WorldWideScience

Sample records for tiffany coal bed

  1. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  2. Natural gas in coal beds

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, A.I.; Voytov, G.I.

    1983-01-01

    The special importance is noted of the problem of computing and careful use of the energy raw material, coal, oil and natural gases. An examination is made of the mechanism for the formation of carboniferous gases in the beds with the use of the model of coal macromolecule. A schematic section is presented for the coal field and plan for vertical gas zonality. The change in chemical composition of the natural gases with depth is governed by the countermovement of the natural gases: from top to bottom the gases of the earth's atmosphere move, mainly oxygenand nitrogen, from bottom to top, the gases of metamorphic and deep origin. Constant isotope composition of the carbon in the fossil coals is noted. The distribution of the quanitity deltaC/sup 13/ of carbon in the fossil coals of the Donets basin is illustrated. The gas content of the coal beds and gas reserves are discussed. The flowsheet is shown for the unit for degasification of the coal bed before the cleaning face.

  3. Coal bed sequestration of carbon dioxide

    Science.gov (United States)

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  4. Gas distributor for fluidized bed coal gasifier

    Science.gov (United States)

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  5. Fluidized bed selective pyrolysis of coal

    Science.gov (United States)

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  6. Coal Bed Aquifer Tests: a Case Study

    Science.gov (United States)

    Weeks, E. P.

    2005-12-01

    Coal bed methane development is proceeding at a rapid pace in the USA and in several other countries. Development of coal bed methane requires the simultaneous co-production of water in a manner that maximizes the amount of drawdown while minimizing the amount of water pumped. Determination of optimal well spacing and production rates to achieve such drawdowns requires knowledge of the hydraulic properties of the coal aquifer. Natural closely spaced fractures, termed cleats, develop during coal formation as an orthogonal fracture network that creates anisotropic transmissivity. Water held in the matrix porosity of the coal is released slowly to the cleat system during pumping, resulting in coal beds behaving as dual-porosity aquifers. Knowledge of the magnitude and orientation of the principal axes of the transmissivity tensor, as well as of the late-time dual-porosity storage coefficient, are needed to optimally design well fields for the exploitation of coal bed methane. An aquifer test with three observation wells was conducted to determine these properties for a 7.6- m thick coal bed located in the Powder River Basin, southeast Montana. The test results exhibit all the features that would be expected for a test on an anisotropic dual-porosity medium. However, the test was initially misinterpreted, providing a cautionary tale. The initial interpretation assumed a single-porosity aquifer, and the late-time break in slope was assumed to represent the effects of a hidden boundary. Despite their apparent plausibility, the results of the analysis raised several red flags. An attempt to determine the location of the hidden boundary failed, the indicated specific storage was implausibly small, and the analysis of recovery data provided transmissivity values that were in disagreement with those determined from the drawdown analysis. Reanalysis of the test using type curves developed for a dual-porosity aquifer resulted in a transmissivity value that is about 25% smaller

  7. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2Department of Civil Engineering, S R K R Engineering College, Bhimavaram. 534202, India e-mail: sdey@civil.iitkgp.ernet.in. MS received 15 January 2002. Abstract. An experimental study on incipient motion of gravel and coal beds under unidirectional steady-uniform flow is presented. Experiments were carried out in a ...

  8. Fluidised bed gasification of low grade South African coals

    CSIR Research Space (South Africa)

    North, BC

    2006-09-01

    Full Text Available -going investigation into one potential Clean Coal Technology (CCT), namely fluidised bed gasification. Coal gasification holds the potential benefits of increased efficiency, reduced water consumption and co-production of liquid and gaseous fuels and chemicals...

  9. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  10. The Effect of Bedding Structure on Mechanical Property of Coal

    Directory of Open Access Journals (Sweden)

    Zetian Zhang

    2014-01-01

    Full Text Available The mechanical property of coal, influencing mining activity considerably, is significantly determined by the natural fracture distributed within coal mass. In order to study the effecting mechanism of bedding structure on mechanical property of coal, a series of uniaxial compression tests and mesoscopic tests have been conducted. The experimental results show that the distribution characteristic of calcite particles, which significantly influences the growth of cracks and the macroscopic mechanical properties of coal, is obviously affected by the bedding structure. Specifically, the uniaxial compression strength of coal sample is mainly controlled by bedding structure, and the average peak stress of specimens with axes perpendicular to the bedding planes is 20.00 MPa, which is 2.88 times the average amount of parallel ones. The test results also show a close relationship between the bedding structure and the whole deformation process under uniaxial loading.

  11. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    Science.gov (United States)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that

  12. Atmospheric fluidized bed coal combustion research, development and application

    CERN Document Server

    Valk, M

    1994-01-01

    The use of fluidized bed coal combustion technology has been developed in the past decade in The Netherlands with a view to expanding the industrial use of coal as an energy supply. Various research groups from universities, institutes for applied science and from boiler industries participated and contributed to this research area. Comprehensive results of such recent experimentation and development work on atmospheric fluidized bed combustion of coal are covered in this volume. Each chapter, written by an expert, treats one specific subject and gives both the theoretical background as well a

  13. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    Science.gov (United States)

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  14. Characterisation of coal and chars in fluidised bed gasification

    CSIR Research Space (South Africa)

    Oboirien, BO

    2009-03-01

    Full Text Available gasification of high-ash Chinese coal in a pilot plant. The data also shows that the mean particle sizes of the various residual char were smaller than the feed coal and the particle size of the bed char were higher than the particle of the cyclone char... and ultimate analysis Results consisting of proximate and ultimate analyses together calorific value of the parent coals and chars are presented in Table 4. The ash content of the different coal samples ranges from 33.4- 40.4 wt %, the calorific value...

  15. Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-02-01

    Full Text Available bioreactor represent slurry reactor systems enabling a comparative study. Direct comparison between these and the fixed bed bioreactor could not be carried as the corresponding particle sizes will result to a pressure drop in the fixed bed reactor. Coal...

  16. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    The present Ph.D thesis describes an experimental and theoretical investigation of the formation and destruction of nitrogen oxides (NOx and N2O) in fluidized bed combustion (FBC) of coal. A review of the current knowledge of nitrogen chemistry in FBC is presented. The review covers both laboratory...... for the emission of NOx from FBC has been developed as part of a JOULE project. The model is based on the two-phase theory of fluidization for the bed with a Kunii-Levenspiel type freeboard model and includes submodels for coal devolatilization, combustion of volatiles and char and a detailed model of NO formation...... and reduction by homogeneous and heterogeneous reactions. The data for the estimation of kinetics of the heterogeneous reactions were measured by one of the partners in the project for char and bed material sampled from a pressurized FBC pilot plant burning Kiveton Park coal. Experimental data from the pilot...

  17. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    turbulent regime, identified based on physical reasoning and dimensional analysis, are the Shields parameter, particle Froude number, non-dimensional particle diameter and non-dimensional flow depth. Equations of critical bed shear stress ...

  18. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Science.gov (United States)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  19. Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

  20. Fluidized bed dry dense medium coal beneficiation

    CSIR Research Space (South Africa)

    North, Brian C

    2017-10-01

    Full Text Available Coal beneficiation in South Africa is currently conducted mostly on a wet “float and sink” basis. This process is heavily water intensive and also potentially polluting. Dry beneficiation alternatives are being sought. The alternative of dry dense...

  1. Pulverized coal vs. circulating fluidized bed: An economic comparison

    International Nuclear Information System (INIS)

    Johns, R.F.

    1991-01-01

    As the power industry looks to the 1990s for expanded steam generation capacity, boiler owners will continue on their long-standing assignment to evaluate and select the best, lowest cost alternative to meet their energy needs. For coal-fired plants, this evaluation process includes pulverized coal-fired boilers (PC) and circulating fluidized bed boilers (CFB). The cost difference between these products is site specific and depends on several variables, including: Boiler size, pressure, and temperature; Operating variables, such as the cost for fuel, auxiliary power, SO 2 reagent, and ash disposal; Capital cost; and Financial variables, such as evaluation period and interest rate. This paper provides a technical and economic comparison between a pulverized coal-fired boiler and circulating fluidized bed boiler

  2. Risk factors for the undermined coal bed mining method

    Energy Technology Data Exchange (ETDEWEB)

    Arad, V. [Petrosani Univ., Petrosani (Romania). Dept. of Mining Engineering; Arad, S. [Petrosani Univ., Petrosani (Romania). Dept of Electrical Engineering

    2009-07-01

    The Romanian mining industry has been in a serious decline and is undergoing ample restructuring. Analyses of reliability and risk are most important during the early stages of a project in guiding the decision as to whether or not to proceed and in helping to establish design criteria. A technical accident occurred in 2008 at the Petrila coal mine involving an explosion during the exploitation of a coal seam. Over time a series of technical accidents, such as explosions and ignitions of methane gas, roof blowing phenomena or self-ignition of coal and hazard combustions have occurred. This paper presented an analysis of factors that led to this accident as well an analysis of factors related to the mining method. Specifically, the paper discussed the geomechanical characteristics of rocks and coal; the geodynamic phenomenon from working face 431; the spontaneous combustion phenomenon; gas accumulation; and the pressure and the height of the undermined coal bed. It was concluded that for the specific conditions encountered in Petrila colliery, the undermined bed height should be between 5 and 7 metres, depending on the geomechanic characteristics of coal and surrounding rocks. 8 refs., 1 tab., 3 figs.

  3. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  4. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  5. A Strategy for Coal Bed Methane and Coal Mine Methane Development and Utilization in China

    OpenAIRE

    Energy Sector Management Assistance Program

    2007-01-01

    China is short of clean energy, particularly conventional natural gas. The proven per capital natural gas reserve is only 1/12th of the world average. However, China has large coal bed methane (CBM) resources with development potential which can be recovered from surface boreholes independent of mining and in advance of mining, and also captured as a part of underground coal mining operati...

  6. Characterization of products from fluidized-bed combustion of coal.

    Science.gov (United States)

    Bednarik, V; Vondruska, M; Sild, M; Vondruskova, E

    2000-11-01

    The technology of fluidized-bed combustion (FBC) of coal generates byproducts that have a series of unique characteristics and potential uses in technological practice. In this study, the products of fluidized-bed combustion (FBC-P) of coal derived from Moravian heat stations, a.s. Zlin, Cinergy Global Resources, Czech Republic, were characterized. Particular attention was paid to determining the chemical composition of FBC-P, the content of polycyclic aromatic hydrocarbons (PAHs) and toxic metals in the water leachates of these FBC-P, the content of unburned carbon, the capability of FBC-P to solidify with water and form a solid matrix, and the method for discovering optimum mixing water content for FBC-P solidification. The results suggest that one of the qualitatively more important means of utilizing FBC-P could be their application during solidification/stabilization (S/S) of wastes, particularly wastewater treatment sludges.

  7. Ash level meter for a fixed-bed coal gasifier

    Science.gov (United States)

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  8. Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

  9. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  10. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2014-05-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and potentially in Europe, extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus in Australia. The two sources of methane share many of the same characteristics, with hydraulic fracturing generally (but not always) required to extract coal seam gas also. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be potentially of more concern for coal seam gas than for shale gas. To determine the potential for coal seam gas extraction (and coal mining more generally) to impact on water resources and water-related assets in Australia, the Commonwealth Government has recently established an Independent Expert Scientific Committee (the IESC) to provide advice to Commonwealth and State Government regulators on potential water-related impacts of coal seam gas and large coal mining developments. The IESC has in turn implemented a program of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. Further details of the program can be found at http://www.environment.gov.au/coal-seam-gas-mining/bioregional-assessments.html. This presentation will provide an overview of the issues related to the impacts of coal seam gas extraction on surface and groundwater resources and water-related assets in Australia. The

  11. Coal gasification fluidized bed (Winkler gasification) under pressure

    International Nuclear Information System (INIS)

    Anwer, J.; Boegner, F.

    1976-01-01

    Due to the 'oil crisis', the gasification of lignite and coal for the production of fuel and synthetic gas has reached increased importance. The present state of the Winkler gasification which has successfully operated for a long time is described. After the basic design of a Winkler gasification plant, the various chemical engineering problems are shown: the design characteristics of a fluidized bed, the reaction kinetics, the dependance of the products on the gasification pressure, and the economics of the process. Finally, the development trend in the USA and the future possibility of heating by nuclear heat is dealt with. (orig.) [de

  12. Numerical simulations and correlations on the coal -conveying gas flow in pipe for fluidized -bed coal gasification facility

    International Nuclear Information System (INIS)

    Lee, Chan; Lee, Jin Wook; Kwon, Tae Wan; Kim, Gyoo Tae

    2014-01-01

    CFD modeling and simulation are made on the key flow elements, vertical, horizontal pipes and elbow pipes , used in the pneumatic coal -transport system of fluidized -bed gasification test facility. The coal- gas flow inside the flow elements are modeled by combining Reynolds -stress Averaged Navier- Stokes equations Solver (RANS), k- ε turbulence model and Discrete Phase Model (DPM) in the ANSYS Fluent code. Using the developed coal -gas flow analysis model, computations are carried out to investigate the gas flow path, the coal particle behavior and the pressure loss characteristics in flow element at various coal/ gas loading ratio and coal mass flux. The present prediction results show the coal -gas flow behavior of each flow element is changed from dilute -flow to dense -flow pattern at a specific coal/gas loading ratio where pressure loss is abruptly increased. From the numerical results, the present study also provides the limiting coal/gas loading conditions to secure stable coal feeding and the correlations for pressure losses in horizontal, vertical and elbow pipes, which can be suitable for the design guidelines of actual fluidized -bed coal gasification. Key words : Pneumatic Coal -Transport; Coal -Gas Flow, Dense Phase Flow; Dilute Phase Flow; Pressure Loss; Coal/Gas Loading Ratio; Correlation

  13. Casing drilling TM : a viable technology for coal bed methane?

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Muqeem, M. [Tesco Corp., Calgary, AB (Canada)

    2001-07-01

    This paper highlighted the experience that Tesco has gained by drilling more than 30 wells using only casings as the drill stem, suggesting that such technology could be advantageous for Coal Bed Methane (CBM) exploration and development. Tesco has manufactured a mobile and compact hydraulic drilling rig that is ideal to meet the great demand for CBM development in Canada. The Casing Drilling TM system, when used in conjunction with the drilling rig, could be very effective and efficient for exploration and development of CBM reserves which typically require extensive coring. Continuous coring while drilling ahead and wire line retrieval can offer time savings and quick core recovery of large diameter core required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or coal beds under balanced with air or foam. This would reduce drilling fluid damage while finding gas at the same time. Compared to conventional drill pipes, Casing Drilling TM could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 8 refs., 3 tabs., 9 figs.

  14. Some Challenges Posed by Coal Bed Methane Regional Assessment Modeling.

    Science.gov (United States)

    Moore, Catherine R; Doherty, John; Howell, Stephen; Erriah, Leon

    2015-01-01

    Coal measures (coal bearing rock strata) can contain large reserves of methane. These reserves are being exploited at a rapidly increasing rate in many parts of the world. To extract coal seam gas, thousands of wells are drilled at relatively small spacing to depressurize coal seams to induce desorption and allow subsequent capture of the gas. To manage this process effectively, the effect of coal bed methane (CBM) extraction on regional aquifer systems must be properly understood and managed. Groundwater modeling is an integral part of this management process. However, modeling of CBM impacts presents some unique challenges, as processes that are operative at two very different scales must be adequately represented in the models. The impacts of large-scale gas extraction may be felt over a large area, yet despite the significant upscaling that accompanies construction of a regional model, near-well conditions and processes cannot be ignored. These include the highly heterogeneous nature of many coal measures, and the dual-phase flow of water and gas that is induced by coal seam depressurization. To understand these challenges, a fine-scale model was constructed incorporating a detailed representation of lithological heterogeneity to ensure that near-well processes and conditions could be examined. The detail of this heterogeneity was at a level not previously employed in models built to assess groundwater impacts arising from CBM extraction. A dual-phase reservoir simulator was used to examine depressurization and water desaturation processes in the vicinity of an extractive wellfield within this fine-scale model. A single-phase simulator was then employed so that depressurization errors incurred by neglecting near-well, dual-phase flow could be explored. Two models with fewer lithological details were then constructed in order to examine the nature of depressurization errors incurred by upscaling and to assess the interaction of the upscaling process with the

  15. The combustion of coal blends in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Dulce; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel

    1999-07-01

    Combustion studies of five coals of different origin were carried out in a laboratory scale fluidised bed combustor. Five blends prepared by mixing two coals based on their petrological characterisation, in varying amounts, were selected to study the possibility of reduction NO{sub x}, N{sub 2}O and SO{sub 2} emissions. The results showed that some blends had the opposite behaviour concerning the release of NO{sub x} and SO{sub 2} in relation to parent coals, and the emissions were higher than expected. The N{sub 2}O amounts observed were, however, in almost all blends tested, lower than predicted values. With some blends, the mixing levels intended to reduce SO{sub 2} were not always found to correspond to those for simultaneous decrease of Nox. Most of the blends studied showed some evidence of interaction between them. Varying the proportion of the blend components was observed to alter the temperatures at which interactions were stronger.

  16. Modeling of coal bed methane (CBM) production and CO{sub 2} sequestration in coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Ekrem [Izmir Institute of Technology, Chemical Engineering Department, 35420-Urla/Izmir (Turkey)

    2009-01-07

    A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO{sub 2}) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17 MPa to 1.56 MPa and the gas saturation increased up to 50% in 30 years for a 5.4 x 10{sup 5} m{sup 2} of coal formation. For the CO{sub 2} sequestration process, the model prediction showed that the CO{sub 2} injection rate was first reduced and then slightly recovered over 3 to 13 years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO{sub 2} flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO{sub 2} could be about 11 x 10{sup 3} m{sup 3} per day; the injected CO{sub 2} would reach the production well, which was separated from the injection well by 826 m, in about 30 years. During this period, about 160 x 10{sup 6} m{sup 3} of CO{sub 2} could be stored within a 21.4 x 10{sup 5} m{sup 2} of coal seam with a thickness of 3 m. (author)

  17. Coal-bed methane water: effects on soil properties and camelina productivity

    Science.gov (United States)

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  18. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the

  19. Revised correlation chart of coal beds, coal zones, and key stratigraphic units in the Pennsylvanian rocks of eastern Kentucky

    Science.gov (United States)

    Rice, Charles L.; Hiett, John K.

    1994-01-01

    This report revises Miscellaneous Field Studies Map MF-1188 (Rice and Smith, 1980). Major revisions to the original correlation chart include formal naming of key marine units in Kentucky and replacement of informally named marine units incorrectly projected into Kentucky from adjacent states. Also included in the report is the proper correlation of some regionally recognized coal bed names that have been incorrectly projected into Kentucky, particularly from Ohio and West Virginia. Besides these additions and corrections, minor changes have been made to the correlation chart, all of which are discussed below in detail. The Pennsylvania rocks of the eastern Kentucky coal field underlie an area of about 27,000 square kilometers (see index map). Largely because of the size and stratigra[hic complexity of the area, Huddle and others (1963, p. 31) divided the coal field into six coal-reserve districts. District boundaries utilize state and county line as well as geologic features, drainage areas, and coal producing areas. Their division is followed herein because, in general, each of the districts has a characteristic stratigraphic nomenclature, particularly with regard to coal bed names. The six districts are the Princess, Licking River, Big Sandy, Hazard, Southwestern, and Upper Cumberland River district is divided into the Middlesboro and Harlan subdistricts. The correlation chart lists most of the stratigraphic units of Pennsylvanian age used in eastern Kentucky, and is concerned principally with coal bed names used in publications since about 1950, especially all of the names of coal beds for which resources and reserves have been calculated. Coal constitutes only a small percentage of the total Pennsylvanian-rock sequence, but is present in as many as 26 major coal zones that have been prospected and mined extensively in all parts of the coal field since the early 1900's. Coal names listed in this chart represent coal beds that have been mined commercially or

  20. Application of computer graphics to generate coal resources of the Cache coal bed, Recluse geologic model area, Campbell County, Wyoming

    Science.gov (United States)

    Schneider, G.B.; Crowley, S.S.; Carey, M.A.

    1982-01-01

    Low-sulfur subbituminous coal resources have been calculated, using both manual and computer methods, for the Cache coal bed in the Recluse Model Area, which covers the White Tail Butte, Pitch Draw, Recluse, and Homestead Draw SW 7 1/2 minute quadrangles, Campbell County, Wyoming. Approximately 275 coal thickness measurements obtained from drill hole data are evenly distributed throughout the area. The Cache coal and associated beds are in the Paleocene Tongue River Member of the Fort Union Formation. The depth from the surface to the Cache bed ranges from 269 to 1,257 feet. The thickness of the coal is as much as 31 feet, but in places the Cache coal bed is absent. Comparisons between hand-drawn and computer-generated isopach maps show minimal differences. Total coal resources calculated by computer show the bed to contain 2,316 million short tons or about 6.7 percent more than the hand-calculated figure of 2,160 million short tons.

  1. Co-combustion of risk husk with coal in a fluidized bed

    International Nuclear Information System (INIS)

    Ghani, A.K.; Alias, A.B.; Savory, R.M.; Cliffe, K.R.

    2006-01-01

    Power generation from biomass is an attractive technology which utilizes agricultural residue waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk) was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and CO emissions were studied and compared with those for pure coal combustion. Biomass waste with up to 70% mass fraction can be co-combusted in a fluidized bed combustor designed for coal combustion with a maximum drop of efficiency of 20% depending upon excess air levels. CO levels fluctuated between 200-700 ppm were observed when coal is added. It is evident from this research that efficient co-firing of rice husk with coal can be achieved with minimum modification of existing coal-fired boilers. (Author)

  2. CDC: Tips from Former Smokers – Tiffany PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2013-03-28

    When Tiffany was 16, her mother—a cigarette smoker—died of lung cancer. Tiffany quit smoking at 34 because she wanted to be around for her own daughter, who had just turned 16. In this 60 second PSA from CDC's Tips From Former Smokers campaign, Tiffany offers tips on how to quit.  Created: 3/28/2013 by Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion.   Date Released: 8/8/2013.

  3. Palynologic and petrographic variation in the Otter Creek coal beds (Stephanian, Upper Carboniferous), Western Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Helfrich, C.T.; Hower, J.C. (Eastern Kentucky University, Richmond (USA))

    1989-08-30

    The palynology and petrology of the Lisman (Lower Otter Creek) and Upper Otter Creek coals of the Stephanian portion of the Sturgis Formation of the Western Kentucky coal field was investigated in samples from mine and roadcut exposures. The Lisman coal bed exhibits an upward decrease in palynologic diversity and an upward increase in inertinite macerals. These factors suggest a change in swamp paleoecology in response to a climate which was gradually becoming drier. The Upper Creek coal bed exhibits less lateral continuity in palynomorph assemblages than does the Lisman. The Upper Otter Creek palynomorph assemblages are less diverse than the Lisman assemblages. Overall, the variation in the Upper Otter Creek coal bed cannot be attributed with certainty to any factor other than the local relief within the swamp. 17 refs., 4 figs., 3 tabs.

  4. Research on preventive technologies for bed-separation water hazard in China coal mines

    Science.gov (United States)

    Gui, Herong; Tong, Shijie; Qiu, Weizhong; Lin, Manli

    2018-03-01

    Bed-separation water is one of the major water hazards in coal mines. Targeted researches on the preventive technologies are of paramount importance to safe mining. This article studied the restrictive effect of geological and mining factors, such as lithological properties of roof strata, coal seam inclination, water source to bed separations, roof management method, dimensions of mining working face, and mining progress, on the formation of bed-separation water hazard. The key techniques to prevent bed-separation water-related accidents include interception, diversion, destructing the buffer layer, grouting and backfilling, etc. The operation and efficiency of each technique are corroborated in field engineering cases. The results of this study will offer reference to countries with similar mining conditions in the researches on bed-separation water burst and hazard control in coal mines.

  5. Mathematical Modelling of the Fixed-Bed Biomass-Coal Co-Gasification Process

    Directory of Open Access Journals (Sweden)

    Donskoy Igor G.

    2016-01-01

    Full Text Available The paper considers mathematical modelling of downdraft fixed-bed gasification process of the mixtures of woody biomass and coal. Biomass/coal ratio, biomass moisture content and air equivalence ratio are varying parameters. Boundaries of the efficient gasification regimes are estimated.

  6. Coal-bed methane water effects on dill and essential oils

    Science.gov (United States)

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...

  7. Co-combustion of waste with coal in a circulating fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Abelha, P.; Lopes, H.; Cabrita, I. [DEECA-INETI, Lisboa (Portugal)

    2002-07-01

    The results of a study of cocombustion of waste with coal is described. Various wastes (biomass, sludge, and refuse derived fuel) were burned with coal in a circulating fluidised bed combustor. Conditions that prevent segregated combustion, reduce production of nitrogen oxides, and attain high combustion efficiency were studied. The effects of variations in air staging in the riser, mixing of air with volatiles, coal/biomass ratio, methods of feeding biomass, and temperature are described. 5 refs., 3 figs., 5 tabs.

  8. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  9. Petrology and palynology of the No. 5 block coal bed, northeastern Kentucky

    Science.gov (United States)

    Hower, J.C.; Eble, C.F.; Rathbone, R.F.

    1994-01-01

    The upper Middle Pennsylvanian (middle Westphalian D equivalent) No. 5 Block coal bed (Eastern Kentucky Coal Field of the Central Appalachian Basin) is a low-sulfur, compliance coal resource, dominantly comprised of dull, inertinite-rich lithotypes. Ash yields tend to be highly variable in the No. 5 Block, as does bed thickness and frequency of bed splitting. This study describes the petrographic, palynologic and geochemical characteristics of the No. 5 Block coal bed, and reports on some temporal and spatial trends among these parameters in eastern-northeastern Kentucky. Petrographically the No. 5 Block coal is predominated by dull, often high-ash lithotypes, with inertinite contents commonly exceeding 30% (mmf). The coal thins to the north-northwest where it tends to be higher in vitrinite and sulfur content. Representatives of large and small lycopsids and ferns (both tree-like and small varieties) dominate the No. 5 Block coal bed palynoflora. Calamite spores and cordaite pollen also occur but are less abundant. Small lycopsid (Densosporites spp. and related crassicingulate genera) and tree fern (e.g. Punctatisporites minutus, Laevigatosporites globosus) spore taxa are most abundant in dull lithotypes. Bright lithotypes contain higher percentages of arboreous lycopsid spores (Lycospora spp.). Regionally, the No. 5 Block coal contains abundant Torispora securis, a tree fern spore specially adapted for desiccation prevention. This, along with overall high percentages of inertinite macerals, suggest that peat accumulation may have taken place in a seasonally dry (?) paleoclimate. The No. 5 Block coal bed thickens rather dramatically in a NW-SE direction, as does the frequency of coal bed splitting. This phenomenon appears to be related to increased accomodation space in the southeastern portion of the study area, perhaps via penecontemporaneous growth faulting. Maceral and palynomorph variations within the bed correspond with these changes. Thin coal along the

  10. The identification of unusual microscopic features in coal and their derived chars: Influence on coal fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Valentim, B. [Centro de Geologia da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Lemos de Sousa, M.J. [Centro de Geologia da Universidade do Porto, Praca de Gomes Teixeira, 4099-002 Porto (Portugal); Abelha, P.; Boavida, D.; Gulyurtlu, I. [Departamento de Engenharia Energetica e Controlo Ambiental (DEECA), Instituto Nacional de Engenharia, Tecnologia e Inovacao (INETI), Estrada do Paco do Lumiar, 22, Edif. J, 1649-038, Lisboa (Portugal)

    2006-06-06

    During the petrographic study of seven feed coals from different origins, it was found that these coals presented microfeatures such as: material size, shape, weathering, thermally affected particles and contamination. After devolatilization under fluidized bed conditions, some chars presented the consequences of the above mentioned microfeatures, i.e., unreacted coal, unswelled particles, coatings and microstratification. Since the amounts of the microfeatures observed were low (less than 1%), the present study is essentially observational/descriptional. However, it seems very likely, from the observations that were made, that the occurrence of one or more of these microfeatures in coal, depending on their kind and abundance, may have significant effect on the coal devolatilization. (author)

  11. Comparative facies formation in selected coal beds of the Powder River Basin

    Science.gov (United States)

    Stanton, R.W.; Moore, Timothy A.; Warwick, Peter D.; Crowley, S.S.; Flores, Romeo M.; Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Glass, Gary; Smith, Archie; Nichols, Douglas J.; Wolfe, Jack A.; Stanton, Ronald W.; Weaver, Jean

    1989-01-01

    Petrologic studies of thick coal beds [Warwick, 1985; Moore, 1986; Moore and others, 1986; Moore and others, 1987; Warwick and Stanton, in press], which build on sedimentological interpretations [Flores, this volume] of associated units, provide data to interpret and contrast the varieties of peat formation in the Powder River Basin. Detailed analyses of the composition of coal beds lead to more complete interpretations regarding the depositional environment on a regional and local scale. Our efforts in the Powder River Basin [areas A-D in fig. 1 of Flores, this volume] have resulted in a series of site-specific studies that interpret the types of peat formation from the arrangement of different facies which comprise the coal beds and from the spatial form of the coal beds.Our approach was to use a combination of megascopic criteria for facies sampling, and where only core was available, to analyze many interval samples to discriminate facies by their maceral composition. Coal beds in the Powder River Basin are composed of laterally continuous, compositional subunits of the bed (facies) that can be discerned most easily in weathered highwall exposures, less readily in fresh highwalls, and very poorly in fresh-cut core surfaces. In general, very low ash ( 

  12. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    Science.gov (United States)

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    To investigate the potential for mobilizing organic compounds from coal beds during geologic carbon dioxide (CO2) storage (sequestration), a series of solvent extractions using dichloromethane (DCM) and using supercritical CO2 (40 °C and 10 MPa) were conducted on a set of coal samples collected from Louisiana and Ohio. The coal samples studied range in rank from lignite A to high volatile A bituminous, and were characterized using proximate, ultimate, organic petrography, and sorption isotherm analyses. Sorption isotherm analyses of gaseous CO2 and methane show a general increase in gas storage capacity with coal rank, consistent with findings from previous studies. In the solvent extractions, both dry, ground coal samples and moist, intact core plug samples were used to evaluate effects of variations in particle size and moisture content. Samples were spiked with perdeuterated surrogate compounds prior to extraction, and extracts were analyzed via gas chromatography–mass spectrometry. The DCM extracts generally contained the highest concentrations of organic compounds, indicating the existence of additional hydrocarbons within the coal matrix that were not mobilized during supercritical CO2 extractions. Concentrations of aliphatic and aromatic compounds measured in supercritical CO2 extracts of core plug samples generally are lower than concentrations in corresponding extracts of dry, ground coal samples, due to differences in particle size and moisture content. Changes in the amount of extracted compounds and in surrogate recovery measured during consecutive supercritical CO2extractions of core plug samples appear to reflect the transition from a water-wet to a CO2-wet system. Changes in coal core plug mass during supercritical CO2 extraction range from 3.4% to 14%, indicating that a substantial portion of coal moisture is retained in the low-rank coal samples. Moisture retention within core plug samples, especially in low-rank coals, appears to inhibit

  13. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  14. Assessment of pressurized fluidized-bed combustion power plants using high sulfur coal

    International Nuclear Information System (INIS)

    Wheeldon, J.M.; Drenker, S.G.; Booras, G.S.; McKinsey, R.R.

    1993-01-01

    Results of an EPRI engineering and economic study confirm that pressurized fluidized bed combustion (PFBC) power plants have lower capital costs than other advanced fossil technologies. The operating costs are shown to be sensitive to coal properties, particularly the sulfur content. Lower sulfur content coals result in lower sorbent and ash disposal costs and a correspondingly lower cost of electricity. These sensitivity studies indicate that for medium to low sulfur coals the levelized cost of electricity from PFBC power plants is lower than from integrated gasification combined cycle (IGCC) plants. Even though a low sulfur coal potentially offers the lowest cost of electricity, if it has to be transported any distance it may be more economic to use a local high sulfur coal. To test this hypothesis, costing were carried out for a utility-scale bubbling PFBC power plant located somewhere in the USA. The cost of electricity was determined for a local high sulfur bituminous coal and three low sulfur coals, two Appalachian bituminous coal, and a Wyoming subbituminous coal. The resulting costs of electricity were very similar. The closer the plant is the low sulfur coal producing regions the less economically attractive will be the high sulfur coal. Means of making the high sulfur coal more competitive are discussed. 18 refs., 3 figs., 8 tabs

  15. Geologic history of natural coal-bed fires, Powder River basin, USA

    Science.gov (United States)

    Heffern, E.L.; Coates, D.A.

    2004-01-01

    Coal-bed fires ignited by natural processes have baked and fused overlying sediments to form clinker, a hard red or varicolored rock, through much of the northern Great Plains of the United States (USA). The gently dipping coal beds in the region burn when regional downwasting brings them above the local water table. The resulting clinker forms a rim along the exposed edge of the coal bed in an ongoing process through geologic time. The resistant clinker is left capping buttes and ridges after the softer unbaked strata erode away. Clinker outcrops cover more than 4100 km2 in the Powder River basin (PRB), which lies in Wyoming (WY) and Montana (MT). The clinker in place records tens of billions of tons of coal that have burned, releasing gases into the atmosphere. The amount of clinker that has eroded away was at least an order of magnitude greater than the clinker that remains in place. Fission-track and uranium-thorium/ helium ages of detrital zircon crystals in clinker, and paleomagnetic ages of clinker, show that coal beds have burned naturally during at least the past 4 million years (Ma). The oldest in-place clinker that has been dated, collected from a high, isolated, clinker-capped ridge, has a fission track age of 2.8??0.6 Ma. Evidence of erosion and downcutting is also preserved by clinker clasts in gravel terraces. One clinker boulder in a terrace 360 m above the Yellowstone River has a fission track age of 4.0??0.7 Ma. Coal-bed fires are caused by lightning, wildfires, spontaneous combustion, or human activity on coal outcrops and in mines. Miners, government agencies, and ranchers have extinguished thousands of coal bed fires, but natural ignition continues where fresh coal has access to air. At any given time, hundreds of fires, mostly small, are burning. In the Powder River basin, the total amount of coal burned by natural fires in the last 2 Ma is one to two orders of magnitude greater than the total amount of coal removed by mining in the past

  16. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post

  17. Experimental investigations on drying behaviour of Bulgarian brown coal in steam fluidized bed

    International Nuclear Information System (INIS)

    Buschsieweke, F.; Koenig, J.

    1999-01-01

    The main targets were: to investigate the parameters for optimizing the drying process as steam pressure, fluidization velocity and particle size; to identify the cost of drying and combustion processes considering the necessity of milling the coal (raw or dried). Test series with Bulgarian brown coal from Maritsa-East has been made. Two fractions with different particle size was got: A from 0 to 1.6 mm (0.5 mm average) and B, resp. 1.6 to 6.3 (1.7 mm). The particle size is depending on the coal moisture. The fluidized bed process with the both fractions was performed at variations of the following parameters: steam velocity (0.07 to 1.7 m/s); raw coal feed rate (4 to 16 kg/h); raw moisture (18 to 43 wt %) and pressure (1.3 and 5 bar). Also the shrinking behaviour of the coal in different pore sizes was tested. Comparing pore size of the oven dried coal to the fluidized bed dried coal, significantly higher inner surface for the oven dried coal was established. To indicate the pore size of raw coal samples were made by freeze drying. Ice expanding should cause higher inner surface compared to oven drying method but no significant difference was established. A significant increase of heat transfer of the particles from A fraction (300 to 350 W/m 2 K0 compared to B (200 to 230 W/m 2 K) was determined. The heat transfer coefficient increased at increasing of the raw coal feed rate, mostly significant for A, due to higher particle contact. In conclusion: the particle convective mechanism is predominant for the heat transfer; development of pressurized fluidized bed drying is not of interest and the question about the total expenditure for crushing and milling remains open

  18. Environmental impact assessment for steeply dipping coal beds: North Knobs site

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-08

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantages of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.

  19. Simulation modeling of fluidized bed coal gasifier for new topping cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Guilin; Yamazaki, Ryohei; Mori, Shigekatsu; Fujima, Yukihisa [Nagoya Univ. (Japan). Dept. of Chemical Engineering

    1997-12-31

    A new topping cycle coal power generation process is to be developed as a Japanese national project of high efficiency power generation process of coal. This process consists of a combination system of a pressurized bubbling fluidized-bed coal gasifier and a pressurized bubbling fluidized-bed combustor in series. To evaluate the performances and also to determine specifications and operation parameters of this process, it is extremely important to analyze the behavior and the performance of this system by a reasonable simulation model. A simulation model of this new process is developed in this paper. It is demonstrated by calculated results from this model that the carbon conversion in the gasifier, the composition and the heating value of produced gas are strongly dependent on operating conditions. Heat recovery by the steam in the combustor is also estimated as the function of coal feed rate.

  20. Outcrop sampling - methodology and its relation to coal bed methane reservoir potential. Field guide notes

    Energy Technology Data Exchange (ETDEWEB)

    Marchioni, D.; Strobl, R. (Petro-Logic Services (Canada))

    1990-01-01

    The regional geology for the Highvale Mine in the Wabamun coal field in Alberta is described with reference to the potential of Pit 2 for production of coal bed methane. An overview of the entire Ardley coal zone is given to show the lateral continuity of seams and rock partings on a deposit scale. Regional tectonics and geologic controls on coal development are described. Coal quality variations between seams and the role of coal quality on gas content and reservoir behaviour are discussed. Coal seam logging by the Australian system and sampling to produce a standard coal seam profile as a basis for correlation and sampling are discussed. A core view of the seam is compared to the outcrop view provided by the highwall. The reservoir characteristics of a coalbed methane well in this type of deposit is considered. Coal seam logging and sampling in an outcrop is described with regard to the seam profile, lithotypes and their composition, pillar and channel samples, weathering, and coal cleat or jointing. 19 refs, 13 figs., 1 tab.

  1. [Transformation of sulfur forms during coal pyrolysis and partial gasification in a fixed bed reactor].

    Science.gov (United States)

    Li, Bin; Cao, Yan; Zhang, Jianmin; Huang, Jiejie; Wang, Yang; Chen, Fuyan

    2003-03-01

    The development of various process to the pre-desulfurization of coal was drawn more attention. In present study, the transformation of sulfur forms of three different ranks high sulfur coals during coal pyrolysis and partial gasification were investigated in a fixed bed reactor. The sulfur and carbon content analysis of original coal and coal char produced were determined by LECO SC-444 and wet chemical analysis according to Sugawara's method. The results showed that half of inorganic sulfur and partial of organic sulfur were removed during coal pyrolysis. And the sulfur removal was much more than carbon during pyrolysis process; and the sulfur in the coal char, especially the sulfide sulfur was removed completely during partial gasification process for both Datong coal and Xishan coal, the degree of sulfide sulfur removal could be increased with increasing temperature. At the same time, the results of Yima coal showed that the effect of fixed-sulfur by alkaline metals increased when the temperature was higher than 700 degrees C, which attribute to the increase of the fixed sulfur reaction rate and the decrease of mass-transfer limitation.

  2. Ecological characteristics of the fluidized bed boilers burning low-rank lignite coal

    International Nuclear Information System (INIS)

    Fett, F.N.; Heinbockel, I.; Dersch, J.

