanted D by subsequent D or H impingement

  11. Design of single-walled NaK capsules for fast breeder fuel pins irradiation (IVO-FR2-Vg7 program)

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Hafner, H.E.

    1979-01-01

    In Frame of the Joint Irradiation Program IVO-FR2 between the Nuclear Research Centre of Karlsruhe (RFA) and the Junta de Energia Nuclear (Spain) is carried out in the FR2 reactor (Karlsruhe) the irradiation of 12 mixed-oxide fuel rods of 172 mm length. These test rods are first irradiated under various conditions in four modified FR2 capsule (Typ 7). Two versions of single-walled NaK (78% K) are used for this purpose. This report contains the design and description of these two capsule versions as well as the considerations required to oftain the operations licence, supplemented by the relevant figures. (author)

  12. Spatial chaos of Wang tiles with two symbols

    Science.gov (United States)

    Chen, Jin-Yu; Chen, Yu-Jie; Hu, Wen-Guei; Lin, Song-Sun

    2016-02-01

    This investigation completely classifies the spatial chaos problem in plane edge coloring (Wang tiles) with two symbols. For a set of Wang tiles B , spatial chaos occurs when the spatial entropy h ( B ) is positive. B is called a minimal cycle generator if P ( B ) ≠ 0̸ and P ( B ' ) = 0̸ whenever B ' ⫋ B , where P ( B ) is the set of all periodic patterns on ℤ2 generated by B . Given a set of Wang tiles B , write B = C 1 ∪ C 2 ∪ ⋯ ∪ C k ∪ N , where Cj, 1 ≤ j ≤ k, are minimal cycle generators and B contains no minimal cycle generator except those contained in C1∪C2∪⋯∪Ck. Then, the positivity of spatial entropy h ( B ) is completely determined by C1∪C2∪⋯∪Ck. Furthermore, there are 39 equivalence classes of marginal positive-entropy sets of Wang tiles and 18 equivalence classes of saturated zero-entropy sets of Wang tiles. For a set of Wang tiles B , h ( B ) is positive if and only if B contains a MPE set, and h ( B ) is zero if and only if B is a subset of a SZE set.

  13. Gamma radiation scanning of nuclear waste storage tile holes

    International Nuclear Information System (INIS)

    Das, A.; Yue, S.; Sur, B.; Johnston, J.; Gaudet, M.; Wright, M.; Burton, N.

    2010-01-01

    Nuclear waste management facilities at Chalk River Laboratories use below-ground 'tile holes' to store solid waste from various activities such as medical radioisotope production. A silicon PIN (p-type-intrinsic-n-type semiconductor) diode based gamma radiation scanning system has been developed and used to profile the gamma radiation fields along the depth of waste storage tile holes by deploying the sensor into verification tubes adjacent to the tile holes themselves. The radiation field measurements were consistent with expected radiation fields in the tile holes based on administrative knowledge of the radioactive contents and their corresponding decay rates. Such measurements allow non-invasive verification of tile hole contents and provide input to the assessment of radiological risk associated with removal of the waste. Using this detector system, radioactive waste that has decayed to very low levels may be identified based on the radiation profile. This information will support planning for possible transfer of this waste to a licensed waste storage facility designed for low level waste, thus freeing storage space for possible tile hole re-use for more highly radioactive waste. (author)

  14. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS sub-detectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. Seventy thousand (70000) parameters are used for control and monitoring purposes of TileCal, requiring an automated system. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCa...

  15. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Chauhan, Sachin Singh; Sharma, Uttam; Choudhary, K.K.; Sanyasi, A.K.; Ghosh, J.; Sharma, Jayshree

    2013-01-01

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10 -6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with

  16. Overview of erosion–deposition diagnostic tools for the ITER-Like Wall in the JET tokamak

    International Nuclear Information System (INIS)

    Rubel, M.; Coad, J.P.; Widdowson, A.; Matthews, G.F.; Esser, H.G.; Hirai, T.; Likonen, J.; Linke, J.; Lungu, C.P.; Mayer, M.; Pedrick, L.; Ruset, C.

    2013-01-01

    This paper presents scientific and technical issues related to the development of erosion–deposition diagnostic tools for JET operated with the ITER-Like Wall: beryllium and tungsten marker tiles and several types of wall probes installed in the main chamber and in the divertor. Markers tiles are the standard limiter and divertor components additionally coated first with a thin sandwich of Ni–Be and Mo–W for, beryllium and tungsten markers, respectively. Both types of markers are embedded in regular arrays of limiter and divertor tiles. Coated W–Be probes are also inserted in the Be-covered Inconel cladding tiles on the central column. Other types of erosion–deposition diagnostic tools are: rotating collectors, deposition traps, louver clips, quartz microbalance and mirrors for the First Mirror Test at JET for ITER. The specific role of these tools is discussed in detail

  17. Implementation of Trigger Tiles for ALFA Simulation

    CERN Document Server

    Rehaag, Thomas Joseph

    2017-01-01

    The Absolute Luminosity For ATLAS (ALFA) experiment was designed to accurately measure the luminosity of the intersecting proton beams at the ATLAS interaction point [1]. However, the ALFA experiment has shifted its primary purpose from luminosity measurement to elastic and inelastic proton collisions. This change was the result of difficulty in fitting parameters in the region governed by Coulomb scattering. The operational principle for luminosity measurement with ALFA relied on detecting elastic proton collisions, so the detector is suited to its role in proton collision measurements. The ALFA detector consists of several sensitive components, including the main detector (MD), overlap detectors (ODs) and trigger tiles. A diagram of the ALFA detector is shown in Figure 1. The main detector is composed of layers of 0.5 × 0.5 mm2 cross section scintillating fibres with an active area of 0.48 × 0.48 mm2, which are directed diagonally across the detector with 64 fibres in each layer. The 20 total layers ar...

  18. Conceptual design of the INTOR first-wall system

    International Nuclear Information System (INIS)

    Smith, D.L.; Majumdar, S.; Mattas, R.F.; Turner, L.; Jung, J.; Abdou, M.A.; Bowers, D.; Trachsel, C.; Merrill, B.

    1981-10-01

    The design concept and performance characteristics of the first-wall design for the phase-1 INTOR (International Tokamak Reactor) study is described. The reference design consists of a water-cooled stainless steel panel. The major uncertainty regarding the performance of the bare stainless steel wall relates to the response of a thin-melt layer predicted to form on limited regions during a plasma disruption. A more-complex backup design, which incorporates radiatively cooled graphite tiles on the inboard wall, is briefly described

  19. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...

  20. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    Science.gov (United States)

    Greenberg, H. S.

    1994-01-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  1. Power handling of a segmented bulk W tile for JET under realistic plasma scenarios

    Science.gov (United States)

    Jet-Efda Contributors Mertens, Ph.; Coenen, J. W.; Eich, T.; Huber, A.; Jachmich, S.; Nicolai, D.; Riccardo, V.; Senik, K.; Samm, U.

    2011-08-01

    A solid tungsten divertor row has been designed for JET in the frame of the ITER-like Wall project (ILW). The plasma-facing tiles are segmented in four stacks of tungsten lamellae oriented in the toroidal direction. Earlier estimations of the expected tile performance were carried out mostly for engineering purposes, to compare the permissible heat load with the power density of 7 MW/m2 originally specified for the ILW as a uniform load for 10 s.The global thermal model developed for the W modules delivers results for more realistic plasma footprints: the poloidal extension of the outer strike point was reduced from the full lamella width of 62 mm to ⩾15 mm. Model validation is given by the experimental exposure of a 1:1 prototype stack in the ion beam facility MARION (incidence ˜6°, load E ⩽ 66 MJ/m2 on the wetted surface). Spreading the deposited energy by appropriate sweeping over one or several stacks in the torus is beneficial for the tungsten lamellae and for the support structure.

  2. Plasma-wall interactions in RFX

    International Nuclear Information System (INIS)

    Valisa, M.; Bartiromo, R.; Carraro, L.

    1999-01-01

    Plasma wall interactions become a crucial issue in the Reversed Field Pinch RFX at high current (>0.7 MA). Wall-Mode Locking (WML) leads to carbon bloom, enhanced recycling and makes the density control very difficult to achieve. Several wall conditioning techniques have improved the capability of controlling recycling, especially boronization with diborane, but at 1 MA of plasma current removal of the WML becomes mandatory. Encouraging results have been achieved by rotating an externally induced perturbation that can unlock the WML. The strong impurity screening mechanism found at intermediate current does not degrade significantly at 1 MA. Modification of the tiles geometry could further reduce the power density dissipation and mitigate the PWI. (author)

  3. Plasma-wall interactions in RFX

    International Nuclear Information System (INIS)

    Valisa, M.; Bartiromo, R.; Carraro, L.

    2001-01-01

    Plasma wall interactions become a crucial issue in the Reversed Field Pinch RFX at high current (>0.7 MA). Wall-Mode Locking (WML) leads to carbon bloom, enhanced recycling and makes the density control very difficult to achieve. Several wall conditioning techniques have improved the capability of controlling recycling, especially boronisation with diborane, but at 1 MA of plasma current removal of the WML becomes mandatory. Encouraging results have been achieved by rotating an externally induced perturbation that can unlock the WML. The strong impurity screening mechanism found at intermediate current does not degrade significantly at 1 MA. Modification of the tiles geometry could further reduce the power density dissipation and mitigate the PWI. (author)

  4. Development of an imaging-planning program for screen/film and computed radiography mammography for breasts with short chest wall to nipple distance.

    Science.gov (United States)

    Dong, S L; Su, J L; Yeh, Y H; Chu, T C; Lin, Y C; Chuang, K S

    2011-04-01

    Imaging breasts with a short chest wall to nipple distance (CWND) using a traditional mammographic X-ray unit is a technical challenge for mammographers. The purpose of this study is the development of an imaging-planning program to assist in determination of imaging parameters of screen/film (SF) and computed radiography (CR) mammography for short CWND breasts. A traditional mammographic X-ray unit (Mammomat 3000, Siemens, Munich, Germany) was employed. The imaging-planning program was developed by combining the compressed breast thickness correction, the equivalent polymethylmethacrylate thickness assessment for breasts and the tube loading (mAs) measurement. Both phantom exposures and a total of 597 exposures were used for examining the imaging-planning program. Results of the phantom study show that the tube loading rapidly decreased with the CWND when the automatic exposure control (AEC) detector was not fully covered by the phantom. For patient exposures with the AEC fully covered by breast tissue, the average fractional tube loadings, defined as the ratio of the predicted mAs using the imaging-planning program and mAs of the mammogram, were 1.10 and 1.07 for SF and CR mammograms, respectively. The predicted mAs values were comparable to the mAs values, as determined by the AEC. By applying the imaging-planning program in clinical practice, the experiential dependence of the mammographer for determination of the imaging parameters for short CWND breasts is minimised.

  5. Characterization of an Ionization Readout Tile for nEXO

    Science.gov (United States)

    Jewell, M.; Schubert, A.; Cen, W. R.; Dalmasson, J.; DeVoe, R.; Fabris, L.; Gratta, G.; Jamil, A.; Li, G.; Odian, A.; Patel, M.; Pocar, A.; Qiu, D.; Wang, Q.; Wen, L. J.; Albert, J. B.; Anton, G.; Arnquist, I. J.; Badhrees, I.; Barbeau, P.; Beck, D.; Belov, V.; Bourque, F.; Brodsky, J. P.; Brown, E.; Brunner, T.; Burenkov, A.; Cao, G. F.; Cao, L.; Chambers, C.; Charlebois, S. A.; Chiu, M.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Côté, M.; Daniels, T.; Daugherty, S. J.; Daughhetee, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; Didberidze, T.; Dilling, J.; Ding, Y. Y.; Dolinski, M. J.; Dragone, A.; Fairbank, W.; Farine, J.; Feyzbakhsh, S.; Fontaine, R.; Fudenberg, D.; Giacomini, G.; Gornea, R.; Hansen, E. V.; Harris, D.; Hasan, M.; Heffner, M.; Hoppe, E. W.; House, A.; Hufschmidt, P.; Hughes, M.; Hößl, J.; Ito, Y.; Iverson, A.; Jiang, X. S.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, S.; Li, Z.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Newby, R. J.; Ning, Z.; Njoya, O.; Nolet, F.; Odgers, K.; Oriunno, M.; Orrell, J. L.; Ostrovskiy, I.; Overman, C. T.; Ortega, G. S.; Parent, S.; Piepke, A.; Pratte, J.-F.; Radeka, V.; Raguzin, E.; Rao, T.; Rescia, S.; Retiere, F.; Robinson, A.; Rossignol, T.; Rowson, P. C.; Roy, N.; Saldanha, R.; Sangiorgio, S.; Schmidt, S.; Schneider, J.; Sinclair, D.; Skarpaas, K.; Soma, A. K.; St-Hilaire, G.; Stekhanov, V.; Stiegler, T.; Sun, X. L.; Tarka, M.; Todd, J.; Tolba, T.; Tsang, R.; Tsang, T.; Vachon, F.; Veeraraghavan, V.; Visser, G.; Vuilleumier, J.-L.; Wagenpfeil, M.; Weber, M.; Wei, W.; Wichoski, U.; Wrede, G.; Wu, S. X.; Wu, W. H.; Yang, L.; Yen, Y.-R.; Zeldovich, O.; Zhang, X.; Zhao, J.; Zhou, Y.; Ziegler, T.

    2018-01-01

    A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3 mm wide, on a 10 cm × 10 cm fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/E=5.5% is observed at 570 keV, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936 V/cm.

  6. ALT-II armor tile design for upgraded TEXTOR operation

    International Nuclear Information System (INIS)

    Newberry, B.L.; McGrath, R.T.; Watson, R.D.

    1994-01-01

    The upgrade of the TEXTOR tokamak at KFA Julich will be completed in the spring of 1994. The upgrade will extend the TEXTOR pulse length from 5 seconds to 10 seconds. The auxiliary heating systems are also scheduled to be upgraded so that eventually a total of 8.0 MW auxiliary heating will be available through a combination of neutral beam injection and radio frequency heating. Originally, the inertially cooled armor tiles on the full toroidal belt Advanced Limiter Test - II (ALT-II) were designed for 5-second operation with a total heating power of 6.0 MW. The upgrade of TEXTOR will increase the energy deposited per pulse onto ALT-II by more than 300%. Consequently, the graphite armor tiles for ALT-II had to be redesigned in order to increase their thermal inertia and, thereby, avoid excessively high graphite armor surface temperatures that would lead to unacceptable contamination of the plasma. The armor tile thermal inertia had been increase primarily by expanding the radial thickness of the tiles from 17 mm to 20 mm. This increase in radial tile dimension will reduce the overall pumping efficiency of the ALT-II pump limiter by about 30%. The final armor tile design was a compromise between increasing the power handling capability and reducing the particle exhaust efficiency of ALT-II. The reduction in exhaust efficiency is unfortunate, but could only be avoided by active cooling of the ALT-II armor tiles. The active cooling option was too complicated and expensive to be considered at this time

  7. Technical Note: Statistical analysis of defects of tiles´ joints

    Directory of Open Access Journals (Sweden)

    de Brito, J.

    2007-03-01

    Full Text Available The present article addresses tile joint defects in interior and exterior floors and walls. It begins with a classification of tile joint defects along with their likely causes, establishing a correlation matrix between the two sets of parameters. This is followed by the identification of the flaws found most frequently in this type of cladding, based on field data collected during 88 inspections of tile joint material. The statistical analysis of these data is shown in the form of charts representing the frequency of joint defects, their causes and the interrelationships between the two. The field work confirmed the high frequency of joint defects in all types of tiling. This conclusion underscores the need for proper joint design and maintenance planning (including periodic inspection and repair as appropriate to guarantee the durability of this type of cladding.En este trabajo se analizan los defectos de junta que pueden aparecer en las distintas aplicaciones cerámicas actuales. En primer lugar, se propone una clasificación tanto de los defectos como de las causas más probables de los mismos. A continuación se presenta una matriz de correlación de dichos defectos y causas probables. A partir de 88 inspecciones de paramentos cerámicos, se han identificado los defectos del material de juntas más frecuentes, describiéndose los resultados del análisis estadístico de los datos recogidos con motivo de dichas inspecciones. En los cuadros correspondientes se especifican la frecuencia del defecto, las causas observadas y la relación entre ambas en la muestra. Los datos recogidos in situ evidencian una alta incidencia de defectos del material de juntas en esta clase de soluciones cerámicas. Dicha conclusión constata la necesidad de actuaciones preventivas, que deberían incluir el correcto diseño de las juntas cerámicas y la planificación previa de los trabajos de mantenimiento (con visitas periódicas y tareas de reparación. Se

  8. Construction of 2D quasi-periodic Rauzy tiling by similarity transformation

    International Nuclear Information System (INIS)

    Zhuravlev, V. G.; Maleev, A. V.

