WorldWideScience

Sample records for tight gas sandstones

  1. Accumulation mechanism of tight sandstone gas in low gas generation intensity area

    Directory of Open Access Journals (Sweden)

    Fudong Zhang

    2017-04-01

    Full Text Available Before 11th five-year plan, geologists proposed the viewpoint that the gas generation intensity that's more than 20 × 108 m3/km2 was an important condition for forming conventional large gas fields. However, recent exploration findings indicate that large-area tight sandstone gas that has a gas generation intensity of less than 20 × 108 m3/km2 can still form reserves. This is an area worth exploring. Through innovative accumulation simulation, microscopic pore throat analysis of reservoirs, and dissection of typical gas reservoirs, several factors have been established, including the comprehensive evaluation models involving gas charging pressure, reservoir physical properties, and lower gas generation limit. In addition, the paper has made it certain that the tight sandstone gas in a low gas generation intensity area has accumulation characteristics such as “partial water displacing, long-term gas supply, gas control by tight reservoirs of scale, gas abundance control by physical properties, combined control and enrichment of dominant resources, etc.”, and has proposed the viewpoint that this area has the accumulation mechanism that of a “non-dominant transportation, long-term continuous charging, reservoir controlling by physical property difference, and enrichment in partial sweet spots” and shows discontinuous “patchy distribution” on the plane. This is of much significance to fine exploration and development of the trillion cubic meter resources of the low gas generation intensity areas in the west of Sulige gas field.

  2. Imaging pore space in tight gas sandstone reservoir: insights from broad ion beam cross-sectioning

    Directory of Open Access Journals (Sweden)

    Konstanty J.

    2010-06-01

    Full Text Available Monetization of tight gas reservoirs, which contain significant gas reserves world-wide, represents a challenge for the entire oil and gas industry. The development of new technologies to enhance tight gas reservoir productivity is strongly dependent on an improved understanding of the rock properties and especially the pore framework. Numerous methods are now available to characterize sandstone cores. However, the pore space characterization at pore scale remains difficult due to the fine pore size and delicate sample preparation, and has thus been mostly indirectly inferred until now. Here we propose a new method of ultra high-resolution petrography combining high resolution SEM and argon ion beam cross sectioning (BIB, Broad Ion Beam which prepares smooth and damage free surfaces. We demonstrate this method using the example of Permian (Rotliegend age tight gas sandstone core samples. The combination of Ar-beam cross-sectioning facility and high-resolution SEM imaging has the potential to result in a step change in the understanding of pore geometries, in terms of its morphology, spatial distribution and evolution based on the generation of unprecedented image quality and resolution enhancing the predictive reliability of image analysis.

  3. Pore Structure and Limit Pressure of Gas Slippage Effect in Tight Sandstone

    Directory of Open Access Journals (Sweden)

    Lijun You

    2013-01-01

    Full Text Available Gas slip effect is an important mechanism that the gas flow is different from liquid flow in porous media. It is generally considered that the lower the permeability in porous media is, the more severe slip effect of gas flow will be. We design and then carry out experiments with the increase of backpressure at the outlet of the core samples based on the definition of gas slip effect and in view of different levels of permeability of tight sandstone reservoir. This study inspects a limit pressure of the gas slip effect in tight sandstones and analyzes the characteristic parameter of capillary pressure curves. The experimental results indicate that gas slip effect can be eliminated when the backpressure reaches a limit pressure. When the backpressure exceeds the limit pressure, the measured gas permeability is a relatively stable value whose range is less than 3% for a given core sample. It is also found that the limit pressure increases with the decreasing in permeability and has close relation with pore structure of the core samples. The results have an important influence on correlation study on gas flow in porous medium, and are beneficial to reduce the workload of laboratory experiment.

  4. Pore structure and limit pressure of gas slippage effect in tight sandstone.

    Science.gov (United States)

    You, Lijun; Xue, Kunlin; Kang, Yili; Liao, Yi; Kong, Lie

    2013-01-01

    Gas slip effect is an important mechanism that the gas flow is different from liquid flow in porous media. It is generally considered that the lower the permeability in porous media is, the more severe slip effect of gas flow will be. We design and then carry out experiments with the increase of backpressure at the outlet of the core samples based on the definition of gas slip effect and in view of different levels of permeability of tight sandstone reservoir. This study inspects a limit pressure of the gas slip effect in tight sandstones and analyzes the characteristic parameter of capillary pressure curves. The experimental results indicate that gas slip effect can be eliminated when the backpressure reaches a limit pressure. When the backpressure exceeds the limit pressure, the measured gas permeability is a relatively stable value whose range is less than 3% for a given core sample. It is also found that the limit pressure increases with the decreasing in permeability and has close relation with pore structure of the core samples. The results have an important influence on correlation study on gas flow in porous medium, and are beneficial to reduce the workload of laboratory experiment.

  5. The experimental modeling of gas percolation mechanisms in a coal-measure tight sandstone reservoir: A case study on the coal-measure tight sandstone gas in the Upper Triassic Xujiahe Formation, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Shizhen Tao

    2016-12-01

    Full Text Available Tight sandstone gas from coal-measure source rock is widespread in China, and it is represented by the Xujiahe Formation of the Sichuan Basin and the Upper Paleozoic of the Ordos Basin. It is affected by planar evaporative hydrocarbon expulsion of coal-measure source rock and the gentle structural background; hydrodynamics and buoyancy play a limited role in the gas migration-accumulation in tight sandstone. Under the conditions of low permeability and speed, non-Darcy flow is quite apparent, it gives rise to gas-water mixed gas zone. In the gas displacing water experiment, the shape of percolation flow curve is mainly influenced by core permeability. The lower the permeability, the higher the starting pressure gradient as well as the more evident the non-Darcy phenomenon will be. In the gas displacing water experiment of tight sandstone, the maximum gas saturation of the core is generally less than 50% (ranging from 30% to 40% and averaging at 38%; it is similar to the actual gas saturation of the gas zone in the subsurface core. The gas saturation and permeability of the core have a logarithm correlation with a correlation coefficient of 0.8915. In the single-phase flow of tight sandstone gas, low-velocity non-Darcy percolation is apparent; the initial flow velocity (Vd exists due to the slippage effect of gas flow. The shape of percolation flow curve of a single-phase gas is primarily controlled by core permeability and confining pressure; the lower the permeability or the higher the confining pressure, the higher the starting pressure (0.02–0.08 MPa/cm, whereas, the higher the quasi-initial flow speed, the longer the nonlinear section and the more obvious the non-Darcy flow will be. The tight sandstone gas seepage mechanism study shows that the lower the reservoir permeability, the higher the starting pressure and the slower the flow velocity will be, this results in the low efficiency of natural gas migration and accumulation as well as

  6. Economic evaluation on tight sandstone gas development projects in China and recommendation on fiscal and taxation support policies

    Directory of Open Access Journals (Sweden)

    Zhen Yang

    2016-11-01

    Full Text Available China is rich in tight sandstone gas resources (“tight gas” for short. For example, the Sulige Gasfield in the Ordos Basin and the Upper Triassic Xujiahe Fm gas reservoir in the Sichuan Basin are typical tight gas reservoirs. In the past decade, tight gas reserve and production both have increased rapidly in China, but tight gas reservoirs are always managed as conventional gas reservoirs without effective fiscal, taxation and policy supports. The potential of sustainable tight gas production increase is obviously restricted. The tight gas development projects represented by the Sulige Gasfield have failed to make profit for a long period, and especially tight gas production has presented a slight decline since 2015. In this paper, a new economic evaluation method was proposed for tight gas development projects. The new method was designed to verify the key parameters (e.g. production decline rate and single-well economic service life depending on tight gas development and production characteristics, and perform the depreciation by using the production method. Furthermore, the possibility that the operation cost may rise due to pressure-boosting production and intermittent opening of gas wells is considered. The method was used for the tight gas development project of Sulige Gasfield, showing that its profit level is much lower than the enterprise's cost level of capital. In order to support a sustainable development of tight gas industry in China, it is recommended that relevant authorities issue value-added tax (VAT refund policy as soon as possible. It is necessary to restore the non-resident gas gate price of the provinces where tight gas is produced to the fair and reasonable level in addition to the fiscal subsidy of CNY0.24/m3, or offer the fiscal subsidy of CNY0.32/m3 directly based on the on-going gate price. With these support policies, tax income is expected to rise directly, fiscal expenditure will not increase, and gas

  7. Challenges to and countermeasures for the production stabilization of tight sandstone gas reservoirs of the Sulige Gasfield, Ordos Basin

    Directory of Open Access Journals (Sweden)

    Tao Lu

    2015-10-01

    Full Text Available With the grade of hydrocarbon resources becoming poorer, tight sandstone gas reservoirs may serve as the key to the enhancement of both reserves and productivity. Accordingly, high efficient and sustainable development of the large and over-large tight sandstone reservoirs is very important. However, currently, there is no effective method available for macro-analysis. Based on the latest research findings from the Sulige Gasfield, the largest onshore tight sandstone gas reservoir in China, studies were conducted in five aspects, i.e. reserve scale, development scale, dynamic reserve evaluation, rules in production declines of gasfields and undeveloped resource evaluation, to identify challenges to the production stabilization of gas reservoirs. In addition, key evidences and constraints for the solutions to the difficulties in production stabilization were proposed to provide necessary technical supports for high-efficient development in later stages. Research results show that the major challenges to production stabilization include seven aspects, such as low development induced by improper allocation of well patterns, uneven declines in productivity induced by specific features of reservoir formations and fluids, difficulties in the development of some reserves due to complex gas/water correlation, and differences in production performances by using different production techniques. Finally, guided by the development principles of “promoting productivity by using innovative technologies in different spaces and time”, 13 key technologies, such as comprehensive optimization of development well patterns, multi-dimensional matrix for gas well management and “positive” water discharging and gas production technologies, were proposed to further prolong peak production time and enhance the recovery rates of tight gas reservoirs.

  8. Controlling effect of fractures on gas accumulation and production within the tight sandstone: A case study on the Jurassic Dibei gas reservoir in the eastern part of the Kuqa foreland basin, China

    OpenAIRE

    Lu, Hui; Lu, Xuesong; Fan, Junjia; Zhao, Mengjun; Wei, Hongxing; Zhang, Baoshou; Lu, Yuhong

    2016-01-01

    Using Dibei tight sandstone gas reservoir in the eastern part of the Kuqa foreland basin as an example, this paper discusses tight sandstone reservoir fractures characterization, its effect on storage space and gas flow capacity, and its contribution to gas accumulation, enrichment and production in tight sandstone reservoir by using laser scanning confocal microscope (LSCM) observation, mercury intrusion capillary pressure (MICP) testing, and gas-water two-phase relative permeability testing...

  9. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    Energy Technology Data Exchange (ETDEWEB)

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text

  10. High-Precision Spectral Decomposition Method Based on VMD/CWT/FWEO for Hydrocarbon Detection in Tight Sandstone Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2017-07-01

    Full Text Available Seismic time-frequency analysis methods can be used for hydrocarbon detection because of the phenomena of energy and abnormal attenuation of frequency when the seismic waves travel across reservoirs. A high-resolution method based on variational mode decomposition (VMD, continuous-wavelet transform (CWT and frequency-weighted energy operator (FWEO is proposed for hydrocarbon detection in tight sandstone gas reservoirs. VMD can decompose seismic signals into a set of intrinsic mode functions (IMF in the frequency domain. In order to avoid meaningful frequency loss, the CWT method is used to obtain the time-frequency spectra of the selected IMFs. The energy separation algorithm based on FWEO can improve the resolution of time-frequency spectra and highlight abnormal energy, which is applied to track the instantaneous energy in the time-frequency spectra. The difference between the high-frequency section and low-frequency section acquired by applying the proposed method is utilized to detect hydrocarbons. Applications using the model and field data further demonstrate that the proposed method can effectively detect hydrocarbons in tight sandstone reservoirs, with good anti-noise performance. The newly-proposed method can be used as an analysis tool to detect hydrocarbons.

  11. Study on the lower limits of petrophysical parameters of the Upper Paleozoic tight sandstone gas reservoirs in the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Huiying Cui

    2017-02-01

    Full Text Available There hasn't been a clear understanding of the lower limits of petrophysical parameters of tight sandstone gas reservoirs so far. However, it is an important question directly related to exploration and development strategies. Research methods of the lower limits of petrophysical parameters are reviewed. The new minimum flow pore throat radius method is used to determine the lower limit of flow pore throat radius. The relative permeability curve method, irreducible water saturation method, and testing method, are used to determine the lower limits of porosity, permeability, and gas saturation. After the comprehensive analysis, the lower limits of petrophysical parameters of the Upper Paleozoic tight sandstone gas reservoirs in Ordos Basin are thought as follows: the minimum flow pore throat radius is 0.02 μm, the lower limits of porosity are 3%, the permeability is 0.02 × 10−3 μm2 and the gas saturation is 20%. Besides, the influence of formation pressure on porosity and permeability, the tight sandstone gas filling mechanism, and reservoir characterization petrophysical parameters of tight sandstone reservoirs are further discussed.

  12. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinzhi Zhu

    2017-07-01

    Full Text Available In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis; using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability; and evaluating the loading capacity of filter cakes. The experimental results show that (1 oil phase trapping damage and solid phase invasion are the main formation damage types; (2 the damage degree of filtrate is the strongest on the matrix; and (3 the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.

  13. Controlling effect of fractures on gas accumulation and production within the tight sandstone: A case study on the Jurassic Dibei gas reservoir in the eastern part of the Kuqa foreland basin, China

    Directory of Open Access Journals (Sweden)

    Hui Lu

    2016-02-01

    Full Text Available Using Dibei tight sandstone gas reservoir in the eastern part of the Kuqa foreland basin as an example, this paper discusses tight sandstone reservoir fractures characterization, its effect on storage space and gas flow capacity, and its contribution to gas accumulation, enrichment and production in tight sandstone reservoir by using laser scanning confocal microscope (LSCM observation, mercury intrusion capillary pressure (MICP testing, and gas-water two-phase relative permeability testing. The statistics of laser scanning confocal microscopy observation showed that the microstructural fractures width in the Dibei gas reservoir was mainly 8–25 μm, and the associated micro-fractures width was mainly 4–10 μm. Additionally, the throat radius was mainly 1–4 μm. The fractures width was significantly wider than the throat radius that served as the main channel of in gas flow. In addition, it illustrated that the samples with developed fractures became easier for gas to flow under equal porosity condition, because of lower expulsion pressure, higher mercury injection saturation, and increased gas relative permeability based on the physical simulation experiment of gas charging into core samples with saturated water, mercury injection and gas-water two-phase permeability experiments. Furthermore, it had been concluded that the fractures control tight gas in the following aspects: (1 Fractures play a significant role in reservoir property improvement. The isolated pores were linked by the fractures to form connective reservoir spaces, and dissolution is prone to occur along the fractures forming new pores. The fractures with bigger width are reservoir space as well. (2 Fractures increased fluid flow capacity because it decreased the starting pressure gradient, and it increased gas effective permeability. Thus, fractures improved the gas injection efficiency as well as gas production. (3 Fractures that developed in different time and spatial

  14. Performance evaluation on water-producing gas wells based on gas & water relative permeability curves: A case study of tight sandstone gas reservoirs in the Sulige gas field, Ordos Basin

    Directory of Open Access Journals (Sweden)

    Yuegang Li

    2016-01-01

    Full Text Available An outstanding issue in the oil and gas industry is how to evaluate quantitatively the influences of water production on production performance of gas wells. Based on gas–water flow theories, therefore, a new method was proposed in this paper to evaluate quantitatively the production performance of water-producing gas wells by using gas & water relative permeability curves after a comparative study was conducted thoroughly. In this way, quantitative evaluation was performed on production capacity, gas production, ultimate cumulative gas production and recovery factor of water-producing gas wells. Then, a case study was carried out of the tight sandstone gas reservoirs with strong heterogeneity in the Sulige gas field, Ordos Basin. This method was verified in terms of practicability and reliability through a large amount of calculation based on the actual production performance data of various gas wells with different volumes of water produced. Finally, empirical formula and charts were established for water-producing gas wells in this field to quantitatively evaluate their production capacity, gas production, ultimate cumulative gas production and recovery factor in the conditions of different water–gas ratios. These formula and charts provide technical support for the field application and dissemination of the method. Study results show that water production is serious in the west of this field with water–gas ratio varying in a large range. If the average water–gas ratio is 1.0 (or 2.0 m3/104 m3, production capacity, cumulative gas production and recovery factor of gas wells will be respectively 24.4% (or 40.2%, 24.4% (or 40.2% and 17.4% (or 33.2%.

  15. Optimization of a development well pattern based on production performance: A case study of the strongly heterogeneous Sulige tight sandstone gas field, Ordos Basin

    Directory of Open Access Journals (Sweden)

    Yuegang Li

    2015-01-01

    Full Text Available As a typical tight sandstone gas field with strong heterogeneity, the Sulige Gas Field in the Ordos Basin faces major challenges in its development because the reservoirs in the gas field are small in effective sand scale, rapid in lithologic change, strong in plane heterogeneity, and poor in connectivity. How to scientifically deploy development wells to improve the recovery is the most important issue for the successful development of this kind of gas fields. Therefore, a well inference analysis was conducted to figure out the impact of well pattern density on the recovery based on the research of many years in gas field development methods and the summary of practical effect. In this paper, we put forward for the first time the concept of inter-well interference probability, and present the relationship between the probability of inter-well interference and well pattern density of the Sulige Gas Field. Then we established a mathematical model for the optimization of development well pattern by combining fine sand anatomy, reservoir engineering, numerical simulation and economic evaluation, and obtained a quantitative relationship between recovery and well pattern density. Furthermore, on the basis of comprehensive analysis, a reasonable development well pattern was designed for the Sulige Gas Field: this well pattern is parallelogram in shape, with a density of 3.1 wells/km2, well spacing of 500 m, and row spacing of 650 m. Development practices have confirmed that this scheme is capable of achieving better economic benefits, producing geological reserves as far as possible and improving the ultimate recovery of such gas fields.

  16. The effect of fluid saturation on the dynamic shear modulus of tight sandstones

    Science.gov (United States)

    Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Shuai, Da

    2017-10-01

    Tight sandstones have become important targets in the exploration of unconventional oil and gas reservoirs. However, due to low porosity, low permeability, complex pore structure and other petrophysical properties of tight sandstones, the applicability of Gassmann’s fluid substitution procedure becomes debatable. Aiming at this problem, this paper attempts to explore the applicability of Gassmann’s theory in tight sandstones. Our focus is to investigate the sensitivity of dynamic shear modulus to fluid saturation and the possible mechanism. Ultrasonic velocity in dry and saturated tight sandstone samples was measured in the laboratory under an effective pressure within the range of 1-60 MPa. This study shows that the shear modulus of the water-saturated samples appears to either increase or decrease, and the soft porosity model (SPM) can be used to quantitatively estimate the variation of shear modulus. Under the condition of in situ pressure, samples dominated by secondary pores and microcracks are prone to show shear strengthening with saturation, which is possibly attributed to the local flow dispersion. Samples that mainly have primary pores are more likely to show shear weakening with saturation, which can be explained by the surface energy mechanism. We also find good correlation between changes in shear modulus and inaccurate Gassmann-predicted saturated velocity. Therefore, understanding the variation of shear modulus is helpful to improving the applicability of Gassmann’s theory in tight sandstones.

  17. Diagenesis and Fluid Flow Variability of Structural Heterogeneity Units in Tight Sandstone Carrier Beds of Dibei, Eastern Kuqa Depression

    Directory of Open Access Journals (Sweden)

    H. Shi

    2017-01-01

    Full Text Available Tight sand gas plays an important role in the supply of natural gas production. It has significance for predicting sweet spots to recognize the characteristics and forming of heterogeneity in tight sandstone carrier beds. Heterogeneity responsible for spatial structure, such as the combination and distribution of relatively homogeneous rock layers, is basically established by deposition and eodiagenesis that collectively affect the mesogenesis. We have investigated the structural heterogeneity units by petrofacies in tight sandstone carrier beds of Dibei, eastern Kuqa Depression, according to core, logging, and micropetrology. There are four types of main petrofacies, that is, tight compacted, tight carbonate-cemented, gas-bearing, and water-bearing sandstones. The brine-rock-hydrocarbon diagenesis changes of different heterogeneity structural units have been determined according to the pore bitumen, hydrocarbon inclusions, and quantitative grain fluorescence. Ductile grains or eogenetic calcite cements destroy the reservoir quality of tight compacted or tight carbonate-cemented sandstones. Rigid grains can resist mechanical compaction and oil emplacement before gas charging can inhibit diagenesis to preserve reservoir property of other sandstones. We propose that there is an inheritance relationship between the late gas and early oil migration pathways, which implies that the sweet spots develop in the reservoirs that experienced early oil emplacement.

  18. Quantifying opening-mode fracture spatial organization in horizontal wellbore image logs, core and outcrop: Application to Upper Cretaceous Frontier Formation tight gas sandstones, USA

    Science.gov (United States)

    Li, J. Z.; Laubach, S. E.; Gale, J. F. W.; Marrett, R. A.

    2018-03-01

    The Upper Cretaceous Frontier Formation is a naturally fractured gas-producing sandstone in Wyoming. Regionally, random and statistically more clustered than random patterns exist in the same upper to lower shoreface depositional facies. East-west- and north-south-striking regional fractures sampled using image logs and cores from three horizontal wells exhibit clustered patterns, whereas data collected from east-west-striking fractures in outcrop have patterns that are indistinguishable from random. Image log data analyzed with the correlation count method shows clusters ∼35 m wide and spaced ∼50 to 90 m apart as well as clusters up to 12 m wide with periodic inter-cluster spacings. A hierarchy of cluster sizes exists; organization within clusters is likely fractal. These rocks have markedly different structural and burial histories, so regional differences in degree of clustering are unsurprising. Clustered patterns correspond to fractures having core quartz deposition contemporaneous with fracture opening, circumstances that some models suggest might affect spacing patterns by interfering with fracture growth. Our results show that quantifying and identifying patterns as statistically more or less clustered than random delineates differences in fracture patterns that are not otherwise apparent but that may influence gas and water production, and therefore may be economically important.

  19. Fault features and enrichment laws of narrow-channel distal tight sandstone gas reservoirs: A case study of the Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zhongping Li

    2016-11-01

    Full Text Available The Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin, is the main base of Sinopec Southwest Oil & Gas Company for gas reserves and production increase during the 12th Five-Year Plan. However, its natural gas exploration and development process was restricted severely, since the exploration wells cannot be deployed effectively in this area based on the previous gas accumulation and enrichment pattern of “hydrocarbon source fault + channel sand body + local structure”. In this paper, the regional fault features and the gas accumulation and enrichment laws were discussed by analyzing the factors like fault evolution, fault elements, fault-sand body configuration (the configuration relationship between hydrocarbon source faults and channel sand bodies, trap types, and reservoir anatomy. It is concluded that the accumulation and enrichment of the Shaximiao Fm gas reservoir in this area is controlled by three factors, i.e., hydrocarbon source, sedimentary facies and structural position. It follows the accumulation laws of source controlling region, facies controlling zone and position controlling reservoir, which means deep source and shallow accumulation, fault-sand body conductivity, multiphase channel, differential accumulation, adjusted enrichment and gas enrichment at sweet spots. A good configuration relationship between hydrocarbon source faults and channel sand bodies is the basic condition for the formation of gas reservoirs. Natural gas accumulated preferentially in the structures or positions with good fault-sand body configuration. Gas reservoirs can also be formed in the monoclinal structures which were formed after the late structural adjustment. In the zones supported by multiple faults or near the crush zones, no gas accumulation occurs, but water is dominantly produced. The gas-bearing potential is low in the area with undeveloped faults or being 30 km away from the hydrocarbon source faults. So

  20. Effect of pore structure on the seepage characteristics of tight sandstone reservoirs: A case study of Upper Jurassic Penglaizhen Fm reservoirs in the western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Liqiang Sima

    2017-01-01

    Full Text Available Tight sandstone reservoirs are characterized by complex pore structures and strong heterogeneity, and their seepage characteristics are much different from those of conventional sandstone reservoirs. In this paper, the tight sandstone reservoirs of Upper Jurassic Penglaizhen Fm in western Sichuan Basin were analyzed in terms of their pore structures by using the data about physical property, mercury injection and nuclear magnetic resonance (NMR tests. Then, the seepage characteristics and the gas–water two-phase migration mechanisms and distribution of tight sandstone reservoirs with different types of pore structures in the process of hydrocarbon accumulation and development were simulated by combining the relative permeability experiment with the visual microscopic displacement model. It is shown that crotch-like viscous fingering occurs in the process of gas front advancing in reservoirs with different pore structures. The better the pore structure is, the lower the irreducible water saturation is; the higher the gas-phase relative permeability of irreducible water is, the more easily the gas reservoir can be developed. At the late stage of development, the residual gas is sealed in reservoirs in the forms of bypass, cutoff and dead end. In various reservoirs, the interference between gas and water is stronger, so gas and water tends to be produced simultaneously. The sealed gas may reduce the production rate of gas wells significantly, and the existence of water phase may reduce the gas permeability greatly; consequently, the water-bearing low-permeability tight sandstone gas reservoirs reveal serious water production, highly-difficult development and low-recovery percentage at the late stage, which have adverse impacts on the effective production and development of gas wells.

  1. Experimental evaluation on the damages of different drilling modes to tight sandstone reservoirs

    Directory of Open Access Journals (Sweden)

    Gao Li

    2017-07-01

    Full Text Available The damages of different drilling modes to reservoirs are different in types and degrees. In this paper, the geologic characteristics and types of such damages were analyzed. Then, based on the relationship between reservoir pressure and bottom hole flowing pressure corresponding to different drilling modes, the experimental procedures on reservoir damages in three drilling modes (e.g. gas drilling, liquid-based underbalanced drilling and overbalanced drilling were designed. Finally, damage simulation experiments were conducted on the tight sandstone reservoir cores of the Jurassic Ahe Fm in the Tarim Basin and Triassic Xujiahe Fm in the central Sichuan Basin. It is shown that the underbalanced drilling is beneficial to reservoir protection because of its less damage on reservoir permeability, but it is, to some extent, sensitive to the stress and the empirical formula of stress sensitivity coefficient is obtained; and that the overbalanced drilling has more reservoir damages due to the invasion of solid and liquid phases. After the water saturation of cores rises to the irreducible water saturation, the decline of gas logging permeability speeds up and the damage degree of water lock increases. It is concluded that the laboratory experiment results of reservoir damage are accordant with the reservoir damage characteristics in actual drilling conditions. Therefore, this method reflects accurately the reservoir damage characteristics and can be used as a new experimental evaluation method on reservoir damage in different drilling modes.

  2. Gas-Water Flow Behavior in Water-Bearing Tight Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2017-01-01

    Full Text Available Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.

  3. Tight connection between fission gas discharge channels

    International Nuclear Information System (INIS)

    Jung, W.; Peehs, M.; Rau, P.; Krug, W.; Stechemesser, H.

    1978-01-01

    The invention is concerned with the tight connection between the fission gas discharge channel, leading away from the support plate of a gas-cooled reactor, and the top of the fuel element suspended from this support plate. The closure is designed to be gas-tight for the suspended as well as for the released fuel element. The tight connection has got an annular body resting on the core support plate in the mouth region of the fission gas discharge channel. This body is connected with the fission gas discharge channel in the fuel element top fitting via a gas-tight part and supported by a compression spring. Care is taken for sealing if the fuel element is removal. (RW) [de

  4. Gas tightness detecting method for overpack

    International Nuclear Information System (INIS)

    Harashima, Takeo; Hasegawa, Yasuyuki

    1999-01-01

    High level radioactive wastes and timing gas generation means for jetting out an inert gas after a predetermined period of time are contained together in a steel overpack. A steel lid is welded to the opening of the overpack so as to seal the high level radioactive wastes and the timing gas generation means. Then, the inert gas is jetted out from the timing gas generating device, and the gas tightness is detected by detecting the inert gas at the circumference of the overpack. Alternatively, a corrosion resistant coating layer having a gas generation means for jetting out an inert gas is coated at the circumference of a steel overpack containing high level radioactive wastes, and the overpack is sealed. The inert gas is generated from the gas generating means in the coating layer, and the inert gas at the periphery of the coating layer is detected to determine gas tightness. (N.H.)

  5. Lithofacies paleogeography mapping and reservoir prediction in tight sandstone strata: A case study from central Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Yuan Zhong

    2017-09-01

    Full Text Available Sand-rich tight sandstone reservoirs are potential areas for oil and gas exploration. However, the high ratio of sandstone thickness to that of the strata in the formation poses many challenges and uncertainties to traditional lithofacies paleogeography mapping. Therefore, the prediction of reservoir sweet spots has remained problematic in the field of petroleum exploration. This study provides new insight into resolving this problem, based on the analyses of depositional characteristics of a typical modern sand-rich formation in a shallow braided river delta of the central Sichuan Basin, China. The varieties of sand-rich strata in the braided river delta environment include primary braided channels, secondary distributary channels and the distribution of sediments is controlled by the successive superposed strata deposited in paleogeomorphic valleys. The primary distributary channels have stronger hydrodynamic forces with higher proportions of coarse sand deposits than the secondary distributary channels. Therefore, lithofacies paleogeography mapping is controlled by the geomorphology, valley locations, and the migration of channels. We reconstructed the paleogeomorphology and valley systems that existed prior to the deposition of the Xujiahe Formation. Following this, rock-electro identification model for coarse skeletal sand bodies was constructed based on coring data. The results suggest that skeletal sand bodies in primary distributary channels occur mainly in the valleys and low-lying areas, whereas secondary distributary channels and fine deposits generally occur in the highland areas. The thickness distribution of skeletal sand bodies and lithofacies paleogeography map indicate a positive correlation in primary distributary channels and reservoir thickness. A significant correlation exists between different sedimentary facies and petrophysical properties. In addition, the degree of reservoir development in different sedimentary facies

  6. Microscopic surface wettability electrochemical characterization of tight sandstone with infrared spectra testing

    Science.gov (United States)

    Song, L.; Ning, Z. F.; Li, N.; Zhang, B.; Ding, G. Y.

    2017-08-01

    The distribution of charge density on the surface of microscopic tight oil is studied by using Stern double electric layer theory, and the mathematical flow model of polar fluid with micro powers in tight oil reservoir is established. The Fourier transform infrared (FTIR) were used to investigate the interaction of rock surface functional groups with fluids. The results show that: (1) When the external fluid of the polar group passes through the dense micro-nano pore, it will form an electric double layer on the surface of the rock, there will be a certain thickness of the liquid membrane, the fluid migration has a certain Of the electrical viscosity effect, will have a certain flow resistance. (2) The Fourier transform infrared spectroscopy of the Chang 7 tight reservoir rock samples exists and distributes different kinds of peaks. The left peak trend determines the presence of hydroxyl groups. The four fronts and types of the right side can be used to obtain that calcium carbonate CO3 2- exists. (3) There are CO3 2- and hydroxyl functional minerals in the Chang 7 tight sandstone samples. It is consistent with the basic mineral analysis measured by X-ray diffraction. When the external fluid affects the rock surface, the surface will occur in the physical van der Waals force and chemical bond interaction, so it will affect the flow of water on the surface.

  7. Permeability in Rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke; Fisher, Quentin

    2015-01-01

    Permeability characterisation of low permeability, clay-rich gas sandstones is part of production forecasting and reservoir management. The physically based Kozeny (1927) equation linking permeability with porosity and pore size is derived for a porous medium with a homogeneous pore size, whereas...... the pore sizes in tight sandstones can range from nm to μm. Nuclear magnetic resonance (NMR) transverse relaxation was used to estimate a pore size distribution for 63 samples of Rotliegend sandstone. The surface relaxation parameter required to relate NMR to pore size is estimated by combination of NMR...... and mercury injection data. To estimate which pores control permeability to gas, gas permeability was calculated for each pore size increment by using the Kozeny equation. Permeability to brine is modelled by assuming a bound water layer on the mineral pore interface. The measured brine permeabilities...

  8. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  9. Tight gas sand tax credit yields opportunities

    International Nuclear Information System (INIS)

    Lewis, F.W.; Osburn, A.S.

    1991-01-01

    The U.S. Internal Revenue Service on Apr. 1, 1991, released the inflation adjustments used in the calculations of Non-Conventional Fuel Tax Credits for 1990. The inflation adjustment, 1.6730, when applied to the base price of $3/bbl of oil equivalent, adjusts the tax credit to $5.019/bbl for oil and 86.53 cents/MMBTU for gas. The conversion factor for equivalent fuels is 5.8 MMBTU/bbl. Unfortunately, the tax credit for tight formation gas continues to be unadjusted for inflation and remains 52 cents/MMBTU. As many producers are aware, the Omnibus Budget Reconciliation Act of 1990 expanded the dates of eligibility and the usage for-Non-Conventional Fuel Tax Credits. Among other provisions, eligible wells may be placed in service until Jan. 1, 1992, and once in place may utilize the credit for production through Dec. 31, 2002. Both dates are 2 year extensions from previous regulations

  10. Experimental study and theoretical interpretation of saturation effect on ultrasonic velocity in tight sandstones under different pressure conditions

    Science.gov (United States)

    Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Huang, Shiqi; Shuai, Da

    2018-03-01

    Understanding the influence of lithology, porosity, permeability, pore structure, fluid content and fluid distribution on the elastic wave properties of porous rocks is of great significance for seismic exploration. However, unlike conventional sandstones, the petrophysical characteristics of tight sandstones are more complex and less understood. To address this problem, we measured ultrasonic velocity in partially saturated tight sandstones under different effective pressures. A new model is proposed, combining the Mavko-Jizba-Gurevich relations and the White model. The proposed model can satisfactorily simulate and explain the saturation dependence and pressure dependence of velocity in tight sandstones. Under low effective pressure, the relationship of P-wave velocity to saturation is pre-dominantly attributed to local (pore scale) fluid flow and inhomogeneous pore-fluid distribution (large scale). At higher effective pressure, local fluid flow gradually decreases, and P-wave velocity gradually shifts from uniform saturation towards patchy saturation. We also find that shear modulus is more sensitive to saturation at low effective pressures. The new model includes wetting ratio, an adjustable parameter that is closely related to the relationship between shear modulus and saturation.

  11. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-30

    The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and

  12. US production of natural gas from tight reservoirs

    International Nuclear Information System (INIS)

    1993-01-01

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission's (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ''legally tight'' reservoirs. Additional production from ''geologically tight'' reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA's tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government's regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs

  13. Western tight gas sands advanced logging workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, J B; Carroll, Jr, H B [eds.

    1982-04-01

    An advanced logging research program is one major aspect of the Western Tight Sands Program. Purpose of this workshop is to help BETC define critical logging needs for tight gas sands and to allow free interchange of ideas on all aspects of the current logging research program. Sixteen papers and abstracts are included together with discussions. Separate abstracts have been prepared for the 12 papers. (DLC)

  14. Formation Damage due to Drilling and Fracturing Fluids and Its Solution for Tight Naturally Fractured Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Tianbo Liang

    2017-01-01

    Full Text Available Drilling and fracturing fluids can interact with reservoir rock and cause formation damage that impedes hydrocarbon production. Tight sandstone reservoir with well-developed natural fractures has a complex pore structure where pores and pore throats have a wide range of diameters; formation damage in such type of reservoir can be complicated and severe. Reservoir rock samples with a wide range of fracture widths are tested through a multistep coreflood platform, where formation damage caused by the drilling and/or fracturing fluid is quantitatively evaluated and systematically studied. To further mitigate this damage, an acidic treating fluid is screened and evaluated using the same coreflood platform. Experimental results indicate that the drilling fluid causes the major damage, and the chosen treating fluid can enhance rock permeability both effectively and efficiently at least at the room temperature with the overburden pressure.

  15. Prediction of Gas Leak Tightness of Superplastically Formed Products

    NARCIS (Netherlands)

    Snippe, Q.H.C.; Meinders, Vincent T.; Barlat, F; Moon, Y.H.; Lee, M.G.

    2010-01-01

    In some applications, in this case an aluminium box in a subatomic particle detector containing highly sensitive detecting devices, it is important that a formed sheet should show no gas leak from one side to the other. In order to prevent a trial-and-error procedure to make this leak tight box, a

  16. 18 CFR 270.304 - Tight formation gas.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Tight formation gas. 270.304 Section 270.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... before January 1, 1980; and (2) The applicant has no knowledge of any information not described in the...

  17. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical

  18. Coalbed methane and tight gas no longer unconventional resources

    International Nuclear Information System (INIS)

    Gatens, M.

    2006-01-01

    Unconventional gas refers to natural gas contained in difficult-to-produce formations that require special drilling and completion techniques to achieve commercial production. It includes tight gas, coal seams, organic shales, and gas hydrates. Canada's vast unconventional gas resource is becoming an increasingly important part of the country's gas supply. The emergence of unconventional gas production in Canada over the past several years has made the unconventional increasingly conventional in terms of industry activity. It was suggested that in order to realize the potential for unconventional gas in Canada, all stakeholders should engage to ensure the development is environmentally responsible. Unconventional gas accounts for nearly one third of U.S. gas production. It also accounts for nearly 5 Bcf per day and growing. The impetus to this sudden growth has been the gradual and increasing contribution of tight sands and limes to Canadian production, which accounts for more than 4 Bcf per day. Coalbed methane (CBM) is at 0.5 Bcf per day and growing. In response to expectations that CBM will reach 2 to 3 Bcf per day over the next 2 decades, Canadian producers are placing more emphasis on unconventional resource plays, including organic shales and gas hydrates. As such, significant growth of unconventional gas is anticipated. This growth will be facilitated by the adoption of U.S..-developed technologies and new Canadian technologies. It was suggested that research and development will be key to unlocking the unconventional gas potential. It was also suggested that the already existing, strong regulatory structure should continue in order to accommodate this growth in a sustainable manner. figs

  19. Research on evaluation method for water saturation of tight sandstone in Suxi region

    Science.gov (United States)

    Lv, Hong; Lai, Fuqiang; Chen, Liang; Li, Chao; Li, Jie; Yi, Heping

    2017-05-01

    The evaluation of irreducible water saturation is important for qualitative and quantitative prediction of residual oil distribution. However, it is to be improved for the accuracy of experimental measuring the irreducible water saturation and logging evaluation. In this paper, firstly the multi-functional core flooding experiment and the nuclear magnetic resonance centrifugation experiment are carried out in the west of Sulige gas field. Then, the influence was discussed about particle size, porosity and permeability on the water saturation. Finally, the evaluation model was established about irreducible water saturation and the evaluation of irreducible water saturation was carried out. The results show that the results of two experiments are both reliable. It is inversely proportional to the median particle size, porosity and permeability, and is most affected by the median particle size. The water saturation of the dry layer is higher than that of the general reservoir. The worse the reservoir property, the greater the water saturation. The test results show that the irreducible water saturation model can be used to evaluate the water floor.

  20. Gas transport in tight porous media Gas kinetic approach

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Wesselingh, Johannes

    2008-01-01

    We describe the flow of gas in a porous medium in the kinetic regime, where the viscous flow structure is not formed in separate pores. Special attention is paid to the dense kinetic regime, where the interactions within the gas are as important as the interaction with the porous medium....... The transport law for this regime is derived by means of the gas kinetic theory, in the framework of the model of "heavy gas in light one". The computations of the gas kinetic theory are confirmed by the dimension analysis and a simplified derivation revealing the considerations behind the kinetic derivation...

  1. Contraption and Prediction of Exhalation Tight Brownstone in Exhalation Cistern

    OpenAIRE

    XhingZhiwang, -; Xuchao, -

    2012-01-01

    The reservoir connate water saturation is high and gas wells generally produce water which seriously affects the productivity of gas wells in Xujiahe tight sandstone gas reservoirs in Sichuan Basin. Take the sixth formation for example, there are 39 wells producing water unequally in the 42 commissioning wells, and the excessive water production leads to the production of the gas well declining rapidly. Studying of the mechanism of water production in tight sandstone gas reservoirs and predic...

  2. A New Method to Identify Reservoirs in Tight Sandstones Based on the New Model of Transverse Relaxation Time and Relative Permeability

    Directory of Open Access Journals (Sweden)

    Yuhang Guo

    2017-01-01

    Full Text Available Relative permeability and transverse relaxation time are both important physical parameters of rock physics. In this paper, a new transformation model between the transverse relaxation time and the wetting phase’s relative permeability is established. The data shows that the cores in the northwest of China have continuous fractal dimension characteristics, and great differences existed in the different pore size scales. Therefore, a piece-wise method is used to calculate the fractal dimension in our transformation model. The transformation results are found to be quite consistent with the relative permeability curve of the laboratory measurements. Based on this new model, we put forward a new method to identify reservoir in tight sandstone reservoir. We focus on the Well M in the northwestern China. Nuclear magnetic resonance (NMR logging is used to obtain the point-by-point relative permeability curve. In addition, we identify the gas and water layers based on new T2-Kr model and the results showed our new method is feasible. In the case of the price of crude oil being low, this method can save time and reduce the cost.

  3. Gas transport in tight porous media Gas kinetic approach

    NARCIS (Netherlands)

    Shapiro, A. A.; Wesselingh, Johannes

    2008-01-01

    We describe the flow of gas in a porous medium in the kinetic regime, where the viscous flow structure is not formed in separate pores. Special attention is paid to the dense kinetic regime, where the interactions within the gas are as important as the interaction with the porous medium. The

  4. Pore-scale mechanisms of gas flow in tight sand reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the

  5. Permeability model of tight reservoir sandstones combining core-plug and miniperm analysis of drillcore; longyearbyen co2lab, Svalbard

    NARCIS (Netherlands)

    Magnabosco, Cara; Braathen, Alvar; Ogata, Kei

    2014-01-01

    Permeability measurements in Mesozoic, low-permeability sandstone units within the strata cored in seven drillholes near Longyearbyen, Svalbard, have been analysed to assess the presence of aquifers and their potentials as reservoirs for the storage of carbon dioxide. These targeted sandstones are

  6. ZTE imaging of tight sandstone rocks at 9.4T - Comparison with standard NMR analysis at 0.05T.

    Science.gov (United States)

    Węglarz, Władysław P; Krzyżak, Artur; Stefaniuk, Michał

    2016-05-01

    Zero echo time (ZTE) imaging at 9.4T was used to assess local water saturation level in the tight sandstone rocks. The results were compared with the industry standard porosity estimation basing on T2 relaxation analysis at 0.05T. A linear dependence between the two was achieved. This suggests the possibility to use 3D ZTE method for assessment of local amount of water in rocks. The method can be applicable in investigation of water saturation processes in tight rocks, where imaging methods based on spin echo like RARE failed due to short T2, while single point imaging (SPI) is impractical due to long acquisition time. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Naturally fractured tight gas reservoir detection optimization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-19

    This DOE-funded research into seismic detection of natural fractures is one of six projects within the DOE`s Detection and Analysis of Naturally Fractured Gas Reservoirs Program, a multidisciplinary research initiative to develop technology for prediction, detection, and mapping of naturally fractured gas reservoirs. The demonstration of successful seismic techniques to locate subsurface zones of high fracture density and to guide drilling orientation for enhanced fracture permeability will enable better returns on investments in the development of the vast gas reserves held in tight formations beneath the Rocky Mountains. The seismic techniques used in this project were designed to capture the azimuthal anisotropy within the seismic response. This seismic anisotropy is the result of the symmetry in the rock fabric created by aligned fractures and/or unequal horizontal stresses. These results may be compared and related to other lines of evidence to provide cross-validation. The authors undertook investigations along the following lines: Characterization of the seismic anisotropy in three-dimensional, P-wave seismic data; Characterization of the seismic anisotropy in a nine-component (P- and S-sources, three-component receivers) vertical seismic profile; Characterization of the seismic anisotropy in three-dimensional, P-to-S converted wave seismic data (P-wave source, three-component receivers); and Description of geological and reservoir-engineering data that corroborate the anisotropy: natural fractures observed at the target level and at the surface, estimation of the maximum horizontal stress in situ, and examination of the flow characteristics of the reservoir.

  8. Petrographic characterization to build an accurate rock model using micro-CT: Case study on low-permeable to tight turbidite sandstone from Eocene Shahejie Formation.

    Science.gov (United States)

    Munawar, Muhammad Jawad; Lin, Chengyan; Cnudde, Veerle; Bultreys, Tom; Dong, Chunmei; Zhang, Xianguo; De Boever, Wesley; Zahid, Muhammad Aleem; Wu, Yuqi

    2018-03-26

    Pore scale flow simulations heavily depend on petrographic characterizing and modeling of reservoir rocks. Mineral phase segmentation and pore network modeling are crucial stages in micro-CT based rock modeling. The success of the pore network model (PNM) to predict petrophysical properties relies on image segmentation, image resolution and most importantly nature of rock (homogenous, complex or microporous). The pore network modeling has experienced extensive research and development during last decade, however the application of these models to a variety of naturally heterogenous reservoir rock is still a challenge. In this paper, four samples from a low permeable to tight sandstone reservoir were used to characterize their petrographic and petrophysical properties using high-resolution micro-CT imaging. The phase segmentation analysis from micro-CT images shows that 5-6% microporous regions are present in kaolinite rich sandstone (E3 and E4), while 1.7-1.8% are present in illite rich sandstone (E1 and E2). The pore system percolates without micropores in E1 and E2 while it does not percolate without micropores in E3 and E4. In E1 and E2, total MICP porosity is equal to the volume percent of macrospores determined from micro-CT images, which indicate that the macropores are well connected and microspores do not play any role in non-wetting fluid (mercury) displacement process. Whereas in E3 and E4 sandstones, the volume percent of micropores is far less (almost 50%) than the total MICP porosity which means that almost half of the pore space was not detected by the micro-CT scan. PNM behaved well in E1 and E2 where better agreement exists in PNM and MICP measurements. While E3 and E4 exhibit multiscale pore space which cannot be addressed with single scale PNM method, a multiscale approach is needed to characterize such complex rocks. This study provides helpful insights towards the application of existing micro-CT based petrographic characterization methodology

  9. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach

    Science.gov (United States)

    Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos

    2016-08-01

    3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.

  10. Occurrence and distribution characteristics of fluids in tight sandstone reservoirs in the Shilijiahan zone, northern Ordos Basin

    Directory of Open Access Journals (Sweden)

    Gongqiang Li

    2017-05-01

    Full Text Available High-yield gas layers, low-yield gas layers and (gas bearing water layers of Upper Paleozoic coexist in the Shilijiahan zone in the northern Ordos Basin, but gas–water distribution characteristics, laws and influence factors are not understood well, so the exploration and development of natural gas in this zone are restricted. In this paper, statistical analysis was carried out on the data of Upper Paleozoic formation water in this zone, e.g. salinity, pH value and ion concentration. It is shown that the formation water in this zone is of CaCl2 type. Then, the origin, types, controlling factors and spatial distribution characteristics of formation water were figured out by using core, mud logging, well logging and testing data, combined with the classification and evaluation results of geochemical characteristics of formation water. Besides, the logging identification chart of gas, water and dry layers in this zone was established. Finally, the occurrence and distribution laws of reservoir fluids were defined. The formation water of CaCl2 type indicates a good sealing capacity in this zone, which is favorable for natural gas accumulation. It is indicated that the reservoir fluids in this zone exist in the state of free water, capillary water and irreducible water. Free water is mainly distributed in the west of this zone, irreducible water in the east, and capillary water in the whole zone. The logging identification chart has been applied in many wells in this zone like Well Jin 86. The identification result is basically accordant with the gas testing result. It is verified that gas and water layers can be identified effectively based on this logging identification chart.

  11. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-09-01

    Full Text Available How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry. To solve this problem, domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume (SRV fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tight-gas carbonate reservoir, which has achieved a good stimulation effect in the pilot tests. To determine what reservoir conditions are suitable to carry out volume acid fracturing, this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas, and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate. Then, this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance, natural fracture, horizontal principal stress difference, orientation of in-situ stress and natural fracture, and gives the solution for the limitation. The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production; the incremental or stimulation response is closely related with reservoir fracturing performance, the degree of development of natural fracture, the small intersection angle between hydraulic fracture and natural fracture, the large horizontal principal stress difference is easy to form a narrow fracture zone, and it is disadvantageous to create fracture network, but the degradable fiber diversion technology may largely weaken the disadvantage. The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate

  12. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    Energy Technology Data Exchange (ETDEWEB)

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600

  13. The Effect of Moisture Content On Gas Permeability of Unsaturated Sandstones: Implications For Vapour Transport

    Science.gov (United States)

    Griffiths, K. J.; Bloomfield, J. P.; Williams, P. J.; Gooddy, D. C.

    Work has been undertaken to assess the impact of moisture content on the gas perme- ability of sandstones and the implications this may have for transport of Volatile Or- ganic Carbon compounds (VOCs) within the unsaturated zone. Different lithologies from the Permo-Triassic Sandstones of the UK were selected and laboratory stud- ies conducted to evaluate their permeability and capillary pressure-saturation (PcSw) behaviour. Measured gas permeabilities have been compared with modelled relative permeabilities which have been derived by applying the van Genuchten function to the PcSw curves. For some of the lithologies gas permeability was found to increase by several orders of magnitude as moisture content was reduced to conditions equating to field capacity. Some of the finer-grained lithologies show very little increase in perme- ability even at field capacity. For these lithologies moisture contents within the unsat- urated zone may therefore have considerable implications for the transport of VOCs. Seasonal variations in moisture content may significantly reduce gas permeability in parts of the unsaturated zone at certain times of the year. By identifying which litholo- gies are most sensitive to moisture content related changes in permeability, a coherent model of the pathways and barriers to vapour transport can be developed.

  14. Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Christopher R [ORNL; He, Lilin [ORNL; Agamalian, Michael [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Bustin, Mark [University of British Columbia, Vancouver; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

    2012-01-01

    Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N{sub 2} and CO{sub 2} adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (< 2000 {angstrom}), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N{sub 2} and CO{sub 2} adsorption, is significantly less

  15. Possible continuous-type (unconventional) gas accumulation in the Lower Silurian "Clinton" sands, Medina Group and Tuscarora Sandstone in the Appalachian Basin; a progress report of the 1995 project activities

    Science.gov (United States)

    Ryder, Robert T.; Aggen, Kerry L.; Hettinger, Robert D.; Law, Ben E.; Miller, John J.; Nuccio, Vito F.; Perry, William J.; Prensky, Stephen E.; Filipo, John J.; Wandrey, Craig J.

    1996-01-01

    INTRODUCTION: In the U.S. Geological Survey's (USGS) 1995 National Assessment of United States oil and gas resources (Gautier and others, 1995), the Appalachian basin was estimated to have, at a mean value, about 61 trillion cubic feet (TCF) of recoverable gas in sandstone and shale reservoirs of Paleozoic age. Approximately one-half of this gas resource is estimated to reside in a regionally extensive, continuous-type gas accumulation whose reservoirs consist of low-permeability sandstone of the Lower Silurian 'Clinton' sands and Medina Group (Gautier and others, 1995; Ryder, 1995). Recognizing the importance of this large regional gas accumulation for future energy considerations, the USGS initiated in January 1995 a multi-year study to evaluate the nature, distribution, and origin of natural gas in the 'Clinton' sands, Medina Group sandstones, and equivalent Tuscarora Sandstone. The project is part of a larger natural gas project, Continuous Gas Accumulations in Sandstones and Carbonates, coordinated in FY1995 by Ben E. Law and Jennie L. Ridgley, USGS, Denver. Approximately 2.6 man years were devoted to the Clinton/Medina project in FY1995. A continuous-type gas accumulation, referred to in the project, is a new term introduced by Schmoker (1995a) to identify those natural gas accumulations whose reservoirs are charged throughout with gas over a large area and whose entrapment does not involve a downdip gas-water contact. Gas in these accumulations is located downdip of the water column and, thus, is the reverse of conventional-type hydrocarbon accumulations. Commonly used industry terms that are more or less synonymous with continuous-type gas accumulations include basin- centered gas accumulation (Rose and others, 1984; Law and Spencer, 1993), tight (low-permeability) gas reservoir (Spencer, 1989; Law and others, 1989; Perry, 1994), and deep basin gas (Masters, 1979, 1984). The realization that undiscovered gas in Lower Silurian sandstone reservoirs of the

  16. Design philosophy and practice of asymmetrical 3D fracturing and random fracturing: A case study of tight sand gas reservoirs in western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2015-03-01

    Full Text Available At present two technical models are commonly taken in tight gas reservoir stimulation: conventional massive fracturing and SRV fracturing, but how to select a suitable fracturing model suitable for reservoir characteristics is still a question waiting to be answered. In this paper, based on the analysis of geological characteristics and seepage mechanism of tight gas and shale gas reservoirs, the differences between stimulation philosophy of tight gas reservoirs and shale reservoirs are elucidated, and the concept that a suitable stimulation model should be selected based on reservoir geological characteristics and seepage mechanism aiming at maximally improving the seepage capability of a reservoir. Based on this concept, two fracturing design methods were proposed for two tight gas reservoirs in western Sichuan Basin: asymmetrical 3D fracturing design (A3DF for the middle-shallow Upper Jurassic Penglaizhen Fm stacked reservoirs in which the hydraulic fractures can well match the sand spatial distribution and seepage capability of the reservoirs; SRV fracturing design which can increase fracture randomness in the sandstone and shale laminated reservoirs for the 5th Member of middle-deep Upper Triassic Xujiahe Fm. Compared with that by conventional fracturing, the average production of horizontal wells fractured by A3DF increased by 41%, indicating that A3DF is appropriate for gas reservoir development in the Penglaizhen Fm; meanwhile, the average production per well of the 5th Member of the Xujiahe Fm was 2.25 × 104 m3/d after SRV fracturing, showing that the SRV fracturing is a robust technical means for the development of this reservoir.

  17. Leak testing of bubble-tight dampers using tracer gas techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lagus, P.L. [Lagus Applied Technology, Inc., San Diego, CA (United States); DuBois, L.J. [Commonwealth Edison, Zion, IL (United States); Fleming, K.M. [NCS Corporation, Columbus, OH (United States)] [and others

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  18. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    Science.gov (United States)

    Elliot, T R; Celia, M A

    2012-04-03

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.

  19. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  20. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  1. Simulation of Gas Transport in Tight/Shale Gas Reservoirs by a Multicomponent Model Based on PEBI Grid

    OpenAIRE

    Zhang, Longjun; Li, Daolun; Wang, Lei; Lu, Detang

    2015-01-01

    The ultra-low permeability and nanosize pores of tight/shale gas reservoir would lead to non-Darcy flow including slip flow, transition flow, and free molecular flow, which cannot be described by traditional Darcy’s law. The organic content often adsorbs some gas content, while the adsorbed amount for different gas species is different. Based on these facts, we develop a new compositional model based on unstructured PEBI (perpendicular bisection) grid, which is able to characterize non-Darcy ...

  2. Assessment of Permian tight oil and gas resources in the Junggar basin of China, 2016

    Science.gov (United States)

    Potter, Christopher J.; Schenk, Christopher J.; Tennyson, Marilyn E.; Klett, Timothy R.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Brownfield, Michael E.; Pitman, Janet K.; Mercier, Tracey J.; Le, Phuong A.; Drake, Ronald M.

    2017-04-05

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 764 million barrels of oil and 3.5 trillion cubic feet of gas in tight reservoirs in the Permian Lucaogou Formation in the Junggar basin of northwestern China.

  3. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This document contains the quarterly report dated January 1-March 31, 1997 for the Naturally Fractured Tight Gas Reservoir Detection Optimization project. Topics covered in this report include AVOA modeling using paraxial ray tracing, AVOA modeling for gas- and water-filled fractures, 3-D and 3-C processing, and technology transfer material. Several presentations from a Geophysical Applications Workshop workbook, workshop schedule, and list of workshop attendees are also included.

  4. Simulation of Gas Transport in Tight/Shale Gas Reservoirs by a Multicomponent Model Based on PEBI Grid

    Directory of Open Access Journals (Sweden)

    Longjun Zhang

    2015-01-01

    Full Text Available The ultra-low permeability and nanosize pores of tight/shale gas reservoir would lead to non-Darcy flow including slip flow, transition flow, and free molecular flow, which cannot be described by traditional Darcy’s law. The organic content often adsorbs some gas content, while the adsorbed amount for different gas species is different. Based on these facts, we develop a new compositional model based on unstructured PEBI (perpendicular bisection grid, which is able to characterize non-Darcy flow including slip flow, transition flow, and free molecular flow and the multicomponent adsorption in tight/shale gas reservoirs. With the proposed model, we study the effect of non-Darcy flow, length of the hydraulic fracture, and initial gas composition on gas production. The results show both non-Darcy flow and fracture length have significant influence on gas production. Ignoring non-Darcy flow would underestimate 67% cumulative gas production in lower permeable gas reservoirs. Gas production increases with fracture length. In lower permeable reservoirs, gas production increases almost linearly with the hydraulic fracture length. However, in higher permeable reservoirs, the increment of the former gradually decreases with the increase in the latter. The results also show that the presence of CO2 in the formation would lower down gas production.

  5. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    Science.gov (United States)

    Hughes, J. D.

    2012-12-01

    Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded

  6. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Wang Ruifei

    2017-12-01

    Full Text Available The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.

  7. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs

    Science.gov (United States)

    Wang, Ruifei; Gao, Xuhua; Song, Hongqing; Shang, Xinchun

    2017-12-01

    The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.

  8. Electrofacies vs. lithofacies sandstone reservoir characterization Campanian sequence, Arshad gas/oil field, Central Sirt Basin, Libya

    Science.gov (United States)

    Burki, Milad; Darwish, Mohamed

    2017-06-01

    The present study focuses on the vertically stacked sandstones of the Arshad Sandstone in Arshad gas/oil field, Central Sirt Basin, Libya, and is based on the conventional cores analysis and wireline log interpretation. Six lithofacies types (F1 to F6) were identified based on the lithology, sedimentary structures and biogenic features, and are supported by wireline log calibration. From which four types (F1-F4) represent the main Campanian sandstone reservoirs in the Arshad gas/oil field. Lithofacies F5 is the basal conglomerates at the lower part of the Arshad sandstones. The Paleozoic Gargaf Formation is represented by lithofacies F6 which is the source provenance for the above lithofacies types. Arshad sediments are interpreted to be deposited in shallow marginal and nearshore marine environment influenced by waves and storms representing interactive shelf to fluvio-marine conditions. The main seal rocks are the Campanian Sirte shale deposited in a major flooding events during sea level rise. It is contended that the syn-depositional tectonics controlled the distribution of the reservoir facies in time and space. In addition, the post-depositional changes controlled the reservoir quality and performance. Petrophysical interpretation from the porosity log values were confirmed by the conventional core measurements of the different sandstone lithofacies types. Porosity ranges from 5 to 20% and permeability is between 0 and 20 mD. Petrophysical cut-off summary of the lower part of the clastic dominated sequence (i. e. Arshad Sandstone) calculated from six wells includes net pay sand ranging from 19.5‧ to 202.05‧, average porosity from 7.7 to 15% and water saturation from 19 to 58%.

  9. Why are brittleness and fracability not equivalent in designing hydraulic fracturing in tight shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Mao Bai

    2016-03-01

    With the objective review and sensible definition of brittleness used in the present petro-physical field to identify the desirable fracturing intervals, the paper presents the ambiguities of using the brittleness to define the formation fracability and points out that the formation brittleness can be unrelated to the formation fracability. As an alternative approach, the paper provides an effective method to define the most fracable formation intervals in designing the hydraulic fracturing in tight shale gas formations.