    1996-01-01

    The performance simulation of fluidized bed coal plants with Bulgarian low-rank coal has been made. Fluidized bed models, developed in the Institute of Energy Technology, UGN - Siegen, based on one-dimensional compartment-in-series model have been used. The parameters of each data block can be optimized according to criteria chosen in advance. The 'quality of coal - pollution characteristics of the boilers' channel has been chosen as a channel of priority importance. The input information on coal quality characteristics reflects the regression connections between ash content and the other quality components. The wide range of ash value variations of the coal (26 - 44%) causes a lot of problems. Two different models - Atmospheric Bubbling Fluidized Bed Model (ABFB) and Atmospheric Circulated Fluidized Bed Model - have been applied. Some results of computer experiments with ABFB model are given presenting the influence of coal quality on temperature profile in the combustor and on ecological characteristics of the gases. The following interconnections are marked: 1) ash content increase (connected with a net calorific value diminution) leading to a decrease in the temperature along the height of the furnace; 2) dependence of SO 2 concentration on the ash value connected with the 'temperature - NO x ' relationship; 3) decrease in SO 2 concentration caused by the augmentation of Ca/S ratio and the increase in the ash content of the coal. It is concluded that the fluidized bed technology is reliable enough for the Bulgarian low rank lignite because of the low rate of the environmental pollutants. 4 figs., 3 refs

  3. Fluidized bed combustion of low-grade coal and wastes: Research and development

    Energy Technology Data Exchange (ETDEWEB)

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M. [Academy of Sciences of Belarus, Minsk (Belarus). A.V. Luikov Heat and Mass Transfer Inst.; Dobkin, S.M.; Telegin, E.M. [Special Design Office, Brest (Belarus)

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  4. Study on method of VRML-based 3D visualisation of coal bed

    Energy Technology Data Exchange (ETDEWEB)

    Mei, X.; Zhang, R. [CUMT, Beijing (China). School of Resources and Safety Engineering

    2004-07-01

    The general method using VRML to realize 3D visualization of coal bed is introduced. The area is divided into a lot of regular grids and the elevation value of roof and floor is interpolated using inverse distance to a power to form digital elevation model (DEM). And the grid vertexes are connected to form surfaces, forming a closed 3D geological structure. Then VRML node IndexedFaceSet is used to form a 3D coal bed that can run in the internet. The results shows that VRML is a feasible solution to construct virtual environment in the internet. 10 refs., 2 figs.

  5. Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

  6. Faciologic characterization of coal beds in the Cerquilho region, state of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Nagalli, J.T.; Consoni, J.O.C.

    1984-01-01

    Since 1981, NUCLEBRAS, researches the Tubarao group in the state of Sao Paulo, in order to evaluate the uraniferous potential of carbonaceous sediments in the Parana Basin. This work discusses geologic information concerning the Cerquilho area, where, the faciologic and structural characterization of the coal beds (or seams) were analyzed, and the main targets for uranium concentration were identified. Such study was performed through detailed field observations, imagery and aerial photograph interpretation as well as well logging analysis. Results suggested that the uraniferous anomalies are controlled by fluvial channels cutting the coal beds, with periglacial influence. (Author) [pt

  7. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  8. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  9. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed

    International Nuclear Information System (INIS)

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-01-01

    Highlights: • The temporal release of Se from coal combustion and gasification was measured. • Kinetic laws for Se release from coal combustion and gasification were determined. • The influences of temperature and chemical composition of flue gas were clarified. • The interactions of Se species with mineral affect the release kinetics of Se. - Abstract: The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x) = 0.94e −26.58/RT (−0.56 x 2 −0.51 x + 1.05) was determined for selenium release during coal combustion, and r(x) = 11.96e −45.03/RT (−0.53 x 2 −0.56 x + 1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification.

  10. Modeling of carbon sequestration in coal-beds: A variable saturated simulation

    International Nuclear Information System (INIS)

    Liu Guoxiang; Smirnov, Andrei V.

    2008-01-01

    Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics

  11. Lateral variation in geochemistry, petrology, and palynology in the Elswick coal bed, Pike County, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Ruppert, Leslie F. [U.S. Geological Survey, Reston, VA (United States); Eble, Cortland F. [Kentucky Geological Survey, Lexington, KY 40506 (United States)

    2007-02-01

    The Middle Pennsylvanian/Langsettian (Westphalian A) Elswick coal bed, correlative to the Upper Banner of Virginia, is a rare example of a mined high-sulfur (>2%) coal in Eastern Kentucky, a region known for low-sulfur coals. To characterize lateral variation in the geochemistry, petrography, and palynology of the Elswick coal bed, three sites were sampled along a southeast-northwest transect within a single mine. At the southeastern site, the lower 101 cm of the 116-cm thick coal is dull, generally dominated by durain and dull clarain. While all benches at this site fit within the previously-defined 'mixed palynoflora - moderate/low vitrinite group,' suggesting a stressed environment of deposition, the palynology of the benches of the dull interval show greater diversity than might be expected just from the petrology. Lithology is generally similar between the sites, but each site has some differences in the petrology. Overall, the coal bed shows significant lateral variation in properties at the mine scale, some of which can be attributed to the gain or loss of upper and lower lithologies, either through an actual physical merging or through the change in character of lithotypes. Sulfur content varies between the three sites examined for this study. Site 3, located in the northwestern portion of the study area is characterized by a strikingly high sulfur zone (7.45%) in the middle of the coal bed, a feature missing at the other sites. Pyrite and marcasite, in a mid-seam lithotype at the northwestern site (site 3), show signs of overgrowths, indicating multiple generations of sulfide emplacement. The high-sulfur site 3 lithologies all have massive overgrowths of euhedral and framboidal pyrite, fracture- and cleat-fill pyrite, and sulfide emplacement in fusinite lumens. Sulfur is high throughout the mine area, but variations are evident in the extent of secondary growth of sulfides. (author)

  12. Lateral variation in geochemistry, petrology, and palynology in the Elswick coal bed, Pike County, Kentucky

    Science.gov (United States)

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.

    2007-01-01

    The Middle Pennsylvanian/Langsettian (Westphalian A) Elswick coal bed, correlative to the Upper Banner of Virginia, is a rare example of a mined high-sulfur (> 2%) coal in Eastern Kentucky, a region known for low-sulfur coals. To characterize lateral variation in the geochemistry, petrography, and palynology of the Elswick coal bed, three sites were sampled along a southeast-northwest transect within a single mine. At the southeastern site, the lower 101??cm of the 116-cm thick coal is dull, generally dominated by durain and dull clarain. While all benches at this site fit within the previously-defined "mixed palynoflora - moderate/low vitrinite group," suggesting a stressed environment of deposition, the palynology of the benches of the dull interval show greater diversity than might be expected just from the petrology. Lithology is generally similar between the sites, but each site has some differences in the petrology. Overall, the coal bed shows significant lateral variation in properties at the mine scale, some of which can be attributed to the gain or loss of upper and lower lithologies, either through an actual physical merging or through the change in character of lithotypes. Sulfur content varies between the three sites examined for this study. Site 3, located in the northwestern portion of the study area is characterized by a strikingly high sulfur zone (7.45%) in the middle of the coal bed, a feature missing at the other sites. Pyrite and marcasite, in a mid-seam lithotype at the northwestern site (site 3), show signs of overgrowths, indicating multiple generations of sulfide emplacement. The high-sulfur site 3 lithologies all have massive overgrowths of euhedral and framboidal pyrite, fracture- and cleat-fill pyrite, and sulfide emplacement in fusinite lumens. Sulfur is high throughout the mine area, but variations are evident in the extent of secondary growth of sulfides. ?? 2006 Elsevier B.V. All rights reserved.

  13. Optimization of enhanced coal-bed methane recovery using numerical simulation

    Science.gov (United States)

    Perera, M. S. A.; Ranjith, P. G.; Ranathunga, A. S.; Koay, A. Y. J.; Zhao, J.; Choi, S. K.

    2015-02-01

    Although the enhanced coal-bed methane (ECBM) recovery process is one of the potential coal bed methane production enhancement techniques, the effectiveness of the process is greatly dependent on the seam and the injecting gas properties. This study has therefore aimed to obtain a comprehensive knowledge of all possible major ECBM process-enhancing techniques by developing a novel 3D numerical model by considering a typical coal seam using the COMET 3 reservoir simulator. Interestingly, according to the results of the model, the generally accepted concept that there is greater CBM (coal-bed methane) production enhancement from CO2 injection, compared to the traditional water removal technique, is true only for high CO2 injection pressures. Generally, the ECBM process can be accelerated by using increased CO2 injection pressures and reduced temperatures, which are mainly related to the coal seam pore space expansion and reduced CO2 adsorption capacity, respectively. The model shows the negative influences of increased coal seam depth and moisture content on ECBM process optimization due to the reduced pore space under these conditions. However, the injection pressure plays a dominant role in the process optimization. Although the addition of a small amount of N2 into the injecting CO2 can greatly enhance the methane production process, the safe N2 percentage in the injection gas should be carefully predetermined as it causes early breakthroughs in CO2 and N2 in the methane production well. An increased number of production wells may not have a significant influence on long-term CH4 production (50 years for the selected coal seam), although it significantly enhances short-term CH4 production (10 years for the selected coal seam). Interestingly, increasing the number of injection and production wells may have a negative influence on CBM production due to the coincidence of pressure contours created by each well and the mixing of injected CO2 with CH4.

  14. Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

    CSIR Research Space (South Africa)

    Engelbrecht, AS

    2011-11-01

    Full Text Available The gasification of two high-ash coals were studied using a pilot scale fluidised bed gasifier using oxygen enrich air and steam as the gasification agents. The results of the tests show that the fixed carbon conversion and calorific value increases...

  15. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Science.gov (United States)

    2010-07-01

    ... R. Craig Kneisel, Chief, Environmental Division, Office of the Attorney General, dated October 8... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL...

  16. Fluidised bed gasification of South African coals – experimental results and process integration

    CSIR Research Space (South Africa)

    Engelbrecht, A

    2011-06-01

    Full Text Available high-ash coal from the Waterberg coalfield was tested in a bubbling fluidised bed gasifier at the CSIR using various gasification agents and operating conditions. The results of the tests show that when air and steam are used as the gasification agents...

  17. Co-firing coal and biomass in a fluidised bed boiler

    CSIR Research Space (South Africa)

    North, BC

    2005-11-01

    Full Text Available of biomass is “CO2 Neutral”. The CSIR was approached by one of its licensees, International Combustion (Africa) Ltd (ICAL), to design the fluidised bed combustion (FBC) zone for a biomass waste and coal co-fired boiler. This boiler had been requested by a...

  18. Sage-Grouse and Coal-Bed Methane: Can They Coexist within the Powder River Basin?

    Science.gov (United States)

    Duncan, Michael B.

    2010-01-01

    Concerns are growing regarding the availability of sustainable energy sources due to a rapidly growing human population and a better understanding of climate change. In recent years, the United States has focused much attention on developing domestic energy sources, which include coal-bed methane (CBM). There are vast deposits of the natural gas…

  19. Simultaneous determination of devolatilization and char burnout times during fluidized bed combustion of coal

    International Nuclear Information System (INIS)

    Christofiedes, N.; Brown, R.C.

    1992-01-01

    In this paper, the authors investigate a method for simultaneous determination of devolatilization and char burnout times based on the analysis of CO 2 emissions from a fluidized bed combustor. The technique is non-intrusive and can be performed under realistic combustion conditions. The authors' method involves batching single-size coal samples in a fluidized bed combustor that is heated with propane gas or other fuel. Carbon dioxide profiles versus time for the batch tests are analyzed with a linear model to obtain characteristic time constants for coal devolatilization and char combustion which can be related to total devolatilization time and burnout time for a coal sample. The authors' approach does not require special sample preparation, can be performed in actual combustion equipment and employs standard boiler instrumentation

  20. N2 O A greenhouse gas released from the combustion of coals in fluidized beds

    International Nuclear Information System (INIS)

    Boavida, D.; Lobo, L. S.; Gulyurtlu, I.; Cabrita, I.

    1996-01-01

    This paper discusses the results of the experimental work investigating the formation of N-2 O and NO during fluidized bed combustion of coals, and of chars and volatiles produced from the pyrolysis of these coals. Ammonia (N H 3 ) and hydrogen cyanide (HCN) are shown to play important roles as gas phase precursors of both NO and N 2 O. The conversion of fuel-N through N H 3 and HCN to N 2 O and NO was studied using a fluidized bed combustor in the temperature range between 973 K and 1273 K, for two different coals. The results suggest that the principal contribution to N 2 O emission Originated from volatile-N, however, char-N could also have an important role, depending upon the temperature. 1 fig., 8 tabs

  1. Observations on the palynology, petrography and geochemistry of the Western Kentucky number 4 coal bed

    Science.gov (United States)

    Eble, C.F.; Greb, S.F.; Williams, D.A.; Hower, J.C.

    1999-01-01

    Eight bench-column samples of the Western Kentucky Number 4 coal bed, collected from an area along the southern margin of the Western Kentucky Coal Field, were analyzed palynologically, petrographically, and geochemically to document both temporal and spatial variability among these parameters. The Western Kentucky Number 4 coal occurs near the top of the Tradewater Formation, is of Early Desmoinesian age, and is correlative with the lower part of the Allegheny Formation of the Appalachian Basin, and Late Bolsovian strata of western Europe. Palynologically, the coal is co-dominated by spores that were produced by lycopod trees (Lycospora and Granasporites medius) and tree ferns. Thin-walled tree fern spores (Punctatisporites minutus, P. minutus, P. rotundus) are more abundant than thick-walled forms (Laevigatosporites globosus, P. granifer). Calamitean spores (Calamospora and Laevigatosporites spp.) are locally abundant as is cordaitean pollen (Florinites). Small fern (Granulatisporites) and small lycopod spores (Densosporites, Cirratriradites, Endosporites and Anacanthotriletes spinosus) are present, but occur in minor amounts. Temporal changes in palynomorph composition occur, but are not uniform between columns. Spatial variability among columns is also evident. Petrographically, the coal is dominated by vitrinite macerals, with telinite and telocollinite generally occurring more commonly than desmocollinite and gelocollinite. Basal benches typically contain high percentages of vitrinite; middle benches usually contain higher percentages of liptinite and inertinite. In about half the studied columns, the terminal coal benches show a slight increase in vitrinite. In the study area, the petrography of the Western Kentucky Number 4 coal is more uniform than the palynology. Ash yields and total sulfur contents are temporally uniform in some columns, but variable in others. In the latter case, higher percentages of ash and sulfur occur at the base of the bed and

  2. Palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin

    Science.gov (United States)

    Eble, C.F.

    2002-01-01

    Fossil spores and pollen have long been recognized as valuable tools for identifying and correlating coal beds. This paper describes the palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin with emphasis on forms that assist both intra- and interbasinal coal bed correlation. Stratigraphically important palynomorphs that originate in late Middle Pennsylvanian strata include Torispora securis, Murospora kosankei, Triquitrites minutus, Cadiospora magna, Mooreisporites inusitatus, and Schopfites dimorphus. Taxa that terminate in the late Middle Pennsylvanian include Radiizonates difformis, Densosporites annulatus, Dictyotriletes bireticulatus, Vestispora magna, and Savitrisporites nux. Species of Lycospora, Cirratriradites, Vestispora, and Thymospora, as well as Granasporites medius, Triquitrites sculptilis, and T. securis and their respective ranges slightly higher, in earliest Late Pennsylvanian age strata. Late Middle Pennsylvanian and earliest Late Pennsylvanian strata in the Appalachian Basin correlate with the Radiizonates difformis (RD), Mooreisporites inusitatus (MI), Schopfites colchesterensis-S. dimorphus (CP), and Lycospora granulata-Granasporites medius (GM) spore assemblage zones of the Eastern Interior, or Illinois Basin. In the Western Interior Basin, these strata correlate with the middle-upper portion of the Torispora securis-Laevigatosporites globosus (SG) and lower half of the Thymospora pseudothiessenii-Schopfites dimorphus (PD) assemblage zones. In western Europe, late Middle Pennsylvanian and earliest Late Pennsylvanian strata correlate with the middle-upper portion of the Torispora securis-T. laevigata (SL) and the middle part of the Thymospora obscura-T. thiessenii (OT) spore assemblage zones. Allegheny Formation coal beds also correlate with the Torispora securis (X) and Thymospora obscura (XI) spore assemblages, which were developed for coal beds in Great Britain. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Gasification of Coal and PET in Fluidized Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Vosecký, Martin; Kameníková, Petra; Punčochář, Miroslav; Skoblia, Sergej; Staf, M.; Vošta, J.; Koutský, B.; Svoboda, Karel

    2006-01-01

    Roč. 85, 17-18 (2006), s. 2458-2468 ISSN 0016-2361 R&D Projects: GA ČR(CZ) GA104/04/0829 Institutional research plan: CEZ:AV0Z40720504 Keywords : fludized bed * gasification * plastic waste Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.358, year: 2006

  4. Organic geochemical investigation and coal-bed methane characteristics of the Guasare coals (Paso Diablo mine, western Venezuela)

    Science.gov (United States)

    Quintero, K.; Martinez, M.; Hackley, P.; Marquez, G.; Garban, G.; Esteves, I.; Escobar, M.

    2011-01-01

    The aim of this work was to carry out a geochemical study of channel samples collected from six coal beds in the Marcelina Formation (Zulia State, western Venezuela) and to determine experimentally the gas content of the coals from the Paso Diablo mine. Organic geochemical analyses by gas chromatography-mass spectrometry and isotopic analyses on-line in coalbed gas samples were performed. The results suggest that the Guasare coals were deposited in a continental environment under highly dysoxic and low salinity conditions. The non-detection of 18??(H)-oleanane does not preclude that the organic facies that gave rise to the coals were dominated by angiosperms. In addition, the presence of the sesquiterpenoid cadalene may indicate the subordinate contribution of gymnosperms (conifers) in the Paleocene Guasare mire. The average coalbed gas content obtained was 0.6 cm3/g. ??13C and D values indicate that thermogenic gas is prevalent in the studied coals. Copyright ?? Taylor & Francis Group, LLC.

  5. Facies development in the Lower Freeport coal bed, west-central Pennsylvania, U.S.A.

    Science.gov (United States)

    Pierce, B.S.; Stanton, R.W.; Eble, C.F.

    1991-01-01

    The Lower Freeport coal bed in west-central Pennsylvania is interpreted to have formed within a lacustrine-mire environment. Conditions of peat formation, caused by the changing chemical and physical environments, produced five coal facies and two mineral-rich parting facies within the coal bed. The coal bed facies are compositionally unique, having developed under varying conditions, and are manifested by megascopic, petrographic, palynologic and quality characteristics. The initial environment of the Lower Freeport peat resulted in a coal facies that is relatively high in ash yield and contains large amounts of lycopod miospores and moderate abundances of cryptotelinite, crypto-gelocollinite, inertinite and tree fern miospores. This initial Lower Freeport peat is interpreted to have been a topogenous body that was low lying, relatively nutrient rich (mesotrophic to eutrophic), and susceptible to ground water and to sediment influx from surface water. The next facies to form was a ubiquitous, clay-rich durain parting which is attributed to a general rise in the water table accompanied by widespread flooding. Following formation of the parting, peat accumulation resumed within an environment that inhibited clastic input. Development of doming in this facies restricted deposition of the upper shale parting to the margins of the mire and allowed low-ash peat to form in the interior of the mire. Because this environment was conducive to preservation of cellular tissue, this coal facies also contains large amounts of crypto-telinite. This facies development is interpreted to have been a transitional phase from topogenous, planar peat formation to slightly domed, oligotrophic (nutrient-poor) peat formation. As domed peat formation continued, fluctuations in the water table enabled oxidation of the peat surface and produced high inertinite concentrations toward the top of the coal bed. Tree ferns became an increasingly important peat contributor in the e upper facies

  6. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  7. Theoretical and experimental studies of fixed-bed coal gasification reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, B.; Bhattacharya, A.; Salam, L.; Dudukovic, M.P.

    1983-09-01

    A laboratory fixed-bed gasification reactor was designed and built with the objective of collecting operational data for model validation and parameter estimation. The reactor consists of a 4 inch stainless steel tube filled with coal or char. Air and steam is fed at one end of the reactor and the dynamic progress of gasification in the coal or char bed is observed through thermocouples mounted at various radial and axial locations. Product gas compositions are also monitored as a function of time. Results of gasification runs using Wyoming coal are included in this report. In parallel with the experimental study, a two-dimensional model of moving bed gasifiers was developed, coded into a computer program and tested. This model was used to study the laboratory gasifier by setting the coal feed rate equal to zero. The model is based on prior work on steady state and dynamic modeling done at Washington University and published elsewhere in the literature. Comparisons are made between model predictions and experimental results. These are also included in this report. 23 references, 18 figures, 6 tables.

  8. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available South Africa has abundant resources of high-ash and other low-quality coals. The aim of this work is to investigate the possibility of using fluidised bed gasification technology to convert these coals into clean fuel gas. The fuel gas can be used...

  9. Transient one-dimensional model of coal carbonization in a stagnant packed bed

    Science.gov (United States)

    Polesek-Karczewska, Sylwia; Kardaś, Dariusz; Wardach-Święcicka, Izabela; Grucelski, Arkadiusz; Stelmach, Sławomir

    2013-06-01

    In the present paper, the one-dimensional model for heat and mass transfer in fixed coal bed was proposed to describe the thermal and flow characteristics in a coke oven chamber. For the purpose of the studied problem, the analysis was limited to the calculations of temperature field and pyrolytic gas yield. In order to verify the model, its theoretical predictions for temperature distribution during wet coal charge carbonization were compared with the measurement results found in the literature. In general, the investigation shows good qualitative agreement between numerical and experimental data. However, some discrepancy regarding the temperature characteristics at the stage of evaporation was observed.

  10. Numerical study of rice husk and coal co-combustion characteristics in a circulating fluidized bed

    Science.gov (United States)

    Wang, Zuomin; Li, Jiuru

    2018-02-01

    This paper discussed the rationality of coal and rice husk co-combustion. Using ICEM software, a two-dimensional model of the riser has been established for circulating fluidized bed experimental table. Using Fluent software, numerical simulation has been made for the combustion reaction of different proportions of rice husk mixed with coal. The results show that, with the increase of rice husk ratio, both the combustion temperature and the amount of nitrogen oxides decrease and the effect is gradually reduced. In this simulation, the rice husks occupying about 30% is a reasonable proportion.

  11. New observations on the Middle Fork Eel River coal-bearing beds, Mendocino County, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Russell H. [Mendocino County Museum, 400 East Commercial Street, Willits, CA 95490 (United States); Bartley, Sylvia E. [Noyo Hill House, 28953 Highway 20, Fort Bragg, CA 95437 (United States); Springer, David J. [College of the Redwoods-Mendocino Coast, 1211 Del Mar Drive, Fort Bragg, CA 95437 (United States); Erwin, Diane M. [Museum of Paleontology, 1101 Valley Life Sciences Building, University of California, Berkeley, CA 94720 (United States)

    2010-08-01

    Mid-19th century reports of ''immense'' coal outcrops in the Middle Fork Eel River (MFER) drainage near Round Valley in California's northern Coast Ranges fueled the early geological interest in this area, with mine development the primary focus of many studies. It was not until Samuel G. Clark's 1940 ''Geology of the Covelo District, Mendocino County, California,'' that the coal was placed in its regional geologic context and assigned to the Miocene, a determination that relied primarily on a Desmostylus hesperus molar found in shale overlying the coal and an associated equivocal, though Miocene-compatible, marine molluscan fauna. Our investigation of the MFER coal-bearing beds has provided new data from foraminifera, marine mollusks, fish remains, and the first reported fossil plants, which as a whole support Clark's Miocene age assignment. We also present an updated stratigraphy proposing under modern-day stratigraphic protocols that the informal name Sand Bank beds (SBb) be used in place of the Temblor Formation to refer to the SBb coal-bearing fluvial-marine unit. Analysis of the SBb stratigraphy and sedimentology reveals the presence of a fluvial system that flowed from a distal upland region southward toward the paleocoast of California. An abundant diverse palynoflora containing lycophytes, ferns, conifers, and mesic, thermophillic herbaceous and woody angiosperms indicates the drainage flowed through a coastal swampy forested bottomland and estuarine environment before emptying into a coastal basin. Presence of Taxodium-like wood, foliage, pollen, and other ''hydrophiles'' suggests the MFER coal was a local mire buried by the progradation of the SBb fluvial system during a regressive phase, an interpretation to be tested with future field work and detailed compositional analysis of the coal. (author)

  12. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    International Nuclear Information System (INIS)

    Shah, S.F.A.; Aftab, A.; Soomro, N.; Nawaz, M.S.; Vafai, K.

    2015-01-01

    The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO), granulated activated carbon (GAC) bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO/sun 4/-lime influenced reduction of COD, color, turbidity and TSS by 32 percentage, 48 percentage, 50 percentage and 51 percentage, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88 percentage, 92 percentage, 67 percentage and 89 percentage, respectively. (author)

  13. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    Directory of Open Access Journals (Sweden)

    Syed Farman Ali Shah

    2015-12-01

    Full Text Available The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO, granulated activated carbon (GAC bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO4-lime influenced reduction of COD, color, turbidity and TSS by 32%, 48%, 50% and 51%, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88%, 92%, 67% and89%, respectively.

  14. The relationship of fluidized bed technology to the U.S. Clean Coal Technology demonstration program

    International Nuclear Information System (INIS)

    Weth, G.; Geffken, J.; Huber, D.A.

    1991-01-01

    Fluidized Bed Combustion projects (both AFBCs and PFBCs) have a prominent role in the US DOE Clean Coal Technology (CCT) Program. This program has the successful commercialization of these technologies as its primary objective and this is the basic criterion for government funding and participation in the development and demonstration of the technologies. Under the CCT program the US DOE is actively involved in the development and operation of three Fluidized Bed Technology projects, NUCLA, TIDD, and SPORN, and is in the negotiation stage on others, Dairyland, Nichols and Tallahassee. All of these projects, along with the operating information on fluidized beds in the industrial sector, will provide a basis for evaluating future utilization of Fluidized Bed Technology in the market place. Impacting upon further utilization will be the time-frame and the Clean Air Act Amendments of 1990. This paper presents the results of a study to ascertain the commercial readiness of Fluidized Bed Technology to meet the emissions and time-frame requirements of the Clean Air Act Amendments of 1990. Specifically addressed are: Commercialization criteria/factors which candidate and/or existing CCTs must achieve in order to gain market acceptance. The status of Fluidized Bed Technology in achieving these commercialization criteria for market acceptance (industrial and utility) consistent with the time frame of the Clean Air Act Amendments of 1990. Recommendations of commercialization criteria for future fluidized bed CCT demonstration projects

  15. Split-estate negotiations: the case of coal-bed methane

    Energy Technology Data Exchange (ETDEWEB)

    Hayley H. Chouinard; Christina Steinhoff [Washington State University, WA (United States)

    2008-01-15

    Coal-bed methane is an emerging contributor to the US energy supply. Split estates, where landowners control the surface and the energy companies lease the rights to the underground gas from the federal government, often impede successful negotiations for methane extraction. We provide an extensive form representation of the dynamic game of the negotiation process for subsurface access. We then solve for a set of Nash equilibrium outcomes associated with the split estate negotiations. By examining the optimal offers we can identify methods to improve the likelihood of negotiations that do not break down and result in the gas developer resorting to the use of a bond. We examine how changes in transaction costs or entitlements will affect the outcomes, and support our finds with anecdotal evidence from actual negotiations for coal-bed methane access. 55 refs.

  16. Liquid hydrocarbons from coal beds – risk factor for the underground work environment - Case study

    Directory of Open Access Journals (Sweden)

    Tomescu Cristian

    2017-01-01

    Full Text Available Liquid hydrocarbons from the coal bed and surrounding rocks, besides the stored gases, methane, carbon dioxide, carbon oxide, generate the increase of the risk factor from the occupational health and safety point of view. If for reducing the gas concentrations level and the methane emissions in order to increase the safety in exploitation exist well-known solutions and methods, the oxidation or self-oxidation of the hydrocarbons from the coal bed generate a series of compounds, reaction products over maximum admitted concentrations which give birth to a toxic atmosphere and which is hazardous for workers, at the same time inducing an error in noting the occurrence of a spontaneous combustion phenomena, a major risk for the workers and for the mineral resource. This paper represents a case study performed in one underground mine unit from Jiu Valley and presents the analysis for underground environment factors monitoring and for solutions for diminishing the OHS risk factors.

  17. Geochemistry, petrology, and palynology of the Pond Creek coal bed, northern Pike and southern Martin counties, Kentucky

    Science.gov (United States)

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.; Clark, W.L.

    2005-01-01

    The geochemistry, petrology, and palynology of the Duckmantian-age Pond Creek coal bed were investigated in northern Pike and southern Martin counties, eastern Kentucky. The coal bed exhibits significant vertical variation in the investigated geochemical parameters, with many diagenetic overprints of the original geochemistry. Included in the range of geochemical signatures are the presence of elements, particularly TiO2 and Zr, suggesting the detrital influences at the time of deposition of a low-vitrinite durain; a high CaO zone with elevated B/Be, both suggesting marine influence, in a lithotype in the middle of the coal bed; and the postdepositional emplacement of pyrite in the uppermost lithotype. Individual lithotypes, each representing distinct depositional environments, all complicated to some degree by diagentic overprints, comprise the complex history of the coal bed. ?? 2004 Elsevier B.V. All rights reserved.

  18. A new model for coal gasification on pressurized bubbling fluidized bed gasifiers

    International Nuclear Information System (INIS)

    Sánchez, Cristian; Arenas, Erika; Chejne, Farid; Londoño, Carlos A.; Cisneros, Sebastian; Quintana, Juan C.

    2016-01-01

    Highlights: • A new model was proposed for the simulation of fluidized bed reactors. • The model was validated against experimental data found in the literature. • The model was compared and found to be superior to other models reported in the literature. • Effects of pressure, temperature, steam/coal and air/coal ratios over gas composition were studied. - Abstract: Many industries have taken interest in the use of coal gasification for the production of chemicals and fuels. This gasification can be carried out inside a fluidized bed reactor. This non-ideal reactor is difficult to predict due to the complex physical phenomena and the different chemical changes that the feedstock undergoes. The lack of a good model to simulate the reactor’s behavior produces less efficient processes and plant designs. Various approaches to the proper simulation of such reactor have been proposed. In this paper, a new model is developed for the simulation of a pressurized bubbling fluidized bed (PBFB) gasifier that rigorously models the physical phenomena and the chemical changes of the feedstock inside the reactor. In the model, the reactor is divided into three sections; devolatilization, volatile reactions and combustion-gasification. The simulation is validated against experimental data reported in the literature and compared with other models proposed by different authors; once the model is validated, the dependence of the syngas composition on operational pressure, temperature, steam/coal and air/coal ratios are studied. The results of this article show how this model satisfactorily predicts the performance of PBFB gasifiers.

  19. Coal bed methane: current status and outlook - Panorama 2008; CBM: bilan et perspectives - Panorama 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    In many parts of the world, there is growing interest in coal bed methane (CBM), which has been exploited for years in the United States. One reason is undoubtedly that some new gas producing countries, including India and China, are seeking to limit the level of their gas dependence. Another is the need to control greenhouse gas emissions, especially using mechanisms set up under the Kyoto Protocol. Finally, the increase in gas prices on international markets also encourages this trend.

  20. Numerical simulation of coupled binary gas-solid interaction during carbon dioxide sequestration in a coal bed

    International Nuclear Information System (INIS)

    Feng Qiyan; Zhou Lai; Chen Zhongwei; Liu Jishan

    2008-01-01

    Complicated coupled binary gas-solid interaction arises during carbon dioxide sequestration in a coal seam, which combines effects of CO 2 -CH 4 counter adsorption, CO 2 -CH 4 counter diffusion, binary gas flow and coal bed deformation. Through solving a set of coupled field governing equations, a novel full coupled Finite Element (FE) model was established by COMSOL Multiphysics. The new FE model was applied to the quantification of coal porous pressure, coal permeability, gas composition fraction and coal displacement when CO 2 was injected in a CH 4 saturated coal bed. Numerical results demonstrate that CH 4 is swept by the injected CO 2 accompanied by coal volumetric deformation. Compared to the single CH 4 in situ, CH 4 -CO 2 counter-diffusion induced coal swelling can make more compensation for coal shrinkage due to effective stress. Competing influences between the effective stress and the CH 4 -CO 2 counter-diffusion induced volume change governs the evolution of porous pressure and permeability, which is controlled by the porous pressure correspondingly. This achievement extends our ability to understand the coupled multi-physics of the CO 2 geological sequestration and CO 2 enhanced coal bed methane recovery under field conditions. (authors)

  1. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jhon F. Velez; Farid Chejne; Carlos F. Valdes; Eder J. Emery; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    The main results of an experimental work on co-gasification of Colombian biomass/coal blends in a fluidized bed working at atmospheric pressure are reported in this paper. Several samples of blends were prepared by mixing 6-15wt% biomass (sawdust, rice or coffee husk) with coal. Experimental assays were carried out by using mixtures of different steams/blends (Rvc) and air/blend (Rac) ratios showing the feasibility to implement co-gasification as energetic alternative to produce fuel gas to heat and to generate electricity and the possibility of converting clean and efficiently the refuse coal to a low-heating value gas. 29 refs., 5 figs., 4 tabs.

  2. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor.

    Science.gov (United States)

    Park, Dong Kyoo; Kim, Sang Done; Lee, See Hoon; Lee, Jae Goo

    2010-08-01

    Co-pyrolysis characteristics of sawdust and coal blend were determined in TGA and a fixed bed reactor. The yield and conversion of co-pyrolysis of sawdust and coal blend based on volatile matters are higher than those of the sum of sawdust and coal individually. Form TGA experiments, weight loss rate of sawdust and coal blend increases above 400 degrees C and additional weight loss was observed at 700 degrees C. In a fixed bed at isothermal condition, the synergy to produce more volatiles is appeared at 500-700 degrees C, and the maximum synergy exhibits with a sawdust blending ratio of 0.6 at 600 degrees C. The gas product yields remarkably increase at lower temperature range by reducing tar yield. The CO yield increases up to 26% at 400 degrees C and CH(4) yield increases up to 62% at 600 degrees C compared with the calculated value from the additive model. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Evaluation of coal bed methane potential of coal seams of Sawang ...

    Indian Academy of Sciences (India)

    The comprehensive geological assessment of coal and lignite basins of India has revealed that about. 20,000 km2 of these coalfields is prospective area for CBM exploration and exploitation. The esti- mated gas-in-place (GIP), i.e., CBM reserves were. Keywords. CBM; adsorption isotherm; Sawang Colliery; Jharkhand.

  4. Paleoecology of the Late Pennsylvanian-age Calhoun coal bed and implications for long-term dynamics of wetland ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Debra A. [US Geological Survey, 926A National Center, Reston (VA 20192 USA); Phillips, Tom L. [Department of Plant Biology, University of Illinois, Urbana (IL 61801 USA); Lesnikowska, Alicia D. [Box 24, Rt. 2, Vineyard Haven (MA 02568 USA); DiMichele, William A. [Department of Paleobiology, NMNH, Smithsonian Institution, Washington (DC 20560 USA)

    2007-01-02

    Quantitative plant assemblage data from coal balls, miospores, megaspores, and compression floras from the Calhoun coal bed (Missourian) of the Illinois Basin (USA) are used to interpret spatial and temporal changes in plant communities in the paleo-peat swamp. Coal-ball and miospore floras from the Calhoun coal bed are dominated strongly by tree ferns, and pteridosperms and sigillarian lycopsids are subdominant, depending on geographic location within the coal bed. Although the overall composition of Calhoun peat-swamp assemblages is consistent both temporally and spatially, site-to-site differences and short-term shifts in species dominance indicate local topographic and hydrologic control on species composition within the broader context of the swamp. Statistical comparison of the Calhoun miospore assemblages with those from other Late Pennsylvanian coal beds suggests that the same basic species pool was represented in each peat-swamp landscape and that the relative patterns of dominance and diversity were persistent from site to site. Therefore, it appears that the relative patterns of proportional dominance stayed roughly the same from one coal bed to the next during Late Pennsylvanian glacially-driven climatic oscillations. (author)

  5. Effects of gas sorption-induced swelling/shrinkage on the cleat compressibility of coal under different bedding directions

    OpenAIRE

    Peng, Shoujian; Fang, Zhiming; Shen, Jian; Xu, Jiang; Wang, Geoff

    2017-01-01

    The cleat compressibility of coal is a key parameter that is extensively used in modeling the coal reservoir permeability for Coal Bed Methane (CBM) recovery. Cleat compressibility is often determined from the permeability measurement made at different confining pressures but with a constant pore pressure. Hence, this parameter ignores the sorption strain effects on the cleat compressibility. By using the transient pulse decay (TPD) technique, this study presents the results from a laboratory...

  6. Biomass gasification using nickel loaded brown coal char in fluidized bed gasifier at relatively low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.D.; Xiao, X.B.; Morishita, K.; Takarada, T. [Gunma University, Gumma (Japan)

    2009-07-01

    Our work focuses on developing nickel loaded brown coal char as a new catalyst to decompose tar and to enhance quality of product gas delivered from woody biomass pyrolysis at relatively low temperatures of 823 K and 923 K. It is carried out in two-stage fixed-bed reactor and a lab scale fluidized bed gasifier (FBG) under various conditions. Inside of gasifier is constructed by two beds, the primary one is a fluidized bed with sand. and the second one is a catalyst bed. The catalyst bed is used to evaluate and to compare catalytic activity between the new catalyst and a conventional Ni/Al{sub 2}O{sub 3} catalyst. The new catalyst is prepared by ion exchange method, dried at 380 K in nitrogen for 24 h, and is then calcined at 923 K in nitrogen for 90 min. The temperature as a function of gas yield and the effect of catalysts on gas yield in presence and absence of steam are investigated in this study. The new catalyst has shown high catalytic activity and stable activity and given the high quality of product gas in presence of steam.

  7. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  8. Methodology for the exploration of coal bed methane (CBM in Colombia coal basins

    Directory of Open Access Journals (Sweden)

    Jorge E. Mariño

    2013-07-01

    additional equipment have been adapted and improved in the UPTC by Geological Engineering research group during the last years. These CBM guides have been written following the current knowledge on CBM and propose additional recommendations for making the sampling and gas measuring more reliable and supportive of the CBM exploration projects that are taking place in the different coal basins in Colombia.

  9. Considerations on valorization of biomass origin materials in co-combustion with coal in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; H. Lopes; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2007-07-01

    Co-combustion of biomass materials with coal is currently gaining increasing importance, in order to meet the targets on greenhouse gas emissions, defined in the Kyoto protocol. Co-firing of coal with biomass materials could be the short-term solution in reducing CO{sub 2} emissions from power stations. The work undertaken studied co-firing of meat and bone meal (MBM), olive cake and straw pellets with bituminous coals from Colombia (CC) and Poland (PC), which are commonly used in European power stations. The co-combustion studies were carried out on the pilot fluidized bed installation of INETI. Gaseous pollutants and solid concentration in flue gases and ashes from different locations were monitored. Results obtained indicate that the co-feeding of biomass materials did not present any problem and ensured stable combustion conditions and high efficiency. However, for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass species studied. Most of the combustion of biomass material, contrary to that of coal, was observed to take place in the riser where the temperature was as high as 150-250{sup o}C above that of the bed. SO{sub 2} and NOx levels were found to be lower. The emissions of dioxins could be considerable with fuels with high Cl as is the case with straw. However, mixing of fuels with high S content could lead to a strong reduction in dioxin emissions. Ashes produced from biomass combustion may be considered for further reutilization or landfilling. Other options depend on their characteristics, chemical composition and leaching behaviour. This was evaluated in this study.