    2009-01-01

    A new approach to constructing self-similar fractal tilings is proposed based on the construction of semigroups generated by a finite set of similarity transformations. The Rauzy tiling-a 2D analog of 1D Fibonacci tiling generated by the golden mean-is used as an example to illustrate this approach. It is shown that the Rauzy torus development and the elementary fractal boundary of Rauzy tiling can be constructed in the form of a set of centers of similarity semigroups generated by two and three similarity transformations, respectively. A centrosymmetric tiling, locally dual to the Rauzy tiling, is constructed for the first time and its parameterization is developed.

  9. Automatic generation of aesthetic patterns on fractal tilings by means of dynamical systems

    International Nuclear Information System (INIS)

    Chung, K.W.; Ma, H.M.

    2005-01-01

    A fractal tiling or f-tiling is a tiling which possesses self-similarity and the boundary of which is a fractal. In this paper, we investigate the classification of fractal tilings with kite-shaped and dart-shaped prototiles from which three new f-tilings are found. Invariant mappings are constructed for the creation of aesthetic patterns on such tilings. A modified convergence time scheme is described, which reflects the rate of convergence of various orbits and at the same time, enhances the artistic appeal of a generated image. A scheme based on the frequency of visit at a pixel is used to generate chaotic attractors

  10. Effects of the divertor tile geometries and magnetic field angles on the heat fluxes to the surface

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wanpeng; Sang, Chaofeng; Sun, Zhenyue; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn

    2017-03-15

    Highlights: • Simulation of the plasma behaviors in the divertor gap region is done by using a 2d3 v Particle-In-Cell code. • Heat fluxes on the wall surface in different gap geometries are studied. • The effect of the magnetic field angle on the heat flux is investigated. - Abstract: A two dimension-in-space and three dimension-in-velocity (2d3v) Particle-In-Cell (PIC) code is applied to investigate the plasma behaviors at the divertor gaps region in this work. Electron and D{sup +} ion fluxes to the tile surface in the poloidal and toroidal gaps for different shaped edges are compared to demonstrate the optimized tile geometry. For poloidal gap, shaped edge in the shadowing side makes more ions penetrate into the gap, while shaped edge in the wetted side can mitigate the peak flux value. For toroidal gap, most ions entering the gap impinge on the side tile mainly due to the E × B drift, and shaped wetted edges also can mitigate the peak heat fluxes. In addition, effects of magnetic field inclination angle from toroidal direction on the plasma behaviors are simulated for poloidal and toroidal gaps, respectively. It is found that the magnetic field angles don’t influence the plasma behaviors in poloidal gap; while significant changes have been observed in the toroidal gap.

  11. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    Science.gov (United States)

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  12. Valorization of rice straw waste: production of porcelain tiles

    Directory of Open Access Journals (Sweden)

    Álvaro Guzmán A

    2015-12-01

    Full Text Available Abstract The rice industry generates huge amounts of rice straw ashes (RSA. This paper presents the results of an experimental research work about the incorporation of RSA waste as a new alternative raw material for production of porcelain tiles. The RSA replaces, partially or completely, the non-plastic raw materials (quartz (feldspathic sand in this research and feldspar, that together with the clays, constitute the major constituents of formulations of porcelain tiles. A standard industrial composition (0% RSA and two more compositions in which feldspar and feldspathic sand were replaced with two percentages of RSA (12.5% RSA and 60% RSA were formulated, keeping the clay content constant. The mixtures were processed, reproducing industrial porcelain tile manufacturing conditions by the dry route and fired at peak temperatures varying from 1140-1260 ºC. The results showed that additions of 12.5% RSA in replacement of feldspar and feldspathic sand allowed producing porcelain tiles that did not display marked changes in processing behaviour, in addition to obtain a microstructure and the typical mineralogical phases of porcelain tile. Thus, an alternative use of an agricultural waste material is proposed, which can be translated into economic and environmental benefits.

  13. Preparation of porcelain tile granulates by more environmentally sustainable processes

    Energy Technology Data Exchange (ETDEWEB)

    Gil, C.; Silvestre, D.; Piquer, J.; Garcia-Ten, J.; Quereda, E.; Vicente, M. J.

    2012-07-01

    This study examines the feasibility of manufacturing glazed porcelain tiles with a more environmentally friendly manufacturing process, by reducing water and thermal energy consumption. The process studied in this paper is dry milling in a pendulum mill, with subsequent granulation (in order to obtain a press powder with similar flow ability to that of spray dried powders). The different morphology of the new granulate with respect to the standard spray-dried granulate modifies the microstructure of the green compacts and thus, their behaviour and fired tile properties. In order to obtain porcelain tiles with the required properties (water absorption, mechanical strength,) changes have been made in the raw materials mixture and in the processing variables. Finally, porcelain tiles measuring 50x50 cm have been manufactured at industrial scale with the new granulate using a conventional firing cycle, obtaining quality levels identical to those provided by the spray-dried granulate. These results open the possibility of preparing porcelain tile body compositions through a manufacturing process alternative to the standard one, more environmentally friendly and with lower costs. (Author)

  14. Color features for quality control in ceramic tile industry

    Science.gov (United States)

    Kukkonen, Saku; Kaelviaeinen, Heikki; Parkkinen, Jussi P.

    2001-02-01

    We study visual quality control in the ceramics industry. In the manufacturing, it is important that in each set of tiles, every single tile looks similar. Currently, the estimation is usually done by human vision. Our goal is to design a machine vision system that can estimate the sufficient similarity, or same appearance, to the human eye. Our main approach is to use accurate spectral representation of color, and compare spectral features to the RGB color features. A laboratory system for color measurements is built. Experimentations with five classes of brown tiles are presented and discussed. In addition to the k-nearest neighbor (k-NN) classifier, a neural network called the self-organizing map (SOM) is used to provide understanding of the spectral features. Every single spectrum in each tile of a training set is used as input to a 2D SOM. The SOM is analyzed to understand how spectra are clustered. As a result, tiles are classified using a trained 2D SOM. It is also of interest to know whether the order of spectral colors can be determined. In our approach, all spectra are clustered in a 1D SOM, and each pixel spectrum) is presented by pseudocolors according to the trained nodes. Finally, the results are compared to experiments with human vision.

  15. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS subdetectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. Seventy thousand (70000) parameters are used for control and monitoring purposes, requiring an automated system. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCal detector. ...

  16. Stoneware tile manufacturing using rice straw ash as feldspar replacement

    International Nuclear Information System (INIS)

    Alvaro Guzman, A.; John Torres, L.; Martha Cedeno, V.; Silvio Delvasto, A.; Vicente Amigo, B.; Enrique Sanchez, V.

    2013-01-01

    In this research are presented the results of using rice straw ash (RSA) in low proportions as substitute of feldspar for manufacturing stoneware tiles. Specimens of semidry triaxial mixtures, where feldspar was substituted for different percentages (25 % and 50 %) of RSA, were prepared by uniaxial pressing, followed by drying and sintering. Physical and mechanical properties of sintered bodies were evaluated. Porcelain stoneware tile specimens C0 and CF25 reached bending strength and water absorption values were in accordance with standard ISO 13006 (Annex G, BIa) ( ≥ 35 MPa and ≤ 0.5 %, respectively). However, in porcelain stoneware tile specimens CF50 due to bloating phenomenon was not possible obtain commercial tiles in accordance with standard ISO 13006. By using Scanning Electron Microscopy (SEM) needles of primary and secondary mullite were identified in a vitreous phase; and by using X-Ray Diffraction (XRD) mullite and quartz phases were identified. It was concluded that feldspar can be substituted positively by RSA in stoneware tile pastes. (Author)

  17. Management of built heritage via HBIM Project: A case of study of flooring and tiling

    Directory of Open Access Journals (Sweden)

    Juan Enrique Nieto

    2016-05-01

    Full Text Available Building Information Modelling (BIM is a collaborative system that has been fully developed in the design and management of industries involved in Architecture, Engineering and Construction (AEC sectors. There are, however, very few studies aimed at managing information models in the field of architectural and cultural heritage interventions. This research therefore proposes an innovative methodology of analysis and treatment of the information based on a representative 3D graphic model of the flooring and wall tiling of a historic building. The objective is to set up a model of graphic information which guarantees the interoperability of the aforementioned information amongst the diverse disciplines intervening in the conservation and restoration process. The Pavillion of Charles V, a Renaissancecharacterised building located in outdoor areas of the Alcazar of Seville, Spain, was selected for the study. This work constitutes a project of intervention based on Heritage or Historic Building Information Modelling, called the “HBIM Project”.

  18. Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles

    International Nuclear Information System (INIS)

    Guilherme, A; Manso, M; Pessanha, S; Carvalho, M L; Zegzouti, A; Elaatmani, M; Bendaoud, R; Coroado, J; Santos, J M F dos

    2013-01-01

    A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.

  19. Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles

    Science.gov (United States)

    Guilherme, A.; Manso, M.; Pessanha, S.; Zegzouti, A.; Elaatmani, M.; Bendaoud, R.; Coroado, J.; dos Santos, J. M. F.; Carvalho, M. L.

    2013-02-01

    A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.

  20. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  1. Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive closure and loop skewing.

    Science.gov (United States)

    Palkowski, Marek; Bielecki, Wlodzimierz

    2017-06-02

    RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.

  2. Demonstration of advanced combustion NO(sub X) control techniques for a wall-fired boiler. Project performance summary, Clean Coal Technology Demonstration Program

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The project represents a landmark assessment of the potential of low-NO(sub x) burners, advanced overtire air, and neural-network control systems to reduce NO(sub x) emissions within the bounds of acceptable dry-bottom, wall-fired boiler performance. Such boilers were targeted under the Clean Air Act Amendments of 1990 (CAAA). Testing provided valuable input to the Environmental Protection Agency ruling issued in March 1994, which set NO(sub x) emission limits for ''Group 1'' wall-fired boilers at 0.5 lb/10(sup 6) Btu to be met by January 1996. The resultant comprehensive database served to assist utilities in effectively implementing CAAA compliance. The project is part of the U.S. Department of Energy's Clean Coal Technology Demonstration Program established to address energy and environmental concerns related to coal use. Five nationally competed solicitations sought cost-shared partnerships with industry to accelerate commercialization of the most advanced coal-based power generation and pollution control technologies. The Program, valued at over$5 billion, has leveraged federal funding twofold through the resultant partnerships encompassing utilities, technology developers, state governments, and research organizations. This project was one of 16 selected in May 1988 from 55 proposals submitted in response to the Program's second solicitation. Southern Company Services, Inc. (SCS) conducted a comprehensive evaluation of the effects of Foster Wheeler Energy Corporation's (FWEC) advanced overfire air (AOFA), low-NO(sub x) burners (LNB), and LNB/AOFA on wall-fired boiler NO(sub x) emissions and other combustion parameters. SCS also evaluated the effectiveness of an advanced on-line optimization system, the Generic NO(sub x) Control Intelligent System (GNOCIS). Over a six-year period, SCS carried out testing at Georgia Power Company's 500-MWe Plant Hammond Unit 4 in Coosa, Georgia. Tests proceeded in a logical sequence using rigorous statistical analyses to

  3. Inflation and wavelets for the icosahedral Danzer tiling

    International Nuclear Information System (INIS)

    Kramer, Peter; Andrle, Miroslav

    2004-01-01

    The distribution of atoms in quasi-crystals lacks periodicity and displays point symmetry associated with non-crystallographic modules. Often it can be described by quasi-periodic tilings on R 3 built from a finite number of prototiles. The modules and the canonical tilings of five-fold and icosahedral point symmetry admit inflation symmetry. In the simplest case of stone inflation, any prototile when scaled by the golden section number τ can be packed from unscaled prototiles. Observables supported on R 3 for quasi-crystals require symmetry-adapted function spaces. We construct wavelet bases on R 3 for the icosahedral Danzer tiling. The stone inflation of the four Danzer prototiles is given explicitly in terms of Euclidean group operations acting on R 3 . By acting with the unitary representations inverse to these operations on the characteristic functions of the prototiles, we recursively provide a full orthogonal wavelet basis of R 3 . It incorporates the icosahedral and inflation symmetry

  4. Machining of scintillator tiles for the SDC calorimeter

    International Nuclear Information System (INIS)

    Bertoldi, M.; Bartosz, E.; Davis, C.; Hagopian, V.; Hernandez, E.; Hu, K.; Immer, C.; Thomaston, J.

    1992-01-01

    This research and development on the grooving methods for the scintillating tiles of the SDC calorimeter was done to maximize the light output of scintillator plates and improve the uniformity among tiles through machining procedures. Grooves for wavelength shifting fibers in SCSN-81 can be machined from 10,000 to 60,000 RPM with a feed rate of more than 30cm/min if the plate is kept cool and the chips are removed quickly by blowing dry, cold, clean air over the cutting tool. BC499-27, a polystyrene-based scintillator, is softer and more difficult to machine. It allows a maximum rotation speed of 20,000 RPM and a maximum feed rate of 15 cm/min. A new half-keyhole shape was used for grooves, allowing safer, faster top-loading of the fibers. Three hundred tiles were machined, achieving a standard deviation of the light output of less than 7%. (Author)

  5. Pattern overlap implies runaway growth in hierarchical tile systems

    Directory of Open Access Journals (Sweden)

    David Doty

    2015-11-01

    Full Text Available We show that in the hierarchical tile assembly model, if there is a producible assembly that overlaps a nontrivial translation of itself consistently (i.e., the pattern of tile types in the overlap region is identical in both translations, then arbitrarily large assemblies are producible. The significance of this result is that tile systems intended to controllably produce finite structures must avoid pattern repetition in their producible assemblies that would lead to such overlap.This answers an open question of Chen and Doty (SODA 2012, who showed that so-called "partial-order" systems producing a unique finite assembly and avoiding such overlaps must require time linear in the assembly diameter. An application of our main result is that any system producing a unique finite assembly is automatically guaranteed to avoid such overlaps, simplifying the hypothesis of Chen and Doty's main theorem.

  6. Consolidation and upgrades of the ATLAS Tile Calorimeter

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    This is a presentation of the status of the ATLAS Tile Calorimeter during the EYETS and before starting 2017 data-taking. Updates on the upgrade of the readout system such as doubling the RODs output links and the number of processing units (PUs) are being worked on at the moment as well as items concerning the maintenance of the detector which involves issues such as cooling leaks and consolidation of the Low Voltage Power Supplies, which are being replaced if necessary. Other updates include works on the Tile calibration, in particular on the Cesium system. In addition, the whole Tile readout electronics is being replaced for Phase-II and it is being tested in Test Beam area.

  7. Solare Cell Roof Tile And Method Of Forming Same

    Science.gov (United States)

    Hanoka, Jack I.; Real, Markus

    1999-11-16

    A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

  8. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    International Nuclear Information System (INIS)

    Bortoloni, M; Bottarelli, M; Piva, S

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles. (paper)

  9. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    Science.gov (United States)

    Bortoloni, M.; Bottarelli, M.; Piva, S.

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.

  10. ATLAS Tile Calorimeter time calibration, monitoring and performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00075913; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons particles is presented.

  11. Mechanical construction and installation of the ATLAS tile calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J [IFIC, Centro Mixto Universidad de Valencia-CSIC, E46100 Burjassot, Valencia (Spain); Adragna, P; Bosi, F [Pisa University and INFN, Pisa (Italy); Alexa, C; Boldea, V [Institute of Atomic Physics, Bucharest (Romania); Alves, R [LIP and FCTUC University of Coimbra (Portugal); Amaral, P; Andresen, X; Behrens, A; Blocki, J [CERN, Geneva (Switzerland); Ananiev, A [LIP and IDMEC-IST, Lisbon (Portugal); Anderson, K [University of Chicago, Chicago, Illinois (United States); Antonaki, A [University of Athens, Athens (Greece); Batusov, V [JINR, Dubna (Russian Federation); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas, E; Bohm, C [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand (France); Blanch, O; Blanchot, G [Institut de Fisica d' Altes Energies, Universitat Autònoma de Barcelona, Barcelona (Spain); others, and

    2013-11-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.