  10. Enhanced recovery of unconventional gas. Volume II. The program. [Tight gas basins; Devonian shale; coal seams; geopressured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Kuuskraa, V.A.; Brashear, J.P.; Doscher, T.M.; Elkins, L.E.

    1978-10-01

    This study was conducted to assist public decision-makers in selecting among many choices to obtain new gas supplies by addressing 2 questions: 1) how severe is the need for additional future supplies of natural gas, and what is the economic potential of providing part of future supply through enhanced recovery from unconventional natural gas resources. The study also serves to assist the DOE in designing a cost-effective R and D program to stimulate industry to recover this unconventional gas and to produce it sooner. Tight gas basins, Devonian shale, methane from coal seams, and methane from geopressured aquifers are considered. It is concluded that unconventional sources, already providing about 1 Tcf per year, could provide from 3 to 4 Tcf in 1985 and from 6 to 8 Tcf in 1990 (at $1.75 and $3.00 per Mcf, respectively). However, even with these additions to supply, gas supply is projected to remain below 1977 usage levels. (DLC)

  11. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

  12. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those

  13. Groundwater flow associated with coalbed gas production, Ferron Sandstone, east-central Utah

    Science.gov (United States)

    Anna, L.O.

    2003-01-01

    The flow and distribution of water associated with coalbed gas production in the Ferron Sandstone was characterized utilizing a discrete fracture network model and a porous media model. A discrete fracture network model calculated fluid flux through volumes of various scales to determine scale effects, directional bulk permeability, and connectivity. The mean directional permeabilities varied by less than a factor of 6, with the northwest-southeast direction (face cleat direction) as the most conductive. Northwest southeast directed hydrofracture simulations increased permeability in all directions except the northeast-southwest, although the permeability increase was not more than a factor of 3. Cluster analysis showed that the simulated cleat network was very well connected at all simulated scales. For thick coals, the entire cleat network formed one compartment, whereas thin coals formed several compartments. Convex hulls of the compartments confirmed that the directional bulk permeability was nearly isotropic. Volumetric calculations of the Ferron coal indicated that all the water produced to date can be accounted for from the coal cleat porosity system and does not depend on contributions of water from contiguous units.Flow paths, determined from porous media modeling from recharge to discharge, indicate that the three coalbed gas (CBG) fields assessed in this study could have different groundwater chemical compositions as confirmed by geochemical data. Simulated water production from 185 wells from 1993 to 1998 showed that in 1998 the maximum head drawdown from the Drunkards Wash field was more than 365 m, and the cone of depression extended to within a short distance of the Ferron outcrop. Maximum drawdown in the Helper field was 120 m, and the maximum drawdown in the Buzzards Bench field was just over 60 m. The cone of depression for the Helper field was half the size of the Drunkards Wash field, and the cone of depression for the Buzzards Bench field was

  14. Design of the ATLAS New Small Wheel Gas Leak Tightness Station for the Micromegas Detector Modules

    CERN Document Server

    Gazis, Evangelos; The ATLAS collaboration

    2017-01-01

    In this work we describe advanced data processing and analysis techniques intended to be used in the gas tightness station at CERN for Quality Assurance and Quality Control of the New Small Wheel Micromegas Quadruplets. We combine two methods: a conventional one based on the Pressure Decay Rate and an alternative-novel one, based on the Flow Rate Loss. A prototype setup has been developed based on a Lock-in Amplifier device and should be operated in conjunction with the gas leak test via the Flow Rate Loss. Both methods have been tested by using emulated leak branches based on specific thin medical needles. The semi-automatic data acquisition, monitoring and processing system is presented also in this work while a more sophisticated environment based on the WinCC-OA SCADA is under development.

  15. Delaying the effect of an aluminum carbide drying agent in a tight gas reservoir

    Directory of Open Access Journals (Sweden)

    Liehui Zhang

    2018-03-01

    Full Text Available Water block damage is the core problem in damage to tight gas reservoirs, and the main obstacle to developing these reservoirs. When an ionic carbide (aluminum carbide: Al4C3 drying agent is injected into the reservoir, the water is quickly gasified through a drying treatment to improve the seepage capacity of the gas and the recovery rate of the reservoir. However, under high temperatures and high pressure (HTHP conditions, it is easy to lose the reactivity due to the high activity of the drying agent, thus preventing the drying effect. In this paper, in order to delay the reaction starting time of the Al4C3 in HTHP conditions with water-cut, a surface modification of aluminum carbide was carried out by using absolute ethyl as the reaction media and polyvinylpyrrolidone (PVP as a modifier under the reaction of an initiator AIBN. The modified Al4C3 was characterized by SEM, TEM, FTIR, and other detection methods. In addition, a gas evolution experiment compared the starting time of the reaction between unmodified aluminum carbide and formation water to the starting time of the reaction between modified aluminum carbide and formation water. Results show that this method can successfully modify the drying agent and effectively block the reaction activity of the drying agent. Meanwhile, gas production in the process of drying and the consumption of formation water are obviously reduced, which can effectively delay the reaction starting time by 6-8 minutes.

  16. Unconventional gas experience at El Paso Production Company : tapping into deep, tight gas and coalbed methane

    International Nuclear Information System (INIS)

    Bartley, R.L.

    2003-01-01

    The current conditions in the natural gas industry were reviewed, from the excellent current and projected energy prices to low activity and rig count. Various graphs were presented, depicting total proved dry gas reserves and annual production over time for the Gulf of Mexico, including its continental shelf, the Texas coastal plains, and the United States lower 48. Offshore growth of unconventional gas was also displayed. The key elements of the strategy were also discussed. These included: (1) earnings driven, (2) superior science, (3) innovative application of technology, (4) ability to act quickly and decisively, (5) leadership, management, and professional development, and (6) achieve learning curve economics. The core competencies were outlined along with recent discoveries in South Texas and the Upper Gulf Coast. figs

  17. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    , the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

  18. The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems

    Science.gov (United States)

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and sh...

  19. Geostatistical Three-Dimensional Modeling of a Tight Gas Reservoir: A Case Study of Block S6 of the Sulige Gas Field, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Jinliang Zhang

    2017-09-01

    Full Text Available In this study, three-dimensional (3-D geostatistical models were constructed to quantify distributions of sandstone and mudstone. We propose a new method that employs weight coefficients to balance the sandstone and mudstone data from irregular well patterns during stochastic modeling. This new method begins with classifying well groups according to well distribution patterns; areas with similar well distribution patterns are classified within the same zone. Then, the distributions of sandstone and mudstone for each zone are simulated separately using the sequential indicator simulation (SIS method, and the relevant variogram parameters for each zone are computed. In this paper, we used block S6 of the Sulige Gas Field in Ordos Basin in China as a case study. We evaluated the quality of each set of parameters through the vacuation checking method; certain wells were removed to generate equiprobable realizations using different seed numbers. Subsequently, the variogram parameters for the entire S6 area were obtained by assigning different weight coefficients to the parameters of each zone. Finally, a quality assessment of the sandstone and mudstone models of the S6 area was conducted using the horizontal wells, which were not involved in the stochastic modeling process. The results show that these variogram parameters, which were calculated using weight coefficients, are reliable.

  20. Stability of Fluorosurfactant Adsorption on Mineral Surface for Water Removal in Tight Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Lijun You

    2015-01-01

    Full Text Available Long-term effectiveness of rock wettability alteration for water removal during gas production from tight reservoir depends on the surfactant adsorption on the pore surface of a reservoir. This paper selected typical cationic fluorosurfactant FW-134 as an example and took advantage of Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and atomic force microscope (AFM to investigate its adsorption stability on the rock mineral surface under the oscillation condition at high temperature for a long time. The experimental results indicate that the F element content on the sample surface increases obviously, the surface structure of fluorine-carbonization also undergoes a significant change, and the fluorine surfactant exhibits a good interfacial modification and wettability alteration ability due to its adsorption on the pore surface transforming the chemical structure of the original surface. The adsorption increases indistinctly with the concentration of over 0.05% due to a single layer adsorption structure and is mainly electrostatic adsorption because the chemical bonding between the fluorosurfactant and the rock mineral surface, the hydrogen bonding, is weak and inconspicuous.

  1. Genetic Types and Source of the Upper Paleozoic Tight Gas in the Hangjinqi Area, Northern Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Xiaoqi Wu

    2017-01-01

    Full Text Available The molecular and stable isotopic compositions of the Upper Paleozoic tight gas in the Hangjinqi area in northern Ordos Basin were investigated to study the geochemical characteristics. The tight gas is mainly wet with the dryness coefficient (C1/C1–5 of 0.853–0.951, and δ13C1 and δ2H-C1 values are ranging from -36.2‰ to -32.0‰ and from -199‰ to -174‰, respectively, with generally positive carbon and hydrogen isotopic series. Identification of gas origin indicates that tight gas is mainly coal-type gas, and it has been affected by mixing of oil-type gas in the wells from the Shilijiahan and Gongkahan zones adjacent to the Wulanjilinmiao and Borjianghaizi faults. Gas-source correlation indicates that coal-type gas in the Shiguhao zone displays distal-source accumulation. It was mainly derived from the coal-measure source rocks in the Upper Carboniferous Taiyuan Formation (C3t and Lower Permian Shanxi Formation (P1s, probably with a minor contribution from P1s coal measures from in situ Shiguhao zone. Natural gas in the Shilijiahan and Gongkahan zones mainly displays near-source accumulation. The coal-type gas component was derived from in situ C3t-P1s source rocks, whereas the oil-type gas component might be derived from the carbonate rocks in the Lower Ordovician Majiagou Formation (O1m.

  2. Study of the sealing performance of tubing adapters in gas-tight deep-sea water sampler

    Directory of Open Access Journals (Sweden)

    Haocai Huang

    2014-09-01

    Full Text Available Tubing adapter is a key connection device in Gas-Tight Deep-Sea Water Sampler (GTWS. The sealing performance of the tubing adapter directly affects the GTWS's overall gas tightness. Tubing adapters with good sealing performance can ensure the transmission of seawater samples without gas leakage and can be repeatedly used. However, the sealing performance of tubing adapters made of different materials was not studied sufficiently. With the research discussed in this paper, the materials match schemes of the tubing adapters were proposed. With non-linear finite element contact analysis and sea trials in the South China Sea, it is expected that the recommended materials match schemes not only meet the requirements of tubing adapters’ sealing performance but also provide the feasible options for the following research on tubing adapters in GTWS.

  3. Radon-222 content of natural gas samples from Upper and Middle Devonian sandstone and shale reservoirs in Pennsylvania—preliminary data

    Science.gov (United States)

    Rowan, E.L.; Kraemer, T.F.

    2012-01-01

    Samples of natural gas were collected as part of a study of formation water chemistry in oil and gas reservoirs in the Appalachian Basin. Nineteen samples (plus two duplicates) were collected from 11 wells producing gas from Upper Devonian sandstones and the Middle Devonian Marcellus Shale in Pennsylvania. The samples were collected from valves located between the wellhead and the gas-water separator. Analyses of the radon content of the gas indicated 222Rn (radon-222) activities ranging from 1 to 79 picocuries per liter (pCi/L) with an overall median of 37 pCi/L. The radon activities of the Upper Devonian sandstone samples overlap to a large degree with the activities of the Marcellus Shale samples.

  4. Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

    2008-10-01

    The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable

  5. 3D Retro-Deformation of the Rotliegend of the `Tight Gas' Area, NGB

    Science.gov (United States)

    Tanner, D. C.; Krawczyk, C.; Oncken, O.; Baunack, C.; Gaupp, R.; Littke, R.; Schubarth-Engelschall, J.; Schwarzer, D.; Solms, M.; Trappe, H.

    2003-04-01

    We have constructed a detailed three-dimensional, geometrical model of the Rotliegend `Tight-Gas' reservoir (10 × 20 km^2) of the North German Basin (NGB) from 3D seismic and borehole data. From this data we have compiled an incremental tectonic history of the area, and retro-deformed faults within the model in time and 3D space. The Top Rotliegend surface lies at depths between 4490 m and 4910 m. We recognise three fault generations in the Rotliegend strata: 1) A NW--SE striking strike-slip fault. 2) N--S striking, dip-slip faults. 3) NE--SW striking faults with late and minor displacements. Vertical throw on all the faults is less than 150 m, but the strike-slip fault is characterized by rapid changes in fault throw along strike, whereas the dip-slip faults are composed of one or more segments which have coalesced over time. We envisage that 1) and 2) faults developed coevally in a transtensive setting. We perform 3D geometrical retro-deformation (i.e. reconstruction of the faulted blocks to the undeformed state) using the inclined-shear method. In this method, the hanging-wall is displaced upon the fault surface along a distinct movement vector, which is determined by the previous tectonic model. Morphology (i.e. curvature) of the fault causes passive deformation of the hanging-wall, which is accommodated by shear along a 3D vector. We present detailed fault analysis, and maps of the quantities and directions of the strain within the Rotliegend strata due to fault movement.

  6. A sampling system for collecting gas-tight time-series hydrothermal fluids

    Science.gov (United States)

    Wu, S.; Yang, C.; Ding, K.

    2012-12-01

    It is known that the hydrothermal venting has temporal variations associated with tectonic and geochemical processes. To date, the methods for long-term monitoring of the seafloor hydrothermal systems are rare. A new sampling system has been designed to be deployed at seafloor for long term to collect gas-tight time-series samples from hydrothermal vents. Based on the modular design principle, the sampling system is currently composed of a control module and six sampling modules, which is convenient to be upgraded by adding more sampling modules if needed. The control module consists of a rechargeable battery pack and a circuit board with functions of sampling control, temperature measurement, data storage and communication. Each sampling module has an independent sampling valve, a valve actuator and a sampling cylinder. The sampling cylinder consists of a sample chamber and an accumulator chamber. Compressed nitrogen gas is used to maintain the sample at in-situ pressure. A prototype of the sampling system has been constructed and tested. First, the instrument was tested in a high-pressure vessel at a pressure of 40 MPa. Six sampling modules were successfully triggered and water samples were collected and kept at in-situ pressure after experiment. Besides, the instrument was field tested at the shallow hydrothermal field near off Kueishantao islet (24°51'N, 121°55'E), which is located offshore of northeastern Taiwan, from May 25 to May 28, 2011. The sampling system worked at an automatic mode. Each sampling module was triggered according to the preset time. Time-series hydrothermal fluids have been collected from a shallow hydrothermal vent with a depth of 16 m. The preliminary tests indicated the success of the design and construction of the prototype of the sampling system. Currently, the sampling system is being upgraded by integration of a DC-DC power conversion and serial-to-Ethernet conversion module, so that it can utilize the continuous power supply and

  7. A fast simulation tool for evaluation of novel well stimulation techniques for tight gas reservoirs

    NARCIS (Netherlands)

    Egberts, P.J.P.; Peters, E.

    2015-01-01

    For stimulation of tight fields, alternatives to hydraulic fracturing based on hydraulic jetting are becoming available. With hydraulic jetting many (10 to 20) laterals can be created in a (sub-) vertical well. The laterals are 100 to 200 m long, typically 4 laterals are applied with a small

  8. An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia

    DEFF Research Database (Denmark)

    Ilkhchi, Rahim Kadkhodaie; Rezaee, Reza; Harami, Reza Moussavi

    2014-01-01

    Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate...... the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship......, diagenetic features and petrophysical characteristics) is a suitable technique for depiction of reservoir heterogeneity, recognition of reservoir units and identifying factors controlling reservoir quality of tight sandstones. This methodology can be used for the other tight reservoirs....

  9. Development of a data-driven forecasting tool for hydraulically fractured, horizontal wells in tight-gas sands

    Science.gov (United States)

    Kulga, B.; Artun, E.; Ertekin, T.

    2017-06-01

    Tight-gas sand reservoirs are considered to be one of the major unconventional resources. Due to the strong heterogeneity and very low permeability of the formation, and the complexity of well trajectories with multiple hydraulic fractures; there are challenges associated with performance forecasting and optimum exploitation of these resources using conventional modeling approaches. In this study, it is aimed to develop a data-driven forecasting tool for tight-gas sands, which are based on artificial neural networks that can complement the physics-driven modeling approach, namely numerical-simulation models. The tool is designed to predict the horizontal-well performance as a proxy to the numerical model, once the initial conditions, operational parameters, reservoir/hydraulic-fracture characteristics are provided. The data-driven model, that the forecasting tool is based on, is validated with blind cases by estimating the cumulative gas production after 10 years with an average error of 3.2%. A graphical-user-interface application is developed that allows the practicing engineer to use the developed tool in a practical manner by visualizing estimated performance for a given reservoir within a fraction of a second. Practicality of the tool is demonstrated with a case study for the Williams Fork Formation by assessing the performance of various well designs and by incorporating known uncertainties through Monte Carlo simulation. P10, P50 and P90 estimates of the horizontal-well performance are quickly obtained within acceptable accuracy levels.

  10. Forecasting sandstone uranium deposits in oil-and-gas bearing basins

    International Nuclear Information System (INIS)

    Pechenkin, I.

    2014-01-01

    The interrelation between oxidation and reduction processes in the carbonaceous strata of Paleogene age was first studied in the 1950s in deposit of the Fergana depression. The presence of pre-ore and post-ore epigenesis of petroleum series was established. Part of uranium mineralization was found to be covered with fluid oil. In the middle of the 1960s in the Sabirsay deposit (Uzbekistan) in primary red-coloured continental sediment of Cretaceous age were studied pre-ore reduction changes, which caused economic uranium mineralization in contrasting geochemical barrier. Further research showed that multidirectional epigenetic processes had changed repeatedly. Later, in the 1970s, American geologists studying uranium deposits in the oil-and-gas bearing Texas Plain reached similar conclusions. From their point of view, in the Benevides deposit the main zones of mineralization tend to be located near the boundary where the zones of oxidation in the strata wedge in, developing in epigenetically reduced formations. A second post-mineral reduction was registered in a number of rock bodies. The complexity of the processes is determined by the double role of hydrocarbon fluids and the products of their dissolution. On the one hand, bituminization of permeable strata as well as pyritization, chloritization, dolomitization and other alterations associated with it create favourable geochemical conditions of a reducing character for a subsequent concentration of ore and nonmetal raw materials. On the other hand, intrusion of bitumen and its dissolution in the aeration zone leads to the burial of the mineralization which formed earlier and disappearance of all traces of its formation (epigenetic oxidation zoning). Thus forecasting and subsequent prospecting become impeded. The established sequence of epigenetic alterations allows us to carry out specialized mapping in productive regions, uncovering hidden parts of epigenetic oxidation zoning and “buried” mineralization

  11. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface ground water: background, base cases, shallow reservoirs, short-term gas and water transport

    Science.gov (United States)

    Researchers examined gas and water transport between a deep tight shale gas reservoir and a shallow overlying aquifer in the two years following hydraulic fracturing, assuming a pre-existing connecting pathway.

  12. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    Science.gov (United States)

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  13. Energy Return on Energy Invested for Tight Gas Wells in the Appalachian Basin, United States of America

    Directory of Open Access Journals (Sweden)

    Bryan Sell

    2011-10-01

    Full Text Available The energy cost of drilling a natural gas well has never been publicly addressed in terms of the actual fuels and energy required to generate the physical materials consumed in construction. Part of the reason for this is that drilling practices are typically regarded as proprietary; hence the required information is difficult to obtain. We propose that conventional tight gas wells that have marginal production characteristics provide a baseline for energy return on energy invested (EROI analyses. To develop an understanding of baseline energy requirements for natural gas extraction, we examined production from a mature shallow gas field composed of vertical wells in Pennsylvania and materials used in the drilling and completion of individual wells. The data were derived from state maintained databases and reports, personal experience as a production geologist, personal interviews with industry representatives, and literature sources. We examined only the “upstream” energy cost of providing gas and provide a minimal estimate of energy cost because of uncertainty about some inputs. Of the materials examined, steel and diesel fuel accounted for more than two-thirds of the energy cost for well construction. Average energy cost per foot for a tight gas well in Indiana County is 0.59 GJ per foot. Available production data for this natural gas play was used to calculate energy return on energy invested ratios (EROI between 67:1 and 120:1, which depends mostly on the amount of materials consumed, drilling time, and highly variable production. Accounting for such inputs as chemicals used in well treatment, materials used to construct drill bits and drill pipe, post-gathering pipeline construction, and well completion maintenance would decrease EROI by an unknown amount. This study provides energy constraints at the single-well scale for the energy requirements for drilling in geologically simple systems. The energy and monetary costs of wells from

  14. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  15. Coherent soft X-ray high-order harmonics using tight-focusing laser pulses in the gas mixture.

    Science.gov (United States)

    Lu, Faming; Xia, Yuanqin; Zhang, Sheng; Chen, Deying; Zhao, Yang; Liu, Bin

    2014-01-01

    We experimentally study the harmonics from a Xe-He gas mixture using tight-focusing femtosecond laser pulses. The spectrum in the mixed gases exhibits an extended cutoff region from the harmonic H21 to H27. The potential explanation is that the harmonics photons from Xe contribute the electrons of He atoms to transmit into the excited-state. Therefore, the harmonics are emitted from He atoms easily. Furthermore, we show that there are the suppressed harmonics H15 and H17 in the mixed gases. The underlying mechanism is the destructive interference between harmonics generated from different atoms. Our results indicate that HHG from Xe-He gas mixture is an efficient method of obtaining the coherent soft X-ray source.

  16. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations

    Science.gov (United States)

    Schneising, Oliver; Burrows, John P.; Dickerson, Russell R.; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich

    2014-10-01

    In the past decade, there has been a massive growth in the horizontal drilling and hydraulic fracturing of shale gas and tight oil reservoirs to exploit formerly inaccessible or unprofitable energy resources in rock formations with low permeability. In North America, these unconventional domestic sources of natural gas and oil provide an opportunity to achieve energy self-sufficiency and to reduce greenhouse gas emissions when displacing coal as a source of energy in power plants. However, fugitive methane emissions in the production process may counter the benefit over coal with respect to climate change and therefore need to be well quantified. Here we demonstrate that positive methane anomalies associated with the oil and gas industries can be detected from space and that corresponding regional emissions can be constrained using satellite observations. On the basis of a mass-balance approach, we estimate that methane emissions for two of the fastest growing production regions in the United States, the Bakken and Eagle Ford formations, have increased by 990 ± 650 ktCH4 yr-1 and 530 ± 330 ktCH4 yr-1 between the periods 2006-2008 and 2009-2011. Relative to the respective increases in oil and gas production, these emission estimates correspond to leakages of 10.1% ± 7.3% and 9.1% ± 6.2% in terms of energy content, calling immediate climate benefit into question and indicating that current inventories likely underestimate the fugitive emissions from Bakken and Eagle Ford.

  17. A new method in predicting productivity of multi-stage fractured horizontal well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Yunsheng Wei

    2016-10-01

    Full Text Available The generally accomplished technique for horizontal wells in tight gas reservoirs is by multi-stage hydraulic fracturing, not to mention, the flow characteristics of a horizontal well with multiple transverse fractures are very intricate. Conventional methods, well as an evaluation unit, are difficult to accurately predict production capacity of each fracture and productivity differences between wells with a different number of fractures. Thus, a single fracture sets the minimum evaluation unit, matrix, fractures, and lateral wellbore model that are then combined integrally to approximate horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. This paper presents a new semi-analytical methodology for predicting the production capacity of a horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. Firstly, a mathematical flow model used as a medium, which is disturbed by finite conductivity vertical fractures and rectangular shaped boundaries, is established and explained by the Fourier integral transform. Then the idea of a single stage fracture analysis is incorporated to establish linear flow model within a single fracture with a variable rate. The Fredholm integral numerical solution is applicable for the fracture conductivity function. Finally, the pipe flow model along the lateral wellbore is adapted to couple multi-stages fracture mathematical models, and the equation group of predicting productivity of a multi-stage fractured horizontal well. The whole flow process from the matrix to bottom-hole and production interference between adjacent fractures is also established. Meanwhile, the corresponding iterative algorithm of the equations is given. In this case analysis, the productions of each well and fracture are calculated under the different bottom-hole flowing pressure, and this method also contributes to obtaining the distribution of pressure drop and production for every

  18. Rock matrix and fracture analysis of flow in western tight gas sands

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, N.R.; Brower, K.R.; Kilmer, N.H.; Ward, J.S.

    1984-01-01

    The presence of natural fractures is often cited as a key factor in gas production for both fractured and unfractured wells. Numerous vertical fractures have been found in cores recovered in the Multi-Well Project. The cores show that by far the majority of fractures become filled with calcite cement. However, calcite-filled fractures are not necessarily a seal to gas flow. As part of this project, flow measurements are being made along and across selected fractured samples as a function of overburden pressure for a minimum of five core samples. Comparative measurements will be made on unfractured neighboring cores. Permeability measurements will be made at a minimum of four levels of water saturation for each of at least six samples to assess the effect of water content on permeabilities in fractured systems. The effects of chemical treatments on mineralized fractures will be studied to assess whether such treatments lead to permeability enhancement of formation damage. Permeability to gas will be measured at various levels of water saturation established by equilibration of core samples in humidity chambers. Electrical resistivity at various levels of water saturations and confining pressures will also be measured. Special attention will be given to water distribution within the rock pore space. circumstances under which water can act to inhibit gas production and the pressure differences necessary to overcome capillary seals formed by water will also be investigated. Capillary pressure measurements will be made using a high-speed centrifuge.

  19. Intricate but tight coupling of spiracular activity and abdominal ventilation during locust discontinuous gas exchange cycles.

    Science.gov (United States)

    Talal, Stav; Gefen, Eran; Ayali, Amir

    2018-03-15

    Discontinuous gas exchange (DGE) is the best studied among insect gas exchange patterns. DGE cycles comprise three phases, which are defined by their spiracular state: closed, flutter and open. However, spiracle status has rarely been monitored directly; rather, it is often assumed based on CO 2 emission traces. In this study, we directly recorded electromyogram (EMG) signals from the closer muscle of the second thoracic spiracle and from abdominal ventilation muscles in a fully intact locust during DGE. Muscular activity was monitored simultaneously with CO 2 emission, under normoxia and under various experimental oxic conditions. Our findings indicate that locust DGE does not correspond well with the commonly described three-phase cycle. We describe unique DGE-related ventilation motor patterns, coupled to spiracular activity. During the open phase, when CO 2 emission rate is highest, the thoracic spiracles do not remain open; rather, they open and close rapidly. This fast spiracle activity coincides with in-phase abdominal ventilation, while alternating with the abdominal spiracle and thus facilitating a unidirectional air flow along the main trachea. A change in the frequency of rhythmic ventilation during the open phase suggests modulation by intra-tracheal CO 2 levels. A second, slow ventilatory movement pattern probably serves to facilitate gas diffusion during spiracle closure. Two flutter-like patterns are described in association with the different types of ventilatory activity. We offer a modified mechanistic model for DGE in actively ventilating insects, incorporating ventilatory behavior and changes in spiracle state. © 2018. Published by The Company of Biologists Ltd.

  20. Impact of Petrophysical Properties on Hydraulic Fracturing and Development in Tight Volcanic Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yinghao Shen

    2017-01-01

    Full Text Available The volcanic reservoir is an important kind of unconventional reservoir. The aqueous phase trapping (APT appears because of fracturing fluids filtration. However, APT can be autoremoved for some wells after certain shut-in time. But there is significant distinction for different reservoirs. Experiments were performed to study the petrophysical properties of a volcanic reservoir and the spontaneous imbibition is monitored by nuclear magnetic resonance (NMR and pulse-decay permeability. Results showed that natural cracks appear in the samples as well as high irreducible water saturation. There is a quick decrease of rock permeability once the rock contacts water. The pores filled during spontaneous imbibition are mainly the nanopores from NMR spectra. Full understanding of the mineralogical effect and sample heterogeneity benefits the selection of segments to fracturing. The fast flow-back scheme is applicable in this reservoir to minimize the damage. Because lots of water imbibed into the nanopores, the main flow channels become larger, which are beneficial to the permeability recovery after flow-back of hydraulic fracturing. This is helpful in understanding the APT autoremoval after certain shut-in time. Also, Keeping the appropriate production differential pressure is very important in achieving the long term efficient development of volcanic gas reservoirs.

  1. Vital signs: oil supplies improving but natural gas tight enough to keep prices high

    International Nuclear Information System (INIS)

    Lunan, D.

    2000-01-01

    Canada's 1999 year-end oil reserves were boosted by 2.1 million barrels by the launch of new oil sands mining projects near Fort McMurray and revisions in two existing operations, offsetting a decline of 3.7 per cent in remaining conventional reserves. Total oil reserves at year end stood at some 11.9 billion barrels, up from 9.8 billion barrels a year earlier. Conventional crude reserves dropped to 4.37 billion barrels. Despite the decline, the Canadian Association of Petroleum Producers (CAPP) were encouraged by a 70 per cent replacement rate, on production of 441 million barrels of oil, despite low activity resulting from soft prices in early part of 1999. Production from offshore Newfoundland sites amounted to 38.6 million barrels; remaining reserves in the Hibernia and Terra Nova field are estimated at 868 million barrels. Meanwhile, natural gas reserves slipped by about a trillion cubic feet to about 61 trillion cubic feet, reflecting an 83 per cent replacement rate which, however, represented an improvement from 76 per cent in 1998. Reserves replacement in 2000 is expected to improve over 1999 due to improved prices resulting in increased activity in 2000 which is expected to continue into 2001. Despite improvements in replacement, consumers have much to worry about as far as further consumer price increases are concerned. The situation can be traced back to the summer 2000 storage injection period when supplies normally stored for use in the winter were sold instead, to take advantage of high prices. The injection for storage was reduced due largely to continued strong demand from the US electric power generating sector. This situation will continue, barring a dramatic softening of the US economy

  2. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    Science.gov (United States)

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang

    2016-04-01

    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  3. The RealGas and RealGasH2O Options of the TOUGH+ Code for the Simulation of Coupled Fluid and Heat Flow in Tight/Shale Gas Systems

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Freeman, Craig

    2013-09-30

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas

  4. Integrated techniques for rapid and highly-efficient development and production of ultra-deep tight sand gas reservoirs of Keshen 8 Block in the Tarim Basin

    Directory of Open Access Journals (Sweden)

    Tongwen Jiang

    2017-01-01

    Full Text Available The unusually ultra-deep and ultra-high-pressure gas reservoirs in the Keshen 8 Block on the Kelasu structural belt of the Tarim Basin are also featured by high temperature, well-developed fault fissures, huge thickness, tight matrix, complex oil–water distribution, etc., which brings about great difficulties to reserves evaluation and further development. In view of this, an overall study was made on the fine description of reservoir fractures and their seepage mechanism, technical problems were being tackled on seismic data processing and interpretation of complex and high & steep structural zones, optimal development design, safe & rapid drilling and completion wells, reservoir stimulation, dynamic monitoring, etc. to promote the development level of such ultra-deep tight gas reservoirs, and 22 complete sets of specific techniques were formulated in the fields of high-efficiency well spacing, safe and fast drilling, recovery enhancement by well completion transformation, efficient development of optimization design, and so on. Through the technical progress and innovative management of integrated exploration & development, reserves evaluation and productivity construction have been completed on the Keshen 8 Block in the last three years of the 12th Five-Year Plan period (2011–2015, as a result, rapid and high-efficiency productivity construction is realized, and a new area is explored in the development of ultra-deep and ultra-high-pressure fractured tight sand gas reservoirs. This study is of great reference to the development of similar gas reservoirs at home and abroad.

  5. Investigation of gas hydrate-bearing sandstone reservoirs at the Mount Elbert stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Hunter, R. [ASRC Energy Services, Anchorage, AK (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Digert, S.; Weeks, M. [BP Exploration Alaska Inc., Anchorage, AK (United States); Hancock, S. [RPS Energy Canada, Calgary, AB (Canada)

    2008-07-01

    Gas hydrates occur within the shallow sand reservoirs on the Alaska North Slope (ANS). The mean estimate for gas hydrate in-place resources on the ANS is 16.7 trillion cubic metres. In the past, they were viewed primarily as a drilling hazard to be managed during the development of deeper oil resources. In 2002, a cooperative research program was launched to help determine the potential for environmentally-sound and economically-viable production of methane from gas hydrates. Additional objectives were to refine ANS gas hydrate resource potential, improve the geologic and geophysical methods used to locate and asses gas hydrate resources, and develop numerical modeling capabilities that are essential in both planning and evaluating gas hydrate field programs. This paper reviewed the results of the an extensive data collection effort conducted at the Mount Elbert number 1 gas hydrates stratigraphic test well on the ANS. The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. The logging program confirmed the existence of approximately 30 m of gas hydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60 to 75 per cent. Continuous wire-line coring operations achieved 85 per cent recovery. The Mount Elbert field program also involved gas and water sample collection. It demonstrated the ability to safely and efficiently conduct a research-level open-hole data acquisition program in shallow, sub-permafrost sediments and increased confidence in gas hydrate resource assessment methodologies for the ANS. 10 refs., 9 figs.

  6. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.M.; Hunter, R. (ASRC Energy Services, Anchorage, AK); Collett, T. (USGS, Denver, CO); Digert, S. (BP Exploration (Alaska) Inc., Anchorage, AK); Hancock, S. (RPS Energy Canada, Calgary, Alberta, Canada); Weeks, M. (BP Exploration (Alaska) Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  7. Interfacial Tension and Contact Angle Determination in Water-sandstone Systems with Injection of Flue Gas and CO2

    NARCIS (Netherlands)

    Shojaikaveh, N.; Rudolph, E.S.J.; Rossen, W.R.; Van Hemert, P.; Wolf, K.H.A.A.

    2013-01-01

    Carbon capture and storage (CCS) has the potential for reducing CO2 emissions to the atmosphere. This option includes storage strategies such as CO2 injection into deep saline aquifers, depleted oil and gas reservoirs, and unmineable coal seams. This process is largely controlled by the interactions

  8. Uranium and organic matters: use of pyrolysis-gas chromatography, carbon, hydrogen, and uranium contents to characterize the organic matter from sandstone-type deposits

    Science.gov (United States)

    Leventhal, Joel S.

    1979-01-01

    Organic matter seems to play an important role in the genesis of uranium deposits in sandstones in the western United States. Organic materials associated with ore from the Texas coastal plain, Tertiary basins of Wyoming, Grants mineral belt of New Mexico, and the Uravan mineral belt of Utah and Colorado vary widely in physical appearance and chemical composition. Partial characterization of organic materials is achieved by chemical analyses to determine atomic hydrogen-to-carbon (H/C) ratios and by gas chromatographic analyses to determine the molecular fragments evolved during stepwise pyrolysis. From the pyrolysis experiments the organic materials can be classified and grouped: (a) lignites from Texas and Wyoming and (b) hydrogen poor materials, from Grants and Uravan mineral belts and Wyoming; (c) naphthalene-containing materials from Grants mineral belt and Wyoming; and (d) complex and aromatic materials from Uravan, Grants and Wyoming. The organic materials analyzed have atomic H/C ratios that range from approximately 0.3 to at least 1.5. The samples with higher H/C ratios yield pyrolysis products that contain as many as 30 carbon atoms per molecule. Samples with low H/C ratios are commonly more uraniferous and yield mostly methane and low-molecular-weight gases during pyrolysis.

  9. Geologic structure and occurrence of gas in part of southwestern New York. Part 1, Structure and gas possibilities of the Oriskany sandstone in Steuben, Yates, and parts of the adjacent counties

    Science.gov (United States)

    Bradley, W.H.; Pepper, J.F.

    1941-01-01

    The area covered by this report is in southwestern New York and includes a little more than 3,000 square miles in Steuben and Yates counties and parts of the six adjacent counties. This area has been mapped to determine the structural attitude of the exposed rocks, so as to aid those interested in prospecting for natural gas in the Oriskany sandstone of Lower Devonian age.Because of the gentle regional dip toward the southwest, the youngest beds are exposed in the southwest corner of the area, and progressively older beds crop out northeastward in successive bands that strike generally northwest. All the exposed rocks are of Upper Devonian age except those in a narrow belt at the extreme north edge of the area, where a small thickness of Middle Devonian rocks crops out. The maximum thickness of beds so exposed is nearly 4,000 feet, of which the lower part is predominantly soft dark shale and the upper part predominantly fine-grained sandstone and gray shale. All the beds are marine except a few tongues of continental deposits red shale and sandstone and gray mudstone in the youngest beds. All the beds thicken southeastward, so that there is a northwestward convergence between any two lithologic units in the series. More than 30 key horizons that are persistent and distinctive were mapped, and altitudes on these key horizons served as a basis for constructing the structure contour map. Many of the key horizons are formation or member boundaries, but others are the tops or bottoms of limestone or sandstone beds within formations. All the stratigraphic units mapped are purely lithologic. (See pi. 2.)The Tully limestone, which crops out along the northern border of the area, is an easily recognizable and therefore valuable key bed for subsurface correlations in this part of the State. Below the Tully limestone is a thick body of Middle Devonian shales of the Hamilton group which rests on another valuable key bed, the hard, cherty Onondaga limestone, also of Middle

  10. Western Gas Sands Project: stratigrapy of the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S. (comp.)

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  11. Hydraulic fracture model and diagnostics verification at GRI/DOE multi-site projects and tight gas sand program support. Final report, July 28, 1993--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J.E.

    1997-12-31

    The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over twenty years. Early production experiments included nuclear stimulations and massive hydraulic fracture treatments. This work culminated in the US Department of Energy (DOE)`s Multiwell Experiment (MWX), a field laboratory designed to study the reservoir and production characteristics of low permeability sands. A key feature of MWX was an infrastructure which included several closely spaced wells that allowed detailed characterization of the reservoir through log and core analysis, and well testing. Interference and tracer tests, as well as the use of fracture diagnostics gave further information on stimulation and production characteristics. Thus, the Multiwell Experiment provided a unique opportunity for identifying the factors affecting production from tight gas sand reservoirs. The purpose of this operation was to support the gathering of field data that may be used to resolve the number of unknowns associated with measuring and modeling the dimensions of hydraulic fractures. Using the close-well infrastructure at the Multiwell Site near Rifle, Colorado, this operation focused primarily on the field design and execution of experiments. The data derived from the experiments were gathered and analyzed by DOE team contractors.

  12. Tight turns

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The Italian National Institute for Nuclear Physics (INFN) has successfully tested the first model of a new fast-ramping curved dipole magnet. This is great news for CERN, which sees the advance as holding potential for the future of the SPS.   The first model of a new fast-ramping curved dipole magnet being prepared for cryogenic testing at the LASA laboratory (INFN Milano, Italy). On 16 July INFN introduced an innovative dipole magnet. With a length of some 4 metres, it can produce a 4.5 Tesla magnetic field and achieve a tighter bend than ever before (the bending radius has been squeezed to a remarkable 66.7 metres). This new magnet was designed in the first instance for GSI’s SIS300 synchrotron (in Germany), which will require 60 dipoles of this type. "Achieving such a tight bend demanded a major R&D effort," stressed Pasquale Fabbricatore, the spokesman of the INFN collaboration responsible for the magnet’s development. "We had to not o...

  13. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport.

    Science.gov (United States)

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces.

  14. Laboratory Measurement and Interpretation of the Changes of Physical Properties after Heat Treatment in Tight Porous Media

    Directory of Open Access Journals (Sweden)

    Yili Kang

    2015-01-01

    Full Text Available Prevention of water blocking and optimization of multiscale flow channels will increase gas production of tight reservoirs. Physical properties of samples from representative tight gas reservoirs were measured before and after high temperature treatment. Results show that, with the increase of treatment temperature, mass decreases, acoustic transit time increases, and permeability and porosity increase. Permeability begins to increase dramatically if treatment temperature exceeds the threshold value of thermal fracturing, which is 600~700°C, 500~600°C, 300~500°C, and 300~400°C for shale, mudstone, tight sandstone, and tight carbonate rock, respectively. Comprehensive analyses indicate that the mechanisms of heat treatment on tight porous media include evaporation and dehydration of water, change of mineral structure, generation of microfracture, and network connectivity. Meanwhile, field implementation is reviewed and prospected. Interpretations indicate that, according to the characteristics of multiscale mass transfer in tight gas formation, combining heat treatment with conventional stimulation methods can achieve the best stimulation result.

  15. Rock matrix and fracture analysis of flow in western tight gas sands. Quarterly technical progress report, September--December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, N.R.; Brower, K.R.; Kilmer, N.H.; Ward, J.S.

    1984-12-31

    The presence of natural fractures is often cited as a key factor in gas production for both fractured and unfractured wells. Numerous vertical fractures have been found in cores recovered in the Multi-Well Project. The cores show that by far the majority of fractures become filled with calcite cement. However, calcite-filled fractures are not necessarily a seal to gas flow. As part of this project, flow measurements are being made along and across selected fractured samples as a function of overburden pressure for a minimum of five core samples. Comparative measurements will be made on unfractured neighboring cores. Permeability measurements will be made at a minimum of four levels of water saturation for each of at least six samples to assess the effect of water content on permeabilities in fractured systems. The effects of chemical treatments on mineralized fractures will be studied to assess whether such treatments lead to permeability enhancement of formation damage. Permeability to gas will be measured at various levels of water saturation established by equilibration of core samples in humidity chambers. Electrical resistivity at various levels of water saturations and confining pressures will also be measured. Special attention will be given to water distribution within the rock pore space. circumstances under which water can act to inhibit gas production and the pressure differences necessary to overcome capillary seals formed by water will also be investigated. Capillary pressure measurements will be made using a high-speed centrifuge.

  16. Geologic framework for the assessment of undiscovered oil and gas resources in sandstone reservoirs of the Upper Jurassic-Lower Cretaceous Cotton Valley Group, U.S. Gulf of Mexico region

    Science.gov (United States)

    Eoff, Jennifer D.; Dubiel, Russell F.; Pearson, Ofori N.; Whidden, Katherine J.

    2015-01-01

    The U.S. Geological Survey (USGS) is assessing the undiscovered oil and gas resources in sandstone reservoirs of the Upper Jurassic–Lower Cretaceous Cotton Valley Group in onshore areas and State waters of the U.S. Gulf of Mexico region. The assessment is based on geologic elements of a total petroleum system. Four assessment units (AUs) are defined based on characterization of hydrocarbon source and reservoir rocks, seals, traps, and the geohistory of the hydrocarbon products. Strata in each AU share similar stratigraphic, structural, and hydrocarbon-charge histories.

  17. Petrophysical parameters of the porous space of the “tight” type sandstones of the Skole Unit - Preliminary analysis

    Directory of Open Access Journals (Sweden)

    Maruta Michał

    2018-01-01

    Full Text Available The scientific goal of the paper is the physical characteristics of pore space of the Inocereamian Sandstones located in the Skole Unit as a part of the Outer Carpathians – The Carpathian Flysch. Rock samples were tested using mercury porosimeter. Using this method, cumulative curves of effective porosity were obtained, as well as the pore geometry distribution and pore surface area distribution. geometry and distribution. In the article the authors determine the physical parameters of the pore space for 30 samples, such as porosity, permeability, size and distribution of pore diameter, specific surface area and geometry of a pore space. Preliminary analysis of rock samples is to answer the question of the existence of sandstones capable of forming "tight" type deposits of natural gas and determining their reservoir parameters.

  18. Transformation of a beta gamma hot-cell under air in a tight hot-cell under inert gas

    International Nuclear Information System (INIS)

    Lambert, G.

    1981-05-01

    For several years now, fuel elements from graphite gas reactors have been stored in pools at the Cadarache Center after having been subjected (in general) to laboratory examinations. The CEA has adopted the following re-transfer procedure for these fuel elements while awaiting reprocessing: the fuel elements are extracted from their existing cartridges and transferred into new welded stainless steel containers capable of assuring long term storage. The storage, however, envisaged is temporary and is realized in the Pegase pool, specially adapted for this purpose. This re-transfer operation is envisaged for some 2.300 containers. All the appropriate safety measures will be taken. The various different fuel materials handled are often highly irradiated. The presence of water in certain containers due to loss of leaktightness has led to a series of chemical reactions (corrosion of uranium by water, reactions with magnesium, formation of hydrides). As a result, existing envelopes can contain UO 2 , UH 3 and hydrogen; operations must therefore being carried out in an inert atmosphere (preferably argon). The re-transfer process can not therefore be carried out in a conventional cell. It is therefore envisaged to carry out this work in a leaktight cell in an inert atmosphere. A laboratory cell could be modified to perform these functions. This cell would be reconverted to its original state when operations terminate (in about 3 years time) [fr

  19. Chemical and isotopic characteristics of brines from three oil- and gas-producing sandstones in eastern Ohio, with applications to the geochemical tracing of brine sources

    Science.gov (United States)

    Breen, K.J.; Angelo, Clifford G.; Masters, Robert W.; Sedam, Alan C.

    1985-01-01

    Chemical and isotopic characteristics of selected inorganic constituents are reported for brines from the Berea Sandstone of Mississippian age, the Clinton sandstone, Albion Sandstone of Silurian age, and the Rose Run formation of Cambrian and Ordovician age in 24 counties in eastern Ohio. Ionic concentrations of dissolved constituents in brines from these formations generally fall in the following ranges (in millimoles per kilogram of brine): Na, Cl > 1,000; 100 < Ca, Mg < 1,000; 1 < K, Br, Sr, Li, Fe, SO4 < 100; Mn, Zn, Al, I, HCO3, SiO2 < 1. Mean ionic concentrations of Ca, Mg, Na, Cl, K, SO4 and Br, and mean values of density and dissolved solids are significantly different at the 95-percent confidence level in each formation. Only potassium has a unique concentration range in each formation. Selected concentration ratios are identified as potential indicators for geochemical tracing of brines having some history of dilution. The k:Na ratios work best for identifying the source formation of an unidentified brine. Isotopic characteristics of hydrogen and oxygen indicate a meteoric origin for the water matrix of the brines. Sulfur isotopes may have utility for differentiating brines from oxidizing ground water.

  20. Effect of weave tightness and structure on the in-plane and through-plane air permeability of woven carbon fibers for gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Caston, Terry B.; Murphy, Andrew R.; Harris, Tequila A.L. [Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2011-01-15

    In this study, woven gas diffusion layers (GDLs) with varying weave type and tightness are investigated. Plain and twill weave patterns were manufactured in-house. The in-plane and through-plane air permeability of the woven samples were tested, and mercury intrusion porosimetry (MIP) tests were performed to study the pore structure. It was found that the twill weave has a higher permeability than the plain weave, which is consistent with literature. Like non-woven carbon papers, woven GDLs have higher in-plane permeability than through-plane permeability; however it has been shown that it is possible to manufacture a GDL with higher through-plane permeability than in-plane permeability. It was also concluded that the percentage of macropores in the weave is the driving factor in determining the through-plane air permeability. This work lays the groundwork for future studies to attempt to characterize the relationship between the weave structure and the air permeability in woven GDLs. (author)

  1. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Finch, W.I.; Davis, J.F.

    1985-01-01

    World-class sandstone-type uranium deposits are defined as epigenetic concentrations of uranium minerals occurring as uneven impregnations and minor massive replacements primarily in fluvial, lacustrine, and deltaic sandstone formations. The main purpose of this introductory paper is to define, classify, and introduce to the general geologic setting for sandstone-type uranium deposits

  2. Analysis of trends in fuel rod depressurization and determination of 'gas leak' and 'pellet-water interaction' type failures using radiation monitoring techniques of fuel rod leak tightness

    International Nuclear Information System (INIS)

    Panov, E.A.; Shestakov, Yu.M.; Miglo, V.N.

    1993-01-01

    Analysis of fuel rod failures in the Light Water Reactor operation is presented. Analysis includes the mechanism of formation and development of fuel rod cladding failure until through-wall defects appear (welding defects; inner hydriding defects; pellet-cladding interaction; crud deposit - intensified corrosion) as well as factors that determine defects propagation after fuel rod depressurization (metal condition in the vicinity of defect determined by the mechanism of formation and propagation defect; operational transients; degree of core cooldown after depressurization during preventive maintenance). Possibilities of in-service monitoring of fuel rod through-wall crack propagation using normal tools of cladding back-tightness monitoring are addressed and used in the course of analysis. Characteristics and values are presented for radiation parameters for fuel assemblies during propagation of defects with different degrees of rod depressurization, including ''gas leak'', cladding crack and ''open pellet-water interaction'' with potential particulate fission product release from the damaged rods as well as after formation of recurring defects. Based on experimental data on specific activity of different iodine isotopes in the primary coolant, a mathematical model to analyse defect propagation trends has been developed. The model describes the rate of radionuclide release from depressurized rods and the rate of nuclear fuel fission processes in the vicinity of defects. The model and results of analysis are illustrated by experimental and statistical data on depressurization of WWER (PWR) and RBMK (BWR) reactor fuel rods. Possibility to solve the problem of predicting defect propagation is considered. (author). 5 refs, 9 figs, 3 tabs

  3. The Controls of Pore-Throat Structure on Fluid Performance in Tight Clastic Rock Reservoir: A Case from the Upper Triassic of Chang 7 Member, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Yunlong Zhang

    2018-01-01

    Full Text Available The characteristics of porosity and permeability in tight clastic rock reservoir have significant difference from those in conventional reservoir. The increased exploitation of tight gas and oil requests further understanding of fluid performance in the nanoscale pore-throat network of the tight reservoir. Typical tight sandstone and siltstone samples from Ordos Basin were investigated, and rate-controlled mercury injection capillary pressure (RMICP and nuclear magnetic resonance (NMR were employed in this paper, combined with helium porosity and air permeability data, to analyze the impact of pore-throat structure on the storage and seepage capacity of these tight oil reservoirs, revealing the control factors of economic petroleum production. The researches indicate that, in the tight clastic rock reservoir, largest throat is the key control on the permeability and potentially dominates the movable water saturation in the reservoir. The storage capacity of the reservoir consists of effective throat and pore space. Although it has a relatively steady and significant proportion that resulted from the throats, its variation is still dominated by the effective pores. A combination parameter (ε that was established to be as an integrated characteristic of pore-throat structure shows effectively prediction of physical capability for hydrocarbon resource of the tight clastic rock reservoir.

  4. Greybull Sandstone Petroleum Potential on the Crow Indian Reservation, South-Central Montana

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David A.

    2002-05-13

    The focus of this project was to explore for stratigraphic traps that may be present in valley-fill sandstone at the top of the Lower Cretaceous Kootenai Formation. This sandstone interval, generally known as the Greybull Sandstone, has been identified along the western edge of the reservation and is a known oil and gas reservoir in the surrounding region. The Greybull Sandstone was chosen as the focus of this research because it is an excellent, well-documented, productive reservoir in adjacent areas, such as Elk Basin; Mosser Dome field, a few miles northwest of the reservation; and several other oil and gas fields in the northern portion of the Bighorn Basin.

  5. The Areal Extent of Continuous Type Gas Accumulations in Lower Silurian Clinton Sands and Medina Group Sandstones of the Appalachian Basin and the Environments Affected by Their Development

    Science.gov (United States)

    Wandrey, C.J.; Ryder, Robert T.; Nuccio, Vito F.; Aggen, Kerry L.

    1997-01-01

    In order to best preserve and manage our energy and natural resources we must understand the relationships between these resources and the impacts of their development. To further this understanding the U.S. Geological Survey is studying unconventional continuous-type and, to a lesser extent, conventional oil and gas accumulations and the environmental impacts associated with their development. Continuous-type gas accumulations are generally characterized by low matrix permeabilities, large areal extents, and no distinct water contacts. This basin scale map shows the overall extent of these accumulations and the general land use types that may be impacted by their development. The Appalachian Basin has the longest history of oil and gas exploration and production in the United States. Since Drake's Titusville discovery well was drilled in 1859, oil and gas has been continuously produced in the basin. While there is still a great deal of oil and gas production, new field discoveries are rare and relatively small. For most of the second half of the 20th century the Appalachian basin has been considered a mature petroleum province because most of the large plays have already been discovered and developed. One exception to this trend is the Lower Silurian Clinton Sands and Medina Group Gas play which is being developed in New York, Pennsylvania, and Ohio. This continuous-type gas play has been expanding since the early 1970's (see inset maps). In the 1980's economic incentives such as large increases in wellhead prices further stimulated continuous-type gas resource development. Continuous-type gas plays can be large in areal extent and in thickness. 'Sweetspots' (areas of greater prodcution) are hard to predict and generally associated with better than average permeabilities, and enhanced by natural fracture systems. With an overall success rate often approaching 90%, drilling most of the play with closely spaced wells is often the best way to maximize gas recovery

  6. Terrestrial tight oil reservoir characteristics and Graded Resource Assessment in China

    Science.gov (United States)

    Wang, Shejiao; Wu, Xiaozhi; Guo, Giulin

    2016-04-01

    The success of shale/tight plays and the advanced exploitation technology applied in North America have triggered interest in exploring and exploiting tight oil in China. Due to the increased support of exploration and exploitation,great progress has been made in Erdos basin, Songliao basin, Junggar basin, Santanghu basin, Bohai Bay basin, Qaidam Basin, and Sichuan basin currently. China's first tight oil field has been found in Erdos basin in 2015, called xinanbian oil field, with over one hundred million tons oil reserves and one million tons of production scale. Several hundred million tons of tight oil reserve has been found in other basins, showing a great potential in China. Tight oil in China mainly developed in terrestrial sedimentary environment. According to the relations of source rock and reservoir, the source-reservoir combination of tight oil can be divided into three types, which are bottom generating and top storing tight oil,self- generating and self-storing tight oil,top generating and bottom storing tight oil. The self- generating and self-storing tight oil is the main type discovered at present. This type of tight oil has following characteristics:(1) The formation and distribution of tight oil are controlled by high quality source rocks. Terrestrial tight oil source rocks in China are mainly formed in the deep to half deep lacustrine facies. The lithology includes dark mudstone, shale, argillaceous limestone and dolomite. These source rocks with thickness between 20m-150m, kerogen type mostly I-II, and peak oil generation thermal maturity(Ro 0.6-1.4%), have great hydrocarbon generating potential. Most discovered tight oil is distributed in the area of TOC greater than 2 %.( 2) the reservoir with strong heterogeneity is very tight. In these low porosity and permeability reservoir,the resources distribution is controlled by the physical property. Tight sandstone, carbonate and hybrid sedimentary rocks are three main tight reservoir types in

  7. Effect of temperature on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus

    of the salinity of the pore fluid can increase the electrical double layer repulsion between quartz grains and kaolinite particles in Berea sandstone, which could lead to kaolinite mobilisation and permeability reduction. Heating increases the magnitude of the mineral surface charge, whereas salinity reduction...... permeability to brine than to gas is often observed, which might be due to interaction between the mineral surface and the pore fluid. By modelling a layer of immobile fluid on the fluid-mineral interface permeability to brine was estimated, based on both the pore size distribution from NMR combined...

  8. Sandstone Turning by Abrasive Waterjet

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Petr; Cárach, J.; Hloch, Sergej; Vasilko, K.; Klichová, Dagmar; Klich, Jiří; Lehocká, D.

    2015-01-01

    Roč. 48, č. 6 (2015), s. 2489-2493 ISSN 0723-2632 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : turning away from the jet * conventional turning towards the jet * sandstone * abrasive water jet Subject RIV: JQ - Machines ; Tools Impact factor: 2.386, year: 2015 http://www.springerprofessional.de/sandstone-turning-by-abrasive-waterjet/6038028.html

  9. Sandstone Turning by Abrasive Waterjet

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Petr; Cárach, J.; Hloch, Sergej; Vasilko, K.; Klichová, Dagmar; Klich, Jiří; Lehocká, D.

    2015-01-01

    Roč. 48, č. 6 (2015), s. 2489-2493 ISSN 0723-2632 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : turning away from the jet * conventional turning towards the jet * sandstone * abrasive water jet Subject RIV: JQ - Machines ; Tools Impact factor: 2.386, year: 2015 http://www.springerprofessional.de/sandstone-turning-by-abrasive- water jet/6038028.html

  10. Paleo-oil and gas fields in the red sandstone of the North German Basin: Effects of hydrocarbon migration on storage quality development. Fluid flow, diagenesis and storage quality in the red sandstone strata of northern Germany; Palaeo-Oel- und -Gasfelder im Rotliegenden des Norddeutschen Beckens: Wirkung der KW-Migration auf die Speicherqualitaets-Entwicklung. Fluidfluss, Diagenese und Speicherqualitaet im Rotliegend Norddeutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Solms, M. [SGC, Lehrte (Germany); Gaupp, R. [Jena Univ. (Germany); Littke, R.; Schwarzer, D. [RWTH Aachen (Germany); Schubarth-Engelschall, J.; Trappe, H. [TEEC, Isernhagen (Germany); Krawczyk, C.; Tanner, D.; Oncken, O. [GFZ, Potsdam (Germany)

    2003-07-01

    This sub-project was aimed at improving the geological concept of the development of storage quality, at the development of a model for monitoring and reconstruction of the structural development and restructuring of reservoirs, and at obtaining information on hydrocarbon origins, migration pathways and filling chronology. Drill core data were combined with 3D seismic data in order to obtain a deeper understanding of the processes involved. [German] Im Rahmen des DGMK-Forschungsprogrammes ''Tight Gas Reservoirs'' (Projekt 593-8) wurden von der Arbeitsgruppe Sedimentologie 43 Bohrungen aus dem Rotliegend Nordwestdeutschlands untersucht. Die vorgestellten Ergebnisse schliessen sich an den Vortrag ''Einfluss von Fazies und Diagenese auf die Speicher-Qualitaets-Entwicklung von Rotliegendsandsteinen NW Deutschlands'' (SOLMS et al., DGMK-Fruehjahrstagung 2002). Ziel dieses Teilprojektes ist die Verbesserung des geologischen Konzeptes zur Entwicklung der Speicherqualitaet, die Entwicklung eines Modells zur Erfassung und Rekonstruktion der strukturellen Entwicklung und Restrukturierung von Lagerstaetten sowie die Klaerung von KW-Herkunftsgebieten, Migrationswegen und Fuellungschronologien. Durch die Verknuepfung der Kerndaten mit 3D seismischen Daten soll eine verbesserte Einschaetzung der Speicherqualitaeten aus dem 3D seismischen Abbild erreicht werden. (orig.)

  11. Coupling relationship between reservoir diagenesis and gas accumulation in Xujiahe Formation of Yuanba–Tongnanba area, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Jun Li

    2016-10-01

    Full Text Available The relationship between reservoir tightening time and gas charge period are the key subjects that have not been well solved considering the studies on the tight sand gas accumulation mechanism and enrichment regularity. The diagenetic evolution history, interaction sequence of organic–inorganic in aquiferous rock, gas charge history, the tightening mechanism of tight sandstone reservoir and the relationship between reservoir tightening time and gas accumulation period of the Xujiahe Formation have been analyzed in the Yuanba–Tongnanba area of the Sichuan Basin. It has been confirmed that the main reason for the tight sandstone reservoir formation is the intensive mechanical compaction which has dramatically reduced the sandstone reservoir quality, and it resulted to a semi-closed to a closed diagenetic fluid system formation at the early diagenetic stage. In the semi-closed to a closed diagenetic fluid system, at the later part of the diagenetic stage, the fluid circulation is not smooth, and the migration of the dissolution products are blocked, hence, the dissolution products mainly undergo the in situ precipitation and cementation. Such dissolution products block the dissolution pores and the residual primary pores; and the stronger the dissolution is, the higher the cement content is, which makes the reservoir further tightened. The hydrocarbon generation and expulsion history of source rocks and reservoir fluid inclusion characteristics in the Xujiahe Formation show that the charge of natural gas occurs in the Middle Jurassic–Early Cretaceous (mainly Early Cretaceous. A comprehensive analysis of the reservoir tightening history, gas charge history, and interaction sequence of organic–inorganic aquiferous in rock indicate that the sandstone reservoir experienced a tightening process when gas charging took place in the Xujiahe Formation in the Yuanba–Tongnanba area of the Sichuan Basin.