  10. Gas generation by co-gasification of biomass and coal in an autothermal fluidized bed gasifier

    International Nuclear Information System (INIS)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    In this study, thermochemical biomass and coal co-gasification were performed on an autothermal fluidized bed gasifier, with air and steam as oxidizing and gasifying media. The experiments were completed at reaction temperatures of 875 °C–975 °C, steam-to-biomass ratio of 1.2, and biomass-to-coal ratio of 4. This research aims to determine the effects of reaction temperature on gas composition, lower heating value (LHV), as well as energy and exergy efficiencies, of the product gas. Over the ranges of the test conditions used, the product gas LHV varies between 12 and 13.8 MJ/Nm 3 , and the exergy and energy efficiencies of the product gas are in the ranges of 50.7%–60.8% and 60.3%–85.1%, respectively. The results show that high reaction temperature leads to higher H 2 and CO contents, as well as higher exergy and energy efficiencies of the product gas. In addition, gas LHV decreases with temperature. The molar ratio of H 2 /CO is larger than 1 at temperatures above 925 °C. Our experimental analysis shows that co-gasification of biomass and coal in an autothermal fluidized bed gasifier for gas production is feasible and promising. -- Highlights: • An innovative steam co-gasification process for gas production was proposed. • Co-gasification of biomass and coal in an autothermal fluidized bed gasifier was tested. • High temperature favors H 2 production. • H 2 and CO contents increase, whereas CO 2 and CH 4 levels decrease with increase in T. • Exergy and energy efficiencies of gases increase with increase in T

  11. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water

    Directory of Open Access Journals (Sweden)

    Burcu eÜnal

    2012-05-01

    Full Text Available Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After seven days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2=0.95. Metabolically-active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of coal bed methane production and alter the composition of the active

  12. Agglomeration and reaction characteristics of various coal chars in fluidized-bed coal gasifier; Ryudoso sekitan gas ka ronai deno sekitan no gyoshu tokusei to hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uemiya, S.; Aoki, K.; Mori, S.; Kojima, T. [Seikei University, Tokyo (Japan). Faculty of Engineering

    1996-10-28

    With relation to the coals delivered as common samples in the coal fundamental technology development project, an experimental study was conducted on agglomeration characteristics and reaction characteristics in the fluidized-bed coal gasifier. For the experiment, used was a fluidized bed gasifier inserted with a cone-shape dispersion plate with a nozzle in the center. After raising the temperature of the gasifier up to 773K, gasification was conducted sending to the gasifier air from the nozzle and steam from the dispersion plate. The mean particle diameter and gas concentration of chars were measured till the temperature reaches 1373K. As a result of the experiment, it was confirmed that the carbon conversion ratio increases with a decrease in coalification degree of the coal. Moreover, influence of the coal kind was markedly observed at the grid zone of the lower part of the bed, and it was clarified that the lower carbon content ratio the coal kind has, the faster the speed of CO formation and water gasification get. The agglomeration temperature of charcoal which is a product of the condensate is lower by as many as several hundred K than the point of softening, and it was considered to be necessary to study the relation with the temperature distribution in the bed. 3 refs., 3 figs., 1 tab.

  13. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Huang, Yuping; Zheng, Qipeng P.; Fan, Neng; Aminian, Kashy

    2014-01-01

    Highlights: • A novel deterministic optimization model for CO 2 -ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO 2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO 2 credit. - Abstract: Enhanced coal bed methane production with CO 2 injection (CO 2 -ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO 2 credits in the carbon market. As the technology of CO 2 -ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO 2 -ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO 2 -ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO 2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models

  14. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  15. Removing heavy metals from wastewaters with use of shales accompanying the coal beds.

    Science.gov (United States)

    Jabłońska, Beata; Siedlecka, Ewa

    2015-05-15

    A possibility of using clay waste rocks (shales) from coal mines in the removal of heavy metals from industrial wastewaters is considered in this paper. Raw and calcined (600 °C) shales accompanying the coal beds in two Polish coal mines were examined with respect to their adsorptive capabilities for Pb, Ni and Cu ions. The mineralogical composition of the shales was determined and the TG/DTG analysis was carried out. The granulometric compositions of raw and calcined shales were compared. Tests of adsorption for various Pb(II), Ni(II) and Cu(II) concentrations were conducted and the pH before and after adsorption was analyzed. The results indicate that the shales from both coal mines differ in adsorptive capabilities for particular metal ions. The calcination improved the adsorptive capabilities for lead, but worsened them for nickel. The examined shales have good adsorptive capabilities, and could be used as inexpensive adsorbents of heavy metal ions, especially in the regions where resources of shale are easy accessible in the form of spoil tips. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Investigation of combustion of coal briquettes in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Dulce; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel

    1999-07-01

    This paper discusses the results obtained from an experimental combustion work undertaken to investigate the behaviour of multicomponent briquettes, prepared by mixing two different particle sizes of coal and two different types of binder species. single briquettes were burned over a wide range of temperatures in a laboratory scale fluidised bed combustor facility. Nitrogen (NO{sub x}, and N{sub 2}O) and Sulphur (SO{sub 2}) oxides emissions resulting from the combustion of these briquettes were constantly monitored during the time of burning. The levels of O{sub 2}, CO{sub 2} and CO were also recorded during the same period. Experimental results showed that coal particle size influenced burn-out times and emissions levels of some of gaseous species. The hinder type was also found to have a major influence on the emissions of different pollutants.The temperature was observed to significantly influence the extent of the effects of the other operating parameters studied.

  17. Effects of gas sorption-induced swelling/shrinkage on the cleat compressibility of coal under different bedding directions.

    Science.gov (United States)

    Peng, Shoujian; Fang, Zhiming; Shen, Jian; Xu, Jiang; Wang, Geoff

    2017-10-30

    The cleat compressibility of coal is a key parameter that is extensively used in modeling the coal reservoir permeability for Coal Bed Methane (CBM) recovery. Cleat compressibility is often determined from the permeability measurement made at different confining pressures but with a constant pore pressure. Hence, this parameter ignores the sorption strain effects on the cleat compressibility. By using the transient pulse decay (TPD) technique, this study presents the results from a laboratory characterization program using coal core drilled from different bedding directions to estimate gas permeability and coal cleat compressibility under different pore pressures while maintaining effective stress constant. Cleat compressibility was determined from permeability and sorption strain measurements that are made at different pore pressures under an effective stress constant. Results show that the cleat compressibility of coal increases slightly with the increase of pore pressure. Moreover, the cleat compressibility of Sample P (representing the face cleats in coal) is larger than that of Sample C (representing the butt cleats in coal). This result suggests that cleat compressibility should not be regarded as constant in the modeling of the CBM recovery. Furthermore, the compressibility of face cleats is considerably sensitive to the sorption-induced swelling/shrinkage and offers significant effects on the coal permeability.

  18. Conceptual designs of pressurized fluidized bed and pulverized coal fired power plants

    International Nuclear Information System (INIS)

    Doss, H.S.; Bezella, W.A.; Hamm, J.R.; Pietruszkiewicz, J.

    1984-01-01

    This paper presents the major technical and economic characteristics of steam and air-cooled pressurized fluidized bed (PFB) power plant concepts, along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. Conceptual designs for the three plants were prepared to satisfy a set of common groundrules developed for the study. Grassroots plants, located on a generic plant site were assumed. The designs incorporate technologies projected to be commercial in the 1990 time frame. Power outputs, heat rates, and costs are presented

  19. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal

    OpenAIRE

    Lucio Zaccariello; Maria Laura Mastellone

    2015-01-01

    The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H 2 , CO, and CO 2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV) progressively increased from 5.1 to 7.9 MJ/Nm 3 when the plastic waste fraction was moved from 0% to 100%. Hig...

  20. Gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Jong, W. de; Hein, K.R.G. [Technische Univ. Delft (Netherlands)

    1998-09-01

    During a 3 year (1996-1998) multinational JOULE project, partly funded by the EU, experimental and theoretical research is being done on co-gasification of biomass (pelletised straw and Miscanthus) and coal in a pressurised fluidised bed reactor. The influence of feedstock and operating conditions on gasification characteristics has been studied using a 1.5 MW{sub th} gasifier, which has been operated at a pressure of 5 bar and temperatures up to 900 C. The project and the test rig are described and results obtained in the first part of the project are presented and analysed. (orig.)

  1. Release of nitrogen precursors from coal and biomass residues in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    P. Abelha; I. Gulyurtlu; I. Cabrita [Instituto Nacional de Engenharia, Lisbon (Portugal)

    2008-01-15

    This work was undertaken with the aim of quantifying the relative amounts of NH{sub 3} and HCN released from different residues during their devolatilization under fluidized bed conditions. The results were compared with data collected for bituminous coals of different origin. The relation between amounts of HCN and NH{sub 3} released and the levels of NOX and N{sub 2}O formed during cocombustion was also addressed. The partitioning of nitrogen between volatiles and char was also quantified. The pyrolysis studies were undertaken in a small fluidized bed reactor of 80 mm of ID and 500 mm high using an inert atmosphere (N{sub 2}). The HCN and NH{sub 3} were quantified by bubbling the pyrolysis gases in absorbing solutions which were subsequently analyzed with selective electrodes. The combustion studies were carried out on a pilot installation. The fluidized bed combustor is square in cross section with each side being 300 mm long. There is secondary air supply to the freeboard at different heights to deal with high volatile fuels as almost all waste materials are. The temperatures in the bed and in the freeboard and that of the flue gases leaving the reactor were continuously monitored. The results obtained suggest that, while coal releases nitrogen mostly as HCN, residues like RDF and sewage sludge give out fuel-N in greater quantities as NH{sub 3}. Residues at fluidized bed combustion (FBC) temperatures release more than 80% of the fuel-N with the volatiles. The NH{sub 3} evolved during pyrolysis acted as a reducing agent on NOX emissions. The presence of calcium significantly reduces the emission of N{sub 2}O probably by interfering with HCN chemistry. With high amounts of residues in the fuel mixture, the relative importance of char on the nitrogen chemistry substantially decreases. By using cocombustion, it is possible to reduce fuel-N conversion to NOX and N{sub 2}O, by tuning the amounts of coal and residue in the mixture. 29 refs., 18 figs., 3 tabs.

  2. Synthetic sorbents for removal of sulfur dioxide in fluidized-bed coal combustors. [25 refs

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.B.; Wilson, W.I.; Johnson, I.; Jonke, A.A.

    1977-06-01

    Synthetic sorbents have been investigated for use in place of limestone for SO/sub 2/ emission control in fluidized-bed coal combustors. Sorbents prepared by impregnation of porous alumina with alkali metal or alkaline earth oxides were studied. The most promising sorbent was found to be calcium oxide in alumina. However, the SO/sub 2/ reactivity of this synthetic sorbent was less than that for a moderately reactive limestone. Hence, a greater quantity of synthetic sorbent would be needed to meet SO/sub 2/ emission standards. The attrition resistance of this synthetic sorbent was found to be greater than that of natural stones; therefore, a larger number of cycles of use would be expected. It is estimated that the use of this synthetic sorbent would reduce the amount of waste sorbent to about one-sixth the amount expected using a moderately reactive once-through limestone. The cost of using this synthetic sorbent is estimated to be about three and a half times the cost expected using once-through limestone. This cost is considered to be too large in view of the expected modest decrease in environmental impact. The synthetic sorbents developed in this study are therefore not considered viable alternatives for limestone in fluidized-bed coal combustors.

  3. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongguang; Yu, Zhisheng; Liu, Ruyin [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Zhang, Hongxun [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environmental Sciences; Zhong, Qiding; Xiong, Zhenghe [China National Research Institute of Food and Fermentation Industries, Beijing (China). Food Analysis using Isotope Technology Lab

    2012-12-15

    To identify the methanogenic pathways present in a deep coal bed methane (CBM) reservoir associated with Eastern Ordos Basin in China, a series of geochemical and microbiological studies was performed using gas and water samples produced from the Liulin CBM reservoir. The composition and stable isotopic ratios of CBM implied a mixed biogenic and thermogenic origin of the methane. Archaeal 16S rRNA gene analysis revealed the dominance of the methylotrophic methanogen Methanolobus in the water produced. The high potential of methane production by methylotrophic methanogens was found in the enrichments using the water samples amended with methanol and incubated at 25 and 35 C. Methylotrophic methanogens were the dominant archaea in both enrichments as shown by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). Bacterial 16S rRNA gene analysis revealed that fermentative, sulfate-reducing, and nitrate-reducing bacteria inhabiting the water produced were a factor in coal biodegradation to fuel methanogens. These results suggested that past and ongoing biodegradation of coal by methylotrophic methanogens and syntrophic bacteria, as well as thermogenic CBM production, contributed to the Liulin CBM reserves associated with the Eastern Ordos Basin. (orig.)

  4. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal

    Directory of Open Access Journals (Sweden)

    Lucio Zaccariello

    2015-08-01

    Full Text Available The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%, producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively. Plastic waste and wood gasification presented similar cold gas efficiency (CGE values (0.75 and 0.76, respectively, while that obtained during the co-gasification tests varied from 0.53 to 0.73.

  5. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water.

    Science.gov (United States)

    Unal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R(2) = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community.

  6. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  7. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S. [INETI, Lisbon (Portugal)

    2006-06-15

    The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

  8. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, Ibrahim; Lopes, M. Helena; Abelha, Pedro; Cabrita, Isabel; Oliveira, J.F. Santos

    2003-07-01

    The behaviour of Cd, Cr, Cu, Co, Mn, Pb, Zn and Hg during the combustion tests of granular dry sewage sludges on a pilot FBC of about 0,3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals. Heavy metals were collected and analysed from different locations of the installation, which included the stack, the two cyclones and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40 and 80%. It is believed that in this latter case, a slightly higher bed temperature could have enhanced the volatilisation, especially of Cd and Pb. However these metals were then retained in cyclone ashes. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of it was retained in the cyclone and emitted as both fine ash particles and in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted for about 50%, although there was a significant amount unaccounted for. This appeared to have significantly decreased in the case of co-combustion, as only about 15% has been emitted, due to the retention effect of cyclone ashes which presented high quantities of unburned carton and possibly condensed sulphur species.

  9. Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

  10. The formation of impurities in fluidized-bed gasification of biomass, peat and coal; Epaepuhtauksien muodostuminen leijukerroskaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Laatikainen-Luntama, J.; Kurkela, M.; Leppaelahti, J.; Koljonen, T.; Oesch, P. [VTT Energy, Espoo (Finland); Alen, R. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The objective of this three-year-long project was to study the effects of different process parameters and bed materials on the formation of impurities in pressurized fluidized-bed gasification. The main emphasis of the project was focused on the formation of tars and nitrogen compounds in wood, peat and coal gasification. The aims of the research were to find out such operating conditions, where the formation of problematic high-molecular-weight tars can be minimised and to create a better understanding on the fate of fuel nitrogen in fluidized-bed gasifiers. Main part of the research was carried out in a bench-scale pressurised fluidized-bed reactor (ID 30 mm), where the effects of pressure, temperature, gas atmosphere and bed material were studied with different feedstocks. Most of the test series were carried out using the same feedstocks as earlier used in the PDU-scale fluidized-bed gasification tests of VTT (pine wood, pine bark, wheat straw, two peats, Rhenish brown coal, Polish and Illinois No.6 bituminous coals). The effects of operating parameters on the product yields (gas components, tars, char) were first studied under inert nitrogen atmosphere. The conversion of fuel nitrogen into ammonia and HCN were also determined for the different feedstocks over the different operating conditions. These studies showed that ammonia is the main fixed nitrogen compound of fluidized-bed pyrolysis with all the feedstocks studied. The conversions of fuel nitrogen into ammonia and HCN was highest with the high volatile fuels and lowest with the two hard coals. Gas atmosphere had a dramatic effect on the conversion of fuel nitrogen; much higher ammonia yields were determined in real gasification gas atmosphere than in inert pyrolysis carried out in N{sub 2} or Argon atmosphere. In addition to the pressurised fluidized-bed pyrolysis tests, laboratory scale pyrolysis research was carried out in order to compare the pyrolysis behaviour of the different feedstocks

  11. A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    into long cylindrical pellets. Kaolin and bituminous coal ash that both have significant amounts of Si and Al show superior potassium capture characteristics. Experimental results show that capture of potassium by kaolin is independent of the gas oxygen content. Kaolin releases water and forms metakaolin......The reactions between gaseous potassium chloride and coal minerals were investigated in a lab-scale high temperature fixed-bed reactor using single sorbent pellets. The applied coal minerals included kaolin, mullite, silica, alumina, bituminous coal ash, and lignite coal ash that were formed...... at temperatures below 1300°C. However, the weight gain by mullite is only slightly smaller than that by kaolin in the temperature range of 1300-1500°C. A simple model was developed for the gas-solid reaction between potassium vapor and metakaolin pellet at 900°C....

  12. The effect of Jatropha torrified biomass and coal preparation on steam co-gasification in a fixed bed reactor

    Science.gov (United States)

    Aloqaili, Mashal Mohammed

    Coal fired power stations produce vast amounts of harmful products that may affect our health and environment. Co-gasification of coal and biomass could be a solution to this issue as an emerging technology. Biomass may reduce emissions significantly and it may contribute to reducing capital operational cost while providing high gas yields. This research tests the co-gasification of coal and biomass blended chars. Coal and biomass were both prepared. Coal Illinois No #6 was prepared as coal semi-char and coal-char while Jatropha biomass was torrefied at six different temperatures ranging from [200-300] ºC. The co-gasification experiments was conducted in a fixed-bed reactor. A gasification temperature was 900 ºC and a constant flow rate of 100 mL/min. Carbon conversion, maximum char reactivity, products yield and amount of hydrogen produced were evaluated and studied based on data obtained from the G.C. Additionally, weight of bed material and ash leftover weight from gasification process were significantly contributed in calculating the carbon conversion percentages.

  13. Relation between the petrographic composition of coal and the morphology of pyrolysis char produced in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    B. Valentim; M.J. Lemos de Sousa; P. Abelha; D. Boavida; I. Gulyurtlu [Centro de Geologia da Universidade do Porto, Porto (Portugal)

    2004-06-01

    Several previous studies have already established, for pulverized coal combustion conditions, global correlations between petrographic composition of the coal and those of char produced from the same coal. However, for fluidized bed combustion, there has not been much new work since the eighties. The results presented in this paper include the petrographic characterization of seven different coals from several origins and also of their respective chars produced at 700, 800, 900, and 1000{sup o}C in a laboratory fluidized bed reactor. The results show a marked predominance of tenuispheres as the trial temperatures increase. While vitrinite-rich coals essentially produced highly porous chars, the inertinite-rich coals produced large amounts of medium- and low-porous chars. Semi-anthracite vitrinite produced high-porous chars and thermal affected coal particles originated low-porous and angular char morphotypes. The analysis of the data obtained revealed that vitrinite + liptinite related well with the high-porous char (sum of cenospheres and tenuinetworks), classified as Group 1. The same trend, but with a weaker relation, was also observed between vitrinite and liptinite rich microlithotypes and Group 1. 32 refs., 17 refs., 3 tabs.

  14. A study of geochemical prospecting for uranium-bearing low grade coal beds in Korea

    International Nuclear Information System (INIS)

    Kim, O.B.

    1980-01-01

    Trend surface analysis was applied in order to find the criteria for geochemcial prospecting of uranium bearing narrow coal bed in Ogcheon Group. Soil samples were taken from the Mogso-ri area, the Deogpyeong-ri area, and the Jeogum-ri area and were analyzed for U, V, Mo, Pb, Zn, Cu, Cd, and Cr by colorimetry and atomic absorption. All data were processed statistically by HP 3000 computer. The results were as follows: Molybdenium could be used as the best competent indicator element for uranium. Lead, Copper, Vanadium could be used as assistant indicator. The trend surface analysis and the residual map were very useful for statistical interpretation of analyzed data. Second or third degree trend surface analysis was sufficient for this work. The trend map revealed that the origin of uranium in these area was the same. (Author)

  15. Co-combustion of coal and non-recyclable paper & plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, D.; Abelha, P.; Gulyurtlu, I.; Cabrita, I. [DEECA-INETI, Lisbon (Portugal)

    2002-07-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials could present serious problems which could render conditions for a stable combustion difficult to achieve. The waste was fed mixed with coal and there was some difference observed in results regarding the combustion efficiency and emissions. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{degree}C above that of the bed. 6 refs., 8 figs., 8 tabs.

  16. Co-combustion of coal and non-recyclable paper and plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    D. Boavida; P. Abelha; I. Gulyurtlu; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2003-10-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials plays an important role to achieve conditions for a stable combustion. The form in which the fuel is fed to the combustor makes a significant contribution to achieve desirable combustion performance and differences were observed in results regarding the combustion efficiency and emissions when waste was fed densified or in a fluffy state when it was burned mixed with coal. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{sup o}C above that of the bed. 15 refs., 8 figs., 8 tabs.

  17. Sequestration and Enhanced Coal Bed Methane: Tanquary Farms Test Site, Wabash County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Frailey, Scott; Parris, Thomas; Damico, James; Okwen, Roland; McKaskle, Ray; Monson, Charles; Goodwin, Jonathan; Beck, E; Berger, Peter; Butsch, Robert; Garner, Damon; Grube, John; Hackley, Keith; Hinton, Jessica; Iranmanesh, Abbas; Korose, Christopher; Mehnert, Edward; Monson, Charles; Roy, William; Sargent, Steven; Wimmer, Bracken

    2012-05-01

    The Midwest Geological Sequestration Consortium (MGSC) carried out a pilot project to test storage of carbon dioxide (CO{sub 2}) in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} sequestration and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot was conducted at the Tanquary Farms site in Wabash County, southeastern Illinois. A four-well design an injection well and three monitoring wells was developed and implemented, based on numerical modeling and permeability estimates from literature and field data. Coal cores were taken during the drilling process and were characterized in detail in the lab. Adsorption isotherms indicated that at least three molecules of CO{sub 2} can be stored for each displaced methane (CH{sub 4}) molecule. Microporosity contributes significantly to total porosity. Coal characteristics that affect sequestration potential vary laterally between wells at the site and vertically within a given seam, highlighting the importance of thorough characterization of injection site coals to best predict CO{sub 2} storage capacity. Injection of CO{sub 2} gas took place from June 25, 2008, to January 13, 2009. A continuous injection period ran from July 21, 2008, to December 23, 2008, but injection was suspended several times during this period due to equipment failures and other interruptions. Injection equipment and procedures were adjusted in response to these problems. Approximately 92.3 tonnes (101.7 tons) of CO{sub 2} were injected over the duration of the project, at an average rate of 0.93 tonne (1.02 tons) per day, and a mode injection rate of 0.6-0.7 tonne/day (0.66-0.77 ton/day). A Monitoring, Verification, and Accounting (MVA) program was set up to detect CO{sub 2 leakage. Atmospheric CO{sub 2} levels were monitored as were indirect indicators of CO{sub 2} leakage such as plant stress, changes in gas composition at

  18. Comparison of the petrography, palynology and paleobotany of the Stockton coal bed, West Virginia and implications for paleoenvironmental interpretations

    Science.gov (United States)

    Pierce, B.S.; Stanton, R.W.; Eble, C.F.

    1993-01-01

    The Stockton coal bed (Middle Pennsylvanian) is a relatively high ash coal composed primarily of moderately thin banded, sparsely thin banded, and nonbanded coal (splint and cannel coal). Comparisons of petrographic, palynologic, and paleobotanic data gathered from the same sample sets from a single column of the Stockton coal bed indicate that compositional correspondences among the sets exist regardless of coal type. Some correspondences are believed to exist because of original plant constituents and others because of the paleoenvironment of peat formation. Using some combination of these data is critical when interpreting paleoenvironmental conditions because (1) a direct correspondence is lacking between many of the data and (2) each of the three data sets provides a unique and important perspective on the paleomire. The Stockton paleomire in the area of this study supported a diverse flora that consisted of both small and arboreous lycopsids, small ferns and tree ferns, calamites, cordaites, and pteridosperms. There appear to have been two successions of Lycospora spore-dominated, vitrinite-rich, liptinite-poor peat formation, which were followed by inertinite-rich peat formation marked by a tree fern-dominant spore assemblage and abundant unidentifiable plant tissues. These are interpreted to be two water-laden or topogenous peat formational stages followed by slightly domed, better drained peat formation. ?? 1993.

  19. Hydrogen-Rich Gas Production by Cogasification of Coal and Biomass in an Intermittent Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Li-Qun Wang

    2013-01-01

    Full Text Available This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T, steam to biomass mass ratio (SBMR, and biomass to coal mass ratio (BCMR on hydrogen-rich (H2-rich gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  20. Hydrogen-rich gas production by cogasification of coal and biomass in an intermittent fluidized bed.

    Science.gov (United States)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  1. Co-Combustion of Municipal Sewage Sludge and Hard Coal on Fluidized Bed Boiler WF-6

    Directory of Open Access Journals (Sweden)

    Rajczyk Rafał

    2014-12-01

    Full Text Available According to data of the Central Statistical Office, the amount of sludge produced in municipal wastewater treatment plants in 2010 amounted to 526000 Mg d.m. The forecast of municipal sewage sludge amount in 2015 according to KPGO2014 will reach 642400 Mg d.m. and is expected to increase in subsequent years. Significant amounts of sludge will create problems due to its utilization. In order to solve this problem the use of thermal methods for sludge utilization is expected. According to the National Waste Management Plan nearly 30% of sewage sludge mass should be thermally utilized by 2022. The article presents the results of co-combustion of coal and municipal sewage sludge in a bubbling fluidized bed boiler made by SEFAKO and located in the Municipal Heating Company in Morag. Four tests of hard coal and sewage sludge co-combustion have been conducted. Boiler performance, emissions and ash quality were investigated.

  2. Mineral assemblages of volcanic and detrital partings in tertiary coal beds, Kenai Peninsula, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Reinink-Smith, L.M. (University of Alaska, Fairbanks, AK (USA). Mineral Industry Research Laboratory)

    1990-01-01

    Volcanic and non-volcanic partings are exposed in coal beds of the Tertiary Beluga and Sterling Formations along the shores of the Kenai lowland, Alaska. About two-thirds of the partings originated as air-fall tephra which fell in coal-forming swamps. The tephra partings in the Pliocene strata are unaltered or slightly altered and have a characteristic mineral assemblage of volcanic glass {+-} montmorillonite {+-} kaolinite {+-} opal-CT. Miocene strata are slightly altered to totally altered, and a typical mineral assemblage consists of feldspar {+-} montmorillonite {+-} quartz {+-} crandallite {+-} altered volcanic glass. Crandallite appears to have formed early in diagenesis by the replacement of volcanic glass prior to the formation of montmorillonite and kaolinite. About one-third of the partings originated primarily as detrital sediments derived from surrounding metamorphic and sedimentary terranes and were deposited by periodic floods. Mixtures of tephra and detrital sediments were also noted and were difficult to distinguish from tephra partings in the field. Detrital partings are characterized by detrital chlorite + illite + smectite + quartz {+-} feldspar {+-} siderite {+-} kaolinite. The chlorite in these strata is allogenic. Smectite is less common in the detrital partings. 34 refs., 9 figs., 3 tabs.

  3. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations.

  4. Polycyclic aromatic hydrocarbon (PAH) emission from co-firing of petrochemical sludge with coal in circulating fluidized bed incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, G.; Zhao, C.S. [South East University, Nanjing (China). School of Energy & Environment

    2009-07-01

    Experimental tests of polycyclic aromatic hydrocarbon (PAH) emission characteristics from co-firing of petrochemical sludge with coal were conducted in it pilot-scale circulating fluidized bed (CFB) incinerator with the thermal input of 0.2 MW. Results showed that when the mass mixing ratio increases from 10 to 40%, PAH, especially lower molecular weight (LMW) PAH, emission increases substantially. As combustion temperature or excess air coefficient increases, PAH emission decreases at first and then increases. There is an optimum combustion temperature and excess air coefficient for inhibiting PAHs formulation. PAH emission declines significantly when the secondary air fraction is increased from 20 to 50%. The staged combustion technique of circulating fluidized beds may have the advantage of inhibiting the formation of PAHs, Some optimized operation parameters are recommended for incineration of petrochemical sludge with coal in a circulating fluidized bed incinerator.

  5. Uncertainty Analysis using Experimental Design Methods for Assessing CO2 Sequestration and Coal Bed Methane Production Potential of Subbituminous Coals of the Nenana Basin, Interior Alaska

    Science.gov (United States)

    Dixit, N.; Ahmadi, M.; Hanks, C.; Awoleke, O.

    2016-12-01

    Naturally fractured, unmineable coal seam reservoirs are attractive targets for geological sequestration of CO2 because of their high CO2-adsorption capacities and possible cost offsets from enhanced coal bed methane production (ECBM). In this study, we have investigated CO2 sequestration and CH4 production potential of the subbituminous Healy Creek Formation coals through preliminary sensitivity analyses, experimental design methods and fluid flow simulations. Our primary sensitivity analyses indicated that the total cumulative volumes of CO2 sequestered and CH4 produced from the Healy Creek coals are mostly sensitive to bottomhole injection pressure, coal matrix porosity, fracture porosity and permeability, and coal volumetric strain. The results of Plackett-Burman experimental design were used to further constrain the most influential reservoir parameters and generate proxy models for probabilistic reservoir forecasts. Our probabilistic estimates for the mature, subbituminous Healy Creek coals in the entire Nenana basin indicate that it is possible to sequestrate between 0.87 TCF (P10) and 0.2 TCF (P90) of CO2 while producing between 0.29 TCF (P10) and 0.1 TCF (P90) of CH4 at the end of 20-year forecast. Our study demonstrated application of experimental design methods and Monte Carlo analysis in reducing these uncertainties in reservoir properties and quantifying their effect on reservoir performance. In addition, the results of fluid flow scenarios show that the CO2 sequestration through a primary reservoir depletion method is the most effective way to inject CO2 in the coals of the Nenana basin. Including a horizontal well instead of the vertical well resulted in relatively high average gas production rates and subsequent faster production decline. Our CO2 buoyancy scenario suggested that the effect of CO2 buoyancy and the nature of the caprock should be considered when identifying potential geologic sites for CO2 sequestration and in CO2 storage capacity

  6. Coal Bed Methane Production in the Münsterland Basin, Germany - Past and Future

    Science.gov (United States)

    Mösle, B.; Kukla, P.; Stollhofen, H.; Preuße, A.

    2009-04-01

    Growing demands on energy and high energy prices have lead to a re-evaluation of the coal bed methane (CBM) potential in Germany. For research reasons the Technical University of Aachen is holding a concession area in NW Germany, located in the Münsterland Basin. This concession covers an area of about 3460 km2. The southern part of the concession area involves one of the most developed, densely populated mining districts in Western Europe, the Ruhr Area. The Upper Carboniferous coal measures there are covered by northward thickening Cretaceous strata which not only limits the coal mining activity to the south of the basin but also represents a challenge to CBM production technology. This is currently restricted to a depth of about 1200 m. Mine gas has been successfully produced in the Ruhr Area for decades. With the successive closure of coal mines, gas production rates will decrease and consequently production of CBM will become more important. The Münsterland Basin contains a large portion of known Carboniferous coals in western Germany and the production of mine gas proofs that there is a significant resource of natural gas in place. Estimates of the amount of gas in place are at about 3 Trillion m3 in Germany's mining districts of which 2 Trillion m3 are expected to occur in the Ruhr Area alone. First exploration efforts on CBM were made by a consortium of Ruhrgas AG and Conoco-Phillips Inc. in the 1990s. Because of low production rates, relatively high exploration and production costs, and the low gas prices at that time this project was stopped. The present study investigates the reservoir quality and geometry in order to better estimate the potential gas content for a general economic benefit assessment. The structural inventory of the study area comprises NE-SW trending folds and thrusts which are crossed obliquely by faults. Potential gas accumulations may be found in anticlinal structures paired with thrusts. However, these gas accumulations will add

  7. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  8. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  9. Map Showing Principal Coal Beds and Bedrock Geology of the Ucross-Arvada Area, Central Powder River Basin, Wyoming

    Science.gov (United States)

    Molnia, Carol L.

    2013-01-01

    The Ucross-Arvada area is part of the Powder River Basin, a large, north-trending structural depression between the Black Hills on the east and the Bighorn Mountains on the west. Almost all of the study area is within Sheridan and Johnson Counties, Wyoming. Most of the Ucross-Arvada area lies within the outcrop of the Wasatch Formation of Eocene age; the extreme northeast corner falls within the outcrop of the Tongue River Member of the Fort Union Formation of Paleocene age. Within the Powder River Basin, both the Wasatch Formation and the Tongue River Member of the Fort Union Formation contain significant coal resources. The map includes locations and elevations of coal beds at 1:50,000 scale for an area that includes ten 7½-minute quadrangles covering some 500 square miles. The Wasatch Formation coal beds shown (in descending order) are Monument Peak, Walters (also called Ulm 1), Healy (also called Ulm 2), Truman, Felix, and Arvada. The Fort Union Formation coal beds shown (in descending order) are Roland (of Baker, 1929) and Smith.

  10. Dynamic behavior and control requirements of an atmospheric fluidized-bed coal combustion power plant: A conceptual study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, O.L.

    1987-06-01

    A first-principles model of a nominal 20-MW atmospheric-pressure fluidized-bed coal combustion (AFBC) power plant was developed to provide insight into fundamental dynamic behavior of fluidized-bed systems. The control system included major loops for firing rate, steam pressure and temperature, forced and induced draft air flow, SO/sub 2/ emission, drum water level, evaporator recirculation, and bed level. The model was used to investigate system sensitivity to design features such as the distribution of heat transfer surface among the bed boiler and superheater and the out-of-bed superheater. Also calculated were the sensitivities of temperatures, pressures, and flow rates to changes in throttle, attemperator, and feedwater valve settings and forced and induced draft damper settings. The large bed mass, accounting for approx.40% of the active heat capacity, may vary under load change and could impact controller tuning. Model analysis indicated, however, that for the design studied, the change in bed mass does not appear to significantly affect controller tuning even if the bed mass varies appreciably under load-following conditions. Several bed designs are being considered for AFBC plants, some with partitions between bed sections and some without, and these differences may significantly affect the load-following capability of the plant. The results indicated that the slumping mode of operation can cause distortion of the heat source/sink distribution in the bed such that the load-following capability (rate of load change) of the plant may be reduced by as much as a factor of 5 compared with the mode in which tube surface is exposed. 9 refs., 13 figs., 6 tabs.

  11. Coupled hydrology and biogeochemistry of Paleocene–Eocene coal beds, northern Gulf of Mexico

    Science.gov (United States)

    McIntosh, Jennifer C.; Warwick, Peter D.; Martini, Anna M.; Osborn, Stephen G.

    2010-01-01

    Thirty-six formation waters, gas, and microbial samples were collected and analyzed from natural gas and oil wells producing from the Paleocene to Eocene Wilcox Group coal beds and adjacent sandstones in north-central Louisiana, USA, to investigate the role hydrology plays on the generation and distribution of microbial methane. Major ion chemistry and Cl−Br relations of Wilcox Group formation waters suggest mixing of freshwater with halite-derived brines. High alkalinities (up to 47.8 meq/L), no detectable SO4, and elevated δ13C values of dissolved inorganic carbon (up to 20.5‰ Vienna Peedee belemnite [VPDB]) and CO2 (up to 17.67‰ VPDB) in the Wilcox Group coals and adjacent sandstones indicate the dominance of microbial methanogenesis. The δ13C and δD values of CH4, and carbon isotope fractionation of CO2 and CH4, suggest CO2 reduction is the major methanogenic pathway. Geochemical indicators for methanogenesis drop off significantly at chloride concentrations above ∼1.7 mol/L, suggesting that high salinities inhibit microbial activity at depths greater than ∼1.6 km. Formation waters in the Wilcox Group contain up to 1.6% modern carbon (A14C) to at least 1690 m depth; the covariance of δD values of co-produced H2O and CH4 indicate that the microbial methane was generated in situ with these Late Pleistocene or younger waters. The most enriched carbon isotope values for dissolved inorganic carbon (DIC) and CO2, and highest alkalinities, were detected in Wilcox Group sandstone reservoirs that were CO2 flooded in the 1980s for enhanced oil recovery, leading to the intriguing hypothesis that CO2 sequestration may actually enhance methanogenesis in organic-rich formations.

  12. SHRIMP zircon U–Pb ages from coal beds across the Permian–Triassic boundary, eastern Yunnan, southwestern China

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2018-04-01

    Full Text Available The first SHRIMP zircon U–Pb ages from coal beds close to the end-Permian mass extinction are reported from the C1 coal seam in the Yantang Mine in Laibin Town, Xuanwei County, eastern Yunnan Province. Zircons were extracted from kaolinite claystone layers, defined as tonsteins (volcanic ash deposits, in the sub-seam B1 and B3 of the coal seam C1. The U–Pb ages are 252.0 ± 2.3 Ma and 250.3 ± 2.1 Ma for the sub-seam B1 and B3, respectively. Within analytical uncertainties, these U–Pb ages include the time period of the onset of the mass extinction at 251.941 ± 0.037 Ma, which was obtained from the marine Meishan section in Zhejiang Province, ∼1600 km away from the Yantang Mine. These new ages represent not only the first and closest ages to the PTB mass extinction in terrestrial coal beds, but also ages from the nearest site to the Emeishan volcanoes investigated so far. Therefore these new data provide the most accurate stratigraphic horizon of terrestrial facies of the end-Permian extinction in South China. The Emeishan volcanoes were likely the source of volcanic ash in the coal seams at the Xuanwei County and broader areas in South China. Furthermore, the minerals and geochemistry characteristics of the C1 coal seam also implied the influences of contemporaneous volcanic activities. Keywords: PTB mass extinction, C1 coal seam, SHRIMP U–Pb isotope age, Xuanwei County, Yunnan Province

  13. Stratified Sampling to Define Levels of Petrographic Variation in Coal Beds: Examples from Indonesia and New Zealand

    Directory of Open Access Journals (Sweden)

    Tim A. Moore

    2016-01-01

    Full Text Available DOI: 10.17014/ijog.3.1.29-51Stratified sampling of coal seams for petrographic analysis using block samples is a viable alternative to standard methods of channel sampling and particulate pellet mounts. Although petrographic analysis of particulate pellets is employed widely, it is both time consuming and does not allow variation within sampling units to be assessed - an important measure in any study whether it be for paleoenvironmental reconstruction or in obtaining estimates of industrial attributes. Also, samples taken as intact blocks provide additional information, such as texture and botanical affinity that cannot be gained using particulate pellets. Stratified sampling can be employed both on ‘fine’ and ‘coarse’ grained coal units. Fine-grained coals are defined as those coal intervals that do not contain vitrain bands greater than approximately 1 mm in thickness (as measured perpendicular to bedding. In fine-grained coal seams, a reasonable sized block sample (with a polished surface area of ~3 cm2 can be taken that encapsulates the macroscopic variability. However, for coarse-grained coals (vitrain bands >1 mm a different system has to be employed in order to accurately account for the larger particles. Macroscopic point counting of vitrain bands can accurately account for those particles>1 mm within a coal interval. This point counting method is conducted using something as simple as string on a coal face with marked intervals greater than the largest particle expected to be encountered (although new technologies are being developed to capture this type of information digitally. Comparative analyses of particulate pellets and blocks on the same interval show less than 6% variation between the two sample types when blocks are recalculated to include macroscopic counts of vitrain. Therefore even in coarse-grained coals, stratified sampling can be used effectively and representatively.