  12. Mechanical construction and installation of the ATLAS tile calorimeter

    International Nuclear Information System (INIS)

    Abdallah, J; Adragna, P; Bosi, F; Alexa, C; Boldea, V; Alves, R; Amaral, P; Andresen, X; Behrens, A; Blocki, J; Ananiev, A; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Bohm, C; Biscarat, C; Blanch, O; Blanchot, G

    2013-01-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight

  13. Fuel retention in JET ITER-Like Wall from post-mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heinola, K., E-mail: kalle.heinola@ccfe.ac.uk [Association EURATOM-TEKES, University of Helsinki, PO Box 64, 00560 Helsinki (Finland); EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Widdowson, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Likonen, J. [Association EURATOM-TEKES, VTT, PO Box 1000, 02044 VTT, Espoo (Finland); Alves, E. [Instituto Superior Tecnico, Instituto de Plasmas e Fusao Nuclear, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Baron-Wiechec, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Barradas, N. [Instituto Superior Tecnico, Instituto de Plasmas e Fusao Nuclear, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Brezinsek, S. [Forschungszentrum Julich GmbH, EURATOM Association, D-52425 Julich (Germany); Catarino, N. [Instituto Superior Tecnico, Instituto de Plasmas e Fusao Nuclear, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Coad, P. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Koivuranta, S. [Association EURATOM-TEKES, VTT, PO Box 1000, 02044 VTT, Espoo (Finland); Matthews, G.F. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Mayer, M. [Max-Planck Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Petersson, P. [Royal Institute of Technology, Association EURATOM-VR, SE-10044 Stockholm (Sweden)

    2015-08-15

    Selected Ion Beam Analysis techniques applicable for detecting deuterium and heavier impurities have been used in the post-mortem analyses of tiles removed after the first JET ITER-Like Wall (JET-ILW) campaign. Over half of the retained fuel was measured in the divertor region. The highest figures for fuel retention were obtained from regions with the thickest deposited layers, i.e. in the inner divertor on top of tile 1 and on the High Field Gap Closure tile, which resides deep in the plasma scrape-off layer. Least retention was found in the main chamber high erosion regions, i.e. in the mid-plane of Inner Wall Guard Limiter. The fuel retention values found typically varied with deposition layer thicknesses. The reported retention values support the observed decrease in fuel retention obtained with gas balance experiments of JET-ILW.

  14. Healing assessment of tile sets for error tolerance in DNA self-assembly.

    Science.gov (United States)

    Hashempour, M; Mashreghian Arani, Z; Lombardi, F

    2008-12-01

    An assessment of the effectiveness of healing for error tolerance in DNA self-assembly tile sets for algorithmic/nano-manufacturing applications is presented. Initially, the conditions for correct binding of a tile to an existing aggregate are analysed using a Markovian approach; based on this analysis, it is proved that correct aggregation (as identified with a so-called ideal tile set) is not always met for the existing tile sets for nano-manufacturing. A metric for assessing tile sets for healing by utilising punctures is proposed. Tile sets are investigated and assessed with respect to features such as error (mismatched tile) movement, punctured area and bond types. Subsequently, it is shown that the proposed metric can comprehensively assess the healing effectiveness of a puncture type for a tile set and its capability to attain error tolerance for the desired pattern. Extensive simulation results are provided.

  15. Engineering design and performances of the IGNITOR first wall

    International Nuclear Information System (INIS)

    Bonizzoni, G.

    1989-01-01

    Extensive work was carried out to define the working conditions and the reference design of the first wall for the IGNITOR machine: graphite covered modular elements attached to the vacuum vessel by a locking key for remote handling are proposed. The work includes a transient thermostructural analysis of the graphite tiles to evaluate temperatures and thermal stresses in normal and fault conditions. A full scale prototype of the element was manufactured. (author). 7 figs.; 1 tab

  16. PROTVINO: Mass-production of scintillator tiles by injection moulding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The technique of the segmented sandwich-calorimeters with wavelength-shifting readout, especially its large-scale application in big detectors, requires enormous quantities of a cheap scintillator tiles of moderate dimensions (20 x 20 cm 2 ). Initial trials carried out in the Institute for High Energy Physics (IHEP), Protvino, Russia almost ten years ago showed that manufacturing such scintillator tiles was possible using an ordinary commercially-available granulated optical polystyrene, an existing technology of plastic dyeing, and a well-known process of the injection moulding, used to produce plastic goods (like buttons!)

  17. High-Performance Tiled WMS and KML Web Server

    Science.gov (United States)

    Plesea, Lucian

    2007-01-01

    This software is an Apache 2.0 module implementing a high-performance map server to support interactive map viewers and virtual planet client software. It can be used in applications that require access to very-high-resolution geolocated images, such as GIS, virtual planet applications, and flight simulators. It serves Web Map Service (WMS) requests that comply with a given request grid from an existing tile dataset. It also generates the KML super-overlay configuration files required to access the WMS image tiles.

  18. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  19. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  20. Frost damage of roof tiles: A study on moisture boundary conditions

    OpenAIRE

    Iba, Chiemi; Ueda, Ayumi; Hokoi, Shuichi

    2015-01-01

    Freeze-thaw cycles are the most serious cause of roof tile deterioration; thus, it is important to know the temperature and moisture distributions in tile materials for protection against frost damage. This study focused on moisture boundary conditions for air layers under the tile. Temperature and humidity were measured using model structures with different types of roof tiles. The results showed that the temperatures around the roof were strongly influenced by solar and longwave radiation, ...

  1. GROWTH EVALUATION OF FUNGI (PENICILLIUM AND ASPERGILLUS SPP.) ON CEILING TILES

    Science.gov (United States)

    The paper gives results of an evaluation of the potential for fungal growth on four different ceiling tiles in static chambers. It was found that even new ceiling tiles supported fungal growth under favorable conditions. Used ceiling tiles appeared to be more susceptible to funga...

  2. Hardware Algorithms For Tile-Based Real-Time Rendering

    NARCIS (Netherlands)

    Crisu, D.

    2012-01-01

    In this dissertation, we present the GRAphics AcceLerator (GRAAL) framework for developing embedded tile-based rasterization hardware for mobile devices, meant to accelerate real-time 3-D graphics (OpenGL compliant) applications. The goal of the framework is a low-cost, low-power, high-performance

  3. Batched Tile Low-Rank GEMM on GPUs

    KAUST Repository

    Charara, Ali

    2018-02-01

    Dense General Matrix-Matrix (GEMM) multiplication is a core operation of the Basic Linear Algebra Subroutines (BLAS) library, and therefore, often resides at the bottom of the traditional software stack for most of the scientific applications. In fact, chip manufacturers give a special attention to the GEMM kernel implementation since this is exactly where most of the high-performance software libraries extract the hardware performance. With the emergence of big data applications involving large data-sparse, hierarchically low-rank matrices, the off-diagonal tiles can be compressed to reduce the algorithmic complexity and the memory footprint. The resulting tile low-rank (TLR) data format is composed of small data structures, which retains the most significant information for each tile. However, to operate on low-rank tiles, a new GEMM operation and its corresponding API have to be designed on GPUs so that it can exploit the data sparsity structure of the matrix while leveraging the underlying TLR compression format. The main idea consists in aggregating all operations onto a single kernel launch to compensate for their low arithmetic intensities and to mitigate the data transfer overhead on GPUs. The new TLR GEMM kernel outperforms the cuBLAS dense batched GEMM by more than an order of magnitude and creates new opportunities for TLR advance algorithms.

  4. A Median-Type Condition for Graph Tiling

    Czech Academy of Sciences Publication Activity Database

    Piguet, Diana; Saumell, Maria

    2017-01-01

    Roč. 61, August (2017), s. 979-985 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Grant - others:GA MŠk(CZ) LO1506 Institutional support: RVO:67985807 Keywords : extremal graph theory * graph tiling * regularity lemma * LP-duality Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  5. Evaluation Of A Multipurpose Tile Body Developed From Ghanaian ...

    African Journals Online (AJOL)

    Tile samples from this body were prepared by the semi-dry pressing technique and fired at different temperatures in order to determine the different firing properties. After soaking the samples at the temperatures for 30 minutes and cooling them to room temperature, strong differences in physical and mechanical properties ...

  6. Leaf Roof – designing luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Reinders, A.H.M.E.; Doudart de la Grée, G.C.H.; Papadopoulos, A.; Rosemann, A.L.P.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology has resulted in a functional prototype . The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs. This paper outlines the

  7. Leaf Roof - Designing Luminescent Solar Concentrating PV Roof Tiles

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Doudart de la Gree, G.; Papadopoulos, A..; Rosemann, A.; Debije, M.G.; Cox, M.; Krumer, Zachar

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology [1] has resulted in a functional prototype. The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs [2]. This paper outlines

  8. Find the Dimensions: Students Solving a Tiling Problem

    Science.gov (United States)

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  9. ATLAS barrel hadron tile calorimeter: spacers plates mass production

    International Nuclear Information System (INIS)

    Artikov, A.M.; Budagov, Yu.A.; Khubua, J.

    1999-01-01

    In this article we expose the main problems of the mass production of the so-called 'spacer plates' for the ATLAS Barrel Hadron Tile Calorimeter. We describe all practical solutions of these problems. Particularly we present the measurement procedures and calculation schemes we used for the spacers dimensions determination. The results of the calculations are presented

  10. EVALUATION OF FUNGAL GROWTH (PENICILLIUM GLABRUM) ON A CEILING TILE

    Science.gov (United States)

    The paper gives results of a study employing static chambers to study the impact of different equilibrium relative humidities (RHs) and moisture conditions on the ability of a new ceiling tile to support fungal growth. Amplification of the mold, Penicillium glabrum, occurred at R...

  11. Tile forts of the Liesbeeck Frontier | Sleigh | Scientia Militaria: South ...

    African Journals Online (AJOL)

    Scientia Militaria: South African Journal of Military Studies. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 27 (1997) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Tile forts of the Liesbeeck Frontier.

  12. ATLAS Tile Calorimeter central barrel assembly and installation.

    CERN Multimedia

    nikolai topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  13. Tritium decontamination of TFTR carbon tiles employing ultra violet light

    International Nuclear Information System (INIS)

    Shu, W.M.; Ohira, S.; Gentile, C.A.; Oya, Y.; Nakamura, H.; Hayashi, T.; Iwai, Y.; Kawamura, Y.; Konishi, S.; Nishi, M.F.; Young, K.M.

    2001-01-01

    Tritium decontamination on the surface of Tokamak Fusion Test Reactor (TFTR) bumper limiter tiles used during the Deuterium-Deuterium (D-D) phase of TFTR operations was investigated employing an ultra violet light source with a mean wavelength of 172 nm and a maximum radiant intensity of 50 mW/cm 2 . The partial pressures of H 2 , HD, C and CO 2 during the UV exposure were enhanced more than twice, compared to the partial pressures before UV exposure. In comparison, the amount of O 2 decreased during the UV exposure and the production of a small amount of O 3 was observed when the UV light was turned on. Unlike the decontamination method of baking in air or oxygen, the UV exposure removed hydrogen isotopes from the tile to vacuum predominantly in forms of gases of hydrogen isotopes. The tritium surface contamination on the tile in the area exposed to the UV light was reduced after the UV exposure. The results show that the UV light with a wavelength of 172 nm can remove hydrogen isotopes from carbon-based tiles at the very surface

  14. Detritiation of tiles from tokamaks by laser cleaning

    International Nuclear Information System (INIS)

    Coad, J. Paul; Widdowson, Anna; Farcage, Daniel; Semerok, Alexander; Thro, P.-Y.; Likonen, Jari; Renvall, Tommi

    2007-01-01

    Laser ablation has been used to clean surfaces or to decontaminate hot cells by removing paint, and has been tested on deposited carbon layers from the TEXTOR tokamak. This paper reports on successful trials in the Beryllium Handling Facility of a pulsed laser cleaning system to remove H-isotope containing carbon deposits on tiles from the JET tokamak. The laser beam is rastered over the surface of the tiles to remove the deposit. Two types of JET carbon-fibre composite (CFC) tiles were treated. The first was covered with carbon-based deposits up to 300 μm thick with high H-isotope content, the other was covered with a mixed Be/C film ∼ 50 microns thick. One scan of the laser was sufficient to completely change the appearance and expose the fibre planes. From cross-sectional micrographs, it was found that overall three scans provided the most effective settings for complete film removal. An area 250 cm 2 of the second tile was cleaned in 20 minutes, clearly demonstrating the efficiency of laser cleaning for the removal of tokamak deposits such as likely to occur in ITER. (authors)

  15. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  16. ATLAS TileCal Read Out Driver production

    International Nuclear Information System (INIS)

    Valero, A; Abdallah, J; Castillo, V; Cuenca, C; Ferrer, A; Fullana, E; Gonzalez, V; Higon, E; Poveda, J; Ruiz-MartInez, A; Saez, M A; Salvachua, B; SanchIs, E; Solans, C; Valls, J A

    2007-01-01

    The production tests of the 38 ATLAS TileCal Read Out Drivers (RODs) are presented in this paper. The hardware specifications and firmware functionality of the RODs modules, the test-bench and the test procedure to qualify the boards are described. Finally the performance results, the temperature studies and high rate tests are shown and discussed

  17. Phosphorus modeling in tile drained agricultural systems using APEX

    Science.gov (United States)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  18. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  19. A new design for luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Doudart de la Gree, G.C.H.; Papadopoulos, A.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.; Reinders, A.H.M.E.; Rosemann, A.L.P.

    2015-01-01

    In our paper we explore the opportunity of combining luminescent solar concentrating (LSC) materials and crystalline PV solar cells in a new design for a roof tile by design-driven research on the energy performance of various configurations of the LSC PV device and on the aesthetic appeal in a roof

  20. ATLAS TileCal submodule B-field measurement

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Fedorenko, S.B.; Kalinichenko, V.V.; Lomakin, Yu.F.; Vorozhtsov, S.B.; Nessi, M.

    1997-01-01

    The work was done to cross check of the previous measurement done at CERN and to simulate the magnetic structure in the vicinity of the symmetry plane of the TileCal. To perform magnetic measurements for submodule the magnet E2 was chosen. The magnetometer used in the magnetic test of the submodule consists of Hall current supply and Hall voltage measuring device. The indium antimonide Hall probe used in this measurement is a model PKhE 606. Experimental set-up provides a true measurement accuracy of order ± 1%. External magnetic field measurements were conducted at the outer surface of the submodule. Two levels of the external field were applied: 108 Gs and 400 Gs. The result of this measurement in general confirms the data, obtained at CERN, but the shielding capability of the submodule under consideration was ∼ 20% higher than there. The field at the tile location is < 150 Gs up to the external field level 500 Gs and the tile field grows much less than the external field level in this range. The data obtained in this measurement could be used as a benchmark when producing a computer model of the TileCal magnetic field distribution

  1. Quasiperiodic canonical-cell tiling with pseudo icosahedral symmetry

    Science.gov (United States)

    Fujita, Nobuhisa

    2017-10-01

    Icosahedral quasicrystals and their approximants are generally described as packing of icosahedral clusters. Experimental studies show that clusters in various approximants are orderly arranged, such that their centers are located at the nodes (or vertices) of a periodic tiling composed of four basic polyhedra called the canonical cells. This so called canonical-cell geometry is likely to serve as a common framework for modeling how clusters are arranged in approximants, while its applicability seems to extend naturally to icosahedral quasicrystals. To date, however, it has not been proved yet if the canonical cells can tile the space quasiperiodically, though we usually believe that clusters in icosahedral quasicrystals are arranged such that quasiperiodic long-range order as well as icosahedral point symmetry is maintained. In this paper, we report for the first time an iterative geometrical transformation of the canonical cells defining a so-called substitution rule, which we can use to generate a class of quasiperiodic canonical-cell tilings. Every single step of the transformation proceeds as follows: each cell is first enlarged by a magnification ratio of τ3 (τ = golden mean) and then subdivided into cells of the original size. Here, cells with an identical shape can be subdivided in several distinct manners depending on how their adjacent neighbors are arranged, and sixteen types of cells are identified in terms of unique subdivision. This class of quasiperiodic canonical-cell tilings presents the first realization of three-dimensional quasiperiodic tilings with fractal atomic surfaces. There are four distinct atomic surfaces associated with four sub-modules of the primitive icosahedral module, where a representative of the four submodules corresponds to the Σ = 4 coincidence site module of the icosahedral module. It follows that the present quasiperiodic tilings involve a kind of superlattice ordering that manifests itself in satellite peaks in the

  2. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume II. Detailed technical plan. Revision 2

    International Nuclear Information System (INIS)

    1982-08-01

    The four sections which comprise Part II describe in detail the technical basis for each of the four Program Elements (PE's) of the FWBS Engineering Technology Program (ETP). Each PE is planned to be executed in a number of phases. The purpose of the DTP's is to delineate detailed near-term research, development, and testing required to establish a FWBS engineering data base. Optimum testing strategies and construction of test facilities where needed are identified. The DTP's are based on guidelines given by Argonne National Laboratory which included the basic programmatic goals and the requirements for the types of tests and test conditions

  3. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  4. Tile-in-ONE An integrated framework for the data quality assessment and database management for the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Cunha, R; Sivolella, A; Ferreira, F; Maidantchik, C; Solans, C

    2014-01-01

    In order to ensure the proper operation of the ATLAS Tile Calorimeter and assess the quality of data, many tasks are performed by means of several tools which have been developed independently. The features are displayed into standard dashboards, dedicated to each working group, covering different areas, such as Data Quality and Calibration.