  12. Application potential of sequence stratigraphy to prospecting for sandstone-type uranium deposit in continental depositional basins

    International Nuclear Information System (INIS)

    Li Shengxiang; Chen Zhaobo; Chen Zuyi; Xiang Weidong; Cai Yuqi

    2001-01-01

    Sequence stratigraphy has been widely used in hydrocarbon exploration and development, and great achievements have been achieved. However, its application to the prospecting for sandstone-type uranium deposits is just beginning. The metallogenic characteristics of sandstone-type uranium deposits and those of oil and gas are compared, and the relationship between sandstone-type uranium metallogenesis and the system tracts of sequence stratigraphy is studied. The authors propose that highest and system tracts are the main targets for prospecting interlayer oxidation zone type sandstone uranium deposits, and the incised valleys of low stand system tracts are favourable places for phreatic oxidation zone type sandstone uranium deposits, and transgressive system tracts are generally unfavorable to the formation of in-situ leachable sandstone-type uranium deposits. Finally, the authors look ahead the application potential of sequence stratigraphy to the prospecting for sandstone-type uranium deposits in continental depositional basins

  13. The TL and age determination of the impacted quartz sandstone

    International Nuclear Information System (INIS)

    Liu Jingfa; Hu Suimin; Li Dahong

    1999-01-01

    When a quartz sandstone target was shocked by a steel ball (6 mm in diameter) accelerated to 7 km/s by using a two-stage light gas gun, the crystal structure and physical characteristics of the quartz was changed. By measuring the TL of the quartz sandstone before and after shocking it was found that the TL of the quartz sandstone decreased with the increasing shocking pressure and there was a TL gradient from outside to inside around the shocked point. The induced TL test was made for the sample taken from the shocked point at the same time, and an induced TL gradient from outside to inside was also found, though it was less than natural TL gradient. A sample with TL gradient is often valuable for meteoric crater determination

  14. Composition of natural gas and crude oil produced from 10 wells in the Lower Silurian "Clinton" Sandstone, Trumbull County, Ohio: Chapter G.7 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Burruss, Robert A.; Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Natural gases and associated crude oils in the “Clinton” sandstone, Medina Group sandstones, and equivalent Tuscarora Sandstone in the northern Appalachian basin are part of a regional, continuous-type or basin-centered accumulation. The origin of the hydrocarbon charge to regional continuoustype accumulations is poorly understood. We have analyzed the molecular and stable isotopic composition of gases and oils produced from 10 wells in the “Clinton” sandstone in Trumbull County, Ohio, in an initial attempt to identify the characteristics of the accumulated fluids. The analyses show that the fluids have remarkably uniform compositions that are similar to previously published analyses of oils (Cole and others, 1987) and gases (Laughrey and Baldasarre, 1998) in Early Silurian reservoirs elsewhere in Ohio; however, geochemical parameters in the oils and gases suggest that the fluids have experienced higher levels of thermal stress than the present-day burial conditions of the reservoir rocks. The crude oils have an unusual geochemical characteristic: they do not contain detectable levels of sterane and triterpane biomarkers. The origin of these absences is unknown.

  15. Continuous Shearlet Tight Frames

    KAUST Repository

    Grohs, Philipp

    2010-10-22

    Based on the shearlet transform we present a general construction of continuous tight frames for L2(ℝ2) from any sufficiently smooth function with anisotropic moments. This includes for example compactly supported systems, piecewise polynomial systems, or both. From our earlier results in Grohs (Technical report, KAUST, 2009) it follows that these systems enjoy the same desirable approximation properties for directional data as the previous bandlimited and very specific constructions due to Kutyniok and Labate (Trans. Am. Math. Soc. 361:2719-2754, 2009). We also show that the representation formulas we derive are in a sense optimal for the shearlet transform. © 2010 Springer Science+Business Media, LLC.

  16. Elementary analysis on the main factors affecting the permeability of sandstones

    International Nuclear Information System (INIS)

    Gong Binli

    2006-01-01

    Researches show that in the early stage of sandstone diagenesis, compaction, pressure solution, cementation and replacement reduce both the porosity and the permeability. The cementation of authigenic kaolinite may preserve the tiny intergranular pore-space, and slightly influence the porosity, and even increase the permeability. During the middle to late stage of diagenesis, the organic matter becomes matured, hydrocarbon and acidic water are produced, which forms secondary porosity by the dissolution and the corrosion, and greatly increases the permeability of sandstones and provides a favorable prerequisite for the formation of sandstone-type uranium deposits. The interlayered oxidation alteration, oil-gas reduction and low-temperature hydrothermal alteration also produce secondary porosity in epigenetic reforming stage, which finally decides the permeability after the formation of sandstone-type uranium deposits. This is an important condition for in-situ leaching of sandstone-type uranium deposit. (authors)

  17. A density functional tight binding/force field approach to the interaction of molecules with rare gas clusters: application to (C6H6)(+/0)Ar(n) clusters.

    Science.gov (United States)

    Iftner, Christophe; Simon, Aude; Korchagina, Kseniia; Rapacioli, Mathias; Spiegelman, Fernand

    2014-01-21

    We propose in the present paper a SCC-DFTB/FF (Self-Consistent-Charge Density Functional based Tight Binding/Force-Field) scheme adapted to the investigation of molecules trapped in rare gas environments. With respect to usual FF descriptions, the model involves the interaction of quantum electrons in a molecule with rare gas atoms in an anisotropic scheme. It includes polarization and dispersion contributions and can be used for both neutral and charged species. Parameters for this model are determined for hydrocarbon-argon complexes and the model is validated for small hydrocarbons. With the future aim of studying polycyclic aromatic hydrocarbons in Ar matrices, extensive benchmark calculations are performed on (C6H6)(+/0)Arn clusters against DFT and CCSD(T) calculations for the smaller sizes, and more generally against other experimental and theoretical data. Results on the structures and energetics (isomer ordering and energy separation, cohesion energy per Ar atom) are presented in detail for n = 1-8, 13, 20, 27, and 30, for both neutrals and cations. We confirm that the clustering of Ar atoms leads to a monotonous decrease of the ionization potential of benzene for n ⩽ 20, in line with previous experimental and FF data.

  18. Metalclad substation subdivided into tight compartments

    Energy Technology Data Exchange (ETDEWEB)

    Diaferia, A.; Messie, M.

    1990-02-06

    This invention relates to a high voltage metalclad substation, having a metal enclosure, filled with a high dielectric strength gas, and subdivided into different compartments by tight insulating partitions. The object of this invention is to achieve a simplified substation of reduced dimensions preserving the possibilities of performing operations on part of the substation, while the other part remains live. According to the invention, a metalclad substation is provided, having a busbar isolating switch including an operating mechanism housed in the busbar compartment. The movable contacts of the isolating switch are housed in a compartment separated by a tight insulating partition from the busbar compartment. Tight partitioning of the compartments enables operations to be carried out in the different compartments while maintaining at least one of the busbars switched on to supply the unaffected part of the installation. The invention can be applied to a single-phase or a three-phase enclosure substation. 4 figs.

  19. Opportunities and risks of hydraulic fraction treatment of tight gas-carrying rocks in redbeds; Chancen und Risiken hydraulischer Fracbehandlungen von dichten Erdgasspeichergesteinen im Rotliegenden

    Energy Technology Data Exchange (ETDEWEB)

    Buhrow, C. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    In the last 20 years more and more hydraulic fraction treatments have been carried out in natural gas-carrying strata of the redbed. By pumping high-viscosity liquids into the rocks one attempts to control the fraction. Towards the end of the treatment the fraction is filled with a proppant in order to create a flow path with high permeability to the borehole after the pressure of the liquid drops. The trend moves from large-volume single fractures - more than 2000 cubic m of liquid as several tons of proppant were used in some cases -. to smaller fraction treatments consisting of a minimum of two fractures: the first one, which usually employs small amounts of liquid and proppant, serves to gain information on the deposit and its suitability for fraction treatment. The one or several fractures that follow serve to increase production or enlarge the drainage area. Ground pressure measurements can provide important information about the development of the fracture before, during and after fracturing. (orig.) [Deutsch] Seit ca. 20 Jahren werden vermehrt hydraulische Fracbehandlungen in den Erdgasspeichergesteinen des Rotliegenden durchgefuehrt. Durch Verpumpen von Fluessigkeiten hoher Viskositaet soll kontrolliert ein Riss `Frac` genannt, im Gebirge geschaffen werden. Dieser wird gegen Ende der Behandlung mit Stuetzmittel angefuellt, um nach Abfall des Fluessigkeitsdrucks einen bleibenden Fliessweg hoher Permeabilitaet zum Bohrloch zu schaffen. Dabei hat es eine Entwicklung von grossvolumigen Einzelfracs - in Einzelfaellen wurden mehr als 2.000 m{sup 3} Fluessigkeit und mehrere hundert Tonnen Stuetzmittel verpumpt - hin zu kleineren Fracbehandlungen aus zumindest zwei Fracs gegeben: Ziel des ersten, zumeist nur geringe Fluessigkeitsvolumina und Stuetzmittelmengen enthaltenen Fracs ist es, Informationen ueber die Lagerstaette und deren Fracbehandelbarkeit zu erlangen. Der oder die nachfolgenden Fracs dienen dann dem eigentlichen Ziel, der Produktionssteigerung und der

  20. Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany)

    NARCIS (Netherlands)

    Fischer, C.; Dunkl, I.; Eynatten, H.; Wijbrans, J.R.; Gaupp, R.

    2012-01-01

    Aeolian-fluvial Upper Rotliegend sandstones from Bebertal outcrops (Flechtingen High, North Germany) are an analogue for deeply buried Permian gas reservoir sandstones of the North German Basin (NGB). We present a paragenetic sequence as well as thermochronological constraints to reconstruct the

  1. Polygonal deformation bands in sandstone

    Science.gov (United States)

    Antonellini, Marco; Nella Mollema, Pauline

    2017-04-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are dm-wide zones of shear deformation bands that developed under shallow burial conditions in the lower portion of the Jurassic Entrada Fm (Utah, USA). The edges of the polygons are 1 to 5 meters long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. Density inversion, that takes place where under-compacted and over-pressurized layers (Carmel Fm) lay below normally compacted sediments (Entrada Sandstone), may be an important process for polygonal deformation bands formation. The gravitational sliding and soft sediment structures typically observed within the Carmel Fm support this hypothesis. Soft sediment deformation may induce polygonal faulting in the section of the Entrada Sandstone just above the Carmel Fm. The permeability of the polygonal deformation bands is approximately 10-14 to 10-13 m2, which is less than the permeability of the host, Entrada Sandstone (range 10-12 to 10-11 m2). The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  2. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx......The seasonal imbalance between supply and demand of renewable energy requires temporary storage, which can be achieved by hot water injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not reduced significantly by heating. We present an overview...

  3. Architecture and quantitative assessment of channeled clastic deposits, Shihezi sandstone (Lower Permian, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Chengye Jia

    2017-02-01

    Full Text Available Lower Permian Shihezi sandstone in Ordos Basin is the largest gas reservoir in China. Architecture elements of channel, overbank and floodplain facies of braided channel deposits were identified through an outcrops survey, and their proportion of channel facies have been quantitatively estimated from well logging. Characteristics of architecture elements, such as sand thickness, bounding surfaces and lithofacies were investigated through outcrops and core. Petrology of Shihezi sandstone has also been studied in detail. Analysis on sandstone components shows that monocrystalline quartz with approximately 76% bulk volume, and lithic up to 5%–45% bulk volume, are the two main components. Litharenite and lithic quartz sandstone are the main rock types. Compaction is concluded by former researchers as the control factor of low permeability. Examination through thin section reveals that secondary pores developed well in coarse sand. Inter-granular dissolution is included as the positive effect to increasing porosity, and is concluded as the control factor to the generation of net pay. Scale of coarse grained channel fills and channel bar sandstone bodies are quantitatively estimated. Strike-oriented, dip-oriented, and vertical distribution of channel fills and channel bar sandstone bodies have been investigated. The geometry of sand bodies can be depicted as an elongated lens. Subsurface mapping reveals that channel sandstone bodies distribute widely from both lateral and longitudinal cross section profiles, and are poorly connected.

  4. Tight closure and vanishing theorems

    International Nuclear Information System (INIS)

    Smith, K.E.

    2001-01-01

    Tight closure has become a thriving branch of commutative algebra since it was first introduced by Mel Hochster and Craig Huneke in 1986. Over the past few years, it has become increasingly clear that tight closure has deep connections with complex algebraic geometry as well, especially with those areas of algebraic geometry where vanishing theorems play a starring role. The purpose of these lectures is to introduce tight closure and to explain some of these connections with algebraic geometry. Tight closure is basically a technique for harnessing the power of the Frobenius map. The use of the Frobenius map to prove theorems about complex algebraic varieties is a familiar technique in algebraic geometry, so it should perhaps come as no surprise that tight closure is applicable to algebraic geometry. On the other hand, it seems that so far we are only seeing the tip of a large and very beautiful iceberg in terms of tight closure's interpretation and applications to algebraic geometry. Interestingly, although tight closure is a 'characteristic p' tool, many of the problems where tight closure has proved useful have also yielded to analytic (L2) techniques. Despite some striking parallels, there had been no specific result directly linking tight closure and L∼ techniques. Recently, however, the equivalence of an ideal central to the theory of tight closure was shown to be equivalent to a certain 'multiplier ideal' first defined using L2 methods. Presumably, deeper connections will continue to emerge. There are two main types of problems for which tight closure has been helpful: in identifying nice structure and in establishing uniform behavior. The original algebraic applications of tight closure include, for example, a quick proof of the Hochster-Roberts theorem on the Cohen-Macaulayness of rings of invariants, and also a refined version of the Brianqon-Skoda theorem on the uniform behaviour of integral closures of powers of ideals. More recent, geometric

  5. An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia

    DEFF Research Database (Denmark)

    Ilkhchi, Rahim Kadkhodaie; Rezaee, Reza; Harami, Reza Moussavi

    2014-01-01

    between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types...... are characterized by a compacted fabric and cemented framework. But distribution and dominance of diagenetic products in each of them depend on primary depositional composition and texture. The results show that reservoir rock typing based on three aspects of reservoir sandstones (depositional properties......Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate...

  6. Leak-tight compressor

    International Nuclear Information System (INIS)

    Bogomolova, L.K.; Vasilenko, A.T.

    1974-01-01

    The publication describes the construction and operating principle of the sealed uniflow compressor. This compressor insures against substantial contamination of the medium handled. Use of the slot-type sealing of the piston and rejection of the sliding bearings result in insuring high purity of the medium handled. The compressor performance is as follows: maximum air throughput - 262.6 1/h at 24 deg C and absolute outlet pressure being 1.14 kgf/cm 2 , minimum air throughput - 82.6 1/h at 24 deg C and absolute outlet pressure being 1.4 kgf/cm 2 ; inlet pressure equals 1 kgf/cm 2 . The compressor is provided with a solenoid-operated drive. The prototype has been in service for 6 months, with accumulated service time amounting to 500 h. The compressor has given a good account of itself within this period. The compressor is to be used in the gas purification circuit when this gas is used as a working medium in the spark or streamer chambers

  7. GREYBULL SANDSTONE PETROLEUM POTENTIAL ON THE CROW INDIAN RESERVATION, SOUTH-CENTRAL MONTANA

    Energy Technology Data Exchange (ETDEWEB)

    David A. Lopez

    2000-12-14

    Evaluation of the Lower Cretaceous Greybull Sandstone on the Crow Indian Reservation for potential stratigraphic traps in the valley-fill sandstone was the focus of this project. The Crow Reservation area, located in south-central Montana, is part of the Rocky Mountain Foreland structural province, which is characterized by Laramide uplifts and intervening structural basins. The Pryor and Bighorn mountains, like other foreland uplifts, are characterized by asymmetrical folds associated with basement-involved reverse faults. The reservation area east of the mountains is on the northwestern flank of the Powder River Basin. Therefore, regional dips are eastward and southeastward; however, several prominent structural features interrupt these regional dips. The nearly 4,000 mi{sup 2} reservation is under explored but has strong potential for increased oil and gas development. Oil and gas production is well established in the Powder River Basin of Wyoming to the south as well as in the areas north and west of the reservation. However, only limited petroleum production has been established within the reservation. Geologic relations and trends indicate strong potential for oil and gas accumulations, but drilling has been insufficient for their discovery. The Greybull Sandstone, which is part of the transgressive systems tract that includes the overlying Fall River Sandstone, was deposited on a major regional unconformity. The erosional surface at the base of the Greybull Sandstone is the +100 Ma, late Aptian-Early Albian regional unconformity of Weimer (1984). This lowstand erosional surface was controlled by a basin-wide drop in sea level. In areas where incised Greybull channels are absent, the lowstand erosional unconformity is at the base of the Fall River Sandstone and equivalent formations. During the pre-Greybull lowstand, sediment bypassed this region. In the subsequent marine transgression, streams began to aggrade and deposit sand of the lower Greybull Sandstone

  8. Hydromechanical Behaviour of Fontainebleau Sandstone

    Science.gov (United States)

    Sulem, J.; Ouffroukh, H.

    2006-07-01

    The hydromechanical behaviour of Fontainebleau sandstone is studied on the basis of isotropic and triaxial compression tests in drained and undrained conditions on water saturated samples. The effect of the evolution of the compressibility of the rock with the applied stress on the poromechanical parameters is shown. On the basis of micro-mechanical considerations, a new expression for the Skempton coefficient B is proposed as a function of the porosity, the drained bulk compressibility and the grain and fluid compressibility. The relation between rock deformation and pore-pressure evolution in undrained deviatoric tests is analysed. An elasto-plastic constitutive model with stress-dependent elasticity and damage is proposed to describe the behaviour of the rock and validated through back analysis of drained and undrained tests.

  9. Rate type isotach compaction of consolidated sandstone

    NARCIS (Netherlands)

    Waal, J.A. de; Thienen-Visser, K. van; Pruiksma, J.P.

    2015-01-01

    Laboratory experiments on samples from a consolidated sandstone reservoir are presented that demonstrate rate type compaction behaviour similar to that observed on unconsolidated sands and soils. Such rate type behaviour can have large consequences for reservoir compaction, surface subsidence and

  10. Diagenesis and Reservoir Properties of the Permian Ecca Group Sandstones and Mudrocks in the Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Christopher Baiyegunhi

    2017-05-01

    Full Text Available Diagenesis is one of the most important factors that affects reservoir rock property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology, and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known about the diagenesis of the potentially feasible or economically viable sandstones and mudrocks of the Ecca Group. This study aims to provide an account of the diagenesis of sandstones and mudstones from the Ecca Group. Twenty-five diagenetic textures and structures were identified and grouped into three stages that include early diagenesis, burial diagenesis and uplift-related diagenesis. Clay minerals are the most common cementing materials in the sandstones. Smectite, kaolinite, and illite are the major clay minerals that act as pore lining rims and pore-filling materials. A part of the clay minerals and detrital grains was strongly replaced by calcite. Calcite precipitates locally in the pore spaces and partially or completely replaced clay matrix, feldspar, and quartz grains at or around their margins. Precipitation of cements and formation of pyrite and authigenic minerals occurred during the early diagenetic stage. This process was followed by lithification and compaction which brought about an increase in tightness of grain packing, loss of pore spaces, and thinning of bedding thickness due to overloading of sediments and selective dissolution of the framework grains. Mineral overgrowths, mineral replacement, clay-mineral transformation, dissolution, deformation, and pressure solution occurred during burial diagenetic stage. After rocks were uplifted, weathered and unroofed by erosion, this resulted in decementation and oxidation of iron-rich minerals. The rocks of the Ecca Group were subjected to moderate-intense mechanical and chemical compaction during their progressive burial. Intergranular pores, secondary dissolution, and fractured pores are well developed

  11. Experimental strain analysis of Clarens Sandstone colonised by endolithic lichens

    Directory of Open Access Journals (Sweden)

    D. Wessels

    1995-09-01

    Full Text Available Endolithic lichens occur commonly on Clarens Sandstone in South Africa, where they significantly contribute to the weathering of sandstone by means of mechanical and chemical weathering processes. This preliminary investigation reports on the success- ful use of strain gauges in detecting strain differences between sandstone without epilithic lichens and sandstone colonised by the euendolithic lichen Lecidea aff. sarcogynoides Korb. Mechanical weathering, expressed as strain changes, in Clarens Sandstone was studied during the transition from relatively dry winter to wet summer conditions. Daily weathering of sandstone due to thermal expansion and contraction of colonised and uncolonised sandstone could be shown. Our results show that liquid water in sandstone enhances the mechanical weathering of uncolonised Clarens Sandstone while water in the gaseous phase enhances mechanical weathering of sandstone by euendolithic lichens.

  12. Composition of natural gas and crude oil produced from 14 wells in the Lower Silurian "Clinton" Sandstone and Medina Group Sandstones, northeastern Ohio and northwestern Pennsylvania: Chapter G.6 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Burruss, Robert A.; Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The geochemical processes that control the distribution of hydrocarbons in the regional accumulation of natural gas and crude oil in reservoirs of Early Silurian age in the central Appalachian basin are not well understood. Gas and oil samples from 14 wells along a down-dip transect through the accumulation in northeastern Ohio and northwestern Pennsylvania were analyzed for molecular and stable isotopic compositions to look for evidence of hydrocarbon source, thermal maturation, migration, and alteration parameters. The correlation of carbon and hydrogen stable isotopic composition of methane with thermal maturation indicates that the deepest gases are more thermally mature than independent estimates of thermal maturity of the reservoir horizon based on the conodont alteration index. This correlation indicates that the natural gas charge in the deepest parts of the regional accumulation sampled in this study originated in deeper parts of the Appalachian basin and migrated into place. Other processes, including mixing and late-stage alteration of hydrocarbons, may also impact the observed compositions of natural gases and crude oils.

  13. "Sydney sandstone": Heritage Stone from Australia

    Science.gov (United States)

    Cooper, Barry; Kramar, Sabina

    2014-05-01

    Sydney is Australia's oldest city being founded in 1788. The city was fortunate to be established on an extensive and a relatively undeformed layer of lithified quartz sandstone of Triassic age that has proved to be an ideal building stone. The stone has been long identified by geologists as the Hawkesbury Sandstone. On the other hand the term "Sydney sandstone" has also been widely used over a long period, even to the extent of being utilised as the title of published books, so its formal designation as a heritage stone will immediately formalise this term. The oldest international usage is believed to be its use in the construction of the Stone Store at Kerikeri, New Zealand (1832-1836). In the late 19th century, public buildings such as hospitals, court houses as well as the prominent Sydney Town Hall, Sydney General Post Office, Art Gallery of New South Wales, State Library of New South Wales as well as numerous schools, churches, office building buildings, University, hotels, houses, retaining walls were all constructed using Sydney sandstone. Innumerable sculptures utilising the gold-coloured stone also embellished the city ranging from decorative friezes and capitals on building to significant monuments. Also in the late 19th and early 20th century, Sydney sandstone was used for major construction in most other major Australian cities especially Melbourne, Adelaide and Brisbane to the extent that complaints were expressed that suitable local stone materials were being neglected. Quarrying of Sydney sandstone continues today. In 2000 it was recorded noted that there were 33 significant operating Sydney sandstone quarries including aggregate and dimension stone operations. In addition sandstone continues to be sourced today from construction sites across the city area. Today major dimension stone producers (eg Gosford Quarries) sell Sydney sandstone not only into the Sydney market but also on national and international markets as cladding and paving products

  14. Effect of retrograde gas condensate in low permeability natural gas reservoir; Efeito da condensacao retrograda em reservatorios de gas natural com baixa permeabilidade

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Paulo Lee K.C. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Ligero, Eliana L.; Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Most of Brazilian gas fields are low-permeability or tight sandstone reservoirs and some of them should be gas condensate reservoir. In this type of natural gas reservoir, part of the gaseous hydrocarbon mixture is condensate and the liquid hydrocarbon accumulates near the well bore that causes the loss of productivity. The liquid hydrocarbon formation inside the reservoir should be well understood such as the knowledge of the variables that causes the condensate formation and its importance in the natural gas production. This work had as goal to better understanding the effect of condensate accumulation near a producer well. The influence of the porosity and the absolute permeability in the gas production was studied in three distinct gas reservoirs: a dry gas reservoir and two gas condensate reservoirs. The refinement of the simulation grid near the producer well was also investigated. The choice of simulation model was shown to be very important in the simulation of gas condensate reservoirs. The porosity was the little relevance in the gas production and in the liquid hydrocarbon formation; otherwise the permeability was very relevant. (author)

  15. A new biostratigraphical tool for reservoir characterisation and well correlation in permo-carboniferous sandstones

    NARCIS (Netherlands)

    Garming, J.F.L.; Cremer, H.; Verreussel, R.M.C.H.; Guasti, E.; Abbink, O.A.

    2010-01-01

    Permo-Carboniferous sandstones are important reservoir rocks for natural gas in the Southern North Sea basin. This is a mature area which makes tools for reservoir characterization and well to well correlation important for field optimalisation and ongoing exploration activities. Within the

  16. Tightness of voter model interfaces

    Czech Academy of Sciences Publication Activity Database

    Sturm, A.; Swart, Jan M.

    2008-01-01

    Roč. 13, - (2008), s. 165-174 ISSN 1083-589X R&D Projects: GA ČR GA201/06/1323; GA ČR GA201/07/0237 Institutional research plan: CEZ:AV0Z10750506 Keywords : long range voter model * swapping voter model * interface tightness * exclusion process Subject RIV: BD - Theory of Information Impact factor: 0.392, year: 2008 http://www.emis.de/journals/EJP-ECP/_ejpecp/index.html

  17. PCBS AND TIGHT JUNCTION EXPRESSION

    OpenAIRE

    Eum, Sung Yong; András, Ibolya E.; Couraud, Pierre-Olivier; Hennig, Bernhard; Toborek, Michal

    2008-01-01

    Polychlorinated biphenyl (PCB) congeners exhibit a broad range of adverse biological effects including neurotoxicity. The mechanisms by which PCBs cause neurotoxic effects are still not completely understood. The blood-brain barrier (BBB) is a physical and metabolic barrier separating brain microenvironment from the peripheral circulation and is mainly composed of endothelial cells connected by tight junctions. We examined the effects of several highly-chlorinated PCB congeners on expression ...

  18. An experimental study of the response of the Galesville sandstone to simulated CAES conditions

    Energy Technology Data Exchange (ETDEWEB)

    Erikson, R L; Stottlemyre, J A; Smith, R P

    1980-07-01

    The objective of this experimental study was to determine how the mineralogical and physical characteristics of host rock formations are affected by environmental conditions anticipated for compressed air energy storage (CAES) in porous, permeable rock. In this study, Galesville sandstone cores were reacted in autoclave pressure vessels supporting one of four environments: dry air; heated, air-water vapor; heated, nitrogen-water vapor mixtures; and heated, compressed, liquid water. The simulated CAES environments were maintained in autoclave pressure vessels by controlling the following independent variables: temperature, pressure, time, oxygen content, carbon dioxide content, nitrogen content, and liquid volume. The dependent variables studied were: apparent porosity, gas permeability, water permeability, and friability. These variables were measured at ambient temperature and pressure before and after each sandstone sample was reacted in one of the CAES environments. The experiments gave the following results: the Galesville sandstone exhibited excellent stability in dry air at all temperatures tested (50/sup 0/ to 300/sup 0/C); and significant physical alterations occurred in sandstone samples exposed to liquid water above 150/sup 0/C. Samples shielded from dripping water exhibited excellent stability to 300/sup 0/C; sandstone may be a suitable storage media for heated, humid air provided elevated temperature zones are relatively free of mobile liquid water; and observed changes in the physical properties of the rock may have been caused, in part, by the lack of confining stress on the sample. The inability to apply confining pressure is a severe limitation of autoclave experiments.

  19. Porosities and permeability of Paleozoic sandstones derived from Nuclear Magnetic Resonance measurements

    Science.gov (United States)

    Jorand, Rachel; Koch, Andreas; Mohnke, Oliver; Klitzsch, Norbert; Clauser, Christoph

    2010-05-01

    A major obstacle for an increased use of geothermal energy often lies in the high success risk for the development of geothermal reservoirs due to the unknown rock properties. In general, the ranges of porosity and permeability in existing compilations of rock properties are too large to be useful to constrain properties for specific sites. Usually, conservative assumptions are made about these properties, resulting in greater drilling depth and increased exploration cost. In this study, data from direct measurements on thirty-three sandstones from different borehole locations and depths enable to derive statistical values of the desired hydraulic properties for selected sandstones in the German subsurface. We used Nuclear Magnetic Resonance (NMR) measurements to estimate the porosity and the permeability of sandstones from North Rhine-Westphalia (Germany). Besides NMR standard poro-perm-measurements were performed on the samples to obtain independent data sets for comparison. Porosity was measured by Archimedes principle and pore-size distribution by mercury injection. Also permeability was determined by gas flow measurements taking into account the Klinkenberg effect. The porosities of the studied samples vary between 0 % and 16 %. NMR yields suitable porosity results whereas the porosities obtain by T1 relaxation measurements fit better to the Archimedes porosities than the porosities obtained by T2 relaxation measurements. For porosities up to 10 %, T2 relaxation measurements overestimate the porosity. Furthermore, we calculate the effective porosity using a cutoff time of 3 ms. This effective porosity agrees much better with Archimedes porosities, particularly for the low porosity samples. The gas permeability of studied sandstones varies between 10-21 m2 and 2.10-17 m2. A large number of empirical relationships between relaxation times and gas permeability have been published. We have applied several of these relationships to select the appropriate law for

  20. Characteristics and origin of the relatively high-quality tight reservoir in the Silurian Xiaoheba Formation in the southeastern Sichuan Basin

    Science.gov (United States)

    Gong, Xiaoxing; Shi, Zejin; Wang, Yong; Tian, Yaming; Li, Wenjie; Liu, Lei

    2017-01-01

    A mature understanding of the sandstone gas reservoir in the Xiaoheba Formation in the southeastern Sichuan Basin remains lacking. To assess the reservoir characteristics and the origin of the high-quality reservoir in the Xiaoheba Formation, this paper uses systematic field investigations, physical property analysis, thin section identification, scanning electron microscopy and electron microprobe methods. The results indicate that the Xiaoheba sandstone is an ultra-tight and ultra-low permeability reservoir, with an average porosity of 2.97% and an average permeability of 0.56×10−3 μm2. This promising reservoir is mainly distributed in the Lengshuixi and Shuangliuba regions and the latter has a relatively high-quality reservoir with an average porosity of 5.28% and average permeability of 0.53×10−3 μm2. The reservoir space comprises secondary intergranular dissolved pores, moldic pores and fractures. Microfacies, feldspar dissolution and fracture connectivity control the quality of this reservoir. The relatively weak compaction and cementation in the interbedded delta front distal bar and interdistributary bay microfacies indirectly protected the primary intergranular pores and enhanced late-stage dissolution. Late-stage potassium feldspar dissolution was controlled by the early-stage organic acid dissolution intensity and the distance from the hydrocarbon generation center. Early-stage fractures acted as pathways for organic acid migration and were therefore important factors in the formation of the reservoir. Based on these observations, the area to the west of the Shuangliuba and Lengshuixi regions has potential for gas exploration. PMID:28686735

  1. Characteristics and origin of the relatively high-quality tight reservoir in the Silurian Xiaoheba Formation in the southeastern Sichuan Basin.

    Directory of Open Access Journals (Sweden)

    Xiaoxing Gong

    Full Text Available A mature understanding of the sandstone gas reservoir in the Xiaoheba Formation in the southeastern Sichuan Basin remains lacking. To assess the reservoir characteristics and the origin of the high-quality reservoir in the Xiaoheba Formation, this paper uses systematic field investigations, physical property analysis, thin section identification, scanning electron microscopy and electron microprobe methods. The results indicate that the Xiaoheba sandstone is an ultra-tight and ultra-low permeability reservoir, with an average porosity of 2.97% and an average permeability of 0.56×10-3 μm2. This promising reservoir is mainly distributed in the Lengshuixi and Shuangliuba regions and the latter has a relatively high-quality reservoir with an average porosity of 5.28% and average permeability of 0.53×10-3 μm2. The reservoir space comprises secondary intergranular dissolved pores, moldic pores and fractures. Microfacies, feldspar dissolution and fracture connectivity control the quality of this reservoir. The relatively weak compaction and cementation in the interbedded delta front distal bar and interdistributary bay microfacies indirectly protected the primary intergranular pores and enhanced late-stage dissolution. Late-stage potassium feldspar dissolution was controlled by the early-stage organic acid dissolution intensity and the distance from the hydrocarbon generation center. Early-stage fractures acted as pathways for organic acid migration and were therefore important factors in the formation of the reservoir. Based on these observations, the area to the west of the Shuangliuba and Lengshuixi regions has potential for gas exploration.

  2. Clay squirt: Local flow dispersion in shale-bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2017-01-01

    Dispersion of elastic-wave velocity is common in sandstone and larger in shaly sandstone than in clean sandstone. Dispersion in fluid-saturated shaly sandstone often exceeds the level expected from the stress-dependent elastic moduli of dry sandstone. The large dispersion has been coined clay...... squirt and is proposed to originate from a pressure gradient between the clay microporosity and the effective porosity. We have formulated a simple model that quantifies the clay-squirt effect on bulk moduli of sandstone with homogeneously distributed shale laminae or dispersed shale. The model...... predictions were compared with the literature data. For sandstones with dispersed shale, agreement was found, whereas other sandstones have larger fluid-saturated bulk modulus, possibly due to partially load-bearing shales or heterogeneous shale distribution. The data that agree with the clay-squirt model...

  3. PALEOEVIRONMENT OF NIGERIA'S AJALI SANDSTONES: A ...

    African Journals Online (AJOL)

    The Ajali Sandstone is a major clastic formation of Campanian-Maastrichtian age occuring within the Anambra Basin, Southeastern Nigeria. ... The result is in line with earlier conclusions of fluvial or fluviodeltaic depositional environment based on analysis of faceis, sedimentary rock which are suitable for morphometrical ...

  4. Comparison of authigenic minerals in sandstones and interbedded ...

    African Journals Online (AJOL)

    Comparison of authigenic minerals in sandstones and interbedded mudstones, siltstones and shales, East Berlin formation, Hartford Basin, USA. ... The lacustrine sandstones, siltstones and mudstones followed marine diagenetic trend, whereas playa and fluviatile sandstones, siltstones and mudstones followed red bed ...

  5. Sedimentological characteristics of Ajali sandstone in the Benin ...

    African Journals Online (AJOL)

    Outcrop mapping as well as textural, mineralogical and structural studies of sandstone in the Auchi locality were carried out in order to interpret depositional environment of Ajali Sandstone in the Benin flank of Anambra Basin. Two major lithologic units were identified: the lower bioturbated shale and overlying sandstone ...

  6. Emplacement of sandstone intrusions during contractional tectonics

    Science.gov (United States)

    Palladino, Giuseppe; Grippa, Antonio; Bureau, Denis; Alsop, G. Ian; Hurst, Andrew

    2016-08-01

    Sandstone injections are created by the forceful emplacement of remobilized sand in response to increases in overpressure. However, the contribution provided by horizontal compressive stress to the build-up in overpressure, and the resulting emplacement of sand injection complexes, is still to be substantiated by robust field observations. An opportunity to address this issue occurs in Central California where a large volume of sandstone intrusions record regionally-persistent supra-lithostatic pore-pressure. Detailed fieldwork allows sandstone-filled thrusts to be recognized and, for the first time, permits us to demonstrate that some sandstone intrusions are linked to contractional deformation affecting the western border of the Great Valley Basin. Fluidized sand was extensively injected along thrust surfaces, and also fills local dilatant cavities linked to thrusting. The main aims of this paper are to provide detailed descriptions of the newly recognized syn-tectonic injections, and describe detailed cross-cutting relationships with earlier sandstone injection complexes in the study area. Finally, an evolutionary model consisting of three phases of sand injection is provided. In this model, sand injection is linked to contractional tectonic episodes affecting the western side of the Great Valley Basin during the Early-Middle Cenozoic. This study demonstrates that sand injections, driven by fluid overpressure, may inject along thrusts and folds and thereby overcome stresses associated with regional contractional deformation. It is shown that different generations of sand injection can develop in the same area under the control of different stress regimes, linked to the evolving mountain chain.

  7. Genesis Analysis of High-Gamma Ray Sandstone Reservoir and Its Log Evaluation Techniques: A Case Study from the Junggar Basin, Northwest China

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2013-01-01

    Full Text Available In the Junggar basin, northwest China, many high gamma-ray (GR sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs’ recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation’s high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR logs is proposed and proved to be useful in reservoir recognition and physical property evaluation.

  8. Geometry of calcite cemented zones in shallow marine sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Walderhaug, O.; Prestholm, E.; Oexnevad, I.E.I.

    1995-12-31

    In offshore oil production, tightly cemented calcite zones often form impermeable barriers to fluid flow an so adversely affect reservoir performance. Based on recent breakthroughs in the theory of the formation of calcite cemented zones, the project discussed in this paper was concerned with (1) Performing outcrop studies in order to increase the existing database on the geometry of calcite cemented zones, (2) Extending and refining methods of predicting the geometry of cored calcite cemented zones, and (3) Applying and illustrating the use of these methods by studying calcite cementation in shallow marine reservoir sandstones on the Norwegian shelf. The paper presents results from field work and applies these results and the criteria for recognizing geometrical forms of calcite cementation in cores to the Ula Formation of the Ula Field and the Rannoch Formation of the Gullfax Field. The results from the core and outcrop studies are integrated in a tentative identification key for cored calcite cemented zones. The work is part of PROFIT (Program for Research On Field oriented Improved recovery Technology), a research project conducted by RF - Rogaland Research in 1991-1994. 32 refs., 10 figs., 2 tabs.

  9. Diagnosing the tight building syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S.A.

    1987-12-01

    Formaldehyde is but one of many chemicals capable of causing the tight building syndrome or environmentally induced illness (EI). The spectrum of symptoms it may induce includes attacks of headache, flushing, laryngitis, dizziness, nausea, extreme weakness, arthralgia, unwarranted depression, dysphonia, exhaustion, inability to think clearly, arrhythmia or muscle spasms. The nonspecificity of such symptoms can baffle physicians from many specialties. Presented herein is a simple office method for demonstrating that formaldehyde is among the etiologic agents triggering these symptoms. The very symptoms that patients complain of can be provoked within minutes, and subsequently abolished, with an intradermal injection of the appropriate strength of formaldehyde. This injection aids in convincing the patient of the cause of the symptoms so he can initiate measure to bring his disease under control.

  10. Invasive tightly coupled processor arrays

    CERN Document Server

    LARI, VAHID

    2016-01-01

    This book introduces new massively parallel computer (MPSoC) architectures called invasive tightly coupled processor arrays. It proposes strategies, architecture designs, and programming interfaces for invasive TCPAs that allow invading and subsequently executing loop programs with strict requirements or guarantees of non-functional execution qualities such as performance, power consumption, and reliability. For the first time, such a configurable processor array architecture consisting of locally interconnected VLIW processing elements can be claimed by programs, either in full or in part, using the principle of invasive computing. Invasive TCPAs provide unprecedented energy efficiency for the parallel execution of nested loop programs by avoiding any global memory access such as GPUs and may even support loops with complex dependencies such as loop-carried dependencies that are not amenable to parallel execution on GPUs. For this purpose, the book proposes different invasion strategies for claiming a desire...

  11. Radionuclide transport in sandstones with WIPP brine

    International Nuclear Information System (INIS)

    Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

    1981-02-01

    Retardation factors (R) have been measured for the transport of 3 H, /sup 95m/Tc, and 85 Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for 85 Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for 85 Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta

  12. Clay mineral variations near Pennsylvanian sandstone channels

    International Nuclear Information System (INIS)

    Shaffer, N.R.; Indiana Univ., Bloomington, IN; Murray, H.H.

    1993-01-01

    Large linear sandstone bodies in the Illinois Basin have been interpreted as representing fresh water river channels that flowed through generally marine to brackish Pennsylvanian deltaic environments; fresh water from such channels could have affected deposition of adjacent coal-bearing rocks. Low-sulfur coals are commonly associated with the sandstone bodies, which may also host petroleum, uranium, fresh water, or other resources. Thus techniques to locate such channels would be economically useful. Previous studies have shown that clay mineral distributions and bulk chemistries of clay-rich sediments are affected when fresh waters mix with sea water. Such changes associated laterally with freshwater channels might have caused distinctive clay mineral or chemical patterns to develop around the channels. Mineralogies and chemical compositions of more than 500 mudrock samples taken immediately above the springfield Coal Member of the Petersburg Formation from 52 sections located from channel margins to 63 miles distant were determined to discern patterns that could aid in finding channels

  13. Geochemical characteristics of sandstones from Cretaceous ...

    Indian Academy of Sciences (India)

    Babu K

    Al2O3 vs. other major oxides of Garudamangalam sandstone. UCC (Ba/Sc = 50 and Ba/Co = 55) and PAAS. (Ba/Sc = 40.62 and Ba/Co = 28.26) and thus point to silicic as possible source for these formations. Since elements like Cr and Zr are controlled by the chromite and zircon contents, respectively, their ratio may be ...

  14. Geochemical characteristics of sandstones from Cretaceous ...

    Indian Academy of Sciences (India)

    Babu K

    values of Fe2O3 (2.29–22.02%) and low MgO content (0.75–2.44%) are observed in the Garudamangalam. Formation. CaO (23.53–45.90) is high in these sandstones due to the presence of calcite as cement- ing material. Major element geochemistry of clastic rocks (Al2O3 vs. Na2O) plot and trace elemental ratio (Th/U) ...

  15. Performance of Different Acids on Sandstone Formations

    Directory of Open Access Journals (Sweden)

    M. A. Zaman

    2013-12-01

    Full Text Available Stimulation of sandstone formations is a challenging task, which involves several chemicals and physical interactions of the acid with the formation. Some of these reactions may result in formation damage. Mud acid has been successfully used to stimulate sandstone reservoirs for a number of years. It is a mixture of hydrofluoric (HF and hydrochloric (HCl acids designed to dissolve clays and siliceous fines accumulated in the near-wellbore region. Matrix acidizing may also be used to increase formation permeability in undamaged wells. The change may be up to 50% to 100% with the mud acid. For any acidizing process, the selection of acid (Formulation and Concentration and the design (Pre-flush, Main Acid, After-flush is very important. Different researchers are using different combinations of acids with different concentrations to get the best results for acidization. Mainly the common practice is combination of Hydrochloric Acid – Hydrofluoric with Concentration (3% HF – 12% HCl. This paper presents the results of a laboratory investigation of Orthophosphoric acid instead of hydrochloric acid in one combination and the second combination is Fluoboric and formic acid and the third one is formic and hydrofluoric acid. The results are compared with the mud acid and the results calculated are porosity, permeability, and FESEM Analysis and Strength tests. All of these new combinations shows that these have the potential to be used as acidizing acids on sandstone formations.

  16. Cathodoluminescence characteristics of sandstone and the implications for sandstone type No. 512 uranium deposit

    International Nuclear Information System (INIS)

    Liu Xiaodong; Guan Taiyang

    1998-12-01

    Cathodoluminescence (CL) technique, as a special petrologic tool, has been applied to the studies of uranium hosted sandstone from No. 512 uranium deposit located in Xinjiang Autonomous Region, Northwest China. The detrital grains including quartz, feldspar, debris and cements display distinguishing CL properties. The quartz grains mainly demonstrate brown and dark blue CL, feldspar grains demonstrate blue and bright blue CL, calcite cement displays bright yellow-orange and orange-red CL with significant CL zoning, while the debris, mud and sand cements have dark red CL, multicolor CL or non-luminescence. The characteristics of overgrowth, fracture healing, and the original contact relations of detrital grains appear much more significant with CL than that with conventional visual methods. Much more information can be contributed by CL technique to decipher the provenance area, to explain the cementation, consolidation and other diagenesis processes of sandstone. The CL technique also provides and efficient tool for identifying detrital grains and cements, and for more precisely estimating the proportions of various detrital grains and cement components in sandstone. The CL emission of uranium hosted sandstone revealed the existence of radiation-damage rims of quartz grains at the places with a little or no uranium minerals nearby, which may imply a uranium-leaching episode during the diagenesis of sandstone

  17. Tightly Secure Signatures From Lossy Identification Schemes

    OpenAIRE

    Abdalla , Michel; Fouque , Pierre-Alain; Lyubashevsky , Vadim; Tibouchi , Mehdi

    2015-01-01

    International audience; In this paper, we present three digital signature schemes with tight security reductions in the random oracle model. Our first signature scheme is a particularly efficient version of the short exponent discrete log-based scheme of Girault et al. (J Cryptol 19(4):463–487, 2006). Our scheme has a tight reduction to the decisional short discrete logarithm problem, while still maintaining the non-tight reduction to the computational version of the problem upon which the or...

  18. Global Coal Trade. From Tightness to Oversupply

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-01-01

    Over the past four years, international coal trade has been reshaped by China's surging imports. China, which was still a net exporter in 2008, became the world's first coal importer in 2011, taking over the position that Japan has occupied for three decades. Its imports have continued their rising trend and reached a record level in 2012, despite the country's economic slowdown. China imported 289 million tons of coal in 2012, up 30% over 2011. It now accounts for 23% of global imports. Although China is the world's largest coal producer, several factors have contributed to the sudden rise in its imports, including the higher cost of domestic coal relative to international prices and bottlenecks in transporting domestic coal to south-eastern provinces. More recently, another event shook the international coal business: the United States have been back on the market. The collapse of U.S. gas prices, to $4/million Btu in 2011 and even $2.75/million Btu in 2012, linked with the 'shale gas revolution', has made coal uncompetitive in the electricity sector, its main outlet on the U.S. market. U.S. coal demand dropped 4% in 2011 and 11% in 2012. The reduction in domestic demand has forced U.S. miners to look for overseas outlets. Their exports surged by 31% in 2011 and 16% in 2012. They reached 112 million tons in 2012, more than twice the level of 2009. The United States, which almost disappeared from the international steam coal market in the 2000's, have regained a larger share of the total coal export market, 9% in 2012, against 6% in 2009. These developments, although not directly linked, have a huge impact on the global market and pricing of coal. Chinese imports have helped the market to quickly recover from its low level of 2008-2009. The speed and magnitude of China's coal imports even shifts the market from a sluggish to a tight situation. Prices started to rise after their collapse in the second half of 2008 caused by the economic and financial crisis

  19. Azimuthal AVO signatures of fractured poroelastic sandstone layers

    Science.gov (United States)

    Guo, Zhiqi; Li, Xiang-Yang

    2017-10-01

    Azimuthal P-wave amplitude variation with offset (AVO) offers a method for the characterisation of a naturally fractured system in a reservoir. This information is important for the analysis of fluid flow during production of, for example, oil, petroleum and natural gas. This paper provides a modelling scheme by incorporating the squirt-flow model for the prediction of velocity dispersion and attenuation with azimuthal reflectivity method for the calculation of frequency-dependent seismic responses. Azimuthal AVO responses from a fractured poroelastic sandstone layer encased within shale are investigated based on the proposed method. Azimuthal reflections are a combination of the dynamic information including the contrast in anisotropic properties, anisotropic propagation and attenuation within the layer, as well as tuning and interferences. Modelling results indicate that seismic responses from the top of the sandstone layer are dominated by reflection coefficients, and show azimuthal variations at far offset which is consistent with conventional azimuthal AVO theory. Reflections from the base, however, demonstrate complex azimuthal variations due to anisotropic propagation and attenuation of transmission waves within the layer. Tuning and interferences further complicate the azimuthal AVO responses for thinner layer thickness. The AVO responses of top reflections show no azimuthal variations for lower fluid mobility, while those of base reflections show visible and stable azimuthal variations even at near and moderate offsets for different fluid mobility. Results also reveal that it would be practical to investigate wavetrains reflected from the fractured layers that are regarded as integrated units, especially for thinner layers where reflections from the top and base are indistinguishable. In addition, near-offset stacked amplitudes of the reflected wavetrains show detectable azimuthal variations, which may offer an initial look at fracture orientations before

  20. Chemical and physical hydrogeology of coal, mixed coal-sandstone and sandstone aquifers from coal-bearing formations in the Alberta Plains region, Alberta

    International Nuclear Information System (INIS)

    Lemay, T.G.

    2003-09-01

    With the decline of conventional oil and gas reserves, natural gas from coal (NGC) is an unconventional gas resource that is receiving much attention from petroleum exploration and development companies in Alberta. Although the volume of the NGC resource is large, there are many challenges facing NGC development in Alberta, including technical and economic issues, land access, water disposal, water diversion and access to information. Exploration and development of NGC in Alberta is relatively new, therefore there is little baseline data on which to base regulatory strategies. Some important information gaps have been filled through water well sampling in coal, mixed coal-sandstone and sandstone aquifers throughout Alberta. Analyses focused on the chemical and physical characteristics aquifers in use for domestic or agricultural purposes. Aquifer depths were generally less than 100 metres. Samples collected from Paskapoo-Scollard Formation, Horseshoe Canyon Formation and Belly River Group aquifers exceed Canadian water quality guideline values with respect to pH, sodium, manganese, chloride, chromium, sulphate, phenols and total dissolved solids. Pump tests conducted within the aquifers indicate that the groundwater flow is complicated. Water quality will have to be carefully managed to ensure responsible disposal practices are followed. Future studies will focus on understanding the chemical and biological process that occur within the aquifers and the possible link between these processes and gas generation. Mitigation and disposal strategies for produced water will also be developed along with exploration strategies using information obtained from hydrogeologic studies. 254 refs., 182 tabs., 100 figs., 3 appendices

  1. MODELING OF FLOW AND TRANSPORT INDUCED BY PRODUCTION OF HYDROFRACTURE-STIMULATED GAS WELLS NEAR THE RULISON NUCLEAR TEST

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Rex A. [Navarro Research and Engineering; Cooper, Clay [Desert Research Inst. (DRI), Reno, NV (United States); Falta, Ronald [Clemson Univ., SC (United States)

    2012-09-17

    The Piceance Basin in western Colorado contains significant reserves of natural gas in poorly connected, low-permeability (tight) sandstone lenses of the Mesaverde Group. The ability to enhance the production of natural gas in this area has long been a goal of the oil and gas industry. The U.S. Atomic Energy Commission, a predecessor agency to the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission, participated in three tests using nuclear detonations to fracture tight formations in an effort to enhance gas production. The tests were conducted under Project Plowshare, a program designed to identify peaceful, beneficial uses for nuclear devices. The first, Project Gasbuggy, was conducted in 1967 in the San Juan Basin of New Mexico. The two subsequent tests, Project Rulison in 1969 and Project Rio Blanco in 1973, were in the Piceance Basin. The ability to enhance natural gas production from tight sands has become practical through advances in hydraulic fracturing technology (hydrofracturing). This technology has led to an increase in drilling activity near the Rulison site, raising concerns that contamination currently contained in the subsurface could be released through a gas well drilled too close to the site. As wells are drilled nearer the site, the DOE Office of Legacy Management has taken the approach outlined in the June 2010 Rulison Path Forward document (DOE 2010), which recommends a conservative, staged approach to gas development. Drillers are encouraged to drill wells in areas with a low likelihood of encountering contamination (both distance and direction from the detonation zone are factors) and to collect data from these wells prior to drilling nearer the site’s 40 acre institutional control boundary (Lot 11). Previous modeling results indicate that contamination has been contained within Lot 11 (Figure 1). The Path Forward document couples the model predictions with the monitoring of gas and produced water from the gas wells

  2. The migration of uranium through sandstone

    International Nuclear Information System (INIS)

    Bennett, D.G.; Read, D.; Lawless, T.A.; Sims, R.J.

    1992-01-01

    Three column experiments are described in which the migration of uranium through Clashach Sandstone was studied. A priori predictions of uranium migration in the experiments were made using an equilibrium chemical transport model. The experimental results showed that, even under oxidising conditions, the migration of uranium is strongly retarded owing to the affinity of uranium for mineral surfaces. For the relatively simple chemical system investigated, the chemical transport model was successful in predicting the migration of uranium and its distribution along the column. (author)

  3. INAA and petrological study of sandstones from the Angkor monuments

    International Nuclear Information System (INIS)

    Kucera, J.; Kranda, K.; Soukal, L.; Novak, J.K.; Lang, M.; Poncar, J.; Krausova, I.; Cunin, O.

    2008-01-01

    We determined 35 major, minor and trace elements in sandstone samples taken from building blocks of 19 Angkor temples and from an old and a new quarry using INAA. We also characterized the sandstone samples with conventional microscopy and electron microprobe analysis. Using cluster analysis, we found no straightforward correlation between the chemical/petrological properties of the sandstones and a presumed period of individual temples construction. The poor correlation may result either from the inherent inhomogeneity of sandstone or just reflect the diversity of quarries that supplied building blocks for the construction of any particular temple. (author)

  4. Anisotropy of permeability in faulted porous sandstones

    Science.gov (United States)

    Farrell, N. J. C.; Healy, D.; Taylor, C. W.

    2014-06-01

    Studies of fault rock permeabilities advance the understanding of fluid migration patterns around faults and contribute to predictions of fault stability. In this study a new model is proposed combining brittle deformation structures formed during faulting, with fluid flow through pores. It assesses the impact of faulting on the permeability anisotropy of porous sandstone, hypothesising that the formation of fault related micro-scale deformation structures will alter the host rock porosity organisation and create new permeability pathways. Core plugs and thin sections were sampled around a normal fault and oriented with respect to the fault plane. Anisotropy of permeability was determined in three orientations to the fault plane at ambient and confining pressures. Results show that permeabilities measured parallel to fault dip were up to 10 times higher than along fault strike permeability. Analysis of corresponding thin sections shows elongate pores oriented at a low angle to the maximum principal palaeo-stress (σ1) and parallel to fault dip, indicating that permeability anisotropy is produced by grain scale deformation mechanisms associated with faulting. Using a soil mechanics 'void cell model' this study shows how elongate pores could be produced in faulted porous sandstone by compaction and reorganisation of grains through shearing and cataclasis.

  5. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  6. The tight reservoir microscopic classification of southern part of Qijia area in Songliao Basin

    Science.gov (United States)

    Hang, Fu

    2018-02-01

    With the decreasing of the conventional oil and gas reserves, the unconventional tight oil and gas are gradually becoming the focus of the study. The casting thin section, conventional mercury injection, constant velocity and pressure mercury and other experimental methods, tight reservoir microscopic characteristics in southern part of Qijia area were studied in this paper. Based on the above conditions, combined with the parameters of pore type, pore throat radius, the reservoir is divided into two types, conventional reservoir and low permeability tight reservoir. Reservoir conventional reservoir permeability values are greater than 1mD, low permeability tight reservoirs are classified into IIa type and IIb type, which provides some reference value for the actual exploration and development.

  7. Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins

    International Nuclear Information System (INIS)

    1993-08-01

    The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R ampersand D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ''typical'' well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic

  8. Sandstone landforms shaped by negative feedback between stress and erosion

    Czech Academy of Sciences Publication Activity Database

    Bruthans, J.; Soukup, J.; Vaculíková, J.; Filippi, Michal; Schweigstillová, Jana; Mayo, A. L.; Mašín, D.; Kletetschka, Günther; Řihošek, J.

    2014-01-01

    Roč. 7, č. 8 (2014), s. 597-601 ISSN 1752-0894 R&D Projects: GA ČR GA13-28040S Institutional support: RVO:67985831 ; RVO:67985891 Keywords : sandstone * sandstone landsforms * stress * erosion Subject RIV: DB - Geology ; Mineralogy Impact factor: 11.740, year: 2014

  9. INTRODUCTION Sandstone beds within Auchi locality are the ...

    African Journals Online (AJOL)

    alternating sequence of red, brown, and grayish colours. There are also few intercalations of thin fine grained friable sandstone whose contact with the shale bed is marked by load structures. Worm burrows were also found at the upper section of the shale beds and extend into the overlying sandstone unit. The tabular cross ...

  10. Geothermal characteristics of Buntsandstein sandstone reservoir of Alsace

    International Nuclear Information System (INIS)

    Haffen, Sebastien

    2012-01-01

    The Buntsandstein, located in the Upper Rhine Graben, appears to be an easy target for geothermal exploitation, linking sandstone and clay with the regional thermal anomaly. This study aims at characterizing petrophysical characteristics of these sandstones as well as the fracturing affecting them, with the intention of providing a conceptual model of the formation which will act as guide for future exploitation. The sedimentary facies are composed by five petrographical facies (clean sandstones, sandstones with clayey coating, clay matrix sandstones, silicified sandstones and carbonated matrix sandstones) which split with variable proportions and control a part of petrophysical properties measured at matrix scale. The comparison between petrophysical data, macroscopic data from temperature gradient analysis, modelling data and fracturing, allows the building of a Buntsandstein Sandstones fluids circulation conceptual model. This analysis points the role of the damage zone of fault zones for fluids transfer at large scale, but also that of two sedimentary facies: marginal erg and Playa Lake. The analysis of different outcrops shows that the fracturing evolves according to the situation in the sedimentary pile and according to the situation in comparison with major tectonic accidents. (author) [fr

  11. Modal analysis and geochemistry of two sandstones of the Bhander ...

    Indian Academy of Sciences (India)

    This group shows extensive lateral facies variation and consists of five identifiable formations namely the Ganurgarh Shale, the Nagod Limestone, the. Lower Bhander Sandstone, the Sirbu Shale and the. Upper Bhander Sandstone in the Maihar–Nagod sector, the area of the present study. In view of the age of Vindhyan ...

  12. Examples from the 1.6 Ga Chorhat Sandstone, Vindhyan

    Indian Academy of Sciences (India)

    This paper addresses macroscopic signatures of microbial mat-related structures within the 1.6 Ga-old Chorhat Sandstone of the Semri Group –the basal stratigraphic unit of the Vindhyan succession in Son valley.The Chorhat Sandstone broadly represents a prograding succession of three depositional facies ranging from ...

  13. Petrography and geochemistry of Jurassic sandstones from the ...

    Indian Academy of Sciences (India)

    V Periasamy

    Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic set- ting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains ...

  14. Nodular features from Proterozoic Sonia Sandstone, Jodhpur Group ...

    Indian Academy of Sciences (India)

    time of Au as it is known to produce bacteria-like artefacts if the coating time is not ..... the sandstone from the neck part of the nodule is of relatively smaller grain size compared to sandstones in the body part and overlying strata. ..... phur metabolism in cyanobacterial mats; In: Physiological. Ecology of Benthic Microbial ...

  15. Intensive Insulin Therapy: Tight Blood Sugar Control

    Science.gov (United States)

    Intensive insulin therapy: Tight blood sugar control Intensive insulin therapy can help prevent long-term diabetes complications. Consider the ... cases if you have type 2 diabetes — intensive insulin therapy may be the key to long-term ...