  14. Simultaneous reduction of NOx, N{sub 2}O, SO{sub 2} emissions from a fluidized bed coal combustor using alternative bed material

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Asazuma, J.; Shinkai, M.; Matsunaga, S.; Yamagiwa, K.; Fujiwara, N. [Niigata University, Niigata (Japan). Dept. of Chemistry & Chemical Engienering

    2003-07-01

    A kind of porous alumina was employed as bed material of bubbling fluidized bed coal combustion instead of non-porous silica sand. The effect of the bed material on emissions of N{sub 2}O and NOx was evaluated using a bench-scale combustor. The present porous alumina suppressed N{sub 2}O emission. This result is explained by the catalytic activity of porous alumina to decompose N{sub 2}O. In addition, NOx emission with porous bed material was nearly the same as or lower than that for the sand bed. Thus the decrease in N{sub 2}O without increasing NOx was attained. A modification of desulfurization by limestone was proposed. Fine limestone particles were employed as sorbent in order to conduct SO{sub 2} capture in the freeboard. By employing fine particles, the contact between volatile matter and limestone, which is known to increase the emission of NOx, was avoided. Thus the increase in NOx emission during limestone feed was avoided.

  15. The quality of microorganism on coal bed methane processing with various livestock waste in laboratory scale

    Science.gov (United States)

    Marlina, E. T.; Kurnani, Tb. B. A.; Hidayati, Y. A.; Rahmah, K. N.; Joni, I. M.; Harlia, E.

    2018-02-01

    Coal-bed Methane (CBM) is a form of natural gas extracted from coal and has been developed as future energy source. Organic materials are required as nutrition source for methanogenic microbes. The addition of cattle waste in the formation of CBM on coal media can be utilized as organic materials as well as methanogenic microbe sources. This research covered study of total amount of anaerobic microbes, methane production, protozoa, fungi and endoparasites. Descriptive approach is conducted for this study. Media used for culturing methanogens is Nutrient Agar in powder form and Lactose Broth with the addition of rumen fluid. The technique for counting microbes is through Total Plate Count in anaerobic Hungate tube, methane was analyzed using Gas Chromatography (GC), while identification of protozoa, fungi and endoparasites based on its morphology is conducted before and after anaerobic fermentation process. Incubation period is 30 days. The results showed that growth of anaerobic microbes from dairy cattle waste i.e. biogas sludge is 3.57×103 CFU/ml and fresh feces is 3.38 × 104 CFU/ml, growth of anaerobic microbes from beef cattle waste i.e. biogas sludge is 7.0 × 105 CFU/ml; fresh feces is 7.5 x 104 CFU/ml; and rumen contents of about 1.33 × 108 CFU/ml. Methane production in dairy cattle waste in sludge and fresh feces amounted to 10.57% and 2.39%, respectively. Methane production in beef cattle waste in sludge accounted for 5.95%; in fresh feces it is about 0.41%; and rumen contents of 4.92%. Decreasing of protozoa during fermentation to 84.27%, dominated by Eimeria sp. Decreasing of fungi to 16%, dominated by A. Niger, A. Flavus, A. Fumigatus and Monilia sitophila. Decreasing of endoparasitic worms to 15%, dominated by Strongylus sp. and Fasciola sp. The growth of anaerobic microbes and methane production indicated that dairy cattle waste and beef cattle waste have potential as source of methanogenic microbes, meanwhile the decreasing amount of protozoa

  16. Mineralogical anomalies and their influences on elemental geochemistry of the main workable coal beds from the Dafang Coalfield, Guizhou, China

    Science.gov (United States)

    Dai, S.; Ren, D.; Li, D.; Chou, C.-L.; Luo, K.

    2006-01-01

    Mineralogy and geochemistry of the No. 11 Coal bed were investigated by using inductively-coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDX), sequential chemical extraction procedure (SCEP), and optical microscopy. The results show that the No. 11 Coal bed has very high contents of veined quartz (Vol. 11.4%) and veined ankerite (Vol. 10.2 %). The veined ankerite was generally coated by goethite and the veined quartz embraced chalcopyrite, sphalerite, and selenio-galena. In addition, a trace amount of kaolinite was filled in the veins. These seven minerals often occur in the same veins. The formation temperatures of the veined ankerite and quartz are 85??C and 180??C respectively, indicating their origins of iron-rich calcic and siliceous low-temperature hydrothermal fluids in different epigenetic periods. Studies have also found that the veined quartz probably formed earlier than the veined ankerite, and at least three distinct ankerite formation stages were observed by the ration of Ca/Sr and Fe/Mn of ankerite. The mineral formation from the early to late stage is in order of sulfide, quartz, kaolinite, ankerite, and goethite. The veined ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn, which are as high as 0.09%, 74.0 ??g/g, 33.6 ??g/g, 185 ??g/g, and 289 ??g/g in this coal seam, respectively. However, the veined quartz is the main carrier of Pd, Pt, and Ir, which are 1.57 ??g/g, 0.15 ??g/g, and 0.007 ??g/g in this coal seam, respectively. In addition, chalcopyrite, sphalerite, and selenio-galena of hydrothermal origin were determined in the veined quartz, and these three sulfide minerals are also important carriers of Cu, Zn and Pb in the No. 11 Coal bed.

  17. Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water

    Science.gov (United States)

    Hodgskiss, Logan H.; Nagy, Justin; Barnhart, Elliott P.; Cunningham, Alfred B.; Fields, Matthew W.

    2016-01-01

    Coal bed methane (CBM) production has resulted in thousands of ponds in the Powder River Basin of low-quality water in a water-challenged region. A green alga isolate, PW95, was isolated from a CBM production pond, and analysis of a partial ribosomal gene sequence indicated the isolate belongs to the Chlorococcaceae family. Different combinations of macro- and micronutrients were evaluated for PW95 growth in CBM water compared to a defined medium. A small level of growth was observed in unamended CBM water (0.15 g/l), and biomass increased (2-fold) in amended CBM water or defined growth medium. The highest growth rate was observed in CBM water amended with both N and P, and the unamended CBM water displayed the lowest growth rate. The highest lipid content (27%) was observed in CBM water with nitrate, and a significant level of lipid accumulation was not observed in the defined growth medium. Growth analysis indicated that nitrate deprivation coincided with lipid accumulation in CBM production water, and lipid accumulation did not increase with additional phosphorus limitation. The presented results show that CBM production wastewater can be minimally amended and used for the cultivation of a native, lipid-accumulating alga.

  18. The O₂-enriched air gasification of coal, plastics and wood in a fluidized bed reactor.

    Science.gov (United States)

    Mastellone, Maria Laura; Zaccariello, Lucio; Santoro, Donato; Arena, Umberto

    2012-04-01

    The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Petrography, geochemistry and palynology of the Stockton coal bed (Middle Pennsylvanian), Martin County, Kentucky

    Science.gov (United States)

    Hower, J.C.; Eble, C.F.; Pierce, B.S.

    1996-01-01

    The Middle Pennsylvanian (Westphalian D) Stockton (also known as the Broas) coal bed of the Breathitt Formation is an important energy resource in Kentucky. Petrographic, geochemical and palynologic studies were undertaken from mine, core and highway exposures in Martin and northern Pike counties, Kentucky, in order to determine the influence of the Stockton depositional ecosystem on those parameters. Vitrinite-rich Stockton lithotypes are dominated by Lycospora. Dull lithotypes, including both high- and low-ash yield durains, generally have abundant Densosporites, suggesting that the parent plant inhabited a fairly wide range of environments. Lithologies having tree ferns as an important component also have high fusinite + semifusinite and a low telinite/gelocollinite ratio. The aerial root bundles of the tree ferns were susceptible to oxidation and, for tissue not oxidized to inertinite, to preservation as gelocollinite. In the initial stages of formation, the Stockton mire was discontinuous and had a rather restricted floral assemblage. The presence of durains higher in the Stockton section, particularly the low-ash yield durains having petrographic indicators of degradation, suggests that portions of the mire developed as a domed peat. The termination of the mire as a high-sulfur, arboreous lycopod-domimated mire is consistent with the return to more planar mire development.

  20. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    Science.gov (United States)

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.

  1. Co-firing option of palm shell waste and Malaysian coal blends in a circulating fluidized bed

    International Nuclear Information System (INIS)

    Ahmad Hussain; Farid Nasir Ani

    2010-01-01

    Palm oil shell waste is one of the main agriculture wastes in Malaysia. In order to utilize these wastes efficiently, pyrolysis of oil-palm shell waste was first carried out using Thermogravimetric analysis (TGA). The effects of heating rate on the pyrolytic properties were investigated to evaluate its suitability for co-firing. The TGA analyses of oil palm shell waste and Malaysian coal blends suggests that there is an obvious lateral shift in the thermo grams for different heating rate. Kinetics calculations were also done using integral method. For palm shell waste powder it was found that the activation energies ranged from 112-119 kJ/mole and for the Mukah coal blends it ranged from 93.3 -100.8 kJ/mole. Combustion studies for palm shell wastes and coal blends were done in a hot circulating fluidized-bed (CFB) test rig. This is the first practical experience of using this type of rig in Malaysia. The temperature dependence on the combustion and emission behaviour were identified. The effects of variation of primary air and feed rate have also been analyzed and their influence on emissions has been established. The combustion studies of palm shell wastes were done and it was found that the emission of NO x ranged from 20-164 ppm while the CO emissions were high for some operating conditions. For the co-firing studies, the NO x and CO deceased with the percentage increase in the blending ratio of coal with palm shell waste.. The optimum blending ratio was found to be in a ratio of 40 percent coal and 60 percent Mukah coal. It was also found that Mukah coal show agglomeration behaviour with when it is blended in 80% ratio. (author)

  2. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  3. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds.

    Science.gov (United States)

    Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S; Inagaki, Fumio; Orphan, Victoria J

    2017-10-31

    The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be "hot spots" for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13 C- or 15 N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50-2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell-targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.

  4. Candidate for solar power: a novel desalination technology for coal bed methane produced water

    International Nuclear Information System (INIS)

    Sattler, Allan; Hanley, Charles; Hightower, Michael; Wright, Emily; Wallace, Sam; Pohl, Phillip; Donahe, Ryan; Andelman, Marc

    2006-01-01

    Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U>S> as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared Figure 1: Candidate remote well sites for planned field implementation of new PV-powered desalination process: (a) Raton Basin and (b) San Juan Basin, New Mexico to other technologies, such as reverse osmosis. This coupled with the remoteness (Figure 1) of thousands these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness of this technology and of the attender energy requirements of this technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to drive the design of integrated PV-powered desalination systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Earlier laboratory (and very recent laboratory) studies of capacitive deionization have shown promise at common CBM salinity levels. The technology may require less energy. be less susceptible to fouling and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduced the ion concentrations in the liquid. This paper discusses the

  5. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Carleton R; Breit, George N; Healy, Richard W; Zupancic, John W; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300–480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  6. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium–potassium adenosine triphosphatase (Na+/K+ ATPase) together with the lack of growth effects suggests that Na+/K+ ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.

  7. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  8. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  9. Variation of kerogen composition and source rock potential of coal beds; Kyotanso no kerojien sosei to kongengan potensharu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Okui, A.; Yokoi, K. [Japan National Oil Corp., Tokyo (Japan)

    1998-10-30

    In order to understand the distribution of oil-prone coal beds, the Eocene Ishikari group in Hokkaido and the Tertiary (Eocene to Present) formations in the Khmer trough of Cambodia were investigated. Additional survey was conducted to reveal the three-dimensional distribution of sedimentary sequences in Sorati area this year. The results of geochemical analysis on collected samples were compiled, which indicated that source rock potential of coal beds are higher in the western part than eastern part. Furthermore, coal beds in the western part are thicker, which suggests that the supply of classics is less, which results in stagnant water circulation. It is also demonstrated that hydrogen index in a single coal bed increases toward the top. Sedimentary environments were divided into the Eocene to Oligocene lacustrine system and the Miocene to Present flu vio-deltaic system in the Khmer trough. Coal beds in fluvio-deltaic system and prodelta shales in lacustrine system were recognized as good source rocks in these environments. However, hydrogen index of the coals in the Khmer trough is lower than the Ishikari group of Hokkaido. Oils in the Khmer though was characterized to be generated and expelled from lacustrine algal source rock and hence correlated to the lacustrine shales in Oligocene. (author)

  10. Palynology, petrography and geochemistry of the Sewickley coal bed (Monongahela Group, Late Pennsylvanian), Northern Appalachian Basin, USA

    Science.gov (United States)

    Eble, C.F.; Pierce, B.S.; Grady, W.C.

    2003-01-01

    Forty-two bench samples of the Sewickley coal bed were collected from seven localities in the northern Appalachian Basin and analyzed palynologically, petrographically, and geochemically. The Sewickley coal bed occurs in the middle of the Pittsburgh Formation (Monongahela Group) and is of Late Pennsylvanian age. Palynologically, it is dominated by spores of tree ferns. Tree fern spore taxa in the Sewickley include Punctatisporites minutus, Punctatosporites minutus, Laevigatosporites minimus, Spinosporites exiguus, Apiculatasporites saetiger, and Thymospora spp. In fact, Punctatisporites minutus was so abundant that it had to be removed from the standard counts and recorded separately (average 73.2%). Even when Punctatisporites minutus is removed from the counts, tree fern spores still dominate a majority of the assemblages, averaging 64.4%. Among the tree fern spores identified in the Sewickley coal, Thymospora exhibits temporal and spatial abundance variation. Thymospora usually increases in abundance from the base to the top of the bed. Thymospora is also more abundant in columns that are thick (>100 cm) and low in ash yield (< 12.0%, dry basis). Calamite spores (e.g. Calamospora spp., Laevigatosporites minor, and L. vulgaris) are the next most abundant plant group represented in the Sewickley coal, averaging 20%. Contributions from all other plant groups are minor in comparison. Petrographically, the Sewickley coal contains high percentages of vitrinite (average 82.3%, mineral matter-free (mmf)), with structured forms being more common than unstructured forms. In contrast, liptinite and inertinite macerals both occur in low percentages (average 7.7% and 10.0%, respectively). Geochemically, the Sewickley coal has a moderate ash yield (average 12.4%) and high total sulfur content (average 3.4%). Four localities contained a high ash or carbonaceous shale bench. These benches, which may be coeval, are strongly dominated by tree fern spores. Unlike the lower ash

  11. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    Science.gov (United States)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  12. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor.

    Science.gov (United States)

    Li, Shuaidan; Chen, Xueli; Wang, Li; Liu, Aibin; Yu, Guangsuo

    2013-11-01

    Co-pyrolysis behaviors of saw dust (SD) and Shenfu bituminous coal (SF) were studied in a drop tube furnace and a fixed bed reactor at different temperatures respectively. Six different biomass/coal ratios (B:C) were used. Compared the results with the calculated value obtained by the additional behavior, CO volume yields were lower while H2, CH4, CO2, volume yields were higher. Blend char yields had a good agreement with the calculated values, and their structures remained similar with SD and SF char's. Synergy effect occurred in gaseous phase, which was mainly caused by the secondary reactions. Compared the blend char yields in the drop tube furnace with those in the fixed bed reactor, the results showed the contacting way of biomass and coal particles had little influence on char yield in co-pyrolysis process. The reactivity index of blend char achieved the minimum at B:C=40:60 and the maximum at B:C=80:20. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Forecast fire damp emission in thin, steep coal bed; Prevision de Desprendimiento de Grisu en Capas Estrechas e Inclindas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    A model to forecast fire damp emission in thin, steep coal bed, mining in advance and backfill works, has been developed and validated. The model estimates the amount of methane released towards the works, including fire damp proceeding from the actually mined seam, as well as methane coming from adjacent seams layers, depending on easy-to find parameters. Methane coming from the mined seam is determined as a function of the methane concentration in the seam and methane from adjacent seams is assessed by the degassification degree. This parameter depends also on the distance to the mined seam. The influence volume of a thin, steep mined coal bed has been determined, in order to study which seams and layers release methane towards the works. The works to develop the methane emission model were done in a coal face on Maria seam, in San Antonio mine, belonging to HUNOSA. The validation works were carried out in 24 left south seam, in the belonging to Minas de Figaredo, S. A. (Author)

  14. Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: Batch and fixed-bed studies

    International Nuclear Information System (INIS)

    Zuo, Linzi; Ai, Jing; Fu, Heyun; Chen, Wei; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-01-01

    The presence of sulfonamide antibiotics in aquatic environments poses potential risks to human health and ecosystems. In the present study, a highly porous activated carbon was prepared by KOH activation of an anthracite coal (Anth-KOH), and its adsorption properties toward two sulfonamides (sulfamethoxazole and sulfapyridine) and three smaller-sized monoaromatics (phenol, 4-nitrophenol and 1,3-dinitrobenzene) were examined in both batch and fixed-bed adsorption experiments to probe the interplay between adsorbate molecular size and adsorbent pore structure. A commercial powder microporous activated carbon (PAC) and a commercial mesoporous carbon (CMK-3) possessing distinct pore properties were included as comparative adsorbents. Among the three adsorbents Anth-KOH exhibited the largest adsorption capacities for all test adsorbates (especially the two sulfonamides) in both batch mode and fixed-bed mode. After being normalized by the adsorbent surface area, the batch adsorption isotherms of sulfonamides on PAC and Anth-KOH were displaced upward relative to the isotherms on CMK-3, likely due to the micropore-filling effect facilitated by the microporosity of adsorbents. In the fixed-bed mode, the surface area-normalized adsorption capacities of Anth-KOH for sulfonamides were close to that of CMK-3, and higher than that of PAC. The irregular, closed micropores of PAC might impede the diffusion of the relatively large-sized sulfonamide molecules and in turn led to lowered fixed-bed adsorption capacities. The overall superior adsorption of sulfonamides on Anth-KOH can be attributed to its large specific surface area (2514 m 2 /g), high pore volume (1.23 cm 3 /g) and large micropore sizes (centered at 2.0 nm). These findings imply that KOH-activated anthracite coal is a promising adsorbent for the removal of sulfonamide antibiotics from aqueous solution. - Highlights: • A high efficiency adsorbent for sulfonamide removal is prepared from anthracite. • Effects of

  15. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  16. Palynology of selected coal beds in the proposed Pennsylvanian System stratotype in West Virginia

    Science.gov (United States)

    Kosanke, Robert M.

    1984-01-01

    The usefulness of Pennsylvanian palynomorphs, spores, and pollen grains, as an aid in coal-correlation investigations in the Appalachians, has been known for many years. However, much of this and subsequent information was scattered in the literature or was not from the proposed stratotype area of West Virginia. Investigation of coals from sections of the proposed Pennsylvanian System stratotype provided the opportunity to examine changes in palynomorph content through a number of coals from the New River Formation to the basal part of the Monongahela Formation. The rank of most coals of the Pocahontas and New River Formations of West Virginia does not permit extraction of palynomorphs with current laboratory maceration techniques. Because of this, the data of some possibly equivalent lower rank Pennsylvanian coals from adjacent parts of southern Ohio and eastern Kentucky have been included. The coals examined from the Kanawha Formation, Charleston Sandstone, and Monongahela Formations of West Virginia have yielded abundant and well-preserved palynomorphs. Attention has been focused on the Charleston Sandstone, which is a massive, complex unit lacking marine fossils and composed primarily of sandstone. The coal is a significant resource in Pennsylvanian rocks, and the correlation of coals is an important consideration in the area of the stratotype in West Virginia and in adjacent States. As a result of this preliminary examination, the approximate range zones of some important taxa have been established. These range zones together with abundance data are used to correlate the coals. The range zones of some important taxa from Lower to Upper Pennsylvanian coals are: Densosporites irregularis Hacquebard and Barss, Stenozonotriletes lycosporoides (Butterworth and Williams) Smith and Butterworth, Schulzospora rara Kosanke, Laevigatosporites spp., Radiizonates spp., Torispora securis Balme, Zosterosporites triangularis Kosanke, Thymospora pseudothiessenii (Kosanke

  17. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    The international coal market trends are outlined and the place of Australian coal industry is discussed. It is shown that while the world supply and demand for coal has begun to tighten, the demand for coal is expected to remain strong in both Asia and Europe. Consequently, in 1991-1992 Australian black coal production and export returns are forecast to rise by 4% and 7% respectively. 1 fig

  18. Coal and coalbed-methane resources in the Appalachian and Black Warrior basins: maps showing the distribution of coal fields, coal beds, and coalbed-methane fields: Chapter D.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Trippi, Michael H.; Ruppert, Leslie F.; Milici, Robert C.; Kinney, Scott A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The maps contained in this chapter show the locations of coal fields, coal beds assessed by the U.S. Geological Survey (USGS) in 2000, and coalbed-methane fields in the central and southern Appalachian basin study areas, which include the coal-producing parts of the Black Warrior basin. The maps were compiled and modified from a variety of sources such as Tully (1996), Northern and Central Appalachian Basin Coal Regions Assessment Team (2001), Hatch and others (2003), Milici (2004), and unpublished data from the State geological surveys of Pennsylvania, West Virginia, Virginia, and Alabama. The terms “coalbed methane” and “coal-bed gas” are used interchangeably in this report. All of the figures are located at the end of this report.

  19. Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: Batch and fixed-bed studies.

    Science.gov (United States)

    Zuo, Linzi; Ai, Jing; Fu, Heyun; Chen, Wei; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-04-01

    The presence of sulfonamide antibiotics in aquatic environments poses potential risks to human health and ecosystems. In the present study, a highly porous activated carbon was prepared by KOH activation of an anthracite coal (Anth-KOH), and its adsorption properties toward two sulfonamides (sulfamethoxazole and sulfapyridine) and three smaller-sized monoaromatics (phenol, 4-nitrophenol and 1,3-dinitrobenzene) were examined in both batch and fixed-bed adsorption experiments to probe the interplay between adsorbate molecular size and adsorbent pore structure. A commercial powder microporous activated carbon (PAC) and a commercial mesoporous carbon (CMK-3) possessing distinct pore properties were included as comparative adsorbents. Among the three adsorbents Anth-KOH exhibited the largest adsorption capacities for all test adsorbates (especially the two sulfonamides) in both batch mode and fixed-bed mode. After being normalized by the adsorbent surface area, the batch adsorption isotherms of sulfonamides on PAC and Anth-KOH were displaced upward relative to the isotherms on CMK-3, likely due to the micropore-filling effect facilitated by the microporosity of adsorbents. In the fixed-bed mode, the surface area-normalized adsorption capacities of Anth-KOH for sulfonamides were close to that of CMK-3, and higher than that of PAC. The irregular, closed micropores of PAC might impede the diffusion of the relatively large-sized sulfonamide molecules and in turn led to lowered fixed-bed adsorption capacities. The overall superior adsorption of sulfonamides on Anth-KOH can be attributed to its large specific surface area (2514 m(2)/g), high pore volume (1.23 cm(3)/g) and large micropore sizes (centered at 2.0 nm). These findings imply that KOH-activated anthracite coal is a promising adsorbent for the removal of sulfonamide antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The use of coal mining wastes in building road beds; Utilizacion de los Esteriles del Carbon como Materiales para Capas de Firmes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This project was aimed at carrying out a study in order to determine the nature and characteristics of coal mining wastes for its possible use in building road beds and to establish the acceptance, implementation and quality control criteria, which can be included in the Spanish General Technical Standard of Road and Bridges Works (PG-3). With that aim, six types of coal mining wastes were selected out of an inventory and several tests were conducted and following the results, the most appropriate coal mining wastes, the acceptance limits and the quality control tests to be applied to the materials obtained from coal mining wastes to road beds were established. A grinding and classification plant was designed in order to obtain the necessary granular materials for conducting real scale compaction tests in road stages. Several types of coal mining wastes were tested: red, black, treated (in the above mentioned plant) untreated, with different bed thickness and runs in the compactors. Likewise, laboratory tests were carried out on black and red coal mining wastes by adding binder materials. The results proved that coal mining wastes can be used as granular material for building different road beds, such as bound with cement, gravel-emulsion or on their own. As a result of this study 53,000 tons of black coal mining wastes mixed with 6% of cement as binder were used for building a 5 km stage of the Highway Oviedo-Mieres, as well as 16,000 tons of red coal mining wastes in the Ujo-Caborana road, which is still being used in the works carried out a present. (Author)

  1. Co-gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, L.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU funded, international, R + D project which is designed to aid European industry in addressing issues regarding co-utilisation of biomass and/or waste in advanced coal conversion processes. The project comprises three main programmes, each of which includes a number of smaller subprogrammes. The three main programmes are: Coal-biomass systems component development and design; Coal-biomass environmental studies; Techno-economic assessment studies. (orig)

  2. Fluidized bed combustion of refuse-derived fuel in presence of protective coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Eduardo [CIRCE, Universidad de Zaragoza, Maria de Luna, 3, Zaragoza (Spain); Aho, Martti [VTT Processes, P.O. Box 1603, 40101 Jyvaeskylae (Finland); Silvennoinen, Jaani; Nurminen, Riku-Ville [Kvaerner Power, P.O.Box 109, FIN-33101 Tampere (Finland)

    2005-12-15

    Combustion of refuse-derived fuel (RDF) alone or together with other biomass leads to superheater fouling and corrosion in efficient power plants (with high steam values) due to vaporization and condensation of alkali chlorides. In this study, means were found to raise the portion of RDF to 40% enb without risk to boilers. This was done by co-firing RDF with coal and optimizing coal quality. Free aluminum silicate in coal captured alkalies from vaporized alkali chlorides preventing Cl condensation to superheaters. Strong fouling and corrosion were simultaneously averted. Results from 100 kW and 4 MW CFB reactors are reported. (author)

  3. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.

  4. Fluidized Bed Gasification of Coal-Oil and Coal-Water-Oil Slurries by Oxygen –Steam and Oxygen-CO2 Mixtures

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Pohořelý, Michael; Jeremiáš, Michal; Kameníková, Petra; Hartman, Miloslav; Skoblia, S.; Šyc, Michal

    2012-01-01

    Roč. 95, č. 1 (2012), s. 16-26 ISSN 0378-3820 R&D Projects: GA MŠk 2B08048; GA MŠk 7C08034 Grant - others:RFCR(XE) CT-2010-00009 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized bed * gasification * coal slurries Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.816, year: 2012 http://www.scopus.com/record/display.url?eid=2-s2.0-82455175439&origin=resultslist&sort=plf-f&src=s&st1=svoboda%2ck&sid=ikNGw6d45E-yyuMoDwlGiWn%3a420&sot=b&sdt=b&sl=22&s=AUTHOR-NAME%28svoboda%2ck%29&relpos=1&relpos=1&searchTerm=AUTHOR-NAME(svoboda,k)

  5. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  6. 3-D CFD Modeling for Parametric Study in a 300-MWe One-Stage Oxygen-Blown Entrained-Bed Coal Gasifier

    Directory of Open Access Journals (Sweden)

    Sang Shin Park

    2015-05-01

    Full Text Available Three-dimensional computational fluid dynamics (CFD modeling of the gasification performance in a one-stage, entrained-bed coal gasifier (Shell Coal Gasification Process (SCGP gasifier was performed, for the first time. The parametric study used various O2/coal and steam/coal ratios, and the modeling used a commercial code, ANSYS FLUENT. CFD modeling was conducted by solving the steady-state Navier–Stokes and energy equations using the Eulerian–Lagrangian method. Gas-phase chemical reactions were solved with the Finite–Rate/Eddy–Dissipation Model. The CFD model was verified with actual operating data of Demkolec demo Integrated Gasification Combined Cycle (IGCC facility in Netherlands that used Drayton coal. For Illinois #6 coal, the CFD model was compared with ASPEN Plus results reported in National Energy Technology Laboratory (NETL. For design coal used in the SCGP gasifier in Korea, carbon conversion efficiency, cold gas efficiency, temperature, and species mole fractions at the gasifier exit were calculated and the results were compared with those obtained by using ASPEN Plus-Kinetic. The optimal O2/coal and steam/coal ratios were 0.7 and 0.05, respectively, for the selected operating conditions.

  7. Toxicity of Sodium Bicarbonate to Fish from Coal-Bed Natural Gas Production in the Tongue and Powder River Drainages, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.

  8. Flow visualizing study of fluidized bed for incineration and/or coal combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Mamoru [Kansai Univ., Suita, Osaka (Japan). Faculty of Engineering

    1997-02-01

    A simulated fluidized-bed heat exchanger was visualized using a neutron radiography system. The void fraction distribution and its fluctuation were obtained by means of an image processing technique. On the basis of the processed image, the mechanism of a large particle movement and the flow pattern in the tube bank immersed in the bed were investigated. Observed flow pattern in the tube bank indicated an importance of the tube arrangement on the void fraction fluctuation and thus the heat transfer around tubes. (author)

  9. Commercial liquid-metal MHD conversion systems coupled to LMFBR and coal-fired fluidized bed combustors

    International Nuclear Information System (INIS)

    Amend, W.E.; Brunsvold, A.; Pierson, E.S.

    1975-01-01

    The constraints imposed on two-phase liquid-metal MHD (LMMHD) when employed in commercial power plants with practical heat sources have not previously been studied. The coupling of a LMMHD power system with an LMFBR and a coal-fired fluidized bed combustor are considered. Two MHD systems are considered. The first is a dual cycle where heat is added to both the liquid metal and the gas, and the gas may expand through a gas turbine after the MHD generator. The second system, a binary cycle, differs in that a significant portion of the sensible heat in the gas entering the compression loop is converted to useful power in a steam bottoming cycle. The effect of liquid-metal vapor carry-over into the gas loop is included. The couplings of the LMMHD system with the heat sources and with the steam plants were studied in depth. The results of the study of each interface are presented parametrically for each heat source and energy conversion system. Operating points have been selected and the complete schematic of each system considered is presented along with all thermodynamic state points and fluid flow rates. All system parameters and component efficiencies were selected to be consistent with near term technology and good engineering design principles. These criteria yielded a system performance of 37 percent for an LMFBR operating with a maximum reactor coolant temperature of 1200 0 F when the pure LMMHD energy converter was used. A LMMHD/steam binary cycle is shown to be capable of achieving a thermal efficiency of 44.8 percent when used with the same heat source. Results with the coal fluidized bed combustor as a heat source show even higher performance levels (about 50 percent efficiency) since the maximum cycle temperature is increased

  10. The emissions of VOCs during co-combustion of coal with different waste materials in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; A. Gregorio; A. Garcia-Garcia; D. Boavida; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2004-06-01

    The combustion of different fuels gives rise to the formation of small but appreciable amounts of volatile organic compounds (VOCs). They basically result from incomplete combustion and their emissions have negative repercussions on health and on the environment in general. As their measurement is difficult, costly, and very time-consuming, very little is reported on the emissions of VOCs from combustion installations. In this study, various blends of two different coals with several wastes were burned in a pilot-scale fluidized bed combustor and measurements of VOCs at several locations along the combustor height as well as just before the stack were carried out. The results demonstrate that the parameters important for the formation of VOCs are temperature, excess air levels, and the effectiveness of the mixing of air with fuel. Furthermore, it was observed that coal was the principal source of VOCs, but the combustion of volatiles from fuels such as biomass, occurring in the freeboard, was important in reducing the emissions of VOCs to almost zero. 8 refs., 6 figs., 6 tabs.

  11. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    Science.gov (United States)

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid.

  12. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    It is estimated that World coal trade remained strong during the second quarter of 1991, with contributing factors including unseasonally large shipments to Japan for power generation, sustained Japanese steel production at around 112 Mt and some buildup in stocks in that country. Purchases by North Asian and European consumers also remained high. At the same time Soviet output and exports declined because of strikes and political unrest. In addition, exportable supplies in Poland fell. As a result the demand for Indonesian coal increased, and Australia exported larger than previously expected quantities of coal. ills

  13. Use of black oil simulator for coal bed methane reservoir model

    Energy Technology Data Exchange (ETDEWEB)

    Sonwa, R.; Enachescu, C.; Rohs, S. [Golder Associates GmbH, Celle (Germany)

    2013-08-01

    This paper starts from the work done by Seidle et al. (1990) and other authors on the topic of coal degasification and develops a more accurate representative naturally fractured CBM-reservoir by using a Discrete Fracture Network modeling approach. For this issue we firstly calibrate the reservoir simulator tNAVIGATOR by showing his ability to reproduce the work done by Seidle et al. and secondly generate a DFN model using FracMan in accordance with the distribution and orientation of the cleats. tNavigator was then used to simulate multiphase flow through the DFN- Model. (orig.)

  14. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  15. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    H. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Salema; M. Freire; R. Pereira; I. Cabrita [INETI, Lisbon (Portugal). DEECA

    2009-12-15

    In the scope of the COPOWER project SES6-CT-2004 to investigate potential synergies of co-combustion of different biofuels with coal, a study of emissions of particulate matter and PCDD/F was carried out. The biofuels tested were meat and bone meal (MBM), sewage sludge biopellets (BP), straw pellets (SP), olive bagasse (OB) and wood pellets (WP). The tests performed include co-firing of 5%, 15% and 25% by weight of biofuels with coals of different origin. Both monocombustion and co-firing were carried out. Combustion tests were performed on a pilot fluidised bed, equipped with cyclones and air staging was used in order to achieve almost complete combustion of fuels with high volatile contents and to control gaseous emissions. Particulate matter emissions were isokinetically sampled in the stack and their particle size analysis was performed with a cascade impactor (Mark III). The results showed that most particles emitted were below 10 {mu}m (PM10) for all the tests, however, with the increasing share of biofuels and also during combustion of pure biofuels, especially olive bagasse, straw and MBM, very fine particles, below about 1 {mu}m were present. With the exception of sewage sludge, greater amounts of biofuels appeared to give rise to the decrease in particulate mean diameters and increase in PM percentages below 1 {mu}m. The formation of very fine particles could be related with the presence of aerosol forming elements such as K, Na (in the case of MBM) and Cl in biofuels, which even resulted in higher PM emissions when the ash content of fuels decreased. A correlation wasverified between the increase of PCDD/F with the decrease of PM mean diameter. This may be due to higher specific surface area and greater Cu concentration in the fly ashes. 33 refs., 11 figs., 4 tabs.

  16. Green Algae from Coal Bed Methane Ponds as a Source of Fertilizer for Economically Important Plants of Montana

    Science.gov (United States)

    Ogunsakin, O. R.; Apple, M. E.; Zhou, X.; Peyton, B.

    2016-12-01

    The Tongue River Basin of northeastern Wyoming and southeastern Montana is the location of natural gas reserves and coal bed methane (CBM) acreage. Although the water that emanates from CBM extraction varies with site, it is generally of higher quality than the waters produced by conventional oil and gas wells, in part because it is low in volatile organic compounds. However, since CBM water contains dissolved solids, including sodium (Na), bicarbonate (HCO3) and chloride (Cl) ions, the water must be treated before it can be discharged into the river or wetlands, or used for stock ponds or irrigation. Several ponds have been constructed to serve as a holding facility for CBM water. Algae from the CBM ponds of the Tongue River Basin have the potential to be utilized as fertilizer on economically important plants of Montana. Two very important crop plants of Montana are wheat, Triticum aestivum, and potatoes, Solanum tuberosum. To explore this potential, isolates of unicellular green algae (Chlorella sp.) from the CBM ponds were cultured in aerated vessels with Bold's Basic Growth Medium and natural and/or supplemental light. Algal biomass was condensed in and collected from a valved funnel, after which cell density was determined via light microscopy and a hemacytometer. Algal/water slurries with known nutrient contents were added to seedlings of hard winter wheat, T.aestivum, grown in a greenhouse for three months before harves. When compared to wheat provided with just water, or with water and a commercially available fertilizer, the wheat fertilized with algae had a higher chlorophyll content, more tillers (side shoots), and a higher ratio of influorescences (groups of flowers) per stem. In a related experiment, Ranger Russet seed potatoes, S. tuberosum were given just water, water and Hoagland's nutrient solution, or water with algae in order to compare aboveground growth and potato production among the treatments. The results of this study suggest that

  17. Reduction of calcium sulfate in a coal-fired circulating fluidized bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, J.; Basu, P.; Greenblatt, J.H. [Technical University of Nova Scotia, Halifax, NS (Canada). Mechanical Engineering Dept.

    1996-07-01

    The overall utilisation of limestone for sulphur capture in a CFB combustor depends on the reactivity of the various calcium species in the bed. To study the re-emission of SO{sub 2} the reactivity of partially sulfated CaO was studied. The material used was bottom ash drained from a 165 MWe commercial CFB boiler furnace. The tests were performed in an electrically heated furnace. Reactivity rate constants were determined from the experimental results. The release of SO{sub 2} from CaSO{sub 4} increases with temperature as well as with the concentration of the reducing agents CO, char and graphite. Of the reducing agents considered, CO is most reactive, followed by char and then graphite. 12 refs., 17 figs., 5 tabs.

  18. Formation of N2 in the fixed-bed pyrolysis of low rank coals and the mechanisms; Koteisho netsubunkai ni okeru teitankatan kara no N2 no sisei

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Otsuka, Y. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    In order to establish coal NOx preventive measures, discussions were given on formation of N2 in the fixed-bed pyrolysis of low rank coals and the mechanisms thereof. Chinese ZN coal and German RB coal were used for the discussions. Both coals do not produce N2 at 600{degree}C, and the main product is volatile nitrogen. Conversion into N2 does not depend on heating rates, but increases linearly with increasing temperature, and reaches 65% to 70% at 1200{degree}C. In contrast, char nitrogen decreases linearly with the temperature. More specifically, these phenomena suggest that the char nitrogen or its precursor is the major supply source of N2. When mineral substances are removed by using hydrochloric acid, their catalytic action is lost, and conversion into N2 decreases remarkably. Iron existing in ion-exchanged condition in low-rank coal is reduced and finely diffused into metallic iron particles. The particles react with heterocyclic nitrogen compounds and turn into iron nitride. A solid phase reaction mechanism may be conceived, in which N2 is produced due to decomposition of the iron nitride. 5 refs., 4 figs., 1 tab.

  19. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  20. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.

    Science.gov (United States)

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2014-03-01

    Co-pyrolysis behaviors of rice straw and Shenfu bituminous coal were studied in a fixed bed reactor under nitrogen atmosphere. The pyrolysis temperatures were 700°C, 800°C and 900°C, respectively. Six different biomass ratios were used. Gas, tar components were analyzed by a gas chromatograph and a gas chromatography-mass spectrometry respectively. Under co-pyrolysis conditions, the gas volume yields are higher than the calculated values. Co-pyrolysis tar contains more phenolics, less oxygenate compounds than calculated values. The addition of biomass changes the atmosphere during the pyrolysis process and promotes tar decomposition. The SEM results show that the differences between the blended char and their parents char are not significant. The results of char yields and ultimate analysis also show that no significant interactions exist between the two kinds of particles. The changes of gas yield and components are caused by the secondary reactions and tar decomposition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander

    Science.gov (United States)

    Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu

    2017-12-01

    Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.

  3. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  4. The emissions of SO{sub 2}, NO{sub x} and N{sub 2}O during the combustion of coal blends in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abelha, P.; Boavida, D.; Gulyurtlu, I.; Cabrita, I.