  5. Centralized coordinated control to protect the JET ITER-like wall

    International Nuclear Information System (INIS)

    Stephen, A.V.; Arnoux, G.; Budd, T.; Card, P.; Felton, R.; Goodyear, A.; Harling, J.; Kinna, D.; Lomas, P.; McCullen, P.; Thomas, P.; Young, I.; Zastrow, K.D.; Neto, A.; Alves, D.; Valcarcel, D.F.; Jachmich, S.; Devaux, S.

    2012-01-01

    The JET ITER-like wall project (ILW) replaces the first wall carbon fibre composite tiles with beryllium and tungsten tiles which should have improved fuel retention characteristics but are less thermally robust. An enhanced protection system using new control and diagnostic systems has been designed which can modify the pre-planned experimental control to protect the new wall. Key design challenges were to extend the Level-1 supervisory control system to allow configurable responses to thermal problems to be defined without introducing excessive complexity, and to integrate the new functionality with existing control and protection systems efficiently and reliably. Alarms are generated by the vessel thermal map (VTM) system if infra-red camera measurements of tile temperatures are too high and by the plasma wall load system (WALLS) if component power limits are exceeded. The design introduces two new concepts: local protection, which inhibits individual heating components but allows the discharge to proceed, and stop responses, which allow highly configurable early termination of the pulse in the safest way for the plasma conditions and type of alarm. These are implemented via the new real-time protection system (RTPS), a centralized controller which responds to the VTM and WALLS alarms by providing override commands to the plasma shape, current, density and heating controllers. This paper describes the design and implementation of the RTPS system which is built with the Multi-threaded Application Real-Time executor (MARTe) and will present results from initial operations. (authors)

  6. Bio deterioration behaviour in different colour roofing tiles (red and straw coloured)

    International Nuclear Information System (INIS)

    Guzulla, M. F.; Sanchez, E.; Gonzalez, J. M.; Orduna, M.

    2014-01-01

    Bio colonization of building materials is a critical problem for the durability of constructions. Industrial experience shows that straw coloured roofing tiles are more prone to colonization than red roofing tiles, even having similar characteristics. The aim of this work is to explain the difference of bio colonization between different colour roofing tiles. The chemical composition of the surface of straw coloured and red roofing tiles, the phase composition and the microstructure of the roofing tiles were determined by WD-XRF, XRD and SEM-EDX, respectively. The pore size distribution was carried out by Hg porosimetry. The solubility was studied by determining the soluble salts (Ca, Mg, Na, K, Cl and SO 4 2-) by ICP-OES and ionic chromatography. Roofing tile bio receptivity was evaluated by determining fluorescence intensity using a pulse amplitude- modulated (PAM) fluoro meter, and cyanobacteria Oscillator sp. The results obtained show higher concentration of calcium and sulphur in straw coloured roofing tiles surface, and higher solubility than red roofing tiles. Moreover, according to the results obtained in bio receptivity assays, straw coloured roofing tiles are more prone to colonization than red roofing tiles, so, there is a relationship between surface properties of roofing tiles and bio colonization, as it is observed in industrial products. (Author)

  7. Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.

    Science.gov (United States)

    Jiang, Shuoxing; Hong, Fan; Hu, Huiyu; Yan, Hao; Liu, Yan

    2017-09-26

    Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.

  8. Real-time biscuit tile image segmentation method based on edge detection.

    Science.gov (United States)

    Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter

    2018-05-01

    In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Design and Applications of Rapid Image Tile Producing Software Based on Mosaic Dataset

    Science.gov (United States)

    Zha, Z.; Huang, W.; Wang, C.; Tang, D.; Zhu, L.

    2018-04-01

    Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.

  10. DESIGN AND APPLICATIONS OF RAPID IMAGE TILE PRODUCING SOFTWARE BASED ON MOSAIC DATASET

    Directory of Open Access Journals (Sweden)

    Z. Zha

    2018-04-01

    Full Text Available Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.

  11. The JET real-time plasma-wall load monitoring system

    International Nuclear Information System (INIS)

    Valcárcel, D.F.; Alves, D.; Card, P.; Carvalho, B.B.; Devaux, S.; Felton, R.; Goodyear, A.; Lomas, P.J.; Maviglia, F.; McCullen, P.; Reux, C.; Rimini, F.; Stephen, A.; Zabeo, L.

    2014-01-01

    Highlights: • The paper describes the JET real-time system monitoring the first-wall plasma loads. • It presents the motivation, physics basis, design and implementation of the system. • It also presents the integration in the JET CODAS. • Operational results are presented. - Abstract: In the past, the Joint European Torus (JET) has operated with a first-wall composed of Carbon Fibre Composite (CFC) tiles. The thermal properties of the wall were monitored in real-time during plasma operations by the WALLS system. This software routinely performed model-based thermal calculations of the divertor and Inner Wall Guard Limiter (IWGL) tiles calculating bulk temperatures and strike-point positions as well as raising alarms when these were beyond operational limits. Operation with the new ITER-like wall presents a whole new set of challenges regarding machine protection. One example relates to the new beryllium limiter tiles with a melting point of 1278 °C, which can be achieved during a plasma discharge well before the bulk temperature rises to this value. This requires new and accurate power deposition and thermal diffusion models. New systems were deployed for safe operation with the new wall: the Real-time Protection Sequencer (RTPS) and the Vessel Thermal Map (VTM). The former allows for a coordinated stop of the pulse and the latter uses the surface temperature map, measured by infra-red (IR) cameras, to raise alarms in case of hot-spots. Integration of WALLS with these systems is required as RTPS responds to raised alarms and VTM, the primary protection system for the ITER-like wall, can use WALLS as a vessel temperature provider. This paper presents the engineering design, implementation and results of WALLS towards D-T operation, where it will act as a primary protection system when the IR cameras are blinded by the fusion reaction neutrons. The first operational results, with emphasis on its performance, are also presented

  12. The JET real-time plasma-wall load monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, D.F., E-mail: daniel.valcarcel@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Alves, D. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Card, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Carvalho, B.B. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Devaux, S. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Felton, R.; Goodyear, A.; Lomas, P.J. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Reux, C. [Ecole Polytechnique, LPP, CNRS UMR 7648, 91128 Palaiseau (France); Rimini, F.; Stephen, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Zabeo, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St., Paul Lez Durance (France); and others

    2014-03-15

    Highlights: • The paper describes the JET real-time system monitoring the first-wall plasma loads. • It presents the motivation, physics basis, design and implementation of the system. • It also presents the integration in the JET CODAS. • Operational results are presented. - Abstract: In the past, the Joint European Torus (JET) has operated with a first-wall composed of Carbon Fibre Composite (CFC) tiles. The thermal properties of the wall were monitored in real-time during plasma operations by the WALLS system. This software routinely performed model-based thermal calculations of the divertor and Inner Wall Guard Limiter (IWGL) tiles calculating bulk temperatures and strike-point positions as well as raising alarms when these were beyond operational limits. Operation with the new ITER-like wall presents a whole new set of challenges regarding machine protection. One example relates to the new beryllium limiter tiles with a melting point of 1278 °C, which can be achieved during a plasma discharge well before the bulk temperature rises to this value. This requires new and accurate power deposition and thermal diffusion models. New systems were deployed for safe operation with the new wall: the Real-time Protection Sequencer (RTPS) and the Vessel Thermal Map (VTM). The former allows for a coordinated stop of the pulse and the latter uses the surface temperature map, measured by infra-red (IR) cameras, to raise alarms in case of hot-spots. Integration of WALLS with these systems is required as RTPS responds to raised alarms and VTM, the primary protection system for the ITER-like wall, can use WALLS as a vessel temperature provider. This paper presents the engineering design, implementation and results of WALLS towards D-T operation, where it will act as a primary protection system when the IR cameras are blinded by the fusion reaction neutrons. The first operational results, with emphasis on its performance, are also presented.

  13. Evidence of formation of lithium compounds on FTU tiles and dust

    Science.gov (United States)

    Ghezzi, F.; Laguardia, L.; Apicella, M. L.; Bressan, C.; Caniello, R.; Cippo, E. Perelli; Conti, C.; De Angeli, M.; Maddaluno, G.; Mazzitelli, G.

    2018-01-01

    Since 2006 lithium as an advanced plasma facing material has been tested on the Frascati Tokamak Upgrade (FTU). Lithium in the liquid phase acts both as plasma facing component, i.e. limiter, and plays also a role in plasma operation because by depositing a lithium film on the walls (lithization) oxygen is gettered. As in all deposition processes, even for the lithization, the presence of impurities in plasma phase strongly affects the properties of the deposited film. During the 2008 campaigns of FTU it was observed a strong release of carbon dioxide (during disruptions), resulting in successive serious difficulty of operation. In order to find the possible reactions occurred, we have analyzed the surface of two tiles of the toroidal limiter close to the Liquid Lithium Limiter (LLL). The presence of molybdenum oxides and carbides suggested that the surface temperatures could have exceeded 1000 K, likely during disruptions. lithium oxides and hydroxides have been found on the tiles and in the dust collected in the vessel, confirming the presence of LiO and LiOH and a not negligible concentration of Li2CO3 especially at the LLL location. On the basis of the above results, we propose here a simple rationale, based on a two reactions mechanism, which can explain the formation of Li2CO3 and its subsequent decomposition during disruption with release of CO2 in the vessel. Admitting surface temperatures above 1000 K during a disruption, relatively high partial pressures of CO2 are also predicted by the equilibrium constant for Li2CO3 decomposition.

  14. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    Science.gov (United States)

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in

  15. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest

    Directory of Open Access Journals (Sweden)

    T. Guo

    2018-01-01

    Full Text Available Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991–2003 field site and river station data from the Little Vermilion River (LVR watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine and SWAT2012 revisions 615 and 645 (the new routine. Both the old and new routines provided reasonable but unsatisfactory (NSE  <  0.5 uncalibrated flow and nitrate loss results for a mildly sloped watershed with low runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE  =  0.48–0.65 and nitrate in tile flow (NSE  =  0.48–0.68 for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE  =  0.00–0.32 and −0.29–0.06, respectively. The new modified curve number calculation method in revision 645 (NSE  =  0.50–0.81 better simulated surface runoff than revision 615 (NSE  =  −0.11–0.49. The calibration

  16. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest

    Science.gov (United States)

    Guo, Tian; Gitau, Margaret; Merwade, Venkatesh; Arnold, Jeffrey; Srinivasan, Raghavan; Hirschi, Michael; Engel, Bernard

    2018-01-01

    Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT) has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991-2003) field site and river station data from the Little Vermilion River (LVR) watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine) and SWAT2012 revisions 615 and 645 (the new routine). Both the old and new routines provided reasonable but unsatisfactory (NSE runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE = 0.48-0.65) and nitrate in tile flow (NSE = 0.48-0.68) for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE = 0.00-0.32 and -0.29-0.06, respectively). The new modified curve number calculation method in revision 645 (NSE = 0.50-0.81) better simulated surface runoff than revision 615 (NSE = -0.11-0.49). The calibration provided reasonable parameter sets for the old and new routines in the LVR watershed, and the validation results showed that the new routine has the potential to accurately

  17. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.

    Science.gov (United States)

    Moriasi, Daniel N; Gowda, Prasanna H; Arnold, Jeffrey G; Mulla, David J; Ale, Srinivasulu; Steiner, Jean L; Tomer, Mark D

    2013-11-01

    Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST

    Science.gov (United States)

    Hu, Zhenhua; Li, Cong; Xiao, Qingmei; Liu, Ping; Fang, Ding; Mao, Hongmin; Wu, Jing; Zhao, Dongye; Ding, Hongbin; Luo, Guang-Nan; EAST Team

    2017-02-01

    Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laser-induced breakdown spectroscopy (LIBS) is proposed as a promising method for the in situ study of fuel retention and impurity deposition in a tokamak. In this study, an in situ LIBS system was successfully established on EAST to investigate fuel retention and impurity deposition on the first wall without the need of removal tiles between plasma discharges. Spectral lines of D, H and impurities (Mo, Li, Si, … ) in laser-induced plasma were observed and identified within the wavelength range of 500-700 nm. Qualitative measurements such as thickness of the deposition layers, element depth profile and fuel retention on the wall are obtained by means of in situ LIBS. The results demonstrated the potential applications of LIBS for in situ characterization of fuel retention and co-deposition on the first wall of EAST. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105002, 2015GB109001, and 2013GB109005), National Natural Science Foundation of China (Nos. 11575243, 11605238, 11605023), Chinesisch-Deutsches Forschungs Project (GZ765), and Korea Research Council of Fundamental Science and Technology (KRCF) under the international collaboration & research in Asian countries (PG1314).

  19. Initial Ferritic Wall Mode studies on HBT-EP

    Science.gov (United States)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  20. Study of the effect of nano surface morphology on the stain-resistant property of ceramic tiles

    International Nuclear Information System (INIS)

    Pan, S P; Hung, J K; Liu, Y T

    2014-01-01

    In this study, six types of commercially available ceramic tiles, including nano-structured ceramic tiles and regular ceramic tiles, were selected to investigate the effect of surface morphology on their stain-resistant property. The stain-resistant efficiencies of various ceramic tiles with nano-size surface were measured in order to determine the appropriate method for testing ceramic tiles with nano-structure surface

  1. Robustness studies of the photomultipliers reading out TileCal, the central hadron calorimeter of the ATLAS experiment

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. The detector readout geometry will not be changed for the Phase II of the High Luminosity Large Hadron Collider (HL-LHC) operation. A challenging goal is to understand whether the full sample of PMTs installed at the beginning of the ATLAS detector operation can be used until completion of the HL-LHC program or not. For this reason, a reliable study of the PMT robustness against ageing is required. Detailed studies modelling the PMT response variation as a function of the integrated anode charge were done. The PMT response evoluti...

  2. An IMPI-compliant control system for the ATLAS TileCal Phase II Upgrade PreProcessor module

    CERN Document Server

    Zuccarello, Pedro Diego; The ATLAS collaboration

    2016-01-01

    TileCal is the Tile hadronic calorimeter of the ATLAS experiment at the LHC. The LHC upgrade program, currently under development, will culminate in the High Luminosity LHC (HL-LHC), which is expected to increase about five times the LHC nominal instantaneous luminosity. The readout electronics of the Tile calorimenter being redesigned introducing a new read-out strategy in order to accommodate the detector to the new HL-LHC parameters. The data generated inside the detector at every bunch crossing will be transmitted to the PreProcessor (PPR) boards before any event selection is applied. The PPRs will be located at off-detector sites. The PPR will be responsible of providing preprocessed trigger information to the ATLAS first level of trigger (L1). In overall it will represent the interface between the data acquisition, trigger and control systems and the on-detector electronics. The PPR, being an important part of the readout system, needs to be remotely accessed and monitored to prevent failures or, in cas...

  3. TileCal Trigger Tower studies considering additional segmentation on the ATLAS upgrade for high luminosity at LHC

    CERN Document Server

    March, L; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels and provides a compact information, called trigger towers (around 2000 signals), to the ATLAS first level online event selection system. The ATLAS upgrade program is divided in three phases: Phase 0 occurs during 2013- 2014 and prepares the LHC to reach peak luminosities of 10^34 cm2s-1; Phase 1, foreseen for 2018-1019, prepares the LHC for peak luminosity up to 2-3 x 10^34 cm2s-1, corresponding to 55 to 80 interactions per bunch-crossing with 25 ns bunch interval; and Phase 2 is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 1034 cm2s-1 (HL-LHC). The ATLAS experiment is operating very well since 2009 providing large amount of data for physics analysis. The online event selection system (trigger system) was designed to reject the huge amount of background noise generated at LHC and is one of the main systems re...

  4. Experimental evaluation of ability of Relap5, Drako, Flowmaster2TM and program using unsteady wall friction model to calculate water hammer loadings on pipelines

    International Nuclear Information System (INIS)

    Marcinkiewicz, Jerzy; Adamowski, Adam; Lewandowski, Mariusz

    2008-01-01

    Mechanical loadings on pipe systems caused by water hammer (hydraulic transients) belong to the most important and most difficult to calculate design loadings in nuclear power plants. The most common procedure in Sweden is to calculate the water hammer loadings on pipe segments, according to the classical one-dimensional (1D) theory of liquid transient flow in a pipeline, and then transfer the results to strength analyses of pipeline structure. This procedure assumes that there is quasi-steady respond of the pipeline structure to pressure surges-no dynamic interaction between the fluid and the pipeline construction. The hydraulic loadings are calculated with 1D so-called 'network' programs. Commonly used in Sweden are Relap5, Drako and Flowmaster2-all using quasi-steady wall friction model. As a third party accredited inspection body Inspecta Nuclear AB reviews calculations of water hammer loadings. The presented work shall be seen as an attempt to illustrate ability of Relap5, Flowmaster2 and Drako programs to calculate the water hammer loadings. A special attention was paid to using of Relap5 for calculation of water hammer pressure surges and forces (including some aspects of influence of Courant number on the calculation results) and also the importance of considering the dynamic (or unsteady) friction models. The calculations are compared with experimental results. The experiments have been conducted at a test rig designed and constructed at the Szewalski Institute of Fluid Flow Machinery of the Polish Academy of Sciences (IMP PAN) in Gdansk, Poland. The analyses show quite small differences between pressures and forces calculated with Relap5, Flowmaster2 and Drako (the differences regard mainly damping of pressure waves). The comparison of calculated and measured pressures and also a force acting on a pre-defined pipe segment shows significant differences. It is shown that the differences can be reduced by using unsteady friction models in calculations

  5. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Fopma, J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gurriana, L.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Hollander, D.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manhaes de Andrade Filho, L.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Miller, M.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Ribeiro, N.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Tunnell, C.D.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of the timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design of 1%. The determination of the global energy scale was performed with an uncertainty of 4%.