  16. Relationship between characteristics of fan-delta sandstone bodies and in-situ leachable sandstone-type uranium mineralization

    International Nuclear Information System (INIS)

    Nie Fengjun; Zhou Weixun; Guan Taiyang; Li Sitian

    2000-01-01

    Like normal deltas, fan-deltas are composed of three parts, i.e., fan-delta plain, fan-delta front and pre-fin-delta, In-situ leachable uranium deposits are commonly distributed along the margins of in-land basins. The author analyzes the possible relationship between the basic characteristics of fan-delta sandstone bodies and uranium mineralization. Two examples, e.g., the fan delta depositional systems in the eastern part of Jungger basin and the southern part of Yili basin, are given to illustrate the fan-delta vertical sequence and planar distribution of sedimentary facies. It has been pointed out that the braided channel sandstone bodies on delta plain, sub-aqueous distributional channel sandstone bodies and delta front sandstone bodies may be the favourable host rocks for in-situ leachable sandstone uranium deposits

  17. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  18. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions

    Directory of Open Access Journals (Sweden)

    Carroll Susan A

    2011-11-01

    Full Text Available Abstract Background Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. Results We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH3. Conclusions Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface.

  19. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions.

    Science.gov (United States)

    Carroll, Susan A; McNab, Walt W; Torres, Sharon C

    2011-11-11

    Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH)3. Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface.

  20. Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores

    Directory of Open Access Journals (Sweden)

    Jianming He

    2016-12-01

    Full Text Available Hydraulic fracturing is an important method of reservoir stimulation in the exploitation of geothermal resources, and conventional and unconventional oil and gas resources. In this article, hydraulic fracturing experiments with shale, sandstone cores (from southern Sichuan Basin, and granite cores (from Inner Mongolia were conducted to investigate the different hydraulic fracture extension patterns in these three reservoir rocks. The different reactions between reservoir lithology and pump pressure can be reflected by the pump pressure monitoring curves of hydraulic fracture experiments. An X-ray computer tomography (CT scanner was employed to obtain the spatial distribution of hydraulic fractures in fractured shale, sandstone, and granite cores. From the microscopic and macroscopic observation of hydraulic fractures, different extension patterns of the hydraulic fracture can be analyzed. In fractured sandstone, symmetrical hydraulic fracture morphology could be formed, while some micro cracks were also induced near the injection hole. Although the macroscopic cracks in fractured granite cores are barely observed by naked eye, the results of X-ray CT scanning obviously show the morphology of hydraulic fractures. It is indicated that the typical bedding planes well developed in shale formation play an important role in the propagation of hydraulic fractures in shale cores. The results also demonstrated that heterogeneity influenced the pathway of the hydraulic fracture in granite cores.

  1. Post-depositional alteration of titanomagnetite in a Miocene sandstone, south Texas (U.S.A.)

    Science.gov (United States)

    Reynolds, R.L.

    1982-01-01

    Petrographic and geochemical studies have yielded information on the time-space relationships of the post-depositional alteration of detrital titanomagnetite (Ti-mt) in fine- to medium-grained sandstone from unoriented core samples (taken below the water table at depths of 30-45 m) of the Miocene Catahoula Sandstone, south Texas. Aqueous sulfide introduced from sour gas reservoirs along a growth fault into part of the Catahoula shortly after deposition resulted in the replacement at the periphery of Ti-mt grains by iron disulfide (FeS2) minerals. Remnants of Ti-mt in cores of the partly sulfidized grains show no evidence of earlier hematitic oxidation. After sulfidization, part of the sandstone body was invaded by oxygenated groundwaters flowing down a shallowly inclined (1??) hydrologic gradient. The boundary between oxidized and reduced facies is clearly defined by the distribution of ferric and ferrous iron minerals, and the concentrations of Mo, U, and Se. In oxidized (light-red) strata that had not been previously subjected to sulfidic-reducing conditions but that are correlative with strata containing FeS2 minerals, Ti-mt has been partly to entirely replaced pseudomorphously by hematite to form martite. The absence of hematitic alteration of Ti-mt in the reduced facies is strong evidence that martite in the oxidized facies formed after deposition. ?? 1982.

  2. Theoretical innovation and technical progress will usher in a production period of gas fields with an annual capacity of ten billion cubic meters

    Directory of Open Access Journals (Sweden)

    Zhenwei Gan

    2017-01-01

    Full Text Available Challenged by the increasing complexity of targets and the tense situation of turning losses into profits during the 12th Five-Year Plan, by virtue of technological innovation, Sinopec Southwest Oil & Gas Company proposed the theories of gas exploration in continental clastic rock and marine carbonate rock, and developed the development technologies for reef, channel sandstone and tight sandstone reservoirs. Moreover, it innovatively formed a series of engineering technologies, including intelligent sliding sleeve staged fracturing, blasting–packing–fracturing stimulation, impulse fracturing, and drilling, completion and production technologies for ultra-deep horizontal wells with high sulfur contents. With these innovated theories and improved technologies, great discoveries have been made in the continental clastic rocks and marine carbonate rocks in West Sichuan Basin, the marine shale in South Sichuan Basin, and the marine carbonate rocks in Yuanba area of NE Sichuan Basin, and three 100 billion-m3 class commercial gas reserves zones were discovered. Moreover, two medium- and large-sized gas fields were proved, and three medium- and large-sized gas fields were completely constructed. Both reserves and production reached a new record in history. During the 13th Five-Year Plan, Sinopec Southwest Oil & Gas Company will focus on the exploration and development of deep marine carbonate reservoirs, commercial development of deep shale gas, safe development of gas fields with high sulfur, and enhancement of recovery in mature gas fields. By the end of the 13th Five-Year Plan, it is expected that the annual gas production of (10–12 × 109 m3 will be achieved.

  3. Water-borne radon and hydrogeochemical based uranium exploration in Rajamundry sandstone, W. Godavari district, Andhra Pradesh

    International Nuclear Information System (INIS)

    Jeyagopal, A.V.; Rajaraman, H.S.; Som, Anjan

    2010-01-01

    The lithology and sedimentary structures of the Rajamundry Formation of the Mio-Pliocene age covering an area of 1100 sq.km. indicate that it may be a typical valley fill sediment. It is about 600 m thick comprising sandstone and clay with lignite as the main lithounits. It is continental in onshore and marine in the offshore and is in contact with Gondwana sediments and Rajamundry traps. Tertiary sandstones are important hosts for uranium mineralisation. The reducing gas (Methane or other volatile hydrocarbon) moving to uraniferous oxidising water has precipitated uranium in the sediments in South Texas and Northwest Colorado, USA: (a) along faults, (b) above petroliferous aquifers, (c) vertically above hydrocarbon accumulations and (d) oil-water interface at hydrocarbon accumulations i.e., at the points of introduction of reducent into oxidising ground waters. In this context, Rajamundry sandstone lying above the natural gas and petroleum bearing Krishna Godavari basin with faults is an important geological setting for uranium mineralisation. The exploration strategies of hydrogeochemical survey and water-borne Radon (Rn) surveys were selected in this soil-covered area. Hydrogeochemical survey carried out in the Rajamundry sandstone has brought out four hydro-uranium anomalous zones with water samples (10-45ppb) falling around Kadiyadda, Madhavaram, Erramalla and Chinna Malapalle areas of West Godavari district, Andhra Pradesh. The zones vary from 9 to 24 sq km area. Water-borne Radon was utilized as a tool for exploration of uranium in this soil covered terrain. Rn contours cluster around two zones around Kadiyadda and SW of Gollagudem wherein the Rn value is >60 counts/50 sec/500 ml. These Rn anomalies fall within the above mentioned hydrouranium anomalous zones. Gamma-ray logging of private bore wells has recorded relatively higher radioactivity in Kommugudem, which also falls in the high hydrouranium - high waterborne radon zone. These data and

  4. Mineral Sequestration of Carbon Dixoide in a Sandstone-Shale System

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2004-07-09

    A conceptual model of CO2 injection in bedded sandstone-shale sequences has been developed using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments. Numerical simulations were performed with the reactive fluid flow and geochemical transport code TOUGHREACT to analyze mass transfer between sandstone and shale layers and CO2 immobilization through carbonate precipitation. Results indicate that most CO2 sequestration occurs in the sandstone. The major CO2 trapping minerals are dawsonite and ankerite. The CO2 mineral-trapping capacity after 100,000 years reaches about 90 kg per cubic meter of the medium. The CO2 trapping capacity depends on primary mineral composition. Precipitation of siderite and ankerite requires Fe+2 supplied mainly by chlorite and some by hematite dissolution and reduction. Precipitation of dawsonite requires Na+ provided by oligoclase dissolution. The initial abundance of chlorite and oligoclase therefore affects the CO2 mineral trapping capacity. The sequestration time required depends on the kinetic rate of mineral dissolution and precipitation. Dawsonite reaction kinetics is not well understood, and sensitivity regarding the precipitation rate was examined. The addition of CO2 as secondary carbonates results in decreased porosity. The leaching of chemical constituents from the interior of the shale causes slightly increased porosity. The limited information currently available for the mineralogy of natural high-pressure CO2 gas reservoirs is also generally consistent with our simulation. The ''numerical experiments'' give a detailed understanding of the dynamic evolution of a sandstone-shale geochemical system.

  5. Flow and Transport in Tight and Shale Formations: A Review

    Directory of Open Access Journals (Sweden)

    Amgad Salama

    2017-01-01

    Full Text Available A review on the recent advances of the flow and transport phenomena in tight and shale formations is presented in this work. Exploration of oil and gas in resources that were once considered inaccessible opened the door to highlight interesting phenomena that require attention and understanding. The length scales associated with transport phenomena in tight and shale formations are rich. From nanoscale phenomena to field-scale applications, a unified frame that is able to encounter the varieties of phenomena associated with each scale may not be possible. Each scale has its own tools and limitations that may not, probably, be suitable at other scales. Multiscale algorithms that effectively couple simulations among various scales of porous media are therefore important. In this article, a review of the different length scales and the tools associated with each scale is introduced. Highlights on the different phenomena pertinent to each scale are summarized. Furthermore, the governing equations describing flow and transport phenomena at different scales are investigated. In addition, methods to solve these equations using numerical techniques are introduced. Cross-scale analysis and derivation of linear and nonlinear Darcy’s scale laws from pore-scale governing equations are described. Phenomena occurring at molecular scales and their thermodynamics are discussed. Flow slippage at the nanosize pores and its upscaling to Darcy’s scale are highlighted. Pore network models are discussed as a viable tool to estimate macroscopic parameters that are otherwise difficult to measure. Then, the environmental aspects associated with the different technologies used in stimulating the gas stored in tight and shale formations are briefly discussed.

  6. Flow and Transport in Tight and Shale Formations: A Review

    KAUST Repository

    Salama, Amgad

    2017-09-18

    A review on the recent advances of the flow and transport phenomena in tight and shale formations is presented in this work. Exploration of oil and gas in resources that were once considered inaccessible opened the door to highlight interesting phenomena that require attention and understanding. The length scales associated with transport phenomena in tight and shale formations are rich. From nanoscale phenomena to field-scale applications, a unified frame that is able to encounter the varieties of phenomena associated with each scale may not be possible. Each scale has its own tools and limitations that may not, probably, be suitable at other scales. Multiscale algorithms that effectively couple simulations among various scales of porous media are therefore important. In this article, a review of the different length scales and the tools associated with each scale is introduced. Highlights on the different phenomena pertinent to each scale are summarized. Furthermore, the governing equations describing flow and transport phenomena at different scales are investigated. In addition, methods to solve these equations using numerical techniques are introduced. Cross-scale analysis and derivation of linear and nonlinear Darcy\\'s scale laws from pore-scale governing equations are described. Phenomena occurring at molecular scales and their thermodynamics are discussed. Flow slippage at the nanosize pores and its upscaling to Darcy\\'s scale are highlighted. Pore network models are discussed as a viable tool to estimate macroscopic parameters that are otherwise difficult to measure. Then, the environmental aspects associated with the different technologies used in stimulating the gas stored in tight and shale formations are briefly discussed.

  7. Tight rock fracturing due to internal gas production

    Science.gov (United States)

    Kobchenko, M.; Dysthe, D. K.; Renard, F.; Galland, O.

    2012-04-01

    Dehydration of sediments in subduction zones, magma emplacements, primary migration of hydrocarbons from organic-rich shales, venting involve the generation and migration of fluids in low permeability rocks. In all these geological systems, the migration of fluid through rock matrix is coupled with deformation. Generated fluid causes pressure build-up and leads to fracturing. Cracks grow, coalesce and form network, providing escaping pathways for outgoing fluids. We use gelatin to study the main characteristics of this process. We model fluid production by mixing gelatin with yeast, which generates CO2. The system exhibit a complex dynamics with clear fracture-fracture interactions. The conduct experiments in a Hele-Shaw cell, allowing us to monitor the formation, growth and intermittent connection of cracks within the gelatin through time. Although the gelatin media does not perfectly reproduce rock properties, it helps understanding basic principles of fracturing of a low permeability elastic medium, induced by in-situ fluid pressure generation.

  8. Boundary effect on liquid invasion in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Li Gao

    2015-01-01

    Full Text Available Liquid invasion is an important transport phenomenon in many geophysical and environmental applications. A new capillary model considering boundary effect is proposed to reveal its mechanism. The boundary fluid layer not only reduces the effective flow radius, but also changes the viscosity of fluid. Thus the capillary force and viscosity resistance increases, however, the increase of capillary force is faster than that of viscosity resistance, therefore the invasion front arrives at the critical distance earlier.

  9. Critical Power Performance of Tight Lattice Bundle

    Science.gov (United States)

    Yamamoto, Yasushi; Hiraiwa, Kouji; Morooka, Shinichi; Abe, Nobuaki

    An innovative fuel cycle system concept named BARS (BWR with an Advanced Recycle System) has been proposed as a future fuel cycle option aiming at enhanced utilization of uranium resources and reduction of radioactive wastes. In BARS, the spent fuel from conventional light water reactors (LWRs) is recycled as a mixed oxide (MOX) fuel for a BWR core with the fast neutron spectrum by means of oxide dry-processing and vibro-packing fuel fabrication. The fast neutron spectrum is obtained by means of triangular tight fuel lattice. Further study on BARS, especially on tight lattice MOX fuel, has been initiated as a joint study by Toshiba and Gifu University. The objective of this paper is to show the latest progress of the study on BARS, especially concerning the thermal-hydraulics measurements for tight lattice bundle.

  10. An introduction to finite tight frames

    CERN Document Server

    Waldron, Shayne F D

    2018-01-01

    This textbook is an introduction to the theory and applications of finite tight frames, an area that has developed rapidly in the last decade. Stimulating much of this growth are the applications of finite frames to diverse fields such as signal processing, quantum information theory, multivariate orthogonal polynomials, and remote sensing. Key features and topics: * First book entirely devoted to finite frames * Extensive exercises and MATLAB examples for classroom use * Important examples, such as harmonic and Heisenberg frames, are presented in preliminary chapters, encouraging readers to explore and develop an intuitive feeling for tight frames * Later chapters delve into general theory details and recent research results * Many illustrations showing the special aspects of the geometry of finite frames * Provides an overview of the field of finite tight frames * Discusses future research directions in the field Featuring exercises and MATLAB examples in each chapter, the book is well suited as a textbook ...

  11. Hermetic compartments leak-tightness enhancement

    International Nuclear Information System (INIS)

    Murani, J.

    2000-01-01

    In connection with the enhancement of the nuclear safety of the Jaslovske Bohunice V-1 NPP actions for the increase of the leak tightness are performed. The reconstruction has been done in the following directions: hermetic compartments leak tightness enhancement; air lock installation; installation of air lock in SP 4 vent system; integrated leakage rate test to hermetic compartments with leak detection. After 'major' leaks on the hermetic boundary components had been eliminated, since 1994 works on a higher qualitative level began. The essence of the works consists in the detection and identification of leaks in the structural component of the hermetic boundary during the planned refueling outages. The results of the Small Reconstruction and gradual enhancement of leak tightness are presented

  12. Failure Forecasting in Triaxially Stressed Sandstones

    Science.gov (United States)

    Crippen, A.; Bell, A. F.; Curtis, A.; Main, I. G.

    2017-12-01

    Precursory signals to fracturing events have been observed to follow power-law accelerations in spatial, temporal, and size distributions leading up to catastrophic failure. In previous studies this behavior was modeled using Voight's relation of a geophysical precursor in order to perform `hindcasts' by solving for failure onset time. However, performing this analysis in retrospect creates a bias, as we know an event happened, when it happened, and we can search data for precursors accordingly. We aim to remove this retrospective bias, thereby allowing us to make failure forecasts in real-time in a rock deformation laboratory. We triaxially compressed water-saturated 100 mm sandstone cores (Pc= 25MPa, Pp = 5MPa, σ = 1.0E-5 s-1) to the point of failure while monitoring strain rate, differential stress, AEs, and continuous waveform data. Here we compare the current `hindcast` methods on synthetic and our real laboratory data. We then apply these techniques to increasing fractions of the data sets to observe the evolution of the failure forecast time with precursory data. We discuss these results as well as our plan to mitigate false positives and minimize errors for real-time application. Real-time failure forecasting could revolutionize the field of hazard mitigation of brittle failure processes by allowing non-invasive monitoring of civil structures, volcanoes, and possibly fault zones.

  13. Natural Erosion of Sandstone as Shape Optimisation.

    Science.gov (United States)

    Ostanin, Igor; Safonov, Alexander; Oseledets, Ivan

    2017-12-11

    Natural arches, pillars and other exotic sandstone formations have always been attracting attention for their unusual shapes and amazing mechanical balance that leave a strong impression of intelligent design rather than the result of a stochastic process. It has been recently demonstrated that these shapes could have been the result of the negative feedback between stress and erosion that originates in fundamental laws of friction between the rock's constituent particles. Here we present a deeper analysis of this idea and bridge it with the approaches utilized in shape and topology optimisation. It appears that the processes of natural erosion, driven by stochastic surface forces and Mohr-Coulomb law of dry friction, can be viewed within the framework of local optimisation for minimum elastic strain energy. Our hypothesis is confirmed by numerical simulations of the erosion using the topological-shape optimisation model. Our work contributes to a better understanding of stochastic erosion and feasible landscape formations that could be found on Earth and beyond.

  14. Characterization of application of acu sandstone in ceramic mass

    International Nuclear Information System (INIS)

    Nobrega, L.F.P.M.; Souza, M.M.; Gomes, Y.S.; Fernandes, D.L.

    2016-01-01

    The sandstone is a sedimentary rock formed mainly by quartz grains. In Rio Grande do Norte, there is the Potiguar Basin with the Jandaira and Acu Formations. The latter consists of thick layers of whitish-colored sandstones. It stands out as a water storage facility in the state, but it is also used for building aggregates. This article aimed at the use of the sandstone of this formation in the ceramic mass for coating. Initially, the material was sampled. It went through the comminution process to achieve the required granulometry. After this, three formulations were made to incorporate this new material into the traditional ones. The methods were performed according to ISO 13816. After sintering at 1200 °C, the specimens were subjected to the physical tests. A positive result was obtained for the use of the Acu sandstone in low concentrations. It is clear, therefore, its use in ceramics for coating

  15. Transport of silver nanoparticles in single fractured sandstone

    Science.gov (United States)

    Neukum, Christoph

    2018-02-01

    Silver nanoparticles (Ag-NP) are used in various consumer products and are one of the most prevalent metallic nanoparticle in commodities and are released into the environment. Transport behavior of Ag-NP in groundwater is one important aspect for the assessment of environmental impact and protection of drinking water resources in particular. Ag-NP transport processes in saturated single-fractured sandstones using triaxial flow cell experiments with different kind of sandstones is investigated. Ag-NP concentration and size are analyzed using flow field-flow fractionation and coupled SEM-EDX analysis. Results indicate that Ag-NP are more mobile and show generally lower attachment on rock surface compared to experiments in undisturbed sandstone matrix and partially fractured sandstones. Ag-NP transport is controlled by the characteristics of matrix porosity, time depending blocking of attachment sites and solute chemistry. Where Ag-NP attachment occur, it is heterogeneously distributed on the fracture surface.

  16. Diagenesis Along Fractures in an Eolian Sandstone, Gale Crater, Mars

    Science.gov (United States)

    Ming, D. W.; Yen, A. S.; Rampe, E. B.; Grotzinger, J. P.; Blake, D. F.; Bristow, T. F.; Chipera, S. J.; Downs, R.; Morris, R. V.; Morrison, S. M.; hide

    2016-01-01

    The Mars Science Laboratory rover Curiosity has been exploring sedimentary deposits in Gale crater since August 2012. The rover has traversed up section through approx.100 m of sedimentary rocks deposited in fluvial, deltaic, lacustrine, and eolian environments (Bradbury group and overlying Mount Sharp group). The Stimson formation lies unconformable over a lacustrine mudstone at the base of the Mount Sharp group and has been interpreted to be a cross-bedded sandstone of lithified eolian dunes. Mineralogy of the unaltered Stimson sandstone consists of plagioclase feldspar, pyroxenes, and magnetite with minor abundances of hematite, and Ca-sulfates (anhydrite, bassanite). Unaltered sandstone has a composition similar to the average Mars crustal composition. Alteration "halos" occur adjacent to fractures in the Stimson. Fluids passing through these fractures have altered the chemistry and mineralogy of the sandstone. Silicon and S enrichments and depletions in Al, Fe, Mg, Na, K, Ni and Mn suggest aqueous alteration in an open hydrologic system. Mineralogy of the altered Stimson is dominated by Ca-sulfates, Si-rich X-ray amorphous materials along with plagioclase feldspar, magnetite, and pyroxenes, but less abundant in the altered compared to the unaltered Stimson sandstone and lower pyroxene/plagioclase feldspar. The mineralogy and geochemistry of the altered sandstone suggest a complicated history with several (many?) episodes of aqueous alteration under a variety of environmental conditions (e.g., acidic, alkaline).

  17. Absolute tightness: the chemists hesitate to invest

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The safety requirements of industries as nuclear plants and the strengthening of regulations in the field of environment (more particularly those related to volatile organic compounds) have lead the manufacturers to build absolute tightness pumps. But these equipments do not answer all the problems and represent a high investment cost. In consequence, the chemists hesitate to invest. (O.L.)

  18. Digitization of uranium deposit information in basin. A new strategy of ISL sandstone-type uranium deposits exploration

    International Nuclear Information System (INIS)

    Tan Chenglong

    2006-01-01

    The discovered ISL sandstone-type uranium deposits in the entire world are mostly blind deposits, many of them occur in bleak desert, gobi desert, and semi-hilly land area. Exploration methods for these deposits mainly depend on great and systematic drilling. There are many large-medium size Meso-Cenozoic sedimentary basins in northern China, and over twenty of them are thick overburden basins which are mostly the virgin land for ISL sandstone-type uranium deposit. Due to the comprehensive national power, geological background, uranium exploration ability, great and systematic drilling is not favorable for prospecting ISL sandstone-type uranium deposit in China. According to the exploration and prospecting experiences for mineral ore bodies at home and abroad, uranium information mapping based on geochemical survey of the basins is a new strategy for ISL sandstone-type uranium deposits. It is an economic, practical, fast and effective method, and has been manifested by the performing information digitization for oil and gas resources, gold mineral resources in China and the mapping of uranium information for whole Europe continent. (authors)

  19. An integrated workflow to characterize and evaluate low resistivity pay and its phenomenon in a sandstone reservoir

    Science.gov (United States)

    Pratama, Edo; Suhaili Ismail, Mohd; Ridha, Syahrir

    2017-06-01

    The identification, characterization and evaluation of low resistivity pay is very challenging and important for the development of oil and gas fields. Proper identification and characterization of these reservoirs is essential for recovering their reserves. There are many reasons for low resistivity pay zones. It is crucial to identify the origin of this phenomenon. This paper deals with the identification, characterization and evaluation of low resistivity hydrocarbon-bearing sand reservoirs in order to understand the low resistivity phenomenon in a sandstone reservoir, the characterization of the rock types and how to conduct petrophysical analysis to accurately obtain petrophysical properties. An integrated workflow based on petrographical, rock typing and petrophysical methods is conducted and applied. From the integrated analysis that was performed, the presence of illite and a mixed layer of illite-smectite clay minerals in sandstone formation and pyrite-siderite conductive minerals was identified as one of the main reasons for low resistivity occurence in sandstone reservoirs. These clay minerals are distributed as a laminated-dispersed shale distribution model in sandstone reservoirs. The dual water method is recommended to calculate water saturation in low resistivity hydrocarbon-bearing sand reservoirs as this method is more accurate and does not result in an over estimation in water saturation calculation.

  20. Characteristics of secondary migration driving force of tight oil and its geologic effect: a case study of Jurassic in Central Sichuan Basin

    Science.gov (United States)

    Pang, Zhenglian; Tao, Shizhen; Zhang, Bin; Wu, Songtao; Yang, Jiajing; Chen, Ruiyin

    2017-04-01

    As the rising of its production, tight oil is becoming more and more important. Much research has been done about it. Some articles mention that buoyancy is ineffective for tight oil secondary migration, and abnormal pressure is the alternative. Others believe that overpressure caused hydrocarbon generation is the very force. Though opinions have been given, there are two inadequacies. Firstly, the points are lack of sufficient evidences. Mostly, they are only one or two sentences in the papers. Secondly, geologic effect of the change of driving force hasn't been discussed. In this context, analog experiments, physical property testing, mercury injection, and oil/source comparison were utilized to study 3 issues: origin and value of tight oil secondary migration resistance, values and effectiveness of different potential driving forces, and geologic effect of tight oil secondary migration driving force. Firstly, resistance values of tight reservoir were detected by analog experiments. The value of tight limestone is 15.8MPa, while tight sandstone is 10.7MPa. Tiny size of pores and throats in tight reservoir is the main reason causing huge resistances. Over 90% of pores and throats in tight reservoir are smaller than 1μm. They form huge capillary force when oil migrating through them. Secondly, maximum of buoyancy in study area was confirmed, 0.09MPa, too small to overcome the resistances. Meanwhile, production data suggests that tight oil distribution pattern is not controlled by buoyancy. Conversely, analog experiment proves that overpressure caused by hydrocarbon generation can reach 38MPa, large enough to be the driving force. This idea is also supported by positive correlation between output and source rock formation pressure. Thirdly, is the geologic effect of tight oil secondary migration resistance and driving force. Tight oil can migrate only as non-darcy flow due to huge resistances according to percolation experiments. It needs to overcome the starting

  1. Tight-binding treatment of conjugated polymers

    DEFF Research Database (Denmark)

    Lynge, Thomas Bastholm

    This PhD thesis concerns conjugated polymers which constitute a constantly growing research area. Today, among other things, conjugated polymers play a role in plastic based solar cells, photodetectors and light emitting diodes, and even today such plastic-based components constitute an alternative...... of tomorrow. This thesis specifically treats the three conjugated polymers trans-polyacetylene (tPA), poly(para-phenylene) (PPP) and poly(para-phe\\-nylene vinylene) (PPV). The present results, which are derived within the tight-binding model, are divided into two parts. In one part, analytic results...... are derived for the optical properties of the polymers expressed in terms of the optical susceptibility both in the presence and in the absence of a static electric field. In the other part, the cumputationally efficient Density Functional-based Tight-Binding (DFTB) model is applied to the description...

  2. Equiangular tight frames and unistochastic matrices

    Czech Academy of Sciences Publication Activity Database

    Goyeneche, D.; Turek, Ondřej

    2017-01-01

    Roč. 50, č. 24 (2017), č. článku 245304. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : equiangular tight frames * unistochastic matrices * SIC POVM Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016

  3. Digital Rock Physics Aplications: Visualisation Complex Pore and Porosity-Permeability Estimations of the Porous Sandstone Reservoir

    Science.gov (United States)

    Handoyo; Fatkhan; Del, Fourier

    2018-03-01

    Reservoir rock containing oil and gas generally has high porosity and permeability. High porosity is expected to accommodate hydrocarbon fluid in large quantities and high permeability is associated with the rock’s ability to let hydrocarbon fluid flow optimally. Porosity and permeability measurement of a rock sample is usually performed in the laboratory. We estimate the porosity and permeability of sandstones digitally by using digital images from μCT-Scan. Advantages of the method are non-destructive and can be applied for small rock pieces also easily to construct the model. The porosity values are calculated by comparing the digital image of the pore volume to the total volume of the sandstones; while the permeability values are calculated using the Lattice Boltzmann calculations utilizing the nature of the law of conservation of mass and conservation of momentum of a particle. To determine variations of the porosity and permeability, the main sandstone samples with a dimension of 300 × 300 × 300 pixels are made into eight sub-cubes with a size of 150 × 150 × 150 pixels. Results of digital image modeling fluid flow velocity are visualized as normal velocity (streamline). Variations in value sandstone porosity vary between 0.30 to 0.38 and permeability variations in the range of 4000 mD to 6200 mD. The results of calculations show that the sandstone sample in this research is highly porous and permeable. The method combined with rock physics can be powerful tools for determining rock properties from small rock fragments.

  4. Ionic surface electrical conductivity in sandstone

    Science.gov (United States)

    Glover, Paul W. J.; Meredith, Philip G.; Sammonds, Peter R.; Murrell, Stanley A. F.

    1994-11-01

    Recent analyses of complex conductivity measurements have indicated that high-frequency dispersions encountered in rocks saturated with low-salinity fluids are due to ionic surface conduction and that the form of these dispersions may be dependent upon the nature of the pore and crack surfaces within the rock (Ruffet et al., 1991). Unfortunately, the mechanisms of surface conduction are not well understood, and no model based on rigorous physical principles exists. This paper is split into two parts: an experimental section followed by the development of a theoretical description of adsorption of ions onto mineral surfaces. We have made complex conductivity measurements upon samples of sandstone saturated with a range of different types and concentrations of aqueous solution with a frequency range of 20 Hz to 1 MHz. The frequency dependence of complex conductivity was analyzed using the empirical model of Cole and Cole (1941). The 'fractal' surface models of Le Mehaute and Crepy (1983), Po Zen Wong (1987), the Ruffet el at. (1991) were used to calculate apparent fractal pore surface dimensions for samples saturated with different solution types and concentrations. These showed a pronounced decrease of apparent fractal surface dimension with decreasing electrolyte concentration and a decrease of apparent fractal dimension with increasing relative ionic radius of the dominant cation in solution. A model for ionic surface concentration (ISCOM I) has been developed as the first step in producing a rigorous physicochemical model of surface conduction in quartz-dominated rocks. The results from ISCOM I show that quartz surfaces are overwhelmingly dominated by adsorbed Na(+) when saturated with NaCl solutions of salinities and pH found in actual geological situations. ISCOM I also shows that the concentration threshold for dominance of surface conduction over bulk conduction is aided by depletion of ions from the bulk fluid as a result of their adsorption onto the mineral

  5. Mechanical compaction of deeply buried sandstones of the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Quentin J.; Casey, Martin; Clennell, M. Ben; Knipe, Robert J. [Leeds Univ., Dept. of Earth Sciences, Leeds (United Kingdom)

    1999-11-01

    Sandstones experience mechanical compaction when the overburden load exceeds the compressive strength. Petrographic evidence is rarely sufficient to determine the timing of mechanical compaction. It is often assumed from indirect evidence, such as regional porosity-depth trends, that mechanical compaction is a process that occurs exclusively during shallow or intermediate burial ( < 2.5 km). However, mechanical compaction, with or without extensive grain fracturing, may also affect more deeply buried sediments. Mechanical compaction without grain fracturing may occur at depth following pervasive framework grain dissolution and/or if anomalously high porosity has been preserved due to the presence of small amounts of cement. We describe examples from the Fulmar Sandstone Formation of the Central Graben, North Sea that experienced late stage mechanical compaction following sponge spicule dissolution and microcrystalline quartz cementation. Deep burial mechanical compaction involving grain crushing may occur if the rate of grain-contact quartz dissolution and/or quartz overgrowth development cannot compete with the rate of stress increase at grain contacts. Some Rotliegendes sandstones of the Southern North Sea that have been buried to > 4.5 km offer a good example where the suppression of chemical compaction, due to the presence of grain-coating clays, resulted in pervasive grain fracturing. Mineral veins are frequently associated with sandstones that have experienced pervasive mechanical compaction during deep burial. These may reflect the sudden development of overpressure resulting from the transfer of load to the fluid during collapse of the sandstone framework. (Author)

  6. Transport of engineered silver (Ag) nanoparticles through partially fractured sandstones

    Science.gov (United States)

    Neukum, Christoph; Braun, Anika; Azzam, Rafig

    2014-08-01

    Transport behavior and fate of engineered silver nanoparticles (AgNP) in the subsurface is of major interest concerning soil and groundwater protection in order to avoid groundwater contamination of vital resources. Sandstone aquifers are important groundwater resources which are frequently used for public water supply in many regions of the world. The objective of this study is to get a better understanding of AgNP transport behavior in partially fractured sandstones. We executed AgNP transport studies on partially fissured sandstone drilling cores in laboratory experiments. The AgNP concentration and AgNP size in the effluent were analyzed using flow field-flow fractionation mainly. We employed inverse mathematical models on the measured AgNP breakthrough curves to identify and quantify relevant transport processes. Physicochemical filtration, time-dependent blocking due to filling of favorable attachment sites and colloid-facilitated transport were identified as the major processes for AgNP mobility. Physicochemical filtration was found to depend on solute chemistry, mineralogy, pore size distribution and probably on physical and chemical heterogeneity. Compared to AgNP transport in undisturbed sandstone matrix reported in the literature, their mobility in partially fissured sandstone is enhanced probably due to larger void spaces and higher hydraulic conductivity.

  7. A subtle diagenetic trap in the Cretaceous Glauconite Sandstone of Southwest Alberta

    Science.gov (United States)

    Meshri, I.D.; Comer, J.B.

    1990-01-01

    Despite the long history of research which documents many studies involving extensive diagenesis, there are a few examples of a fully documented diagenetic trap. In the context of this paper, a trap is a hydrocarbon-bearing reservoir with a seal; because a reservoir without a seal acts as a carrier bed. The difficulty in the proper documentation of diagenetic traps is often due to the lack of: (a) extensive field records on the perforation and production histories, which assist in providing the depth of separation between hydrocarbon production and non-hydrocarbon or water production; and (b) the simultaneous availability of core data from these intervals, which could be studied for the extent and nature of diagenesis. This paper provides documentation for the existence of a diagenetic trap, based on perforation depths, production histories and petrologic data from the cored intervals, in the context of the geologic and stratigraphic setting. Cores from 15 wells and SP logs from 45 wells were carefully correlated and the data on perforated intervals was also acquired. Extensive petrographic work on the collected cores led to the elucidation of a diagenetic trap that separates water overlying and updip from gas downdip. Amoco's Berrymore-Lobstick-Bigoray fields, located near the northeastern edge of the Alberta Basin, are prolific gas producers. The gas is produced from reservoir rock consisting of delta platform deposits formed by coalescing distributary mouth bars. The overlying rock unit is composed of younger distributary channels; although it has a good reservoir quality, it contains and produces water only. The total thickness of the upper, water-bearing and lower gas-bearing sandstone is about 40 ft. The diagenetic seal is composed of a zone 2 to 6 ft thick, located at the base of distributary channels. This zone is cemented with 20-30% ankerite cement, which formed the gas migration and is also relatively early compared to other cements formed in the water

  8. RESERVOIR CHARACTERIZATION OF UPPER DEVONIAN GORDON SANDSTONE, JACKSONBURG STRINGTOWN OIL FIELD, NORTHWESTERN WEST VIRGINIA

    Energy Technology Data Exchange (ETDEWEB)

    S. Ameri; K. Aminian; K.L. Avary; H.I. Bilgesu; M.E. Hohn; R.R. McDowell; D.L. Matchen

    2001-07-01

    The Jacksonburg-Stringtown oil field contained an estimated 88,500,000 barrels of oil in place, of which approximately 20,000,000 barrels were produced during primary recovery operations. A gas injection project, initiated in 1934, and a pilot waterflood, begun in 1981, yielded additional production from limited portions of the field. The pilot was successful enough to warrant development of a full-scale waterflood in 1990, involving approximately 8,900 acres in three units, with a target of 1,500 barrels of oil per acre recovery. Historical patterns of drilling and development within the field suggests that the Gordon reservoir is heterogeneous, and that detailed reservoir characterization is necessary for understanding well performance and addressing problems observed by the operators. The purpose of this work is to establish relationships among permeability, geophysical and other data by integrating geologic, geophysical and engineering data into an interdisciplinary quantification of reservoir heterogeneity as it relates to production. Conventional stratigraphic correlation and core description shows that the Gordon sandstone is composed of three parasequences, formed along the Late Devonian shoreline of the Appalachian Basin. The parasequences comprise five lithofacies, of which one includes reservoir sandstones. Pay sandstones were found to have permeabilities in core ranging from 10 to 200 mD, whereas non-pay sandstones have permeabilities ranging from below the level of instrumental detection to 5 mD; Conglomeratic zones could take on the permeability characteristics of enclosing materials, or could exhibit extremely low values in pay sandstone and high values in non-pay or low permeability pay sandstone. Four electrofacies based on a linear combination of density and scaled gamma ray best matched correlations made independently based on visual comparison of geophysical logs. Electrofacies 4 with relatively high permeability (mean value > 45 mD) was

  9. Monitoring CO2 penetration and storage in the brine-saturated low permeable sandstone by the geophysical exploration technologies

    Science.gov (United States)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.

    2017-12-01

    Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping

  10. Integrated reservoir characterization of a heterogeneous channel sandstone : the Duchess Lower Manville X pool

    Energy Technology Data Exchange (ETDEWEB)

    Potocki, D.; Raychaudhuri, I.; Thorburn, L. [PanCanadian Petroleum Ltd. (Canada); Galas, C.; King, H.

    1999-01-01

    The Basal Quartz formation of the Duchess Lower Mannville X pool located in southern Alberta was characterized to determine if the reservoir was a good candidate for waterflooding. Twenty performance predictions were run. The Basal Quartz reservoir sandstones have large unanticipated intrawell and interwell variations in log derived porosity and resistivity. An extensive gas cap was also found in most of the wells. Most wells were producing with a high GOR despite the thick oil zone. It was concluded that conversion of selected wells to injection and horizontal infill wells would increase the oil recovery, but due to geological heterogeneity, the gas cap and a high in situ oil viscosity, the pool could not be considered to be a good candidate for waterflooding. 3 refs., 12 figs.

  11. Development and trends in fracstimulation of red bed gas drillings; Entwicklung und Trends bei der Fracstimulation von Rotliegend Erdgasbohrungen

    Energy Technology Data Exchange (ETDEWEB)

    Berghofer, K. [RWE-DEA AG, Hamburg (Germany)

    1998-12-31

    In the last 15 years we have seen major changes in the fracstimulation of redbed gas drillings in terms of frac planning, design and implementation. This paper gives an overview of treatment volumes, pumping strategy and production starting with the massive frac treatment in the relatively tight Dethlingen sandstone in the Soelingen fields down to the stimulation of high-capacity drillings in 1997. [Deutsch] Bei der Fracstimulation von Rotliegend Erdgasbohrungen sind in den letzten 15 Jahren wesentliche Aenderungen in der Fracplanung, Auslegung und Durchfuehrung geschehen. Beginnend mit den massiven Fracbehandlungen im relativ dichten Dethlingen Sandstein des Feldes Soehlingen bis hin zur Stimulation von hochkapazitiven Bohrungen in 1997 wird ein Ueberblick ueber Behandlungsvolumina, Pumpstrategie und anschliessendem Produktionsverhalten gegeben. (orig.)

  12. Geological principles of exploration for sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Le Roux, J.P.

    1982-10-01

    Although the importance of sandstone-hosted uranium deposits has seemingly faded in recent years due to the discovery of large, high -grade deposits elsewhere, a forecasted energy shortage in the near future will probably necessitate a new look at sedimentary basins as a source of uranium. Back-arc basins adjacent to calcalkaline source areas are especially favourable if they are filled with fluvial, post-Devonian sediments. Syn- and post-depositional tectonics play an important role in the sedimentation-mineralisation process and should be investigated. The oxidation-reduction state of the sandstones is a valid prospecting tool. Sedimentological environments govern the permeability and vegetal matter content of sandstones and directly control uranium mineralisation

  13. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  14. Optimising geological storage of CO2 by development of multiple injection sites in regionally extensive storage sandstones

    Science.gov (United States)

    Akhurst, Maxine; McDermott, Christopher; Williams, John; Mackay, Eric; Jin, Min; Tucker, Owain; Mallows, Tom; Hannis, Sarah; Pearce, Jonathan

    2016-04-01

    Carbon capture, transport and storage (CCS) is considered a key technology to provide secure, low-carbon energy supply and industrial processes to reduce the greenhouse gas emissions that contribute to the adverse effects of climatic change. Geological storage of carbon dioxide (CO2), captured during hydrocarbon production at the Sleipner Field, in strata beneath the Norwegian sector of the North Sea has been in operation since 1996. Projects to store CO2 captured at power plants in strata underlying the North Sea are currently in design. Storage of the CO2 is planned in depleted hydrocarbon fields or regionally extensive sandstones containing brine (saline aquifer sandstones). The vast majority of the UK potential storage resource is within brine-saturated sandstone formations. The sandstone formations are each hundreds to thousands of square kilometres in extent and underlie all sectors of the North Sea. The immense potential to store CO2 in these rocks can only be fully achieved by the operation of more than one injection site within each formation. Here we report an investigation into the operation of more than one injection site within a storage formation using a UK North Sea case study of the Captain Sandstone and the included Goldeneye Field, which is part of the mature hydrocarbon province offshore Scotland. Research by the CO2MultiStore project was targeted to increase understanding and confidence in the operation of two sites within the Captain Sandstone. Methods were implemented to reduce the effort and resources needed to characterise the sandstone, and increase understanding of its stability and performance during operation of more than one injection site. Generic learning was captured throughout the research relevant to the characterisation of extensive storage sandstones, management of the planned injection operations and monitoring of CO2 injection at two (or more) sites within any connected sandstone formation. The storage of CO2 can be optimised

  15. Elevated Uranium in Aquifers of the Jacobsville Sandstone

    Science.gov (United States)

    Sherman, H.; Gierke, J.

    2003-12-01

    The EPA has announced a new standard for uranium in drinking water of 30 parts per billion (ppb). This maximum contaminant level (MCL) takes effect for community water supplies December 2003. The EPA's ruling has heightened awareness among residential well owners that uranium in drinking water may increase the risk of kidney disease and cancer and has created a need for a quantified, scientific understanding of the occurrence and distribution of uranium isotopes in aquifers. The authors are investigating the occurrence of elevated uranium in northern Michigan aquifers of the Middle Proterozoic Jacobsville sandstone, a red to mottled sequence of sandstones, conglomerates, siltstones and shales deposited as basin fill in the 1.1 Ga Midcontinent rift. Approximately 25% of 300 well water samples tested for isotopic uranium have concentrations above the MCL. Elevated uranium occurrences are distributed throughout the Jacobsville sandstone aquifers stretching across Michigan's Upper Peninsula. However, there is significant variation in well water uranium concentrations (from 0.01 to 190 ppb) and neighboring wells do not necessarily have similar concentrations. The authors are investigating hydrogeologic controls on ground water uranium concentrations in the Jacobsville sandstone, e.g. variations in lithology, mineralogy, groundwater residence time and geochemistry. Approximately 2000' of Jacobsville core from the Amoco St. Amour well was examined in conjunction with the spectral gamma ray log run in the borehole. Spikes in equivalent uranium (eU) concentration from the log are frequently associated with clay and heavy mineral layers in the sandstone core. The lithology and mineralogy of these layers will be determined by analysis of thin sections and x-ray diffraction. A portable spectrometer, model GRS-2000/BL, will be used on the sandstone cliffs along Lake Superior to characterize depositional and lithologic facies of the Jacobsville sandstone in terms of

  16. The effect of hot water injection on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Haugwitz, Christian; Jacobsen, Peter Sally Munch

    2014-01-01

    Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter permeabil......Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter...

  17. Hydrogeology of the Potsdam Sandstone in northern New York

    Science.gov (United States)

    Williams, John H.; Reynolds, Richard J.; Franzi, David A.; Romanowicz, Edwin A.; Paillet, Frederick L.

    2010-01-01

    The Potsdam Sandstone of Cambrian age forms a transboundary aquifer that extends across northern New York and into southern Quebec. The Potsdam Sandstone is a gently dipping sequence of arkose, subarkose, and orthoquartzite that unconformably overlies Precambrian metamorphic bedrock. The Potsdam irregularly grades upward over a thickness of 450 m from a heterogeneous feldspathic and argillaceous rock to a homogeneous, quartz-rich and matrix-poor rock. The hydrogeological framework of the Potsdam Sandstone was investigated through an analysis of records from 1,500 wells and geophysical logs from 40 wells, and through compilation of GIS coverages of bedrock and surficial geology, examination of bedrock cores, and construction of hydrogeological sections. The upper several metres of the sandstone typically is weathered and fractured and, where saturated, readily transmits groundwater. Bedding-related fractures in the sandstone commonly form sub-horizontal flow zones of relatively high transmissivity. The vertical distribution of sub-horizontal flow zones is variable; spacings of less than 10 m are common. Transmissivity of individual flow zones may be more than 100 m2/d but typically is less than 10 m2/d. High angle fractures, including joints and faults, locally provide vertical hydraulic connection between flow zones. Hydraulic head gradients in the aquifer commonly are downward; a laterally extensive series of sub-horizontal flow zones serve as drains for the groundwater flow system. Vertical hydraulic head differences between shallow and deep flow zones range from 1 m to more than 20 m. The maximum head differences are in recharge areas upgradient from the area where the Chateauguay and Chazy Rivers, and their tributaries, have cut into till and bedrock. Till overlies the sandstone in much of the study area; its thickness is generally greatest in the western part, where it may exceed 50 m. A discontinuous belt of bedrock pavements stripped of glacial drift extends

  18. Tight Reference Frame–Independent Quantum Teleportation

    Directory of Open Access Journals (Sweden)

    Dominic Verdon

    2017-01-01

    Full Text Available We give a tight scheme for teleporting a quantum state between two parties whose reference frames are misaligned by an action of a finite symmetry group. Unlike previously proposed schemes, ours requires no additional tokens or data to be passed between the participants; the same amount of classical information is transferred as for ordinary quantum teleportation, and the Hilbert space of the entangled resource is of the same size. In the terminology of Peres and Scudo, our protocol relies on classical communication of unspeakable information.

  19. Inward Leakage in Tight-Fitting PAPRs

    Directory of Open Access Journals (Sweden)

    Frank C. Koh

    2011-01-01

    Full Text Available A combination of local flow measurement techniques and fog flow visualization was used to determine the inward leakage for two tight-fitting powered air-purifying respirators (PAPRs, the 3M Breathe-Easy PAPR and the SE 400 breathing demand PAPR. The PAPRs were mounted on a breathing machine head form, and flows were measured from the blower and into the breathing machine. Both respirators leaked a little at the beginning of inhalation, probably through their exhalation valves. In both cases, the leakage was not enough for fog to appear at the mouth of the head form.

  20. Cathodoluminescence investigations on quartz cement in sandstones of Khabour Formation from Iraqi Kurdistan region, northern Iraq

    DEFF Research Database (Denmark)

    Omer, Muhamed Fakhri; Friis, Henrik

    The Ordovician deltaic to shallow marine Khabour Formation in Northern Iraq consists mainly of sandstone with minor siltstone and interbedded shale. The sandstones are pervasively cemented by quartz that resulted in very little preserved primary porosity. Cathodoluminescence and petrographic stud...

  1. Cathodoluminescence investigations on quartz cement in sandstones of Khabour Formation from Iraqi Kurdistan region, northern Iraq

    DEFF Research Database (Denmark)

    Omer, Muhamed Fakhri; Friis, Henrik

    The Ordovician deltaic to shallow marine Khabour Formation in Northern Iraq consists mainly of sandstone with minor siltstone and interbedded shale. The sandstones are pervasively cemented by quartz that resulted in very little preserved primary porosity. Cathodoluminescence and petrographic...

  2. Full-scale laboratory drilling tests on sandstone and dolomite. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Black, A.D.; Green, S.J.; Rogers, L.A.

    1977-12-01

    Full-scale laboratory drilling experiments were performed under simulated downhole conditions to determine what effect changing various drilling parameters has on penetration rate. The two rock types, typical of deep oil and gas reservoirs, used for the tests were Colton Sandstone and Bonne Terre Dolomite. Drilling was performed with standard 7/sup 7///sub 8/ inch rotary insert bits and water base mud. The results showed the penetration rate to be strongly dependent on bit weight, rotary speed, and borehole mud pressure. There was only a small dependence on mud flow rate. The drilling rate decreased rapidly with increasing borehole mud pressure for borehole pressures up to about 2,000 psi. Above this pressure, the borehole pressure and rotary speeds had a smaller effect on penetration rate. The penetration rate was then dependent mostly on the bit weight. Penetration rate per horsepower input was also shown to decrease at higher mud pressures and bit weights. The ratio of horizontal confining stress to axial overburden stress was maintained at 0.7 for simulated overburden stresses between 0 and 12,800 psi. For this simulated downhole stress state, the undrilled rock sample was within the elastic response range and the confining pressures were found to have only a small or negligible effect on the penetration rate. Visual examination of the bottomhole pattern of the rocks after simulated downhole drilling, however, revealed ductile chipping of the Sandstone, but more brittle behavior in the Dolomite.

  3. A new bee species that excavates sandstone nests

    Science.gov (United States)

    Many wonder why animals act in seemingly injurious ways. Understanding the behavior of pollinators such as bees is especially important because of the necessary ecosystem service they provide. The new species Anthophora pueblo, discovered excavating sandstone nests, provides a model system for addre...

  4. Petrography and Geochemistry of the Proterozoic Sandstones of ...

    Indian Academy of Sciences (India)

    22

    Pomburna area in the Eastern Belt of Pranhita–Godavari(PG) Valley, Central India and studied to infer their provenance, intensity of paleo-weathering and depositional tectonic setting. Petrographic study of sandstones show QFL modal composition of arenite. Chemical results show high SiO2 and CIA but lower Al2O3, TiO2 ...

  5. Petrography and geochemistry of Jurassic sandstones from the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 3. Petrography and geochemistry of Jurassic sandstones from the Jhuran Formation of Jara dome, Kachchh basin, India: Implications for provenance and tectonic setting. V Periasamy M Venkateshwarlu. Volume 126 Issue 3 April 2017 Article ID 44 ...

  6. Provenance of sandstone on the western flank of Anambra Basin ...

    African Journals Online (AJOL)

    Petrographic and heavy mineral studies were carried out on clastic deposits that crop out in Ikpeshi, Auchi and Fugar localities in order to determine the provenance of the ... The heavy mineral suites and the petrographic signatures of the sandstones suggest derivation mainly from acid igneous rocks, gneisses and older ...

  7. Diagenesis, provenance and depositional environments of the Bunter Sandstone Formation

    DEFF Research Database (Denmark)

    Olivarius, Mette; Weibel, Rikke; Friis, Henrik

    The Bunter Sandstone Formation in the northern North German Basin has large geothermal potential with high porosity and permeability (generally >15% and >100 mD, respectively) and with pore fluid temperatures that are adequate for geothermal energy production (c. 55–60˚C). A combined investigation...

  8. Influence of fluvial sandstone architecture on geothermal energy production

    NARCIS (Netherlands)

    Willems, C.J.L.; Maghami Nick, Hamidreza M.; Weltje, G.J.; Donselaar, M.E.; Bruhn, D.F.

    2015-01-01

    Fluvial sandstone reservoirs composed of stacked meander belts are considered as potential geothermal resources in the Netherlands. Net-to-gross, orientation and stacking pattern of the channel belts is of major importance for the connectivity between the injection and production well in such

  9. Nodular features from Proterozoic Sonia Sandstone, Jodhpur Group ...

    Indian Academy of Sciences (India)

    environmental analysis on the rocks of the Sonia. Sandstone and distinguished three ... environmental condition, the middle facies B with abundant signatures of eolian activity ..... Figure 8. Stereo plotting of fracture attitudes associated with Type-II nodule (a) plotting of fracture planes and (b) poles of fracture planes (β pole).

  10. Provenance of the Late Neogene Siwalik sandstone, Kumaun ...

    Indian Academy of Sciences (India)

    Provenance of the Late Neogene Siwalik sandstone,. Kumaun Himalayan Foreland Basin: Constraints from the metamorphic rank and index of detrital rock fragments. Poonam Jalal1,∗ and Sumit K Ghosh2. 1Department of Geology, H.N.B. Garhwal University, Srinagar 246 174, India. 2Wadia Institute of Himalayan Geology ...

  11. Effect of Crushed Sandstone Sand on the Properties of High ...

    African Journals Online (AJOL)

    This paper presents results of the laboratory investigation on high performance concrete (HPC) using crushed sandstone sand as 20%, 40%, and 60% replacement of river sand together with superplastisizer and silica fume (SF). The fresh concrete properties such as slump, air content and fresh concrete density have been ...

  12. Aeromagnetic gradient survey used in sandstone type uranium deposits prospecting

    International Nuclear Information System (INIS)

    Li Xiaolu; Chang Shushuai

    2014-01-01

    The principle, advantage and data processing of aeromagnetic gradient survey approach is introduced in this paper which was used in sandstone type uranium deposits prospecting to study the shallow surface faults, uranium ore-forming environment and depth of magnetic body, which proved to be a good results. (authors)

  13. Features of sandstone paleorelief preserved: The Osek area, Miocene, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Mikuláš, Radek

    2005-01-01

    Roč. 44, - (2005), s. 35-38 ISSN 1682-5519. [Sandstone Landscapes in Europe. Past, Present and Future. International Conference on Sandstone Landscapes /2./. Vianden, 25.05.2005-28.05.2005] R&D Projects: GA AV ČR(CZ) IAA3013302 Institutional research plan: CEZ:AV0Z30130516 Keywords : paleorelief * sandstone phenomenon * Miocene * sandstone landscape * palaeorelief * silcrete * fossil roots * Neogene * Pleistocene * Czech Republic Subject RIV: DB - Geology ; Mineralogy

  14. Discovery and reservoir-forming geological characteristics of the Shenmu Gas Field in the Ordos Basin

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2015-10-01

    Full Text Available By the end of 2014, the giant Shenmu Gas Field had been found in the Ordos Basin with an explored gas-bearing area of 4069 km2 and the proved geological gas reserves of 333.4 billion m3. This paper aims to review the exploration history of this field and discusses its reservoir-forming mechanism and geological characteristics, which may guide the further discovery and exploration of such similar gas fields in this basin and other basins. The following research findings were concluded. (1 There are typical tight sand gas reservoirs in this field primarily with the pay zones of the Upper Paleozoic Taiyuan Fm, and secondly with those of the Shanxi and Shihezi Fms. (2 Gas types are dominated by coal gas with an average methane content of 88% and no H2S content. (3 The gas reservoirs were buried 1700–2800 m deep underneath with multiple pressure systems and an average pressure coefficient of 0.87. (4 The reservoir strata are composed of fluvial delta facies sandstones with an average porosity of 7.8% and permeability of 0.63 mD, having high pressure sensibility and a strong water-locking effect because the pore throat radius are mostly less than 1 μm. (5 There are different dynamics at various stages in the gas reservoir-forming process. The abnormal well-developed strata pressure was the main reservoir-forming force at the Early Cretaceous setting stage while the fluid expansibility became the main gas-migrating force at the uplift and denudation stage after the Early Cretaceous period. (6 Gas reservoirs with ultra-low water saturation are mainly controlled by many factors such as changes of high temperature and high pressure fields in the Late Jurassic and Early Cretaceous periods, the charging of dry gas at the highly-mature stage, and the gas escape and dissipation at the post-reservoir-forming periods. (7 Natural gas migrated and accumulated vertically in a shortcutting path to form gas reservoirs. At such areas near the source rocks

  15. Injection of CO2 with H2S and SO2 and Subsequent Mineral Trapping in Sandstone-Shale Formation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

    2004-09-07

    Carbon dioxide (CO{sub 2}) injection into deep geologic formations can potentially reduce atmospheric emissions of greenhouse gases. Sequestering less-pure CO{sub 2} waste streams (containing H{sub 2}S and/or SO{sub 2}) would be less expensive or would require less energy than separating CO{sub 2} from flue gas or a coal gasification process. The long-term interaction of these injected acid gases with shale-confining layers of a sandstone injection zone has not been well investigated. We therefore have developed a conceptual model of injection of CO{sub 2} with H{sub 2}S and/or SO{sub 2} into a sandstone-shale sequence, using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments of the United States. We have performed numerical simulations of a 1-D radial well region considering sandstone alone and a 2-D model using a sandstone-shale sequence under acid-gas injection conditions. Results indicate that shale plays a limited role in mineral alteration and sequestration of gases within a sandstone horizon for short time periods (10,000 years in present simulations). The co-injection of SO{sub 2} results in different pH distribution, mineral alteration patterns, and CO{sub 2} mineral sequestration than the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Simulations generate a zonal distribution of mineral alteration and formation of carbon and sulfur trapping minerals that depends on the pH distribution. The co-injection of SO{sub 2} results in a larger and stronger acidified zone close to the well. Precipitation of carbon trapping minerals occurs within the higher pH regions beyond the acidified zones. In contrast, sulfur trapping minerals are stable at low pH ranges (below 5) within the front of the acidified zone. Corrosion and well abandonment due to the co-injection of SO{sub 2} could be important issues. Significant CO{sub 2} is sequestered in ankerite and dawsonite, and some in siderite. The CO{sub 2} mineral

  16. Sandstone Relief Geohazards and their Mitigation: Rock Fall Risk Management in the Bohemian Switzerland National Park

    Czech Academy of Sciences Publication Activity Database

    Vařilová, Zuzana; Zvelebil, J.

    2005-01-01

    Roč. 44, - (2005), s. 53-58 ISSN 1682-5519. [Sandstone Landscapes in Europe. Past, Present and Future. International Conference on Sandstone Landscapes /2./. Vianden, 25.05.2005-28.05.2005] Keywords : sandstones * rock-slope instability * rock fall * risk evalution and mitigation * monitoring net * remedial works Subject RIV: DO - Wilderness Conservation

  17. Fast evolving conduits in clay-bonded sandstone: Characterization, erosion processes and significance for the origin of sandstone landforms

    Czech Academy of Sciences Publication Activity Database

    Bruthans, J.; Svetlik, D.; Soukup, J.; Schweigstillová, Jana; Válek, Jan; Sedláčková, M.; Mayo, A.L.

    2012-01-01

    Roč. 177, December (2012), s. 178-193 ISSN 0169-555X R&D Projects: GA AV ČR IAA300130806 Institutional support: RVO:67985891 ; RVO:68378297 Keywords : sandstone * erosion * piping * tensile strength * conduit * landform Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.552, year: 2012

  18. Geochemical feature of stable isotopes in sandstone-type uranium deposit 511 in Xinjiang, China

    International Nuclear Information System (INIS)

    Zeng Aihua; Pan Jiayong

    2013-01-01

    Uranium deposit 511 is a typical in-situ leachable sandstone-type uranium deposit, study on its geochemical characteristics of stable isotopes may give help to the exploration and mining design of other deposit of the same kind. Considering the geology feature of uranium deposit 511, we analyzed its geochemical features of stable isotopes S, C, H and O by using EA-MS, MAT-253, GAS-Bench and GASBENCH-MAT253 facilities. The experimental results indicated that S has close relationship with the process of sulfate changing into sulphide through reducing bacteria, C may come organic carbon, the relative low and negative value of C, H and O isotopes suggest that the metallogenic fluid were originated from atmospheric precipitation. (authors)

  19. Unraveling the stratigraphy of the Oriskany Sandstone: A necessity in assessing its site-specific carbon sequestration potential

    Science.gov (United States)

    Kostelnik, J.; Carter, K.M.