    1999-07-01

    Combustion studies of five coals of different origins around the world (Colombia, Spain, South Africa and the US), were carried out in a laboratory scale fluidized bed combustor. Five blends prepared by mixing two coals, in three varying amounts, based on their petrological characterization, were selected to study the possibility of reduction NO{sub x}, N{sub 2}O and SO{sub 2} emissions. Temperature, fuel ratio and N/C ratio were found to be the most important parameters affecting NO{sub x} and N{sub 2}O emissions among the single coals, while fuel-S content was the major factor in SO{sub 2} emissions. The results showed that some blends had the opposite behavior concerning the release of NO{sub x} and SO{sub 2} in relation to parent coals, and the emissions were higher than expected. The N{sub 2}O amounts observed were however, in almost all blends tested, lower than predicted values. With some blends, the mixing levels intended to reduce SO{sub 2} were not always found to correspond to those for simultaneous decrease of NO{sub x}, raising difficulties in the optimization of both emission levels. Most of the blends studied showed some evidence of interaction between the individual constituent coals. Varying the proportion of the blend components was observed to alter the temperatures at which interactions were stronger.

  5. 11th annual conference on clean coal technology, proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Topics covered at the conference include coal combustion technology, multi-purpose coal conversion technology (including entrained-bed coal flash pyrolysis process (CPX), hydrogen production from coal and coal liquefaction), coal ash utilization technology, next general technology (including dry coal cleaning technologies and coal conversion by supercritical water) and basic coal utilization technology (including ash behaviour during coal gasification).

  6. Preliminary assessment of the health and environmental impacts of fluidized-bed combustion of coal as applied to electrical utility systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-01

    The objective of this study was to assess the health and environmental impacts of fluidized-bed combustion of coal (FBC), specifically as applied to base-load generation of electrical energy by utilities. The public health impacts of Fluidized-Bed Combustion (FBC) plants are expected to be quite similar to those for Low Sulfur Coal (LSC) and Flue Gas Desulfurization (FGD) plants because all appear to be able to meet Federal emission standards; however, there are emissions not covered by standards. Hydrocarbon emissions are higher and trace element emissions are lower for FBC than for conventional technologies. For FBC, based on an analytical model and a single emission data point, the polycyclic organic material decreases the anticipated lifespan of the highly exposed public very slightly. Added health protection due to lower trace element emissions is not known. Although there is a large quantity of solid wastes from the generating plant, the environmental impact of the FBC technology due to solid residue appears lower than for FGD, where sludge management requires larger land areas and presents problems due to the environmentally noxious calcium sulfite in the waste. Fixing the sludge may become a requirement that increases the cost of wet-limestone FGD but makes that system more acceptable. The potential for aquatic or terrestrial impacts from hydrocarbon emissions is low. If application of AFBC technology increases the use of local high-sulfur coals to the detriment of western low-sulfur coal, a sociological benefit could accrue to the FBC (or FGD) technology, because impacts caused by western boom towns would decrease. The infrastructure of areas that mine high-sulfur coal in the Midwest are better equipped to handle increased mining than the West.

  7. Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: Evolution of water and sediment chemistry

    Science.gov (United States)

    Healy, R.W.; Rice, C.A.; Bartos, T.T.; McKinley, M.P.

    2008-01-01

    Development of coal-bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water-management option is storage in surface impoundments. As of January 2007, permits for more than 4000 impoundments had been issued within Wyoming. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 x 106 kg of chloride and 52 x 106 kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation-exchange-enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.

  8. Effects of reduction temperature to Ni and Fe content and the morphology of agglomerate of reduced laterite limonitic nickel ore by coal-bed method

    Science.gov (United States)

    Abdul, Fakhreza; Pintowantoro, Sungging; Kawigraha, Adji; Nursidiq, Ahlidin

    2018-04-01

    As the current drop of nickel sulfide ore on earth, the attention to nickel laterite ore processing was inscreased in order to fulfill the future nickel demand needs. This research aims to optimized the process of nickel laterite ore extraction using coal bed method. This research was conducted by reducing low grade nickel laterite ore (limonitic) with nickel content of 1.25 %. The reduction process was carried out using CO gas which formed by the reaction of coal and dolomite. The Briquette of nickel ore, coal, Na2SO4 mixtures incorporated in the crucible with bed, then reduced for 6 hours at the temperature of 1200 °C. 1400 °C, and 1400 °C. The result of the research shown that the highest increase of Ni content and Ni recovery value was in the reduction temperature of 1400 °C with the increase of 3.44 %, and the recovery value of Ni equal to 86.75 %. While the highest increase of Fe content and Fe recovery value, respectively, was in the reduction temperature of 1300 °C with the increase of 22.67 % and 1200 °C with Fe recovery value of 89.41 %.

  9. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  10. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  11. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [Comparison of AFB plant and pulverized coal plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The first part of this report presents a comparison of the conceptual designs of a large (570 MW(e)) pulverized coal (PC) steam generator equipped with a wet limestone flue gas desulfurization (FGD) system and two equivalent sized atmospheric fluidized bed (AFB) steam generators including balance of plants for electric-power generation. The reader is cautioned that this portion of the report compares a zero generation AFB technology to pulverized coal technology which has been operationally and economically optimized for the past half-century. This comparison is intended to be indicative of whether further development of the AFB concept as a viable alternative to the PC/FGD concept for electric-power generation is merited. In the second part, the load-following capability of a once-through subcritical atmospheric fluidized bed boiler is analyzed. Digital computer simulation predictions of the plant's response to open loop step changes in firing rate, feedwater flow, governor valve, unit load demand, etc, are made. The predicted response of throttle pressure, steam temperature, unit load, etc, are compared to the response of a conventional coal-fired, once-through, subcritical unit. The load-following capability is assessed through this qualitative comparison. Additional model response predictions are also presented for which no test data are presently available.

  12. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  13. Cold test with a benchtop set-up for fluidized bed reactor using quartz sand to simulate gasification of coal cokes by concentrated solar radiation

    Science.gov (United States)

    Gokon, Nobuyuki; Tanabe, Tomoaki; Shimizu, Tadaaki; Kodama, Tatsuya

    2016-05-01

    The impacts of internal circulation of a mixture of coal-coke particles and quartz sand on the fluidization state in a fluidized bed reactor are investigated by a cold test with a benchtop set-up in order to design 10-30 kWth scale prototype windowed fluidized-bed reactor. Firstly, a basic relationship between pressure loss of inlet gas and gas velocity was experimentally examined using quartz sand with different particle sizes by a small-scale quartz tube with a distributor at ambient pressure and temperature. Based on the results, an appropriate particle range of quartz sand and layer height/layer diameter ratio (L/D ratio) was determined for a design of the fluidized bed reactor. Secondly, a windowed reactor mock-up was designed and fabricated for solar coke gasification using quartz sand as a bed material. The pressure loss between the inlet and outlet gases was examined, and descending cokes and sand particles on the sidewall of the reactor was observed in the reactor mock-up. The moving velocity and distance of descending particles/sands from the top to bottom of fluidized bed were measured by the visual observation of the colored tracer particles on outside wall of the reactor.

  14. Age and significance of the Platypus Tuff Bed, a regional reference horizon in the upper Permian Moranbah coal measures, north Bowen Basin

    International Nuclear Information System (INIS)

    Michaelsen, P.; Henderson, R.A.; Crosdale, P.J.; Fanning, C.M.

    2001-01-01

    The Platypus Tuff Bed in the Permian Moranbah Coal Measures provides a basin-wide marker horizon traceable for over 300 km along strike. The bed is a tephra event unit, the product of a large-scale volcanic eruptive episode involving a pyroclastic volume > 10 km 3 . The relatively even thickness (∼1-1.5 m) of the tuff across the entire northern Bowen Basin (∼10 000 km 2 ) implies a distant source. The tuff is ash-rich and its original geochemistry has been compromised by diagenetic alteration. Crystal content (10-15%) is dominated by quartz, suggesting a rhyolitic association. SHRIMP U-Pb analysis of zircons indicates an age of 258.9 ± 2.7 Ma for the Platypus Tuff Bed, confirming the Late Permian age that has generally been assigned to the Blackwater Group. The age framework now apparent for the coal-bearing Blackwater Group suggests an average depositional rate ranging from ∼133 m/106 years for its eastern depocentre in the northern Bowen Basin to ∼70 m/106 years in more marginal settings to the west. Copyright (2001) Geological Society of Australia

  15. Age and significance of the Platypus Tuff Bed, a regional reference horizon in the Upper Permian Moranbah Coal Measures, north Bowen Basin

    Energy Technology Data Exchange (ETDEWEB)

    Michaelsen, P.; Henderson, R.A.; Crosdale, P.J.; Fanning, C.M. [James Cook University of North Queensland, Townsville, Qld. (Australia). School of Earth Science

    2001-07-01

    The Platypus Tuff Bed in the Permian Moranbah Coal Measures provides a basin-wide marker horizon traceable for over 300 km along strike. The bed is a tephra event unit, the product of a large-scale volcanic eruptive episode involving a pyroclastic volume {gt} 10 km{sup 3}. The relatively even thickness of the tuff across the entire northern Bowen Basin implies a distant source. The tuff is ash-rich and its original geochemistry has been compromised by diagenetic alteration. Crystal content (10-15%) is dominated by quartz, suggesting a rhyolitic association. SHRIMP U-Pb analysis of zircons indicates an age of 258.9 +/- 2.7 Ma for the Platypus Tuff Bed, confirming the Late Permian age that has generally been assigned to the Blackwater Group. The age framework now apparent for the coal-bearing Blackwater Group suggests an average depositional rate ranging from about to 133 m/10{sup 6} years for its eastern depocentre in the northern Bowen Basin to similar to 70 m/10{sup 6} years in more marginal settings to the west.

  16. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    Energy Technology Data Exchange (ETDEWEB)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  17. Flash hydrogenation of coal

    Science.gov (United States)

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  18. Pressure-charged steam fluidized bed drying of brown coal. Process optimization by means of fine grain drying; Druckaufgeladene Dampfwirbelschicht-Trocknung (DDWT) von Braunkohlen. Verfahrensoptimierung mittels Feinkorntrocknung

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Stefan; Hoehne, Olaf; Krautz, Hans Joachim [Brandenburgische Technische Univ., Cottbus (Germany). Lehrstuhl Kraftwerkstechnik

    2008-07-01

    Since the year 2002, the professorship power plant technology of the Brandenburg Technical University Cottbus (Federal Republic of Germany) investigates the pressure-charged steam fluidized bed drying of brown coals on the basis of a power station-integrated procedure. At the test facility with a throughput of up to 500 kg/h numerous attempts with fine coal of the granulation between 0 and 6.3 mm are accomplished. Regarding to the optimization of the heat transition for the decrease of the investment costs of the complete system, the dryer was upgraded for the parameters of the fine grain drying process. The fine grain drying process is compared with the coarse grain drying process. First operating results are presented.

  19. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Fan, Junjie; Zhao, Houyin; Zhou, Tuo; Hack, Pauline; Chan, Chia-Chun; Liou, Jian-Chang; Pan, Wei-Ping

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be

  20. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  1. Steam gasification of coal at low-medium (600-800{sup o}C) temperature with simultaneous CO{sub 2} capture in fluidized bed at atmospheric pressure: The effect of inorganic species. 1. Literature review and comments

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Toledo, J.M.; Molina, G. [Universidad Complutense de Madrid, Madrid (Spain). Dept. for Chemical Engineering

    2006-08-30

    This paper addresses the H{sub 2} production with simultaneous CO{sub 2} capture by steam gasification of coal in a fluidized bed, at low/medium temperatures (600-800{sup o}C) and atmospheric pressure. This work is mainly aimed at reviewing the effects of the inorganic species present in the matrix of the coal or added to the gasifier bed. The most promising species seems to be the calcined limestone (CaO), which intervenes in the overall gasification reaction network in at least five different types of reactions. The effectiveness of the CaO for CO{sub 2} capture in the coal gasifier is, therefore, affected/influenced by the other four simultaneous or competitive types of reactions in the gasifier. The effects of the temperature in the gasifier and of the (CaO/coal) ratio fed to the gasifier are finally reviewed and discussed in detail.

  2. Study on the structure and gasification characteristics of selected South African bituminous coal in fluidised bed gasification

    CSIR Research Space (South Africa)

    Oboirien, BO

    2009-10-01

    Full Text Available . The microstructural characteristics of the parent coals and their resultant chars were determined using XRD, FTIR, Raman and petrographic analysis. The microstructural changes that occurred in the organic (maceral) and the inorganic (mineral) fractions of the selected...

  3. Study on the structure and gasification characteristics of selected South African bituminous coals in fluidised bed gasification

    CSIR Research Space (South Africa)

    Oboirien, BO

    2011-04-01

    Full Text Available . The microstructural characteristics of the parent coals and their resultant chars were determined using XRD, FT-IR, Raman and petrographic analysis. The microstructural changes that occurred in the organic (maceral) and the inorganic (mineral) fractions...

  4. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments

  5. Composition and Structure of Microalgae Indicated in Raman and Hyperspectral Spectra and Scanning Electron Microscopy: from Cyanobacteria to Isolates from Coal-bed Methane Water Ponds

    Science.gov (United States)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2017-12-01

    Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and

  6. Steam gasification of coal at low-medium (600-800{sup o}C) temperature with simultaneous CO{sub 2} capture in a bubbling fluidized bed at atmospheric pressure. 2. Results and recommendations for scaling up

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Toledo, J.M.; Molina, G. [Universidad Complutense de Madrid, Madrid (Spain). Dept. of Chemical Engineering

    2008-03-19

    A gasification gas with an H{sub 2} content as high as 80 vol %, dry basis has been obtained by gasification of coal with pure steam at 600-800{sup o}C. The gasifier used was an atmospheric and bubbling fluidized bed operating with CaO in the bed as the CO{sub 2} sorbent. The research was carried out at a small pilot plant scale with continuous feeding of coal and batch mode introduction of the CaO. The gas composition and gas quality (tar content) is given for the following variables of operation: (a) type of in-bed sorbent used, (b) the amount of CaO in the bed related to the amount of coal fed, (c) temperature in the gasifier bed, (d) weight hourly space velocity (h{sup -1}) of the coal in the gasifier, and (e) time(-on-stream). To capture CaO at atmospheric pressure, the gasification with in-bed CaO had to be carried out at low-medium (600-800{sup o}C) gasification temperatures. For this reason, the tar content in the gasification gas was high (up to 52 g/Nm{sup 3}), which lowered the value of the H{sub 2}-rich gasification raw gas. It is demonstrated that a gas rich in H{sub 2} (80 vol % H{sub 2}, dry basis), and with very low CO{sub 2} and tar contents, can be obtained only if the coal gasification, at atmospheric pressure and with pure steam, is carried out at (CaO/coal) ratios above 10-15.

  7. Automation and control in industrial installations. Its application in pressurized fluidized bed plants, coal washeries etc. Automatizacion y control en instalaciones industriales. Su aplicacion en centrales de lecho fluido a presion, lavaderos de carbon etc

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Tarifa, R. (ENDESA, Madrid (Spain))

    1988-01-01

    This paper presents the automation and electronic control systems, based on the most advanced technologies on the market. The most recent techniques concerning industrial plant supervision and the processing of information obtained from the above mentioned systems are discussed. Intraplant communications between the control systems and the supervision computers as well as communications among cascade computers are described. These studies are applied to specific cases of pressurized fluidized bed plants, coal washing plants, coal yards, etc.

  8. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units: Chapter D.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin, one of the largest Pennsylvanian bituminous coal-producing regions in the world, currently contains nearly one-half of the top 15 coal-producing States in the United States (Energy Information Agency, 2006). Anthracite of Pennsylvanian age occurs in synclinal basins in eastern Pennsylvania, but production is minimal. A simplified correlation chart was compiled from published and unpublished sources as a means of visualizing currently accepted stratigraphic relations between the rock formations, coal beds, coal zones, and key stratigraphic units in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. The thickness of each column is based on chronostratigraphic divisions (Lower, Middle, and Upper Pennsylvanian), not the thickness of strata. Researchers of Pennsylvanian strata in the Appalachian basin also use biostratigraphic markers and other relative and absolute geologic age associations between the rocks to better understand the spatial relations of the strata. Thus, the stratigraphic correlation data in this chart should be considered provisional and will be updated as coal-bearing rocks within the Appalachian coal regions continue to be evaluated.

  9. Synthesis of zeolites coal ash in surfactant modified in application and removal of orange 8 acid solution: study in batch, fixed bed column and evaluation ecotoxicological

    International Nuclear Information System (INIS)

    Magdalena, Carina Pitwak

    2015-01-01

    In this study, synthesized zeolitic material from coal ash and modified cationic surfactant was used for removing the acid dye Orange 8 (AL8) by adsorption process using moving bed and fixed-bed column. The raw material and adsorbents were characterized by different techniques, such as X-ray diffraction, X-ray fluorescence spectroscopy, among others. The adsorption of AL8 was performed by moving bed in order to optimize the results when they are launched in a fixed bed. The effects of adsorption on zeolite AL8 were compared: (1) Effect of counterions Br - and Cl - surfactant used in the modification of the zeolite; (2) effect of type of coal ash used as raw material in the synthesis of zeolites (fly and bottom). The following adsorbents were used in the study: fly and bottom zeolite modified by surfactant hexadecyltrimethylammonium bromide (ZLMS-Br-Br and ZPMS-Br) and fly zeolite modified by surfactant hexadecyltrimethylammonium chloride (ZLMS-Cl). The pseudo-second-order kinetic described the adsorption of the dye on all adsorbents. The equilibrium time was reached 40, 60 and 120 min for ZLMS-Br, ZLMS-Cl and ZPMS-Br, respectively. The adsorption equilibrium was analyzed by the equations of the models of linear and nonlinear isotherms of Langmuir, Freundlich, Temkin and Dubinin- Radushkevivh (DR) and the criterion of best fit was evaluated using the error functions.The DR model was adjusted better to the experimental data for the system AL8 / ZLMS-Br, the Freundlich model for AL8 / ZLMS-Cl and Langmuir for AL8 / ZPMS. According to the Langmuir maximum adsorption capacity was 4.67, 1.48 and 1.38 mg g -1 for ZLMS-Br, ZLMS-Cl and ZPMS-Br, in order. In studies employing fixed bed columns, the effects of inlet concentration (20- 30 mg L -1 ), flow rate (4.0 -5.3 mL min -1 ) and the bed height (5, 5 - 6.5 cm) above the breakthrough curves characteristics in the adsorption system were determined. The Adams-Bohart, Thomas, Yoon-Nelson models were applied to experimental

  10. Testing of a new mining system performance at narrow coal bed; Ensayo de un sistema de arranque con cepillo mediante accionamiento hidraulico para capas estrechas de carbon

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    This researching project had the aim of: Testing a new mining system performance at narrow coal bed, which uses plough equipment with hydraulic driving devices. Minimising driving power group size to avoid problems regarding with the wall mining-heading transition, decreasing the needed room to house it and thus, simplifying wall mining edge support. The expected goals were: Take advantage of hydraulic driving devices to obtain a good efficiency with a variable and discontinuous load, but without loosing the electric driving devices advantages, consisting on increase driving torque, being the engine blocked Lengthen the mechanical equipment life (chains, driving sprockets, etc) Reach an economic production rate Researching project was developed in El Bierzo basin (leon, Spain), in Grupo Ampliacion, a mining group belonged to Viloria Hnos, S. A. (Author)

  11. Testing of marrow coal bed systems by hydraulic driving device for thin films of coal; Ensayo de un Sistema de Arranque con Cepillo mediante Accionamiento Hidraulico para Capas Estrechas de CArbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This researching project had the aim of: Testing a new mining system performance at narrow coal bed, which uses plough equipment with hydraulic driving devices. Minimising driving power group size to avoid problems regarding with the wall mining-heading transition, decreasing the needed room to house it and thus simplifying wall mining edge support The expected goals were: Take advantage of hydraulic driving devices to obtain a good efficiency with a variable and discontinuous load, bu t without loosing the electric driving devices advantages, consisting on increase driving torque, being the engine blocked Lengthen the mechanical equipment life (chains, driving sprockets, etc.) Reach and economic production rate Researching project was developed in El Bierzo basin (Leon, Spain), in Grupo Ampliacion, a mining group belonged to Viloria Hnos S. A.. (Author)

  12. Assessment of Appalachian basin oil and gas resources: Carboniferous Coal-bed Gas Total Petroleum System: Chapter G.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Carboniferous Coal-bed Gas Total Petroleum System, which lies within the central and southern Appalachian basin, consists of the following five assessment units (AUs): (1) the Pocahontas Basin AU in southern West Virginia, eastern Kentucky, and southwestern Virginia; (2) the Central Appalachian Shelf AU in Tennessee, eastern Kentucky, and southern West Virginia; (3) the East Dunkard (Folded) AU in western Pennsylvania and northern West Virginia; (4) the West Dunkard (Unfolded) AU in Ohio and adjacent parts of Pennsylvania and West Virginia; and (5) the Appalachian Anthracite and Semi-Anthracite AU in Pennsylvania and Virginia. Only two of these assessment units were assessed quantitatively by the U.S. Geological Survey (USGS) in the National Oil and Gas Assessment in 2002. The USGS estimated the Pocahontas Basin AU and the East Dunkard (Folded) AU to contain a mean of about 3.6 and 4.8 trillion cubic feet (TCF) of undiscovered, technically recoverable gas, respectively.

  13. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study; 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Yoso kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of integrated coal gasification combined cycle power generation, element study was conducted of a 200t/d entrained bed coal gasification pilot plant, and the FY 1989 results were summarized. In the gasification test using 2t/d gasifier equipment, the following were carried out: test on gasification of the coal proposed for pilot plant, test on changes in coal feed ratio, analysis of trace gas elements in coal, study of the fixed bed gas refining system, etc. In the study of large gas turbine combustor for demonstration machine, development of combustor which makes stable combustion in the low load region possible, development of low NOx combustor which controls the conversion of nitrogen compounds such as ammonia in coal gasification gas to NOx, development of combustor which makes the optimum and effective cooling possible by combining film cooling, impingement cooling, etc. In the study of simulation of the combined power generation total system, verification tests on the control mode switching function of the general load pressure control system, movement to meet anomaly of the control system, integrated cooperation control system, etc. (NEDO)

  14. Analysis of holding time variations to Ni and Fe content and morphology in nickel laterite limonitic reduction process by using coal-dolomite bed

    Science.gov (United States)

    Abdul, Fakhreza; Pintowantoro, Sungging; Yuwandono, Ridwan Bagus

    2018-04-01

    With the depletion of nickel sulfide ore resources, the nickel laterit processing become an attention to fulfill nickel world demans. Reducing laterite nickel by using a low cost carbonaceous reductan has proved produces high grade ferronickel alloy. In this research, reduction was carried out to low grade laterite nickel (limonite) with 1.25% nikel content by using CO gas reductant formed by reaction between coal and dolomite. Reduction process preceded by forming brickets mixture from limonit ore, coal, and Na2SO4, then the brickets placed inside crucible bed together with dolomit and reduced at temperature 1400 °C with holding time variations 4, 6, and 8 hours. EDX, XRD, and SEM test were carried out to find out the Ni and nickel grade after reduced, the phases that formed, and the morphology brickets after reduced. The reduction results shows that the highest increase on nickel grade was obtained by 8 hours holding time increasing 5.84 % from initial grade, and the highest recovery was obtained by 6 hours holding time with recovery 88.51 %. While the higest increase on Fe grade was obtained by 4 hours holding time, and the highest recovery Fe was obtained by 4 hours holding time with recovery 85.41%.

  15. Modelling of Effects of Operating Conditions and Coal Reactivity on Temperature of Burning Particles in Fluidized Bed Combustion

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2004-01-01

    Roč. 1, č. 2 (2004), s. 261-274 ISSN 1211-1910 R&D Projects: GA AV ČR IAA4072201; GA AV ČR IAA4072001 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluidized bed combustion * char temperature * modelling Subject RIV: DI - Air Pollution ; Quality

  16. Comparison of the petrography, palynology, and paleobotany of the Little Fire Creek coal bed, southwestern Virginia, USA

    Science.gov (United States)

    Pierce, B.S.; Eble, C.F.; Stanton, R.W.

    1995-01-01

    The proximate, petrographic, palynologic, and plant tissue data from two sets of samples indicate a high ash, gelocollinite- and liptinite-rich coal consisting of a relatively diverse paleoflora, including lycopsid trees, small lycopsids, tree ferns, small ferns, pteridosperms, and rare calamites and cordaites. The relatively very high ash yields the relatively thin subunits and the large scale vertical variations in palynomorph floras suggest that the study area was at the edge of the paleopeat-forming environment. -from Authors

  17. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    Science.gov (United States)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-08-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  18. Interlaboratory comparison of mineral constituents in a sample from the Herrin (No. 6) coal bed from Illinois

    Science.gov (United States)

    Finkelman, Robert B.; Fiene, F.L.; Miller, R.N.; Simon, F.O.

    1984-01-01

    Approximately 20 kg of the Herrin (No. 6) coal was collected from a strip mine in St. Clair County, Ill. A 10-kg portion was ground to -60 mesh, homogenized, and riffled into 128 splits of 70-80 g each. Homogeneity of these splits was confirmed by moisture, ash, and sulfur analyses of six randomly selected splits. Results of these analyses were within the ASTM (American Society for Testing and Materials) guidelines for interlaboratory precision. Splits of the Herrin (No. 6) coal were then transmitted to more than 30 laboratories for analysis. Low-temperature plasma oxidation was used to isolate inorganic matter for quantitative chemical and mineralogical analysis. Despite a wide variation in ashing conditions, only minor variations in ash yields were obtained; these variations were attributed to differences in operating temperature and moisture content. Mineralogical analyses of low-temperature ash (LTA) concentrates prepared by five different laboratories indicated variations within the limits of analytical error. The mean values, in weight percent, for the major minerals are as follows: calcite, 9; quartz, 20; pyrite, 23; kaolinite, 14; and illite+mixed-layer clays, 31. Normative mineralogical calculations and Fourier transform infrared analysis (FTIR) yielded results similar to those obtained from X-ray diffraction (XRD). Choosing appropriate mineral standards was found to be critical for the proper use of analytical techniques such as XRD and FTIR. Good interlaboratory agreement was obtained for most major, minor, and trace elements despite differences in analytical procedures and in the type of sample analyzed (coal, high-temperature ash, or LTA). Discrepancies between analyses for zinc, strontium, manganese, and iron may be attributed to sampling inhomogeneity problems. Mossbauer spectroscopy showed that approximately 44 percent of the pyritic sulfur was lost through weathering in the first year after preparation of the interlaboratory sample. Szomolnokite

  19. Pyrolysis of blends of coal and tyre wastes in a fixed bed reactor and a rotary oven

    OpenAIRE

    Acevedo Muñoz, Beatriz; Barriocanal Rueda, Carmen; Álvarez García, Ramón

    2013-01-01

    The pyrolysis of blends of two wastes from scrap tyres with a coal of 36 wt.% db volatile matter content was carried out in two ovens of different configuration in order to compare the characteristics of the products obtained. The rotary oven was expected to improve the blending of the raw materials and to promote a synergistic effect. Mass balances were performed with gas and oil yields showing the greatest differences. The chars obtained were studied on the basis of their true and apparent ...

  20. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  1. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Yoso kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, element study was made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. In the study by the gasification test on 2t/d furnace, gasification test was conducted for the OM coal newly selected as a coal proposed for the expansion of coal kind. As a result, the pulverized coal/char of OM coal have almost good handling property and showed favorable gasification performance. In the study of large gas turbine combustor for demonstrative machine, with the aim of developing a combustor that makes stable combustion also in the low load region possible, fabrication of the accessory equipment of combustor (choke mechanism, measuring use duct and heat insulating plate) was made for the actual-pressure/actual-size combustion test. In the study by simulation of the total system of combined cycle power generation, etc., the following were conducted: verification of characteristics of the integrated control (state of the ordinary operation, state of the mock load control, etc.), load dump simulation (state of the bleed cooperation, state of the bleed separation (state of the air booster operation, etc.)), etc. (NEDO)

  2. Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, R.; Shen, L.H.; Zhang, M.Y.; Jin, B.S.; Xiong, Y.Q.; Duan, Y.F.; Zhong, Z.P.; Zhou, H.C.; Chen, X.P.; Huang, Y.J. [Southeast University, Nanjing (China)

    2007-01-15

    A 0.1 MWth lab-scale and 2 MWth pilot-scale experimental rigs were constructed to demonstrate the technical feasibility of a new process. The aim of the lab-scale study is to optimize coal partial gasification reactions operating conditions, which were applied in the pilot-scale tests. A comparison between the laboratory and pilot scale experimental results is presented in this paper in order to provide valuable information for scaling-up of the PFB coal partial reactor to industrial applications. The results show that trends and phenomena obtained in the laboratory reactor are confirmed in a pilot plant operating at similar conditions. However, many differences are observed in the two reactors. The higher heat loss in the lab-scale reactor is responsible for higher equivalence ratio (ER) and lower gas heating value at the similar reactor temperature. With respect to the pilot-scale reactor, mass transfer limitation between bubbles and emulsion phase may become important. Hence, longer contact time is required to achieve the same conversions as in the lab-scale reactor. This difference is explained by a significant change of the hydrodynamic conditions due to the formation of larger bubbles.

  3. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 5 - Surveys and studies of demonstration plant); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 5. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Surveys and studies were conducted concerning a demonstration plant for establishing the technology of integrated coal gasification combined cycle, and the fiscal 1995 results are compiled. In this fiscal year, a demonstration plant conceptual design was prepared for assuring smooth transition from a pilot plant to a commercial plant. The design followed the system employed at the Nakoso pilot plant for its gasification power generation. It was decided that the gasification furnace be of the air-blown (oxygen enriched) 2-stage entrained bed type, that the desulfurization system be of the dry type 2-stage fluidized bed type, the dedusting system be of the dry type granular bed type (moving bed type), that the combined cycle power facility be derived from the commercialized gas turbine, and that the cycle of the steam system agree with the integrated coal gasification combined cycle system now under discussion. Studies were made, which covered heat efficiency (generating end/sending end), heat/matter balance, process flow, gas turbine/steam system optimization, comparison in performance with a pilot plant with its dimensions increased, estimation of the performance of each of the facilities, estimation of the construction cost, calculation of the generation cost, environmental friendliness, operating characteristics, acceptable coal types, and the like. (NEDO)

  4. Effect of Heterogeneity in Coal Ash Chemical Composition on the Onset of Conditions Favorable for Agglomeration in Fluid Beds

    Directory of Open Access Journals (Sweden)

    Aditi B. Khadilkar

    2015-11-01

    Full Text Available Ash agglomeration issues that arise due to the sticking of slag-wetted, colliding particles have been creating operational difficulties and monetary losses for the fluidized bed combustion (FBC industry. Difficulties have been experienced in the detection of slag-liquid at the low operating temperatures in fluidized bed combustors (FBCs and predicting the agglomeration behavior of fuel. This study aims to study the effect of heterogeneity in ash composition on the detection of slag-liquid in FBCs. It quantifies the slag-liquid amounts at the particle-level, under oxidizing environments, by dividing the bulk fuel into density classes. FactSage™ thermodynamic simulations of each of the particle classes, along with experimental validation of the trends with thermo-mechanical analysis (TMA and high temperature X-ray diffraction (HT-XRD were performed. The results obtained can be used to estimate the stickiness of particles in the development of ash agglomeration models based on particle collisions. The study of these particle classes shows that particle classes with specific minerals can form low temperature eutectics and lead to onset of slag-liquid formation at temperatures below those predicted by bulk analysis alone. Comparison of the differences in slag-liquid formation tendencies under reducing and oxidizing environments is also presented.

  5. Effect of acidity and elevated PCO2 on acid. Neutralization within pulsed limestone bed reactors receiving coal mine drainage

    Science.gov (United States)

    Watten, B.J.; Sibrell, P.L.; Schwartz, M.F.

    2004-01-01

    Limestone has potential for reducing reagent costs and sludge volume associated with the treatment of acid mine drainage (AMD), but its use has been restricted by slow dissolution rates and sensitivity to scale forming reactions that retard transport of H+ at the solid-liquid interface. We evaluated a pulsed limestone bed (PLB) remediation process designed to circumvent these problems through use of intermittently fluidized beds of granular limestone and elevated carbon dioxide pressure. PLB limestone dissolution (LD, mg/L), and effluent alkalinity (Alk, mg/L) were correlated with reactor pressure (PCO2, kPa), influent acidity (Acy, mg/L) and reactor bed height (H, cm) using a prototype capable of processing 10 L/min. The PLB process effectively neutralized sulfuric acid acidity over the range of 6-1033 mg/L (as CaCO3) while generating high concentrations of alkalinity (36-1086 mg/L) despite a hydraulic residence time of just 4.2-5.0 min. Alk and LD (mg/L CaCO3) rose with increases in influent acidity and PCO2 (p < 0.001) according to the models: Alk = 58 + 38.4 (PCO2)0.5 + 0.080 (Acy) - 0.0059(PCO2) 0.5 (Acy); LD = 55 + 38.3 (PCO2)0.5 + 1.08 (Acy) - 0.0059 (PCO2)0.5 (Acy). Alkalinity decreased at an increasing rate with reductions in H over the range of 27.3-77.5 cm (p < 0.001). Carbon dioxide requirements (Q(avg)CO2, L/min) increased with PCO2 (p < 0.001) following the model Q(avg)CO2 = 0.858 (PCO2)0.620, resulting in a greater degree of pH buffering (depression) within the reactors, a rise in limestone solubility and an increase in limestone dissolution related to carbonic acid attack. Corresponding elevated concentrations of effluent alkalinity allow for sidestream treatment with blending. Numerical modeling demonstrated that carbon dioxide requirements are reduced as influent acidity rises and when carbon dioxide is recovered from system effluent and recycled. Field trials demonstrated that the PLB process is capable of raising the pH of AMD above that

  6. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  7. Novel Magnetically Fluidized Bed Reactor Development for the Looping Process: Coal to Hydrogen Production R&D

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei; Hahn, David; Klausner, James; Petrasch, Jorg; Mehdizadeh, Ayyoub; Allen, Kyle; Rahmatian, Nima; Stehle, Richard; Bobek, Mike; Al-Raqom, Fotouh; Greek, Ben; Li, Like; Chen, Chen; Singh, Abhishek; Takagi, Midori; Barde, Amey; Nili, Saman

    2013-09-30

    The coal to hydrogen project utilizes the iron/iron oxide looping process to produce high purity hydrogen. The input energy for the process is provided by syngas coming from gasification process of coal. The reaction pathways for this process have been studied and favorable conditions for energy efficient operation have been identified. The Magnetically Stabilized Porous Structure (MSPS) is invented. It is fabricated from iron and silica particles and its repeatable high performance has been demonstrated through many experiments under various conditions in thermogravimetric analyzer, a lab-scale reactor, and a large scale reactor. The chemical reaction kinetics for both oxidation and reduction steps has been investigated thoroughly inside MSPS as well as on the surface of very smooth iron rod. Hydrogen, CO, and syngas have been tested individually as the reducing agent in reduction step and their performance is compared. Syngas is found to be the most pragmatic reducing agent for the two-step water splitting process. The transport properties of MSPS including porosity, permeability, and effective thermal conductivity are determined based on high resolution 3D CT x-ray images obtained at Argonne National Laboratory and pore-level simulations using a lattice Boltzmann Equation (LBE)-based mesoscopic model developed during this investigation. The results of those measurements and simulations provide necessary inputs to the development of a reliable volume-averaging-based continuum model that is used to simulate the dynamics of the redox process in MSPS. Extensive efforts have been devoted to simulate the redox process in MSPS by developing a continuum model consist of various modules for conductive and radiative heat transfer, fluid flow, species transport, and reaction kinetics. Both the Lagrangian and Eulerian approaches for species transport of chemically reacting flow in porous media have been investigated and verified numerically. Both approaches lead to correct

  8. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    Science.gov (United States)

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin

    2014-04-01

    A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  11. Résultats de recherches récentes sur la structure géologique des gîtes de houille de la Ruhr Results of Recent Research on the Geological Structure of Coal Beds in the Ruhr

    Directory of Open Access Journals (Sweden)

    Kaulfuss R.

    2006-10-01

    Full Text Available Un inventaire exact des gîtes de houille était lié à la réorganisation des rapports de propriété dans la région de la Ruhr (Fondation de la Ruhrkohle AG. Du fait que dans les domaines de gîtes de houille en exploitation les réserves de houille ne suffiront pas à assurer à long terme un rendement d'extraction suffisant, on commença une vaste exploration dans des parties de quartier encore inconnues. Il fut ainsi possible d'élargir considérablement les connaissances sur la situation géologique des gîtes de houille grâce à des études par réflexion sismique, des forages profonds et des enregistrements de forages géophysiques. An accurate inventory of the coal beds was dependent upon the reorganization of property reports in the Ruhr region (Ruhrkohle Fondation AG. Because the working coal fields do not contain sufficient coal reserves to guarantee satisfactory productivity rates on a long-term basis, extensive exploration in previously unexplored parts of the area was undertaken. Thus, it became possible to extend considerably our knowledge of the geological structure of the coal beds through refraction shooting, deep drilling, and the well logging.

  12. Geochemistry of inorganic nitrogen in waters released from coal-bed natural gas production wells in the Powder River Basin, Wyoming

    Science.gov (United States)

    Smith, Richard L.; Repert, Deborah A.; Hart, Charles P.

    2009-01-01

    Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 μM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, of total dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n = 13), DIN concentrations were >300 μM, with pH > 8.5, after 5 km of transport. Ammonium represented 25−30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day−1entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.

  13. Acute toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters, to 13 aquatic species as defined in the laboratory

    Science.gov (United States)

    Harper, David D.; Farag, Aïda M.; Skaar, Don

    2014-01-01

    Water produced during coal bed natural gas (CBNG) extraction in the Powder River Structural Basin of Wyoming and Montana (USA) may contain concentrations of sodium bicarbonate (NaHCO3) of more than 3000 mg/L. The authors evaluated the acute toxicity of NaHCO3, also expressed as bicarbonate (HCO3−), to 13 aquatic organisms. Of the 13 species tested, 7 had a median lethal concentration (LC50) less than 2000 mg/L NaHCO3, or 1300 mg/L HCO3−. The most sensitive species were Ceriodaphnia dubia, freshwater mussels (Lampsilis siliquoidea), pallid sturgeon (Scaphirhynchus albus), and shovelnose sturgeon (Scaphirhynchus platorynchus). The respective LC50s were 989 mg/L, 1120 mg/L, 1249 mg/L, and 1430 mg/L NaHCO3, or 699 mg/L, 844 mg/L, 831 mg/L, and 1038 mg/L HCO3−. Age affected the sensitivity of fathead minnows, even within life stage. Two days posthatch, fathead minnows were more sensitive to NaHCO3 and HCO3− compared with 4-d-old fish, even though fish up to 14 d old are commonly used for toxicity evaluations. The authors recommend that ion toxicity exposures be conducted with organisms less than 24 h posthatch to ensure that experiments document the most sensitive stage of development. The results of the present study, along with historical and current research regarding the toxicity of bicarbonate, may be useful to establish regulatory standards for HCO3−.

  14. Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production

    Science.gov (United States)

    Hower, J.C.; Hiett, J.K.; Wild, G.D.; Eble, C.F.