  6. The house, the tile stove and the climate change

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2014-01-01

    The tile stove was invented in the North Alpine area between the 8th and 10th century. Apart from convection air heating and clay cupola ovens, this system provided the only possibility for a smoke-free heated living room. The innovation of the tile stove heating system itself did not reach...... the Southern Scandinavian region until the 12th century. In the Upper German speaking area, this heating system had been connected to a characteristic ground plan since the 14th century. This so-called ninefold ground plan consisted of the "stube" and the adjacent kitchen, a central corridor and unheated...... chambers in three bays and two or three aisles. It probably originated from the "appartement" in a noble context, but "trickled down" to urban and rural housing. In contrast to the quick spread of the heating system, this ground plan was only gradually adopted in the Lower Mountain Range, Northern Germany...

  7. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  8. QCALT: A tile calorimeter for KLOE-2 upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Balla, A.; Ciambrone, P.; Corradi, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Martini, M., E-mail: matteo.martini@lnf.infn.it [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Università degli studi Guglielmo Marconi, Rome (Italy); Paglia, C.; Pileggi, G.; Ponzio, B.; Saputi, A. [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Tagnani, D. [INFN, Sezione di Roma 3, Rome (Italy)

    2013-08-01

    The upgrade of the DaΦne machine layout requires a modification of the size and position of the inner focusing quadrupoles of KLOE-2, thus asking for the realization of two new calorimeters, named QCALT, covering this area. To improve the reconstruction of K{sub L}→2π{sup 0} events with photons hitting the quadrupoles, a calorimeter with high efficiency to low energy photons (20–300 MeV), time resolution of less than 1 ns and space resolution of few cm, is needed. To match these requirements we are now constructing a scintillator tile calorimeter where each single tile is readout by mean of SiPM for a total granularity of 1760 channels. We show the design of the different calorimeter components and the present status of the construction.

  9. Thermodynamic behavior of a Penrose-tiling quasicrystal

    International Nuclear Information System (INIS)

    Strandburg, K.J.; Dressel, P.R.

    1990-01-01

    The Penrose tiling provides a prototype for the quasiperiodic crystal model of quasicrystals. We report results of Monte Carlo simulations of a two-dimensional model in which a Penrose tiling is the ground state. A single energy is assigned to any violation of the Penrose matching rules. Our results support the existence of two separate phase transitions, corresponding to single- and double-arrow matching-rule disorder, respectively. Manifestations of these transitions in the behavior of ''perpendicular-space'' quantities are explored. A limited exploration of the effects of unequal double- and single-arrow matching-rule-violation energies is performed. Speculations that the Penrose pattern might be inherently prone to glassy behavior are shown to be incorrect

  10. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in Midwest

    Science.gov (United States)

    Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern U.S. Tile drainage systems enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage w...

  11. Cellular Uptake of Tile-Assembled DNA Nanotubes.

    Science.gov (United States)

    Kocabey, Samet; Meinl, Hanna; MacPherson, Iain S; Cassinelli, Valentina; Manetto, Antonio; Rothenfusser, Simon; Liedl, Tim; Lichtenegger, Felix S

    2014-12-30

    DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP -expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i) DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii) Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii) Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.

  12. Response and Uniformity Studies of Directly Coupled Tiles

    International Nuclear Information System (INIS)

    Zutshi, Vishnu

    2010-01-01

    A finely-segmented scintillator-based calorimeter which capitalizes on the marriage of proven detection techniques with novel solid-state photo-detector devices such as Multi-pixel Photon Counters (MPPCs) is an interesting calorimetric system from the point of view of future detector design. A calorimeter system consisting of millions of channels will require a high degree of integration. The first steps towards this integration have already been facilitated by the small size and magnetic field immunity of the MPPCs. The photo-conversion occurs right at the tile, thus obviating the need for routing of long clear fibers. Similar considerations apply to the presence of wave-length shifting (WLS) fibers inside the tiles which couple it to the photo-detectors. Significant simplification in construction and assembly ensue if the MPPCs can be coupled directly to the scintillator tiles. Equally importantly, the total absence of fibers would offer greater flexibility in the choice of the transverse segmentation while enhancing the electro-mechanical integrability of the design. The NIU high-energy physics group has been studying the fiberless or direct-coupling option for some time now. Encouraging results on response and response uniformity have been obtained using radioactive sources. This MOU seeks to set up a framework to extend these tests using beams at the MTBF. The results will be relevant to high granularity scintillator/crystal electromagnetic and hadronic calorimetry. The tests involve a set of small directly-coupled tile counters fabricated at NIU which will be placed in the beam to study their response and response uniformity as a function of the incident position of the particles passing through them.

  13. Control of Sound Transmission with Active-Passive Tiles

    OpenAIRE

    Goldstein, Andre L.

    2006-01-01

    Nowadays, numerous applications of active sound transmission control require lightweight partitions with high transmission loss over a broad frequency range and simple control strategies. In this work an active-passive sound transmission control approach is investigated that potentially addresses these requirements. The approach involves the use of lightweight stiff panels, or tiles, attached to a radiating base structure through active-passive soft mounts and covering the structure surface. ...

  14. Performance of the upgraded small angle tile calorimeter at LEP

    CERN Document Server

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1998-01-01

    The small angle tile calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with so- called "shashlik" technique, $9 allows the insertion of tracking detectors within the sampling structure, in order to make it possible to determine the direction of the showering particle. Presented here are some results demonstrating the performance of the $9 calorimeter and of these tracking detectors at LEP. (5 refs).

  15. Synthesis of aerogel tiles with high light scattering length

    CERN Document Server

    Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A

    1999-01-01

    The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.

  16. Response and Uniformity Studies of Directly Coupled Tiles

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu

    2010-04-02

    A finely-segmented scintillator-based calorimeter which capitalizes on the marriage of proven detection techniques with novel solid-state photo-detector devices such as Multi-pixel Photon Counters (MPPCs) is an interesting calorimetric system from the point of view of future detector design. A calorimeter system consisting of millions of channels will require a high degree of integration. The first steps towards this integration have already been facilitated by the small size and magnetic field immunity of the MPPCs. The photo-conversion occurs right at the tile, thus obviating the need for routing of long clear fibers. Similar considerations apply to the presence of wave-length shifting (WLS) fibers inside the tiles which couple it to the photo-detectors. Significant simplification in construction and assembly ensue if the MPPCs can be coupled directly to the scintillator tiles. Equally importantly, the total absence of fibers would offer greater flexibility in the choice of the transverse segmentation while enhancing the electro-mechanical integrability of the design. The NIU high-energy physics group has been studying the fiberless or direct-coupling option for some time now. Encouraging results on response and response uniformity have been obtained using radioactive sources. This MOU seeks to set up a framework to extend these tests using beams at the MTBF. The results will be relevant to high granularity scintillator/crystal electromagnetic and hadronic calorimetry. The tests involve a set of small directly-coupled tile counters fabricated at NIU which will be placed in the beam to study their response and response uniformity as a function of the incident position of the particles passing through them.

  17. ATLAS Tile Calorimeter Upgrades for HL-LHC

    CERN Document Server

    Angelidakis, Stylianos; The ATLAS collaboration

    2018-01-01

    The High-Luminosity phase of the Large Hadron Collider (LHC) at CERN is expected to begin in 2026, delivering a luminosity of ~5×10^34 cm −2 s −1 , with up to 200 interactions per 25 ns bunch crossing. In order to cope with the expected high trigger rates and intense radiation conditions, the ATLAS Tile Calorimeter will be upgraded with readout architectures that will allow to maintain an optimal performance in its future operation.

  18. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  19. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  20. Test beam studies for the atlas tile calorimeter readout electronics

    CERN Document Server

    Rodriguez Perez, Andrea; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system for the Tile hadronic calorimeter (TileCal) of the ATLAS experiment is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muon data allow to study the response dependence on the incident point and angle in a cell and inter-calibration of the response between cells. The electron data are used to determine the linearity of the electron energy measurement. The hadron data allow to determined the calorimeter response to pions, kaons and protons and tune the calorimeter simulation to that data. The results of the ongoing data analyses are discussed in the presentation.

  1. The energy consumption in the ceramic tile industry in Brazil

    International Nuclear Information System (INIS)

    Ciacco, Eduardo F.S.; Rocha, Jose R.; Coutinho, Aparecido R.

    2017-01-01

    The ceramic industry occupies a prominent place in the Brazilian industrial context, representing about 1.0% in the GDP composition. On the other hand, it represent about 1.9% of all energy consumed in the country, and 5.8% of the energy consumed in the Brazilian industrial sector in 2014. Regarding the power consumption by the ceramic industry, most is derived from renewable sources (firewood), followed by use of fossil fuels, mainly natural gas (NG). This study was conducted to quantify the energy consumption in the production of ceramic tiles (CT), by means of experimental data obtained directly in the industry and at every step of the manufacturing process. The step of firing and sintering has the highest energy consumption, with approximately 56% of the total energy consumed. In sequence, have the atomization steps with 30% and the drying with 14%, of total energy consumption in the production of ceramic tiles, arising from the use of NG. In addition, it showed that the production of ceramic tiles by wet process has energy consumption four times the dry production process, due to the atomization step.

  2. Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof

    Energy Technology Data Exchange (ETDEWEB)

    Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

    2009-10-15

    Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

  3. First results from the 10Be marker experiment in JET with ITER-like wall

    International Nuclear Information System (INIS)

    Bergsåker, H.; Bykov, I.; Petersson, P.; Possnert, G.; Heinola, K.; Miettunen, J.; Groth, M.; Kurki-Suonio, T.; Widdowson, A.; Riccardo, V.; Nunes, I.; Stamp, M.; Brezinsek, S.; Borodin, D.; Kirschner, A.; Likonen, J.; Coad, J.P.; Schmid, K.; Krieger, K.

    2014-01-01

    When the ITER-like wall was installed in JET, one of the 218 Be inner wall guard limiter tiles had been enriched with 10 Be as a bulk isotopic marker. During the shutdown in 2012–2013, a set of tiles were sampled nondestructively to collect material for accelerator mass spectroscopy measurements of 10 Be concentration. The letter shows how the marker experiment was set up, presents first results and compares them to preliminary predictions of marker redistribution, made with the ASCOT numerical code. Finally an outline is shown of what experimental data are likely to become available later and the possibilities for comparison with modelling using the WallDYN, ERO and ASCOT codes are discussed. (letter)

  4. Material migration patterns and overview of first surface analysis of the JET ITER-like wall

    International Nuclear Information System (INIS)

    Widdowson, A; Ayres, C F; Baron-Wiechec, A; Matthews, G F; Alves, E; Catarino, N; Brezinsek, S; Coad, J P; Likonen, J; Heinola, K; Mayer, M; Rubel, M

    2014-01-01

    Following the first JET ITER-like wall operations a detailed in situ photographic survey of the main chamber and divertor was completed. In addition, a selection of tiles and passive diagnostics were removed from the vessel and made available for post mortem analysis. From the photographic survey and results from initial analysis, the first conclusions regarding erosion, deposition, fuel retention and material transport during divertor and limiter phases have been drawn. The rate of deposition on inner and outer base divertor tiles and remote divertor corners was more than an order of magnitude less than during the preceding carbon wall operations, as was the concomitant deuterium retention. There was however beryllium deposition at the top of the inner divertor. The net beryllium erosion rate from the mid-plane inner limiters was found to be higher than for the previous carbon wall campaign although further analysis is required to determine the overall material balance due to erosion and re-deposition. (paper)

  5. High emissivity TiC coatings for a first wall

    International Nuclear Information System (INIS)

    Groot, P.

    1991-08-01

    Part of the First Wall of the conceptual design of Next European Torus NET consist of radiation cooled carbon tiles. Tile temperature is determined by the optical properties of facing surfaces. Heat transfer to the 316 stainless steel structure can be improved by applying a high emissivity coating. For this purpose ceramic coatings can be applied. This paper deals with development and characterization of atmospheric and vacuum plasma sprayed titanium carbide as high emissivity coatings. Microstructural evaluation of these coatings includes X-ray diffraction and light microscopy of cross-sections. Total emissivities of vacuum and atmospheric plasma sprayed TiC coatings were measured at 525 K at PTB Braunschweig. Reflection measurements were performed at ECN Petten by using a YAG laser with wavelength 1.06 μm at room temperature. The effects of compositional differences on optical properties are discussed. (author). 9 refs.; 5 figs.; 1 tab

  6. Development of real time monitoring for ITER first wall erosion

    International Nuclear Information System (INIS)

    Berryman, Ian.; Pallaras, Luke; Thomson, Laura; Wang, Michael; Riley, Daniel P.

    2009-01-01

    Full text: This project aims to contribute to the current research on the first wall erosion diagnostic for the ITER fusion reactor. The plasma-facing first wall tiles of the ITER tokamak reactor are exposed to an expected neutron flux of O. 7 8 M W/m2 and a thermal load of O. 5M W/m 2 during operation. Instabilities in the magnetically confined plasma, such as edge-Iocalised modes, cause the plasma to come into direct contact with the first wall. The resulting thermal loads can vaporise and ablate the tile material. Moreover, a flux of high-energy neutrons produced during the fusion process results in a range of radiation effects. Therefore, a diagnostic is necessary to monitor the extent and rate of damage caused to the first wall. We have considered and critically assessed the viability of six alternative diagnostic methods, encompassing both established and novel concepts. From these, a design featuring embedded conducting elements was selected as the strongest candidate, as by monitoring electrical signals it has the potential to detect both bulk erosion and radiation damage.

  7. Coverage percentage and raman measurement of cross-tile and scaffold cross-tile based DNA nanostructures.

    Science.gov (United States)

    Gnapareddy, Bramaramba; Ahn, Sang Jung; Dugasani, Sreekantha Reddy; Kim, Jang Ah; Amin, Rashid; Mitta, Sekhar Babu; Vellampatti, Srivithya; Kim, Byeonghoon; Kulkarni, Atul; Kim, Taesung; Yun, Kyusik; LaBean, Thomas H; Park, Sung Ha

    2015-11-01

    We present two free-solution annealed DNA nanostructures consisting of either cross-tile CT1 or CT2. The proposed nanostructures exhibit two distinct structural morphologies, with one-dimensional (1D) nanotubes for CT1 and 2D nanolattices for CT2. When we perform mica-assisted growth annealing with CT1, a dramatic dimensional change occurs where the 1D nanotubes transform into 2D nanolattices due to the presence of the substrate. We assessed the coverage percentage of the 2D nanolattices grown on the mica substrate with CT1 and CT2 as a function of the concentration of the DNA monomer. Furthermore, we fabricated a scaffold cross-tile (SCT), which is a new design of a modified cross-tile that consists of four four-arm junctions with a square aspect ratio. For SCT, eight oligonucleotides are designed in such a way that adjacent strands with sticky ends can produce continuous arms in both the horizontal and vertical directions. The SCT was fabricated via free-solution annealing, and self-assembled SCT produces 2D nanolattices with periodic square cavities. All structures were observed via atomic force microscopy. Finally, we fabricated divalent nickel ion (Ni(2+))- and trivalent dysprosium ion (Dy(3+))-modified 2D nanolattices constructed with CT2 on a quartz substrate, and the ion coordinations were examined via Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. NANO-SIZED PIGMENT APPLICATIONS IN İZNİK TILES

    Directory of Open Access Journals (Sweden)

    Esin GÜNAY

    2012-12-01

    Full Text Available Traditional İznik tiles are known as “unproducable” due to its high quartz content. İznik tiles contain four different layers as “body, engobe (slip, decors and glaze” and each one has some different starting materials. Recent studies have showed that the production techniques and the particle size of pigments are important parameters in development of colours. TUBITAK MRC and İznik Foundation carried out an experimental work to improve and understand the effects of nanotechnology application to İznik tiles. High quartz content was kept as it is and pigments were applied in decorationas nano-sized pigments.İznik tiles were produced and comparison was carried out between traditional and modern İznik tiles in colour and brightness. Characterization techniques were used in order to understand andcompare the results and also the effects of nano-sized pigments to İznik tiles.