    2009-01-01

    The widespread distribution, favorable reservoir characteristics, and depth make the Lower Devonian Oriskany Sandstone a viable sequestration target in the Appalachian Basin. The Oriskany Sandstone is thickest in the structurally complex Ridge and Valley Province, thins toward the northern and western basin margins, and is even absent in other parts of the basin (i.e., the no-sand area of northwestern Pennsylvania). We evaluated four regions using petrographic data, core analyses, and geophysical log analyses. Throughout the entire study area, average porosities range from 1.35 to 14%. The most notable porosity types are primary intergranular, secondary dissolution, and fracture porosity. Intergranular primary porosity dominates at stratigraphic pinch-out zones near the Oriskany no-sand area and at the western limit of the Oriskany Sandstone. Secondary porosity occurs from dissolution of carbonate constituents primarily in the combination-traps natural gas play extending through western Pennsylvania, western West Virginia, and eastern Ohio. Fracture porosity dominates in the central Appalachian Plateau Province and Valley and Ridge Province. Based on average porosity, the most likely regions for successful sequestration in the Oriskany interval are (1) updip from Oriskany Sandstone pinch-outs in eastern Ohio, and (2) western Pennsylvania, western West Virginia, and eastern Ohio where production occurs from a combination of stratigraphic and structural traps. Permeability data, where available, were used to further evaluate the potential of these regions. Permeability ranges from 0.2 to 42.7 md. Stratigraphic pinch-outs at the northern and western limits of the basin have the highest permeabilities. We recommend detailed site assessments when evaluating the sequestration potential of a given injection site based on the variability observed in the Oriskany structure, lithology, and reservoir characteristics. ?? 2009. The American Association of Petroleum Geologists

  20. Traces of the heritage arising from the Macelj sandstone

    Science.gov (United States)

    Golež, Mateja

    2014-05-01

    The landscape of Southeast Slovenia and its stone heritage principally reveal itself through various Miocene sandstones. The most frequently found type on the borderline between Slovenia and Croatia, i.e. east of Rogatec, is the micaceous-quartz Macelj sandstone. This rock ranges in colour from greenish grey to bluish grey and yellowish, depending on the content of glauconite, which colours it green. In its composition, the rock is a heterogeneous mixture of grains of quartz, dolomite, muscovite, microcline, anorthite and glauconite. The average size of grains is 300μm. In cross-section, they are oblong, semi-rounded or round. The mechanical-physical and durability properties of the Macelj sandstone, which have been characterised pursuant to the applicable standards for natural stone, reveal that the rock exhibits poor resistance to active substances from the atmosphere, particularly in the presence of salt. In the surroundings of Rogatec, there are around 45 abandoned quarries of the Macelj sandstone, which are the result of the exploitation of this mineral resource from the 17th century on. The local quarrymen earned their bread until 1957, when the Kambrus quarry industry closed down. From the original use of this mineral resource as construction and decorative material, the useful value of the Macelj sandstone expanded during the development of the metals industry to the manufacture of large and small grindstones for the needs of the domestic and international market. Therefore, traces of quarrying can not only be seen in the disused quarries, but also in the rich architectural heritage of Rogatec and its surroundings, the stone furniture - from portals, window frames, wells, various troughs, pavements to stone walls - and other. The living quarrying heritage slowly passed into oblivion after World War II, although the analysis of the social image of the people residing in Rogatec and its surroundings revealed that there was an average of one stonemason in

  1. Prediction of Diagenetic Facies using Well Logs: Evidences from Upper Triassic Yanchang Formation Chang 8 Sandstones in Jiyuan Region, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Lai Jin

    2016-05-01

    Full Text Available The eighth member of Upper Triassic Yanchang Formation (Chang 8 is the major oil reservoir unit in Jiyuan oil field, though with the high potential for oil exploration. The Chang 8 sandstones are characterized with low porosity, low permeability and strong microscopic heterogeneities due to the complex deep-burial diagenetic history. Detailed petrological studies by thin section, X-ray diffraction, scanning electron microscopy, core analysis have been used to investigate the lithogology characteristics, diagenesis, diagenetic minerals and their coupling impacts on reservoir property. The results show that Chang 8 sandstones comprise fine to mediumgrained subarkoses, feldspathic litharenites. The pore systems are dominated by remaining primary intergranular pores, secondary dissolution porosity and micropores. Then, five diagenetic facies were divided in Chang 8 sandstones based on the type and degree of diagenesis, diagenetic minerals assemblages and their coupling effects on the reservoir quality. They consist of grain-coating chlorite weak dissolution facies, unstable component dissolution facies, tight compaction facies, clay minerals filling facies and carbonate cementation facies. The well logging response characteristics of various diagenetic facies are summarized on Gamma Ray (GR, Density Logging (DEN, Acoustic (AC, Compensated Neutron Logging (CNL, and True Formation Resistivity (RT by translating diagenetic facies to well log responses, the diagenetic facies were defined by a set of log responses, and porosity, permeability ranges for each diagenetic facies were determined from core analyses. Well log data of Luo 13 and Chi 212 are processed to evaluate the accuracy of the predictive model. The diagenetic facies are predicted on the vertical profile based on the generated model. Predicted distribution of diagenetic facies precisely coincide with the microscopic observations, and diagenetic facies in Chang 8 sandstones are generally

  2. Characterization of the Oriskany and Berea Sandstones: Evaluating Biogeochemical Reactions of Potential Sandstone–Hydraulic Fracturing Fluid Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Harris, Aubrey [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-07-07

    The Marcellus shale, located in the mid-Atlantic Appalachian Basin, has been identified as a source for natural gas and targeted for hydraulic fracturing recovery methods. Hydraulic fracturing is a technique used by the oil and gas industry to access petroleum reserves in geologic formations that cannot be accessed with conventional drilling techniques (Capo et al., 2014). This unconventional technique fractures rock formations that have low permeability by pumping pressurized hydraulic fracturing fluids into the subsurface. Although the major components of hydraulic fracturing fluid are water and sand, chemicals, such as recalcitrant biocides and polyacrylamide, are also used (Frac Focus, 2015). There is domestic concern that the chemicals could reach groundwater or surface water during transport, storage, or the fracturing process (Chapman et al., 2012). In the event of a surface spill, understanding the natural attenuation of the chemicals in hydraulic fracturing fluid, as well as the physical and chemical properties of the aquifers surrounding the spill site, will help mitigate potential dangers to drinking water. However, reports on the degradation pathways of these chemicals are limited in existing literature. The Appalachian Basin Marcellus shale and its surrounding sandstones host diverse mineralogical suites. During the hydraulic fracturing process, the hydraulic fracturing fluids come into contact with variable mineral compositions. The reactions between the fracturing fluid chemicals and the minerals are very diverse. This report: 1) describes common minerals (e.g. quartz, clay, pyrite, and carbonates) present in the Marcellus shale, as well as the Oriskany and Berea sandstones, which are located stratigraphically below and above the Marcellus shale; 2) summarizes the existing literature of the degradation pathways for common hydraulic fracturing fluid chemicals [polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), glutaraldehyde

  3. Uranium distribution and sandstone depositional environments: oligocene and upper Cretaceous sediments, Cheyenne basin, Colorado

    International Nuclear Information System (INIS)

    Nibbelink, K.A.; Ethridge, F.G.

    1984-01-01

    Wyoming-type roll-front uranium deposits occur in the Upper Cretaceous Laramie and Fox Hills sandstones in the Cheyenne basin of northeastern Colorado. The location, geometry, and trend of specific depositional environments of the Oligocene White River and the Upper Cretaceous Laramie and Fox Hills formations are important factors that control the distribution of uranium in these sandstones. The Fox Hills Sandstone consists of up to 450 ft (140 m) of nearshore marine wave-dominated delta and barrier island-tidal channel sandstones which overlie offshore deposits of the Pierre Shale and which are overlain by delta-plain and fluvial deposits of the Laramie Formation. Uranium, which probably originated from volcanic ash in the White River Formation, was transported by groundwater through the fluvial-channel deposits of the White River into the sandstones of the Laramie and Fox Hills formations where it was precipitated. Two favorable depositional settings for uranium mineralization in the Fox Hills Sandstone are: (1) the landward side of barrier-island deposits where barrier sandstones thin and interfinger with back-barrier organic mudstones, and (2) the intersection of barrier-island and tidal channel sandstones. In both settings, sandstones were probably reduced during early burial by diagenesis of contained and adjacent organic matter. The change in permeability trends between the depositional strike-oriented barrier sandstones and the dip-oriented tidal-channel sandstones provided sites for dispersed groundwater flow and, as demonstrated in similar settings in other depositional systems, sites for uranium mineralization

  4. Formation conditions and prospecting criteria for sandstone uranium deposit of interlayer oxidation type

    International Nuclear Information System (INIS)

    Huang Shijie

    1994-01-01

    This paper comprehensively analyses the geotectonic setting and favourable conditions, such as structure of the basin, sedimentary facies and paleogeography, geomorphology and climate, hydrodynamics and hydrogeochemistry, the development of interlayered oxidation etc, necessary for the formation of sandstone uranium deposit of interlayered oxidation type. The following prospecting criteria is proposed, namely: abundant uranium source, arid climate, stable big basin, flat-lying sandstone bed, big alluvial fan, little change in sedimentary facies, intercalation of sandstone and mudstone beds, shallow burying of sandstone bed, well-aquiferous sandstone bed, high permeability of sandstone bed, development of interlayered oxidation, and high content of reductant in sandstone. In addition, the 6 in 1 hydrogenic genetic model is proposed

  5. INAA and petrological study of sandstones from the Angkor monuments

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Novák, Jiří Karel; Kranda, Karel; Poncar, J.; Krausová, Ivana; Soukal, Ladislav; Cunin, O.; Lang, M.

    2008-01-01

    Roč. 278, č. 2 (2008), s. 299-306 ISSN 0236-5731. [12. mezinárodní konference Moderní trendy v aktivační analýze. Hachioji-shi, Tokyo , 16.09.2007-21.09.2007] Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z30130516 Keywords : Angkor temples * sandstone * instrumental neutron activation analysis Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.659, year: 2008

  6. paleomagnetic dating of the enticho sandstone at negash locality

    African Journals Online (AJOL)

    Sinet

    296.6ºE, Lat = 86.7ºN (A95 = 5.0º, N = 23) obtained from these data when plotted with the Apparent. Polar Wander Path (APWP) of Africa (Besse and Courtillot, 1991, 2003; Cogné, 2003) gives a Quaternary age for the magnetization of Enticho Sandstone at Negash locality. Comparison of this result with that of Enticho ...

  7. Petrography and Geochemistry of the Proterozoic Sandstones of ...

    Indian Academy of Sciences (India)

    22

    1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. Page 2. ABSTRACT. In this paper we first time report geochemistry of Sandstone from ...

  8. Self organised conduit network in sandstone quarry: Characterization and evolution

    Czech Academy of Sciences Publication Activity Database

    Bruthans, J.; Světlík, D.; Soukup, J.; Schweigstillová, Jana; Mayo, A.

    2011-01-01

    Roč. 43, č. 5 (2011), s. 252 ISSN 0016-7592. [2011 GSA Annual Meeting & Exposition: Archean to Anthropocene: The past is the key to the future. 09.10.2011-12.10.2011, Minneapolis] R&D Projects: GA AV ČR IAA300130806 Institutional research plan: CEZ:AV0Z30460519 Keywords : sandstone * piping * sapping Subject RIV: DB - Geology ; Mineralogy

  9. New Acid Combination for a Successful Sandstone Acidizing

    Science.gov (United States)

    Shafiq, M. U.; Mahmud, H. K. B.; Rezaee, R.

    2017-05-01

    With the development of new enhanced oil recovery techniques, sandstone acidizing has been introduced and played a pivotal role in the petroleum industry. Different acid combinations have been applied, which react with the formation, dissolve the soluble particles; thus increase the production of hydrocarbons. To solve the problems which occurred using current preflush sandstone acidizing technology (hydrochloric acid); a new acid combination has been developed. Core flooding experiments on sandstone core samples with dimensions 1.5 in. × 3 in. were conducted at a flow rate of 2 cm3/min. A series of hydrochloric-acetic acid mixtures with different ratios were tested under 150°F temperature. The core flooding experiments performed are aimed to dissolve carbonate, sodium, potassium and calcium particles from the core samples. These experiments are followed by few important tests which include, porosity-permeability, pH value, Inductively Coupled Plasma (ICP) analysis and Nuclear Magnetic Resonance (NMR measurements). All the results are compared with the results of conventional hydrochloric acid technology. NMR and porosity analysis concluded that the new acid combination is more effective in creating fresh pore spaces and thus increasing the reservoir permeability. It can be seen from the pore distribution before and after the acidizing. Prior applying acid; the large size of pores appears most frequently in the pore distribution while with the applied acid, it was found that the small pore size is most the predominant of the pore distribution. These results are validated using ICP analysis which shows the effective removal of calcium and other positive ions from the core sample. This study concludes that the combination of acetic-hydrochloric acid can be a potential candidate for the preflush stage of sandstone acidizing at high temperature reservoirs.

  10. Lack of inhibiting effect of oil emplacement on quartz cementation: Evidence from Cambrian reservoir sandstones, Paleozoic Baltic Basin

    DEFF Research Database (Denmark)

    Molenaar, Nicolaas; Cyziene, Jolanta; Sliaupa, Saulius

    2008-01-01

    , including sandstone architecture, i.e., distribution of shales within the sandstone bodies, and sandstone thickness. Heterogeneity is inherent to sandstone architecture and to the fact that silica for quartz cementation is derived from heterogeneously distributed local pressure solution. Models predicting...... reservoir properties should encompass facies and architecture as important independent factors....

  11. Multiscale Fractal Characterization of Hierarchical Heterogeneity in Sandstone Reservoirs

    Science.gov (United States)

    Liu, Yanfeng; Liu, Yuetian; Sun, Lu; Liu, Jian

    2016-07-01

    Heterogeneities affecting reservoirs often develop at different scales. Previous studies have described these heterogeneities using different parameters depending on their size, and there is no one comprehensive method of reservoir evaluation that considers every scale. This paper introduces a multiscale fractal approach to quantify consistently the hierarchical heterogeneities of sandstone reservoirs. Materials taken from typical depositional pattern and aerial photography are used to represent three main types of sandstone reservoir: turbidite, braided, and meandering river system. Subsequent multiscale fractal dimension analysis using the Bouligand-Minkowski method characterizes well the hierarchical heterogeneity of the sandstone reservoirs. The multiscale fractal dimension provides a curve function that describes the heterogeneity at different scales. The heterogeneity of a reservoir’s internal structure decreases as the observational scale increases. The shape of a deposit’s facies is vital for quantitative determination of the sedimentation type, and thus enhanced oil recovery. Characterization of hierarchical heterogeneity by multiscale fractal dimension can assist reservoir evaluation, geological modeling, and even the design of well patterns.

  12. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra; Lopano, Christina L.; Rimstidt, J. Donald; Brantley, Susan L.

    2013-03-01

    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rock + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the

  13. Sandstone uranium deposits of Eurasia – from genetic concepts to forecasting and new discoveries

    International Nuclear Information System (INIS)

    Pechenkin, I.

    2014-01-01

    Along the Eurasian continent’s southern borders lie uranium ore provinces and regions controlling medium-sized and, on rare occasions, large sandstone deposits. Central French, Eastern Rhodope and other regions are known in the west. Large uranium ore provinces were discovered in the south of the Turan Plate and in the depressions of South Kazakhstan, viz. Central Kyzyl Kum, Syr Darya, Chu Sarysu. A common criterion has been established for all objects of the sandstone type, located in oil and gas, coal etc. sedimentary basins – the zone of interlayer or ground-interlayer oxidation, controlling uranium mineralization. In 2003 we were able to justify the concept that the formation of giant deposits in Chu Sarysu province was caused by the collision between the Indian Plate and the southern part of the Eurasian continent. Within the limits of Pacific ore belt there is a zonal distribution of ore deposits. Ordinary mineralization is drawn towards its eastern fringe: gold, tin, copper, tungsten etc. Volcanic and tectonic structures of central type of Mesozoic age are located further west, from the north to the south, that is large calderas – Streltsovskaya (Russia), Dornot (Mongolia), Sian Shan (China), which control large and unique endogene uranium deposits. In the far west, in the region of subsiding tectonic tensions, there are sandstone deposits of uranium in Transbaikalia, Mongolia and Yunnan, which are specially connected to young basalts. Infiltration deposits of Vitim region are adjacent to endogene deposits of Streltsovsky region in the southern-easterly direction, and to the east of the deposits of Yunnan at the same latitude lay the Sian Shan caldera with geothermal deposits of uranium and other metals. We combined them into the unified submeridional Baikal-Southern China uranium ore belt. After examining the southern extremities of the Eurasian continent, the region of the collision of the Indian Plate, a distinct similarity can be perceived between

  14. Textures of sandstones and carbonate rocks in the world's deepest wells (in excess of 30,000 ft. or 9.1 km): Anadarko Basin, Oklahoma

    Science.gov (United States)

    Borak, Barry; Friedman, Gerald M.

    1981-07-01

    Accelerated exploration in the deep Anadarko Basin has resulted in the need to understand the effects of deep burial at depths in excess of 30,000 ft. (9.1 km) on the textural characteristics of carbonate rocks and sandstones. The purpose of this study is to determine how deep burial affects the development of diagenetic textures in sandstones and carbonates. Textures found in carbonate rocks of the Hunton Group (Late Ordovician to Early Devonian) in the Lone Star Baden well, one of the world's deepest boreholes (9.16 km deep), and in basal sandstone sequences from the Simpson Group (Early to Middle Ordovician), from the Lone Star Bertha Rogers well, the world's deepest borehole (9.58 km deep), indicate that textures are not significantly different from diagenetic textures found in similar strata buried to shallower depths within the same basin. Mean vitrinite reflectance ( RO) values from the Lone Star Bertha Rogers well were plotted versus depth as a means of developing a ranking parameter to characterize the thermal history of the deep Anadarko Basin. Temperatures of 200°C and higher had no apparent effect on the development of diagenetic textures or formation of new minerals, even though these temperatures approach those found in the zone of greenschist facies metamorphism. Diagenetic textures which developed formed in response to increases in stresses and strains that accompany deep burial. Textures related to the effects of strains in carbonate rocks of the Hunton Group include the development of various kinds of twinning, and the mechanical and multiple displacement along twin planes within single crystals, as well as cataclastic textures, such as granulation and mortar structure. Among sandstones of the Simpson Group only the development of concavo-convex and sutured boundaries and undulose extinction of quartz grains can be directly related to stresses and strains developed during deep burial. Mechanical adjustment occluded pores. Both limestones and

  15. Gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  16. Western Gas Sands Project. Status report, April 1--April 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-01

    Progress of government-sponsored projects directed toward increasing gas production from the low-permeability gas sands of the western United States is summarized. Work by the USGS toward resource assessment in the four primary study areas continued. Bartlesville Energy Technology Center continued work on fracture conductivity, rock-fluid interaction, and log evaluation and interpretation techniques. Experimental and theoretical work on hydraulic fracturing mechanics and analysis of well test data continued at Lawrence Livermore Laboratory. Gathering of bottom-hole pressure data from the Miller No. 1 well and Sprague No. 1 well in the Wattenberg Field, Colorado continued. Fracturing fluid/rock interaction tests have been completed by Terra Tek for Gas Producing Enterprises, Inc., on sandstone horizons in the lower Mesaverde. The Mitchell Energy Corporation Muse-Duke No. 1 was flowed 4,000 MCFGD in April. Fishing operations on the Mobil PCU F31-13G well were unsuccessful. Six zones of the first horizontal experimental hole in the Sandia Laboratories interface test series were mined back to examine the behavior of the hydraulic fracture at the interface. Data collection by CER Corporation and TRW for GRI's Analysis of Tight Formations project continued.

  17. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    Science.gov (United States)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  18. On the water saturation calculation in hydrocarbon sandstone reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stalheim, Stein Ottar

    2002-07-01

    The main goal of this work was to identify the most important uncertainty sources in water saturation calculation and examine the possibility for developing new S{sub w} - equations or possibility to develop methods to remove weaknesses and uncertainties in existing S{sub w} - equations. Due to the need for industrial applicability of the equations we aimed for results with the following properties: The accuracy in S{sub w} should increase compared with existing S{sub w} - equations. The equations should be simple to use in petrophysical evaluations. The equations should be based on conventional logs and use as few as possible input parameters. The equations should be numerical stable. This thesis includes an uncertainty and sensitivity analysis of the most common S{sub w} equations. The results are addressed in chapter 3 and were intended to find the most important uncertainty sources in water saturation calculation. To increase the knowledge of the relationship between R{sub t} and S{sub w} in hydrocarbon sandstone reservoirs and to understand how the pore geometry affects the conductivity (n and m) of the rock a theoretical study was done. It was also an aim to examine the possibility for developing new S{sub w} - equations (or investigation an effective medium model) valid inhydrocarbon sandstone reservoirs. The results are presented in paper 1. A new equation for water saturation calculation in clean sandstone oil reservoirs is addressed in paper 2. A recommendation for best practice of water saturation calculation in non water wet formation is addressed in paper 3. Finally a new equation for water saturation calculation in thinly interbedded sandstone/mudstone reservoirs is presented in paper 4. The papers are titled: 1) Is the saturation exponent n a constant. 2) A New Model for Calculating Water Saturation In 3) Influence of wettability on water saturation modeling. 4) Water Saturation Calculations in Thinly Interbedded Sandstone/mudstone Reservoirs. A

  19. Experimental deformation in sandstone, carbonates and quartz aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Cecilia See Nga [Stony Brook Univ., NY (United States)

    2015-05-01

    The first part of my thesis is mainly focused on the effect of grain size distribution on compaction localization in porous sandstone. To identify the microstructural parameters that influence compaction band formation, I conducted a systematic study of mechanical deformation, failure mode and microstructural evolution in Bleurswiller and Boise sandstones, of similar porosity (~25%) and mineralogy but different sorting. Discrete compaction bands were observed to develop over a wide range of pressure in the Bleurswiller sandstone that has a relatively uniform grain size distribution. In contrast, compaction localization was not observed in the poorly sorted Boise sandstone. My results demonstrate that grain size distribution exerts important influence on compaction band development, in agreement with recently published data from Valley of Fire and Buckskin Gulch, as well as numerical studies. The second part aimed to improve current knowledge on inelastic behavior, failure mode and brittle-ductile transition in another sedimentary rock, porous carbonates. A micritic Tavel (porosity of ~13%) and an allochemical Indiana (~18%) limestones were deformed under compaction in wet and dry conditions. At lower confining pressures, shear localization occurred in brittle faulting regime. Through transitional regime, the deformation switched to cataclastic flow regime at higher confining pressure. Specifically in the cataclastic regime, the (dry and wet) Tavel and dry Indiana failed by distributed cataclastic flow, while in contrast, wet Indiana failed as compaction localization. My results demonstrate that different failure modes and mechanical behaviors under different deformation regimes and water saturation are fundamental prior to any geophysical application in porous carbonates. The third part aimed to focus on investigating compaction on quartz aggregate starting at low (MPa) using X-ray diffraction. We report the diffraction peak evolution of quartz with increasing

  20. Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 117

    Energy Technology Data Exchange (ETDEWEB)

    Debout, D.G.; Weise, B.R.; Gregory, A.R.; Edwards, M.B.

    1982-01-01

    Regional studies of the lower Eocene Wilcox Group in Texas were conducted to assess the potential for producing heat energy and solution methane from geopressured fluids in the deep-subsurface growth-faulted zone. However, in addition to assembling the necessary data for the geopressured geothermal project, this study has provided regional information of significance to exploration for other resources such as lignite, uranium, oil, and gas. Because the focus of this study was on the geopressured section, emphasis was placed on correlating and mapping those sandstones and shales occurring deeper than about 10,000 ft. The Wilcox and Midway Groups comprise the oldest thick sandstone/shale sequence of the Tertiary of the Gulf Coast. The Wilcox crops out in a band 10 to 20 mi wide located 100 to 200 mi inland from the present-day coastline. The Wilcox sandstones and shales in the outcrop and updip shallow subsurface were deposited primarily in fluvial environments; downdip in the deep subsurface, on the other hand, the Wilcox sediments were deposited in large deltaic systems, some of which were reworked into barrier-bar and strandplain systems. Growth faults developed within the deltaic systems, where they prograded basinward beyond the older, stable Lower Cretaceous shelf margin onto the less stable basinal muds. Continued displacement along these faults during burial resulted in: (1) entrapment of pore fluids within isolated sandstone and shale sequences, and (2) buildup of pore pressure greater than hydrostatic pressure and development of geopressure.

  1. Properties and durability assessment of glauconitic sandstone: A case study on Zamel sandstone from Bohemian Cretaceous Basin (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Martinec, Petr; Vavro, M.; Ščučka, Jiří; Mašláň, M.

    2010-01-01

    Roč. 115, 3/4 (2010), s. 175-181 ISSN 0013-7952 R&D Projects: GA ČR GP101/07/P512; GA ČR(CZ) GA103/07/1662 Institutional research plan: CEZ:AV0Z30860518 Keywords : building stone * sandstone * physical properties Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.442, year: 2010 http://www.sciencedirect.com/science

  2. Groundwater protection and unconventional gas extraction: the critical need for field-based hydrogeological research.

    Science.gov (United States)

    Jackson, R E; Gorody, A W; Mayer, B; Roy, J W; Ryan, M C; Van Stempvoort, D R

    2013-01-01

    Unconventional natural gas extraction from tight sandstones, shales, and some coal-beds is typically accomplished by horizontal drilling and hydraulic fracturing that is necessary for economic development of these new hydrocarbon resources. Concerns have been raised regarding the potential for contamination of shallow groundwater by stray gases, formation waters, and fracturing chemicals associated with unconventional gas exploration. A lack of sound scientific hydrogeological field observations and a scarcity of published peer-reviewed articles on the effects of both conventional and unconventional oil and gas activities on shallow groundwater make it difficult to address these issues. Here, we discuss several case studies related to both conventional and unconventional oil and gas activities illustrating how under some circumstances stray or fugitive gas from deep gas-rich formations has migrated from the subsurface into shallow aquifers and how it has affected groundwater quality. Examples include impacts of uncemented well annuli in areas of historic drilling operations, effects related to poor cement bonding in both new and old hydrocarbon wells, and ineffective cementing practices. We also summarize studies describing how structural features influence the role of natural and induced fractures as contaminant fluid migration pathways. On the basis of these studies, we identify two areas where field-focused research is urgently needed to fill current science gaps related to unconventional gas extraction: (1) baseline geochemical mapping (with time series sampling from a sufficient network of groundwater monitoring wells) and (2) field testing of potential mechanisms and pathways by which hydrocarbon gases, reservoir fluids, and fracturing chemicals might potentially invade and contaminate useable groundwater. © 2013, National Ground Water Association.

  3. Experience in North America Tight Oil Reserves Development. Horizontal Wells and Multistage Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    R.R. Ibatullin

    2017-09-01

    Full Text Available The accelerated development of horizontal drilling technology in combination with the multistage hydraulic fracturing of the reservoir has expanded the geological conditions for commercial oil production from tight reservoirs in North America. Geological and physical characteristics of tight reservoirs in North America are presented, as well as a comparison of the geological and physical properties of the reservoirs of the Western Canadian Sedimentary Basin and the Volga-Ural oil and gas province, in particular, in the territory of Tatarstan. The similarity of these basins is shown in terms of formation and deposition. New drilling technologies for horizontal wells (HW and multistage hydraulic fracturing are considered. The drilling in tight reservoirs is carried out exclusively on hydrocarbon-based muds The multi-stage fracturing technology with the use of sliding sleeves, and also slick water – a low-viscous carrier for proppant is the most effective solution for conditions similar to tight reservoirs in the Devonian formation of Tatarstan. Tax incentives which are actively used for the development of HW and multistage fracturing technologies in Canada are described. wells, multistage fracturing

  4. Digital Rock Studies of Tight Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-07

    This technical report summarizes some recently developed approaches to studies of rock properties at a pore scale. Digital rock approach is complementary to laboratory and field studies. It can be especially helpful in situations where experimental data are uncertain, or are difficult or impossible to obtain. Digitized binary images of the pore geometries of natural rocks obtained by different imaging techniques are the input data. Computer-generated models of natural rocks can be used instead of images in a case where microtomography data are unavailable, or the resolution of the tools is insufficient to adequately characterize the features of interest. Simulations of creeping viscous flow in pores produce estimates of Darcy permeability. Maximal Inscribed Spheres calculations estimate two-phase fluid distribution in capillary equilibrium. A combination of both produce relative permeability curves. Computer-generated rock models were employed to study two-phase properties of fractured rocks, or tight sands with slit-like pores, too narrow to be characterized with micro-tomography. Various scenarios can simulate different fluid displacement mechanisms, from piston-like drainage to liquid dropout at the dew point. A finite differences discretization of Stokes equation is developed to simulate flow in the pore space of natural rocks. The numerical schemes are capable to handle both no-slip and slippage flows. An upscaling procedure estimates the permeability by subsampling a large data set. Capillary equilibrium and capillary pressure curves are efficiently estimated with the method of maximal inscribed spheres both an arbitrary contact angle. The algorithms can handle gigobytes of data on a desktop workstation. Customized QuickHull algorithms model natural rocks. Capillary pressure curves evaluated from computer-generated images mimic those obtained for microtomography data.

  5. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  6. "The Ruins": Large cold seep sandstone chimneys in the upper Miocene Santa Margarita Sandstone, Scotts Valley, CA

    Science.gov (United States)

    Schwartz, H.; Bazan, C.; Perry, F.; Garrison, R. E.

    2012-12-01

    In 1856 a peculiar letter in a San Francisco newspaper reported the discovery of an ancient ruin on a sandy hillside in Scotts Valley, CA (Santa Cruz County). The purported "great and magnificent structure" consisted of 50 sandstone columns, some of which were said to be capped by a dome. Exploration of the site by speculators and treasure hunters in the 1850's produced no artifacts or evidence of human activity and regrettably resulted in removal or destruction of most of the original columns. Despite its depletion, and subsequent assessment as a wholly geological phenomenon, the locality is still known locally as "The Ruins". In order to evaluate the origin of the distinctive cementation at the Ruins we mapped its remaining features and collected samples for petrographic, XRD and stable isotope analysis. The site, presently located on private property, consists of at least 12 columns and numerous flattened, discontinuous slabs of well indurated sandstone exposed over ~160 square meters. Stratigraphically it is in the uppermost part of the upper Miocene Santa Margarita Sandstone, 7-15 m below its contact with the overlying Santa Cruz Mudstone. The columns range from 0.5-2 m in diameter and the tallest rises 1.5 m above the surface. All of the columns are distinctly chimney-like, with circular cross sections and hollow central cavities that in some cases are partially filled with separately cemented rings. They describe a SW-NE linear trend on the south side of a hill. A horizon of sandstone slabs, 0.2-1.7 m in length, stratigraphically overlies the chimneys at the top of the hill. Both chimneys and slabs consist of coarse-grained, moderately-sorted sandstone cemented by sparry low-Mg calcite. Most samples also contain abundant remains of the echinoid Astrodapsis spatiosus. δ18O values range from -5.15‰ (chimney) to -2.32‰ (slab); δ13C values range from -19.89‰ (chimney) to -1.95‰ (slab). Stable isotope values seem tied to location rather than contrasting

  7. A Comparative Study of Different Acids used for Sandstone Acid Stimulation: A Literature Review

    Science.gov (United States)

    Van Hong, Leong; Ben Mahmud, Hisham

    2017-07-01

    Matrix acidizing is an effective well stimulation technique, in which acids are injected at a pressure below the formation fracture pressure. The application of sandstone matrix acidizing has been widely used in the oil and gas industry for many decades. The application of mud acid, which is a combination of Hydrofluoric acid and Hydrochloric acid (HF:HCl) in well stimulation, has gained its popularity in improving the porosity and permeability of reservoir formation. In fact, this is driven by the effectiveness of HF in dissolving minerals in sandstone and HCl in controlling precipitation. Nonetheless, high temperature matrix acidizing approach is in growing need since many wells nowadays are producing from much deeper and hotter reservoir, with a temperature higher than 200°F. In such conditions, mud acid causes rapid reaction rates, hence becoming less efficient as the acids are consumed too early. Furthermore, mud acid is hazardous and very corrosive. On the contrary, previous studies had shown that Fluoroboric Acid (HBF4) and Phosphoric acid (H3PO4) offered numerous advantages in comparison to the conventional mud acid. HBF4 can hydrolyze to form HF whereas H3PO4 acts as a buffer acid; which is able to penetrate deeper into the formation before spending. Likewise, both acids cause more increase in the permeability, less change in the strength of core samples and significantly less corrosive. This paper had critically reviewed the experimental works which had been done on different types of acids. The advantages and disadvantages of these acids are evaluated. Therefore, a new acid combination (HBF4:H3PO4) is developed and the future work which can be done on it is proposed.

  8. Characterizing flow pathways in a sandstone aquifer at multiple depths

    Science.gov (United States)

    Medici, Giacomo; West, Jared; Mountney, Nigel

    2017-04-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavily fractured where rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. This presentation reports well-test results and outcrop-scale studies that reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 150 m), similar to limestone and crystalline aquifers. The Triassic St Bees Sandstone Formation of the UK East Irish Sea Basin represents an optimum succession for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This sedimentary succession of fluvial origin accumulated in rapidly subsiding basins, which typically favour preservation of complete depositional cycles, including fine-grained mudstone and silty sandstone layers of floodplain origin interbedded with sandstone-dominated fluvial channel deposits. Vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding-parallel discontinuities. Additionally, normal faults are present through the succession and record development of open-fractures in their damage zones. Here, the shallow aquifer (depth ≤150 m BGL) was characterized in outcrop and well tests. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures typically represent ˜ 50% of well transmissivity. The remaining flow component is dominated by bed-parallel fractures. However, such sub-horizontal fractures become the

  9. Thermal study of sandstones from different Czech localities

    Czech Academy of Sciences Publication Activity Database

    Plevová, Eva; Vaculíková, Lenka; Kožušníková, Alena; Daněk, T.; Ritz, M.; Simha Martynková, G.

    2011-01-01

    Roč. 103, č. 3 (2011), s. 835-843 ISSN 1388-6150 R&D Projects: GA ČR GA105/08/1398; GA ČR GP105/07/P416 Grant - others:GA ČR(CZ) GP105/09/397 Institutional research plan: CEZ:AV0Z30860518 Keywords : thermomechanical and differential thermal analysis * optical microscopy * sandstones Subject RIV: CA - Inorganic Chemistry Impact factor: 1.604, year: 2011 http://www.springerlink.com/content/71n5427j2707g331/

  10. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  11. Sedimentology and reservoir heterogeneity of a valley-fill deposit-A field guide to the Dakota Sandstone of the San Rafael Swell, Utah

    Science.gov (United States)

    Kirschbaum, Mark A.; Schenk, Christopher J.

    2010-01-01

    Valley-fill deposits form a significant class of hydrocarbon reservoirs in many basins of the world. Maximizing recovery of fluids from these reservoirs requires an understanding of the scales of fluid-flow heterogeneity present within the valley-fill system. The Upper Cretaceous Dakota Sandstone in the San Rafael Swell, Utah contains well exposed, relatively accessible outcrops that allow a unique view of the external geometry and internal complexity of a set of rocks interpreted to be deposits of an incised valley fill. These units can be traced on outcrop for tens of miles, and individual sandstone bodies are exposed in three dimensions because of modern erosion in side canyons in a semiarid setting and by exhumation of the overlying, easily erodible Mancos Shale. The Dakota consists of two major units: (1) a lower amalgamated sandstone facies dominated by large-scale cross stratification with several individual sandstone bodies ranging in thickness from 8 to 28 feet, ranging in width from 115 to 150 feet, and having lengths as much as 5,000 feet, and (2) an upper facies composed of numerous mud-encased lenticular sandstones, dominated by ripple-scale lamination, in bedsets ranging in thickness from 5 to 12 feet. The lower facies is interpreted to be fluvial, probably of mainly braided stream origin that exhibits multiple incisions amalgamated into a complex sandstone body. The upper facies has lower energy, probably anastomosed channels encased within alluvial and coastal-plain floodplain sediments. The Dakota valley-fill complex has multiple scales of heterogeneity that could affect fluid flow in similar oil and gas subsurface reservoirs. The largest scale heterogeneity is at the formation level, where the valley-fill complex is sealed within overlying and underlying units. Within the valley-fill complex, there are heterogeneities between individual sandstone bodies, and at the smallest scale, internal heterogeneities within the bodies themselves. These

  12. Generic assessment of tight-fitting annulus spacer mobility

    International Nuclear Information System (INIS)

    Robertson, J.; Micuda, L.; Van Den Brekel, N.

    2006-01-01

    This paper provides a generic assessment of the mobility of tight-fitting fuel channel annulus spacers in OPG and Bruce Power nuclear units. This assessment is applicable to all tight-fitting annulus spacers, including those used in the original fuel channel installation (Darlington Units 1-4, retubed Pickering Units 1-4, and Bruce Unit 8) and as a result of single fuel channel replacements (SFCR) (Pickering Units 5-8, Bruce Units 3-7). Tight-fitting annulus spacers were designed not to move. Pressure tube to calandria tube contact analyses, and the associated blister susceptibility assessments, have assumed that these tight-fitting spacers remain at the pre-service installed locations. Given the importance of this assumption, the technical basis for the expectation that tight-fitting annulus spacers do not move significantly from their pre-service locations, relative to the pressure tube, was reviewed in detail. The review also assessed the inspection data, comparing spacer locations from in-service and pre-service inspections. The review has concluded that tight-fitting spacers do not move sufficiently to necessitate a postulated spacer movement in fuel channel contact analyses. The paper describes the background of this issue, briefly reviews the experimental programs used to qualify the positional stability of the tight-fitting spacer design, and evaluates the current database of in-service spacer location inspection information to demonstrate that no significant movement relative to the pressure tube has been observed. (author)

  13. Studies on hydrogeological conditions for mineralization of some sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Wang Zhiming; Li Sen; Xiao Feng; Qi Daneng; Yin Jinshuang

    1996-11-01

    Based on the analysis for regional geology, structural and hydrogeological conditions of Erennaoer Depression, Erlian Basin, the hydrogeological hydraulic zoning was carried out for groundwater in the study area, structural-palaeo-hydrogeological stages and the feature of deep-seated groundwater were studied, and, two important U-mineralization periods were determined. The conditions of recharge, runoff and discharge of groundwater in ore bearing aquifers and the hydraulic mechanism were revealed by isotope hydrology and single-well tracing technique. By study of hydrogeochemistry, it is indicated that both Subeng and Nuheting U-deposit are located at the parts where groundwater characteristics intensely variate, and the ore indicators are determined. Oil and gas transportation and the relationships between groundwater and U-metallogenetic process were discussed by using of organic geochemistry method. It shows that the bleeding of oil and gas is very important for the forming of U-deposits. It is suggested that the interlayered oxidation zone type sandstone U-deposit which is suitable for in-situ leaching could be existed in the Tenggeer formation, Bayanhua group of Lower Cretaceous, accordingly, two prospecting areas are delimited. (4 refs., 3 figs., 2 tabs.)

  14. Diagenetic Evolution and Reservoir Quality of Sandstones in the North Alpine Foreland Basin: A Microscale Approach.

    Science.gov (United States)

    Gross, Doris; Grundtner, Marie-Louise; Misch, David; Riedl, Martin; Sachsenhofer, Reinhard F; Scheucher, Lorenz

    2015-10-01

    Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas-water contact within hydrocarbon reservoirs.

  15. Prediction of gas production using well logs, Cretaceous of north-central Montana

    Science.gov (United States)

    Hester, T.C.

    1999-01-01

    Cretaceous gas sands underlie much of east-central Alberta and southern Saskatchewan, eastern Montana, western North Dakota, and parts of South Dakota and Wyoming. Estimates of recoverable biogenic methane from these rocks in the United States are as high as 91 TCF. In northern Montana, current production is localized around a few major structural features, while vast areas in between these structures are not being exploited. Although the potential for production exists, the lack of commercial development is due to three major factors: 1) the lack of pipeline infrastructure; 2) the lack of predictable and reliable rates of production; and 3) the difficulty in recognizing and selecting potentially productive gas-charged intervals. Unconventional (tight), continuous-type reservoirs, such as those in the Cretaceous of the northern Great Plains, are not well suited for conventional methods of formation evaluation. Pay zones frequently consist only of thinly laminated intervals of sandstone, silt, shale stringers, and disseminated clay. Potential producing intervals are commonly unrecognizable on well logs, and thus are overlooked. To aid in the identification and selection of potential producing intervals, a calibration system is developed here that empirically links the 'gas effect' to gas production. The calibration system combines the effects of porosity, water saturation, and clay content into a single 'gas-production index' (GPI) that relates the in-situ rock with production potential. The fundamental method for isolating the gas effect for calibration is a crossplot of neutron porosity minus density porosity vs gamma-ray intensity. Well-log and gas-production data used for this study consist of 242 perforated intervals from 53 gas-producing wells. Interval depths range from about 250 to 2400 ft. Gas volumes in the peak calendar year of production range from about 4 to 136 MMCF. Nine producing formations are represented. Producing-interval data show that porosity

  16. Pore network properties of sandstones in a fault damage zone

    Science.gov (United States)

    Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca; Stemmelen, Didier

    2018-05-01

    The understanding of fluid flow in faulted sandstones is based on a wide range of techniques. These depend on the multi-method determination of petrological and structural features, porous network properties and both spatial and temporal variations and interactions of these features. The question of the multi-parameter analysis on fluid flow controlling properties is addressed for an outcrop damage zone in the hanging wall of a normal fault zone on the western border of the Upper Rhine Graben, affecting the Buntsandstein Group (Early Triassic). Diagenetic processes may alter the original pore type and geometry in fractured and faulted sandstones. Therefore, these may control the ultimate porosity and permeability of the damage zone. The classical model of evolution of hydraulic properties with distance from the major fault core is nuanced here. The hydraulic behavior of the rock media is better described by a pluri-scale model including: 1) The grain scale, where the hydraulic properties are controlled by sedimentary features, the distance from the fracture, and the impact of diagenetic processes. These result in the ultimate porous network characteristics observed. 2) A larger scale, where the structural position and characteristics (density, connectivity) of the fracture corridors are strongly correlated with both geo-mechanical and hydraulic properties within the damage zone.

  17. Modelling of a diffusion-sorption experiment on sandstone

    International Nuclear Information System (INIS)

    Smith, P.A.

    1989-11-01

    The results of a diffusion-sorption experiment on a sample of Darley Dale sandstone, using simulated groundwater spiked with a mixture of 125 I, 85 Sr and 137 Cs, are modelled by a one-dimensional porous medium approach in which sorption is described by Freundlich isotherms. The governing equations are solved analytically for the special case of a linear isotherm, and numerically using the computer code RANCHDIFF for non-linear isotherms. A set of time-dependent, ordinary differential equations is obtained using the Lagrange interpolation technique and integrated by Gear's variable order predictor-corrector method. It is shown that the sorption behaviour of 85 Sr can be modelled successfully by a linear isotherm, using a sorption parameter consistent with batch-sorption tests. The behaviour of 137 Cs may be modelled by a non-linear isotherm, but the amount of 137 Cs sorbed is less than that anticipated from batch-sorption tests. 125 I is assumed to be non-sorbing and is used to determine the porosity of the sandstone. (author) 10 figs., 4 tabs., 6 refs

  18. Measuring the zeta potential. The relationships with sandstone fineness

    Directory of Open Access Journals (Sweden)

    de Luxán, M. P.

    1989-09-01

    Full Text Available The application of the zeta potential technique in the area of construction materials and Portland cement is quite recent. The initial research work involved the study of cement suspensions or suspensions of one of the components of cement, such as alite, tricalcium alumínate, in the presence of additives and, more specifically, superplasticizers. The studies of this sort were extended with the mixing of active additions into cement (fly ashes, etc.. The present study discusses the application of siliceous materials (sandstone as a basis of the research into the behaviour of sandstone mortars containing repair products.

    La aplicación de la técnica del potencial zeta en el campo de los materiales de construcción y del cemento portland es muy reciente. Las primeras investigaciones se refieren al estudio de suspensiones de cemento o de alguno de sus compuestos que lo forman como alita, aluminato tricálcico, en presencia de aditivos y, más concretamente, de superfluidificantes. Con la incorporación de adiciones activas al cemento (cenizas volantes,... se amplían los estudios de este tipo de cementos. En este trabajo se considera la aplicación a los materiales silíceos (arenisca como base para la investigación del comportamiento de los morteros de arenisca conteniendo productos de reparación.

  19. Sandstone caves on Venezuelan tepuis: Return to pseudokarst?

    Science.gov (United States)

    Aubrecht, R.; Lánczos, T.; Gregor, M.; Schlögl, J.; Šmída, B.; Liščák, P.; Brewer-Carías, Ch.; Vlček, L.

    2011-09-01

    Venezuelan table mountains (tepuis) host the largest arenite caves in the world. The most frequently used explanation of their origin so far was the "arenization" theory, involving dissolution of quartz cement around the sand grains and subsequent removing of the released grains by water. New research in the two largest arenite cave systems - Churi-Tepui System in Chimanta Massif and Ojos de Cristal System in Roraima Tepui showed that quartz dissolution plays only a minor role in their speleogenesis. Arenites forming the tepuis are not only quartzites but they display a wide range of lithification and breakdown, including also loose sands and sandstones. Speleogenetic processes are mostly concentrated on the beds of unlithified sands which escaped from diagenesis by being sealed by the surrounding perfectly lithified quartzites. Only the so-called "finger-flow" pillars testify to confined diagenetic fluids which flowed in narrow channels, leaving the surrounding arenite uncemented. Another factor which influenced the cave-forming processes by about 30% was lateritization. It affects beds formed of arkosic sandstones and greywackes which show strong dissolution of micas, feldspars and clay minerals, turning then to laterite ("Barro Rojo"). The main prerequisite to rank caves among karst phenomena is dissolution. As the dissolution of silicate minerals other than quartz appears to play not only a volumetrically important role but even a trigger role, these arenitic caves may be ranked as karst.

  20. Quantitative evaluation of decay patterns on artificially weathered sandstone specimens

    Science.gov (United States)

    Prikryl, Richard

    2017-04-01

    Natural stone affected by weathering processes exhibits development of specific weathering forms / patterns. These features are controlled by numerous factors; however, their extent is generally considered to be proportional to weathering grade. The recent study focused on possible quantitative evaluation of the decay patterns on artificially weathered sandstones and on correlation of the extent of decay forms with conventionally used parameters such as weight loss or porosity increase. Macroscopically visible decay patterns were recorded after completion of certain number of cycles of freezing/thawing and/or salt crystallization applied to several types of building sandstones. By using prismatic specimens, the preservation of (1) corners, (2) edges, and (3) flat surfaces plus overall integrity of specimens were captured by digital photography. Individual photos were processed by means of image analysis software to quantify % loss of original shape (i.e. rounding of corners and edges, material loss on flat surfaces, etc.), and formation of cracks. Obtained data were correlated with results of non-destructive measurements of selected physical properties such as porosity, ultrasonic velocity or weight loss.

  1. Clay minerals in sandstone uranium deposits: radwaste applications

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1990-01-01

    Clay minerals play an important role in the genesis of uranium deposits in sandstones. They incorporate the rate earths (REE), U, Sb, Th, Cs, Rb, Sr, Y, Ba, and even small amounts of chalcophiles. These minerals possess analog elements for many of the radwaste fission products as well as actinides and some actinide daughters. In sandstone uranium deposits, clay minerals are also associated with sulfide minerals, usually pyrite, and organic carbonaceous matter. The primary clay minerals are usually smectites, illites, chlorites and mixed layer varieties. The integrity of these clay minerals is demonstrated by their retention of formational-mineralization ages determined by Rb-Sr geochronologic investigation of the Grants Mineral Belt of the United States. The importance of the clay minerals as analog for parts of the multi-barrier concept in radwaste disposal is their ability to impede water penetration into - and movement of key elements out of uranium rich zones. The clay minerals further sorb and in other ways incorporate into their structures many fission products and actinide analogs from man-made nuclear wastes. 22 refs., 1 fig., 3 tabs

  2. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben; Hamid, Mohamed Ali

    2015-01-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H 3 PO 4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid. (paper)

  3. Selected trace and minor elements in sandstones from Paraguay

    Energy Technology Data Exchange (ETDEWEB)

    Facetti-Masulli, J.F.; Gonzalez, E. [Hydroconsult SRL, Asuncion (Paraguay); Kump, P. [J. Stefan Inst., Ljubljana (Slovenia)

    2010-07-01

    Selected trace and minor elements analyzed by XRF in sandstone samples were Rb-Sr-Zr-Nb-Ba-La-Ce-Nd as well as Ti-Mn-Fe with which they are often correlated. Refractory elements like REE are considered useful indicators of geochemical processes and, in this case, of provenance. Usually they maintain their original relationships and are transferred almost directly into sediments. The values here found, absolute and normalized, show correlations among the samples, allowing the establishment of their origin. Most of them in the spidergram patterns display positive spikes of Zr, and negative anomalies at Nb, Sr, Ti: differences in their height/depth could be in relation with the different Series or Formations. Strikingly, spidergrams of samples collected from the Patino Formation show marked negative anomalies interalia of Ba, as well as positive spikes of Nb and Zr, very similar to those found in magmatic specimens from Misiones, Carapegua-Acahay and Alto Paraguay Province and quite different from the other analyzed samples. In addition a remarkable presence of Precambrian signatures were found in the analyzed sandstones from the Paleozoic. (orig.)

  4. Fracking in Tight Shales: What Is It, What Does It Accomplish, and What Are Its Consequences?

    Science.gov (United States)

    Norris, J. Quinn; Turcotte, Donald L.; Moores, Eldridge M.; Brodsky, Emily E.; Rundle, John B.

    2016-06-01

    Fracking is a popular term referring to hydraulic fracturing when it is used to extract hydrocarbons. We distinguish between low-volume traditional fracking and the high-volume modern fracking used to recover large volumes of hydrocarbons from shales. Shales are fine-grained rocks with low granular permeabilities. During the formation of oil and gas, large fluid pressures are generated. These pressures result in natural fracking, and the resulting fracture permeability allows oil and gas to escape, reducing the fluid pressures. These fractures may subsequently be sealed by mineral deposition, resulting in tight shale formations. The objective of modern fracking is to reopen these fractures and/or create new fractures on a wide range of scales. Modern fracking has had a major impact on the availability of oil and gas globally; however, there are serious environmental objections to modern fracking, which should be weighed carefully against its benefits.

  5. The Energy-Water Nexus: potential groundwater-quality degradation associated with production of shale gas

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Conaway, Christopher H.; Thomas, Randal B.

    2013-01-01

    Oil and natural gas have been the main sources of primary energy in the USA, providing 63% of the total energy consumption in 2011. Petroleum production, drilling operations, and improperly sealed abandoned wells have caused significant local groundwater contamination in many states, including at the USGS OSPER sites in Oklahoma. The potential for groundwater contamination is higher when producing natural gas and oil from unconventional sources of energy, including shale and tight sandstones. These reservoirs require horizontally-completed wells and massive hydraulic fracturing that injects large volumes (up to 50,000 m3/well) of high-pressured water with added proppant, and toxic organic and inorganic chemicals. Recent results show that flow back and produced waters from Haynesville (Texas) and Marcellus (Pennsylvania) Shale have high salinities (≥200,000 mg/L TDS) and high NORMs (up to 10,000 picocuries/L) concentrations. A major research effort is needed worldwide to minimize all potential environmental impacts, especially groundwater contamination and induced seismicity, when producing these extremely important new sources of energy.

  6. Porosity and Permeability Evolution in Cemented Rock Cores under Reactive Flowing Conditions: Comparative Analysis between Limestone and Sandstone Host Rocks

    Science.gov (United States)

    Cao, P.; Karpyn, Z.; Li, L.

    2013-12-01

    CO2-brine has the potential to alter wellbore cement in depleted oil and gas reservoirs under geological CO2 sequestration conditions. A better understanding of CO2-brine-cement-rock interaction is needed to evaluate the seal integrity of candidate sequestration formation in the long run. This work investigates possible alteration of wellbore cement when bonded by different host formation rock upon exposure to CO2-saturated brine. Composite cement-sandstone and cement-limestone core samples were created to perform reactive coreflood experiments. After an eight-day dynamic flow-through period, both cores had a similar extent of porosity increase, while the cement-limestone core experienced a ten-fold higher increase in permeability. With the aid of X-ray Micro-CT imaging and Scanning Electron Microscopy, it is observed that cement underwent greater degradation at the cement-sandstone interface. Degradation of cement-limestone core mainly took place on the host rock matrix. Worm holes were developed and a solution channel was formed in the limestone, creating a dominant flow path that altered both flow and reaction behavior. Limestone buffered the injected acidic brine preventing further deterioration of cement near the core outlet. Changes in fluid chemistry of limestone and sandstone coreflood effluents are compared. Results from this work are aimed at assisting the development and validation of robust reactive transport models through direct measurement of cemented rock core porosity and permeability evolution as well as the effluent aqueous chemistry change. This will subsequently improve predictive capabilities of reactive transport models associated with CO2 sequestration in geologic environments. Permeability Evolution of Cement-Rock Core Sample during Dynamic Flow of CO2-Brine

  7. Improved RIP Conditions for Compressed Sensing with Coherent Tight Frames

    Directory of Open Access Journals (Sweden)

    Yao Wang

    2017-01-01

    Full Text Available This paper establishes new sufficient conditions on the restricted isometry property (RIP for compressed sensing with coherent tight frames. One of our main results shows that the RIP (adapted to D condition δk+θk,k<1 guarantees the stable recovery of all signals that are nearly k-sparse in terms of a coherent tight frame D via the l1-analysis method, which improves the existing ones in the literature.

  8. Nature, origin, and production characteristics of the Lower Silurian regional oil and gas accumulation, central Appalachian basin, United States

    Science.gov (United States)

    Ryder, R.; Zagorski, W.A.

    2003-01-01

    Low-permeability sandstones of the Lower Silurian regional oil and gas accumulation cover about 45,000 mi2 (117,000 km2) of the Appalachian basin and may contain as much as 30 tcf of recoverable gas resources. Major reservoirs consist of the "Clinton" sandstone and Medina Group sandstones. The stratigraphically equivalent Tuscarora Sandstone increases the area of the Lower Silurian regional accumulation (LSRA) by another 30,000 mi2 (78,000 km2). Approximately 8.7 tcf of gas and 400 million bbl of oil have been produced from the Clinton/Medina reservoirs since 1880. The eastern predominantly gas-bearing part of the LSRA is a basin-center gas accumulation, whereas the western part is a conventional oil and gas accumulation with hybrid features of a basin-center accumulation. The basin-center accumulations have pervasive gas saturation, water near irreducible saturation, and generally low fluid pressures. In contrast, the hybrid-conventional accumulations have less-pervasive oil and gas saturation, higher mobile-water saturation, and both normal and abnormally low fluid pressures. High mobile-water saturation in the hybrid-conventional reservoirs form the updip trap for the basin-center gas creating a broad transition zone, tens of miles wide, that has characteristics of both end-member accumulation types. Although the Tuscarora Sandstone part of the basin-center gas accumulation is pervasively saturated with gas, most of its constituent sandstone beds have low porosity and permeability. Commercial gas fields in the Tuscarora Sandstone are trapped in naturally fractured, faulted anticlines. The origin of the LSRA includes (1) generation of oil and gas from Ordovician black shales, (2) vertical migration through an overlying 1000-ft (305-m)-thick Ordovician shale; (3) abnormally high fluid pressure created by oil-to-gas transformation; (4) updip displacement of mobile pore water by overpressured gas; (5) entrapment of pervasive gas in the basin center; (6) postorogenic

  9. Different effects of temperature and salinity on permeability reduction by fines migration in Berea sandstone

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus; Riis, Jacob Fabricius

    2015-01-01

    Hot water injection into geothermal aquifers is considered in order to store energy seasonally. Berea sandstone is often used as a reference formation to study mechanisms that affect permeability in reservoir sandstones. Both heating of the pore fluid and reduction of the pore fluid salinity can...

  10. Tensile and compressive failure of 3D printed and natural sandstones

    Science.gov (United States)

    Vogler, D.; Perras, M.; Walsh, S. D. C.; Dombrovski, E.

    2016-12-01

    Artificial 3D-printed sandstone samples have the potential to replicate the physical characteristics of natural sandstones, allowing the creation of reproducible rock specimens. If successful, such materials could be used to replicate heterogeneous specimens for destructive testing in a number of different configurations and across different test types. In this study, we consider to what degree such artificial samples can match the tensile and compressive failure behavior of natural sandstones. Specifically, 3D printed sandstone samples were subjected to both indirect Brazilian and unconfined compression tests. Two different types of 3D printed and three natural sandstones were tested, comparing their 1) tensile and compressive strength; 2) strain path to failure; 3) failure mode; and 4) fracture geometry after failure. The artificial sandstone samples demonstrated tensile strengths and failure modes similar to those exhibited in weak natural sandstones. Moreover, the ratio of tensile to compressive strength was found to be similar across all materials tested including the 3D printed materials. Finally, the small-scale fracture surface roughness is comparable between artificial and natural specimens of similar tensile strength - suggesting similar grain- and macro-scale failure behavior between the 3D printed and natural sandstone samples.

  11. Age, sedimentary environments, and other aspects of sandstone and related host rocks for uranium deposits

    International Nuclear Information System (INIS)

    1983-01-01

    Project II of the Uranium Geology Working Group was assigned to the study of sedimentary basins and sandstone - type uranium deposits. About 40% of the worlds's uranium resources are contained in sandstone-type deposits, which has led to extensive research. The research was carried out mainly by correspondence, and the results reported by 21 geologists from 10 nations are summarized in this report. It investigated five topics dealing with important aspects of the geology of uranium ores in sandstone host formations: age of host rock; partitioning of uranium between continental and marine sediments; latitude limitation on formation of sandstone deposits; effect of rock formation dip on sandstone ores; usefulness of stable isotope and fluid inclusion studies. The results of studies on these subjects form part of a wider programme of the Working Group, whose final results will be presented at the 27th International Geological Congress in Moscow in 1984

  12. Changes of petrophysical properties of sandstones due to interaction with carbon dioxide, a laboratory study

    Science.gov (United States)

    Nover, Georg; von der Gönna, Jutta; Heikamp, Stephanie; Köster, Jens

    2013-04-01

    Changes of petrophysical, petrological, mineralogical, mechanical and chemical parameters were studied on sandstones from the Hessian depression and sandstones from Neidenbach (Eifel) before and after alteration with CO2. The experiments were performed in a wide pressure and temperature range (p >10 100contact with wet CO2. Initial values of the untreated samples exhibit quartz to range from 85 weight %, density from 2.62 - 2.70 g/cm3, porosity from 25% and permeability from angle that indicates changes of the geometry of the pore surface area. The uniaxial compressive strength was measured before and after scCO2-treatment on a set of homogeneous sandstones from Neidenbach. These data were compared with natural analogues, e.g. bleached and unbleached sandstones from the Hessian depression. The uniaxial compressive strength of untreated and scCO2-treated samples were found to fit the range reported for sandstones.