    1994-01-01

    The Eastern Kentucky coal field, along with adjacent portions of Virginia and southern West Virginia, is part of the greatest production concentration of high-heating-value, low-sulfur coal in the United States, accounting for over 27% of the 1993 U.S. production of coal of all ranks. Eastern Kentucky's production is spread among many coal beds but is particularly concentrated in a limited number of highquality coals, notably the Pond Creek coal bed and its correlatives, and the Fire Clay coal bed and its correlatives. Both coals are relatively low ash and low sulfur through the areas of the heaviest concentration of mining activity. We discuss production trends, resources, and the quality of in-place and clean coal for those and other major coals in the region. ?? 1994 Oxford University Press.

  15. Formation and destruction mechanisms of nitrogen oxides during coal combustion in circulating fluidized beds; Mecanismes de formation et de destruction des oxydes d`azote lors de la combustion du charbon en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Borrel, G.; Lecuyer, I. [Universite du Haut-Rhin, 68 - Mulhouse (France)

    1997-01-01

    Formation and reduction of nitrogen oxides (NO and N{sub 2}O) during coal combustion in a circulating fluidized bed (CFBC) are very complicated and yet badly known. The aim of the present study was to better characterize these phenomena on a small-sized experimental unit (reactor diameter: 5 cm), with the possibility to re-inject the solids in the bottom of the furnace, as in a real industrial unit. This should allow then to develop a numerical set of chemical reactions involving the nitrogen oxides. The experimental results showed that coal ash plays a great role in reducing nitrogen oxides, the determining parameter being the quantity of unburnt carbon remaining in the ash. The study then detailed the interaction between nitrogen oxides and de-volatilized (char) according to the temperature, NO{sub x} concentration and the mass of solid. In the absence of oxygen small quantities of char can very significantly reduce NO as well as N{sub 2}O. It was possible to establish destruction kinetics on these particles, and orders of reaction could be determined versus the NO{sub x} concentration and the char particle mass (heterogeneous phase chemical reactions). Then, the coal pyrolysis study enabled to identify the products released during coal devolatilization and thermogravimetric analyses displayed several successive weight losses due CO, CO{sub 2} and CH{sub 4} releases, during a linear temperature increase. Lastly coal combustion was studied in the small pilot with variable experimental conditions. Using the previous experimental was studied in the small pilot with variable experimental conditions. Using the previous experimental results, a model was developed to calculate NO{sub x} concentrations during the coal combustion and validated. The NO and N{sub 2}O contents calculated are thoroughly correlated with the experimental data whatever the injection carbon/oxygen ratio is. (author) 96 refs.

  16. FY 1991 report on the results of the development of an entrained bed coal gasification power plant. Part 4. Operation of pilot plant; 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    A record was summarized of the operation of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation. As to the actual results of operation hours, the paper summarized the records of gasifier facilities, gas refining facilities, gas turbine facilities and safety environment facilities which were collected from April 1991 to January 1993. Relating to the actual results of start-up/stop, the paper summarized the records of gasifier facilities, gas refining facilities (desulfurization), gas refining facilities (dedusting), gas turbine facilities and safety environment facilities. Further, operation manuals were made for the schedule of plant start-up/stop, generalization, gasifier facilities, gas refining facilities (desulfurization), gas refining facilities (dedusting), gas turbine facilities, actual pressure/actual size combustor testing facilities and safety environment facilities. (NEDO)

  17. Kinetics of gasification and combustion of residues, biomass and coal in a bubbling fluidized bed; Die Kinetik der Vergasung und Verbrennung unterschiedlicher Abfaelle, Biomassen und Kohlen in der blasenbildenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, S.; Krumm, W. [Siegen Univ. (Gesamthochschule) (Germany). Lehrstuhl fuer Energie- und Umweltverfahrenstechnik

    1998-09-01

    The combustion and gasification characteristics of Rhenish brown coal, domestic waste, waste plastics, wood and sewage sludge were investigated in a bubbling atmospheric fluidized bed in the laboratory scale. The materials were pyrolyzed in the fluidized bed in a nitrogen atmosphere. The residual coke was combuted in the presence of oxygen with varying operating parameters or else gasified in the presence of carbon dioxide. The different materials were characterized by global combustion rates, and kinetic parameters were determined for residual coke combustion. (orig.) [Deutsch] Das Verbrennungs- und Vergasungsverhalten von Rheinischer Braunkohle, Hausmuell, Restkunststoff, Holz und Klaerschlamm wurde in einer blasenbildenden, atmosphaerischen Laborwirbelschicht untersucht. Die Einsatzstoffe wurden in der mit Stickstoff fluidisierten Wirbelschicht pyrolysiert. Der verbleibende Restkoks wurde anschliessend unter Variation der Betriebsparameter mit Sauerstoff verbrannt oder mit Kohlendioxid vergast. Die unterschiedlichen Einsatzstoffe wurden durch globale Vebrennungsraten charakterisiert. Fuer die Restkoksverbrennung wurden kinetische Parameter ermittelt. (orig.)

  18. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  19. FY 1996 report on the results of the development of an entrained bed coal gasification power plant. Part 2. Investigational study of verification plant; 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    For the purpose of developing the technology of the integrated coal gasification combined cycle power generation, an investigational study of verification plant was made, and the FY 1996 results were summarized. In this fiscal year, the conceptual design was made of the Nakoso method based on the method of Nakoso pilot plant, the fixed bed method in which fixed bed gas refining facilities tested in Nakoso pilot plant were adopted, and the packed bed method. In the Nakoso method, 5 cases were studied using the air blown two-stage entrained bed for gasifier, dry two-stage fluidized bed for desulfurization and dry granular bed packed bed for dust removal. In the fixed bed method, 2 cases were studied using the air blown two-stage entrained bed for gasifier and dry fixed bed for gas refining. In the packed bed method, 2 cases were studied using the air blown two-stage entrained bed for gasifier and dry packed bed for gas refining. As to gas turbine facilities, 5 cases were studied in which GT output is 115MW - 215MW (output of combined cycle power generation: 220MW - 420MW). (NEDO)

  20. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  1. Flue Gas Emissions from Fluidized Bed Combustion

    NARCIS (Netherlands)

    Bramer, E.A.; Valk, M.

    1995-01-01

    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  2. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Demonstration project of circulating fluidized bed boiler (Jinzhou Coal-Thermal Power Corporation); 1997 nendo seika hokokusho (kankyo chowagata sekitan riyo system donyu shien jigyo). Junkan ryudosho boiler ni kakawaru jissho jigyo (Jinzhou netsuden sokoji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    To verify the clean coal technology to be diffused in China and consolidate its diffusion basis, demonstration project of circulating fluidized bed boiler was conducted through the cooperation with China which is positive in its introduction. This report describes its characteristics. Coal and limestone are supplied in a lower part of combustion chamber, and are mixed with circulating ash by fluidized air for combustion. Densely fluidized bed the same as the bubbling fluidized bed is formed in the lower part of combustion chamber, which provides excellent stability in ignition and combustion. Particles including ash, char and limestone formed during the combustion are discharged into the cyclone through the convection heat transfer part at the outlet of combustion chamber with the combustion gas flow. Since the gas temperature is lowered to 400 to 500degC at the convection heat transfer part, troubles of the ash circulating system can be prevented. The combustion gas separated from ash at the cyclone is discharged through the heat exchanger and precipitator, and the collected ash is returned to the lower part of combustion chamber. In FY 1997, design, fabrication, procurement/inspection, field survey/meeting, survey of visitors/meeting, and education were carried out. 4 figs., 4 tabs.

  3. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  4. Combustion studies in a fluidised bed-The link between temperature, NO{sub x} and N{sub 2}O formation, char morphology and coal type

    Energy Technology Data Exchange (ETDEWEB)

    Valentim, B.; Lemos de Sousa, M.J. [Centro de Geologia da Universidade do Porto, Faculdade de Ciencias, Praca de Gomes Teixeira, 4099-002, Porto (Portugal); Abelha, P.; Boavida, D.; Gulyurtlu, I. [Departamento de Engenharia Energetica e Controlo Ambiental (DEECA), Instituto Nacional de Engenharia, Tecnologia e Inovacao (INETI), Estrada do Paco do Lumiar, 22, Edif. J, 1649-038, Lisboa (Portugal)

    2006-06-06

    Five commercially available high volatile bituminous coals from different origins were studied with the objective of characterizing their petrographic nature with respect to emissions of NO{sub x} and N{sub 2}O. The chars produced [at temperatures ranging from 700 to 1000 {sup o}C] from these coals were also petrographic ally analyzed to assess the contribution of char to NO{sub x} and N{sub 2}O formation during combustion. Vitrinite-rich coals produced higher porous chars (cenospheres and tenuinetworks) than those that are rich in inertinite. The former coals were, however, found to release lower concentrations of NO. Consistent with previous works, N{sub 2}O emissions were observed to decrease significantly with temperature, however, on the whole, the N{sub 2}O emissions from vitrinite-rich high volatile coals were less than those from inertinite-rich coals. Additionally, high porous chars were found to give rise to lower emissions of NO and N{sub 2}O. (author)

  5. FY 1991 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study/investigational study of technology/study of the integrated coal gasification combined cycle power system; 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen, sekitan gaska fukugo hatsuden system kento hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    For the purpose of establishing the technology of integrated coal gasification combined cycle power generation, the following were conducted: element study of a 200t/d entrained bed coal gasification pilot plant, survey of technology of the coal gasification power generation, study of the practical scale IGCC, etc. The FY 1991 results were summarized. In the gasification test using 2t/d furnace equipment, evaluation test on the test coal for pilot plant was made. In the study of gas turbine combustor for demonstration machine use, measuring duct was fabricated for measurement of combustion gas temperature/pressure, etc. In the simulational study of the total system of combined cycle power generation, review/modification of part of the simulation model and detailing of the model were conducted by comparison with the data on pilot plant operation. In the technology study, joint technology conferences were held for discussions between Japan and Australia, Japan and the U.S., and Japan and Canada. As to the practical scale IGCC, the initially planned output capacity and thermal efficiency were studied based on the knowledge/information obtained through the R and D on the 200t/d pilot plant. (NEDO)

  6. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  7. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  8. Comments on "Design of Entrained-Flow and Moving-, Packed-, and Fluidized-Bed Sorption Systems: Grain-Model Kinetics for Hot Coal-Gas Desulfurization with Limestone"

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar

    2002-01-01

    Roč. 41, - (2002), s. 1914-1915 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrogen sulfide * calcium oxide * coal gas Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  9. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  10. Fiscal 1996 achievement report. Development of entrained bed coal gasification power plant (Part 1 - Studies of dismantling and surveys of techniques); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Kaitai kenkyu hen, gijutsu chosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    For the establishment of technology of integrated coal gasification combined cycle, studies were made for the dismantling of the 200 tons/day entrained bed coal gasification pilot plant and surveys were conducted of overseas technologies. In the gasification furnace facility, 40 devices were selected, and dismantled, from the locations corresponding to the factors of damage expected to occur involving important equipment. Although no significant damage was detected in the gasification pressure vessel, peripheral walls, or the like, malfunctions due to corrosion or abrasion were discovered in some pipes and members. In the dry type gas clean-up facility (desulfurization facility), damage due to heat stress or corrosion was detected in the regeneration tower inner cyclone, regeneration tower filter flexible tubes, and in circulation gas cooler cooling tubes. In the dry type gas clean-up facility (dedusting facility), damage was found in the dust collector gas seal valve, dust collector filter materials cut valve, and in the separator A/B. In the gas turbine facility, no abnormality was discovered but for some damage in some initial stage static vanes. (NEDO)

  11. Achievement report for fiscal 1993 on developing entrained bed coal gasification power plant. Part 4. Pilot plant operation edition; 1993 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Tests and researches have been carried out on operation of a 200-t/d entrained bed coal gasification pilot plant built with an objective of establishing the coal gasification composite power generation technology. This paper summarizes the operation achievements in fiscal 1993. The plant operation record in fiscal 1993 was as follows: 430 hours 27 minutes in the gasification furnace (ten gasification operations), 233 hours 51 minutes in the gas refining facility, 140 hours 31 minutes in the gas turbine facility (power generation amount of 746.8 MWh with nine actuations), 1,263 hours 09 minutes in the processing furnace in the safety environment facility, and 427 hours 22 minutes in the NOx removal equipment. Descriptions were given with detailed graphs on the actuation and shutdown record with respect to the run D2, the run D3 (1 and 2), the run D4, the run D5, the run D6, and the run D7 (1 through 4). The operation procedures were prepared for the plant startup and shutdown schedule, the generalization report, the gasification furnace facility, the gas refining facility (dry type desulfurizing facility), the gas refining facility (dry type dust removing facility), the gas turbine facility, the combustor testing facility with actual pressure and size, and the safety environment facilities. (NEDO)

  12. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 4 - Pilot plant operation); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for establishing the technology of integrated coal gasification combined cycle was subjected to operational tests, and the fiscal 1995 results are compiled. In fiscal 1995, 1328 hours and 3 minutes (8 gasification operations) was recorded with gasification furnace facility, 899 hours and 53 minutes with the gas clean-up facility, 831 hours and 27 minutes with the gas turbine facility (11 startups for the generation of 6657 MWh), and 1958 hours and 2 minutes with the treatment furnace and 1331 hours and 10 minutes with the denitration unit of the safety/environment-related facility. The details of starts and stops were described in graphs which covered Runs D13, D14-1, D14-2, E1, D15, and A14. Operating procedures were studied and compiled for the plant start/stop schedule, general guidelines, gasification furnace facility, gas clean-up facility (dry type desulfurization facility), gas clean-up facility (dry type dedusting facility), gas turbine facility, real-pressure natural-size combustor test facility, and the safety/environment-related facility. (NEDO)

  13. FY 1992 report on the results of the development of an entrained bed coal gasification power plant. Part 4. Operation of pilot plant; 1992 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    A record was summarized of the operation test study in FY 1992 of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation. The operating hour of gasifier facilities in FY 1992 was 635 hours 19 minutes, and the number of times of gasification operation was 9. The operating hour of letting gas through to gas refining facilities was 549 hours 14 minutes. The operating hour of gas turbine facilities was 310 hours 18 minutes, and the generated output was 1,366.2 MWh. The operating hour of treatment furnace of safety environment facilities was 1,401 hours 4 minutes, and that of the denitrification system was 621 hours 24 minutes. As to the actual results of the start-up/stop, the paper detailedly recorded those of RUNs 10, 11, 12, 13 and D1. Further, operation manuals were made for the schedule of plant start-up/stop, gasifier facilities, gas refining facilities (dry desulfurization facilities), gas refining facilities (dry dedusting facilities), actual pressure/actual size combustor testing facilities and safety environment facilities. (NEDO)

  14. Fiscal 1994 achievement report. Development of entrained bed coal gasification power plant (Part 4 - Pilot plant operation); 1994 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for the establishment of the technology of integrated coal gasification combined cycle power generation was operated for testing, and the results are put together. Operating hours recorded were 1347 hours and 7 minutes for the gasification furnace facility (7 gasification operations), 752 hours and 22 minutes for the gas clean-up facilities, 425 hours and 20 minutes for the gas turbine facility (6 startups for generating 2616.1 MWh), and 1852 hours for the treatment furnace and 1304 hours and 32 minutes for the denitration system in the safety/environment-related facility. Detailed graphs were drawn for the description of starts and stops in Run D8, Run D9 (1-3), Run D10, Run D11, and in Run D12. Operating procedures were studied and then compiled for the plant start-stop schedule, general guidelines, gasification furnace facility, gas clean-up facility (dry type desulfurization facility), gas clean-up facility (dry type dedusting facility), gas turbine facility, real-pressure natural-size combustor test facility, and for the safety/environment related facility. (NEDO)

  15. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  16. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  17. Combustion demonstration plant in circulant fluidized bed of residual coal; Planta de Demostracion de Combustion en Lecho Fluido Circulante de Carbones Residuales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This report incorporates a summary of the operation results during the period of demonstration after started up. The report pretend to give an overview of the operation conditions along of the first year: Running hours, availability, electricity production, shooting downs, incidences, efficiency, fuel characteristics influence, pollutants emissions and standards comparations, etc. The main operation conclusions are: High availability, great number of running hours at full equivalent load; some months even over 100% regarding time scheduled. High reduction of gaseous emissions, really very low respecting the required by the applicable standards. It has been developed the engineering of a prototype project, by 30MW, using mixtures of solid fuels, residues and coals. (Author)

  18. Coal resources of Indiana

    Science.gov (United States)

    Spencer, Frank Darwyn

    1953-01-01

    The Indiana coal field forms the eastern edge of the eastern interior coal basin, which is near some of the most densely populated and highly productive manufacturing areas of the United States. (See fig. 1. ) For this reason Indiana coal reserves are an important State and National asset. In dollar value the coal mining industry is the largest of Indiana's natural-resource-producing industries. The total value of coil production for the year 1950 was more than 100 million dollars, or more than that of all other natural-resource industries in the State combined. As estimated herein, the original coal reserves of Indiana total 37,293 million tons, of which 27,320 million tons is contained in beds more than 42 inches thick; 7,632 million tons in beds 28 to 49. inches thick; and 2,341 million tons in beds 14 to 28 inches thick. The remaining reserves as of January 1951, total 35,806 million tons, of which 18,779 million tons is believed to be recoverable. The distribution of the reserves in these several categories is summarized by counties in table 1. Of the total original reserves of 37,293 million tons, 6,355 million tons can be classified as measured; 8,657 million tons as indicated; and 22,281 million tons as inferred. Strippable reserves constitute 3,524 million tons, or 9.5 percent of the total original reserves. The distribution of the strippable and nonstrippable original reserves is summarized in tables 2 and 3 by counties and by several categories, according to the thickness of the beds and the relative abundance and reliability of the information available for preparing the estimates. The distribution of the estimated 18,779 million tons of recoverable strippable and nonstrippable reserves in Indiana is further summarized by counties in table 4, and the information is presented graphically in figures 2 and 3. The tables i to 4 and figures 2 and 3 include beds in the 14- to 28-inch category, because thin beds have been mined in many places. However, many

  19. Ninth annual coal-fueled heat engines, advanced pressurized fluidized bed combustion, and gas stream cleanup systems contractors review meeting: Welcoming address

    International Nuclear Information System (INIS)

    Salvador, L.A.

    1992-01-01

    The market for retrofit and new capacity in the electric utility is expected to be very large: 250 gigawatt (GW) and 500 GW by the year 2030--an amount which equals the presently installed capacity in the US Overseas, the market is even larger exclamation point This large market will be driven by a number of key ''drivers.'' In order for power generation systems to compete in this market, they will have to satisfy the market drivers. This will lead us inevitably to modular, low cost, super clean, efficient, and reliable products which are fuel flexible and can meet either retrofit, repowering, or new capacity applications. I believe clean coal technologies that we are developing will meet these market demands and will penetrate--and eventually dominate--the power generation market of the next century. But for this market penetration and widespread deployment to take place, the products we are jointly developing must be continuously improved. We must together set our goals on a rapid march down the learning curve from the present high ''projected costs'' of these systems to an acceptable market clearing price on the order of $1000 to $1200 per kilowatt (kw) and with heat rates approaching 7500 Btu per kilowatt-hour (kWh). The projected learning curve for integrated gasification combined cycle systems is a good illustration of the aggressive goals we need to achieve

  20. Studi Numerik Karakteristik Pengeringan Batubara pada Fluidized Bed Coal Dyer Terhadap Pengaruh Variasi Temperatur Air Heater dengan Tube Heater Tersusun Staggered dan Perbandingan Volume Chamber dan Volume Batubara Sebesar 50%

    Directory of Open Access Journals (Sweden)

    Ayu Sarah Novrizqa

    2013-03-01

    Full Text Available Indonesia mempunyai sumber daya batubara yang cukup besar dan sebagian besar sumber daya tersebut termasuk ke dalam batubara peringkat rendah berupa lignit dan sub-bituminus yang memiliki kadar air yang tinggi. Tingginya kadar air menyebabkan rendahnya nilai kalor, sehingga pemanfaatan batubara jenis ini menjadi terbatas dan sulit untuk dipasarkan. Oleh karena itu perlu adanya teknologi pengeringan yang dapat meningkatkan nilai kalor dari batubara tersebut. Dalam proses pengeringan akan melibatkan perpindahan panas dan massa. Proses ini akan didefinisikan dalam suatu studi numerik, dimana penelitian ini dilakukan dengan metode numerik dengan software Fluent 6.3.26. Pemilihan kondisi simulasi digunakan model turbulensi k-ε realizable dan skema interpolasi first-order upwind. Serta mempelajari pengaruh temperatur inlet udara pengering yang divariasikan. Variasi temperatur adalah 316 K, 327 K, 339 K. Dari penelitian ini  dapat diketahui nilai drying rate serta pengaruh temperatur dan posisi batubara dalam proses pengeringan pada drying chamber fluidized bed coal dryer dengan tube heater tersusun staggered serta pengaruh dari perbandingan volume batubara dengan volume chamber sebesar 50%. Moisture content batubara yang paling banyak berkurang dialami oleh temperature outlet terbesar yaitu 339 K dari 0,22 hingga 0,0167. Laju pengeringan yang memiliki waktu paling cepat yaitu pada temperatur 339 K, sekitar 1100 detik, sedangkan yang memiliki waktu paling lama yaitu pada temperatur 316 K, sekitar 4600 detik.

  1. The US Geological Survey's national coal resource assessment: The results

    Science.gov (United States)

    Ruppert, Leslie F.; Kirschbaum, Mark A.; Warwick, Peter D.; Flores, Romeo M.; Affolter, Ronald H.; Hatch, Joseph R.

    2002-01-01

    The US Geological Survey and the State geological surveys of many coal-bearing States recently completed a new assessment of the top producing coal beds and coal zones in five major producing coal regions—the Appalachian Basin, Gulf Coast, Illinois Basin, Colorado Plateau, and Northern Rocky Mountains and Great Plains. The assessments, which focused on both coal quality and quantity, utilized geographic information system technology and large databases. Over 1,600,000 million short tons of coal remain in over 60 coal beds and coal zones that were assessed. Given current economic, environmental, and technological restrictions, the majority of US coal production will occur in that portion of the assessed coal resource that is lowest in sulfur content. These resources are concentrated in parts of the central Appalachian Basin, Colorado Plateau, and the Northern Rocky Mountains.

  2. Report on the results of the R and D of a 200 t/d entrained bed coal gasification pilot plant. Summary - Part 2. Volume 3: Results of the study operation and the evaluation; 1986- 200t/nichi funryusho sekitan gaska hatsuden pilot plant no kenkyu seika hokokusho (Matome). Sono 2. Dai 3 hen kenkyu unten seika to sono hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    A project was finished which had been carried out for 11 years since 1986 for technology of the entrained bed coal gasification power generation technology using a 200 t/d coal gasification combined cycle power generation pilot plant, and it was comprehensively summed up. In Volume 3: Results of the study operation and the evaluation, the following were summarized on gasifier: gasification performance of 200 t/d furnace, operation ability of the bituminous coal supply system, stability of char recovery, deposition of slag and char in furnace, discharge characteristics of molten slag, operation characteristics, etc. The following on gas refining facilities: dry desulfurizer, dust remover, new gas refining equipment (fixed bed dust removal/desulfurization system, packed bed desulfuriztion/dust removal system), etc. The following on gas turbine facilities: 12.5 MW gas turbine, large gas turbine, large gas turbine combustor, etc. Additionally, the paper summarized the control system and total function, operation characteristics of the whole pilot plant, relations of environmental preservation, study of the effective slag utilization, collection/study of unfavorable conditions/troubles and matters for the reflection, etc. (NEDO)

  3. FY 1992 report on the results of the development of an entrained bed coal gasification power plant. Part 1. Element study/Technical survey; 1992 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, element study of a 200 t/d entrained bed coal gasification pilot plant was made, and the FY 1992 results were summarized. In the gasification test using a 2 t/d furnace equipment, study was made of the extraction of subjects on the operation, performance of gasification, slagging characteristics and characteristics of flux addition. In the study of slag utilization technology, chemical analysis, test on fine aggregate and test on fine particle were carried out to study applicability of the slag discharged from the entrained bed coal gasification power plant to various materials. In the study of a large gas turbine combustor for the demonstrative machine, the demonstrative machine use large gas turbine combustor testing equipment was installed at actual pressure/actual size combustion testing facilities in the pilot plant and further the test use combustor was integrated into them. By using them, the real gas combustion test was made using the adjusted coal for evaluation of combustion performance of the test use combustor. In the simulation study of the total pilot plant system, the comparative study was made between the data on the test using the actual machine and the results of the simulation. (NEDO)

  4. Coal resources availability in Botswana

    International Nuclear Information System (INIS)

    Modisi, M.P.

    1990-01-01

    This paper reports that Southern Africa, and Botswana in particular, is well-endowed with relatively large reserves of coal. The existence of coal in Botswana has been known since the end of the last century. Exploration activities by the Geological Survey and the private sector led to the discovery of major deposits and by the late 1960s reserves capable of supporting a mine at Morupule for the domestic market has been confirmed. The oil crises of 1973-74 and 1978-79 stimulated increased interest in coal exploration the world over and Botswana attracted several private sector companies looking for coal that could be traded on the international market. As a result vast resources and reserves of low to medium quality bituminous coal, suitable for the export market, were proved. Resources amounting to 21,680 million tonnes of in situ coal had been revealed by 1987. Reserves of possible economic exploitation are estimated at 10,180 million tonnes in two coal field areas, namely the Morupule Coal Field and the Mmamabula Coal Field. Since the collapse of oil prices and consequently coal prices in the mid-1980s, enthusiasm for coal exploration has plummeted and relatively little prospecting has taken place. The coal occurs within the Upper Carboniferous to Jurassic Karoo Supergroup which underlies some 60 percent of the country's land surface. The western part of the country is mantled by the Kalahari beds, a top layer of unconsolidated sands masking bedrock geology. Although coal seams have been intersected in boreholes in this western area, most exploration activity has taken place in the eastern part of the country where the Morupule and Mmamabula coal fields are located. It is in the east that most of the population is concentrated and infrastructure has been developed

  5. Controls on coal cleat spacing

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, G.K.W.; Esterle, J.S. [School of Earth Sciences, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2010-06-01

    This study was undertaken to determine the relationship between cleat spacing, cleat height and coal banding texture for Queensland Permian age coals of different rank, four of which are presented here. Whereas relationships between cleat frequency and rank, and with coal type or grade, have been reported in the past, relationships between the spacing and height among the different kinds of cleats are not quantitatively established. For other layered sedimentary rocks, joint or fracture spacing relates directly to both bed thickness and rock strength. Coal is similar to other layered rocks. Four major classes of cleats were distinguished, which were separate data populations when cleat spacing was plotted against cleat height; master cleats, single vitrain layer cleats, multiple vitrain layer package cleats, and durain (dull coal) cleats. Understanding the relationship between cleat height and spacing for specific coals, and the specific kinds of cleats within those coals, will lead to more accurate predictions of cleat density and hence coal permeability. This can improve modelling and prediction of methane gas deliverability in coal seams. In the Australian Permian coals studied, narrowly spaced cleats exist at all ranks, but the distribution of cleat spacing with cleat height is what varies for specific cleat classes. Cleat spacing was found to be directly proportional to cleat height in most cases. (author)

  6. Quantification of Concentration of Microalgae Anabaena Cylindrica, Coal-bed Methane Water Isolates Nannochloropsis Gaditana and PW-95 in Aquatic Solutions through Hyperspectral Reflectance Measurement and Analytical Model Establishment

    Science.gov (United States)

    Zhou, Z.; Zhou, X.; Apple, M. E.; Spangler, L.

    2017-12-01

    Three species of microalgae, Anabaena cylindrica (UTEX # 1611), coal-bed methane water isolates Nannochloropsis gaditana and PW-95 were cultured for the measurements of their hyperspectral profiles in different concentrations. The hyperspectral data were measured by an Analytical Spectral Devices (ASD) spectroradiomter with the spectral resolution of 1 nanometer over the wavelength ranges from 350nm to 1050 nm for samples of microalgae of different concentration. Concentration of microalgae was measured using a Hemocytometer under microscope. The objective of this study is to establish the relation between spectral reflectance and micro-algal concentration so that microalgae concentration can be measured remotely by space- or airborne hyperspectral or multispectral sensors. Two types of analytical models, linear reflectance-concentration model and Lamber-Beer reflectance-concentration model, were established for each species. For linear modeling, the wavelength with the maximum correlation coefficient between the reflectance and concentrations of algae was located and then selected for each species of algae. The results of the linear models for each species are shown in Fig.1(a), in which Refl_1, Refl_2, and Refl_3 represent the reflectance of Anabaena, N. Gaditana, and PW-95 respectively. C1, C2, and C3 represent the Concentrations of Anabaena, N. Gaditana, and PW-95 respectively. The Lamber-Beer models were based on the Lambert-Beer Law, which states that the intensity of light propagating in a substance dissolved in a fully transmitting solvent is directly proportional to the concentration of the substance and the path length of the light through the solution. Thus, for the Lamber-Beer modeling, a wavelength with large absorption in red band was selected for each species. The results of Lambert-Beer models for each species are shown in Fig.1(b). Based on the Lamber-Beer models, the absorption coefficient for the three different species will be quantified.

  7. Experimental investigation and mathematical modelling of the combustion of brown coal, refuse and mixed fuels in a circulating fluidized bed combustor; Experimentelle Untersuchung und mathematische Modellierung der Verbrennung von Braunkohle, Abfallstoffen und Mischbrennstoffen in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Hiller, A. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Albrecht, J. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Quang, N. [Polytechnic Inst., Danang (Viet Nam)

    1998-09-01

    Extensive experiments on combustion of biological materials and residues in fluidized bed combustors and dust combustors have been carried out at the Department of Power Plant Engineering of Dresden University since the early nineties. Particular interest was taken in mixing brown coal with sewage sludge, sugar pulp and waste wood. The experiments were supplemented by modelling in a research project funded jointly by the BMBF and Messrs. Lurgi since early 1997. A combustion cell model designed by Siegen University is being modified for the new mixed fuels, and preliminary investigations were carried out on a batch reactor while the modelling work was continued. (orig.) [Deutsch] An dem Lehrstuhl fuer Kraftwerkstechnik der TU Dresden werden seit Anfang der 90-iger Jahre umfangreiche experimentelle Untersuchungen zur Verbrennung von Bio- und Reststoffen in Wirbelschicht- und Staubfeuerungen durchgefuehrt. Dabei war vor allem die Zufeuerung dieser Stoffe in Waermeerzeugeranlagen auf Braunkohlenbasis von besonderem Interesse. Experimentell konnte nachgewiesen werden, dass sowohl Biobrennstoffe als auch Abfaelle in zirkulierenden Wirbelschichtfeuerungen umweltschonend zur Waermeerzeugung eingesetzt werden koennen. Als Beispiel wird das an Hand von Braunkohle-Klaerschlammgemischen sowie Bagasse- und Holz-Braunkohlegemischen gezeigt. Neben den experimentellen Untersuchungen bietet die Modellierung der Verbrennungsvorgaenge ein geeignetes Mittel um Voraussagen zu anderen Mischungsanteilen sowie anderen geometrischen Abmessungen machen zu koennen. Seit Anfang 1997 wird dazu ein vom BMBF und der Firma Lurgi gefoerdertes Forschungsvorhaben bearbeitet. Ein von der Universitaet Gesamthochschule Siegen fuer die Braunkohleverbrennung konzipiertes Zellenmodell wird auf die neuen Brennstoffgemische erweitert. Da grundsaetzlich andere Stoffzusammensetzungen vorliegen, wurden an einem Batch-Reaktor Voruntersuchungen zum Pyrolyseverhalten der Brennstoffe durchgefuehrt. Erste

  8. Pyrolysis of coal

    Science.gov (United States)

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  9. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z.; Morikawa, M.; Fujii, Y. [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  10. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  11. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  12. X-ray Computed Tomography of coal: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  13. Coal processing plants

    Science.gov (United States)

    Bitterlich, W.; Bohn, T.; Eickhoff, H. G.; Geldmacher, H.; Mengis, W.; Oomatia, H.; Stroppel, K. G.

    1980-08-01

    The efficient design of processing plants which combine various coal based technologies in order to maximize the effectiveness of coal utilization is considered. The technical, economical and ecological virtues which compound plants for coal conversion offer are assayed. Twenty-two typical processes of coal conversion and product refinement are selected and described by a standardized method of characterization. An analysis of product market and a qualitative assessment of plant design support six different compound plant propositions. The incorporation of such coal conversion schemes into future energy supply systems was simulated by model calculations. The analysis shows that byproducts and nonconverted materials from individual processes can be processed in a compound plant in a profitable manner. This leads to an improvement in efficiencies. The product spectrum can be adapted to a certain degree to demand variations. Furthermore, the integration of fluidized bed combustion can provide an efficient method of desulfurization. Compound plants are expected to become economic in the 1990's. A necessary condition to compound technologies is high reliability in the functioning of all individual processes.

  14. Clean coal technology

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1990-01-01

    One of the major technology challenges in the next decade will be to develop means of using coal imaginatively as a source of chemicals and in a more energy-efficient manner. The Clean Air Act will help to diminish the acid rain but will not reduce CO 2 emissions. The Department of Energy (DOE) is fostering many innovations that are likely to have a positive effect on coal usage. Of the different innovations in the use of coal fostered by DOE, two are of particular interest. One is the new pressurized fluid bed combustion (PFBC) combined-cycle demonstration. The PFBC plant now becoming operational can reduce SO 2 emissions by more than 90% and NO x emissions by 50-70%. A second new technology co-sponsored by DOE is the Encoal mild coal gasification project that will convert a sub-bituminous low-BTU coal into a useful higher BTU solid while producing significant amounts of a liquid fuel

  15. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 3. Fabrication/installation of pilot plant (Fabrication/installation drawings and fabrication/installation pictures - 1/2); 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant seisaku suetsuke hen (Seisaku suetsukezu oyobi seisaku suetsuke shashin) (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, the fabrication, installation work, etc. were conducted of a 200t/d entrained bed coal gasification pilot plant, and drawings of fabrication/installation in the FY 1989 were summarized. In fabrication/installation drawings, drawings of the following were included: layout of the total system and the yard, gasifier facilities (assembly drawing of the pressure part of gasifier, drawing of machinery arrangement of gasifier facilities, system diagram of raw coal receiving device, system diagram of pulverized coal feed equipment, system diagram of char feed equipment, etc.), gas refining facilities - dry desulfurizer (assembly drawing of desulfurizing agent carrying filter, assembly drawing of regeneration tower filter, structural drawing of SO{sub 2} reduction tower filter, assembly drawing of start-up heater, etc.), gas refining facilities - dry dust removal system (assembly drawing of No.1 dust separation filter, installation drawing of elevator, etc.), gas turbine facilities (cross section of gas turbine, front view of gas turbine, structural cross section of gas turbogenerator, etc.), actual-pressure/actual-size combustor test equipment (structural drawing of test stand, structural drawing of exhaust temperature reduction device, assembly/sectioned drawing of low-pressure air compressor, etc.) (NEDO)

  16. Underground gasification of coal - possibilities and trends

    International Nuclear Information System (INIS)

    Dushanov, D.; Minkova, V.

    1994-01-01

    A detailed historical review is given on the problem of underground coal gasification (UCG) with emphasis on its physical, chemical, technological and financial aspects. The experience of USA, Japan, former USSR, Belgium, UK and France is described. The feasibility of UCG in the Dobrudzhan Coal Bed in Bulgaria is discussed. The deposit has reserves of about 1.5 billion tones at relatively shallow depths. Almost the whole scale from long flame to dry coal is covered. According to its coalification degree the bed belongs to gas coal - V daf 35-40%; C daf 80-83%, eruption index = 1. Enriched samples has low sulfur content - 0.6-1.5% and low mineral content - 6-12%. Having in mind the lack of domestic natural gas and petroleum resources, the authors state that the utilisation of the bed will alleviate the energy problems in Bulgaria. 24 refs., 5 figs., 1 tab

  17. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  18. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  19. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  20. Ninth annual international Pittsburgh coal conference - proceedings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Over 200 papers are presented under the following headings: coal preparation; Clean Coal Technology Program status; pre- and post-utilization processing; advanced conversion technologies; integrated gasification combined cycle; indirect liquefaction; advanced liquefaction process development; conversion processes; coal - from a user's perspective; issues associated with coal use in heat engines; fundamentals of combustion; advanced combustion systems; low quality fuel applications/fluidised beds; combustion systems; ash and sludge disposal/utilization; developing SO 2 /NO x control technologies; technical overview of air toxics; scientific, economic and policy perspectives on global climate change; Clean Air Act compliance strategies; environmental policy/technology; spontaneous combustion; and special topics

  1. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    Science.gov (United States)

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined

  2. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    Science.gov (United States)

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  3. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  4. The Center for Business Intelligence conference on implementing clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The papers presented covered: Coal and wind power plant integration (J. Ihle); a novel clean-coal approach - project coal and wind integration (J. Vaninetti); Financing prospects for clean coal technologies (J. Guildera); circulating fluidized bed combustion - commercial and economic CCT benefits (J. Duncan); understanding DOE clean coal cooperative agreements (M. Eastman); building clean coal technology under uncertainty - real options analysis case study of coal IGCC (N. Collamer); the zero emission plant (R. Wright); sustainable energy policy - the key to affordable and reliable energy (S. Yaeger); and commercialization and costs of clean coal technologies in Europe (T. Konings). The paper only consist of a printout of the overheads/viewgraphs.

  5. Study of the NOx emissions during 'fluidised bed' combustion of Bulgarian lignite

    International Nuclear Information System (INIS)

    Bonev, B.; Totev, T.; Stanoev, Vl.; Velkova, A.; Barzilova, S.

    2003-01-01

    Based on the conducted experiment for lignite from 'Maritsa Iztok' fluidized bed combustion, an analysis is done of the impact of different fuel parameters (diameter of coal particles; bed temperature; ash content of the coal particles, oxygen content of the fluidized agent ) on NOx emissions

  6. Utilisation of low grade fuels influidised bed combustors

    CSIR Research Space (South Africa)

    North, B

    2010-11-01

    Full Text Available This presentation highlights the utilisation of low grade fuels in Fluidised Bed Combustors (FBC) with regards to South African coal. It looks at types of coals and fuels tested, test facilities and examples of FBC’s at the CSIR. Benefits from...