  9. Accounting for the risks of phosphorus losses through tile drains in a phosphorus index.

    Science.gov (United States)

    Reid, D Keith; Ball, Bonnie; Zhang, T Q

    2012-01-01

    Tile drainage systems have been identified as a significant conduit for phosphorus (P) losses to surface water, but P indices do not currently account for this transport pathway in a meaningful way. Several P indices mention tile drains, but most account for either the reduction in surface runoff or the enhanced transport through tiles rather than both simultaneously. A summary of the current state of how tile drains are accounted for within P indices is provided, and the challenges in predicting the risk of P losses through tile drains that are relative to actual losses are discussed. A framework for a component P Index is described, along with a proposal to incorporate predictions of losses through tile drains as a component within this framework. Options for calibrating and testing this component are discussed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Hydrogen isotopes retention in divertor tiles of DIII-D tokamak

    International Nuclear Information System (INIS)

    Skorodumov, B.G.; Buzhinskij, O.I.; West, W.P.; Ulanov, V.G.

    1996-01-01

    The absolute concentration of hydrogen isotopes in graphite divertor tiles coated with boron carbide after the exposure in DIII-D during 16 operational weeks of the 1993 campaign was obtained using the 14 MeV neutron-induced recoil detection (NERD) method. It is shown that the absolute concentration of H in tile's surface layers correlates with thickness of the deposited layers. The graphite tile without boron carbide coating had a H concentration similar to that of the tile with the thickest deposited layer. Deuterium and tritium were not detected in any of the investigated tiles. The proposed method can be used for the determination of the thickness of coatings without sample destruction. Thus, the thickness of boron carbide coatings on the tiles obtained with this method varied from 80 to 115 μm, which corresponded well to electron microscope data. (orig.)

  11. On the algebraic characterization of aperiodic tilings related to ADE-root systems

    International Nuclear Information System (INIS)

    Kellendonk, J.

    1992-09-01

    The algebraic characterization of sets of locally equivalent aperiodic tilings, being examples of quantum spaces, is conducted for a certain type of tilings in a manner proposed by A. Connes. These 2-dimensional tilings are obtained by application of the strip method to the root lattice of an ADE-Coxeter group. The plane along which the strip is constructed is determined by the canonical Coxeter element leading to the result that a 2- dimensional tiling decomposes into a cartesian product of two 1- dimensional tilings. The properties of the tilings are investigated, including selfsimilarity, and the determination of the relevant algebraic is considered, namely the ordered K 0 -group of an algebra naturaly assigned to the quantum space. The result also yields an application of the 2-dimensional abstract gap labelling theorem. (orig.)

  12. Light Distribution in the E3 and E4 Scintillation Counters of the ATLAS Tile Calorimeter

    CERN Document Server

    Hsu, Catherine

    2013-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment is an important component of the ATLAS calorimetry because they play a crucial role in the search for new particles. The E3 and E4 are crack scintillators of TileCal that extend into the gap region between the EM barrel and EM endcaps. They thus sample the energy of the EM showers produced by particles interacting with the dead material in the EM calorimeters and with the inner detector cables. This project focuses on the study of the light collection uniformity in the E3 and E4 scintillating tiles using low energy electrons as the ionising particles. It is important to have uniform light response in the tiles because it would ensure a good energy resolution for the dead region. However, many factors affect the uniform light collection within the scintillating tiles.

  13. Decorative design of ceramic tiles adapted to inkjet printing employing digital image processing

    International Nuclear Information System (INIS)

    Defez, B.; Santiago-Praderas, V.; Lluna, E.; Peris-Fajarnes, G.; Dunai, E.

    2013-01-01

    The ceramic tile sector is a very competitive industry. The designer's proficiency to offer new models of the decorated surface, adapted to the production means, plays a very important role in the competitiveness. In the present work, we analyze the evolution of the design process in the ceramic sector, as much as the changes experimented in parallel by the printing equipment. Afterwards, we present a new concept of ceramic design, based on digital image processing. This technique allows the generation of homogeneous and non-repetitive designs for large surfaces, especially thought for inkjet printing. With the programmed algorithms we have compiled a prototype software for the assistance of the ceramic design. This tool allows creating continuous designs for large surfaces saving developing time. (Author)

  14. A Global User-Driven Model for Tile Prefetching in Web Geographical Information Systems.

    Science.gov (United States)

    Pan, Shaoming; Chong, Yanwen; Zhang, Hang; Tan, Xicheng

    2017-01-01

    A web geographical information system is a typical service-intensive application. Tile prefetching and cache replacement can improve cache hit ratios by proactively fetching tiles from storage and replacing the appropriate tiles from the high-speed cache buffer without waiting for a client's requests, which reduces disk latency and improves system access performance. Most popular prefetching strategies consider only the relative tile popularities to predict which tile should be prefetched or consider only a single individual user's access behavior to determine which neighbor tiles need to be prefetched. Some studies show that comprehensively considering all users' access behaviors and all tiles' relationships in the prediction process can achieve more significant improvements. Thus, this work proposes a new global user-driven model for tile prefetching and cache replacement. First, based on all users' access behaviors, a type of expression method for tile correlation is designed and implemented. Then, a conditional prefetching probability can be computed based on the proposed correlation expression mode. Thus, some tiles to be prefetched can be found by computing and comparing the conditional prefetching probability from the uncached tiles set and, similarly, some replacement tiles can be found in the cache buffer according to multi-step prefetching. Finally, some experiments are provided comparing the proposed model with other global user-driven models, other single user-driven models, and other client-side prefetching strategies. The results show that the proposed model can achieve a prefetching hit rate in approximately 10.6% ~ 110.5% higher than the compared methods.

  15. Pesticide transport to tile-drained fields in SWAT model – macropore flow and sediment

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte

    2015-01-01

    Tool (SWAT) to simulate transport of both mobile (e.g. Bentazon) and strongly sorbed (e.g. Diuron) pesticides in tile drains. Macropore flow is initiated when soil water content exceeds a threshold and rainfall intensity exceeds infiltration capacity. The amount of macropore flow is calculated...... to macropore sediment transport. Simulated tile drain discharge, sediment and pesticide loads are calibrated against data from intensively monitored tile-drained fields and streams in Denmark....

  16. The design of the poloidal divertor experiment tokamak wall armor and inner limiter system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ulrickson, M.

    1982-01-01

    The inner wall protective plates for the Poloidal Divertor Experiment Tokamak are designed to absorb 8 MW of neutral deuterium beam power at maximum power densities of 3 kW/cm 2 for pulse lengths of 0.5 s. Preliminary studies indicate that the design could survive several pulses of l-s duration. The design consists of a tile and mounting plate structure. The mounting plates are water cooled to allow short duty cycles and beam calorimetry. The temperature and flow of the coolant are measured to obtain the injected power. A thermocouple array on the tiles provides beam position and power density profiles. Several material combinations for the tiles were subjected to thermal tests using both electron and neutral beams, and titanium-carbidecoated graphite was selected as the tile material. The heat transfer coefficient of the tile backing plate structure was measured to determine the maximum pulse rate allowable. The design of the armor system allows the structure to be used as a neutral beam power diagnostic and as an inner plasma limiter. The electrical and cooling systems external to the vacuum vessel are discussed

  17. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  18. Effects of carbon wall on the behavior of Heliotron-E plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Noda, N; Mizuuchi, T; Akaishi, K; Senju, T; Kondo, K; Kaneko, H; Motojima, O; Baba, T; Besshou, S; Sato, M

    1989-04-01

    Carbonization was successfully applied to Heliotron-E. Iron-inpurity radiations were strongly reduced with the carbonized wall. Main impacts of the metal reduction on plasma behaviors are sustainment of stored energy during high power, long pulse heating by NBI, achievement of a quasi-steady discharge with a low helical field and high beta, and highest electron density with pellet injection in a quasi-steady state. Hydrogen recycling was very high with the carbonized wall and low density operation was impossible. Helium glow discharge was found to be effective to control the hydrogen recycling with a carbon-tiled wall. (orig.).

  19. Research Program Tests for the U.S. Defense Special Weapons Agency (DSWA) for Breaching of Concrete Panels Set Against a Sandstone Rock Wall

    National Research Council Canada - National Science Library

    Harvey, Kent

    2006-01-01

    ...) Determine the difficulties and nuances of drilling behind wall test panels 3) Test different blast hole sizes, blast hole locations, and blasting sequences in an effort to identify the advantages and disadvantages of different breaching approaches...

  20. Robustness studies of the photomultipliers reading out TileCal, the central hadron calorimeter of the ATLAS experiment

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2018-01-01

    TileCal, the hadron calorimeter of the ATLAS experiment in LHC, is a 10000 channel detector readout by photomultipliers (PMTs). A challenging goal is to understand whether the full sample of PMTs installed at the beginning of the ATLAS detector operation can be used until completion of the High-Luminosity Large Hadron Collider (HL-LHC) program or not. For this reason, a reliable study of the PMT robustness against ageing is required. Detailed studies modelling the PMT response variation as a function of the integrated anode charge were done.

  1. First wall

    International Nuclear Information System (INIS)

    Omori, Junji.

    1991-01-01

    Graphite and C/C composite are used recently for the first wall of a thermonuclear device since materials with small atom number have great impurity allowable capacity for plasmas. Among them, those materials having high thermal conduction are generally anisotropic and have an upper limit for the thickness upon production. Then, anisotropic materials are used for a heat receiving plate, such that the surfaces of the heat receiving plate on the side of lower heat conductivity are brought into contact with each other, and the side of higher thermal conductivity is arranged in parallel with small radius direction and the toroidal direction of the thermonuclear device. As a result, the incident heat on an edge portion can be transferred rapidly to the heat receiving plate, which can suppress the temperature elevation at the surface to thereby reduce the amount of abrasion. Since the heat expansion coefficient of the anisotropic materials is great in the direction of the lower heat conductivity and small in the direction of the higher heat conductivity, the gradient of a thermal load distribution in the direction of the higher heat expansion coefficient is small, and occurrence of thermal stresses due to temperature difference is reduced, to improve the reliability. (N.H.)

  2. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  3. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    Science.gov (United States)

    Jedlovec, Gary; Srikishen, Jayanthi; Edwards, Rita; Cross, David; Welch, Jon; Smith, Matt

    2013-01-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of "big data" available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Shortterm Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video

  4. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    Science.gov (United States)

    Jedlovec, G.; Srikishen, J.; Edwards, R.; Cross, D.; Welch, J. D.; Smith, M. R.

    2013-12-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of 'big data' available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Short-term Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video

  5. Preparation and characterization of photochromic effect for ceramic tiles

    Directory of Open Access Journals (Sweden)

    Atay, B.

    2011-08-01

    Full Text Available Ceramic tile industry is developing due to the technological researches in scientific area and new tiles which are not only a traditional ceramic also have many multiple functionalities have been marketed nowadays. These tiles like photocatalytic, photovoltaic, antibacterial and etc. improve the quality of life and provide lots of benefits such as self cleaning, energy production, climate control. The goal of this study was to enhance the photochromic function on ceramic tiles which is the attitude of changing color in a reversible way by electromagnetic radiation and widely used in many areas because of its aesthetic and also functional properties. High response time of photochromic features of ceramic tiles have been achieved by employing of polymeric gel with additives of photoactive dye onto the ceramic surface. Photochromic layer with a thickness of approximately 45- 50 µm was performed by using spray coating technique which provided homogeneous deposition on surface. Photochromic ceramic tiles with high photochromic activity such as reversibly color change between ΔE= 0.29 and 26.31 were obtained successfully. The photochromic performance properties and coloring-bleaching mechanisms were analyzed by spectrophotometer. The microstructures of coatings were investigated both by stereo microscopy and scanning electron microscopy (SEM.

    La industria de baldosa cerámica se está desarrollando debido a las investigaciones tecnológicas en el área científica y los nuevos azulejos no son sólo de cerámica tradicional, sino que también tienen múltiples funcionalidades que son valiosas en el mercado hoy en día. Estos azulejos tipo fotocatalítico, fotovoltáico, anti-bacteriano, entre otros, mejoran la calidad de vida y proporcionan muchos beneficios como la limpieza fácil o de uno mismo, la producción energética y el control del clima. La meta de este estudio es realzar la función fotocrómatica en las baldosas cerámicas y la

  6. Radiation hardness of WLS fibres for the ATLAS Tile Calorimeter

    CERN Document Server

    David, M; Maio, A

    2007-01-01

    In this document we present the data obtained in the irradiation in a Co-60 source of WLS fibers for the TileCal calorimeter. The optical, mechanical and radiation hardness properties of these fibers were developed in close contact with three producers: Bicron, Kuraray and Pol.Hi.Tech. The results on the degradation of the light output and attenuation length from five irradiations are presented. The fibers were irradiated with a total dose at least 3 times higher than the dose predicted for 10 years of operation of LHC at nominal luminosity.

  7. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    OpenAIRE

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H.P.; Bednar, P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.

    2009-01-01

    We report test beam studies of {11\\,\\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\\sim 70$~pe/GeV, exceeding the design goal by {40\\,\\%}. Electron beams provided a calibration of the modules at t...

  8. Long-term stability scintillation tiles for LHCb detector

    International Nuclear Information System (INIS)

    Grinyov, B.V.; Khlapova, N.P.; Senchyshyn, V.G.; Lebedev, V.N.; Adadurov, A.F.; Melnychuk, S.V.

    2004-01-01

    Accelerated thermal aging tests of materials - UPS-923A, UPS-96G, UPS-96GM and their analogues, SCSN-81 (Kuraray) and BC-408 (Bicron) - were made. A forecast of tile lifetime was made for normal conditions of usage (20% reduction of light output and 50% reduction of the bulk attenuation length (BAL) and technical attenuation length (TAL). Scintillator UPS-96GM has the most long-term stability of parameters--more than 11 yr. BC-408 samples have the minimum lifetime ∼7 yr. The long-term stability, calculated by light yield reduction, of UPS-96G, UPS-923A and SCSN-81 is 10, 9 and 8 yr, respectively

  9. Long-term stability scintillation tiles for LHCb detector

    CERN Document Server

    Grinyov, B V; Khlapova, N P; Lebedev, V N; Melnychuk, S V; Senchyshyn, V G

    2004-01-01

    Accelerated thermal aging tests of materials-UPS-923A, UPS-96G, UPS-96GM and their analogues, SCSN-81 (Kuraray) and BC-408 (Bicron)- were made. A forecast of tile lifetime was made for normal conditions of usage (20% reduction of light output and 50% reduction of the bulk attenuation length (BAL) and technical attenuation length (TAL). Scintillator UPS-96GM has the most long-term stability of parameters- more than 11 yr. BC-408 samples have the minimum lifetime ~7 yr. The long-term stability, calculated by light yield reduction, of UPS-96G, UPS-923A and SCSN-81 is 10, 9 and 8 yr, respectively.

  10. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits.

    Science.gov (United States)

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2016-08-22

    Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter-gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. ATLAS Tile Calorimeter performance for the phase II upgrade

    CERN Document Server

    Sellapillay, Kevissen

    2017-01-01

    The first part of the internship is focused on trying to assess the performance of the upgraded geometry of the ATLAS Tile Calorimeter. To do this, we use Monte Carlo generated samples for the upgraded geometry and from the current geometry, then we derive the pT response and resolution. The second part of the study is an analysis of the sensitivity of the two different geometries to a new heavy boson that would decay into a top quark pair $Z^{\\prime} \\rightarrow t\\bar{t}$.

  12. The Small angle TIle Calorimeter project in DELPHI

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-01-01

    The new Small Angle TIle Calorimeter (STIC) covers the forward regions in DELPHI. The main motivation for its construction was to achieve a systematic error of 0.1% on the luminosity determination. This detector consists of a ''shashlik'' type calorimeter, equipped with two planes of silicon pad detectors placed respectively after 4 and 7.4 radiation lengths. A veto counter, composed of two scintillator planes, covers the front of the calorimeter to allow e-γ separation and to provide a neutral energy trigger.The physics motivations for this project, results from extensive testbeam measurements and the performance during the 1994 LEP run are reported here. (orig.)

  13. The small angle tile calorimeter in the DELPHI experiment

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Bari, M.; Barreira, G.; Benvenuti, A.C.; Bigi, M.; Bonesini, M.; Bozzo, M.; Camporesi, T.; Carling, H.; Cassio, V.; Castellani, L.; Cereseto, R.; Chignoli, F.; Della Ricca, G.; Dharmasiri, D.R.; Santo, M.C. Espirito; Falk, E.; Fenyuk, A.; Ferrari, P.; Gamba, D.; Giordano, V.; Gouz, Yu.; Guerzoni, M.; Gumenyuk, S.; Hedberg, V.; Jarlskog, G.; Karyukhin, A.; Klovning, A.; Konoplyannikov, A.; Kronkvist, I.; Lanceri, L.; Leoni, R.; Maeland, O.A.; Maio, A.; Mazza, R.; Migliore, E.; Navarria, F.L.; Negri, P.; Nossum, B.; Obraztsov, V.; Onofre, A.; Paganoni, M.; Pegoraro, M.; Peralta, L.; Petrovykh, L.; Pimenta, M.; Poropat, P.; Prest, M.; Read, A.L.; Romero, A.; Shalanda, N.; Simonetti, L.; Skaali, T.B.; Stugu, B.; Terranova, F.; Tome, B.; Torassa, E.; Trapani, P.P.; Verardi, M.G.; Vallazza, E.; Vlasov, E.; Zaitsev, A.