  13. Cathodoluminescence investigations on quartz cement in the sandstones of Khabour Formation from Iraqi Kurdistan Region, Northern Iraq

    DEFF Research Database (Denmark)

    Omer, Muhamed Fakhri; Friis, Henrik

    2014-01-01

    The Ordovician deltaic to shallow marine Khabour Formation in Northern Iraq consists mainly of sandstone with minor siltstone and interbedded shale. The sandstones are pervasively cemented by quartz that resulted in very little preserved primary porosity. Cathodoluminescence and petrographic stud...

  14. Hydrogeology of the Cliff House Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    Science.gov (United States)

    Thorn, Conde R.; Levings, G.W.; Craigg, S.D.; Dam, W.L.; Kernodle, J.M.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Point Lookout Sandstone (Craigg and others, 1990), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), and Menefee Formation (Levings and others, 1990) in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Cliff House Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Cliff House Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the

  15. Determination of water-lock critical value of low-permeability sandstones based on digital core

    Directory of Open Access Journals (Sweden)

    Honglin Zhu

    2016-05-01

    Full Text Available Research and development of water lock inhibiting measures is very crucial in verifying the link mechanism between the internal factors of water lock and its extent of damage. Based on conventional water-lock physics experiments, however, only the consequence of macro water lock damage can be investigated, while the microscopic mechanism cannot be studied. In this paper, 3D digital cores of low-permeability sandstones were prepared by means of high-resolution micro-CT scan, and their equivalent pore network model was built as well. Virtual “imbibition” experiments controlled by capillary force were carried out by using pore-scale flow simulation. Then the link mechanism between the microscopic internal factors (e.g. wettability, water saturation and pore–throat structure parameters and the water-lock damage degree was discussed. It is shown that the damage degree of water lock reduces gradually as the wettability transits from water wet to gas wet. Therefore, the water lock damage can be reduced effectively and gas-well productivity can be improved so long as the capillary environment is changed from strong water wettability to weak gas wettability. The more different the initial water saturation is from the irreducible water saturation, the more serious the water lock damage is. The damage degree of water lock is in a negative correlation with the coordinate number, but a positive correlation with the pore–throat ratio. Based on the existing research results, water lock tends to form in the formations composed of medium-sized throats. It is concluded that there is a critical throat radius, at which the water lock is the most serious.

  16. Identification of sandstone core damage using scanning electron microscopy

    Science.gov (United States)

    Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn

    2017-12-01

    Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.

  17. Electrokinetic desalination of sandstones for NaCl removal

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben V.

    2012-01-01

    the bricks studied. The stones were contaminated with NaCl by submersion prior to the desalination experiments, where an electric DC field was applied to the stones from electrodes placed in clay poultice. Two poultice types were tested: calcareous clay used brick production and a mixture of kaolinite...... surface) applied. At the end of all desalination experiments the water content in the poultice at the cathode was higher than in the poultice at the anode, revealing electroosmotic water transport. The water profiles in the stones, however, did not indicate electoosmosis as they were quite uniform within...... of similar high pore water concentrations and the same applied electric current. The hypotheses is that a layered structure of the sandstones could be the cause for this, as the electric current may preferentially flow in certain paths through the stone, which are thus desalinated first. After...

  18. The fracture strength and frictional strength of Weber Sandstone

    Science.gov (United States)

    Byerlee, J.D.

    1975-01-01

    The fracture strength and frictional strength of Weber Sandstone have been measured as a function of confining pressure and pore pressure. Both the fracture strength and the frictional strength obey the law of effective stress, that is, the strength is determined not by the confining pressure alone but by the difference between the confining pressure and the pore pressure. The fracture strength of the rock varies by as much as 20 per cent depending on the cement between the grains, but the frictional strength is independent of lithology. Over the range 0 2 kb, ??=0??5 + 0??6??n. This relationship also holds for other rocks such as gabbro, dunite, serpentinite, granite and limestone. ?? 1975.

  19. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  20. Fracture properties from tight reservoir outcrop analogues with application to geothermal exploration

    Science.gov (United States)

    Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John

    2015-04-01

    In geothermal reservoirs, similar to other tight reservoirs, fluid flow may be intensely affected by fracture systems, in particular those associated with fault zones. When active (slipping) the fault core, that is, the inner part of a fault zone, which commonly consists of breccia or gouge, can suddenly develop high permeability. Fault cores of inactive fault zones, however, may have low permeabilities and even act as flow barriers. In the outer part of a fault zone, the damage zone, permeability depends mainly on the fracture properties, that is, the geometry (orientation, aperture, density, connectivity, etc.) of the fault-associated fracture system. Mineral vein networks in damage zones of deeply eroded fault zones in palaeogeothermal fields demonstrate their permeability. In geothermal exploration, particularly for hydrothermal reservoirs, the orientation of fault zones in relation to the current stress field as well as their internal structure, in particular the properties of the associated fracture system, must be known as accurately as possible for wellpath planning and reservoir engineering. Here we present results of detailed field studies and numerical models of fault zones and associated fracture systems in palaeogeo¬thermal fields and host rocks for geothermal reservoirs from various stratigraphies, lithologies and tectonic settings: (1) 74 fault zones in three coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (2) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); and (3) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone and limestone) in the Upper Rhine Graben shoulders. Whereas (1) represent palaeogeothermal fields with mineral veins, (2) and (3) are outcrop analogues of reservoir horizons from geothermal exploration. In the study

  1. The media of sociology: tight or loose translations?

    Science.gov (United States)

    Guggenheim, Michael

    2015-06-01

    Sociologists have increasingly come to recognize that the discipline has unduly privileged textual representations, but efforts to incorporate visual and other media are still only in their beginning. This paper develops an analysis of the ways objects of knowledge are translated into other media, in order to understand the visual practices of sociology and to point out unused possibilities. I argue that the discourse on visual sociology, by assuming that photographs are less objective than text, is based on an asymmetric media-determinism and on a misleading notion of objectivity. Instead, I suggest to analyse media with the concept of translations. I introduce several kinds of translations, most centrally the distinction between tight and loose ones. I show that many sciences, such as biology, focus on tight translations, using a variety of media and manipulating both research objects and representations. Sociology, in contrast, uses both tight and loose translations, but uses the latter only for texts. For visuals, sociology restricts itself to what I call 'the documentary': focusing on mechanical recording technologies without manipulating either the object of research or the representation. I conclude by discussing three rare examples of what is largely excluded in sociology: visual loose translations, visual tight translations based on non-mechanical recording technologies, and visual tight translations based on mechanical recording technologies that include the manipulation of both object and representation. © London School of Economics and Political Science 2015.

  2. Human zonulin, a potential modulator of intestinal tight junctions.

    Science.gov (United States)

    Wang, W; Uzzau, S; Goldblum, S E; Fasano, A

    2000-12-01

    Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight junction permeability. We postulated that this toxin may mimic the effect of a functionally and immunologically related endogenous modulator of intestinal tight junctions. Affinity-purified anti-zonula occludens toxin antibodies and the Ussing chamber assay were used to screen for one or more mammalian zonula occludens toxin analogues in both fetal and adult human intestine. A novel protein, zonulin, was identified that induces tight junction disassembly in non-human primate intestinal epithelia mounted in Ussing chambers. Comparison of amino acids in the active zonula occludens toxin fragment and zonulin permitted the identification of the putative receptor binding domain within the N-terminal region of the two proteins. Zonulin likely plays a pivotal role in tight junction regulation during developmental, physiological, and pathological processes, including tissue morphogenesis, movement of fluid, macromolecules and leukocytes between the intestinal lumen and the interstitium, and inflammatory/autoimmune disorders.

  3. Analyzing the Sand-fixing Effect of Feldspathic Sandstone from the Texture Characteristics

    Science.gov (United States)

    Zhang, lu; Ban, Jichang

    2018-01-01

    The purpose of this research was aimed to study the sand fixing effect of feldspathic sandstone in Mu Us Sandy Land, to provide a scienticic basis for desertification control, soil and water conservation and development of farming there. Methods of mixing feldspathic sandstone and aeolian sandy soil according to 1: 0, 1: 1, 1: 2, 1: 5, and 0: 1 mass ratioes, the graded composition and characteristics were studied with laser particle size analyzer. The result showed that these features of sand-based, loosely structured, easy to wind erosion of aeolian sandy soil were changed before feldspathic sandstone and aeolian sandy soil compounding. The sand to sandy loam to loam to silt loam. The small particle size distribution, good homogeneity and other features of aeolian sandy soil were improved to a certain degree, and the particle size distribution became broad before feldspathic sandstone and aeolian sandy soil compounding. The particle grading was continuous, and the grading characteristic was good when m(F): m(S) was 1: 5(Cu was 54.71 and Cc was 2.54) or when m(F): m(S) was 1: 2(Cu was 76.21, Cc was 1.12). The conclusion is that feldspathic sandstone has sand-fixing effect in texture characteristics, which heightens with feldspathic sandstone mass increasing, and when the mass ratio of feldspathic sandstone: aeolian sandy soil is 1: 2 or 1: 5 which compound better.

  4. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland

    Science.gov (United States)

    Watkins, Hannah; Healy, David; Bond, Clare E.; Butler, Robert W. H.

    2018-03-01

    Understanding fracture network variation is fundamental in characterising fractured reservoirs. Simple relationships between fractures, stress and strain are commonly assumed in fold-thrust structures, inferring relatively homogeneous fracture patterns. In reality fractures are more complex, commonly appearing as heterogeneous networks at outcrop. We use the Achnashellach Culmination (NW Scotland) as an outcrop analogue to a folded tight sandstone reservoir in a thrust belt. We present fracture data is collected from four fold-thrust structures to determine how fracture connectivity, orientation, permeability anisotropy and fill vary at different structural positions. We use a 3D model of the field area, constructed using field observations and bedding data, and geomechanically restored using Move software, to determine how factors such as fold curvature and strain influence fracture variation. Fracture patterns in the Torridon Group are consistent and predictable in high strain forelimbs, however in low strain backlimbs fracture patterns are inconsistent. Heterogeneities in fracture connectivity and orientation in low strain regions do not correspond to fluctuations in strain or fold curvature. We infer that where strain is low, other factors such as lithology have a greater control on fracture formation. Despite unpredictable fracture attributes in low strain regions, fractured reservoir quality would be highest here because fractures in high strain forelimbs are infilled with quartz. Heterogeneities in fracture attribute data on fold backlimbs mean that fractured reservoir quality and reservoir potential is difficult to predict.

  5. Characterization of the Lower Cambrian sandstone aquifer in the Swedish Baltic Sea area - assessment regarding its potential suitability for storage of CO2

    Science.gov (United States)

    Erlström, M.; Sivhed, U.

    2012-04-01

    In the Baltic region the Cambrian sandstone is considered to have great economic value concerning its aquifer and reservoir properties. Its potential as petroleum reservoir is well known, especially from the Polish, Lithuanian and Russian sectors of the Baltic Sea where oil and gas has been found in anticline traps in the sandstone sequence. Offshore exploration in the Swedish sector has so far not encountered any significant findings of oil and gas. However, the extensive exploration has generated data, which is now being used for assessing the overall properties regarding suitability for storage of CO2. The Swedish primary industry has a great interest in finding potential sites for storage of CO2. A suitable site in the Baltic Sea would be a most favourable alternative in comparison to more remote alternatives such as deep saline aquifers in the North Sea. The Lower Cambrian is in the Swedish sector of the Baltic Sea composed of three main sandstone units varying in thickness between 5 and 50 m occurring within an up to 250 m thick Cambrian sequence dominated by fine-grained terriclastic sediments. The limit of Lower Palaeozoic sequence in the Baltic area is today defined by erosional truncation because of the gently dipping Lower Palaeozoic sequence. To the north and northwest, the limit is found in the Pre-Quaternary, whereas the erosional limit is deeply buried beneath Permian and Mesozoic sediments to the south. Here the Lower Palaeozoic limit is buried to depths reaching more than 2 km. The Cambrian sequence in the distal parts of the Swedish sector occurs at depths of c. 1300 m while it constitutes the bedrock surface in a narrow zone trending from Öland to the north of of Gotland. Sandstone beds constitute 40-60% of the total Cambrian sequence. The main sandstone units have a regional distribution of several thousands of square kilometres. The up to 50 m thick Faludden sandstone member exhibits the best reservoir properties including porosities in the

  6. Predicting impacts of CO2 intrusion into a confined sandstone aquifer

    Science.gov (United States)

    Shao, H.; Qafoku, N. P.; Zheng, L.; Lawter, A.; Wang, G.

    2013-12-01

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding on how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from a confined sandstone aquifer, i.e., the High Plains aquifer in Kansas, were used to represent a generic sandstone aquifer. The sediments originated from different wells and depths within the central portion of the High Plains aquifer. A series of batch and column experiments were conducted to study time-dependent release of major, minor and trace elements when the sediments were exposed to the CO2 gas stream. Pre- and post-treatment solid phase characterization studies and wet chemical extractions have also been conducted or are underway. Major variables tested included reaction time (0-336 hours), CO2 flow rate (50 to 350 ml/min), brine concentration (0.1 and 1 M NaCl), and sediment type. Additional experiments are being conducted to determine the fate of contaminants, such as As, Pb and Cd, when they are present in the initial contacting solution. The XRD results showed that the concentrations were close to or below detection limits. The concentrations of other elements, such as Si, Ca, Ba, Mg, Mn, Sr, Na and K increased either instantaneously or followed nonlinear increasing trends with time, indicating that they were controlled by dissolution and/or desorption reactions. Reactive transport models were developed to interpret the concentration changes observed in experiments conducted with the High Plains aquifer sediments. The initial conceptual model was developed based on literature data

  7. Independents add gas reserves, forego romance

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1981-08-01

    Incentive pricing for low-permeability reservoirs and tax advantages for drilling them are 2 big reasons why more independents may start making a special effort to add gas reserves to their inventories. If so, it will be a change from past practices, which saw independents build up big gas positions by circumstance rather than by intention. There are always major refiners ready and willing to buy whole crude oil reservoirs from small producers, but purchasers willing to take gas fields in a single investment are few and far between. Lower-than-normal return on equity during the first 20 years, plus the heavy front-end cost of a frac necessary to produce the tight gas might dissuade independents from drilling tight gas sands, but those liabilities are offset by the higher price tight gas gets and the peculiar tax advantages of exploring for it that make a nice fit with the small operator's way of doing business.

  8. Physical and chemical properties for sandstone and bentonites

    International Nuclear Information System (INIS)

    Sato, Haruo

    2004-01-01

    Physical and chemical properties such as porosity, pore-size distribution, dry density, solid density, mineralogy and chemical composition, which are important parameters for the understanding and analysis of the diffusion phenomena of radionuclides and ions in bentonite and in the geosphere, were measured. The measurements were performed for sandstone, of which fundamental data and information are limited. For bentonite, 3 kinds of bentonites with different smectite contents (Kunigel-V1, Kunipia-F, MX80) were used. In the measurements of the physical and chemical properties of rock, the measurements of solid density by pychnometer, the measurements of porosity, dry density and solid density by water saturation method, the measurements of porosity, dry density, solid density, pore-size distribution and specific surface area of pores by Hg porosimetry, the identifications of constituent minerals by X-ray Diffractometry (XRD), the measurement of chemical composition by whole rock analysis, the observations of micropore structure by Laser Confocal Microscope (LCM), the measurements of water vaporization curves and the measurements of the homogeneity of the rock by penetration of KMnO 4 were performed. While, in the measurements of the physical and chemical properties for bentonite, water basis water content, water content, porosity, dry density, solid density and their distributions in samples were measured, and the degree of inhomogeneity was quantitatively evaluated by comparing with data and information reported up to date. The porosities of sandstone are 15.6±0.21% for water saturation method and 15.5±0.2% for Hg porosimetry, and similar values were obtained in both methods. The solid densities ranged 2.65-2.69 Mg/m 3 for 3 methods, and the average value was 2.668±0.012 Mg/m 3 . The average pore size was 88.8±0.5nm, and pore sizes ≤10μm shared 80% of total pore volume and pore sizes ≤1μm shared 40%. The specific surface area of the pores is 4.09±0.017 m

  9. Facies architecture of the Bluejacket Sandstone in the Eufaula Lake area, Oklahoma: Implications for the reservoir characterization of the Bartlesville Sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Liangmiao; Yang, Kexian [Univ. of Tulsa, OK (United States)

    1997-08-01

    Outcrop studies of the Bluejacket Sandstone (Middle Pennsylvanian) provide significant insights to reservoir architecture of the subsurface equivalent Bartlesville Sandstone. Quarry walls and road cuts in the Lake Eufaula area offer excellent exposures for detailed facies architectural investigations using high-precision surveying, photo mosaics. Directional minipermeameter measurements are being conducted. Subsurface studies include conventional logs, borehole image log, and core data. Reservoir architectures are reconstructed in four hierarchical levels: multi-storey sandstone, i.e. discrete genetic intervals; individual discrete genetic interval; facies within a discrete genetic interval; and lateral accretion bar deposits. In both outcrop and subsurface, the Bluejacket (Bartlesville) Sandstone comprises two distinctive architectures: a lower braided fluvial and an upper meandering fluvial. Braided fluvial deposits are typically 30 to 80 ft thick, and are laterally persistent filling an incised valley wider than the largest producing fields. The lower contact is irregular with local relief of 50 ft. The braided-fluvial deposits consist of 100-400-ft wide, 5-15-ft thick channel-fill elements. Each channel-fill interval is limited laterally by an erosional contact or overbank deposits, and is separated vertically by discontinuous mudstones or highly concentrated mudstone interclast lag conglomerates. Low-angle parallel-stratified or trough cross-stratified medium- to coarse-grained sandstones volumetrically dominate. This section has a blocky well log profile. Meandering fluvial deposits are typically 100 to 150 ft thick and comprise multiple discrete genetic intervals.

  10. Sound velocity of a sandstone saturated with oil and brine at different concentrations

    Science.gov (United States)

    Bacri, Jean-Claude; Salin, Dominique

    1986-04-01

    We have measured the velocity of sound in a sandstone saturated with oil and brine at different concentrations. The velocity variations with the concentration depend drastically on the way of entering the fluids in the sample : injection of non-wetting fluid in a sandstone fully saturated with a totally wetting fluid (drainage) or vice versa (imbibition). We interpret our measurements with an extension of the Biot-Gassmann theory to a wetted frame of the sandstone saturated with an effective oil-brine fluid.

  11. Heavy mineral sorting in downwards injected Palaeocene sandstone, Siri Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Kazerouni, Afsoon Moatari; Friis, Henrik; Svendsen, Johan Byskov

    2011-01-01

    sorting. In this study we describe an example of effective shear-zone sorting of heavy minerals in a thin downward injected sandstone dyke which was encountered in one of the cores in the Cecilie Field, Siri Canyon. Differences in sorting pattern of heavy minerals are suggested as a tool for petrographic...... of depositional structures in deep-water sandstones, the distinction between "in situ" and injected or remobilised sandstones is often ambiguous. Large scale heavy mineral sorting (in 10 m thick units) is observed in several reservoir units in the Siri Canyon and has been interpreted to represent the depositional...

  12. Preliminary assessment report for Virginia Army National Guard Army Aviation Support Facility, Richmond International Airport, Installation 51230, Sandston, Virginia

    International Nuclear Information System (INIS)

    Dennis, C.B.

    1993-09-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Virginia Army National Guard (VaARNG) property in Sandston, Virginia. The Army Aviation Support Facility (AASF) is contiguous with the Richmond International Airport. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The PA is designed to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF, originally constructed as an active Air Force interceptor base, provides maintenance support for VaARNG aircraft. Hazardous materials used and stored at the facility include JP-4 jet fuel, diesel fuel, gasoline, liquid propane gas, heating oil, and motor oil

  13. Preliminary assessment report for Virginia Army National Guard Army Aviation Support Facility, Richmond International Airport, Installation 51230, Sandston, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, C.B.

    1993-09-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Virginia Army National Guard (VaARNG) property in Sandston, Virginia. The Army Aviation Support Facility (AASF) is contiguous with the Richmond International Airport. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The PA is designed to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF, originally constructed as an active Air Force interceptor base, provides maintenance support for VaARNG aircraft. Hazardous materials used and stored at the facility include JP-4 jet fuel, diesel fuel, gasoline, liquid propane gas, heating oil, and motor oil.

  14. Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model

    Directory of Open Access Journals (Sweden)

    Wu Y

    2011-01-01

    Full Text Available Abstract Planar carbon-based electronic devices, including metal/semiconductor junctions, transistors and interconnects, can now be formed from patterned sheets of graphene. Most simulations of charge transport within graphene-based electronic devices assume an energy band structure based on a nearest-neighbour tight binding analysis. In this paper, the energy band structure and conductance of graphene nanoribbons and metal/semiconductor junctions are obtained using a third nearest-neighbour tight binding analysis in conjunction with an efficient nonequilibrium Green's function formalism. We find significant differences in both the energy band structure and conductance obtained with the two approximations.

  15. Ultra-Tightly Coupled GNSS/INS for small UAVs

    DEFF Research Database (Denmark)

    Olesen, Daniel; Jakobsen, Jakob; Knudsen, Per

    2017-01-01

    fitted onto a small UAV. The storage of IF samples together with measurements from an Inertial Measurement Unit ( IMU) has allowed the authors to process an Ultra-Tightly Coupled ( U.T.C.) GNSS/INS solution from real data collected with a small UAV. The focus of this paper has been to investigate......This paper describes an ultra-tight integration of a Global Navigation Satellite System ( GNSS) receiver and an Inertial Navigation System ( INS) for small Unmanned Aerial Vehicles ( UAVs). The system is based on a low-cost and low-weight GNSS Intermediate Frequency ( IF) sampler which has been...

  16. Preliminary study on features of mineralogical zoning of epigenetic alteration at sandstone-type uranium deposit, Dongsheng area, Ordos basin

    International Nuclear Information System (INIS)

    Xiao Xinjian; Li Ziying; Chen Anping

    2004-01-01

    Sandstone-type uranium deposits located in Dongsheng area, northern Ordos basin, occur in Zhiluo Formation, Middle Jurassic. The Zhiluo Formation is divided into two members. The lower member is further divided into two submembers. The lower submember is dominantly composed of grey sandstone being the ore-hosting horizon; the upper submember consists of grey-green sandstone and mudstone. The upper member of Zhiluo Formation is made of mottled medium-fine grained sandstone and mudstone. Through the microscopic observation and study on sandstones of Zhiluo Formation, authors have established a vertical zonation of epigenetic alteration (from the top to the bottom): the limonitization + clayization + carbonation in the mottled fine-grained sandstone of the upper member of Zhiluo Formation; the green alteration (II) (mainly the chloritization of biotite, as well as the chloritization and epidotization of feldspar) + clayization + carbonation in the grey-green sandstone of the upper submember of the lower member of Zhiluo Formation; and the green alteration (I) (mainly the epidotization of feldspar) + carbonation in grey, grey-white sandstone of the lower submember. The epigenetic alteration basically occurs in grey-green sandstone. The sandstone shows grey-green color because it contains much green biotite (not chlorite). The epigenetic alteration in sandstone layer is closely associated with the uranium ore-formation

  17. Weathering behavior investigations and treatment of Kom Ombo temple sandstone, Egypt - Based on their sedimentological and petrogaphical information

    Science.gov (United States)

    Temraz, Mostafa Gouda; Khallaf, Mohamed K.

    2016-01-01

    The Temple of Kom Ombo is a huge ancient Egyptian temple in Upper Egypt. It was built by Ptolemy VI Philometor (180-145 BC) and added to by subsequent Ptolemys. The structure of the temple is built of local sandstone attributed to the Quseir Formation of "Nubian Sandstone" group at Gebel el-Silsila. Sandstone samples from Kom Ombo temple were taken to verify the source rock of the quarried material. Optical Polarizing Microscope (OPM) and Scanning Electron Microscope (SEM) were used to determine the microstructure and physical properties of the sandstone. X-Ray diffraction (XRD) was carried out for the Sandstone samples to identify its mineralogical composition. The sandstone samples were treated with six polymeric products to determine changes in their physical and mechanical properties after penetration, consolidation of polymers within them. This sandstone is composed mainly of three quartz arenite microfacies (feldspathic, sublithic and calcareous) that are interpreted to have been deposited in fluvial to fluvial-marine environment. Silane polymers is showing a good penetration and filling pores between grains and recommended for treatment and conservation of the sandstone. Acrylic polymer shows random penetration of polymer and formation of a film of polymer on the surface of sandstone. Silo11 gave the best result in consolidation of sandstone samples then primal AC33. Wacker BS29 gave the best result in isolating process of sandstone samples, then wacker BS 290.

  18. Centrifugal gas separator

    International Nuclear Information System (INIS)

    Sakurai, Mitsuo.

    1970-01-01

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art. (K.J. Owens)

  19. Natural gas pricing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    Natural gas pricing is the heart and soul of the gas business. Price specifically affects every phase of the industry. Too low a price will result in short supplies as seen in the mid-1970s when natural gas was scarce and in tight supply. To fully understand the pricing of this energy commodity, it is important to understand the total energy picture. In addition, the effect and impact of world and US economies, and economics in general are crucial to understanding natural gas pricing. The purpose of this presentation will be to show the parameters going into US natural gas pricing including the influence of the many outside industry factors like crude oil and coal pricing, market drivers pushing the gas industry, supply/demand parameters, risk management for buyers and sellers, and other elements involved in pricing analysis

  20. Envelopes of Sets of Measures, Tightness, and Markov Control Processes

    International Nuclear Information System (INIS)

    Gonzalez-Hernandez, J.; Hernandez-Lerma, O.

    1999-01-01

    We introduce upper and lower envelopes for sets of measures on an arbitrary topological space, which are then used to give a tightness criterion. These concepts are applied to show the existence of optimal policies for a class of Markov control processes

  1. Loosen up? Cultural tightness and national entrepreneurial activity

    NARCIS (Netherlands)

    Harms, Rainer; Groen, Arend J.

    The level of entrepreneurship between countries differs consistently. A source of this variance lies in national culture differences. Recently, the cultural dimension “tightness” has been introduced in the literature. Tightness refers to the degree to which a nation has strong norms and a low

  2. Dielectric constant of graphene-on-polarized substrate: A tight ...

    Indian Academy of Sciences (India)

    Sivabrata Sahu

    Corresponding author. E-mail: gcr@iopb.res.in. Published online 24 June 2017. Abstract. We report here a microscopic tight-binding theoretical study of the dynamic dielectric response of graphene-on-polarizable substrate with impurity. The Hamiltonian consists of first, second and third nearest- neighbour electron hopping ...

  3. Dielectric constant of graphene-on-polarized substrate: A tight ...

    Indian Academy of Sciences (India)

    2017-06-24

    Jun 24, 2017 ... We report here a microscopic tight-binding theoretical study of the dynamic dielectric response of graphene-on-polarizable substrate with impurity. The Hamiltonian consists of first, second and third nearest neighbour electron hopping interactions besides doping and substrate-induced effects on graphene.

  4. Management of Small Urethrocutaneous Fistula by Tight Ligation ...

    African Journals Online (AJOL)

    After identifying the fistulous opening, the fistula tract was circumferentially and meticulously dissected ,then the dissected tract was lifted up and the base was ligated tightly with 5/0 vicryl, the external epithelium of the dissected tract was fulgurated with the diathermy, then a second layer of local soft tissue was secured over ...

  5. Si Tight-Binding Parameters from Genetic Algorithm Fitting

    Science.gov (United States)

    Klimeck, G.; Bowen, R.; Boykin, T.; Salazar-Lazaro, C.; Cwik, T.; Stoica, A.

    1999-01-01

    Quantum mechanical simulations of carrier transport in Si require an accurate model of the complicated Si bandstructure. Tight-binding models are an attractive method of choice since they bear the full electronic structure symmetry in them and they can discretize a realistic device on an atomic scale.

  6. Sit-Tight Syndrome and Tenure Elongation in African Politics ...

    African Journals Online (AJOL)

    The post-independence politics of African countries has been dominated by the phenomenon of sit-tight African heads of state and government who had acceeded to office by election or coup d'etat. This paper examines this recurring problem in post-independence African politics by examining its general and specific ...

  7. Nonconventional natural gas resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-03-01

    It is concluded that it is impossible at this time to forecast the volume of natural gas dissolved in water that can be economically recovered. The investigation to southern Louisiana, both onshore and offshore was confined. Estimates of the dissolved methane content are based upon information on temperatures, pressures, sandstone thicknesses, sandstone porosities, salinity, and the solubility of methane. The salinity of waters encountered in wells was estimated from wireline logs, and in turn used to reduce the estimated content of dissolved gas. The reductions range from 51 to 61 percent of the solubility of methane in fresh water. The assessment does not include gas dissolved in water contained in shale beds. A series of maps display the information used in the computation. Methane solubility values were multiplied by porosity--feet values for each 1000-foot interval. The total dissolved methane in the resource base is estimated to be 6,143 trillion cubic feet (Tcf); assumptions on the effect of salinity reduce this to 3,264 Tcf. This figure does not include methane beneath the Texas coast. Very preliminary estimates of the recoverable proportion of dissolved gas in the highly ''geopressured'' zones range from 1 to over 20 percent. Not all of the resource base estimates of 3,264 Tcf occurs in the highly geopressured zone, and the proportions individually allocatable within the resource base to the highly ''geopressured'' zone, to the intermediate-pressure zone, and to the normal or ''hydropressure'' zone cannotbe estimated readily. The environmental aspects of recovery of dissolved gas are also presented. The review is necessarily generalized, since it could not be based on actual experience. The problems include subsidence of land surface and possibly increased seismic activity. Fluid withdrawal might result in subsidence of the land surface, as well as activation of growth faults, with adjustments

  8. Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones

    Science.gov (United States)

    Neukum, Christoph; Braun, Anika; Azzam, Rafig

    2014-03-01

    Engineered nanoparticles are increasingly applied in consumer products and concerns are rising regarding their risk as potential contaminants or carriers for colloid-facilitated contaminant transport. Engineered silver nanoparticles (AgNP) are among the most widely used nanomaterials in consumer products. However, their mobility in groundwater has been scarcely investigated. In this study, transport of stabilized AgNP through porous sandstones with variations in mineralogy, pore size distribution and permeability is investigated in laboratory experiments with well-defined boundary conditions. The AgNP samples were mainly characterized by asymmetric flow field-flow fractionation coupled to a multi-angle static laser light detector and ultraviolet-visible spectroscopy for determination of particle size and concentration. The rock samples are characterized by mercury porosimetry, flow experiments and solute tracer tests. Solute and AgNP breakthrough was quantified by applying numerical models considering one kinetic site model for particle transport. The transport of AgNP strongly depends on pore size distribution, mineralogy and the solution ionic strength. Blocking of attachment sites results in less reactive transport with increasing application of AgNP mass. AgNPs were retained due to physicochemical filtration and probably due to straining. The results demonstrate the restricted applicability of AgNP transport parameters determined from simplified experimental model systems to realistic environmental matrices.

  9. Local diversity versus geographical distribution of arthropods occuring in a sandstone rock labyrinth

    Czech Academy of Sciences Publication Activity Database

    Růžička, Vlastimil; Mlejnek, R.; Šmilauer, P.

    2010-01-01

    Roč. 58, č. 3 (2010), s. 533-544 ISSN 1505-2249 Institutional research plan: CEZ:AV0Z50070508 Keywords : sandstone * microclimate * paleorefugium Subject RIV: EH - Ecology, Behaviour Impact factor: 0.542, year: 2010

  10. Middle Ordovician brachiopods from the Stairway Sandstone, Amadeus Basin, central Australia

    DEFF Research Database (Denmark)

    Jakobsen, Kristian Grube; Brock, Glenn A.; Nielsen, Arne Thorshøj

    2014-01-01

    Middle Ordovician brachiopod faunas from the Amadeus Basin, central Australia are poorly known. The Darriwilian Stairway Sandstone was sampled stratigraphically for macrofossils in order to provide new information on marine benthic diversity in this clastic-dominated, shallow-water palaeoenvironm......Middle Ordovician brachiopod faunas from the Amadeus Basin, central Australia are poorly known. The Darriwilian Stairway Sandstone was sampled stratigraphically for macrofossils in order to provide new information on marine benthic diversity in this clastic-dominated, shallow......-water palaeoenvironment along the margin of northeastern Gondwana. The brachiopods from the Stairway Sandstone are of low diversity and represent ca 9% of the entire shelly fauna. Five brachiopod taxa are described from the Stairway Sandstone; all are endemic to the Amadeus Basin at species level. Two new species...

  11. Investigating the effect of unloading on artificial sandstone behaviour using the Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Huang Yueqin

    2017-01-01

    Full Text Available The Discrete Element Method (DEM was used to simulate the mechanical behaviour of a reservoir sandstone. Triaxial tests were carried out using 3D-DEM to simulate the stress-strain behaviour of a sandstone with comparisons made between the numerical tests and the laboratory tests. The influence of isotropic unloading was investigated, which was found to have impacts on bond breakages and was successfully captured in the 3D shearing processes. It was found that bond breakages correlated strongly with the stress-strain behaviour of the sandstone affecting the peak strength. It was also found that unloading affected the bond breakages, which then changed the mechanical behaviour of sandstone. The tangent stiffnesses of simulated virgin and cored samples under different confining stresses were compared. From the tangent stiffnesses, gross yield envelopes and the yielding surfaces for unloaded samples and virgin samples were plotted and analysed in detail.

  12. CO2 Storage Potential of the Eocene Tay Sandstone, Central North Sea, UK

    Science.gov (United States)

    Gent, Christopher; Williams, John

    2017-04-01

    Carbon Capture and Storage (CCS) is crucial for low-carbon industry, climate mitigation and a sustainable energy future. The offshore capacity of the UK is substantial and has been estimated at 78 Gt of CO2 in saline aquifers and hydrocarbon fields. The early-mid Eocene Tay Sandstone Member of the Central North Sea (CNS) is a submarine-fan system and potential storage reservoir with a theoretical capacity of 123 Mt of CO2. The Tay Sandstone comprises of 4 sequences, amalgamating into a fan complex 125km long and 40 km at a minimum of 1500 m depth striking NW-SE, hosting several hydrocarbon fields including Gannett A, B, D and Pict. In order to better understand the storage potential and characteristics, the Tay Sandstone over Quadrant 21 has been interpreted using log correlation and 3D seismic. Understanding the internal and external geometry of the sandstone as well as the lateral extent of the unit is essential when considering CO2 vertical and horizontal fluid flow pathways and storage security. 3D seismic mapping of a clear mounded feature has revealed the youngest sequence of the Tay complex; a homogenous sand-rich channel 12 km long, 1.5 km wide and on average 100 m thick. The sandstone has porosity >35%, permeability >5 D and a net to gross of 0.8, giving a total pore volume of 927x106 m3. The remaining three sequences are a series of stacked channels and interbedded mudstones which are more quiescent on the seismic, however, well logs indicate each subsequent sequence reduce in net to gross with age as mud has a greater influence in the early fan system. Nevertheless, the sandstone properties remain relatively consistent and are far more laterally extensive than the youngest sequence. The Tay Sandstone spatially overlaps several other potential storage sites including the older Tertiary sandstones of the Cromarty, Forties and Mey Members and deeper Jurassic reservoirs. This favours the Tay Sandstone to be considered in a secondary or multiple stacked

  13. Natural Gas Monthly, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  14. Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance

    Science.gov (United States)

    Santiago, C. J. S.; Solatpour, R.; Kantzas, A.

    2017-12-01

    The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing

  15. Trilobites from the Middle Ordovician Stairway Sandstone, Amadeus Basin, central Australia

    DEFF Research Database (Denmark)

    Jakobsen, Kristian Grube; Nielsen, Arne Thorshøj; Harper, David Alexander Taylor

    2014-01-01

    benthic biodiversity in this clastic-dominated shallow-water palaeoenvironment situated along the margin of northeastern Gondwana. The faunas from the Stairway Sandstone are generally of low diversity and dominated by bivalves but include several animal groups, with trilobites representing 25......% of the entire shelly fauna. Thirteen trilobite taxa are described from the Stairway Sandstone; the fauna displays a high degree of endemism. One new species, Basilicus (Parabasilicus) brumbyensis sp. nov. is described....

  16. Elastic Dispersion and Attenuation in Fully Saturated Sandstones: Role of Mineral Content, Porosity, and Pressures

    Science.gov (United States)

    Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves

    2017-12-01

    Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.

  17. A method of quantitative prediction for sandstone type uranium deposit in Russia and its application

    International Nuclear Information System (INIS)

    Chang Shushuai; Jiang Minzhong; Li Xiaolu

    2008-01-01

    The paper presents the foundational principle of quantitative predication for sandstone type uranium deposits in Russia. Some key methods such as physical-mathematical model construction and deposits prediction are described. The method has been applied to deposits prediction in Dahongshan region of Chaoshui basin. It is concluded that the technique can fortify the method of quantitative predication for sandstone type uranium deposits, and it could be used as a new technique in China. (authors)

  18. Application of EH4 conductivity image system to sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Wu Yue; Liu Hanbin; Dong Xiukong

    1998-01-01

    EH4 conductivity image system is a combined system of MT and CSAMT which can automatically acquire and process electromagnetic data. The author introduces its mechanism of measurement, data processing, and geological problems in prospecting sandstone type uranium deposits that the system can solve. The author also introduces some application achievements of the system in several known sandstone type uranium deposits in Yunnan province and Inner Mongolia Autonomous Region

  19. Zircon Typology as Indicator of Provenance in Neoproterozoic Sandstones of the Voltaian Basin, Ghana

    OpenAIRE

    Chris Anani; Masaaki Tateishi; Daniel Asiedu; David Atta-Petters; Johnson Manu

    2012-01-01

    An investigation to identify the suitability of zircon crystals as provenance indicators of the relatively mature sandstones of the Neoproterozoic strata in the Voltaian Basin was conducted. A total of 154 zircon grains were critically studied, all extracted from 14 sandstones samples; 7 from Lower Voltaian Kwahu-Morago Group and 7 from the Middle Voltaian Oti-Pendjari Group. Zircon typology analysis indicates anatectic origin with some contribution of a volcanic material for the Kwahu-Morago...

  20. Discussion on several problems on the mineralization of paleo-channel sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Huang Shijie

    1997-01-01

    On the basis of comprehensively analyzing paleo-channel sandstone type uranium deposits at home and abroad, the author discusses the division of mineralization types of paleo-channel sandstone type uranium deposits, and analyzes the metallogenic geologic conditions such as regional geologic background, climatic and geomorphological conditions, basement and sedimentary cover, characteristics of paleo-valley and paleo-channel, mineralization features as well as epigenetic metallogenic process. Future prospecting direction is also proposed

  1. Temperature effect on microstructure and P-wave propagation in Linyi sandstone

    International Nuclear Information System (INIS)

    Sun, Hui; Sun, Qiang; Deng, Wenni; Zhang, Weiqiang; Lü, Chao

    2017-01-01

    Highlights: • Mass loss rate, P-wave velocity change rate and damage factor increase exponentially as temperatures rise. • The damage threshold temperature of sandstone samples is 300 °C and limit temperature is 900 °C. • P-wave velocity change rate of sandstone exhibits excellent linearity with mass loss rate. • Damage factor can be well expressed by mass loss rate. - Abstract: In order to study the effect of high temperature on the sandstone, scanning electron microscope (SEM) experiments and primary wave (P-wave) velocity tests have been carried out on sandstone specimens heated to different temperature. The results showed that: (1) the mass loss rate increases exponentially with the increase of temperature and reaches 2.97% at 900 °C; (2) the P-wave velocity change rate increases exponentially with the increase of temperature while there is some fluctuation before 500 °C; (3) the damage threshold temperature of sandstone samples is 300 °C and the limit temperature is 900 °C; (4) there is a good linear relationship between the mass loss rate and the P-wave velocity change rate, and the correlation coefficient (R) of the fitting line is 0.989; (5) the damage caused by high temperature can be reflected better by the mass loss rate than P-wave velocity change rate. The results obtained in this paper will be good for predicting the properties of sandstone when exposed to high temperature.

  2. Effects of Heating Rate on the Dynamic Tensile Mechanical Properties of Coal Sandstone during Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available The effects of coal layered combustion and the heat injection rate on adjacent rock were examined in the process of underground coal gasification and coal-bed methane mining. Dynamic Brazilian disk tests were conducted on coal sandstone at 800°C and slow cooling from different heating rates by means of a Split Hopkinson Pressure Bar (SHPB test system. It was discovered that thermal conditions had significant effects on the physical and mechanical properties of the sandstone including longitudinal wave velocity, density, and dynamic linear tensile strength; as the heating rates increased, the thermal expansion of the sandstone was enhanced and the damage degree increased. Compared with sandstone at ambient temperature, the fracture process of heat-treated sandstone was more complicated. After thermal treatment, the specimen had a large crack in the center and cracks on both sides caused by loading; the original cracks grew and mineral particle cracks, internal pore geometry, and other defects gradually appeared. With increasing heating rates, the microscopic fracture mode transformed from ductile fracture to subbrittle fracture. It was concluded that changes in the macroscopic mechanical properties of the sandstone were result from changes in the composition and microstructure.

  3. Reservoir characterization of the Mt. Simon Sandstone, Illinois Basin, USA

    Science.gov (United States)

    Frailey, S.M.; Damico, J.; Leetaru, H.E.

    2011-01-01

    The integration of open hole well log analyses, core analyses and pressure transient analyses was used for reservoir characterization of the Mt. Simon sandstone. Characterization of the injection interval provides the basis for a geologic model to support the baseline MVA model, specify pressure design requirements of surface equipment, develop completion strategies, estimate injection rates, and project the CO2 plume distribution.The Cambrian-age Mt. Simon Sandstone overlies the Precambrian granite basement of the Illinois Basin. The Mt. Simon is relatively thick formation exceeding 800 meters in some areas of the Illinois Basin. In the deeper part of the basin where sequestration is likely to occur at depths exceeding 1000 m, horizontal core permeability ranges from less than 1 ?? 10-12 cm 2 to greater than 1 ?? 10-8 cm2. Well log and core porosity can be up to 30% in the basal Mt. Simon reservoir. For modeling purposes, reservoir characterization includes absolute horizontal and vertical permeability, effective porosity, net and gross thickness, and depth. For horizontal permeability, log porosity was correlated with core. The core porosity-permeability correlation was improved by using grain size as an indication of pore throat size. After numerous attempts to identify an appropriate log signature, the calculated cementation exponent from Archie's porosity and resistivity relationships was used to identify which porosity-permeability correlation to apply and a permeability log was made. Due to the relatively large thickness of the Mt. Simon, vertical permeability is an important attribute to understand the distribution of CO2 when the injection interval is in the lower part of the unit. Only core analyses and specifically designed pressure transient tests can yield vertical permeability. Many reservoir flow models show that 500-800 m from the injection well most of the CO2 migrates upward depending on the magnitude of the vertical permeability and CO2 injection

  4. Laboratory-determined transport properties of Berea sandstone

    International Nuclear Information System (INIS)

    Daily, W.D.; Lin, W.

    1985-01-01

    The authors report laboratory measurements of electrical resistivity water permeability k, and compressional wave velocity V/sub p/ for both intact and fractured Berea sandstone samples as functions of temperature from 20 C to 200 C and effective pressure P/sub e/ from 2.5 MPa to 50 MPa. For the intact sample, V/sub p/ increases from 3.52 km/s to 4.16 km/s as P/sub e/ goes from 3 to 50 MPa. With increasing temperature, V/sub p/ decreases at rates of about 3% per 100 C at P/sub e/ of 5 MPa and about 1.5% per 100 C at P/sub e/ of 38 MPa. Data from the fractured sample are qualitatively similar, but velocities are about 10% lower. For both intact and fractured samples, p increases less than 15% as P/sub e/ increases from 2.5 MPa to 50 MPa. Although both samples show a larger decrease in resistivity with increasing temperature, most of this change is attributed to the decrease in resistivity of the pore fluid over that temperature range. For both samples, k decreases with increasing pressure and temperature. The intact sample permeability varies from 23 mD at 3 MPa and 20 C to less than 1 mD at 50 MPa and 150 C. The permeability of the fractured sample varies from 676 mD at 3 MPa and 20 C to less than 1 mD at 40 MPa and 190 C. The effect of the fracture on k vanishes after several pressure cycles and above about 100 C. These laboratory data are used to demonstrate the possibility of using resistivity and velocity measurements to estimate in-situ permeability of a reservoir. 25 references, 10 figures

  5. The influence of clay minerals on acoustic properties of sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Olav

    1997-12-31

    This thesis aims to provide better understanding of the relationship between the acoustic properties and the petrophysical/mineralogical properties in sand-prone rock. It emphasizes the influence of clay minerals. The author develops a method to deposit clay minerals/mineral aggregates in pore space of a rigid rock framework. Kaolinite aggregates were flushed into porous permeable Bentheimer sandstone to evaluate the effect of pore filling minerals on porosity, permeability and acoustic properties. The compressional velocity was hardly affected by the clay content and it was found that the effect of minor quantities of pore filling minerals may be acoustically modelled as an ideal suspension, where the pore fluid bulk modulus is modified by the bulk modulus of the clay minerals. The influence of clays on acoustic velocities in petroleum reservoir rocks was investigated through ultrasonic measurements of compressional- and shear-waves on core material from reservoir and non-reservoir units on the Norwegian Continental Shelf. The measured velocities decrease as the porosity increases, but are not strongly dependent on the clay content. The measured velocities are less dependent on the petrophysical and lithological properties than indicated by previous authors and published mathematical models, and stiffness reduction factors are introduced in two of the models to better match the data. Velocities are estimated along the wellbores based on non-sonic well logs and reflect well the actual sonic log well measurements. In some wells the compressional velocity cannot be modelled correctly by the models suggested. Very high compressional wave anisotropy was measured in the dry samples at atmospheric conditions. As the samples were saturated, the anisotropy was reduced to a maximum of about 30% and decreases further upon pressurization. Reservoir rocks retrieved from 2500 m are more stress dependent than those retrieved from less than 200 m depth. 168 refs., 117 figs., 24

  6. Evolution of groundwater chemistry along fault structures in sandstone

    Science.gov (United States)

    Dausse, A.; Guiheneuf, N.; Pierce, A. A.; Cherry, J. A.; Parker, B. L.

    2016-12-01

    Fluid-rock interaction across geological structures plays a major role on evolution of groundwater chemistry and physical properties of reservoirs. In particular, groundwater chemistry evolve on different facies according to residence times which can be linked to hydraulic properties of the geological unit. In this study, we analyze groundwater samples collected at an 11 km² site located in southern California (USA) to evaluate the evolution of groundwater chemistry according to different geological structures. Major and minor elements were sampled at the same period of time from 40 wells located along the main structures in the northeast of the site, where major NE-SW trending faults and other oriented ESE-WNW are present in sandstone Chatsworth formation. By analyzing the spatial distribution of ions concentration at the site scale, several hydrochemical compartments (main- and sub-compartments) can be distinguished and are in agreement with structural and hydrological information. In particular, as previously observed from piezometric informations, the shear zone fault serves as a barrier for groundwater flow and separates the site on two mains compartments. In addition, the analysis along major faults oriented orthogonal to this shear zone (ESE-WNW) in the eastern part of the site, shows an increase in mineralization following the hydraulic gradient. This salinization has been confirmed by ionic ratio and Gibbs plots and is attributed to fluid-rock interaction processes. In particular, groundwater chemistry seems to evolve from bicarbonate to sodium facies. Moreover, the gradient of concentrations vary depending on fault locations and can be related to their hydraulic properties and hence to different characteristic times from point to point. To conclude, major faults across the site display different degrees of groundwater chemistry evolution, linked to their physical properties, which may in turn have a large impact on contaminant transport and attenuation.

  7. Geochemical dispersion associated with uranium deposits in sandstone roll front type and its relationship to the Orinoco Oil Belt, Venezuela

    International Nuclear Information System (INIS)

    Manrique, J.

    2014-01-01

    In Venezuela, there is a potential for the formation of uranium deposits in areas such as the Guiana Shield, the south of the Eastern Basin, the Andes and the massif of Baúl, among other areas. Especially great interest is the exploration of uranium redox interface type (roll front), in areas such as the southern part of the Orinoco Oil Belt, north and northwest of the Guiana Shield, where groundwater uranium collecting the weathering shield flowing northward in the sandstones and mudstones of the Cretaceous to Quaternary formations, which constitute the southern boundary of the Eastern basin Venezuela. The presence of gas, extra-heavy crude oil, bitumen and lignite of the Orinoco Oil Belt can be an effective barrier for uranium in solution, which may have precipitated at the redox interface of this groundwater. This process certainly was more effective before the Orinoco river take its course to the east and the waters of small rivers and large draining shield contributed to uranium aquifers became more deep north. This work was based on a qualitative model describing geochemical dispersion associated with uranium deposits in sandstone, roll front type, which indicates that the daughter isotopes 238 U, which can migrate extensively are: 222 Rn, 4 He, and in a smaller proportion: 226 Ra and 222 Rn daughters ( 214 Bi, 210 Pb). The main exploration methods were established, which can be applied in areas of the Orinoco Oil Belt, north of the Guiana Shield, and areas west of this, among the most important are: soil measurements of radon and helium near faults, sampling soils with gamma spectrometry analysis, log interpretation of oil wells in the area of interest to establish gamma – lithological anomalies, ground water analysis of uranium, radon, radium, helium, vanadium, selenium, molybdenum, analysis of samples oil drilling cores to locate anomalous stratigraphic levels. This research will provide the basis to establish methodologies for uraniferous exploration

  8. Numerical Investigation of Cross Flow Phenomena in a Tight-Lattice Rod Bundle Using Advanced Interface Tracking Method

    Science.gov (United States)

    Zhang, Weizhong; Yoshida, Hiroyuki; Ose, Yasuo; Ohnuki, Akira; Akimoto, Hajime; Hotta, Akitoshi; Fujimura, Ken

    In relation to the design of an innovative FLexible-fuel-cycle Water Reactor (FLWR), investigation of thermal-hydraulic performance in tight-lattice rod bundles of the FLWR is being carried out at Japan Atomic Energy Agency (JAEA). The FLWR core adopts a tight triangular lattice arrangement with about 1 mm gap clearance between adjacent fuel rods. In view of importance of accurate prediction of cross flow between subchannels in the evaluation of the boiling transition (BT) in the FLWR core, this study presents a statistical evaluation of numerical simulation results obtained by a detailed two-phase flow simulation code, TPFIT, which employs an advanced interface tracking method. In order to clarify mechanisms of cross flow in such tight lattice rod bundles, the TPFIT is applied to simulate water-steam two-phase flow in two modeled subchannels. Attention is focused on instantaneous fluctuation characteristics of cross flow. With the calculation of correlation coefficients between differential pressure and gas/liquid mixing coefficients, time scales of cross flow are evaluated, and effects of mixing section length, flow pattern and gap spacing on correlation coefficients are investigated. Differences in mechanism between gas and liquid cross flows are pointed out.

  9. Preconditioning Filter Bank Decomposition Using Structured Normalized Tight Frames

    Directory of Open Access Journals (Sweden)

    Martin Ehler

    2015-01-01

    Full Text Available We turn a given filter bank into a filtering scheme that provides perfect reconstruction, synthesis is the adjoint of the analysis part (so-called unitary filter banks, all filters have equal norm, and the essential features of the original filter bank are preserved. Unitary filter banks providing perfect reconstruction are induced by tight generalized frames, which enable signal decomposition using a set of linear operators. If, in addition, frame elements have equal norm, then the signal energy is spread through the various filter bank channels in some uniform fashion, which is often more suitable for further signal processing. We start with a given generalized frame whose elements allow for fast matrix vector multiplication, as, for instance, convolution operators, and compute a normalized tight frame, for which signal analysis and synthesis still preserve those fast algorithmic schemes.

  10. Maximally Localized Radial Profiles for Tight Steerable Wavelet Frames.

    Science.gov (United States)

    Pad, Pedram; Uhlmann, Virginie; Unser, Michael

    2016-05-01

    A crucial component of steerable wavelets is the radial profile of the generating function in the frequency domain. In this paper, we present an infinite-dimensional optimization scheme that helps us find the optimal profile for a given criterion over the space of tight frames. We consider two classes of criteria that measure the localization of the wavelet. The first class specifies the spatial localization of the wavelet profile, and the second that of the resulting wavelet coefficients. From these metrics and the proposed algorithm, we construct tight wavelet frames that are optimally localized and provide their analytical expression. In particular, one of the considered criterion helps us finding back the popular Simoncelli wavelet profile. Finally, the investigation of local orientation estimation, image reconstruction from detected contours in the wavelet domain, and denoising indicate that optimizing wavelet localization improves the performance of steerable wavelets, since our new wavelets outperform the traditional ones.

  11. Daya Bay Antineutrino Detector Gas System

    OpenAIRE

    Band, H. R.; Cherwinka, J. J.; Chu, M-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-01-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experimen...

  12. Studies of electrical properties of low-resistivity sandstones based on digital rock technology

    Science.gov (United States)

    Yan, Weichao; Sun, Jianmeng; Zhang, Jinyan; Yuan, Weiguo; Zhang, Li; Cui, Likai; Dong, Huaimin

    2018-02-01

    Electrical properties are important parameters to quantitatively calculate water saturation in oil and gas reservoirs by well logging interpretation. It is usual that oil layers show high resistivity responses, while water layers show low-resistivity responses. However, there are low-resistivity oil zones that exist in many oilfields around the world, leading to difficulties for reservoir evaluation. In our research, we used digital rock technology to study different internal and external factors to account for low rock resistivity responses in oil layers. We first constructed three-dimensional digital rock models with five components based on micro-computed tomography technology and x-ray diffraction experimental results, and then oil and water distributions in pores were determined by the pore morphology method. When the resistivity of each component was assigned, rock resistivities were calculated by using the finite element method. We collected 20 sandstone samples to prove the effectiveness of our numerical simulation methods. Based on the control variate method, we studied the effects of different factors on the resistivity indexes and rock resistivities. After sensitivity analyses, we found the main factors which caused low rock resistivities in oil layers. For unfractured rocks, influential factors arranged in descending order of importance were porosity, clay content, temperature, water salinity, heavy mineral, clay type and wettability. In addition, we found that the resistivity index could not provide enough information to identify a low-resistivity oil zone by using laboratory rock-electric experimental results. These results can not only expand our understandings of the electrical properties of low-resistivity rocks from oil layers, but also help identify low-resistivity oil zones better.

  13. Localization of tight closure in two-dimensional rings

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    I∗Rm = (IRm)∗ . The following extend this fact. Lemma 2.2. Let I be an ideal of R. Let p be a maximal ideal of R which is minimal over I. Then I. ∗Rp = (IRp)∗ . In particular, if R/I is an Artinian ring, then tight closure commutes with localization for I. Proof. SinceIRp ispRp-primary, it follows thatIRp contains some power ofpRp.

  14. Vacuum-tight joints and seals usina glass ceramics

    International Nuclear Information System (INIS)

    Domanskaya, A.V.; Zagajnyj, V.K.; Pevzner, B.Z.; Peregud, V.I.

    1982-01-01

    Results of studying for a possible utilization of new types of vacuum-tight designs made using glass ceramics are given. Constructional features of diffrent joints are considered and their vacuum and electric characteristics are given. Optimum range of application of these designs in electrophysical equipment is shown. Under operating conditions these designs provide a 1.5x10 - 5 Pa pressure and withstand a 2 kV voltage at a 400 deg C temperature

  15. Tight Network Topology Dependent Bounds on Rounds of Communication

    OpenAIRE

    Chattopadhyay, Arkadev; Langberg, Michael; Li, Shi; Rudra, Atri

    2016-01-01

    We prove tight network topology dependent bounds on the round complexity of computing well studied $k$-party functions such as set disjointness and element distinctness. Unlike the usual case in the CONGEST model in distributed computing, we fix the function and then vary the underlying network topology. This complements the recent such results on total communication that have received some attention. We also present some applications to distributed graph computation problems. Our main contri...

  16. Quantum tight-binding chains with dissipative coupling

    International Nuclear Information System (INIS)

    Mogilevtsev, D; Slepyan, G Ya; Garusov, E; Kilin, S Ya; Korolkova, N

    2015-01-01

    We present a one-dimensional tight-binding chain of two-level systems coupled only through common dissipative Markovian reservoirs. This quantum chain can demonstrate anomalous thermodynamic behavior contradicting Fourier law. Population dynamics of individual systems of the chain is polynomial with the order determined by the initial state of the chain. The chain can simulate classically hard problems, such as multi-dimensional random walks. (paper)

  17. Tight Left Upper Lobe Collapse from Lung Cancer

    Science.gov (United States)

    2010-07-01

    tight pulmonary lobar collapse. Summary of Imaging Findings An 83-year-old male smoker with history of COPD on 2L home oxygen presented to...appendage.” Recent prior spirometry was noted to have “decreased FEV1 and FEV1/FVC ratio with hyperbolic expiratory limb of the flow-volume loop...when assessing lobar collapse in adults and smokers . 1 In young adults (less than age 40), endobronchial carcinoid tumor is common. In post

  18. Tightly localized stationary pulses in a multilevel atomic system

    International Nuclear Information System (INIS)

    Liu, Xiong-Jun; Oh, C. H.; Liu, Xin; Liu, Zheng-Xin; Kwek, L. C.

    2007-01-01

    We show that the pulse matching phenomenon can be obtained in the general multilevel system with electromagnetically induced transparency. For this we find a different way to create tightly localized stationary pulses by using counterpropagating pump fields. The present process is a spatial compression of excitation so that it allows us to shape and further intensify the localized stationary pulses, without using standing waves of pump fields or spatially modulated pump fields

  19. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation

    Science.gov (United States)

    Xiong, Yi

    solutions and results of a commercial simulator before conducting numerical studies. The numerical studies demonstrate the effect of capillary pressure on VLE, and further on production performance. The significant effect of capillary pressure on VLE leads to the suppression of bubble-point pressure and more light components dissolved in the oil phase. Consequently it is observed that there is smaller gas saturation, larger mole fractions of light components, and faster pressure decreasing at reservoir conditions; meanwhile less gas and more oil are produced at surface. The substantial decrease in reservoir pore pressure results in a large increase of effective stress, which induces the changes of rock properties and influences the production performance. The stress-induced degradation of permeability undermines the production performance, and the geomechanical effect on the permeability of natural fractures is mainly responsible for the undermined production performance. The reduction of pore size due to the geomechanical effect could increase the capillary pressure, which enlarges the influence of capillarity on VLE and further suppresses bubble-point pressure. On the other hand, the effect of capillary pressure on VLE influences the fluid flow and therefore influences the effective stress through the flow-stress coupling process. Thus the interaction between pore confinement and rock compaction can be modeled with MSFLOW_COM, and illustrated through numerical studies. This research provides a three-dimensional numerical tool for accurately modeling porous and fractured tight oil reservoirs. The developed simulator is able to assist scientists and engineers to study and understand the complex multiphase, multi-component fluid flow behaviors in tight oil reservoirs.

  20. Tight junction regulates epidermal calcium ion gradient and differentiation

    International Nuclear Information System (INIS)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-01-01

    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  1. Radiation-tight coupling arrangement for a machining laser

    International Nuclear Information System (INIS)

    Geffroy, J.; Glachet, C.; Moulin, M.; Noel, J. P.