  7. FY 2000 Report on the results of international cooperative research scheme (power generation - No.7). Development of combustion for mixed firing of waste and low-quality coal in external circulating fluidized bed boiler for power generation; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo seika hokokusho (hatsuden No.7). Gaibu junkan ryudoso boiler wo riyoshita toshi gomi to teihin'itan tono kongo nensho hatsuden gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the results of the experimental studies on combustion for mixed firing of waste (city garbage) and low-quality coal in external circulating fluidized bed (CFB) boiler for power generation, and the studies on high-efficiency mixed firing power generation system. The program for the basic research on the waste/coal mixed firing conducts thermal analysis of each sample type, to collect the basic data related to the burning profile from the ignition to completion of firing, and energy of activation, among others. The program for the flow characteristics of waste and coal in CFB conducts the experiments of the cold model. The program for the mixed firing with actual waste in the CFB pilot boiler conducts the mixed firing of low-quality coal of high ash content and high fuel ratio and actual waste (ash content: 60%, low heating value: 860kcal/kg), to confirm that the stable combustion is achieved at a mixed firing ratio of up to 40%. It is also found that the mixed firing produces smaller quantities of NOx, SO{sub 2} and CO emissions than the combustion of coal alone. The program for evaluation of the power generation system achieves a power generation efficiency of 28% at a mixed firing ratio of 22% with Chinese waste of low heating value and low-quality coal. (NEDO)

  8. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  9. FY 1991 report on the results of the development of an entrained bed coal gasification power plant. Part 3. Adjustment of the operation test of pilot plant (2/2); 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant unten shiken chosei hen (2/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    The adjustment was made of the operation test of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation, and the results were reported. As to the adjustment of the operation test of gas turbine facilities, the following were conducted: tests 1 and 2 on light-oil firing characteristics, test on coal gas ignition, tests on fuel change/gas firing, test on fuel change. And, 12 cases of troubles, the causes and measures against them were reported. Relating to the adjustment of the operation test of actual pressure/actual size combustor testing facilities, tests on hot air device/air heating device and tests 1-3 on light-oil firing were carried out, and 7 cases of troubles, the causes and measures against them were reported. Concerning the adjustment of the operation test of safety environment facilities, tests were made of RUN 3-6, RUN 7 (1 and 2), RUN 8 (1-4) and RUN 9 (1-3), and 20 cases of troubles, the causes and measures against them were reported. As to the adjustment of the operation test of electric/control facilities, items of improvement were reported of gasifier facilities, gas refining facilities, gas turbine facilities, actual pressure/actual size combustor testing facilities, safety environment facilities and total control facilities. (NEDO)

  10. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  11. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  12. Experimental investigation of the oxy-fuel combustion of hard coal in a circulating fluidized-bed combustion; Experimentelle Untersuchung der Oxy-Fuel-Verbrennung von Steinkohle in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Gerrit Arne

    2017-03-16

    The United Nations Framework Convention on Climate Change (UNFCCC) in 1992 first illustrated the social, economic and politic focus being placed on combating climate change caused by anthropogenic greenhouse gases. From there onwards research and development efforts have particularly centred on the reduction of CO{sub 2} emissions in the production of electrical power through the use of carbonaceous fossil fuels. The long-term goal is a conversion to sustainable and CO{sub 2} free means of producing power, utilizing in the main part renewable forms of energy such as solar, wind and hydro power. Currently, such renewable ways of creating electricity only represent a small percentage of global energy production. The technological and economic hurdles that are associated with a substantial increase of renewable energy production have greatly slowed their increased implementation. However, the goal of keeping the atmospheric CO{sub 2} concentration below 450 ppm requires a significantly faster reduction in the amount of greenhouse gas emissions. Therefore, considerations are being given to bridge technologies which would be able to capture and store the CO{sub 2} emissions from fossil fired power plants. These technologies are referred to as CCS (carbon capture and storage). Oxy-fuel combustion, combustion with pure oxygen instead of air, is one of those technologies and forms the focus of investigation of this work. The Institute of Combustion and Power Plant Technology in Stuttgart, Germany, have researched this matter, carrying out combustion experiments in its 150 kW{sub th} circulating fluidized bed pilot facility. The experiments were aimed at investigating the influence of excess oxygen, combustion temperature and inlet oxygen concentration on the combustion process and comparing air to oxy-fuel combustion. These results were compared to the results of fundamental investigations and combustion experiments carried out by other research groups. The relationship

  13. Achievement report for fiscal 1994 on developing entrained bed coal gasification power plant. Part 1. Element research edition and technology survey edition; 1994 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    With an objective of establishing the coal gasification composite power generation technology, R and D has been carried out on the elementary technologies. This paper summarizes the achievements in fiscal 1994. In the research on the large gas turbine combustor for the demonstration plant, combustion tests were carried out by using the actual gas from the designed coal (coal D). In addition, the minimum gas flow rate test, fuel calory change test, and fuel switching test were performed from the viewpoint of evaluating the low load stability. Furthermore, in order to evaluate the combustion performance of the tested combustor, such tests were conducted as the combustor pressure loss characteristics test, bypass valve flow rate characteristics test, light oil ignition and light oil combustion test, and tests on the characteristics to switch from light oil to coal gas and the coal gas combustion characteristics. Evaluations were given on the NOx conversion rate, CO, THC, combustion efficiency, metal temperatures, pattern factors, pressure loss, internal pressure variation, and vibration stress. In the simulation research of the composite power generation system, the simulation models were varied according to the actual plant requirements in association with the progress of the tests on the pilot plant. The results of the simulations were reflected to the general load pressure control equipment. (NEDO)

  14. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 1 - Studies of key elements and techniques); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Element techniques were studied and surveyed for establishing the technology of integrated coal gasification combined cycle. In fiscal 1995, E coal (coal of high ash fluid point) gasification was tested in the 2 tons/day furnace for the effect of its properties on furnace operation and for its properties relating to gasification and slagging and for changes in such properties due to flux admixed with the E coal. It was then found that the ash fluid point was so high as 1500 degrees C and that flux admixing, recovered oxygen reinjection, etc., would be necessary for the assurance of stable slag discharge. In a study using combined cycle system simulation, a comparison was made between results from tests conducted on a real system and results from the simulation, based on the detailed model completed by the preceding fiscal year. The model was reviewed and improved, and simulations were conducted in the respective operating states and operating modes. In the survey of element techniques, information was gathered at a Japan-U.S. joint technical conference held in Japan in October this year. Studies were also made about technical guidelines, or the like, involving coal gasification power generation. (NEDO)

  15. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  16. Particle motion in fluidised beds

    International Nuclear Information System (INIS)

    Stein, M.G.

    1999-07-01

    Gas fluidised beds are important components in many process industries, e.g. coal combustors and granulators, but not much is known about the movement of the solids. Positron Emission Particle Tracking (PEPT) enables the movement of a single, radioactive tracer particle to be followed rapidly and faithfully. Experiments were carried out in columns sized between 70 and 240mm. diameter, operating in the bubbling regime at ambient process conditions using particles of group B and D (Geldart Classification). Particle motion was tracked and the data applied to models for particle movement at the gas distributor as well as close to other surfaces and to models for particle circulation in beds of cohesive particles. In the light of these data, models for particle and bubble interaction, particle circulation, segregation, attrition, erosion, heat transfer and fluidised bed scale-up rules were reassessed. Particle motion is directly caused by bubble motion, and their velocities were found to be equal for particles travelling in a bubble. PEPT enables particle circulation to be measured, giving a more accurate correlation for future predictions. Particle motion follows the scale-up rules based on similarities of the bubble motion in the bed. A new group of parameters was identified controlling the amount of attrition in fluidised beds and a new model to predict attrition is proposed. (author)

  17. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  18. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    Appendix C: Paper in Fuel 87 (2008) 3304-3312: A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor......Appendix C: Paper in Fuel 87 (2008) 3304-3312: A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor...

  19. Adsorption and strain: The CO 2-induced swelling of coal

    Science.gov (United States)

    Vandamme, M.; Brochard, L.; Lecampion, B.; Coussy, O.

    2010-10-01

    Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal bed methane reservoirs in order to facilitate the recovery of the methane. The injected carbon dioxide gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling in confined conditions leads to a closure of the coal reservoir cleat system, which hinders further injection. In this work we provide a comprehensive framework to calculate the macroscopic strains induced by adsorption in a porous medium from the molecular level. Using a thermodynamic approach we extend the realm of poromechanics to surface energy and surface stress. We then focus on how the surface stress is modified by adsorption and on how to estimate adsorption behavior with molecular simulations. The developed framework is here applied to the specific case of the swelling of CO 2-injected coal, although it is relevant to any problem in which adsorption in a porous medium causes strains.

  20. Coal competitiveness?

    International Nuclear Information System (INIS)

    Rogeaux, B.

    2006-01-01

    Will coal electrical plants be more competitive in the coming years? Answering this one cannot be limited to merely comparing estimates based on reference electricity production costs. The competitiveness of coal will indeed depend on the final product marketed, as the MWhs are not equal: is the purpose to produce base, half-base MWh? Does the electrical equipment structure require flexible MWh (for instance in the event of significant intermittent renewable energy amounts), and therefore plants able to adjust their power rapidly? But the competitiveness of coal will also depend on many factors that will correct reference cost estimates: uncertainties, risks, externalities. These factors will need to be appreciated on a case by case basis. We introduce some of the reasoning used to better appreciate the future competitiveness of coal, and the main factors conditioning it in three contrasting regions of the world: Europe, USA, china. (author)

  1. Health effects of coal technologies: research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  2. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  3. Coal marketability: Effects of deregulation and regulation

    International Nuclear Information System (INIS)

    Attanasi, E.

    2000-01-01

    Electrical utility deregulation will force power plants to compete for sales because they will not longer have captive markets. Market uncertainty and uncertainty about future environmental regulations have encouraged power plants to shift to low sulfur coal and/or to use emissions allowances to comply with Phase 2 of the 1990 Clean Air Act Amendments. Mines in Northern and Central Appalachia and the Illinois Basin shipped 240 million tons of non-compliance coal to power plants without scrubbers in 1997. Under Phase 2, this coal will be replaced by low sulfur coal and/or be used with emission permits. It is possible that Powder River Basin coal production will have to increase by over 200 million tons/year to meet new demand. The prices of emissions permits will impose penalties on non-compliance coal that will probably drive out marginal coal producers. For example, if the cost of an emission permit is $200, coal from the Pittsburgh bed could bear a sulfur penalty of $6.55 per ton and similarly, coal from the Herrinbed could bear a penalty of $8.64 per ton

  4. FY 1991 report on the results of the development of an entrained bed coal gasification power plant. Part 3. Adjustment of the operation test of pilot plant (1/2); 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant unten shiken chosei hen (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    The adjustment was made of the operation test of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation, and the results were reported. As to the adjustment of the operation test of gasifier facilities, the light-oil firing test and tests of RUN 1-9 were conducted, and the paper reported cases of 49-item troubles, the causes, measures against them, improvement of facilities, etc. For slagging, operation conditions, improvement of various facilities, etc. were studied. Relating to the adjustment of the operation test of gas refining facilities (dry desulfurization facilities), the following were carried out: test on empty column gas circulation, test on desulfurizer circulation characteristics, test on SO2 reduction tower, test on warming-up characteristics, tests 1-3 on initial performance, tests on change in gas turbine fuel and loads. And, 21 cases of troubles, the causes and measures against them were reported. Concerning the adjustment of the operation test of gas refining facilities (dry dedusting facilities), the following were conducted: test on non-load sequence, test on confirmation prior to letting gas through, tests 1-3 on initial performance, test on dedusting characteristics. And, 22 cases of troubles, the causes and measures against them were reported. (NEDO)

  5. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 3. Fabrication/installation of pilot plant (Fabrication/installation drawings and fabrication/installation pictures - 1/2); 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant seisaku suetsuke hen (Seisaku suetsukezu oyobi seisaku suetsuke shashin) (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, the fabrication, installation work, etc. were conducted of a 200t/d entrained bed coal gasification pilot plant, and drawings of fabrication/installation in the FY 1990 were summarized. In fabrication/installation drawings, drawings of the following were included: layout of the total system and the yard, gasifier facilities (system diagram of the main pipe of gasifier, system diagram of gasifier air, system diagram of slag processing, system diagram of recycle gas, diagram of starting light oil pipe system, etc.), gas refining facilities (flow sheet of dry desulfurizer process, structural drawing of desulfurizing tower dust hopper, structural drawings of regeneration tower/rotary valve, etc.), gas refining facilities (flow sheet of dry dust removal system process, structural drawing of No.1 dust discharger, assembly drawing of protection filter, outline drawing of coarse powder discharger, etc.), gas turbine facilities (cross section of gas turbine, front view of gas turbine, structural drawing of air booster, flow sheet of process, system diagram of the main piping, scheme drawing of equipment layout, logic diagram of sequential control, block diagram of protection interlock, logic diagram of gas turbine control, etc.) (NEDO)

  6. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  7. Mathematical Modelling of Coal Gasification Processes

    Science.gov (United States)

    Sundararajan, T.; Raghavan, V.; Ajilkumar, A.; Vijay Kumar, K.

    2017-07-01

    Coal is by far the most commonly employed fuel for electrical power generation around the world. While combustion could be the route for coal utilization for high grade coals, gasification becomes the preferred process for low grade coals having higher composition of volatiles or ash. Indian coals suffer from high ash content-nearly 50% by weight in some cases. Instead of transporting such high ash coals, it is more energy efficient to gasify the coal and transport the product syngas. Integrated Gasification Combined Cycle (IGCC) plants and Underground Gasification of coal have become attractive technologies for the best utilization of high ash coals. Gasification could be achieved in fixed beds, fluidized beds and entrained beds; faster rates of gasification are possible in fluidized beds and entrained flow systems, because of the small particle sizes and higher gas velocities. The media employed for gasification could involve air/oxygen and steam. Use of oxygen will yield relatively higher calorific value syngas because of the absence of nitrogen. Sequestration of the carbon dioxide after the combustion of the syngas is also easier, if oxygen is used for gasification. Addition of steam can increase hydrogen yield in the syngas and thereby increase the calorific value also. Gasification in the presence of suitable catalysts can increase the composition of methane in the product gas. Several competing heterogenous and homogenous reactions occur during coal major heterogenous reaction pathways, while interactions between carbon monoxide, oxygen, hydrogen, water vapour, methane and carbon dioxide result in several simultaneous gas-phase (homogenous) reactions. The overall product composition of the coal gasification process depends on the input reactant composition, particle size and type of gasifier, and pressure and temperature of the gasifier. The use of catalysts can also selectively change the product composition. At IIT Madras, over the last one decade, both

  8. Status of Westinghouse coal-fueled combustion turbine programs

    International Nuclear Information System (INIS)

    Scalzo, A.J.; Amos, D.J.; Bannister, R.L.; Garland, R.V.

    1992-01-01

    Developing clean, efficient, cost effective coal utilization technologies for future power generation is an essential part of our National Energy Strategy. Westinghouse is actively developing power plants utilizing advanced gasification, atmospheric fluidized beds (AFB), pressurized fluidized beds (PFB), and direct firing technology through programs sponsored by the U.S. Dept. of Energy (DOE). The DOE Office of Fossil Energy is sponsoring the Direct Coal-Fired Turbine program. This paper presents the status of current and potential Westinghouse Power Generation Business Unit advanced coal-fueled power generation programs as well as commercial plans

  9. Instrumentation for advanced processes for coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Managan, W.W.; Raptis, A.C.; O' Fallon, N.M.; Herzenberg, C.L.

    1978-01-01

    Process control instrumentation for large-scale coal gasification, liquefaction, and fluidized-bed combustion systems is being developed at Argonne National Laboratory. Initial focus is on instrumentation to measure mass-flow rates and provide continuous in-stream analysis of solids in solids/fluids streams. These instruments and others are described.

  10. Power from coal and biomass via CFB

    Energy Technology Data Exchange (ETDEWEB)

    Giglio, R.; Wehrenberg, J. [Foster Wheeler Power Group, Clinton, NY (United States)

    2009-04-15

    Circulating fluidized bed technology enables burning coal and biomass to generate power while reducing emissions at the same time. Flexi-Burn CFB is being developed. It produces a CO{sub 2} rich flue gas, form which CO{sub 2} can be captured.

  11. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  12. Geologic coal assessment: The interface with economics

    Science.gov (United States)

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  13. Achievement report for fiscal 1993 on developing entrained bed coal gasification power plant. Part 1. Element research and technology survey edition; 1993 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    With an objective of establishing a coal gasification composite power generation technology, R and D works have been carried out on elementary technologies. This paper summarizes the achievements in fiscal 1993. In the research on the slag utilization technology, discussions were given on the applicability of slag discharged from a 200 t/d pilot plant to fine aggregate for concrete. In the research on a large gas turbine combustor for a demonstration plant, the test conditions were discussed and the reliability of the combustor was analyzed to conduct an actual gas combustion test using the coal D in continuation from the test in the previous fiscal year. In the research on the simulation of a composite power generation system, the simulation models were reviewed and corrected. Load variation simulations were carried out on every operation mode to have conducted comparison with and discussion on the actual plant data. In order to clarify the slagging phenomenon in the 200 t/d pilot plant, a characteristics test was performed by using a 2 t/d furnace. As a result, the combustor ash load and the dynamic pressure in the axial direction in the throat section were presumed to be the large factors for the occurrence of slagging. (NEDO)

  14. Question marks of the Czech coal mining industry

    International Nuclear Information System (INIS)

    Dopita, M.; Pesek, J.

    1995-01-01

    An overview of brown and black coal mining in the Czech Republic is presented, and problems of the extent of coal reserves and of the profitability of deep black coal mining are discussed. Costs of coal mining in foreign countries are given. Coal mining in the Czech Republic can be expected to be loss-making unless coal prices are increased. Since coal resources in the Czech Republic are limited, additional nuclear power plants will have to be constructed or else coal for power generation will have to be imported. The environmental aspects of coal mining and burning are discussed. Medium-term and long-term solutions to reduce the environmental burden include thermal power plant desulfurization, application of the fluidized-bed combustion regime to coals with large ash and/or sulfur contents, and introduction of gas in towns and power plants. In the short run, large-scale consumers in towns and coal basins should be obliged to accumulate reserves of low-sulfur coal for later use. (J.B.). 2 tabs., 3 figs., 8 refs

  15. Assessing U.S. coal resources and reserves

    Science.gov (United States)

    Shaffer, Brian N.

    2017-09-27

    The U.S. Coal Resources and Reserves Assessment Project, as part of the U.S. Geological Survey (USGS) Energy Resources Program, conducts systematic, geology-based, regional assessments of significant coal beds in major coal basins in the United States. These assessments detail the quantity, quality, location, and economic potential of the Nation’s remaining coal resources and reserves and provide objective scientific information that assists in the formulation of energy strategies, environmental policies, land-use management practices, and economic projections.

  16. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  17. Metalliferous coals of the Westphalian A Joggins Formation, Cumberland basin, Nova Scotia, Canada: Petrology, geochemistry, and palynology

    Science.gov (United States)

    Hower, J.C.; Calder, J.H.; Eble, C.F.; Scott, A.C.; Robertson, J.D.; Blanchard, L.J.

    2000-01-01

    Five coals of Westphalian A (early Middle Pennsylvanian) age were sampled from the Joggins Formation section exposed along Chignecto Bay at Joggins, Nova Scotia. Coal beds along the bay were mined beginning in the early 17th century, yet there have been few detailed published investigation of the coal beds of this classic section. The lowermost coal, the Upper Coal 28 (Upper Fundy), is a high-vitrinite coal with a spore assemblage dominated by arboreous lycopsid spores with tree ferns subdominant. The upper portions of the coal bed have the highest ratio of well-preserved to poorly-preserved telinite of any of the coals investigated. Coal 19 ('clam coal') has 88% total vitrinite but, unlike the Fundy coal bed, the telinite has a poor preservation ratio and half the total vitrinite population comprises gelocollinite and vitrodetrinite. The latter coal bed is directly overlain by a basin-wide limestone bed. The Lower Kimberly coal shows good preservation of vitrinite with relatively abundant telinite among the total vitrinite. The Middle Kimberly coal, which underlies the tetrapod-bearing lycopsid trees found by Lyell and Dawson in 1852, exhibits an upward decrease in arboreous lycopod spores and an upward increase in the tree fern spore Punctatisporites minutus. Telinite preservation increases upwards in the Middle Kimberly but overall is well below the preservation ratio of the Upper Fundy coal bed. The coals all have high sulfur contents, yielding up to 13.7% total sulfur for the lower lithotype of the Upper Fundy coal bed. The Kimberly coals are not only high in total and pyritic sulfur, but also have high concentrations of chalcophile elements. Zinc, ranging up to 15,000 ppm (ash basis), is present as sphalerite in fusain lumens. Arsenic and lead each exceed 6000 ppm (ash basis) in separate lithotypes of the Kimberly coals. Together these data are consistent with elevated pH in planar mires. The source of the elemental enrichment in this presumed continental

  18. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  19. Pulsed atmospheric fluidized-bed combustor development

    International Nuclear Information System (INIS)

    1992-05-01

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA's have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International's (MTCI) Baltimore, MD facility

  20. Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky

    Science.gov (United States)

    Valentim, Bruno; Algarra, Manuel; Guedes, Alexandra; Ruppert, Leslie F.; Hower, James C.

    2016-01-01

    This paper represents the first attempt to show, by means other than just petrographic ones, that one type of macrinite, herein designated copromacrinite, may result from macrofauna feces. For that purpose a combination of coal petrography, X-ray photoelectron spectroscopy, and elemental-analysis continuous-flow isotope ratio mass spectrometry methods were used to determine nitrogen functionalities and δ13C andδ15N compositions in 1) vitrinite-rich, 2) fusinite + semifusinite-rich, and 3) macrinite-rich (with a possible coprolitic origin) samples of the high volatile A bituminous Peach Orchard coal (Bolsovian; Middle Pennsylvanian) from Magoffin County, Kentucky. There were no significant differences between pyridinic-N and quaternary-N abundance in the three samples, however, pyrrolic-N was higher (~ 54%) in the macrinite-rich sample than in the other two samples (~ 38%). The data suggest that pyridinic-N and quaternary-N are independent of maceral group composition and that pyrrolic-N is dependent on maceral composition (fusinite + semifusinite versus macrinite). δ13C values obtained for bulk and demineralized coal of the vitrinite- and fusinite + semifusinite-rich samples are similar with δ13C values of − 24.80 ± 0.01‰ VPDB and − 24.61 ± 0.09‰ VPDB for bulk samples and − 24.81 ± 0.07‰ VPDB and − 24.52 ± 0.04‰ VPDB for demineralized samples. These values are within the expected range for vitrinite-rich samples and the slightly higher δ13C value of the fusinite + semifusinite-rich sample is expected as δ13C values for inertinite are higher than for vitrinite. However, there was a significant shift to a lower δ13C value (− 26.80 ± 0.01‰ VPDB for the bulk sample value) for the macrinite-rich sample. Because the samples are basically isorank, and δ13C (and δ15N) shifts do not occur during maturation until anthracite rank, the difference may be related to the presence or composition of the macrinite

  1. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  2. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  3. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  4. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  5. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  6. Coal and the competition

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI Consulting, Arlington, VA (United States). FT Energy

    2000-07-01

    24 overheads/viewgraphs outline a presentation on competition in the US coal industry. It discussed four main subjects: key factors driving coal demand (environmental regulations, electric utility deregulation; competition with natural gas, inter-regional coal competition, supply availability and pricing; and the export market and competition from off-shore coal sources); coal's ability to boost market share; shifts in coal distribution and the risk of more branded coal; and attempts to keep more regional sources of coal in business. State tax incentives for coal use in Arizona, Ohio, Oklahoma, Virginia and Alabama were discussed.

  7. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  8. Emissions from Coal Fires and Their Impact on the Environment

    Science.gov (United States)

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of

  9. Paleocene coal deposits of the Wilcox group, central Texas

    Science.gov (United States)

    Hook, Robert W.; Warwick, Peter D.; SanFilipo, John R.; Schultz, Adam C.; Nichols, Douglas J.; Swanson, Sharon M.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    Coal deposits in the Wilcox Group of central Texas have been regarded as the richest coal resources in the Gulf Coastal Plain. Although minable coal beds appear to be less numerous and generally higher in sulfur content (1 percent average, as-received basis; table 1) than Wilcox coal deposits in the Northeast Texas and Louisiana Sabine assessment areas (0.5 and 0.6 percent sulfur, respectively; table 1), net coal thickness in coal zones in central Texas is up to 32 ft thick and more persistent along strike (up to 15 mi) at or near the surface than coals of any other Gulf Coast assessment area. The rank of the coal beds in central Texas is generally lignite (table 1), but some coal ranks as great as subbituminous C have been reported (Mukhopadhyay, 1989). The outcrop of the Wilcox Group in central Texas strikes northeast, extends for approximately 140 mi between the Trinity and Colorado Rivers, and covers parts of Bastrop, Falls, Freestone, Lee, Leon, Limestone, Milam, Navarro, Robertson, and Williamson Counties (Figure 1). Three formations, in ascending order, the Hooper, Simsboro, and Calvert Bluff, are recognized in central Texas (Figure 2). The Wilcox Group is underlain conformably by the Midway Group, a mudstone-dominated marine sequence, and is overlain and scoured locally by the Carrizo Sand, a fluvial unit at the base of the Claiborne Group.

  10. Characteristics of Malaysian coals with their pyrolysis and gasification behaviour

    International Nuclear Information System (INIS)

    Nor Fadzilah Othman; Mohd Hariffin Bosrooh; Kamsani Abdul Majid

    2010-01-01

    This study was conducted since comprehensive study on the gasification behaviour of Malaysian coals is still lacking. Coals were characterised using heating value determination, proximate analysis, ultimate analysis and ash analysis. Pyrolysis process was investigated using thermogravimetric analyser. While, atmospheric bubbling fluidized bed gasifier was used to investigate the gasification behaviour. Three Malaysian coals, Merit Pila, Mukah Balingian, Silantek; and Australian coal, Hunter Valley coals were used in this study. Thermal degradation of four coal samples were performed, which involved weight loss profile and derivative thermogravimetric (DTG) curves. The kinetic parameters, such as maximum reactivity value, R max , Activation Energy, E a and Arrhenius constant, ln R o for each coal were determined using Arrhenius Equation. Merit Pila coal shows the highest maximum reactivity among other Malaysian coals. E a is the highest for Merit Pila coal (166.81kJmol -1 ) followed with Mukah Balingian (101.15 kJmol -1 ), Hunter Valley (96.45 kJmol -1 ) and Silantek (75.23 kJmol -1 ) coals. This finding indicates direct correlation of lower rank coal with higher E a . Merit Pila coal was studied in detail using atmospheric bubbling fluidized bed gasifier. Different variables such as equivalence ratio (ER) and gasifying agents were used. The highest H 2 proportion (38.3 mol.%) in the producer gas was reached at 715 degree Celsius and ER=0.277 where the maximization of LHV pg (5.56 MJ/Nm 3 ) was also detected. ER and addition of steam had shown significant contributions to the producer gas compositions and LHV pg . (author)

  11. Coal plasticity at high heating rates and temperatures. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  12. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  13. Coal technology program. Progress report, May 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    Two successful operability tests with sustained operation of the bench-scale hydrocarbonizer were achieved with Illinois No. 6 coal diluted with char. Several activities in the area of nondestructive testing of coatings are reviewed. Failure analysis activities included examination of several components from the solvent refined coal plants at Wilsonville, Alabama, and Tacoma, Washington. In the gas-fired potassium boiler project, all of the design work were completed except for several of the instrument and control drawings. In the design studies of a coal-fired alkali metal vapor topping cycle, the first phase of a cycle analysis and the design and analysis of a metal vapor turbine were completed. A report entitled ''Critical Component Test Facility--Advance Planning for Test Modules'' presents the planning study for the conceptual design of component test modules on a nonsite-specific basis. Engineering studies, project evaluation and process and program analysis of coal conversion processes were continued. A report on the landfill storage of solid wastes from coal conversion is being finalized. In the coal-fueled MIUS project, a series of successful tests of the coal feeding system and a report on the analysis of 500-hr fire-side corrosion tests in a fluidized bed combustor were completed.

  14. Coal -94

    International Nuclear Information System (INIS)

    Sparre, C.

    1994-05-01

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO 2 and NO x . Co-generation plants all have some sort of SO 2 -removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NO x -duties is a 40% reduction

  15. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  16. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    Science.gov (United States)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  17. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  18. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  19. Analysis of circulating fluidized bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Takehiko; Shimizu, Tadaaki; Yang, Guilin

    1987-05-20

    Fluidized bed combustors are commercialized as a technology to combust solid fuels with higher efficiency and lower emission and have functions of both combustion and simultaneous desulfurization and NOx reduction with dense phase fluidized beds but it is not so easy to realize these problems. The technology of circulating fluidized bed coal combustion is expected to offer potential break-through of various problems. But the details are not reported so far. Quantitative analysis of present situations was conducted and future problems were shown with officially available informations. This analysis includes the circulating rate and loading of solids, heat recovery and heat transfer rate as a function of loading of solids, the design of cyclones related to high solid concentration within the combustor, sulfur retention with reduced Ca/S ratio and problems related to NOx reduction to be developed in future. (51 refs, 23 figs, 8 tabs)

  20. 6th Conference on Coal Utilization Technology; Dai 6 kai sekitan riyo gijutsu kaigi koenshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper compiled the papers presented in the 6th Conference on Coal Utilization Technology held in September 1996. With relation to the fluidized bed boiler, reported were Field operation test of Wakamatsu PFBC combined cycle power plant and Development of pressurized internally circulating fluidized bed combustion technology. Regarding the coal reformation, Development of advanced coal cleaning process, Coal preparation and coal cleaning in the dry process, etc. Concerning the combustion technology, Study of the O2/CO2 combustion technology, Development of pressurized coal partial combustor, etc. About the CWM, Development of low rank coals upgrading and their CWM producing technology, Technique of CWM distribution system, etc. Relating to the coal ash, Engineering characteristics of the improved soil by deep mixing method using coal ash, Employment of fluidized bed ash as a basecourse material, On-site verification trials using fly ash for reclamation behind bulkheads, Water permeabilities of pulverized fuel ash, Separation of unburned carbon from coal fly ash through froth flotation, Practical use technology of coal ash (POZ-O-TEC), etc

  1. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  2. Coal Technology Program progress report, March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    In the final hydrocarbonization experiment with Wyodak subbituminous coal, the coal was hydrocarbonized at 1100/sup 0/F and 300 psig in the recirculating fluidized bed. Two-dimensional pyrolysis behavior of an eastern bituminous coal (Pittsburgh seam) continues to be examined. Results to date indicate that swelling is significantly more pronounced at very low heating rates. Several activities in progress are related to inspection techniques for wear- and process-resistant coatings. Experimental investigations of fireside corrosion on tubing from a fluidized bed combustor have proceeded with metallographic examination and analyses of the scale formed during the test exposure. Methods for nondestructively determining remaining tube wall thickness and scale thickness were developed. Failure prevention and analysis work was aimed at several parts from the Solvent Refined Coal Plant in Ft. Lewis, Washington. The mechanical design of the gas-fired potassium boiler system was completed with the issue of the last four drawings. One electrical and five instrument and control drawings were completed and some fabrication work was completed. Surveys of industrial coal conversion capabilities continued with emphasis on rotating components, valves, hot gas cleanup devices, and heat recovery equipment. Process and program analysis research studies continued with work on low-Btu gasification, direct combustion, advanced power conversion, liquefaction, high-Btu gasification, in-situ gasification, and beneficiation. In the fossil energy environmental project, a first draft of a landfill assessment report was issued for review. Work continued on the Environmental Monitoring Handbook and Pipeline Gas Programmatic Assessment.

  3. Experience gained in bench scale and pilot scale fluidised bed processing

    CSIR Research Space (South Africa)

    Hadley, TD

    2005-01-01

    Full Text Available , considerable progress has been made. The earliest developments were in coal combustion. This was formalised in the formation of the NFBC boiler in the early 1980’s for the investigation of utilising discard and duff coals. Work has been done on in-bed sulphur...

  4. Palynology in coal systems analysis-The key to floras, climate, and stratigraphy of coal-forming environments

    Science.gov (United States)

    Nichols, D.J.

    2005-01-01

    Palynology can be effectively used in coal systems analysis to understand the nature of ancient coal-forming peat mires. Pollen and spores preserved in coal effectively reveal the floristic composition of mires, which differed substantially through geologic time, and contribute to determination of depositional environment and paleo- climate. Such applications are most effective when integrated with paleobotanical and coal-petrographic data. Examples of previous studies of Miocene, Carboniferous, and Paleogene coal beds illustrate the methods and results. Palynological age determinations and correlations of deposits are also important in coal systems analysis to establish stratigraphic setting. Application to studies of coalbed methane generation shows potential because certain kinds of pollen are associated with gas-prone lithotypes. ??2005 Geological Society of America.

  5. Reduction of H{sub 2} S during the mineral coal gasification by using dolomite addition in a fluidized bed reactor; Diminuicao de H{sub 2} S na gaseificacao de carvao mineral mediante adicao de dolomita em reator de leito fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Behanie, John Jairo Ramirez [Universidad Pontificia Bolivariana, Medellin (Colombia). Centro de Investigaciones para el Desarrollo Integral. Grupo de Investigaciones Ambientales]. E-mail: jbehaine@logos.upb.edu.co; Sanches, Caio Glauco [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mail: caio@fem.unicamp.br

    2000-07-01

    Brazilian mineral coal from Candiota mine (Rio Grande do Sul State) was gasified with air in a atmospheric fluidized bed reactor at laboratory scale. Experimental essays carried out in a 0.2 m internal diameter reactor permitted both, to evaluate the gasifier operation at different air factors without dolomite particles addition, and to study the effect adsorbent on the capture hydrogen sulfide (H2 S), contained in the generated gas. Test were done with and without the use of dolomite. Without using dolomite, the maximum gas lower heating value was 2.2 MJ/N m3 and the cold gas thermal efficiency was close to 43%, operating at an air factor between 0.45 and 0.60. During the experimental test with dolomite , a maximum reduction of 58% for H2 S was attained using a molar ratio of Ca/S equal to 4. Literature review showed higher capture efficiencies, even at lower molar ratio (Ca/S). Variances were probably caused by low residence times in the gas-solid interaction, considering the used bubble fluidization regime. (author)

  6. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix A, Part 1. Coal preparation and cleaning assessment study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report evaluates the state of the art and effectiveness of physical coal cleaning as a potential strategy for controlling SO/sub x/ emissions in coal fired power generation. Coal properties which are significantly altered by physical coal cleaning were determined. The effects of the changes in properties as they relate to pulverized coal firing, fluidized bed combustion and low Btu gasification for combined cycle powered generation were studied. Available coal washability data were integrated by computer with U.S. coal reserve data. Approximately 18% of the demonstrated coal reserve were matched with washability data. Integrated data appear in the Appendix. Current coal preparation practices were reviewed. Future trends were determined. Five process flow sheets representing increasing levels of cleaning sophistication were prepared. The clean product from each flow sheet will meet U.S. EPA New Source Performance Standards. Capital and operating costs for each case were estimated. Environmental control technology and environmental impact associated with current coal preparation and cleaning operations were assessed. Physical coal cleaning is widely practiced today. Where applicable it represents the least expensive method of coal sulfur reduction. Developmental physical and chemical coal cleaning processes were studied. The chemical methods have the advantage of being able to remove both pyritic sulfur and organic sulfur present in the coal matrix. Further R and D efforts will be required before commercialization of these processes.

  7. Effective Diffusion Coefficients in Coal Chars

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker

    2001-01-01

    Knowledge of effective diffusion coefficients in char particles is important when interpreting experimental reactivity measurements and modeling char combustion or NO and N2O reduction. In this work, NO and N2O reaction with a bituminous coal char was studied in a fixed-bed quartz glass reactor....... In the case of strong pore diffusion limitations, the error in the interpretation of experimental results using the mean pore radius could be a factor of 5 on the intrinsic rate constant. For an average coal char reacting with oxygen at 1300 K, this would be the case for particle sizes larger than about 50...

  8. An overview of coal preparation initiatives with application to coal conversion in South Africa

    International Nuclear Information System (INIS)

    Reinecke, C.F.; Bunt, J.R.

    1999-01-01

    Coal has for many years been the most important energy resource in South Africa and has contributed to more than 70 % of South Africa's energy needs in 1998. The large in-situ coal deposits (in excess of 120 x 10 9 t) and relatively large recoverable reserves (about 33.5 x 10 9 t) will ensure that coal will for many a year still be South Africa's single biggest energy resource. Biomass burning consumes approximately 11 Mt/a of which 8 Mt/a is natural wood. This equals natural wood production. The use of firewood is considered to be unsustainable. Of the 225 Mt/a of coal extracted in South Africa in 1998, 67.0 Mt/a was exported. Of this, 62.9 Mt/a were exported as steam coal, 2.1 Mt/a as metallurgical coal, and the rest as anthracite. Current exports are conducted via the Richards Bay terminal (63.6 Mt/a), Durban (2.0 Mt/a) and a small amount via Maputo. The Richards Bay terminal is to be expanded to 72 Mt/a by 1999. It is also very important to note that most of the coal resources possess calorific values of below 25 MJ/kg, which limits its utilization to power generation (Eskom) and processes such as fixed bed dry bottom gasification (Sasol). A break-down of production and usage of coal by the various controlling groups in South Africa shows that Sasol (54.2 Mt/a) and Escom (91.0 Mt/a) are major consumers of coal. It has been proposed earlier by Horsfall (1993) that for power generation and coal conversion, the in-situ quality is generally regarded as satisfactory for use. All that is required in the way of processing is crushing to an appropriate top size and, for conversion, screening of the unwashed coal. Most other consumers require some degree of beneficiation, which generally entails the removal of stone/shale and low quality coal. More recently, the introduction of destoning plants at Duvha Colliery (Larcodems) and New Vaal Colliery (Drewboy washers) has significantly reduced the abrasiveness content of these local thermal coals, together with an increase

  9. Preliminary assessment of coal-based industrial energy systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a study, performed by Mittelhauser Corp. and Resource Engineering, Inc. to identify the potential economic, environmental, and energy impacts of possible New Source Performance Standards for industrial steam generators on the use of coal and coal-derived fuels. A systems-level approach was used to take mine-mouth coal and produce a given quantity of heat input to a new boiler at an existing Chicago industrial-plant site. The technologies studied included post-combustion clean-up, atmospheric fluidized-bed combustion, solvent-refined coal liquids, substitute natural gas, and low-Btu gas. Capital and operating costs were prepared on a mid-1985 basis from a consistent set of economic guidelines. The cases studied were evaluated using three levels of air emission controls, two coals, two boiler sizes, and two operating factors. Only those combinations considered likely to make a significant impact on the 1985 boiler population were considered. The conclusions drawn in the report are that the most attractive applications of coal technology are atmospheric fluidized-bed combustion and post-combustion clean-up. Solvent-refined coal and probably substitute natural gas become competitive for the smaller boiler applications. Coal-derived low-Btu gas was found not to be a competitive boiler fuel at the sizes studied. It is recommended that more cases be studied to broaden the applicability of these results.

  10. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  11. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  12. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A. [ATEKO a.s., Hradec Kralove (Czech Republic)

    1996-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  13. Strategic considerations for clean coal R and D

    International Nuclear Information System (INIS)

    McMullan, J.T.; Williams, B.C.; McCahey, S.