    1999-01-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called 'shashlik' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e-γ separation. Results are presented from the extensive studies of these detectors in the CERN testbeams prior of installation and of the detector performance at LEP

  14. A multi-viewer tiled autostereoscopic virtual reality display

    KAUST Repository

    Kooima, Robert; Prudhomme, Andrew; Schulze, Jurgen; Sandin, Daniel; DeFanti, Thomas

    2010-01-01

    Recognizing the value of autostereoscopy for 3D displays in public contexts, we pursue the goal of large-scale, high-resolution, immersive virtual reality using lenticular displays. Our contributions include the scalable tiling of lenticular displays to large fields of view and the use of GPU image interleaving and application optimization for real-time performance. In this context, we examine several ways to improve group-viewing by combining user tracking with multi-view displays. Copyright © 2010 by the Association for Computing Machinery, Inc.

  15. Identification of b-jets with a low pΤ muon using ATLAS Tile Calorimeter simulation data and artificial neural networks technique

    International Nuclear Information System (INIS)

    Astvatsaturov, A.; Budagov, Yu.; Shigaev, V.; Nessi, M.; Pantea, D.

    1996-01-01

    The possibility to enhance the capability of ATLAS Tile Calorimeter to identify low p Τ muons (2 Τ Τ =20 and 40 GeV/c in the central region 0 b g is 4-10 times higher in NND case compared to LTD. The results obtained are based on 2000 jets simulated with the use of ATLAS simulation programs. 8 refs., 13 figs., 2 tabs

  16. Plasma Chamber and First Wall of the Ignitor Experiment^*

    Science.gov (United States)

    Cucchiaro, A.; Coppi, B.; Bianchi, A.; Lucca, F.

    2005-10-01

    The new designs of the Plasma Chamber (PC) and of the First Wall (FW) system are based on updated scenarios for vertical plasma disruption (VDE) as well as estimates for the maximum thermal wall loadings at ignition. The PC wall thickness has been optimized to reduce the deformation during the worst disruption event without sacrificing the dimensions of the plasma column. A non linear dynamic analysis of the PC has been performed on a 360^o model of it, taking into account possible toroidal asymmetries of the halo current. Radial EM loads obtained by scaling JET measurements have been also considered. The low-cycle fatigue analysis confirms that the PC is able to meet a lifetime of few thousand cycles for the most extreme combinations of magnetic fields and plasma currents. The FW, made of Molybdenum (TZM) tiles covering the entire inner surface of the PC, has been designed to withstand thermal and EM loads, both under normal operating conditions and in case of disruption. Detailed elasto-plastic structural analyses of the most (EM) loaded tile-carriers show that these are compatible with the adopted fabrication requirements. ^*Sponsored in part by ENEA of Italy and by the U.S. DOE.

  17. Non-Commutative Geometrical Aspects and Topological Invariants of a Conformally Regular Pentagonal Tiling of the Plane

    DEFF Research Database (Denmark)

    Ramirez-Solano, Maria

    automatically has finite local complexity. In this thesis we give a construction of the continuous and discrete hull just from the combinatorial data. For the discrete hull we construct a C-algebra and a measure. Since this tiling possesses no natural R2 action by translation, there is no a priori reason......The article ”A regular pentagonal tiling of the plane” by Philip L. Bowers and Kenneth Stephenson defines a conformal pentagonal tiling. This is a tiling of the plane with remarkable combinatorial and geometric properties.However, it doesn’t have finite local complexity in any usual sense......, and therefore we cannot study it with the usual tiling theory. The appeal of the tiling is that all the tiles are conformally regular pentagons. But conformal maps are not allowable under finite local complexity. On the other hand, the tiling can be described completely by its combinatorial data, which rather...

  18. Use of biochar amendments for removing bacteria from simulated tile-drainage waters

    Science.gov (United States)

    The addition of biochar has been shown to increase bacterial removal rates by several orders of magnitude in sand-packed columns, suggesting that biochar may be a suitable amendment for use in end-of-tile filter systems to remove indicator and pathogenic microorganisms in tile-drainage waters. Addit...

  19. Promoting Active Learning in Technology-Infused TILE Classrooms at the University of Iowa

    Science.gov (United States)

    Van Horne, Sam; Murniati, Cecilia; Gaffney, Jon D. H.; Jesse, Maggie

    2012-01-01

    In this case study, the authors describe the successful implementation of technology-infused TILE classrooms at the University of Iowa. A successful collaboration among campus units devoted to instructional technologies and teacher development, the TILE Initiative has provided instructors with a new set of tools to support active learning. The…

  20. Comment on "Decagonal andQuasi-Crystalline Tilings in MedievalIslamic Architecture"

    DEFF Research Database (Denmark)

    Makovicky, Emil

    2007-01-01

    Lu and Steinhardt (Reports, 23 February 2007, p. 1106) claimed the discovery of a large, potentially quasi-crystalline Islamic tiling in the Darb-i Imam shrine but regard the earlier Maragha tiling, previously described as quasiperiodic, as a small isolated motif. We demonstrate that the Darb...

  1. Preliminary test results on tungsten tile with castellation structures in KSTAR

    NARCIS (Netherlands)

    Hong, S. H.; Bang, E. N.; Lim, S. T.; Lee, J. Y.; Yang, S. J.; Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, M.; van den Berg, M. A.; Lho, T.; Park, C. R.; Kim, G. H.

    2014-01-01

    A bulk tungsten tile with conventional and shaped castellation structures was exposed to various plasmas in KSTAR during 2012 campaign, in order to verify the functions of the shaped castellation designed for ITER divertor. The thermal response of the tile during the campaign was measured by

  2. Reuse of solid petroleum waste in the manufacture of porcelain stoneware tile.

    Science.gov (United States)

    Pinheiro, B C A; Holanda, J N F

    2013-03-30

    This study investigates the incorporation of solid petroleum waste as raw material into a porcelain stoneware tile body, in replacement to natural kaolin material by up to 5 wt.%. Tile formulations containing solid petroleum waste were pressed and fired at 1240 °C by using a fast-firing cycle. The tile pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, and flexural strength), sintered microstructure, and leaching toxicity. The results therefore indicated that the growing addition of solid petroleum waste into tile formulations leads to a decrease of linear shrinkage, apparent density, and flexural strength, and to an increase of water absorption of the produced tile materials. It was also found that the replacement of kaolin with solid petroleum waste, in the range up to 2.5 wt.%, allows the production of porcelain stoneware tile (group BIa, ISO 13006 standard). All concentrations of Ag, As, Ba, Cd, Cr (total), Hg, and Pb of the fired porcelain stoneware tile pieces in the leachate comply with the current regulatory limits. These results indicate that the solid petroleum waste could be used for high-quality porcelain stoneware tile production, thus giving rise to a new possibility for an environmentally friendly management of this abundant waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A simple model for predicting solute concentration in agricultural tile lines shortly after application

    Directory of Open Access Journals (Sweden)

    T. S. Steenhuis

    1997-01-01

    Full Text Available Agricultural tile drainage lines have been implicated as a source of pesticide contamination of surface waters. Field experiments were conducted and a simple model was developed to examine preferential transport of applied chemicals to agricultural tile lines. The conceptual model consists of two linear reservoirs, one near the soil surface and one near the tile drain. The connection between the two reservoirs is via preferential flow paths with very little interaction with the soil matrix. The model assumes that only part of the field contributes solutes to the tile drain. The model was evaluated with data from the field experiments in which chloride, 2,4-D, and atrazine concentrations were measured on eight tile-drained plots that were irrigated twice. Atrazine was applied two months prior to the experiment, 2,4-D was sprayed just before the first irrigation, and chloride before the second irrigation. All three chemicals were found in the tile effluent shortly after the rainfall began. Generally, the concentration increased with increased flow rates and decreased exponentially after the rainfall ceased. Although the simple model could simulate the observed chloride concentration patterns in the tile outflow for six of the eight plots, strict validation was not possible because of the difficulty with independent measurement of the data needed for a preferential flow model applied to field conditions. The results show that, to simulate pesticide concentration in tile lines, methods that can measure field averaged preferential flow characteristics need to be developed.

  4. Divertor tungsten tiles erosion in the region of the castellated gaps

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wanpeng, E-mail: wangdez@dlut.edu.cn; Sang, Chaofeng; Sun, Zhenyue; Wang, Dezhen

    2016-11-01

    Highlights: • Simulation of the tungsten tiles erosion by different impurities in the divertor gap region is done by using a 2d3v Particle-In-Cell code. • High-Z impurity causes the largest erosion rate on W tile. • The peak physical sputtering erosion rate locates at the plasma-facing corners. - Abstract: Erosion of tungsten (W) is a very important issue for the future fusion device. The castellated divertor makes it more complicated due to complex geometry of the gap between the tiles. In this work, the plasma behaviors and resulting W tile erosion in the divertor tile gap region are studied by using a two dimension-in-space and three dimension-in-velocity (2d3 v) Particle-In-Cell (PIC) code. Deuterium ions (D{sup +}) and electrons are traced self-consistently in the simulation to provide the plasma background. Since there are lots of impurities, which may make a great impact on the tile erosion, in the divertor region to radiate the power, the erosion of W tile by different species are thus considered. The contributions of deuterium and impurities: Li, C, Ne, and Ar, to the W erosion, are studied under EAST conditions to show a straightforward insight. It is observed that the physical sputtering of W tile by impurities is much higher than that by the D ions, and the peak erosion region locates at the plasma-facing corners.

  5. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    Science.gov (United States)

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  6. Research about the number of D-points of -tiling in given ellipse

    Directory of Open Access Journals (Sweden)

    Xianglin WEI

    2017-04-01

    Full Text Available An Archimedean tiling is a tiling of the plane by one type of regular polygon or several types of regular polygons, and every vertex of the tiling has the same vertex characteristics. There are 11 Archimedean tiling, and this paper studies -tiling, which is an Archimedean tiling generated by squares and regular octagons in the plane, and every vertex is associated with one square and two octagons. This paper studies the number of vertices contained in an ellipse in -tiling. Through analysing the sequence of vertices lying on half chord in the ellipse, and using the method of the geometry of number and congruence in number theory, it presents an algorithm about the value of the number of vertices contained in the ellipse, and obtains a formula of limit about the number of vertices and the square of short semi-axis of the ellipse. It is proved that the value of limit is connected with the area of the corresponding central polygon. The algorithm and the formula of limit are very useful for the study of related problems in other Archimedean tilings.

  7. Gauge theories from toric geometry and brane tilings

    International Nuclear Information System (INIS)

    Franco, Sebastian; Hanany, Amihay; Martelli, Dario; Sparks, James; Vegh, David; Wecht, Brian

    2006-01-01

    We provide a general set of rules for extracting the data defining a quiver gauge theory from a given toric Calabi-Yau singularity. Our method combines information from the geometry and topology of Sasaki-Einstein manifolds, AdS/CFT, dimers, and brane tilings. We explain how the field content, quantum numbers, and superpotential of a superconformal gauge theory on D3-branes probing a toric Calabi-Yau singularity can be deduced. The infinite family of toric singularities with known horizon Sasaki-Einstein manifolds L a,b,c is used to illustrate these ideas. We construct the corresponding quiver gauge theories, which may be fully specified by giving a tiling of the plane by hexagons with certain gluing rules. As checks of this construction, we perform a-maximisation as well as Z-minimisation to compute the exact R-charges of an arbitrary such quiver. We also examine a number of examples in detail, including the infinite subfamily L a,b,a , whose smallest member is the Suspended Pinch Point

  8. Water saving techniques in the spanish tile industry

    Directory of Open Access Journals (Sweden)

    Enrique, J. E.

    2000-02-01

    Full Text Available A study was conducted on the use of water in the ceramic tile manufacturing process, focussing on water requirements in body and glaze preparation and in washing production equipment and facilities. Water consumption and wastewater reuse systems in ceramic tile manufacture were reviewed. An in-depth, industrial scale study was performed of wastewater reuse in the manufacturing process, examining how wastewater reuse affected pollutant contents in gas emissions and solid waste.

    Se ha estudiado el uso del agua en el proceso de fabricación de baldosas cerámicas y en particular, en las etapas de preparación de la pasta de los esmaltes y limpieza del equipo industrial y de la propia planta.Se ha realizado una revisión del consumo de agua y de los sistemas de reutilización de la misma en el proceso de fabricación de baldosas cerámicas y se ha estudiado con profundidad, a escala industrial, la reutilización del agua residual en el proceso y en particular el efecto de su reutilización sobre la emisión de contaminantes en las emisiones gaseosas y en los residuos sólidos.

  9. ATLAS tile calorimeter cesium calibration control and analysis software

    International Nuclear Information System (INIS)

    Solovyanov, O; Solodkov, A; Starchenko, E; Karyukhin, A; Isaev, A; Shalanda, N

    2008-01-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented

  10. CONSTITUYENTES VOLÁTILES DEL MANGO DE AZÚCAR

    Directory of Open Access Journals (Sweden)

    Edgar Bautista.

    2010-10-01

    Full Text Available Empleando Extracción de Volátiles por Espacio de Cabeza Dinámico y Extracción Líquido-Líquido, se estudió el aroma del mango de azúcar (Mangifera indica L, variedad nativa Colombiana apreciada por su exquisito aroma y sabor. Estos dos métodos complementarios permifieron la identificación, por Cromatografía de Gases de Alta resolución y Cromatografía de Gases de Alta Resolución - Espectrometría de Masas, de 52 coinponentes, entre los cuales sobresalieron como mayoritarios el 3-careno, el butanoato de etilo, el ácido butanóico y el a-pineno. Aunque la composición porcentual en peso de volátiles varió según el método de extracción, el grupo predominante en ambos sistemas de extracción es el de los terpenos, seguido de los esteres. El aroma de los extractos obtenidos fue evaluado por Cromatografía de Gases de Alta Resolución-Olfatometría.

  11. Evaluation of the thermal comfort of ceramic floor tiles

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2007-09-01

    Full Text Available In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The uncomforting can be characterized by heated floor surfaces in external environments which are exposed to sun radiation (swimming polls areas or by cold floor surfaces in internal environments (bed rooms, path rooms. The property named thermal effusivity which defines the interface temperature when two semi-infinite solids are putted in perfect contact. The introduction of the crustiness surface on the ceramic tiles interferes in the contact temperature and also it can be a strategy to obtain ceramic tiles more comfortable. Materials with low conductivities and densities can be obtained by porous inclusion are due particularly to the processing conditions usually employed. However, the presence of pores generally involves low mechanical strength. This work has the objective to evaluate the thermal comfort of ceramics floor obtained by incorporation of refractory raw materials (residue of the polishing of the porcelanato in industrial atomized ceramic powder, through the thermal and mechanical properties. The theoretical and experimental results show that the porosity and crustiness surface increases; there is sensitive improvement in the comfort by contact.

  12. Electromagnetic Cell Level Calibration for ATLAS Tile Calorimeter Modules

    CERN Document Server

    Kulchitskii, Yu A; Budagov, Yu A; Khubua, J I; Rusakovitch, N A; Vinogradov, V B; Henriques, A; Davidek, T; Tokar, S; Solodkov, A; Vichou, I

    2006-01-01

    We have determined the electromagnetic calibration constants of 11% TileCal modules exposed to electron beams with incident angles of 20 and 90 degrees. The gain of all the calorimeter cells have been pre-equalized using the radioactive Cs-source that will be also used in situ. The average values for these modules are equal to: for the flat filter method 1.154+/-0.002 pC/GeV and 1.192+/-0.002 pC/GeV for 20 and 90 degrees, for the fit method 1.040+/-0.002 pC/GeV and 1.068+/-0.003 pC/GeV, respectively. These average values for all cells of calibrated modules agree with the weighted average calibration constants for separate modules within the errors. Using the individual calibration constants for every module the RMS spread value of constants will be 1.9+/-0.1 %. In the case of the global constant this value will be 2.6+/-0.1 %. Finally, we present the global constants which should be used for the electromagnetic calibration of the ATLAS Tile hadronic calorimeter data in the ATHENA framework. These constants ar...

  13. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    Science.gov (United States)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  14. ATLAS tile calorimeter cesium calibration control and analysis software

    Energy Technology Data Exchange (ETDEWEB)

    Solovyanov, O; Solodkov, A; Starchenko, E; Karyukhin, A; Isaev, A; Shalanda, N [Institute for High Energy Physics, Protvino 142281 (Russian Federation)], E-mail: Oleg.Solovyanov@ihep.ru

    2008-07-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented.