    1985-01-01

    A radiation-tight coupling arrangement for coupling a machining laser to a hot cell containing radioactive material, comprising a cell flange integrally formed on the confinement wall which defines a cell opening, a cell door formed to interlock tightly with the cell flange, thereby closing the cell opening, an elongated container movably arranged in the sleeve and having a container flange defining a container opening and connected by a sealing bellows, a container door formed to interlock tightly with the container flange and to interlock with the cell door when the container flange interlocks with the cell flange, and a machining line translationally arranged in the container. When the container is in a retracted position, a radiation blocking drum intervenes between the cell opening and the container opening. The radiation blocking drum is rotated to allow the container to translate toward the cell. As a result of rotation of the container, the container flange interlocks with the cell flange and the container door interlocks with the cell door. The container door and cell door are then removed in tandem, allowing the machine head of the machining line to be inserted into the hot cell. The laser beam passes through the machine head and impinges on the radioactive material to be cut

  2. Polynomial fitting of tight-binding method in carbon

    Science.gov (United States)

    Haa, Wai Kang; Yeak, Su Hoe

    2017-04-01

    Carbon is very unique in among the elements and its ability to form strong chemical bonds with a variety number such as two carbons (graphene) and four carbons (diamond). This combination of strong bonds with tight mass and high melting point makes them technologically and scientifically important in nanoscience development. Tight-binding model (TB) is one of the semi-empirical approximations used in quantum mechanical world which is restricted to the Linear Combinations of Localized Atomic Orbitals (LCAO). Currently, there are many approaches in tight-binding calculation. In this paper, we have reproduced a polynomial scaling function by fitting to the TB model. The model is then applied into carbon molecules and obtained the energy bands of the system. The elements of the overlap Hamiltonian matrix in the model will be depending on the parameter of the polynomials. Our purpose is to find out a set of parameters in the polynomial which were commonly fit to an independently calculated band structure. We used minimization approach to calculate the polynomial coefficients which involves differentiation of eigenvalues in the eigensystem. The algorithm of fitting the parameters is carried out in FORTRAN.

  3. Metallogenetic prospecting in 1:2,000,000 scale for in-situ leachable sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Wang Zhengbang; Qin Mingkuan; Zhao Ruiquan; Dong Wenming; Li Tiangang; Zheng Dayu; Li Sen; Lin Shuangxing

    2002-01-01

    By introducing the advanced theory and technology of systematic geo-mapping which is popularized in Central-Asian countries, the project is aimed at metallogenic prospecting in 1:2,000,000 scale for in-situ leachable sandstone type uranium deposits in Xinjiang and its adjacent area. Based on the comprehensive understanding of accumulated data and on the field study in both the work area and the abroad nearby, the authors propose creatively a new concept that the uranium mineralization in the area is controlled by the moderate tectonic movements during the last large-scale orogenic movement, and set up a new epi-genetically metallogenic system of Meso-Cenozoic depositional basins. Furthermore, the temporal-spatial evolution of the ore-controlled Himalaya orogenic movement is brought to light, and a new method to reconstruct the palaeo-tectonic and palaeo-hydrodynamic systems is created. Accordingly, the main differences in metallogenic conditions and prospecting evaluation between the work area and the Central-Asian areas are illustrated, and the favorable and unfavorable influences of the reduction by the exudative oil and gas on the sandstone type uranium mineralization in the work area are explained in detail. Finally, on the basis of compiling the systematic geo-maps and summarizing the assessment criteria, 2 metallogenic provinces and 12 prospecting areas are predicted. This conclusion can provide a scientific foundation for strategic plans to be made by leading groups and other branches. Another achievement of the project is that a guidebook of the systematic geo-mapping theory and technology has been compiled, which is beneficial to the spreading of the method

  4. Sedimentological reservoir characteristics of the Paleocene fluvial/lacustrine Yabus Sandstone, Melut Basin, Sudan

    Science.gov (United States)

    Mahgoub, M. I.; Padmanabhan, E.; Abdullatif, O. M.

    2016-11-01

    Melut Basin in Sudan is regionally linked to the Mesozoic-Cenozoic Central and Western African Rift System (CWARS). The Paleocene Yabus Formation is the main oil producing reservoir in the basin. It is dominated by channel sandstone and shales deposited in fluvial/lacustrine environment during the third phase of rifting in the basin. Different scales of sedimentological heterogeneities influenced reservoir quality and architecture. The cores and well logs analyses revealed seven lithofacies representing fluvial, deltaic and lacustrine depositional environments. The sandstone is medium to coarse-grained, poorly to moderately-sorted and sub-angular to sub-rounded, arkosic-subarkosic to sublitharenite. On the basin scale, the Yabus Formation showed variation in sandstone bodies, thickness, geometry and architecture. On macro-scale, reservoir quality varies vertically and laterally within Yabus Sandstone where it shows progressive fining upward tendencies with different degrees of connectivity. The lower part of the reservoir showed well-connected and amalgamated sandstone bodies, the middle to the upper parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenetic changes such as compaction, cementation, alteration, dissolution and kaolinite clays pore fill and coat all have significantly reduced the reservoir porosity and permeability. The estimated porosity in Yabus Formation ranges from 2 to 20% with an average of 12%; while permeability varies from 200 to 500 mD and up to 1 Darcy. The understanding of different scales of sedimentological reservoir heterogeneities might contribute to better reservoir quality prediction, architecture, consequently enhancing development and productivity.

  5. Tests of a tight scintillator assembly for a sheath failure detector

    International Nuclear Information System (INIS)

    Vasnier, F.

    1968-01-01

    This report first recalls that fission product detectors operating under CO 2 pressure at room temperature are equipped with plastic scintillators which are directly in contact with CO 2 to perform a measurement of the β radiation of collected Rb and Cs atoms, and that defects such as cracks and dimensional variations appeared in these scintillators. As some works showed the influence of CO 2 absorption by plastic scintillators, and the negative influence of oil vapours within the gas on these defects, a tight protection has been proposed for the scintillators by means a thin metal sheath, in order to reduce the energy loss of the β radiation. The author reports tests performed on a prototype to measure the sensitivity decrease due to the β absorption by the stainless steel sheath with respect to a normal scintillator assembly, as well as the change of the signal-to-noise ratio [fr

  6. The Role of the Rock on Hydraulic Fracturing of Tight Shales

    Science.gov (United States)

    Suarez-Rivera, R.; Green, S.; Stanchits, S.; Yang, Y.

    2011-12-01

    Successful economic production of oil and gas from nano-darcy-range permeability, tight shale reservoirs, is achieved via massive hydraulic fracturing. This is so despite their limited hydrocarbon in place, on per unit rock volume basis. As a reference, consider a typical average porosity of 6% and an average hydrocarbon saturation of 50% to 75%. The importance of tight shales results from their large areal extent and vertical thickness. For example, the areal extent of the Anwar field in Saudi Arabia of 3230 square miles (and 300 ft thick), while the Marcellus shale alone is over 100,000 square miles (and 70 to 150 ft thick). The low permeability of the rock matrix, the predominantly mineralized rock fabric, and the high capillary forces to both brines and hydrocarbons, restrict the mobility of pore fluids in these reservoirs. Thus, one anticipates that fluids do not move very far within tight shales. Successful production, therefore results from maximizing the surface area of contact with the reservoir by massive hydraulic fracturing from horizontal bore holes. This was the conceptual breakthrough of the previous decade and the one that triggered the emergence of gas shales, and recently oily shales, as important economic sources of energy. It is now understood that the process can be made substantially more efficient, more sustainable, and more cost effective by understanding the rock. This will be the breakthrough of this decade. Microseismic monitoring, mass balance calculations, and laboratory experiments of hydraulic fracturing on tight shales indicate the development of fracture complexity and fracture propagation that can not be explained in detail in this layered heterogeneous media. It is now clear that in tight shales the large-scale formation fabric is responsible for fracture complexity. For example, the presence and pervasiveness of mineralized fractures, bed interfaces, lithologic contacts, and other types of discontinuities, and their orientation

  7. Heavy mineral sorting in downwards injected Palaeocene sandstone, Siri Canyon, Danish North Sea

    Science.gov (United States)

    Kazerouni, Afsoon Moatari; Friis, Henrik; Svendsen, Johan Byskov; Weibel, Rikke

    2011-05-01

    Post-depositional remobilization and injection of sand are often seen in deep-water clastic systems and have been recently recognised as a significant modifier of deep-water sandstone geometry. Large scale injectite complexes have been interpreted from borehole data in the Palaeocene Siri Canyon near the Danish Central Graben of the North Sea hydrocarbon province. The emplacement of large scale injectite complexes has been commonly attributed to seismic activity and consequent sand liquefaction. However, due to very small differences in textural and compositional properties, and the lack of depositional structures in deep-water sandstones, the distinction between "in situ" and injected or remobilized sandstones is often ambiguous. Large scale heavy mineral sorting (in 10 m thick units) is observed in several reservoir units in the Siri Canyon and has been interpreted to represent the depositional sorting. In this study we describe an example of effective shear-zone sorting of heavy minerals in a thin downwards injected sandstone dyke which was encountered in one of the cores in the Cecilie Field, Siri Canyon. Differences in sorting pattern of heavy minerals are suggested as a tool for petrographic/geochemical distinction between "in situ" sandstones and their related injectites, especially where primary sedimentary structures are removed by fluidization or minor remobilization.

  8. Diagenetic history of Early Cambrian sandstones, at Gazouieyeh outcrop, Central Iran

    Directory of Open Access Journals (Sweden)

    Mohammadreza Ghotbi

    2015-01-01

    Full Text Available The siliciclastic Dahu Strata (Early Cambrian, in the Central Iran, 280 metres thick, in the Gazouieyeh area, rests with an erosional surface on Protrozoic-Early Cambrian sedimentary rocks (Dezu Series. This strata disconformably overlain by Middle Cambrian-Late Cambrian marine carbonate rockse (Kouh-Banan Formation. Based on field and Laboratory studies, 3 association facies, shale-sandstone and conglomerate have been identified. Mainly, sandstones are rich in quartz, feldspars, and rarely contain rock fragments (metamorphic and sedimentary. The sandstones have a wide compositional range from quartzarenite to arkose, feldspathic litharenite and rarely litharenite (chertarenite. According to plots of feldspar garins, total quartzose grains, and total unstable lithic fragments, they were derived from craton interior, transitional continental, and recycled orogen sources. The Dahu sandstones experienced diagenetic events that included compaction and pressure solution, cementation (mostly by silica, carbonate, Fe-oxide, clay and rarely by barite, grain fracturing, alteration of unstable grains, dissolution and replacement. Based on petrological and geochemical studies, we interpreted the diagenetic history for the Dahu sandstones, which consists of early, deep burial and late stages. The above results are based on surface studies, but it might be changed during increasing the depth.

  9. Sandstone-filled normal faults: A case study from central California

    Science.gov (United States)

    Palladino, Giuseppe; Alsop, G. Ian; Grippa, Antonio; Zvirtes, Gustavo; Phillip, Ruy Paulo; Hurst, Andrew

    2018-05-01

    Despite the potential of sandstone-filled normal faults to significantly influence fluid transmissivity within reservoirs and the shallow crust, they have to date been largely overlooked. Fluidized sand, forcefully intruded along normal fault zones, markedly enhances the transmissivity of faults and, in general, the connectivity between otherwise unconnected reservoirs. Here, we provide a detailed outcrop description and interpretation of sandstone-filled normal faults from different stratigraphic units in central California. Such faults commonly show limited fault throw, cm to dm wide apertures, poorly-developed fault zones and full or partial sand infill. Based on these features and inferences regarding their origin, we propose a general classification that defines two main types of sandstone-filled normal faults. Type 1 form as a consequence of the hydraulic failure of the host strata above a poorly-consolidated sandstone following a significant, rapid increase of pore fluid over-pressure. Type 2 sandstone-filled normal faults form as a result of regional tectonic deformation. These structures may play a significant role in the connectivity of siliciclastic reservoirs, and may therefore be crucial not just for investigation of basin evolution but also in hydrocarbon exploration.

  10. A multi-tracer study in the Hutton Sandstone aquifer, Australia: How "wrong ages" give us deeper insights into aquifer structure and effective deep recharge to a double porosity system

    Science.gov (United States)

    Suckow, Axel; Taylor, Andrew; Davies, Phil; Leaney, Fred

    2017-04-01

    assumed to be rejected recharge which discharges through spring complexes in the Surat Basin and contributes to base flow of the Dawson River. This interpretation also suggests: 1) that the Hutton Sandstone aquifer is potentially more vulnerable to impacts from groundwater abstraction, including from stock and domestic water supply and coal seam gas production, than previously anticipated; 2) that other "groundwater age records" around the world likely observe similar double porosity effects and their apparent ages may be similarly distorted; and 3) that the multi-tracer approach used here is a suitable method for identifying other previously unknown double porosity aquifer systems and can potentially quantify deep effective recharge where important water resources are subject of economic development.

  11. Role of Geomechanics in Assessing the Feasibility of CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs

    Science.gov (United States)

    Fang, Zhi; Khaksar, Abbas

    2013-05-01

    Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal

  12. Rock Physical Controls on Deformation of Weakly Consolidated Sandstone during Depletion

    Science.gov (United States)

    Hol, S.; van der Linden, A.

    2016-12-01

    Understanding the constitutive behavior of sedimentary rocks is vital for predicting long-term performance of subsurface oil and gas applications, in particular when these result in compaction and surface subsidence. Although it is well-known that granular media at reservoir conditions can undergo massive crushing at high stress, the micromechanical response of the rocks to the transition from the virgin to the depleted state is not well understood under the expected uniaxial strain boundary conditions. Here, we report a comparative characterization and deformation study using weakly consolidated, high-porosity (27.3-33.4%) sandstone from a gas field in the North Sea. The samples, extracted from various wells, contain 10%-40% phyllosilicates, 44%-75% quartz and 4%-12% feldspar, and display single-mode, log-normal particle size distributions with a mean grain size of 190-500 µm. Using novel rock testing techniques, we deform the samples under conditions expected during production, notably using the Uniaxial-strain Pore Pressure Depletion (UPPD) and K0 protocols. The evolution of ultrasonic P-wave velocity was actively monitored during all tests. The results show a decrease in radial stress with a horizontal depletion path constant of 0.67-0.89, and a uniaxial compressibility Cm of 6.5·10-5-2.9·10-3 MPa-1. Samples subjected to a combined UPPD-K0protocol show catastrophic failure (final failure) at mean stress levels between 23 MPa and 50 MPa. Using the ultrasonic P-wave data, precursory deformation associated with de-bonding, disaggregation, or breaking of grains can be observed in the range 19 MPa-35 MPa. A comparison of the failure stress with the granular properties and mineralogy of the samples suggests a negative correlation with porosity, but more importantly, confirms a relationship with phyllosilicate/feldspar content (negative) and quartz (positive). Initial failure, and potentially final failure, is expected to occur in samples with porosities over 30

  13. Seismic spectral decomposition and analysis based on Wigner–Ville distribution for sandstone reservoir characterization in West Sichuan depression

    International Nuclear Information System (INIS)

    Wu, Xiaoyang; Liu, Tianyou

    2010-01-01

    Reflections from a hydrocarbon-saturated zone are generally expected to have a tendency to be low frequency. Previous work has shown the application of seismic spectral decomposition for low-frequency shadow detection. In this paper, we further analyse the characteristics of spectral amplitude in fractured sandstone reservoirs with different fluid saturations using the Wigner–Ville distribution (WVD)-based method. We give a description of the geometric structure of cross-terms due to the bilinear nature of WVD and eliminate cross-terms using smoothed pseudo-WVD (SPWVD) with time- and frequency-independent Gaussian kernels as smoothing windows. SPWVD is finally applied to seismic data from West Sichuan depression. We focus our study on the comparison of SPWVD spectral amplitudes resulting from different fluid contents. It shows that prolific gas reservoirs feature higher peak spectral amplitude at higher peak frequency, which attenuate faster than low-quality gas reservoirs and dry or wet reservoirs. This can be regarded as a spectral attenuation signature for future exploration in the study area

  14. How unconventional gas prospers without tax incentives

    International Nuclear Information System (INIS)

    Kuuskraa, V.A.; Stevens, S.H.

    1995-01-01

    It was widely believed that the development of unconventional natural gas (coalbed methane, gas shales, and tight gas) would die once US Sec. 29 credits stopped. Quieter voices countered, and hoped, that technology advances would keep these large but difficult to produce gas resources alive and maybe even healthy. Sec. 29 tax credits for new unconventional gas development stopped at the end of 1992. Now, nearly three years later, who was right and what has happened? There is no doubt that Sec. 29 tax credits stimulated the development of coalbed methane, gas shales, and tight gas. What is less known is that the tax credits helped spawn and push into use an entire new set of exploration, completion, and production technologies founded on improved understanding of unconventional gas reservoirs. As set forth below, while the incentives inherent in Sec. 29 provided the spark, it has been the base of science and technology that has maintained the vitality of these gas sources. The paper discusses the current status; resource development; technology; unusual production, proven reserves, and well completions if coalbed methane, gas shales, and tight gas; and international aspects

  15. Unexpected mechanical properties of very dry Berea sandstone near 45°C

    Science.gov (United States)

    Miller, R. A.; Darling, T. W.; TenCate, J. A.; Johnson, P. A.

    2011-12-01

    An understanding of the nonlinear and hysteretic behavior of porous rocks is important for seismic studies and geologic carbon sequestration applications. However, the fundamental processes responsible for such behavior are poorly understood, including interactions involving adsorbed water and bulk carbon dioxide. Water has been shown to affect the nonlinear mechanical properties of porous rocks, both in high humidity conditions and in low pressure conditions where only a monolayer of water is present on rock grain surfaces [1, 2]. To study the impact of small quantities of adsorbed water on the nonlinear behavior of sandstone, we compare nonlinear resonant ultrasound spectroscopy (NRUS) and time-of-flight modulation (TOFM) measurements [3] on a Berea sandstone core before and after removing bulk water from the sample. Water is removed through extended exposure to ultra high vacuum (UHV) conditions. At the sample's driest state, we achieve a partial pressure of water below 10-8 Torr at room temperature. Periodic measurements record acoustic data as the rock is slowly heated from room temperature to 55°C in UHV. Measurements made after several months of exposure to UHV conditions show behavior we have not previously observed. We report an unexpected sharp increase in Q-1 above 45°C, suggesting we have reduced the concentration of water to a low enough level to affect the sample's mechanical properties. Nonlinear effects are still present when the sample is at its driest state below 45°C, in agreement with previous work [4], which indicates water is not the sole contributor to nonlinearity in porous rock. We are also studying the effect of adding carbon dioxide or argon gas to the dry specimen. We present our acoustic data and propose a model for the impact of adsorbed water on the attenuation of porous rock. [We gratefully acknowledge support from the Nevada Terawatt Facility at the University of Nevada, Reno, and from the Geosciences Research Program of the DOE

  16. Stratigraphic Framework and Depositional Sequences in the Lower Silurian Regional Oil and Gas Accumulation, Appalachian Basin: From Licking County, Ohio, to Fayette County, West Virginia

    Science.gov (United States)

    Ryder, Robert T.

    2006-01-01

    The Lower Silurian regional oil and gas accumulation was named by Ryder and Zagorski (2003) for a 400-mile (mi)-long by 200-mi-wide hydrocarbon accumulation in the central Appalachian basin of the Eastern United States and Ontario, Canada. From the early 1880s to 2000, approximately 300 to 400 million barrels of oil and eight to nine trillion cubic feet of gas have been produced from the Lower Silurian regional oil and gas accumulation (Miller, 1975; McCormac and others, 1996; Harper and others, 1999). Dominant reservoirs in the regional accumulation are the Lower Silurian 'Clinton' and Medina sandstones in Ohio and westernmost West Virginia and coeval rocks in the Lower Silurian Medina Group (Grimsby Sandstone (Formation) and Whirlpool Sandstone) in northwestern Pennsylvania and western New York. A secondary reservoir is the Upper Ordovician(?) and Lower Silurian Tuscarora Sandstone in central Pennsylvania and central West Virginia, a more proximal eastern facies of the 'Clinton' sandstone and Medina Group (Yeakel, 1962; Cotter, 1982, 1983; Castle, 1998). The Lower Silurian regional oil and gas accumulation is subdivided by Ryder and Zagorski (2003) into the following three parts: (1) an easternmost part consisting of local gas-bearing sandstone units in the Tuscarora Sandstone that is included with the basin-center accumulation; (2) an eastern part consisting predominantly of gas-bearing 'Clinton' sandstone-Medina Group sandstones that have many characteristics of a basin-center accumulation (Davis, 1984; Zagorski, 1988, 1991; Law and Spencer, 1993); and (3) a western part consisting of oil- and gas-bearing 'Clinton' sandstone-Medina Group sandstones that is a conventional accumulation with hybrid features of a basin-center accumulation (Zagorski, 1999). With the notable exception of the offshore part of Lake Erie (de Witt, 1993), the supply of oil and (or) gas in the hybrid-conventional part of the regional accumulation continues to decline because of the many

  17. A computer-assisted rock type data catalogue for gas formations; Ein rechnergestuetzter Gesteinsdatenkatalog fuer Gasformationen

    Energy Technology Data Exchange (ETDEWEB)

    Reitenbach, V.; Pusch, G.; Moeller, M.; Koll, S. [TU Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik; Constantini, A.; Junker, A.; Anton, H. [RWE Dea AG, Hamburg (Germany)

    2007-09-13

    Modern reservoir management commonly requires versatile reservoir data which are neces-sary for integrated reservoir characterization, evaluation and development planning. The rock data necessary for numerical reservoir simulation studies often have to be collected from different sources, analysed and sorted with a considerable effort. In a framework of DGMK research program (DGMK project 593-9/4), the Institute of Petro-leum Engineering (Clausthal University of Technology) and RWE DEA AG have developed a new tool named Rock Data Catalogue, which is capable of managing large amounts of rock data more efficiently and deriving new specific correlations for European rock types. The use of Rock Data Catalogue can facilitate the essential input data generation and proc-essing procedure for reservoir simulation studies. The Rock Data Catalogue is comprised of a Data Base Module of digitalized reservoir rock data and an interactive Data Correlation Module. Both modules are built-up as an interface to common reservoir simulation software. The universal structure of the software also makes it possible to exchange the data with other rock data information systems. The Data Correlation Module implements a ''Decision-Structure'' module, which helps the reservoir engineer to select the rock data for analysis and correlation depending on its litho-facial type and permeability class. The Data Base Module enables a quick search of appro-priated data sets and their export into the correlation module. The open source data of the North German Rotliegend gas formations as well as the data of measurements on Rotliegend core samples performed at the ITE in course of the DGMK tight gas projects were implemented in the rock data base. Correlations of poro/perm data, two-phase flow and capillary pressure functions of the Rotliegend sandstones with the per-meability range between 20 and 0.01 mD are implemented in the rock data base and serve for quality checking of the

  18. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    International Nuclear Information System (INIS)

    Li, Zhao; Jin, Zhu-Qiu

    2012-01-01

    Highlights: ► Cardiac tight junctions are present between coronary endothelial cells. ► Ischemic preconditioning preserves the structural and functional integrity of tight junctions. ► Myocardial edema is prevented in hearts subjected to ischemic preconditioning. ► Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood–heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs–Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in

  19. Architecture of an Upper Jurassic barrier island sandstone reservoir, Danish Central Graben:

    DEFF Research Database (Denmark)

    Johannessen, Peter N.; Nielsen, Lars H.; Nielsen, Lars

    2010-01-01

    An unusually thick (c. 88 m), transgressive barrier island and shoreface sandstone succession characterizes the Upper Jurassic Heno Formation reservoir of the Freja oil field situated on the boundary of Denmark and Norway. The development and preservation of such thick transgressive barrier island...... sands is puzzling since a barrier island typically migrates landwards during transgression and only a thin succession of back-barrier and shoreface sands is preserved. Investigation of the development and geometry of the Freja reservoir sandstones is problematic since the reservoir is buried c. 5 km...... sandstones. Using the nearest maximum flooding surface above the reservoir as a datum for well-log correlations, the base of the barrier island succession in the wells is reconstructed as a surface with steep, seaward-dipping palaeotopography. The relief is c. 270 m over a distance of c. 8 km and dips WNW...

  20. Desalination of salt damaged Obernkirchen sandstone by an applied DC field

    DEFF Research Database (Denmark)

    Matyščák, Ondřej; Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    2014-01-01

    Soluble salts are considered as one of the most common causes for decay of building materials. In the present work, an electrokinetic method for desalination of sandstones from a historic warehouse was tested. The sandstones claddings were removed from the warehouse during a renovation action...... as the outer surface was scaling due to salts.The focus of the work was on the effect of electrokinetic desalination for removal of unevenly distributed mixtures of salts. Previous reported studies were conducted with laboratory contaminated stones with single salts, which were relatively evenly distributed...... in the stones, i.e. the present investigation faces more challenges relevant to a real desalination action. Experiments were conducted with two Obernkirchen sandstones from the same warehouse, but with different levels of salt concentrations and porosity. The investigation includes removal of the most common...

  1. Containment leak-tightness enhancement at VVER 440 NPPs

    International Nuclear Information System (INIS)

    Prandorfy, M.

    2001-01-01

    The hermetic compartments of VVER 440 NPPs fulfil the function of the containment used at NPPs all over the word. The purpose of the containment is to protect the NPP personal against radioactive impact as well as to prevent radioactive leakage to the environment during a lost of coolant accident. Leak-tightness enhancement in NPPs with VVER 440/213 and VVER 440/230 reactors is an important safety issue. New procedures, measures and methods were adopted at NPPs in Mochovce, J. Bohunice, Dukovany and Paks for leak identification and sealing works performed by VUEZ Levice. (authors)

  2. Tight-binding model for borophene and borophane

    Science.gov (United States)

    Nakhaee, M.; Ketabi, S. A.; Peeters, F. M.

    2018-03-01

    Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.

  3. Tight Bound on Randomness for Violating the CHSH Inequality

    OpenAIRE

    Teng, Yifeng; Yang, Shenghao; Wang, Siwei; Zhao, Mingfei

    2015-01-01

    Free will (or randomness) has been studied to achieve loophole-free Bell's inequality test and to provide device-independent quantum key distribution security proofs. The required randomness such that a local hidden variable model (LHVM) can violate the Clauser-Horne-Shimony-Holt (CHSH) inequality has been studied, but a tight bound has not been proved for a practical case that i) the device settings of the two parties in the Bell test are independent; and ii) the device settings of each part...

  4. Tight glycemic control in the ICU - is the earth flat?

    Science.gov (United States)

    Steil, Garry M; Agus, Michael S D

    2014-06-27

    Tight glycemic control in the ICU has been shown to reduce mortality in some but not all prospective randomized control trials. Confounding the interpretation of these studies are differences in how the control was achieved and underlying incidence of hypoglycemia, which can be expected to be affected by the introduction of continuous glucose monitoring (CGM). In this issue of Critical Care, a consensus panel provides a list of the research priorities they believe are needed for CGM to become routine practice in the ICU. We reflect on these recommendations and consider the implications for using CGM today.

  5. Air tightness measurements in older Danish single-family houses

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Bergsøe, Niels Christian

    2017-01-01

    presents the results of measurements in 16 single-family houses built between 1880 and 2007. The air tightness of the building envelope was measured according to EN ISO 9972 using the blower-door technique. The results are compared with measurement results of the average air-change rate in the same houses....... In addition, leaks are observed around older windows and doors and in connection with wooden ceilings and attic hatches. The findings should be taken into account when renovating older single-family houses....

  6. Containment leak-tightness enhancement at VVER 440 NPPs

    International Nuclear Information System (INIS)

    Prandorfy, M.

    2000-01-01

    The hermetic compartments of WWER 440 NPPs fulfil the function of the containment used at NPPs all over the world. The purpose of the containment is to protect the NPP personnel against radioactive impact as well as to prevent radioactive leakage to the. environ ent during a lost of coolant accident. Leak-tightness enhancement in NPPs with WWER 440/213 and WWER 440/230 reactors is an important safety issue. New procedures, measures and methods were adopted at NPPs in Mochovce, Jaslovske Bohunice, Dukovany and PAKS for leak identification and sealing works performed by VUEZ Levice. (authors)

  7. Comparative testing of women's tights, which are realized in the Ukrainian market

    OpenAIRE

    Мартосенко, Марина Григорьевна; Браилко, Анна Сергеевна

    2015-01-01

    Assortment of women's tights represented on the Ukrainian market is diverse: medical and corrective tights, classic thin and warm, simple and exclusive, ornamental and sports, for pregnant women and moisturizing effect. The size, density, pattern, material composition, visual appearance, matching fashion trends, colors, pricing policy – all these are criteria for the selection of women's tights.With such huge and diverse range of women's tights in the Ukrainian market, the problem of quality ...

  8. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  9. Semantic discrimination of paleo-channel and paleo-valley sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Hou Mingcai

    2000-01-01

    By discriminating the characteristics of two different geo-morphological elements-stream channel and stream valley, the author tries to clear up the concept of paleo-channel sandstone-type uranium deposit and paleo-valley sandstone-type uranium deposit in the field of uranium geology. Moreover, the author also discusses the response of the stream channel and stream valley to the variation of erosion basis and characteristics of depositional sequence. The above-mentioned provides help for the determination of the distribution of paleo-channels on the plan

  10. The effects of impure CO2 on reservoir sandstones: results from mineralogical and geomechanical experiments

    Science.gov (United States)

    Marbler, H.; Erickson, K. P.; Schmidt, M.; Lempp, Ch.; Pöllmann, H.

    2012-04-01

    An experimental study of the behaviour of reservoir sandstones from deep saline aquifers during the injection and geological storage of CO2 with the inherent impurities SOX and NOX is part of the German national project COORAL*. Sample materials were taken from outcrops of possible reservoir formations of Rotliegend and Bunter Sandstones from the North German Basin. A combination of mineralogical alteration experiments and geomechanical tests was carried out on these rocks to study the potential effects of the impurities within the CO2 pore fluid. Altered rock samples after the treatment with CO2 + SOX/NOX in an autoclave system were loaded in a triaxial cell under in-situ pressure and temperature conditions in order to estimate the modifications of the geomechanical rock properties. Mineralogical alterations were observed within the sandstones after the exposure to impure supercritical (sc)CO2 and brine, mainly of the carbonatic, but also of the silicatic cements, as well as of single minerals. Besides the partial solution effects also secondary carbonate and minor silicate mineral precipitates were observed within the pore space of the treated sandstones. These alterations affect the grain structure of the reservoir rock. Results of geomechanical experiments with unaltered sandstones show that the rock strength is influenced by the degree of rock saturation before the experiment and the chemical composition of the pore fluid (scCO2 + SOX + NOX). After long-term autoclave treatment with impure scCO2, the sandstone samples exhibit modified strength parameters and elastic deformation behaviour as well as changes in porosity compared to untreated samples. Furthermore, the injected fluid volume into the pore space of sandstones from the same lithotype varies during triaxial loading depending on the chemistry of the pore fluid. CO2 with NOX and SOX bearing fluid fills a significantly larger proportion of the sandstone pore space than brine with pure scCO2. * The

  11. Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Erikson, R.L.

    1983-12-01

    The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

  12. Fission gas retention in irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Gruber, E.E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5Fs) are presented. The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations to the measurements shows quantitative agreement with both the magnitude and the axial variation of the retained gas content

  13. Maintaining leak tightness capability of Caorso BWR containment

    International Nuclear Information System (INIS)

    Barsanti, P.; Di Palo, L.; Grimaldi, G.

    1988-01-01

    In 1987 the local leak rate test (LLRT) results of the primary containment were revised, with the following main goals: to highlight recurring problems, leading to lack of leak tightness of the primary containment; to individuate the pertinent degradation mechanisms; to assess the corrective actions already implemented and to plan further improvements, if necessary; and to optimize the preventive maintenance program on the containment, particularly the inspection frequency. All LLRTs in the past operating period, both before (as found) and after (as left) maintenance were analyzed, in terms of leakage rate and equivalent area of leak, for each penetration. Corrective actions already implemented included replacement of some valves with better quality type one, passivation of the carbon steel pipes and improvement of the pertinent surveillance procedures. Long term corrective actions, now under consideration, will include the following: more extensive passivation of pipes, carrying humid air, so that oxidation could be drastically reduced; better chemistry control in fluid systems; extensive replacement of the butterfly valves presently used; implementation of the LLRT practice, such to quantitatively measure the leakage rate, also in presence of large leak; and reduction of the time interval between periodical tests, on the basis of the results of the previous ones. Following these guidelines, future overall leakage tests would be performed in as found condition, aimed to verify the effectiveness of the entire maintenance and testing program of the primary containment and of its capability to maintain leak tightness during the time between two subsequent tests

  14. Adaptive wavelet tight frame construction for accelerating MRI reconstruction

    Directory of Open Access Journals (Sweden)

    Genjiao Zhou

    2017-09-01

    Full Text Available The sparsity regularization approach, which assumes that the image of interest is likely to have sparse representation in some transform domain, has been an active research area in image processing and medical image reconstruction. Although various sparsifying transforms have been used in medical image reconstruction such as wavelet, contourlet, and total variation (TV etc., the efficiency of these transforms typically rely on the special structure of the underlying image. A better way to address this issue is to develop an overcomplete dictionary from the input data in order to get a better sparsifying transform for the underlying image. However, the general overcomplete dictionaries do not satisfy the so-called perfect reconstruction property which ensures that the given signal can be perfectly represented by its canonical coefficients in a manner similar to orthonormal bases, resulting in time consuming in the iterative image reconstruction. This work is to develop an adaptive wavelet tight frame method for magnetic resonance image reconstruction. The proposed scheme incorporates the adaptive wavelet tight frame approach into the magnetic resonance image reconstruction by solving a l0-regularized minimization problem. Numerical results show that the proposed approach provides significant time savings as compared to the over-complete dictionary based methods with comparable performance in terms of both peak signal-to-noise ratio and subjective visual quality.

  15. Tight-binding tunneling amplitude of an optical lattice

    Science.gov (United States)

    Arzamasovs, Maksims; Liu, Bo

    2017-11-01

    The particle in a periodic potential is an important topic in an undergraduate quantum mechanics curriculum and a stepping stone on the way to more advanced topics, such as courses on interacting electrons in crystalline solids, and graduate-level research in solid-state and condensed matter physics. The interacting many-body phenomena are usually described in terms of the second quantized lattice Hamiltonians which treat single-particle physics on the level of tight-binding approximation and add interactions on top of it. The aim of this paper is to show how the tight-binding tunneling amplitude can be related to the strength of the periodic potential for the case of a cosine potential used in the burgeoning field of ultracold atoms. We show how to approach the problem of computing the tunneling amplitude of a deep lattice using the JWKB (Jeffreys-Wentzel-Kramers-Brillouin, also known as semiclassical) approximation. We also point out that care should be taken when applying the method of the linear combination of atomic orbitals (LCAO) in an optical lattice context. A summary of the exact solution in terms of Mathieu functions is also given.

  16. Tight-binding tunneling amplitude of an optical lattice

    International Nuclear Information System (INIS)

    Arzamasovs, Maksims; Liu, Bo

    2017-01-01

    The particle in a periodic potential is an important topic in an undergraduate quantum mechanics curriculum and a stepping stone on the way to more advanced topics, such as courses on interacting electrons in crystalline solids, and graduate-level research in solid-state and condensed matter physics. The interacting many-body phenomena are usually described in terms of the second quantized lattice Hamiltonians which treat single-particle physics on the level of tight-binding approximation and add interactions on top of it. The aim of this paper is to show how the tight-binding tunneling amplitude can be related to the strength of the periodic potential for the case of a cosine potential used in the burgeoning field of ultracold atoms. We show how to approach the problem of computing the tunneling amplitude of a deep lattice using the JWKB (Jeffreys–Wentzel–Kramers–Brillouin, also known as semiclassical) approximation. We also point out that care should be taken when applying the method of the linear combination of atomic orbitals (LCAO) in an optical lattice context. A summary of the exact solution in terms of Mathieu functions is also given. (paper)

  17. MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    DARYLE H BUSCH RICHARD S GIVENS

    2004-12-10

    Much of the earth's pollution involves compounds of the metallic elements, including actinides, strontium, cesium, technetium, and RCRA metals. Metal ions bind to molecules called ligands, which are the molecular tools that can manipulate the metal ions under most conditions. This DOE-EMSP sponsored program strives (1) to provide the foundations for using the most powerful ligands in transformational separations technologies and (2) to produce seminal examples of their applications to separations appropriate to the DOE EM mission. These ultra tight-binding ligands can capture metal ions in the most competitive of circumstances (from mineralized sites, lesser ligands, and even extremely dilute solutions), but they react so slowly that they are useless in traditional separations methodologies. Two attacks on this problem are underway. The first accommodates to the challenging molecular lethargy by developing a seminal slow separations methodology termed the soil poultice. The second designs ligands that are only tight-binding while wrapped around the targeted metal ion, but can be put in place by switch-binding and removed by switch-release. We envision a kind of molecular switching process to accelerate the union between metal ion and tight-binding ligand. Molecular switching processes are suggested for overcoming the slow natural equilibration rate with which ultra tight-binding ligands combine with metal ions. Ligands that bind relatively weakly combine with metal ions rapidly, so the trick is to convert a ligand from a weak, rapidly binding species to a powerful, slow releasing ligand--during the binding of the ligand to the metal ion. Such switch-binding ligands must react with themselves, and the reaction must take place under the influence of the metal ion. For example, our generation 1 ligands showed that a well-designed linear ligand with ends that readily combine, forms a cyclic molecule when it wraps around a metal ion. Our generation 2 ligands are

  18. Tight Fits for Americas Next Moon Rocket, Ares V

    Science.gov (United States)

    Jaap, John; Fisher, Wyatt; Richardson, Lea

    2010-01-01

    America has begun the development of a new heavy lift rocket which will enable humans to return to the moon and reach even farther destinations. Five decades ago, the National Aeronautics and Space Administration designed a system (called Saturn/Apollo) to carry men to the moon and back; the rocket which boosted them to the moon was the Saturn V. Saturn V was huge relative to contemporary rockets and is still the largest rocket ever launched. The new moon rocket is called Ares V. It will insert 40% more payload into low earth orbit than Saturn V; and after docking with the crew spacecraft, it will insert 50% more payload onto the translunar trajectory than Saturn V. The current design of Ares V calls for two liquid-fueled stages and 2 "strap-on" solid rockets. The solid rockets are extended-length versions of the solid rockets used on the Shuttle. The diameter of the liquid stages is at least as large as the first stage of the Saturn V; the height of the lower liquid stage (called the core stage) is longer than the external tank of the Shuttle. Huge rockets require huge infrastructure and, during the Saturn/Apollo era, America invested significantly in manufacturing, assembly and launch facilities which are still in use today. Since the Saturn/Apollo era, America has invested in additional infrastructure for the Shuttle program. Ares V must utilize this existing infrastructure, with reasonable modifications. Building a rocket with 50% more capability in the same buildings, testing it in the same test stands, shipping on the same canals under the same bridges, assembling it in the same building, rolling it to the pad on the same crawler, and launching it from the same launch pad is an engineering and logistics challenge which goes hand-in-hand with designing the structure, tanks, turbines, engines, software, etc. necessary to carry such a large payload to earth orbit and to the moon. This paper quantitatively discusses the significant "tight fits" that are

  19. Enforcing dust mass conservation in 3D simulations of tightly-coupled grains with the PHANTOM SPH code

    Science.gov (United States)

    Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.

    2018-03-01

    We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly- and marginally-coupled grains.

  20. Petrography and geochemistry of the Middle Miocene Gebel El Rusas sandstones, Eastern Desert, Egypt: Implications for provenance and tectonic setting

    Science.gov (United States)

    Zaid, Samir M.

    2017-10-01

    Petrography and bulk rock geochemistry of the Middle Miocene sandstones of the lower and upper members of Gebel El Rusas Formation along the Egyptian Red Sea Coastal plain, have been investigated to determine the provenance, tectonic setting, and weathering condition of this formation. The Lower Member is formed mainly of sandstones and conglomerates with clay interbeds. The Upper Member is more calcareous and formed mainly of sandstones and limestones with marls and clays intercalations. Petrographically, the Lower Member sandstones are mostly immature and classified as arkoses with an average framework composition of Q_{66}F_{29}R5, and the Upper Member sandstones are partly submature (more quartzose, less feldspathic) and classified as subarkoses with an average framework composition of Q_{80}F_{17}R3. The Gebel El Rusas sandstones are enriched in Sr, Ba, Zr and Rb and depleted in Co and U, as compared to UCC. The chemical index of alteration (CIA) values suggest moderate weathering conditions. The geochemistry results revealed that the Gebel El Rusas sandstones were derived from felsic-granitic source rocks and deposited in a passive margin of a synrift basin. The inferred tectonic setting for Middle Miocene Gebel El Rusas sandstones in the study area is consistent with the regional geology of the Eastern Desert of Egypt during Middle Miocene.

  1. Gas-partitioning tracer test to qualify trapped gas during recharge

    Science.gov (United States)

    Heilweil, Victor M.; Kip, Solomon D.; Perkins, Kim S.; Ellett, Kevin M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  2. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    Science.gov (United States)

    Medici, G.; West, L. J.; Mountney, N. P.

    2016-11-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≤ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize 50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  3. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells.

    Science.gov (United States)

    Fogg, Vanessa C; Liu, Chia-Jen; Margolis, Ben

    2005-07-01

    The formation and maintenance of tight junctions is essential for the development of epithelial cell polarity. Recently, a number of conserved polarity-regulating proteins have been shown to localize to epithelial tight junctions, and to play a role in the regulation of tight junction formation. The Crumbs3/PALS1/PATJ protein complex localizes at epithelial tight junctions and interacts with the polarity-regulating protein complex of Par6/Par3/aPKC. Overexpression of Crumbs3 in MDCKII cells leads to a delay in tight junction formation in these cells, suggesting a role in the regulation of tight junction development. Here we report new evidence that Crumbs3 indeed plays an essential role in tight junction formation. Mammary MCF10A cells express little endogenous Crumbs3 and fail to form tight junctions when grown under standard tissue culture conditions. The staining pattern of ZO-1, a tight junction marker, is fragmented, and other tight junction markers show either fragmented junctional expression or diffuse cytoplasmic staining. Expression of exogenous Crumbs3 induces the formation of tight junction structures marked by smooth, continuous ZO-1 staining at apical cell-cell junctions. A number of other tight junction markers, including claudin-1 and occludin, are also recruited to these junctions. Analysis by transmission electron microscopy and measurements of the transepithelial electrical resistance confirm that these structures are functional tight junctions. Mutations in either the Crumbs3 PDZ binding motif or the putative FERM binding motif lead to defects in the ability of Crumbs3 to promote tight junction development. Our results suggest that Crumbs3 plays an important role in epithelial tight junction formation, and also provide the first known functional role for the mammalian Crumbs FERM binding domain.

  4. Integrated seismic study of naturally fractured tight gas reservoirs. Final report, September 1991--January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, G.; Nur, A.

    1995-01-01

    The approach in this project has been to integrate the principles of rock physics into a quantitative processing and interpretation scheme that exploits, where possible, the broader spectrum of fracture zone signatures: (1) anomalous compressional and shear wave velocity; (2) Q and velocity dispersion; (3) increased velocity anisotropy; (4) amplitude vs. offset (AVO) response, and (5) variations in frequency content. As part of this the authors have attempted to refine some of the theoretical rock physics tools that should be applied in any field study to link the observed seismic signatures to the physical/geologic description of the fractured rock. The project had 3 key elements: (1) rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, (2) acquisition and processing of seismic reflection field data, and (3) interpretation of seismic and well log data. The study site is in a producing field operated by Amoco and Arco at the southern boundary of the Powder River basin in Wyoming. During the winter of 1992--1993 the authors collected about 50 km of 9-component reflection seismic data and obtained existing log data from several wells in the vicinity. The paper gives background information on laboratory studies, seismic field studies of fracture anisotropy, and the problem of upscaling from the laboratory to the field. It discusses fluid effects on seismic anisotropy and a method for predicting stress-induced seismic anisotropy. Then results from the field experiment are presented and discussed: regional geologic framework and site description; seismic data acquisition; shear wave data and validation; and P-wave data analysis. 106 refs., 52 figs.

  5. Numerical investigation and optimization of multiple fractures in tight gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hou, M.Z. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Energie-Forschungszentrum Niedersachsen, Goslar (Germany); Zhou, L. [Energie-Forschungszentrum Niedersachsen, Goslar (Germany)

    2013-08-01

    The main objective of the project DGMK-680 in phase 2 was to investigate the influence of fractures on each other in a multi-fracture system including their space optimization by using the numerical program FLAC3D with our own developments, which treats all fractures in one 3D geometric model under 3D stress state with fully hydro-mechanical coupling effect. The case study was conducted on a horizontal wellbore at location A, which was stimulated hydraulically with a total of eight transverse fractures in summer 2009. Transverse multiple fractures were simulated using the modified continuum method. In the simulation all fractures were generated in one single model, comprising 22 different rock layers. Each layer was assumed to be homogeneous with regard to its rock and hydromechanical parameters. Thus the influence of the individual fractures on each other can be investigated. The simulation procedure applied, which is a consecutive execution ofa hydraulic and a mechanical computation, is the same for all fractures. The only differences are the primary in-situ stresses, the initial pore pressure, the injection parameters (location, rate, volume, duration), which lead to different patterns of fracture propagations. But there are still some common points, such as irregular patterns of the fracture front, which represents the heterogeneity of the model. All fractures (1 to 8) have their fracture average half-length between 70 m to 115 m, height between 93 m to 114 m and average width between 18 mm to 31 mm. The percentage difference of fracture height for individual fractures is obviously smaller than that of the fracture half-lengths, because the fracture barriers at bottom and top limit the fracture propagation in z-direction. Incomparison with the analytical simulator (FracPro) most results match well. Simulation of multiple fractures at location A, with the newly developed algorithms, shows that individual transverse multiple fractures at distances between 100 -150 m will certain influence on each other in terms of the stress change, but not pore pressure. Generally, this influence as simulated at this location has a positive effect on the fracture geometry as well, and may lead to a bigger half-length and a smaller width of the fracture. In order to maximize the production rate in this specific site, transverse multiple fractures with an optimal fracture distance of ca. 57 m should be implemented. This optimal fracture spacing is derived from the counter of 5 direction change of the primary maximum horizontal stress, to ensure that only transverse fractures are generated in this location. However, the influence on longitudinal multiple fractures is very obvious, as observed from the numerical simulations of longitudinal multiple fractures at U2. Under the circumstances, it is recommended that the boreholes should not be drilled exactly in the direction of maximal horizontal stress ({+-}15 ), in order to avoid the overlapping of fractures. (orig.)

  6. Design considerations for teleoperation systems operating in gas-tight argon cells

    Directory of Open Access Journals (Sweden)

    Seungnam Yu

    2017-12-01

    Full Text Available In the nuclear industry, mechanical engineers spend a significant portion of their time designing equipment such as manipulators, bogies, mechanical grippers, and so on. Some customized designs can be considered as standard mechanical equipment in this area, although it is not unusual to find that an existing design cannot simply be copied from one project to another. Varied performance requirements can dictate that redesign, often quite extensive redesign, is required. However, if something similar has been done before, engineers could use that as a starting point for the new project. In this regard, this study presents several guidelines inspired by previous design knowledge for similar development cases. Moreover, this study presents more detailed suggestions such as design guidelines for an argon-based hot cell atmosphere and design experience for a large-scale practical hot cell facility. Design considerations and case studies dealt with in this study are dedicated to teleoperation manipulators that are used at a large-scale argon cell facility for pyroprocess integrated inactive demonstration (PRIDE, at the Korea Atomic Energy Research Institute. In particular, for case studies to support the suggested recommendations, a fabricated telemanipulator system for PRIDE is introduced, and several kinds of experimental results associated with it are presented.

  7. Early cretaceous Obernirchen and Bentheim sandstones from Germany used as dimension stone in the Netherlands: geology physical properties, architectural use and comparative weathering

    NARCIS (Netherlands)

    Dubelaar, C.W.; Nijland, T.G.

    2015-01-01

    The Netherlands, with only scarce occurrences of outcropping or shallow buried natural stone, has over centuries imported huge quantities of Early Cretaceous Bentheim Sandstone and Obernkirchen Sandstone from Germany. The present paper provides an overview of their distribution and properties

  8. Revenue Risk of U.S. Tight-Oil Firms

    Directory of Open Access Journals (Sweden)

    Luis Mª Abadie

    2016-10-01

    Full Text Available American U.S. crude oil prices have dropped significantly of late down to a low of less than $30 a barrel in early 2016. At the same time price volatility has increased and crude in storage has reached record amounts in the U.S. America. Low oil prices in particular pose quite a challenge for the survival of U.S. America’s tight-oil industry. In this paper we assess the current profitability and future prospects of this industry. The question could be broadly stated as: should producers stop operation immediately or continue in the hope that prices will rise in the medium term? Our assessment is based on a stochastic volatility model with three risk factors, namely the oil spot price, the long-term oil price, and the spot price volatility; we allow for these sources of risk to be correlated and display mean reversion. We then use information from spot and futures West Texas Intermediate (WTI oil prices to estimate this model. Our aim is to show how the development of the oil price in the future may affect the prospective revenues of firms and hence their operation decisions at present. With the numerical estimates of the model’s parameters we can compute the value of an operating tight-oil field over a certain time horizon. Thus, the present value (PV of the prospective revenues up to ten years from now is $37.07/bbl in the base case. Consequently, provided that the cost of producing a barrel of oil is less than $37.07 production from an operating field would make economic sense. Obviously this is just a point estimate. We further perform a Monte Carlo (MC simulation to derive the risk profile of this activity and calculate two standard measures of risk, namely the value at risk (VaR and the expected shortfall (ES (for a given confidence level. In this sense, the PV of the prospective revenues will fall below $22.22/bbl in the worst 5% of the cases; and the average value across these worst scenarios is $19.77/bbl. Last we undertake two

  9. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhao [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States); Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC

  10. Optimal Complexity in Reservoir Modeling of an Eolian Sandstone for Carbon Sequestration Simulation

    Science.gov (United States)

    Li, S.; Zhang, Y.; Zhang, X.

    2011-12-01

    Geologic Carbon Sequestration (GCS) is a proposed means to reduce atmospheric concentrations of carbon dioxide (CO2). Given the type, abundance, and accessibility of geologic characterization data, different reservoir modeling techniques can be utilized to build a site model. However, petrophysical properties of a formation can be modeled with simplifying assumptions or with greater detail, the later requiring sophisticated modeling techniques supported by additional data. In GCS where cost of data collection needs to be minimized, will detailed (expensive) reservoir modeling efforts lead to much improved model predictive capability? Is there an optimal level of detail in the reservoir model sufficient for prediction purposes? In Wyoming, GCS into the Nugget Sandstone is proposed. This formation is a deep (>13,000 ft) saline aquifer deposited in eolian environments, exhibiting permeability heterogeneity at multiple scales. Based on a set of characterization data, this study utilizes multiple, increasingly complex reservoir modeling techniques to create a suite of reservoir models including a multiscale, non-stationary heterogeneous model conditioned to a soft depositional model (i.e., training image), a geostatistical (stationary) facies model without conditioning, a geostatistical (stationary) petrophysical model ignoring facies, and finally, a homogeneous model ignoring all aspects of sub-aquifer heterogeneity. All models are built at regional scale with a high-resolution grid (245,133,140 cells) from which a set of local simulation models (448,000 grid cells) are extracted. These are considered alternative conceptual models with which pilot-scale CO2 injection is simulated (50 year duration at 1/10 Mt per year). A computationally efficient sensitivity analysis (SA) is conducted for all models based on a Plackett-Burman Design of Experiment metric. The SA systematically varies key parameters of the models (e.g., variogram structure and principal axes of intrinsic

  11. Analysis of single oil-bearing fluid inclusions in mid-Proterozoic sandstones (Roper Group, Australia)

    Science.gov (United States)

    Siljeström, Sandra; Volk, Herbert; George, Simon C.; Lausmaa, Jukka; Sjövall, Peter; Dutkiewicz, Adriana; Hode, Tomas

    2013-12-01

    Hydrocarbons and organic biomarkers extracted from black shales and other carbonaceous sedimentary rocks are valuable sources of information on the biodiversity and environment of early Earth. However, many Precambrian hydrocarbons including biomarkers are suspected of being younger contamination. An alternative approach is to study biomarkers trapped in oil-bearing fluid inclusions by bulk crushing samples and subsequently analysing the extracted hydrocarbons with gas chromatography-mass spectrometry. However, this method does not constrain the hydrocarbons to one particular oil inclusion, which means that if several different generations of oil inclusions are present in the sample, a mix of the content from these oil inclusions will be analysed. In addition, samples with few and/or small inclusions are often below the detection limit. Recently, we showed that it is possible to detect organic biomarkers in single oil-bearing fluid inclusions using time-of-flight secondary ion mass spectrometry (ToF-SIMS). In the present study, single fluid inclusion analysis has been performed on Proterozoic samples for the first time. Four individual oil-bearing fluid inclusions, found in 1430 Ma sandstone from the Roper Superbasin in Northern Australia, were analysed with ToF-SIMS. The ToF-SIMS spectra of the oil in the different inclusions are very similar to each other and are consistent with the presence of n-alkanes/branched alkanes, monocyclic alkanes, bicyclic alkanes, aromatic hydrocarbons, and tetracyclic and pentacyclic hydrocarbons. These results are in agreement with those obtained from bulk crushing of inclusions trapped in the same samples. The capability to analyse the hydrocarbon and biomarker composition of single oil-bearing fluid inclusions is a major breakthrough, as it opens up a way of obtaining molecular compositional data on ancient oils without the ambiguity of the origin of these hydrocarbons. Additionally, this finding suggests that it will be possible

  12. Deformation bands in porous sandstones their microstructure and petrophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Anita

    2007-12-15

    deformation bands are characterized by strain hardening, these new bands feature a central slip surface, which indicates late strain softening. They lack the characteristic compaction envelop, and are typified by higher porosity and lower permeability than previously-described cataclastic deformation bands. Intense background fracturing of the host rock and significant initial porosity are considered to be important in creating these newly-discovered deformation bands. In a related study, we investigate, for millimeter- wide deformation bands, the scale limitation inherent in laboratory measurements of porosity and permeability. The scale limitations imposed by the deformation band relative to the physical sample size motivated us to develop a new method for determining porosity and permeability based on image processing. While plug measurements measure the effective permeability across a 25.4 mm (1 inch) long sample, which includes both host rock and deformation band, the method presented here provides a means to estimate porosity and permeability of deformation band on microscale. This method utilizes low-order (one- and two orders) spatial correlation functions to analyze high-resolution, high-magnification backscatter images, to estimate the porosity and specific surface area of the pore-grain interface in the deformed sandstones. Further, this work demonstrates the use of a modified version of the Kozeny-Carmen relation to calculate permeability by using porosity and specific surface area obtained through the image processing. The result shows that permeability difference between the band and the host rock is up to four orders of magnitude. Moreover, the porosities and permeabilities estimated from image processing are lower than those obtained from their plug measurements; hence the traditional laboratory measurements have been overestimating permeability because of the previously-unrecognized scale problem. In addition, the image processing results clearly show that

  13. Prospect analysis for sandstone-type uranium mineralization in the northern margin of Qaidam basin

    International Nuclear Information System (INIS)

    Liu Lin; Song Xiansheng; Feng Wei; Song Zhe; Li Wei

    2010-01-01

    Affected by the regional geological structural evolution, a set of sedimentary structure, i.e. the construction of coal-bearing classic rocks which is in favor of the sandstone-type uranium mineralization has deposited in the northern margin of Qaidam Basin since Meso-Cenozoic. A NWW thrust nappe tectonic belt, i.e. the ancient tectonic belt which is the basis for the development of ancient interlayer oxidation zone formed by the tectonic reverse in late Jurassic and Cretaceous. The Mid and late Jurassic layer was buried by the weak extension in Paleogene and the depression in early Neogene. The extrusion reversal from late Neogene to Quaternary made the basin into the development era of the modern interlayer oxidation zone. It can be concluded that the layer of the northern margin of Qaidam Basin has the premise for the formation of sandstone-type uranium ore. Based on the analysis of the characteristics of the thrust belt, the structure of the purpose layer, the sand body, the hydrogeology, the interlayer oxidation zone and uranium mineralization, the results indicated that the ancient interlayer oxidation zone is the prospecting type of sandstone-type uranium ore. Beidatan and the east of Yuqia are the favorable prospective area of sandstone-type uranium mineralization. (authors)

  14. Prediction of calcite Cement Distribution in Shallow Marine Sandstone Reservoirs using Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, N.E.

    1996-12-31

    This doctoral thesis investigates how calcite cemented layers can be detected by reflection seismic data and how seismic data combined with other methods can be used to predict lateral variation in calcite cementation in shallow marine sandstone reservoirs. Focus is on the geophysical aspects. Sequence stratigraphy and stochastic modelling aspects are only covered superficially. Possible sources of calcite in shallow marine sandstone are grouped into internal and external sources depending on their location relative to the presently cemented rock. Well data and seismic data from the Troll Field in the Norwegian North Sea have been analysed. Tuning amplitudes from stacks of thin calcite cemented layers are analysed. Tuning effects are constructive or destructive interference of pulses resulting from two or more closely spaced reflectors. The zero-offset tuning amplitude is shown to depend on calcite content in the stack and vertical stack size. The relationship is found by regression analysis based on extensive seismic modelling. The results are used to predict calcite distribution in a synthetic and a real data example. It is found that describing calcite cemented beds in shallow marine sandstone reservoirs is not a deterministic problem. Hence seismic inversion and sequence stratigraphy interpretation of well data have been combined in a probabilistic approach to produce models of calcite cemented barriers constrained by a maximum amount of information. It is concluded that seismic data can provide valuable information on distribution of calcite cemented beds in reservoirs where the background sandstones are relatively homogeneous. 63 refs., 78 figs., 10 tabs.

  15. Spherical and ellipsoidal cavities in European sandstones: a product of sinking carbonate dissolution front

    Czech Academy of Sciences Publication Activity Database

    Adamovič, Jiří; Mikuláš, Radek; Navrátil, Tomáš

    2015-01-01

    Roč. 59, Supplement 1 (2015), s. 123-149 ISSN 0372-8854 R&D Projects: GA AV ČR IAA300130806; GA ČR GA13-28040S Institutional support: RVO:67985831 Keywords : symmetrical cavities * solutional landforms * cavernous weathering * tafoni * sandstone * concretions * carbonate dissolution front Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.103, year: 2015

  16. Concurrent nitrate and Fe(III) reduction during anaerobic biodegradation of phenols in a sandstone aquifer

    DEFF Research Database (Denmark)

    Broholm, Mette; Crouzet, C.; Arvin, Erik

    2000-01-01

    The biodegradation of phenols (similar to 5, 60, 600 mg 1(-1)) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an aquifer, The aqueous phase was sampled and analyzed...

  17. Architecture of an Upper Jurassic barrier island sandstone reservoir, Danish Central Graben:

    DEFF Research Database (Denmark)

    Johannessen, Peter N.; Nielsen, Lars H.; Nielsen, Lars

    2010-01-01

    An unusually thick (c. 88 m), transgressive barrier island and shoreface sandstone succession characterizes the Upper Jurassic Heno Formation reservoir of the Freja oil field situated on the boundary of Denmark and Norway. The development and preservation of such thick transgressive barrier islan...

  18. Sandstone Districts of the Bohemian Paradise: Emergence of a Romantic Landscape

    Czech Academy of Sciences Publication Activity Database

    Adamovič, Jiří; Mikuláš, Radek; Cílek, Václav

    2006-01-01

    Roč. 21, - (2006), s. 6-99 ISSN 1210-9606 R&D Projects: GA AV ČR IAA3013302 Institutional research plan: CEZ:AV0Z30130516 Keywords : sandstone * rock city * Bohemian Paradise (Czech Republic) Subject RIV: DB - Geology ; Mineralogy http://geolines.gli.cas.cz/index.php?id=volume21

  19. Mechanical Behavior of Red Sandstone under Incremental Uniaxial Cyclical Compressive and Tensile Loading

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2017-01-01

    Full Text Available Uniaxial experiments were carried out on red sandstone specimens to investigate their short-term and creep mechanical behavior under incremental cyclic compressive and tensile loading. First, based on the results of short-term uniaxial incremental cyclic compressive and tensile loading experiments, deformation characteristics and energy dissipation were analyzed. The results show that the stress-strain curve of red sandstone has an obvious memory effect in the compressive and tensile loading stages. The strains at peak stresses and residual strains increase with the cycle number. Energy dissipation, defined as the area of the hysteresis loop in the stress-strain curves, increases nearly in a power function with the cycle number. Creep test of the red sandstone was also conducted. Results show that the creep curve under each compressive or tensile stress level can be divided into decay and steady stages, which cannot be described by the conventional Burgers model. Therefore, an improved Burgers creep model of rock material is constructed through viscoplastic mechanics, which agrees very well with the experimental results and can describe the creep behavior of red sandstone better than the Burgers creep model.

  20. A charcoal record of Holocene woodland succession from sandstone rock shelters of North Bohemia (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Novák, J.; Svoboda, Jiří; Šída, P.; Prostředník, J.; Pokorný, P.

    2015-01-01

    Roč. 366, 24 April (2015), s. 25-36 ISSN 1040-6182 R&D Projects: GA ČR GA13-08169S Keywords : Charcoal * Rock shelters * Sandstone area * Vegetation history * Pollen analysis Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 2.067, year: 2015

  1. Gravity-induced stress as a factor reducing decay of sandstone monuments in Petra, Jordan

    Czech Academy of Sciences Publication Activity Database

    Řihošek, J.; Bruthans, J.; Mašín, D.; Filippi, Michal; Carling, G. T.; Schweigstillová, Jana

    2016-01-01

    Roč. 19, 1 May (2016), s. 415-425 ISSN 1296-2074 R&D Projects: GA ČR GA13-28040S Institutional support: RVO:67985831 ; RVO:67985891 Keywords : Decay * Petra * sandstone monument * stability * stress Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.838, year: 2016

  2. Experimental Study on Sensitivity to Temperature Stress of the Permeability of Weakly Cemented Sandstone

    Science.gov (United States)

    Song, Z. Y.; Ji, H. G.; You, S.; Tan, J.; Wang, H.

    2018-02-01

    In order to explore the meso-structural characteristics of weakly cemented sandstone and its permeability characteristics under multi-field coupling, SEM scanning electron microscopy and Top Industries rock triaxial remoter system have been used. On the basis of studying the microstructure of weakly cemented sandstone, the sensibility of its permeability to temperature and confining pressure is preliminarily study. The results show that the compaction effect of weakly cemented sandstone is poor, and the clastic particles are compacted and degenerated. It features concave-convex contact, and base cementation playing a main role. Because of the difference in pore structure, within the experimental range, when the temperature rises and the confining pressure increases, the influence of confining pressure on the mineral particles leads to the change of permeability. The confining pressure increases the plastic deformation of the intergranular particles. There is an irreversible phenomenon in the process of rising and falling of the confining pressure, while the effect of temperature on permeability is small. The three coupling surfaces of permeability, temperature and confining pressure of weakly cemented sand-stone with different granularities are developed, and the corresponding coupling equations are presented. Therefore, during construction in the weakly cemented stratum, substantial deformation of surrounding rock due to sensitivity of permeability to confining pressure should be avoided, and active support measures should be strengthened in the aquifer layer.

  3. Method for the determination of clay and mica concentrations in subsurface sandstone formations through radioactive logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1984-01-01

    A method is described for radioactivity well logging in a subsurface sandstone formation penetrated by a borehole. The invention relates particularly to clay and mica contents, which are determined from the natural gamma-ray activities. The natural sources of gamma radiation in the formation, are the trace elements thorium, uranium and potassium. (U.K.)

  4. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones

    Science.gov (United States)

    Atapour, Hadi; Mortazavi, Ali

    2018-04-01

    The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.

  5. Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, U.K

    International Nuclear Information System (INIS)

    Bath, A.H.; Edmunds, W.M.; Andrews, J.N.

    1978-01-01

    A detailed geochemical study (elemental, isotopic and dissolved inert gases) of unconfined and confined sections of the Triassic non-marine sandstone aquifer in Eastern England has been undertaken. Aspects of the recharge history of this aquifer over the past 40 000 years are revealed by examination of the data. (orig./HK) [de

  6. Low field NMR surface relaxivity studies of chalk and argillaceous sandstones

    DEFF Research Database (Denmark)

    Katika, Konstantina; Fordsmand, Henrik; Fabricius, Ida Lykke

    2017-01-01

    field chalk and Solsort field greensand have higher ρ at higher Larmor frequency. By contrast, ρ of the purely calcitic Stevns chalk and quartzitic Berea sandstone proved not to be affected by the changes in frequency. T2 distributions at temperatures ranging from 10 °C to 60 °C provided comparison...

  7. Numerical simulation of roadway support in a sandstone-type uranium mine

    International Nuclear Information System (INIS)

    Liu Huipeng; Li Yu; Song Lixia

    2009-01-01

    At present, the most surrounding rocks of sandstone-type uranium mines in China are mudstone, sandstone, pelitic siltstone, and so on. They show the characteristics of soft rock. Such uranium deposit is not fit for in-situ leaching. If the uranium ores are mined by conventional mining method, one of the problems to be solved is the support technique in the soft rock roadway. So, taking a uranium mine in Inner Mongolia as the research object, the support technique in the soft rock roadway of the sandstone-type uranium deposits is studied. Through on-site engineering geological investigation and laboratory test, the main reasons for roadway damage are analyzed. A technique of support in the soft rock roadway of sandstone-type uranium deposits is put forward by drawing on the expericnce of soft rock roadway support in coal mines. The roadway shape and support parameters are optimized by using a numerical simulation method. The results verified the feasibility of the supporting technique. (authors)

  8. Recent Atmospheric Deposition and its Effects on Sandstone Cliffs in Bohemian Switzerland National Park, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Vařilová, Z.; Navrátil, Tomáš; Dobešová, Irena

    2011-01-01

    Roč. 220, 1/4 (2011), s. 117-130 ISSN 0049-6979 Institutional research plan: CEZ:AV0Z30130516 Keywords : acid deposition * sandstone percolates * chemical weathering * salt efflorescence * Black Triangle * aluminum * sulfates Subject RIV: DD - Geochemistry Impact factor: 1.625, year: 2011

  9. Aeromagnetic gradient survey and elementary application in sandstone type uranium deposits prospecting

    International Nuclear Information System (INIS)

    Li Xiaolu; Chang Shushuai

    2009-01-01

    The principle,advantage and data processing of aeromagnetic gradient survey approach is introduced in this paper, and used to identify the shallow surface faults, uranium ore-forming environment and depth of magnetic body for the prospecting of sandstone type uranium deposits. (authors)

  10. Diversity and complexity of the Araracuara sandstone flora and vegetation in the Colombian Amazon

    NARCIS (Netherlands)

    Cleef, A.M.; Arbelaez Velasquez, M.V.; Friis, I.; Balslev, H.

    2005-01-01

    Insular open vegetation of the western Guayana Shield in Colombia (c.150-1000 m) surrounded by NW Amazon rain forest (over 3000 mm annual precipitation) has been botanically unexplored until the early 1990¿s. During recent botanical exploration of the sandstone plateaus of the Araracuara region a

  11. Effect of modified ethylsilicate consolidants on the mechanical properties of sandstone

    Czech Academy of Sciences Publication Activity Database

    Remzová, Monika; Šašek, Petr; Frankeová, Dita; Slížková, Zuzana; Rathouský, Jiří

    2016-01-01

    Roč. 112, JUN 2016 (2016), s. 674-681 ISSN 0950-0618 R&D Projects: GA MK(CZ) DF11P01OVV012 Keywords : sandstones * ethylsilicate consolidant * sol-gel process Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.169, year: 2016

  12. Continuity and internal properties of Gulf Coast sandstones and their implications for geopressured energy development. Annual report, November 1, 1980-October 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R.A.; Ewing, T.E.; Tyler, N.

    1982-06-01

    Systematic investigation, classification, and differentiation of the intrinsic properties of genetic sandstone units that typify many geopressured geothermal aquifers and hydrocarbon reservoirs of the Gulf Coast region are provided. The following are included: structural and stratigraphic limits of sandstone reservoirs; characteristics and dimensions of Gulf Coast Sandstones; fault compartment areas; comparison of production and geologic estimates of aquifer volume; geologic setting and reservoir characteristics, wells of opportunity; internal properties of sandstones and implications for geopressured energy development. (MHR)

  13. Trends in drug delivery through tissue barriers containing tight junctions.

    Science.gov (United States)

    Tscheik, Christian; Blasig, Ingolf E; Winkler, Lars

    2013-04-01

    A limitation in the uptake of many drugs is the restricted permeation through tissue barriers. There are two general ways to cross barriers formed by cell layers: by transcytosis or by diffusion through the intercellular space. In the latter, tight junctions (TJs) play the decisive role in the regulation of the barrier permeability. Thus, transient modulation of TJs is a potent strategy to improve drug delivery. There have been extensive studies on surfactant-like absorption enhancers. One of the most effective enhancers found is sodium caprate. However, this modulates TJs in an unspecific fashion. A novel approach would be the specific modulation of TJ-associated marvel proteins and claudins, which are the main structural components of the TJs. Recent studies have identified synthetic peptidomimetics and RNA interference techniques to downregulate the expression of targeted TJ proteins. This review summarizes current progress and discusses the impact on TJs' barrier function.

  14. Bridging the Gap on Tight Separation Brown Dwarf Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Gelino, Christopher R.; Melis, Carl; Blake, Cullen

    2015-01-01

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (candidates from a library of 738 spectra from the SpeX Prism Spectral Libraries. We present twelve new binary candidates, confirm two previously reported candidates and rule out other two previously reported candidates. All of our candidates have primary and secondary spectral types between M7-L7 and L8-T8 respectively. We find that blue L dwarfs and subdwarfs are contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may potentially add to the growing list of tight separation binaries, giving further insight into brown dwarf formation scenarios.

  15. Approximate equiangular tight frames for compressed sensing and CDMA applications

    Science.gov (United States)

    Tsiligianni, Evaggelia; Kondi, Lisimachos P.; Katsaggelos, Aggelos K.

    2017-12-01

    Performance guarantees for recovery algorithms employed in sparse representations, and compressed sensing highlights the importance of incoherence. Optimal bounds of incoherence are attained by equiangular unit norm tight frames (ETFs). Although ETFs are important in many applications, they do not exist for all dimensions, while their construction has been proven extremely difficult. In this paper, we construct frames that are close to ETFs. According to results from frame and graph theory, the existence of an ETF depends on the existence of its signature matrix, that is, a symmetric matrix with certain structure and spectrum consisting of two distinct eigenvalues. We view the construction of a signature matrix as an inverse eigenvalue problem and propose a method that produces frames of any dimensions that are close to ETFs. Due to the achieved equiangularity property, the so obtained frames can be employed as spreading sequences in synchronous code-division multiple access (s-CDMA) systems, besides compressed sensing.

  16. S0 Tight Loop Studies on ICHIRO 9-Cell Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Fumio [KEK; Konomi, T. [KEK; Saito, Kenji [KEK; Bice, Damon [Fermilab; Crawford, Anthony C. [JLAB; Geng, Rongli [JLAB

    2009-11-01

    We have continued high gradient R&D of ICHIRO 9-cell cavities at KEK. ICHIRO 9-cell cavity #5 (I9#5) that has no end groups on beam tube to focus on high gradient sent to Jlab as S0 tight loop study. Surface treatments and vertical test were repeated 3 times at Jlab, and then I9#5 sent back to KEK. We also repeated surface treatments and test at KEK. Maximum gradients were 36.5MV/m at Jlab, and 33.7MV/m at KEK so far. Now we are struggling with the puzzle why the results of singles do not work well on 9-cell cavities.

  17. A characterization of tight and dual generalized translation invariant frames

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2015-01-01

    , for each j we let Γj, be a closed subgroup of G such that G/Γj is compact. A GTI system is then the collection of functions UjεJ{gj, p(· - γ}γεΓj, pεPj. Many well known systems, such as wavelet, shearlet and Gabor systems, both the discrete and continuous types, are GTI systems. We characterize when...... such systems form tight frames, and when two GTI Bessel systems form dual frames for L2(G). In particular, this offers a unified approach to the theory of discrete and continuous frames and, e.g., yields well known results for discrete and continuous Gabor and wavelet systems....

  18. Zonulin, regulation of tight junctions, and autoimmune diseases.

    Science.gov (United States)

    Fasano, Alessio

    2012-07-01

    Recent studies indicate that besides digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to regulate the trafficking of environmental antigens across the host mucosal barrier. Intestinal tight junctions (TJs) create gradients for the optimal absorption and transport of nutrients and control the balance between tolerance and immunity to nonself antigens. To meet diverse physiological challenges, intestinal epithelial TJs must be modified rapidly and in a coordinated fashion by regulatory systems that orchestrate the state of assembly of the TJ multiprotein network. While considerable knowledge exists about TJ ultrastructure, relatively little is known about their physiological and pathophysiological regulation. Our discovery of zonulin, the only known physiologic modulator of intercellular TJs described so far, has increased our understanding of the intricate mechanisms that regulate the intestinal epithelial paracellular pathway and has led us to appreciate that its upregulation in genetically susceptible individuals leads to autoimmune diseases. © 2012 New York Academy of Sciences.

  19. Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars

    Science.gov (United States)

    Yen, A. S.; Ming, D. W.; Vaniman, D. T.; Gellert, R.; Blake, D. F.; Morris, R. V.; Morrison, S. M.; Bristow, T. F.; Chipera, S. J.; Edgett, K. S.; Treiman, A. H.; Clark, B. C.; Downs, R. T.; Farmer, J. D.; Grotzinger, J. P.; Rampe, E. B.; Schmidt, M. E.; Sutter, B.; Thompson, L. M.; MSL Science Team

    2017-08-01

    The Mars rover Curiosity in Gale crater conducted the first-ever direct chemical and mineralogical comparisons of samples that have clear parent (unaltered) and daughter (altered) relationships. The mineralogy and chemistry of samples within and adjacent to alteration halos in a sandstone formation were established by the Chemistry and Mineralogy (CheMin) X-ray diffraction (XRD) instrument and the Alpha Particle X-ray Spectrometer (APXS), respectively. The Stimson formation sandstones unconformably overlie the Murray mudstone formation and represent the youngest stratigraphic unit explored by Curiosity to date. Aqueous alteration of the parent sandstone resulted in a loss of half of the original crystalline mineral phases and a three-fold increase in X-ray amorphous material. Aqueous fluids extensively leached Mg, Al, Mn, Fe, Ni, Zn and other elements from the parent material, decreased the pyroxene to feldspar ratio by a factor of two, introduced Ca and mixed-cation sulfates, and both passively and actively enriched the silica content. Leaching of Mg, Al, Mn, Fe, Ni and Zn and enrichment of Si and S are also observed in alteration halos in the underlying mudstone. These observations are consistent with infiltration of subsurface fluids, initially acidic and then alkaline, propagating along fractures crosscutting the Stimson sandstone and Murray mudstone. The geochemistry and mineralogy suggest a complicated diagenetic history with multiple stages of aqueous alteration under a variety of environmental conditions (e.g. both low and moderate pH). The formation of these alteration halos post-dates lithification of the sandstones and mudstones and represents one of the youngest hydrogeologic events presently known to have occurred in Gale crater.

  20. Upper cretaceous to paleocene depositional sequences and sandstone petrography of southwestern Patagonia (Argentina and Chile)

    Science.gov (United States)

    Macellari, C. E.; Barrio, C. A.; Manassero, M. J.

    Upper Cretaceous to Paleocene strata exposed along the Andean margin of Patagonia south of 50°S were deposited in a foreland basin and comprise a complex transition from continental to marine facies. Three unconformity-bounded sequences are observed within the sedimentary succession studied. Sequence 1 (upper Campanian) displays a rapid north-to-south transition from upper delta plain mudstones (Cerro Fortaleza Formation) through lower delta plain and subaqueous delta plain sandstones (La Anita Formation) to delta-slope and basinal turbidites (Alta Vista and Tres Pasos Formations). Sequence 2 (Maastrichtian-Paleocene) was initiated with braided river sediments (La Irene Formation), deposited over a Type II unconformity ( sensu Vail et al., 1984). These rocks are overlain by meandering fluvial sandstones and mudstones (Chorrillo Formation) that interfinger to the south with fossiliferous shallow marine sandstones (upper Cerro Cazador Formation). Sequence 3 (Paleocene) is composed of shallow marine conglomerates and crossbedded sandstones (Calafate and Cerro Dorotea Formations). These rocks are separated by an angular unconformity from subjacent units. Sandstone petrographic analysis indicates the presence of two main petrofacies within the rocks studied. A quartz-rich petrofacies, present to the north of the basin during late Campanian to early Maastrichtian time, was derived from continental crustal block and recycled orogen sources that were possibly exposed to the northwest of the basin. The second petrofacies (volcanic-rich petrofacies) was restricted to the south of the basin during the late Campanian to early Maastrichtian, but covered the entire area during the late Maastrichtian and Paleocene. These sediments were derived from a dissected magmatic arc located to the west of the study area. The presence of abundant tuffaceous intercalations, as well as fresh andesitic fragments, indicates contemporaneous volcanism near the Cretaceous/Tertiary boundary. The

  1. Desert and groundwater dynamics of the Jurassic Navajo Sandstone, southeast Utah

    Science.gov (United States)

    Chan, M. A.; Hasiotis, S. T.; Parrish, J. T.

    2017-12-01

    The Jurassic Navajo Sandstone of southeastern Utah is a rich archive of a desert complex with an active groundwater system, influenced by climate changes and recharge from the Uncompahgre Uplift of the Ancestral Rocky Mountains. This eastern erg margin was dominated by dune deposits of large (>10 m thick) and small (m-scale) crossbedded sandstone sets. Within these porous deposits, common soft sediment deformation is expressed as contorted and upturned bedding, fluid escape structures, concentrations of clastic pipes with ring faults, and thick intervals of massive sandstone embedded in crossbedded sandstone. Collectively, these deformation features reflect changes and/or overpressure in the groundwater system. Interdune deposits record laterally variable bounding surfaces, resulting from the change in position of and proximity to the water table. Interdune modification by pedogenesis from burrows, roots, and trees suggest stable periods of moisture and water supply, as well as periodic drying expressed as polygonal cracked mud- to sand-cracked layers. Freshwater bedded and platy limestone beds represent lakes of decameter to kilometer extent, common in the upper part of the formation. Some carbonate springs that fed the lakes are preserved as limestone buildups (tufa mounds) with microbial structures. Extradunal deposits of rivers to small ephemeral streams show channelized and lenticular, subhorizontal, cm- to m-scale sandstone bodies with basal scours and rip-up clasts. Proxy records of the active hydrology imply a changing landscape at the Navajo desert's edge, punctuated by periods of significant rainfall, runoff, rivers, lakes, and springs, fed by high water table conditions to sustain periods of flourishing communities of plants, arthropods, reptiles, mammals, and dinosaurs. Strong ground motion perturbations periodically disrupted porous, water-saturated sands with possible surface eruptions, adding to the dynamic activity of the desert regime.

  2. Sandstone geomorphology of the Golden Gate Highlands National Park, South Africa, in a global context

    Directory of Open Access Journals (Sweden)

    Stefan W. Grab

    2011-03-01

    Full Text Available The Golden Gate Highlands National Park (GGHNP is well known for its impressive sandstone formations. While previous geoscience research in the park has focused on geology, palaeontology, slope forms and the prominent lichen weathering, remarkably little has been written on the diversity and possible origins of sandstone phenomena in the region. The objectives of this study were (1 to present a geomorphological map of prominent and interesting landforms for particular portions of the park and (2 to document the variety of macro- and microscale sandstone formations observed. During field work, we undertook global positioning system measurements to map landforms and, in addition, measured the dimensions of several landform types. A Schmidt hammer was used to conduct rock hardness tests at a variety of localities and lithologies for comparative purposes. We indentified and mapped 27 macro- and microscale sandstone landforms, of which 17 are described in detail. It is demonstrated that for the most part, the landforms are a likely product of surface lithological reactions to a regional climate characterised by pronounced multitemporal temperature and moisture shifts, recently and in the past. However, many of the geomorphological processes producing landforms are controlled by microclimates set up by factors such as macro- and microtopography. Conservation implications: The GGHNP is best known for its geological, geomorphological and palaeontological heritage. This paper highlights the diversity of sandstone geomorphological phenomena, many of them rare and ‘unique’ to the region. Not only are these landforms of aesthetic interest to tourists, but they also provide microhabitats for biota. Thus, conservation of biota requires associated conservation of geo-environments where they are established.

  3. The Structure of Sandstones in Productive Horizons of the Permian Bituminous Deposits of Tatarstan (Russia

    Directory of Open Access Journals (Sweden)

    R.R. Khasanov

    2017-03-01

    Full Text Available The features of sandstones in productive horizons of the Permian bituminous deposits of Tatarstan (Russia have been considered. The composition and internal structure of sandstones have been studied by optical microscopy, electron paramagnetic resonance (EPR, and electron microscopy, as well as using a number of physical and chemical methods to solve special problems. The investigated sandstones belong to the greywacke group. The clastic material of sandstones contains grains of feldspar, quartz, mica, and particles of volcanic rocks. The nature and composition of cement are important parameters that determine the filtration-capacity properties of sedimentary rocks. Bituminous deposits are characterized by vertical zoning, which is expressed in the alternation of sites with varying degrees of cementation of rocks. Atten-tion has been also paid to post-sedimentation processes, such as pyritization and calcification. Pyrite forms rare xenomorphic isometric grains. The formation of pyrite occurs in diagenesis and is associated with the processes of biogenic sulfate reduction. The source of calcium for the crystallization of dispersed cal-cite in the porous space of sandstones is the underground waters of red-colored Ufimian deposits characterized by the alkaline properties favorable for calcium migration. According to the data of X-ray computed tomography, the internal space of the studied rocks is not homogeneous and represented by a system of communicated and isolated pores. In the studied samples, two types of organic matter differing in organic radicals have been detected. The first type is an organic substance of coal origin. The second type of organic matter belongs to the oil origin and refers to bitumens in its properties. The presence of a significant percentage of asphaltenes in the bitumen composition indicates the destruction of the oil substance in the near-surface conditions.

  4. Proceedings of the natural gas research and development contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.D.; Shoemaker, H.D.; Byrer, C.W. (eds.)

    1990-11-01

    The purpose of this meeting was to present results of the research in the DOE-sponsored Natural Gas Program, and simultaneously to provide a forum for real-time technology transfer, to the active research community, to the interested public, and to the natural gas industry, who are the primary users of this technology. The current research focus is to expand the base of near-term and mid-term economic gas resources through research activities in Eastern Tight Gas, Western Tight Gas, Secondary Gas Recovery (increased recovery of gas from mature fields); to enhance utilization, particularly of remote gas resources through research in Natural Gas to Liquids Conversion; and to develop additional, long term, potential gas resources through research in Gas Hydrates and Deep Gas. With the increased national emphasis on the use of natural gas, this forum has been expanded to include summaries of DOE-sponsored research in energy-related programs and perspectives on the importance of gas to future world energy. Thirty-two papers and fourteen poster presentations were given in seven formal, and one informal, sessions: Three general sessions (4 papers); Western Tight Gas (6 papers); Eastern Tight Gas (8 papers); Conventional/Speculative Resources (8 papers); and Gas to Liquids (6 papers). Individual reports are processed separately on the data bases.

  5. Effects of Tight Versus Non Tight Control of Metabolic Acidosis on Early Renal Function After Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Farhad Etezadi

    2012-09-01

    Full Text Available Background Recently, several studies have been conducted to determine the optimal strategy for intraoperative fluid replacement therapy in renal transplantation surgery. Since infusion of sodium bicarbonate as a buffer seems to be safer than other buffer compounds (lactate, gluconate, acetatethat indirectly convert into it within the liver, We hypothesized tight control of metabolic acidosis by infusion of sodium bicarbonate may improve early post-operative renal function in renal transplant recipients. Methods:120 patients were randomly divided into two equal groups. In group A, bicarbonate was infused intra-operatively according to Base Excess (BE measurements to achieve the normal values of BE (5 to +5 mEq/L. In group B, infusion of bicarbonate was allowed only in case of severe metabolic acidosis (BE [less than or equal to] 15 mEq/L or bicarbonate [less than or equal to] 10 mEq/L or PH [less than or equal to] 7.15. Minute ventilation was adjusted to keep PaCO2 within the normal range. Primary end-point was sampling of serum creatinine level in first, second, third and seventh post-operative days for statistical comparison between groups. Secondary objectives were comparison of cumulative urine volumes in the first 24 h of post-operative period and serum BUN levels which were obtained in first, second, third and seventh post-operative days. Results:In group A, all of consecutive serum creatinine levels were significantly lower in comparison with group B. With regard to secondary outcomes, no significant difference between groups was observed. Conclusion:Intra-operative tight control of metabolic acidosis by infusion of Sodium Bicarbonate in renal transplant recipients may improve early post-operative renal function.

  6. Effects of tight versus non tight control of metabolic acidosis on early renal function after kidney transplantation

    Directory of Open Access Journals (Sweden)

    Etezadi Farhad

    2012-09-01

    Full Text Available Abstract Background Recently, several studies have been conducted to determine the optimal strategy for intra-operative fluid replacement therapy in renal transplantation surgery. Since infusion of sodium bicarbonate as a buffer seems to be safer than other buffer compounds (lactate, gluconate, acetatethat indirectly convert into it within the liver, We hypothesized tight control of metabolic acidosis by infusion of sodium bicarbonate may improve early post-operative renal function in renal transplant recipients. Methods 120 patients were randomly divided into two equal groups. In group A, bicarbonate was infused intra-operatively according to Base Excess (BE measurements to achieve the normal values of BE (−5 to +5 mEq/L. In group B, infusion of bicarbonate was allowed only in case of severe metabolic acidosis (BE ≤ −15 mEq/L or bicarbonate ≤ 10 mEq/L or PH ≤ 7.15. Minute ventilation was adjusted to keep PaCO2 within the normal range. Primary end-point was sampling of serum creatinine level in first, second, third and seventh post-operative days for statistical comparison between groups. Secondary objectives were comparison of cumulative urine volumes in the first 24 h of post-operative period and serum BUN levels which were obtained in first, second, third and seventh post-operative days. Results In group A, all of consecutive serum creatinine levels were significantly lower in comparison with group B. With regard to secondary outcomes, no significant difference between groups was observed. Conclusion Intra-operative tight control of metabolic acidosis by infusion of Sodium Bicarbonate in renal transplant recipients may improve early post-operative renal function.

  7. Natural gas; Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carlos A.; Moraes, Claudia C.D. [Eletricidade de Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil); Fonseca, Carlos H.F. [Centrais Eletricas de Santa Catarina S.A., Florianopolis, SC (Brazil); Silva, Clecio Fabricio da; Alves, Ricardo P. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Sposito, Edivaldo Soares; Hulle, Lutero [Espirito Santo Centrais Eletricas S.A. (ESCELSA), Vitoria, ES (Brazil); S. Martins, Icaro da [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil); Vilhena, Joao Luiz S. de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Fagundes, Zaluar Aquino [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1996-12-31

    An increase in the consumption of natural gas in Brazil is an expected fact in what concerns energetic planning. This work presents the existing situation in what concerns natural gas utilization in the main world economies, as well as an analysis of the participation of this fuel among the energy final consumption per sources. The Brazilian consumption of natural gas is also analysed as well as the international agreement between Brazil and Bolivia for natural gas commercialization. Some legal, institutional and political aspects related to natural gas commercialization are also discussed. Finally, several benefits to be brought by the utilization of natural gas are presented 10 refs., 3 tabs.

  8. Current status and prospects of uranium geology developments of foreign in-situ leachable sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Wang Zhengbang

    2002-01-01

    Firstly, with emphasis on in-situ leachable sandstone-type uranium deposits, the prospecting history of uranium deposits worldwide and its scientific research development are generally reviewed in four steps, and their basic historical experience is also summarized. Secondly, based on the detailed description of current development status of uranium geology of foreign in-situ leachable sandstone-type uranium deposits the important strategic position of sandstone-type uranium deposits in overall uranium resources all-over-the-world and its classification, spatial-temporal distribution and regulation, and metallogenic condition of sandstone-type uranium deposits are analysed thoroughly in five aspects: techtonics, paleo-climate, hydrogeology, sedimentary facies and lithology, as well as uranium sources: Afterwards, evaluation principles of three type of hyper-genic, epigenetic infiltrated sandstone-type uranium deposits are summarized. Based on sandstone-type uranium deposits located two important countries: the United States and Russia, the current development status of prospecting technology for in-situ leachable sandstone-type uranium deposits in foreign countries is outlined. Finally, according to the prospects of supply-demand development of global uranium resources, the author points out seriously that Chinese uranium geology is faced with a severe challenge, and proposes directly four strategic measures that should be taken

  9. Experimental and simulation determination of minimum miscibility pressure for a Bakken tight oil and different injection gases

    Directory of Open Access Journals (Sweden)

    Sheng Li

    2017-03-01

    Full Text Available The effective development of unconventional tight oil formations, such as Bakken, could include CO2 enhanced oil recovery (EOR technologies with associated benefits of capturing and storing large quantities of CO2. It is important to conduct the gas injection at miscible condition so as to reach maximum recovery efficiency. Therefore, determination of the minimum miscibility pressure (MMP of reservoir live oil–injection gas system is critical in a miscible gas flooding project design. In this work, five candidate injection gases, namely CO2, CO2-enriched flue gas, natural gas, nitrogen, and CO2-enriched natural gas, were selected and their MMPs with a Bakken live oil were determined experimentally and numerically. At first, phase behaviour tests were conducted for the reconstituted Bakken live oil and the gases. CO2 outperformed other gases in terms of viscosity reduction and oil swelling. Rising bubble apparatus (RBA determined live oil–CO2 MMP as 11.9 MPa and all other gases higher than 30 MPa. The measured phase behaviour data were used to build and tune an equation-of-state (EOS model, which calculated the MMPs for different live oil-gas systems. The EOS-based calculations indicated that CO2 had the lowest MMP with live oil among the five gases in the study. At last, the commonly-accepted Alston et al. equation was used to calculate live oil–pure CO2 MMP and effect of impurities in the gas phase on MMP change. The Bakken oil–CO2 had a calculated MMP of 10.3 MPa from the Alston equation, and sensitivity analysis showed that slight addition of volatile impurities, particularly N2, can increase MMP significantly.

  10. Case study - Dynamic pressure-limited capacity and costs of CO2 storage in the Mount Simon sandstone

    Science.gov (United States)

    Anderson, Steven T.; Jahediesfanjani, Hossein

    2017-01-01

    Widespread deployment of carbon capture and storage (CCS) is likely necessary to be able to satisfy baseload electricity demand, to maintain diversity in the energy mix, and to achieve climate and other objectives at the lowest cost. If all of the carbon dioxide (CO2) emissions from stationary sources (such as fossil-fuel burning power plants, and other industrial plants) in the United States needed to be captured and stored, it could be possible to store only a small fraction of this CO2 in oil and natural gas reservoirs, including as a result of CO2 utilization for enhanced oil recovery. The vast majority would have to be stored in saline-filled reservoirs (Dahowski et al., 2005). Given a lack of long-term commercial-scale CCS projects, there is considerable uncertainty in the risks, dynamic capacity, and their cost implications for geologic storage of CO2. Pressure buildup in the storage reservoir is expected to be a primary source of risk associated with CO2 storage, and could severely limit CO2 injection rates (dynamic storage capacities). Most cost estimates for commercial-scale deployment of CCS estimate CO2 storage costs under assumed availability of a theoretical capacity to store tens, hundreds, or even thousands of gigatons of CO2, without considering geologic heterogeneities, pressure limitations, or the time dimension. This could lead to underestimation of the costs of CO2 storage (Anderson, 2017). This paper considers the impacts of pressure limitations and geologic heterogeneity on the dynamic CO2 storage capacity and storage (injection) costs. In the U.S. Geological Survey (USGS)’s National Assessment of Geologic CO2 Storage Resources (USGS, 2013), the mean estimate of the theoretical storage capacity in the Mount Simon Sandstone was about 94 billion metric tons of CO2. However, our results suggest that the pressure-limited capacity after 50 years of injection could be only about 4% of the theoretical geologic storage capacity in this formation

  11. Gas and Gas Pains

    Science.gov (United States)

    ... Gas and gas pains Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  12. Emplacement processes of tuffaceous sandstones at IODP Site C0011B, Nankai Trough, derived from modal analysis

    Science.gov (United States)

    Schindlbeck, J. C.; Kutterolf, S.; Freundt, A.

    2011-12-01

    Tuffaceous sandstones are characterized by their high amount (25 to 75%) of pyroclasts in their modal composition. During IODP Expedition 322 three interbeds of tuffaceous sandstones have been found within a moderately lithified and bioturbated silty claystone sequence in the late Miocene (>7.07 to ~9.0 Ma) upper part of the middle Shikoku Basin facies. Of the three sandstones, units 1 and 2 are single beds whereas unit 3 is composed of three beds. Modal analyses of 29 sandstone thin sections reveal systematic vertical changes within each bed. Generally low-density pyroclasts are enriched at the top (50-60 vol%) of each sandstone bed whereas dense lithic components (25-30 vol%) and minerals (25-30 vol%) are enriched at the bottom. The vertically varying abundance of various types of lithic fragments (sedimentary, volcanoclastic and metamorphic) suggests that these have also been segregated according to their respective densities. The highest amount of fine-grained matrix glass is found in the middle of each bed. Pumice and lithic fragments in the middle and upper parts of the sandstone beds carry ash coatings. For sandstone package 3, in contrast to 1 and 2, core pictures and thin section analyses indicate a subdivision in three units showing the same significant variations in top to bottom enrichment. This suggests three sedimentation events following each other in short time intervals. Glass and mineral chemistry of each sandstone bed show no significant vertical variations. Specifically the matrix glass-shard major element compositions are identical to the pumice clast composition in each tuffaceous sandstone bed. The compositions of amphibole and pyroxene crystals differ only slightly between the sandstone packages. Application of the Ridolfi et al. (2009) thermobarometric calculations to amphiboles of sandstone packages 1 and 2 suggests that each of these was derived from a volcanic system comprising both a deep and a shallow magma reservoir. Thickness and

  13. Experimental determination of trace element mobility in UK North Sea sandstones under conditions of geological CO2 storage

    Science.gov (United States)

    Carruthers, Kit; Wilkinson, Mark; Butler, Ian B.

    2016-04-01

    Offshore UK geological formations have the capacity to store > 100 years' worth of UK CO2 output from industry and power generation, if utilised for carbon capture and storage (CCS) schemes. During CO2 storage or CO2-Enhanced Oil Recovery (CO2-EOR), formation waters may be produced at the surface to be disposed of into the marine environment. Laboratory and field scale studies, with an emphasis on the effects on onshore shallow potable groundwaters, have shown that CO2 dissolution in formation waters during injection and storage acidifies the waters and promotes mobilisation from the reservoir sandstones of major and trace elements into solution. Of relevance to the UK context, eight of these elements are specifically identified as potentially hazardous to the marine environment: As, Cd, Cr, Cu, Hg, Ni, Pb, Zn. Batch experiments using simple borosilicate flasks sat on heating mantles were used in this study to determine concentrations of these 8 elements which could be leached from selected North Sea sandstones with bubbled CO2 and saline solutions, at formation temperatures. These concentration data were compared with produced water data from current UK offshore hydrocarbon extraction activities. The comparison showed that, taking the North Sea as a whole, the experimental results fall within the range of concentrations of current oil and gas activities. However, on a field-by-field basis, concentrations may be enhanced with CO2 storage, such that they are higher than waters normally produced from a particular field. Lead, nickel and zinc showed the greatest concentration increases in the experiments with the addition of CO2, with the other five elements of interest not showing any strong trends with respect to enhanced CO2. The origin of the increased trace element concentrations was investigated using sequential leaching experiments. A six step method of increasingly aggressive leaching was developed, based on modification of methods outlined by Tessier et al

  14. Compaction Bands Around Unstable Wellbores In Porous Sandstone and Their Dependence On Grain Bonding

    Science.gov (United States)

    Haimson, B.; Klaetsch, A.

    Compaction bands are narrow tabular zones of localized deformation that accommodate pure compaction and no shear and form perpendicular to the maximum principal stress. They have been observed in moderate- to high- porosity sandstones, and are of substantial practical importance in that their reduced porosity compared with that of the surrounding rock creates a potential barrier to flow in aquifers or oil reservoirs. We have conducted laboratory simulations of fie ld deep drilling by boring 20 mm-diameter holes into 150×150×230 mm rock blocks subjected to true triaxial far-field stresses (H>v>h), and found that beyond a threshold of horizontal stress differential borehole instability takes the form of `breakouts'. In granite, limestone, and 17%-porosity Berea sandstone breakouts have the typical shallow dog-eared shape. Thin section study shows that grain bonding in the 17% Berea sandstone is by iron-rich clay mineral cementation. However, breakouts in 25%-porosity Berea as well as in St. Peter sandstone are fracture-like, very long and narrow (several grain diameters), and oriented counterintuitively perpendicular to h direction. A narrow zone of compacted grains just ahead of the breakout tip is observed, resembling a compaction band. Breakouts in these rocks appear to be merely emptied compaction bands with debonded grains flushed off primarily by the circulating drilling fluid. Thin sections reveal that grain bonding, leading to formation of compaction bands and subsequently of fracture-like breakouts, is primarily by sutured contacts. In the 25% Berea as well as in the 18% St. Peter sandstone almost all compacted and debonded grains are intact, suggesting that failure occurs at grain sutures, while in the 12% St. Peter a narrow zone of crushed grains is clearly evident, caused by extensive failure of both sutured grain contacts and the grains themselves. The explanation for this micromechanical behavior lies in the additional observation that in the higher

  15. The impact of additives found in industrial formulations of TCE on the wettability of sandstone

    Science.gov (United States)

    Harrold, Gavin; Lerner, David N.; Leharne, Stephen A.

    2005-11-01

    The wettability of aquifer rocks is a key physical parameter which exerts an important control on the transport, residual trapping, distribution and eventual fate of chlorinated hydrocarbon solvents (CHSs) released into the subsurface. Typically chlorinated solvents are assumed to be non-wetting in water saturated rocks and unconsolidated sediments. However industrially formulated solvent products are often combined with basic additives such as alkylamines to improve their performance; and the mineral surfaces of aquifer rocks and sediments usually possess a range of acid and hydrogen-bonding adsorption sites. The presence of these sites provides a mechanism whereby the basic additives in CHSs can be adsorbed at the solvent phase/solid phase interface. Given the amphiphilic molecular structure of these additives, this may result in changes in the wetting conditions of the solid phase. The aim of this study was therefore to test this conjecture for two classes of additives (alkylamines and quaternary ammonium salts) that are often encountered in industrial solvent formulations. Wettability assessments were made on sandstone cores by means of measurements of spontaneous and forced water drainage and spontaneous and forced water imbibition and through contact angle measurements on a smooth quartz surface. No solvent/additive combination produced solvent wetting conditions, though dodecylamine and octadecylamine significantly reduced the water wetting preference of sandstone which frequently resulted in neutral wetting conditions. The large volume of spontaneous water drainage observed in wettability experiments involving cetyltrimethylammonium bromide and octadecyltrimethylammonium bromide, suggested that the sandstone cores in these tests remained strongly water wetting. However equilibrium static contact angles of around 60° were measured on quartz suggesting that the sandstone surfaces should be close to neutral wetting conditions. This paradox was finally

  16. Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    2012-11-01

    Full Text Available Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM, tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity < 8%, permeability < 0.85 × 10−3 μm2, abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self-reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different.

  17. Tight-binding model for materials at mesoscale

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-21

    TBM3 is an open source package for computational simulations of quantum materials at multiple scales in length and time. The project originated to investigate the multiferroic behavior in transition-metal oxide heterostructures. The framework has also been designed to study emergent phemona in other quantum materials like 2-dimensional transition-metal dichalcogenides, graphene, topological insulators, and skyrmion in materials, etc. In the long term, we will enable the package for transport and time-resolved phenomena. TBM3 is currently a C++ based numerical tool package and framework for the design and construction of any kind of lattice structures with multi-orbital and spin degrees of freedom. The fortran based portion of the package will be added in the near future. The design of TBM3 is in a highly flexible and reusable framework and the tight-binding parameters can be modeled or informed by DFT calculations. It is currently GPU enabled and feature of CPU enabled MPI will be added in the future.

  18. Tight binding of NAP-22 with acidic membrane lipids.

    Science.gov (United States)

    Maekawa, Shohei; Kobayashi, Yuumi; Morita, Mitsuhiro; Suzaki, Toshinobu

    2015-07-23

    Recovery of various signal transduction molecules in the detergent-resistant membrane microdomain (DRM) fraction suggests the importance of this region in cellular functions. Insolubility of the outer leaflet of DRM to the non-ionic detergent is ascribed to the tight association of cholesterol and sphingolipid. Since, poor localization of sphingolipid is observed in the inner leaflet, the physicochemical background of the insolubility of the inner leaflet is hence still an enigma. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the DRM of the neuronal cell membrane. A previous study showed the presence of several lipids in a NAP-22 fraction after the process of extraction and column chromatography. In this study, the effect of lipid extraction on NAP-22 was studied through native-gel electrophoresis, ultracentrifugation, and electron microscopic observation. The mobility of NAP-22 in native-PAGE was shifted from low to high after delipidation. Delipidated NAP-22 bound phosphatidylserine (PS), phosphatidylinosotol, and ganglioside. Some part of the mixture of PS and NAP-22 was recovered in the insoluble fraction after Triton X-100 treatment and the addition of cholesterol enhanced the amount of NAP-22 in the insoluble fraction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. The role of tight junctions in mammary gland function.

    Science.gov (United States)

    Stelwagen, Kerst; Singh, Kuljeet

    2014-03-01

    Tight junctions (TJ) are cellular structures that facilitate cell-cell communication and are important in maintaining the three-dimensional structure of epithelia. It is only during the last two decades that the molecular make-up of TJ is becoming unravelled, with two major transmembrane-spanning structural protein families, called occludin and claudins, being the true constituents of the TJ. These TJ proteins are linked via specific scaffolding proteins to the cell's cytoskeleton. In the mammary gland TJ between adjacent secretory epithelial cells are formed during lactogenesis and are instrumental in establishing and maintaining milk synthesis and secretion, whereas TJ integrity is compromised during mammary involution and also as result of mastitis and periods of mammary inflamation (including mastitis). They prevent the paracellular transport of ions and small molecules between the blood and milk compartments. Formation of intact TJ at the start of lactation is important for the establishment of the lactation. Conversely, loss of TJ integrity has been linked to reduced milk secretion and mammary function and increased paracellular transport of blood components into the milk and vice versa. In addition to acting as a paracellular barrier, the TJ is increasingly linked to playing an active role in intracellular signalling. This review focusses on the role of TJ in mammary function of the normal, non-malignant mammary gland, predominantly in ruminants, the major dairy producing species.

  20. Testing underground tanks for leak tightness at LLNL

    International Nuclear Information System (INIS)

    Henry, R.K.; Sites, R.L.; Sledge, M.

    1986-01-01

    Two types of tank systems are present at the Livermore Site: tanks and associated piping for the storage of fuel (forty-three systems), and tanks or sumps and associated piping for the retention of potentially contaminated wastewater (forty systems). The fuel systems were tested using commercially available test methods: Petro-Tite, Hunter Leak Lokator, Ezy-Chek, and Associated Environmental Systems (A.E.S.). In contrast to fuel tank systems, wastewater systems have containers that are predominantly open at the top and not readily testable. Therefore, a project to test and evaluate all available testing methods was initiated and completed. The commercial method Tank Auditor was determined to be appropriate for testing open-top tanks and sumps and this was the method used to test the majority of the open-top containers. Of the 81 tanks tested, 61 were found to be leak tight, 9 were shown to have leaks, and 11 yielded inconclusive results. Two tanks have not yet been tested because of operational constraints; they are sheduled to be tested within the next two months. Schedules are being developed for the retesting of tanks and for remedial actions

  1. Characterization of Tight Junction Proteins in Cultured Human Urothelial Cells

    Science.gov (United States)

    Rickard, Alice; Dorokhov, Nikolay; Ryerse, Jan; Klumpp, David J.; McHowat, Jane

    2010-01-01

    Tight junctions (TJs) are essential for normal function of epithelia, restricting paracellular diffusion and contributing to the maintainance of cell surface polarity. Superficial cells of the urothelium develop TJs, the basis for the paracellular permeability barrier of the bladder against diffusion of urinary solutes. Focusing on the superficial cell layer of stratified cell cultures of an immortalized human ureteral cell line, TEU-2 cells, we have examined the presence of TJ and TJ-associated proteins. TEU-2 cells were treated with calcium chloride and fetal bovine serum culture conditions used to induce stratification that resembles the normal transitional epithelial phenotype. Cultures were examined for TJ and TJ-associated proteins by confocal immuno-fluorescence microscopy and evaluated for TJ mRNA by reverse transcriptase-polymerase chain reaction (RT- PCR). TEU-2 cultures exhibited immunoreactivity at intercellular margins for claudins 1, 4, 5, 7, 14 and 16 whereas claudins 2, 8 and 12 were intracellular. RT-PCR corroborated the presence of these claudins at the mRNA level. The TJ-associated proteins occludin, JAM-1, and zonula occludens (ZO-1, ZO-2 and ZO-3) were localized at cell margins. We have found that numerous TJs and TJ-associated proteins are expressed in stratified TEU-2 cultures. Further, we propose TEU-2s provide a useful ureteral model for future studies on the involvement of TJs proteins in the normal and pathological physiology of the human urinary system. PMID:18553212

  2. End-of-fill study on collimator tight settings

    CERN Document Server

    Assmann, R; Burkart, F; Cauchi, M; Deboy, D; Redaelli, S; Rossi, A; Schmidt, R; Valentino, G; Wollmann, D

    2012-01-01

    In 2010 and 2011 the collimation system has been operated with relaxed settings, i.e. with retractions between different collimator families larger than the nominal settings that provide optimum cleaning. This configuration ensured a sufficient cleaning performance at 3.5 TeV while allowing larger tolerances on orbit control. Tighter collimator settings were proposed to push the cleaning performance and to allow larger orbit margins between TCDQ dump protection and tertiary collimators, which opens the possibility to push further the LHC β* reach. After having verified with beam that the cleaning is improved as expected, the feasibility of tighter collimator settings must be addressed with high stored intensity. For this purpose, an end-of-fill study was proposed after a standard physics fill with 1380 bunches nominal bunches at 3.5 TeV, for a total stored energy of 95 MJ. During this test, primary and secondary collimators were moved to that tight settings after about 8 hours of stable physics conditions in...

  3. Fuel assembly leak tightness control on WWER-1000 reactor

    International Nuclear Information System (INIS)

    Ivanova, R.; Gerchev, N.; Mateev, A.

    2001-01-01

    The main index for integrity of the fuel rods cladding is the specific activity value of the primary coolant. This value determines the safe operation of the reactor. The limit for safe operation of WWER-1000 reactor is the value of the total activity of Iodine isotopes in the primary coolant 5.0x10 -3 Ci/l. The paper briefly describes the methodology for performing a fuel tightness test (sipping test) and shows the results from these tests performed during the period 1987 -1999 in units 5 and 6 at the Kozloduy NPP. An additional index related to the safe operation is defined to characterize the fuel cladding integrity Fuel Reliability Index (FRI). The FRI is defined as value of the average activity of 131 I in the primary coolant, corrected with a part of precipitated 235 U migration and fixed to the general permanent purification frequency. Two criteria (quantitative and statistic) are determined to qualify the fuel cladding integrity. The results from sipping tests show good reliability of the fuel irradiated in unit 5 and 6 at the Kozloduy NPP

  4. Nanoscale capacitance: A quantum tight-binding model

    Science.gov (United States)

    Zhai, Feng; Wu, Jian; Li, Yang; Lu, Jun-Qiang

    2017-01-01

    Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C‧ and an effective capacitance Cd of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C‧ moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C‧. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties.

  5. Air-tight disposing device for solid radioactive waste

    International Nuclear Information System (INIS)

    Aoyama, Saburo.

    1976-01-01

    Object: In a construction for air-tightly connecting radioactive material handling equipment with a radioactive waste container through a vinyl bag, to use a multi-stage expansion tube to introduce the radioactive waste into the waste container in safe and positive manner. Structure: During normal operation in the radioactive material handling equipment, a multi-stage expansion cylinder is extended by operation of a remote shaft to suitably throw the waste in a state with a vinyl bag protected, whereas when the waste is disposed away from the equipment, the multi-stage expansion cylinder is contracted and received into a holder, and the vinyl bag is heated and sealed at a given position and cut, after which a cover of an outer container for disposal is closed and carried out. The vinyl bag remained on the side of the holder after sealed and cut is put into the waste container after a fresh vinyl bag, in which another waste container is received, has been secured to the holder. (Taniai, N.)

  6. Pre-Darcy flow in tight and shale formations

    Science.gov (United States)

    Dejam, Morteza; Hassanzadeh, Hassan; Chen, Zhangxin

    2017-11-01

    There are evidences that the fluid flow in tight and shale formations does not follow Darcy law, which is identified as pre-Darcy flow. Here, the unsteady linear flow of a slightly compressible fluid under the action of pre-Darcy flow is modeled and a generalized Boltzmann transformation technique is used to solve the corresponding highly nonlinear diffusivity equation analytically. The effect of pre-Darcy flow on the pressure diffusion in a homogenous formation is studied in terms of the nonlinear exponent, m, and the threshold pressure gradient, G1. In addition, the pressure gradient, flux, and cumulative production per unit area for different m and G1 are compared with the classical solution of the diffusivity equation based on Darcy flow. Department of Petroleum Engineering in College of Engineering and Applied Science at University of Wyoming and NSERC/AI-EES(AERI)/Foundation CMG and AITF (iCORE) Chairs in Department of Chemical and Petroleum Engineering at University of Calgary.

  7. Claudin-21 Has a Paracellular Channel Role at Tight Junctions

    KAUST Repository

    Tanaka, Hiroo

    2016-01-05

    Claudin protein family members, of which there are at least 27 in humans and mice, polymerize to form tight junctions (TJs) between epithelial cells, in a tissue- and developmental stage-specific manner. Claudins have a paracellular barrier function. In addition, certain claudins function as paracellular channels for small ions and/or solutes by forming selective pores at the TJs, although the specific claudins involved and their functional mechanisms are still in question. Here we show for the first time that claudin-21, which is more highly expressed in the embryonic than the postnatal stages, acts as a paracellular channel for small cations, such as Na+, similar to the typical channel-type claudins claudin-2 and -15. Claudin-21 also allows the paracellular passage of larger solutes. Our findings suggest that claudin-21-based TJs allow the passage of small and larger solutes by both paracellular channel-based and some additional mechanisms. © 2016, American Society for Microbiology. All Rights Reserved.

  8. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    DEFF Research Database (Denmark)

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-01-01

    (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional...... interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise....... permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional...

  9. Effect of drilling fluids on permeability of uranium sandstone. Report of Investigations/1984

    International Nuclear Information System (INIS)

    Ahlness, J.K.; Johnson, D.I.; Tweeton, D.R.

    1984-01-01

    The Bureau of Mines conducted laboratory and field experiments to determine the amount of permeability reduction in uranium sandstone after its exposure to different drilling fluids. Seven polymer and two bentonite fluids were laboratory-tested in their clean condition, and six polymer fluids were tested with simulated drill cuttings added. Sandstone cores cut from samples collected at an open pit uranium mine were the test medium. The clean fluid that resulted in the least permeability reduction was an hydroxyethyl cellulose polymer fluid. The greatest permeability reduction of the clean polymers came from a shale-inhibiting synthetic polymer. Six polymer fluids were tested with simulated drill cuttings added to represent field use. The least permeability reduction was obtained from a multi-polymer blend fluid. A field experiment was performed to compare how two polymer fluids affect formation permeability when used for drilling in situ uranium leaching wells

  10. Pore Fluid Effects on Shear Modulus for Sandstones with Soft Anisotropy

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four eigenvectors are pure shear modes with no coupling to the pore-fluidmechanics. The remaining two eigenvectors are linear combinations of pure compression and uniaxial shear, both of which are coupled to the fluid mechanics. After reducing the problem to a 2x2 system, the analysis shows in a relatively elementary fashion how a poroelastic system with isotropic solid elastic frame, but with anisotropy introduced through the poroelastic coefficients, interacts with the mechanics of the pore fluid and produces shear dependence on fluid properties in the overall mechanical system. The analysis shows, for example, that this effect is always present (though sometimes small in magnitude) in the systems studied, and can be quite large (up to a definite maximum increase of 20 per cent) in some rocks--including Spirit River sandstone and Schuler-Cotton Valley sandstone

  11. Spatial distribution of epibenthic molluscs on a sandstone reef in the Northeast of Brazil.

    Science.gov (United States)

    Martinez, A S; Mendes, L F; Leite, T S

    2012-05-01

    The present study investigated the distribution and abundance of epibenthic molluscs and their feeding habits associated to substrate features (coverage and rugosity) in a sandstone reef system in the Northeast of Brazil. Rugosity, low coral cover and high coverage of zoanthids and fleshy alga were the variables that influenced a low richness and high abundance of a few molluscan species in the reef habitat. The most abundant species were generalist carnivores, probably associated to a lesser offer and variability of resources in this type of reef system, when compared to the coral reefs. The results found in this study could reflect a normal characteristic of the molluscan community distribution in sandstone reefs, with low coral cover, or could indicate a degradation state of this habitat if it is compared to coral reefs, once that the significantly high coverage of fleshy alga has been recognized as a negative indicator of reef ecosystems health.

  12. Spatial distribution of epibenthic molluscs on a sandstone reef in the Northeast of Brazil

    Directory of Open Access Journals (Sweden)

    AS. Martinez

    Full Text Available The present study investigated the distribution and abundance of epibenthic molluscs and their feeding habits associated to substrate features (coverage and rugosity in a sandstone reef system in the Northeast of Brazil. Rugosity, low coral cover and high coverage of zoanthids and fleshy alga were the variables that influenced a low richness and high abundance of a few molluscan species in the reef habitat. The most abundant species were generalist carnivores, probably associated to a lesser offer and variability of resources in this type of reef system, when compared to the coral reefs. The results found in this study could reflect a normal characteristic of the molluscan community distribution in sandstone reefs, with low coral cover, or could indicate a degradation state of this habitat if it is compared to coral reefs, once that the significantly high coverage of fleshy alga has been recognized as a negative indicator of reef ecosystems health.

  13. Remote sensing technology prospecting methods of interlayer oxidation zone type sandstone uranium deposit in Yili basin

    International Nuclear Information System (INIS)

    Huang Xianfang; Huang Shutao; Pan Wei; Feng Jie; Liu Dechang; Zhang Jingbo; Xuan Yanxiu; Rui Benshan

    1998-12-01

    Taking Yili Basin as an example, remote sensing technology and method of interlayer oxidation zone type sandstone uranium deposit have systematically been summarized. Firstly, principle, methods and procedures of the second development of scientific experimental satellite photograph have been elaborated in detail. Three dimensional stereo simulation, display, and multi-parameters extraction have been recommended. Secondarily, the research is focused on prospective section image features in different type images and their geological implications and on establishing recognition keys of promising areas. Finally, based on above research results, three graded predictions, i.e. regional prospect, promising sections and favourable location in the deposit have been made step by step and reconnaissance and prospecting range are gradually reduced. The practice has indicated that breakthrough progress has been made in application to prospect prognosis of interlayer oxidation zone type sandstone uranium deposit and good verified results have been obtained

  14. Petrography and Diagenesis of Palaeocene -Eocene Sandstones in the Siri Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Kazerouni, Afsoon Moatari

    it is generally associated with thick coatings of opal/microquartz on the detrital framework grains.   This study also presents the occurrence and compositional variance of the authigenic zeolites in the Siri Canyon sandstones, and discusses the physico-chemical conditions, which prevailed during formation...... of zeolites, pore water chemistry, composition of mineralogical precursors and the host sediments. This study demonstrates also the diagenetic evolution glaucony-rich deep-water sandstones from the Rau-1A well in the Siri Canyon, Danish North Sea.  The major diagenetic phases in the studied well...... are microquartz, large syntaxial quartz overgrowth, calcite, and chlorite.    Chlorite forms an intra-reservoir hydrocarbon seal, and our study demonstrates the influence of early diagenetic quartz on the formation of the chlorite seal.  Early opal and microquartz are precipitated close to shale contacts...

  15. Enigmatic eight-meter trace fossils in the Lower Pennsylvanian Lee sandstone, central Appalachian basin, Tennessee

    Science.gov (United States)

    Wnuk, C.; Maberry, J.O.

    1990-01-01

    Enigmatic tubular trace fossils up to eight meters long occur in the Lower Pennsylvanian Middlesboro Member of the Lee Formation. Two morphotypes occur: type 1 trace fossils are plain, smooth, vertical, nonbranching, parallel-walled, tubular structures, type 2 trace fossils branch, have walls with faint vertical striations, regularly or irregularly spaced nodes, and funnel-shaped terminations. Sandstone casts filling type 2 structures have helical spiral morphology, and, in rare individuals, faint meniscate fills have been observed. Both trace-fossil morphotypes have poorly cemented wall linings containing framboidal pyrite, amorphous carbon, quartz sand, and poorly preserved fecal material. The trace fossils occur in a massive, structureless, channel-form sandstone, originating at the contact between a channel lag and the overlying massive fill representing a barrier island transgressing an estuarine facies. Origin of these structures is uncertain. -from Authors

  16. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......, however, show high attenuation and velocity dispersion remaining at high confining stress. Such dispersion is proposed to be caused by pressure gradients induced by compliant porosity within clay inclusions. By modeling the response of two extreme systems we quantify the possible effects of such clay......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...

  17. Use of thorium as tracer on study of groundwater of Botucatu sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Paulo Augusto d' A.; Menezes, Maria Angela B.C. de; Moreira, Rubens Martins; Reis Junior, Aluisio Souza; Kastner, Geraldo Frederico, E-mail: paap@cdtn.br, E-mail: menezes@cdtn.br, E-mail: rubens@cdtn.br, E-mail: reisas@cdtn.br, E-mail: gfk@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Thorium in some mineral compounds is very difficult to be dissolved in aqueous medium. To study the mobility of thorium in water, one alternative is to complex this element with EDTA, becoming possible to follow the behavior of thorium this medium. This way, in groundwater with low natural radioactivity and low {sup 232}Th activity, thorium can be used as a tracer. This paper describes the application of the complex Th-EDTA as a tracer applying the solution trough a sandstone sample made by rock from Botucatu Sandstone. The objective was to simulate the flow of groundwater inside the original rock aiming at future use of rare-earth elements complexed with EDTA as tracer. Alpha spectrometry technique was used to determine {sup 232}Th in the water samples with {sup 230}Th as inner-standard. (author)

  18. A economic evaluation system software on in-situ leaching mining sandstone uranium deposits

    International Nuclear Information System (INIS)

    Yao Yixuan;