  15. Relevance of NET first wall concept for DEMO DN

    International Nuclear Information System (INIS)

    Kiltie, J.S.

    1987-01-01

    Design studies for the Next European Torus (NET) have produced a design concept for the first wall. This concept features poloidal water cooling, double contained in a welded steel structure which is protected by radiatively cooled tiles. In this appendix the relevance of this concept to a DEMO is examined with particular emphasis given to the ability of the cooling tube arrangement to remove the heat. A suggested modification to the arrangement of coolant tubes is suggested so that the design can operate at the higher loadings of a DEMO. (author)

  16. Preparation of porcelain tile granulates by more environmentally sustainable processes

    Directory of Open Access Journals (Sweden)

    García-Ten, J.

    2012-04-01

    Full Text Available This study examines the feasibility of manufacturing glazed porcelain tiles with a more environmentally friendly manufacturing process, by reducing water and thermal energy consumption. The process studied in this paper is dry milling in a pendulum mill, with subsequent granulation (in order to obtain a press powder with similar flowability to that of spraydried powders. The different morphology of the new granulate with respect to the standard spray-dried granulate modifies the microstructure of the green compacts and thus, their behaviour and fired tile properties. In order to obtain porcelain tiles with the required properties (water absorption, mechanical strength,… changes have been made in the raw materials mixture and in the processing variables. Finally, porcelain tiles measuring 50x50 cm have been manufactured at industrial scale with the new granulate using a conventional firing cycle, obtaining quality levels identical to those provided by the spray-dried granulate. These results open the possibility of preparing porcelain tile body compositions through a manufacturing process alternative to the standard one, more environmentally friendly and with lower costs.

    En el presente trabajo se ha estudiado la viabilidad de fabricar gres porcelánico esmaltado utilizando un sistema de preparación de la composición del soporte más respetuoso con el medio ambiente, lo que implica una reducción importante de los consumos de agua y de energía térmica. El proceso que se estudia en el presente trabajo es el consistente en la molienda vía seca en molino pendular y en la posterior granulación (para obtener un polvo de prensas con fluidez similar a la de los polvos atomizados. La distinta morfología de los nuevos gránulos obtenidos respecto al polvo atomizado actual, modifica la microestuctura en crudo de las piezas y, con ello, el comportamiento y propiedades finales de las baldosas obtenidas. Por ello, ha sido necesario

  17. Calibration and Performance of the ATLAS Tile Calorimeter during the LHC Run 2

    CERN Document Server

    Faltova, Jana; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter is established with the large sample of the proton-proton collisions. Isolated hadrons a...

  18. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region |η| < 1.7. Jointly with the other calorimeters it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sa...

  19. Characterization and optimization of Silicon Photomultipliers and small size scintillator tiles for future calorimeter applications

    CERN Document Server

    AUTHOR|(CDS)2095312; Horváth, Ákos

    For the active layers of highly granular sampling calorimeters, small scintillator tiles read out by Silicon Photomultipliers (SiPM) can be an interesting and cost effective alternative to silicon sensors. At CERN a test setup was realized for the development of new generations of calorimeters to characterize new types of Silicon Photomultipliers in terms of gain, noise, afterpulses and crosstalk and to study the impact of scintillator wrappings and the tile size on the measured light yield and uniformity. In this thesis work, the experimental setup is described and the steps for commissioning the equipment are discussed. Then, the temperature dependence of the Silicon Photomultiplier response will be investigated, including the dependence of bare Silicon Photomultipliers as well as Silicon Photomultipliers coupled to scintillator tiles. Finally, the tile-photomultiplier response for different tile sizes and coating options will be evaluated. The experimental setup will be extended to allow for the characteri...

  20. Calibration and performance of the ATLAS Tile Calorimeter during the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMTs). The TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalising the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadron...

  1. Evaluation of Salt Removal from Azulejo Tiles and Mortars using Electrodesalination

    DEFF Research Database (Denmark)

    Ferreira, Célia Maria Dias; Ottosen, Lisbeth M.; Christensen, Iben Vernegren

    2011-01-01

    Azulejo tiles are part of the Portuguese cultural heritage and are worldwide appreciated. The durability of this building material is affected by the accumulation of salts, causing fractures and peeling of the glazing and ultimately leading to the degradation of the tile panels and the irremediable...... loss of historic value. In this work preliminary studies with single tiles presenting an underlying layer of mortar have been conducted to assess the amount of salts that can be removed from the building material using a new technique called “electrodesalination”, in which the salt’s ions...... are transported out from the tiles by applying an electric current on the backside. Results shown here include an assessment of how much of the salts did come out in comparison to what was originally there, and additionally if the electrodesalination succeeded in removing salts down to a point where the tile...

  2. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Klimek, Pawel; The ATLAS collaboration

    2018-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. It also assists in muon identification. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. TileCal exploits several calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These systems together with data collected during proton-proton collisions provide extensive monitoring of the instrument and a means...

  3. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221190; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton col...

  4. Thermoluminescence study of materials (natural minerals) used in ceramic tiles industry

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, K V R, E-mail: drmurthykvr@yahoo.com [Display Materials Laboratory Applied Physics Department Faculty of Technology and Engineering M.S. University of Baroda, Baroda-390 001 (India)

    2009-07-15

    Mother earth is giving many materials in the natural form as well as in mineral form. Among them the marbles, granites and other variety of slabs for house hold flooring purposes. The people demand for variety of flooring materials leads to develop various types of ceramic tile. In India ceramic tiles industry is one of the fast growing one. More than two hundred units are manufacturing the ceramic tiles situated around Morbi, Rajkot, Gujarat, India. The basic raw materials required for manufacturing the various types of ceramic tiles are natural minerals. The following are the minerals used to manufacture the ceramic tiles i.e. quartz, feldspar, zircon, china clay, talc, grok, Aluminum oxide etc.,

  5. Heart-pulse Biofeedback in Playful Exercise using a Wearable device and Modular Interactive Tiles

    DEFF Research Database (Denmark)

    Shimokakimoto, Tomoya; Lund, Henrik Hautop; Suzuki, Kenji

    2014-01-01

    interactive tiles. The system consists of a wearable device that measures heart-pulse via ear-mounted sensor, and modular interactive tiles which are used for physical rehabilitation exercise through playing a game. The wearable devise enables detection of heart pulse in real-time and therefore provides heart...... beat rate during playful activities, even if the heart pulse wave have motion artifacts. The tiles are designed to build flexible structures and to provide immediate feedback based on the users’ physical interaction with the tiles. We combine the two systems to provide users with heart pulse...... biofeedback in playful exercise. We show that using the developed system it is possible for the users to regulate the exercise intensity on their own with biofeedback, and also possible to analyze exercise activity using number of steps on the tiles and heart beat rate....

  6. Thermoluminescence study of materials (natural minerals) used in ceramic tiles industry

    International Nuclear Information System (INIS)

    Murthy, K V R

    2009-01-01

    Mother earth is giving many materials in the natural form as well as in mineral form. Among them the marbles, granites and other variety of slabs for house hold flooring purposes. The people demand for variety of flooring materials leads to develop various types of ceramic tile. In India ceramic tiles industry is one of the fast growing one. More than two hundred units are manufacturing the ceramic tiles situated around Morbi, Rajkot, Gujarat, India. The basic raw materials required for manufacturing the various types of ceramic tiles are natural minerals. The following are the minerals used to manufacture the ceramic tiles i.e. quartz, feldspar, zircon, china clay, talc, grok, Aluminum oxide etc.,

  7. Terahertz NDE application for corrosion detection and evaluation under Shuttle tiles

    Science.gov (United States)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-04-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  8. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    Science.gov (United States)

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Contributions of systematic tile drainage to watershed-scale phosphorus transport.

    Science.gov (United States)

    King, Kevin W; Williams, Mark R; Fausey, Norman R

    2015-03-01

    Phosphorus (P) transport from agricultural fields continues to be a focal point for addressing harmful algal blooms and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. However, research on the contributions of tile drainage to watershed-scale P losses is limited. The objective of this study was to evaluate long-term P movement through tile drainage and its manifestation at the watershed outlet. Discharge data and associated P concentrations were collected for 8 yr (2005-2012) from six tile drains and from the watershed outlet of a headwater watershed within the Upper Big Walnut Creek watershed in central Ohio. Results showed that tile drainage accounted for 47% of the discharge, 48% of the dissolved P, and 40% of the total P exported from the watershed. Average annual total P loss from the watershed was 0.98 kg ha, and annual total P loss from the six tile drains was 0.48 kg ha. Phosphorus loads in tile and watershed discharge tended to be greater in the winter, spring, and fall, whereas P concentrations were greatest in the summer. Over the 8-yr study, P transported in tile drains represented 90% of all measured concentrations exceeded recommended levels (0.03 mg L) for minimizing harmful algal blooms and nuisance algae. Thus, the results of this study show that in systematically tile-drained headwater watersheds, the amount of P delivered to surface waters via tile drains cannot be dismissed. Given the amount of P loss relative to typical application rates, development and implementation of best management practices (BMPs) must jointly consider economic and environmental benefits. Specifically, implementation of BMPs should focus on late fall, winter, and early spring seasons when most P loading occurs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Ferrándiz-Mas, V.; Bond, T.; Zhang, Z.; Melchiorri, J.; Cheeseman, C.R.

    2016-01-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740 °C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700 °C, with chlorophyll-a concentrations reaching up to 11.1 ± 0.4 μg/cm"2 of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. - Highlights: • Porous tiles made by sintering waste glass at variable temperatures • Bioreceptivity assessed by measuring colonisation by the algae C. vulgaris • Tiles sintered at 700 °C gave maximum

  11. 29 CFR 570.64 - Occupations involved in the manufacture of brick, tile, and kindred products (Order 13).

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Occupations involved in the manufacture of brick, tile, and... Detrimental to Their Health or Well-Being § 570.64 Occupations involved in the manufacture of brick, tile, and... term clay construction products shall mean the following clay products: Brick, hollow structural tile...

  12. Uranium City radiation reduction program: further efforts at remedial measures for houses with block walls, concrete porosity test results, and intercomparison of Kuznetz method and Tsivoglau method

    International Nuclear Information System (INIS)

    Haubrich, E.; Leung, M.K.; Mackie, R.

    1980-01-01

    An attempt was made to reduce the levels of radon in a house in Uranium City by mechanically venting the plenums in the concrete block basement walls, with little success. A table compares the results obtained by measuring the radon WL using the Tsivoglau and the Kuznetz methods

  13. Environmental development of the Spanish ceramic tile manufacturing sector over the period 1992–2007

    Directory of Open Access Journals (Sweden)

    Zaera, V.

    2012-04-01

    Full Text Available The Spanish tile manufacturing sector has grown steadily over the years covered by the three benchmark studies, carried out in 1992, 2001, and 2007, from which data are compared in this paper. In that period, production output doubled, although since the last study was published, the situation has undergone a radical change and current production output stands at a level similar to that of 1995. Nevertheless, despite the world economic crisis, which has also severely impacted the ceramic wall and floor tile sector, it is worth noting that the sector’s environmental parameters have demonstrated a constant and positive trend, both in companies’ individual environmental performance and in the actual manufacturing processes itself. To a large extent, this situation was forced upon the sector as it had to adapt to numerous environmental regulations, which in general terms call for harsher and more stringent conditions than before. In this sense, the adoption of IPPC regulations, which affect practically the entire ceramic tile sector, and the approval of EU Directive 2003/87 establishing a scheme for greenhouse gas emission allowance trading were significant factors.

    El sector de fabricación de baldosas cerámicas ha crecido de forma continuada durante los años que abarcan los tres estudios cuyos datos son comparados en este informe, 1992-2001-2007, ya que la producción se ha duplicado desde el primer al último estudio, aunque si se considera el periodo del último estudio hasta la actualidad, la situación ha sufrido un cambio radical estando ahora mismo en niveles de producción similares al año 1995. No obstante, a pesar de esta crisis económica mundial en la que se ha visto arrastrado el sector cerámico, merece la pena destacar una constante evolución positiva en todos los aspectos relacionados con los temas medioambientales, tanto en aquellos aspectos relacionados con el comportamiento ambiental de las empresas como en los

  14. Tiling and Asynchronous Communication Optimizations for Stencil Computations

    KAUST Repository

    Malas, Tareq

    2015-12-07

    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. Most of the established work concentrates on updating separate cache blocks per thread, which works on all types of shared memory systems, regardless of whether there is a shared cache among the cores. This approach is memory-bandwidth limited in several situations, where the cache space for each thread can be too small to provide sufficient in-cache data reuse. We introduce a generalized multi-dimensional intra-tile parallelization scheme for shared-cache multicore processors that results in a significant reduction of cache size requirements and shows a large saving in memory bandwidth usage compared to existing approaches. It also provides data access patterns that allow efficient hardware prefetching. Our parameterized thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the Central Processing Unit (CPU).We also introduce efficient diamond tiling structure for both shared memory cache blocking and distributed memory relaxed-synchronization communication, demonstrated using one-dimensional domain decomposition. We describe the approach and our open-source testbed implementation details (called Girih), present performance results on contemporary Intel processors, and apply advanced performance modeling techniques to reconcile the observed performance with hardware capabilities. Furthermore, we conduct a comparison with the state-of-the-art stencil frameworks PLUTO and Pochoir in shared memory, using corner-case stencil operators. We study the

  15. Tile-based rigidization surface parametric design study

    Science.gov (United States)

    Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee

    2018-03-01

    Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of

  16. Thermoluminescence results on slices from a Hiroshima tile UHFSFT03

    International Nuclear Information System (INIS)

    Stoneham, Doreen

    1987-01-01

    As was reported at the May 1984 Utah thermoluminescence (TL) workshop, high fired tiles and porcelain fragments can be sliced into 200 μm sections with constant surface area. When conventional pre-dose measurements were carried out on these slices the doses evaluated were in good agreement with results obtained by other workers using conventional quartz separation techniques. There are several advantages in using slices. First, less sample is needed as about 50 consecutive slices can be cut from a block measuring typically 1 cm 2 cross section and 2 cm in length. There are no problems with securing grains to the plate or loss of grains during measurement. Hypothetically there is less damage to the grains when they are cut slowly under cold water than when they are crushed. The disadvantage is that other minerals besides quartz are present in the slice and the signal is weaker than that obtained using quartz inclusions

  17. Componentes volátiles de mamey (mammea americana L.

    Directory of Open Access Journals (Sweden)

    Alicia Lucía Morales

    2010-07-01

    Full Text Available Los componentes volátiles del aroma de mamey (Mammea americana L, fueron extraídos utilizando el método de destilación por arrastre con vapor-extracción simultánea con solvente orgánico. El extracto fue prefraccionado por cromatografía en columna en silica gel con gradiente discontinuo Pentano: Éter etílico para obtener tres fracciones que fueron analizadas por CGAR y CGAR-EM. Se detectaron 34 compuestos, de los cuales fueron identificados 22, siendo los componentes mayoritarios: Furfural (7281 ^ig/kg y E-Famesol (2145 ng/kg

  18. The small angle tile calorimeter in the DELPHI experiment

    CERN Document Server

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Negri, P; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1999-01-01

    The {\\bf S}mall angle {\\bf TI}le {\\bf C}alorimeter ({\\bf STIC}) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called ``shashlik'' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e-$\\gamma$ separat ion. Results are presented from the extensive studies of these detectors in the CERN testbeams prior to installation and of the detector performance at LEP.

  19. Genome-wide transcription analyses in rice using tiling microarrays

    DEFF Research Database (Denmark)

    Li, Lei; Wang, Xiangfeng; Stolc, Viktor

    2006-01-01

    . We report here a full-genome transcription analysis of the indica rice subspecies using high-density oligonucleotide tiling microarrays. Our results provided expression data support for the existence of 35,970 (81.9%) annotated gene models and identified 5,464 unique transcribed intergenic regions...... that share similar compositional properties with the annotated exons and have significant homology to other plant proteins. Elucidating and mapping of all transcribed regions revealed an association between global transcription and cytological chromosome features, and an overall similarity of transcriptional......Sequencing and computational annotation revealed several features, including high gene numbers, unusual composition of the predicted genes and a large number of genes lacking homology to known genes, that distinguish the rice (Oryza sativa) genome from that of other fully sequenced model species...

  20. TileGap3 Correction in ATLAS Jet Triggers

    CERN Document Server

    Carmiggelt, Joris Jip

    2017-01-01

    Study done to correct for the excess of jets in the TileGap3 (TG3) region of the ATLAS detector. Online leading jet pt is scaled down proportional to its energy fraction in TG3. This study shows that such a correction is undesirable for high pt triggers, since it leads to a slow turn-on and thus high losses in triggerrates. For low pt triggers there seems to be some advantageous effects as counts are slightly reduced below the 95% efficiency point of the trigger. There is, however, a pay-off: An increase of missed counts above the 95% efficiency point due to an shifting of the turn-on curve. Suggestion for further research are made to compensate for this and optimise the correction.