    2001-01-01

    While present interest in coal-fired power generation is centred on the developing countries, with new natural-gas-fired power stations predominating in the developed world, in the long term coal will return to being the fuel of choice for power generation for much of the world. To minimise the global impact of coal use it is essential, therefore, that coal technologies are developed that are efficient, clean and economically attractive. Techno-economic analyses of the options for coal are presented together with a strategic overview of potential lines of development. The broad conclusions are that new coal plants will not be truly competitive with natural gas until the price of gas increases to about 3.3 EURO/GJ, compared with a coal price of 1.3 EURO/GJ. Present state-of-the-art pulverised coal-fired plant is close to its optimum techno-economic performance and further improvements depend on the development of cost-effective super-alloys. However, there are good opportunities to increase the efficiency of coal use to greater than 50% (LHV basis) using gasification-based power generation cycles. Unless credit is given for the much lower emissions provided by these cycles, the pulverised coal and pressurised fluidised bed combustion will remain the most economic options. (author)

  14. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  15. Report on information collection and analysis for fundamental survey on coal resource development in fiscal 1998. Survey on coal supply potentiality in Bowen Basin in Australia; 1998 nendo sekitan shigen kaihatsu kiso chosa joho shushu kaiseki hokokusho. Goshu Bowen bonchi sekitan kyokyu potentiality chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A survey was made on coal supply potentiality in Bowen Basin in Australia. The main coal beds exist in the order of four beds in the Permian period. The oldest bed is the Reids Dome bed in the Lower Permian period, deposited in the south-west part of the basin. The later wide-area transgression has caused the Back Creek bed groups to deposit, whereas three coal measures have deposited in a concave on the raised basic bed. Later, the ocean has invaded into the entire basin. After having turned into the Upper Permian period, regression had occurred from north to south, where major coal measures such as the Moranbah and German Creek beds had deposited over the entire basin. Further regression has taken place to south, causing three uppermost coal measures to have deposited over the entire basin. In major part of the areas identified currently with existence of coal measures, and even in areas without mines, the mining right or the exploration right has been established, limiting the areas having development potentiality. Five abandoned mining areas exist in the Rangal coal measure, two in the Moranbah coal measure, two in the Reids Dome coal measure, and one in the Baralaba coal measure. There is a possibility of discovering areas developable for a scale of several ten million tons. (NEDO)

  16. Specific Energy of Hard Coal Under Load

    Directory of Open Access Journals (Sweden)

    Bogusz Anna

    2015-03-01

    Full Text Available The article presents results of experimental tests of energy parameters of hard coals under loading, collected from research sites located within five main geologic structures of Upper Silesian Coal Basin (GZW - Main Trough, Main Anticline, Bytom Trough, Rybnik Trough and Chwałowice Trough. Coals from12 mines were analysed, starting with seams of group 200, through groups 400, 500, 600 and, finally, seams of group 700. Coal of each of the groups of seams underwent uniaxial compression stress of the energy parameters, in a servo-controlled testing machine MTS-810NEW, for the full range of strain of the tested coal samples. Based on the tests the dependence of different types of specific energy of longitudinal strain of coals on the value of uniaxial compression strength was determined. The dependence of the value of dissipated energy and kinetic energy of coals on the uniaxial compression strength was described with a linear function, both for coals which due to their age belong to various bed sand for various lithotypes of coal. An increase in the value of dissipated energy and in kinetic energy was observed, which was correlated with an increase in uniaxial compression strength of coal. The share of dissipated energy is dominant in the total energy of strain. Share of recoverable energy in the total energy of strain is small, independent of the compression strength of coals and is at most a few per cent high. In coals of low strength and dominant share of dissipated energy, share of recoverable energy is the biggest among the tested coals. It was shown that following an increase in compression strength the share of recoverable energy decreases, while the share of dissipated energy in the total energy increases. Further studies of specific energy of longitudinal strain of rocks in the full-range strain will be the next step inperfecting methodology of research into natural rock burst susceptibility of Carboniferous rock mass and changes in the

  17. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    Science.gov (United States)

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  18. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  19. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  20. Assessment of coal geology, resources, and reserves in the Southwestern Powder River Basin, Wyoming

    Science.gov (United States)

    Osmonson, Lee M.; Scott, David C.; Haacke, Jon E.; Luppens, James A.; Pierce, Paul E.

    2011-01-01

    The availability of abundant new borehole data from recent coal bed natural gas development was utilized by the U.S. Geological Survey for a comprehensive evaluation of coal resources and reserves in the southwestern part of the Powder River Basin in Wyoming. This report on the Southwestern Powder River Basin assessment area represents the third area within the basin to be assessed, the first being for coal resources and reserves in the Gillette coal field in 2008, and the second for coal resources and reserves in the northern Wyoming area of the basin in 2010.

  1. Measurement and modeling of advanced coal conversion processes, Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  2. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. [Advanced Fuel Research, Inc., East Hartford, CT (United States)]|[Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  3. Influences of volcanism on coal quality - Examples from the western United States

    International Nuclear Information System (INIS)

    Hildebrand, R.T.; Affolter, R.H.

    1986-01-01

    Several small Tertiary coal deposits in Idaho, Nevada, and Washington formed in fresh-water basins located near active continental (salic) volcanic centers. Metastable glassy material (tephra) ejected during volcanic eruptions was introduced into the coal-forming environment of these basins as ash falls. This tephra contributed to the high ash content of many of the coal beds, formed laterally persistent partings (''tonsteins'') in the coal, and constitutes a large part of the strata enclosing the deposits. In order to study the possible relationships between the presence of tephra and coal quality, chemical data for 65 coal samples from 12 of these deposits were compiled and statistically analyzed. The results indicate that, in addition to the high ash content, coal from Tertiary deposits containing appreciable amounts of tephra generally is enriched in many elements compared to 460 coal samples from 11 deposits of similar ages remote from volcanic activity

  4. Coal inclusions in sedimentary rocks. A geochemical phenomenon. A review

    Energy Technology Data Exchange (ETDEWEB)

    Yudovich, Ya. E. [Institute of Geology, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, Morozova st., 100, ap. 49, 167023 Syktyvkar (Russian Federation)

    2003-12-01

    In many coal-bearing basins, there are numerous coalified fragments of ancient plants (coal-precursors) enclosed in host rocks. Such fragments occur in isolated positions out of the coal beds. In the Russian literature, these coal fragments are named coal inclusions. Coal inclusions are mostly the remains of stems, trunks, and branches, as well as the roots of trees.The review presented covers: (a) definition and classification of fossil woods; (b) relations between coalification and mineralization of fossil woods; (c) some special topics dealing with different and even zonal coalification degree of coal inclusions embedded different host rocks; (d) some historical data on geochemistry of coal inclusions; (e) basic empirical regularities in geochemistry, observed world-wide; (f) some data about chemical nature of humin substance-a precursor of lignite and vitrain matter in coalified wood; (g) results of calculations modelling the Ge enrichment in coal inclusions; (h) economic importance of Ge in coal inclusions; and (j) use of coal inclusion geochemistry for indication of some diagenetic and catagenetic processes, and as a tool for stratigraphic correlation. The most part of the above studies performed during 1934-1972 were outlined in the monograph 'Geochemistry of coal inclusions in sedimentary rocks' [Yudovich, Ya.E., 1972. Geochemistry of coal inclusions in sedimentary rocks. L.: Nauka [Leningrad: 'Science' Pub. House], 84 pp.]. These materials are added to some recent work by Bulgarian and Russian geologists, performed with use of modern analytical methods. It has been shown that: (a) coalified wood may contain very exotic micro-mineral phases, sometimes far unexpected; (b) apart from Ge, coalified wood may contain high concentrations of some other trace elements, which were earlier not detected because of analytical limitations (REE, As, etc.). These special peculiarities can be partly contributed by epigenetic hydrothermal processes.As a

  5. Geology and coal resources of the Hanging Woman Creek Study Area, Big Horn and Powder River Counties, Montana

    Science.gov (United States)

    Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.

    1978-01-01

    In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.

  6. Observations of coal cleat in British coalfields

    OpenAIRE

    Ellison, R.A.

    1997-01-01

    This technical report presents the observations made during a study into cleat and joint directions, largely in the Pennine Basin. Field work was carried out under the BGS Research and Development programme in 199 1 - 1992. Interpretation of these observations will be made elsewhere. Cleat is the term widely in use to describe joints in coals. It is generally developed perpendicular to the bedding and there is normally one dominant set, known as the main cleat and a subsidiary, mo...

  7. Coal power and combustion. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    ERDA's coal combustion and power program has focused on two major areas: Direct combustion of coal and advanced power systems. Efforts in the area of direct combustion are concentrated on: Development of atmospheric and pressurized systems capable of burning high-sulfur coal of all rank and quality in fluidized-bed combustors; development of advanced technology power systems to generate power more economically than present technology permits while using medium- and high-sulfur coal in an environmentally-acceptable manner; development of the technology enabling coal-oil slurries to be substituted as feedstock for gas or oil-fired combustors; and improvement of the efficiency of present boilers. Compared with conventional coal-fired systems, fluidized-bed combustion systems give higher power generation efficiencies and cleaner exhaust gases, even when burning high-sulfur coals. If the fluidized-bed system is pressurized, additional economies in capital and operating costs may be realized. The benefits from high-pressure combustion are a reduction of furnace size due to decreased gas volume and better sulfur removal. High-pressure combustion, however, requires the development of equipment to clean the hot combustion products to make them suitable for use in power generation turbines. The advanced power systems program is directed toward developing electric power systems capable of operating on coal or coal-derived fuels. These systems involve the use of high temperature gas turbines burning low-Btu gas and turbine systems using inert gases and alkali metal vapors. Some 25 projects in these areas are described, including a brief summary of progress during the quarter. (LTN)

  8. Adsorption and strain: The CO{sub 2}-induced swelling of coal

    Energy Technology Data Exchange (ETDEWEB)

    Vandamme, M.; Brochard, L.; Lecampion, B.; Coussy, O. [Universite Paris-Est, Champs Sur Marne (France)

    2010-10-15

    Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal bed methane reservoirs in order to facilitate the recovery of the methane. The injected carbon dioxide gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling in confined conditions leads to a closure of the coal reservoir cleat system, which hinders further injection. In this work we provide a comprehensive framework to calculate the macroscopic strains induced by adsorption in a porous medium from the molecular level. Using a thermodynamic approach we extend the realm of poromechanics to surface energy and surface stress. We then focus on how the surface stress is modified by adsorption and on how to estimate adsorption behavior with molecular simulations. The developed framework is here applied to the specific case of the swelling of CO{sub 2}-injected coal, although it is relevant to any problem in which adsorption in a porous medium causes strains.

  9. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  10. The World Coal Quality Inventory: A status report

    Science.gov (United States)

    Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.

    2005-01-01

    National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.

  11. Characterization of the coal resources of South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey, L.S. [CSIR, Auckland (New Zealand). Division of Mining Technology

    2005-02-01

    Estimates for South Africa's coal recoverable reserves made in 1999 range from nine to 59 billion tons; latest estimates by the Minerals Bureau suggest that 33 billion tons is a more likely figure. As much as 70% of that coal is located in the Waterberg, Witbank, and Highveld coalfields, as well as lesser amounts in the Ermelo, Free State and Springbok Flats coalfields. However, the Witbank and Highveld coalfields are approaching exhaustion (estimated 9 billion tons of recoverable coal remaining in each), while the coal quality or mining conditions in the Waterberg, Free State and Springbok Flats coalfields are significant barriers to immediate, conventional exploitation. New extraction technologies, technologies exploiting the energy content of the coal in situ, as well as suitable uses and markets for low-grade, high-ash coal are required before the country can utilize its admittedly vast coal resources. Major challenges for exploiting some Limpopo province coalfields are severe water shortages, insufficiently developed infrastructure, fragile environments and poor roof conditions due to the depth and complex geology. In the Central Basin (Witbank, Highveld and Ermelo coalfields) technical innovations for thin seam extraction, economic mining of both pillar coal and intrusion-fragmented resource blocks and the utilization of lower-grade coals are required. The success of the fluidized bed combustion technology is necessary to utilize the low-grade coals of the Free State and Molteno coalfields. Clean coal technologies, coal cost and quality, environmental considerations, sustainable development, the growth of the South African economy and Government's regulation of the electricity industry are the main challenges to the continued use of coal as South Africa's primary energy source.

  12. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This document contains papers presented at The advanced Coal-Fired Power Systems 1995 Review Meeting. Research was described in the areas of: integrated gasification combined cycle technology; pressurized fluidized-bed combustion; externally fired combined cycles; a summary stauts of clean coal technologies; advanced turbine systems and hot gas cleanup. Individual projects were processed separately for the United States Department of Energy databases.

  13. Assessment of coal geology, resources, and reserves in the Montana Powder River Basin

    Science.gov (United States)

    Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.

    2013-01-01

    The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner

  14. Sensing underground coal gasification by ground penetrating radar

    Science.gov (United States)

    Kotyrba, Andrzej; Stańczyk, Krzysztof

    2017-12-01

    The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.

  15. Coal gasification in Europe

    International Nuclear Information System (INIS)

    Furfari, S.

    1992-01-01

    This paper first analyzes European energy consumption and supply dynamics within the framework of the European Communities energy and environmental policies calling for the increased use of natural gas, reduced energy consumption, promotion of innovative renewable energy technologies, and the reduction of carbon dioxide emissions. This analysis evidences that, while, at present, the increased use of natural gas is an economically and environmentally advantageous policy, as well as, being strategically sound (in view of Middle East political instability), fuel interchangeability, in particular, the option to use coal, is vital to ensure stability of the currently favourable natural gas prices and offer a locally available energy alternative to foreign supplied sources. Citing the advantages to industry offered by the use of flexible, efficient and clean gaseous fuels, with interchangeability, the paper then illustrates the cost and environmental benefits to be had through the use of high efficiency, low polluting integrated gasification combined-cycle power plants equipped to run on a variety of fuels. In the assessment of technological innovations in this sector, a review is made of some of the commercially most promising gasification processes, e.g., the British Gas-Lurgi (BGL) slagging gasifier, the high-temperature Winkler (HTW) Rheinbraun, and the Krupp Koppers (PRENFLO) moving bed gasifier processes

  16. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  17. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES; FINAL

    International Nuclear Information System (INIS)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-01-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO(sub x)). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process

  18. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  19. Design of generic coal conversion facilities: Process release---Direct coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The direct liquefaction portion of the PETC generic direct coal liquefaction process development unit (PDU) is being designed to provide maximum operating flexibility. The PDU design will permit catalytic and non-catalytic liquefaction concepts to be investigated at their proof-of-the-concept stages before any larger scale operations are attempted. The principal variations from concept to concept are reactor configurations and types. These include thermal reactor, ebullating bed reactor, slurry phase reactor and fixed bed reactor, as well as different types of catalyst. All of these operating modes are necessary to define and identify the optimum process conditions and configurations for determining improved economical liquefaction technology.

  20. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  1. An LCA study of an electricity coal supply chain

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available Purpose: The aim of this paper is to provide methods to find the emission source and estimate the amount of waste gas emissions in the electricity coal supply chain, establish the model of the environmental impact (burden in the electricity coal supply chain, detect the critical factor which causes significant environmental impact, and then identify the key control direction and reduce amount of environmental pollution in the electricity coal supply chain. Design/methodology/approach: In this context, life cycle inventory and life cycle assessment of China’s electricity coal were established in three difference stages: coal mining, coal transportation, and coal burning. Then the outcomes were analyzed with the aim to reduce waste gases emissions’ environmental impact in the electricity coal supply chain from the perspective of sensitivity analysis. Findings: The results and conclusion are as follow: (1 In terms of total waste gas emissions in electricity coal supply chain, CO2 is emitted in the greatest quantity, accounting for 98-99 wt% of the total waste gas emissions. The vast majority of the CO2, greater than 93%, is emitted from the power plant when the coal is combusted. (2 Other than CO2, the main waste gas is CH4, SO2 and so on. CH4 is mainly emitted from Coal Bed Methane (CBM, so the option is to consider capturing some of the CH4 from underground mines for an alternative use. SO2 is mainly emitted from power plant when the coal is combusted. (3 The environmental burden of coal burning subsystem is greatest, followed by the coal mining subsystem, and finally the coal transportation subsystem. Improving the coal-burning efficiency of coal-fired power plant in electricity coal supply chain is the most effective way to reduce the environmental impact of waste gas emissions. (4 Of the three subsystems examined (coal mining, coal transportation, and coal burning, transportation requires the fewest resources and has the lowest waste gas

  2. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  3. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  4. POTENTIAL OF LIVESTOCK MANURE FOR COAL ACTIVATION

    Directory of Open Access Journals (Sweden)

    EllIN HARlIA HARlIA

    2017-06-01

    Full Text Available The natural methane formed by bacteria in anaerobic conditions is known as biogenic gas. Gas trapped in coal, formed through thermogenesis as well as biogenesisis known as coal-bed methane (CBM. The availability of organic material as decomposition of this material into methane is continuously required for the production of methane in the coal aquifer. The aim of this research was to investigate whether or not cattle feces bacteria were able to grow and produce methane in coal. Parameters measured were Volatile Fatty Acids (VFA and the production of biogas, such as nitrogen, hydrogen, carbon dioxide, and methane. Explorative method was used and data obtained was analyzed by descriptive approach. The results showed that the bacteria found in the feces survived in the coal and produce biogas. On day 2 when the process was at the acidogenesis phase, it produced VFA with the largest component of acetic acid. Acetic acid would undergo decarboxylation and reduction of CO2 followed by reactions of H2and CO2 to produce methane (CH4 and carbon dioxide (CO2 as the final products. ,

  5. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health.

    Science.gov (United States)

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2016-03-01

    Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containing this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose-response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The main natural lows of high-rate coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Chemyavsky Nikola V.

    2003-01-01

    Full Text Available The importance of coal pyrolysis studies for the development of energy technologies is evident, since pvrolysis is the first stage of any process of coal thermal conversion. In combustion, pyrolysis determines conditions of coal ignition and the rate of char after-burning, in gasification, pyrolysis determines total yield of gasification products. It must be noted that in modern energy technologies pyrolysis occurs at high late of coal particle heating (=10 K/s for different fluidized bed, or FB-technologies or super-high-rate (>10**5 K/s for entrained-flow gasification, and in some of them at high pressure. In CETI during last 12 years the detailed study of pyrolysis in FB laboratory-scale PYROLYSIS-D plant and entramed-flow pilot-scale GSP-01 plant, was carried out. In this paper main results of mentioned investigations are given. Kinetic constants for bituminous coals and anthracite high heating rates in entrained flow for high temperatures (>1500 °C and >1900 °C, and in fluidized bed conditions in temperature range 972-1273 K. In order to describe data obtained in fluidized bed conditions, G--model based method of calculation of devolatization dynamics was suited to FB heating conditions. Calculated and experimental kinetic data are in good agreement. The result proves that at FB-pvrolysis conditions intrinsic mass-transfer limitations are negligible and devolatilization is really kinetic-controlled.

  7. Bond forms of methane in porous system of coal II

    Czech Academy of Sciences Publication Activity Database

    Weishauptová, Zuzana; Medek, Jiří; Kovář, Lukáš

    2004-01-01

    Roč. 83, č. 13 (2004), s. 1759-1764 ISSN 0016-2361 R&D Projects: GA AV ČR IAA2046101; GA AV ČR KSK2067107 Institutional research plan: CEZ:AV0Z3046908 Keywords : coal-bed methane * absorption * fifth bond form Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.368, year: 2004

  8. NO Reduction over Biomass and Coal Char during Simultaneous Combustion

    DEFF Research Database (Denmark)

    Zhao, Ke; Glarborg, Peter; Jensen, Anker Degn

    2013-01-01

    This paper reports an experimental study of NO reduction over chars of straw, bark, bituminous coal, and lignite. The experiments were performed in a fixed bed reactor in the temperature range 850–1150 °C. The chars were generated by in situ pyrolysis at the reaction temperature to minimize further...

  9. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K. [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  10. Development program to support industrial coal gasification. Quarterly report 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  11. Sintering in Biofuel and Coal-Biofuel Fired FBC's

    DEFF Research Database (Denmark)

    Lin, Weigang; Dam-Johansen, Kim

    1998-01-01

    This report presents the results of systematic experiments conducted in a laboratory scale fluidized bed combustor in order to study agglomeration phenomena during firing straw and co-firing straw with coal. The influence of operating conditions on ag-glomeration was investigated. The effect of co......-firing straw with coal on agglomeration was also examined. The results show that temperature has the most pronounced effect on the agglomeration tendency. As bed temperature increases, the defluidiza-tion time decreases sharply, which indicates an increasing tendency of agglomera-tion. When co-firing straw...... with coal, the defluidization time can be extended signifi-cantly. Examination of the agglomerates sampled during combustion by various analytical techniques indicates that the high potassium content in straw is the main cause for the formation of agglomerates. In the combustion process, potassium...

  12. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  13. Testing of FMI's Coal Upgrading Process

    Energy Technology Data Exchange (ETDEWEB)

    Vijay Sethi

    2009-03-21

    WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.

  14. Assessment of Hydrocarbon Generation Potential of Permian Gondwana Coals, Bangladesh

    Directory of Open Access Journals (Sweden)

    H. M. Zakir Hossain

    2013-06-01

    Full Text Available This paper represents the geochemical characteristics of Gondwana coals from the Barapukuria coal mine, Bangladesh in order to investigate the potential for hydrocarbon generation. A total number of twenty three coal samples were analyzed Rock-Eval pyrolysis, CHNS elemental analyses, maceral analysis and vitrinite reflectance. The samples were collected from drill hole GDH-40 of the Barapukuria coal mine encountered within Gondwana succession of Permian age. The TOC contents of the coal samples range between ~50 and 76 wt.% and the organic matter consists predominantly of type III and type IV kerogen with respect to hydrocarbon generation. The GP, HI, PI and Tmax values range between 7 and 35 mg HC/g rock, 20 and 62 mg HC/g TOC, 0.02 and 0.04, and 430 and 437oC, respectively. The organic matter is mainly gas prone and thermally immature to early mature level. The potential coal bed methane (CBM generation of the Barapukuria basin is estimated to be 11 Gm3. Thus, underground coal gasification (UCG is helpful for better development of subsurface coals at the Barapukuria basin, Bangladesh.

  15. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  16. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  17. Coal technology program progress report for February 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    Two-dimensional pyrolysis studies were continued using Eastern bituminous coal. Unusual char formations (associated with the swelling nature of the material) have been observed, though tar and gas production per gram is not greatly different from that observed with Western subbituminous coals. Materials engineering support activities continued with work on properties of thick sections of steel, development of methods for nondestructive testing of coatings, cladding of low-alloy steels, fireside corrosion in fluidized bed boilers, failure analysis, and publication of a draft report on the use of prestressed concrete pressure vessels. Design and construction work continued in preparation for operation of the gas-fired boiler with potassium. Design studies of a coal-fired, alkali-metal-vapor, power system continued. Engineering studies and technical support continued with work on process modeling, the process research digest, a survey of industrial equipment capabilities, and a study of large air separation plants. Process and program analysis studies continued with work on low Btu gasification, direct combustion, advanced power systems, liquefaction, in-situ gasification, and beneficiation of coal. In the coal-fueled MIUS project, a 1000-hr endurance run of the coal feed system was completed and analysis of corrosion specimens exposed in a fluidized bed combustor was started.

  18. Coal Data: A reference

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  19. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  20. Modelling of dynamics of combustion of biomass in fluidized beds

    Directory of Open Access Journals (Sweden)

    Saastamoinen Jaakko J.

    2004-01-01

    Full Text Available New process concepts in energy production and biofuel, which are much more reactive than coal, call for better controllability of the combustion in circulating fluidized bed boilers. Simplified analysis describing the dynamics of combustion in fluidized bed and circulating fluidized bed boilers is presented. Simple formulas for the estimation of the responses of the burning rate and fuel inventory to changes in fuel feeding are presented. Different changes in the fuel feed, such as an impulse, step change, linear increase and cyclic variation are considered. The dynamics of the burning with a change in the feed rate depends on the fuel reactivity and particle size. The response of a fuel mixture with a wide particle size distribution can be found by summing up the effect of different fuel components and size fractions. Methods to extract reaction parameters form dynamic tests in laboratory scale reactors are discussed. The residence time of fuel particles in the bed and the resulting char inventory in the bed decrease with increasing fuel reactivity and differences between coal and biomass is studied. The char inventory affects the stability of combustion. The effect of char inventory and oscillations in the fuel feed on the oscillation of the flue gas oxygen concentration is studied by model calculation. A trend found by earlier measurements is explained by the model.

  1. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  2. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  3. State of the art and the future fuel portfolio of fluidized bed combustion systems; Status und kuenftiges Brennstoffportfolio bei Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Szentannai, Pal; Friebert, Arpad; Winter, Franz [Technische Univ. Wien (Austria). Inst. fuer Verfahrens-, Umwelttechnik und technische Biowissenschaften

    2008-07-01

    Coal, biomass and substitute fuels energetically can be used efficiently and with low pollution in fluidized bed plants. In comparison to biomass there are significant differences between the circulating and stationary fluidized bed technology. The stationary fluidised bed is fed predominantly with biomasses and residual substances. Coal usually is the basis fuel in the circulating fluidised bed. Biomass and residual substances frequently are course-fired. The state of the art is the employment of a broad fuel mixture in small and large fluidized-bed combustion systems. Future developments present an increased use of sewage sludge, fluidized bed combustion systems with wood as a basis fuel, utilization of household waste and the gas production.

  4. Fluidized bed gasification of selected South African coals

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-05-01

    Full Text Available are high in ash, rich in inertinites, very dense (low porosity), with low caking indices and high ash fusion temperatures. Reactivity measurements with a thermogravimetric analyser (TGA), under reaction rate controlling conditions with carbon dioxide...

  5. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  6. THE ALUMINA-SILICATES IN STABILIZATION PROCESSES IN FLUIDIZED-BED ASH

    Directory of Open Access Journals (Sweden)

    IVANA PERNA

    2011-03-01

    Full Text Available Presented study of coal fluidized-bed ash solidification was accompanied with specific studies of alumino-silicates residues in ashes. The specific technology of fluid coal burning and its relatively low temperature combustion combines coal burning and decomposition of calcium carbonate added to the fluid layer in the main endeavor to capture all sulfur oxides. The burning temperature seems be decisive to the behavior of clayed residues and calcium carbonate decomposition in connection for the future solidification of fluidized bed ash. The calcareous substances in combination with alumino-silicate residues form solid bodies where silicates play decisive role of long-term stability and insolubility of obtained solids. The position of aluminum ions in clayed residues of burned coal were studied by MAS-NMR with attention on aluminum ion coordination to oxygen and formation of roentgen amorphous phase of poly-condensed calcium alumina-silicate.

  7. The coal-fired gas turbine locomotive - A new look

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  8. Successful identification of complex cleat systems in coals

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jubori, A.; Khalid, S. [Schlumberger Canada Ltd., Calgary, AB (Canada); Natras, T.; McIlreath, I. [EnCana Corp., Calgary, AB (Canada)

    2008-07-01

    Coal in the Western Canadian Sedimentary Basin (WCSB) have complex cleat systems that can have a significant impact on gas recovery. In this study, resistivity micro-imaging was used to identify cleat systems in horizontal wells. A formation micro-imager was used to identify a master cleat superimposed on a conventional cleat structure. The feature extended beyond the coal and into the adjacent shale bed. The master cleats occurred more frequently near the coal seam. Data obtained with the resistivity micro-imaging tool can be used to predict the flow quality of coal seams, and can also be correlated with other datasets. The technique has been used to determine cleat systems in a number of Canadian wells. 4 figs.

  9. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  10. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  11. Rosebud syncoal partnership SynCoal{sup {reg_sign}} demonstration technology development update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Company, Billings, MT (United States); Heintz, S.J. [Department of Energy, Pittsburgh, PA (United States)

    1995-12-01

    Rosebud SynCoal{reg_sign} Partnership`s Advanced Coal Conversion Process (ACCP) is an advanced thermal coal upgrading process coupled with physical cleaning techniques to upgrade high moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal is processed through two vibrating fluidized bed reactors where oxygen functional groups are destroyed removing chemically bound water, carboxyl and carbonyl groups, and volatile sulfur compounds. After thermal upgrading, the SynCoal{reg_sign} is cleaned using a deep-bed stratifier process to effectively separate the pyrite rich ash. The SynCoal{reg_sign} process enhances low-rank western coals with moisture contents ranging from 2555%, sulfur contents between 0.5 and 1.5 %, and heating values between 5,500 and 9,000 Btu/lb. The upgraded stable coal product has moisture contents as low as 1 %, sulfur contents as low as 0.3%, and heating values up to 12,000 Btu/lb.

  12. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  13. Bed rest during pregnancy

    Science.gov (United States)

    ... Belizán JM, Bergel E. Bed rest in singleton pregnancies for preventing preterm birth. Cochrane Database ... and Gynecology, Loma Linda University School of Medicine, Loma Linda Center for Fertility, ...

  14. Enuresis (Bed-Wetting)

    Science.gov (United States)

    ... Symptoms of enuresis Enuresis is when an older child (age 7 or older) wets the bed at night ... feel guilt and embarrassment. It’s true that your child should take responsibility for bedwetting. He or she could do this ...

  15. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  16. Mathematical models of gas-dynamic and thermophysical processes in underground coal mining at different stages of mine development

    OpenAIRE

    М. В. Грязев; Н. М. Качурин; С. А. Воробьев

    2017-01-01

    New trends have been traced and the existing ones refined regarding filtration and diffusive motion of gases in coal beds and surrounding rock, spontaneous heating of coal and transport of gas traces by ventilation currents in operating coal mines. Mathematical models of gas-dynamic and thermophysical processes inside underworked territories after mine abandonment have been justified. Mathematical models are given for feasible air feeding of production and development areas, as well as for th...

  17. Innovative rock bed construction

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.

    1983-06-01

    A general discussion of the use of rock beds for heating and cooling thermal storage is particularized for design and construction in Phoenix, Arizona. The rock bed parameters for three two-story condominium apartments constructed in 1982 are discussed, including sizing criteria and original construction details. A revised construction method using gabions that are self-supporting chain link cylinders provided a much more economical construction method as well as other advantages of speed and structural flexibility.

  18. Coal based electric generation comparative technologies report

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  19. Regional Effort to Deploy Clean Coal Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  20. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  1. Capture of SO2 by limestone in a 71 MWe pressurized fluidized bed boiler

    Directory of Open Access Journals (Sweden)

    Shimizu Tadaaki

    2003-01-01

    Full Text Available A 71 MWe pressurized fluidized bed coal combustor was operated. A wide variety of coals were burnt under fly ash recycle conditions. Limestone was fed to the combustor as bed material as well as sorbent. The emission of SO^ and limestone attrition rate were measured. A simple mathematical model of SO? capture by limestone with intermittent solid attrition was applied to the analysis of the present experimental results. Except for high sulfur fuel, the results of the present model agreed with the experimental results.

  2. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  3. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  4. Treatment of coal gasification wastewaters: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Lee, D.D.; Singh, S.P.N.

    1987-03-01

    A bench-scale fluidized-bed bioreactor was operated for over 4 months to characterize the biooxidation of major organic pollutants in coal gasification wastewater obtained from the Morgantown Energy Technology Center. Monohydric phenol was degraded first, followed by more complex phenolics, including polycyclic aromatic hydrocarbons (PAHs). Organic components were assayed by methylene chloride extraction followed by gas chromatography. Genetic capability for degradation of naphthalene by the biofilm was identified by gene probe analysis. Further studies were conducted to determine if the existing biofilm could be enhanced for naphthalene degradation by supplemental inoculation with a microbial culture having good naphthalene-degrading capabilities. The biofilm response was monitored using gene probe techniques. An assessment of wastewater treatment technologies for coal conversion wastewaters was initiated. A bibliography was compiled, arrangements were initiated to collaborate with other investigators doing wastewater treatability studies, and a site visit was made to the Great Plains plant. 201 refs., 3 figs., 5 tabs.

  5. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  6. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  7. Coal and our environment

    International Nuclear Information System (INIS)

    1992-01-01

    This booklet describes how coal is important for economic development and how it can be used without environmental damage. Aspects covered include: improved air quality; Clean Air Act; controlling emissions from coal; flue gas desulfurization; acid rain; the greenhouse effect and climatic change; the cost of clean air; surface coal mining and land reclamation; underground mining and subsidence; and mining and water pollution including acid mine drainage

  8. Coal derived fuel gases for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiers operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.

  9. Advanced sorbent development progam; development of sorbents for moving-bed and fluidized-bed applications

    International Nuclear Information System (INIS)

    Ayala, R.E.; Venkataramani, V.S.

    1998-01-01

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and

  10. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost

  11. Coal export facilitation

    International Nuclear Information System (INIS)

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  12. Developing Queensland coal

    Energy Technology Data Exchange (ETDEWEB)

    Philp, A. [Australian QTherm (Australia)

    1998-11-01

    Despite regional economic woes and falling coal prices, there have been exciting developments in Queensland`s coal industry with the announcement of three new coal mines, four mine expansions and two mine feasibility studies being undertaken. The article describes new projects being undertaken in Coppabella, Morahbah North and Hall Creek all in the Northern Bowen Basin, and mine expansions underway at Burton, Enshan, Newlands and Oaky North. Feasibility studies are the progress in the Millmerran and Acland deposits in The Moreton Basin. However, a number of proposed expansions at some major mines, such as Moura, Saraji and Peak Downs, have been postponed due to falling international coal prices. 2 figs., 2 photos.

  13. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  14. Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal

    Directory of Open Access Journals (Sweden)

    Wojtacha-Rychter Karolina

    2017-01-01

    Full Text Available One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.

  15. Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal

    Science.gov (United States)

    Wojtacha-Rychter, Karolina; Smoliński, Adam

    2017-10-01

    One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen) released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.

  16. Coal-fired power plants and the causes of high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Oakey, J.E.; Simms, N.J. [British Coal Corporation, Coal Technology Development Div., Cheltenham, Glos (United Kingdom); Tomkings, A.B. [ERA Technology Ltd., Leatherhead, Surrey (United Kingdom)

    1996-12-01

    The heat exchangers in all types of coal-fired power plant operate in aggressive, high temperature environments where high temperature corrosion can severely limit their service lives. The extent of this corrosion is governed by the combined effects of the operating conditions of the heat exchanger and the presence of corrosive species released from the coal during operation. This paper reviews the coal-related factors, such as ash deposition, which influence the operating environments of heat exchangers in three types of coal-fired power plant - conventional pulverized coal boilers, fluidized bed boilers and coal gasification systems. The effects on the performance of the materials used for these heat exchangers are then compared. (au) 35 refs.

  17. Microwave-assisted synthesis of geopolymers from fluidised bed gasifier bottom ash

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-09-01

    Full Text Available -1 International Conference of Coal Science and Technology, State College, Pennysylvania, USA, 29 September- 3 October 2013 Microwave-assisted synthesis of geopolymers from fluidised bed gasifier bottom ash B.O. Oboirien1, B.C. North1 and E. R. Sadiku2... 1CSIR Materials Science and Manufacturing, PO Box, 395, Pretoria 0001, South Africa boboiriencsir.co.za 2Tshwane University of Technology, Department of Polymer Technology, Pretoria South Africa Abstract Fluidised bed gasification (FBG...

  18. Cost and performance of coal-based energy in Brazil

    International Nuclear Information System (INIS)

    Temchin, J.; DeLallo, M.R.

    1998-01-01

    As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operating and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production

  19. Geological storage of carbon dioxide in the coal seams: from material to the reservoir

    International Nuclear Information System (INIS)

    Nikoosokhan, S.

    2012-01-01

    CO 2 emissions into the atmosphere are recognized to have a significant effect on global warming. Geological storage of CO 2 is widely regarded as an essential approach to reduce the impact of such emissions on the environment. Moreover, injecting carbon dioxide in coal bed methane reservoirs facilitates the recovery of the methane naturally present, a process known as enhanced coal bed methane recovery (ECBM). But the swelling of the coal matrix induced by the preferential adsorption by coal of carbon dioxide over the methane in place leads to a closure of the cleat system (a set of small natural fractures) of the reservoir and therefore to a loss of injectivity. This PhD thesis is dedicated to a study of how this injectivity evolves in presence of fluids. We derive two poro-mechanical dual-porosity models for a coal bed reservoir saturated by a pure fluid. The resulting constitutive equations enable to better understand and model the link between the injectivity of a coal seam and the adsorption-induced swelling of coal. For both models, the pore space of the reservoir is considered to be divided into the macroporous cleats and the pores of the coal matrix. The two models differ by how adsorption of fluid is taken into account: the first model is restricted to surface adsorption, while the second model can be applied for adsorption in a medium with a generic pore size distribution and thus in a microporous medium such as coal, in which adsorption mostly occurs by micropore filling. The latter model is calibrated on two coals with different sorption and swelling properties. We then perform simulations at various scales (Representative Elementary Volume, coal sample, coal seam). In particular, we validate our model on experimental data of adsorption-induced variations of permeability of coal. We also perform simulations of seams from which methane would be produced (CBM) or of methane-free seams into which CO 2 would be injected. We study the effect of various

  20. The Indonesian coal industry

    International Nuclear Information System (INIS)

    Cook, A.; Daulay, B.

    2000-01-01

    In this comprehensive article the authors describe the origins and progress of the Indonesian coal industry and the role it plays, and will play, in the domestic energy scene and world coal trade. In the '80s, the Indonesian coal industry laid the basis for major expansion such that coal production rose from under a million tonnes in 1983 to 10.6 million tonnes in 1990, 50.9 million tonnes by 1996 and 61.2 million tonnes in 1992. At the same time, exports have increased from 0.4 million tonnes to 44.8 million tonnes. Current export levels are higher than originally expected, due in part to a slow down in the construction of electric power stations and a partial switch to natural gas. This has slowed the rate at which domestic coal demand has built up. The majority of coals currently exported are low rank steam coals, but some of the higher rank and very low ash coals are used for blast furnace injection, and a very small proportion may even be used within coking blends, even though they have poor coking properties. The Indonesian coal industry has developed very rapidly over the last six years to become a significant exporter, especially within the ASEAN context. The resources base appears to be large enough to support further increases in production above those already planned. It is probable that resources and reserves can be increased above the current levels. It is likely that some reserves of high value coals can be found, but it is also probable that the majority of additions to reserves will be lower in rank (and therefore quality) compared with the average of coals currently being mined. Reserves of qualities suitable for export will support that industry for a considerable period of time. However, in the longer term, the emphasis of production will increasingly swing to the domestic market

  1. Coals of Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.; Fodor, B.; Gombar, G.; Sebestyen, I.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and one surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.

  2. Clean coal technologies and future prospects for coal

    International Nuclear Information System (INIS)

    Rose, A.; Torries, T.; Labys, W.

    1991-01-01

    The purpose of this paper is to analyze the future potential of coal in the US economy during the next 25 years in light of clean coal technologies. According to official US Department of Energy (DOE) designations, these technologies pertain only to the beneficiation, transformation, combustion, and postcombustion clean-up stages of the coal cycle; no coal mining or coal transport technologies are included. In general, clean coal technologies offer the prospect of mitigating environmental side-effects of coal utilization, primarily through improved operating efficiencies and lowered costs of air emission controls. If they prove successful, coal users will be able to meet more stringent environmental regulations at little or no additional cost. In assessing the influence of clean coal technologies on coal demand, we focus on the economics of three crucial areas: their development, their deployment, and coal utilization implications of their operation

  3. Economic aspects of advanced coal-fired gas turbine locomotives

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  4. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work in this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner

  5. India clamours for coal

    Energy Technology Data Exchange (ETDEWEB)

    Nadkarni, S.

    2000-10-01

    The steadily deteriorating quality of coal provided by government-owned companies in India has persuaded coal users to follow the lead of the World Bank and call for deregulation of the sector to allow quality coal to be procured at competitive prices from the global market.Some 24 opencast mines belonging to Coal India Limited subsidiaries were to be expanded to produce 112 mta of coal but the World Bank terminated a loan of 507 million dollars from the total sanctioned loan of 1.06 bn. CIL refuses to accept that the loan was terminated because the government failed to meet the terms and conditions imposed at the time of the loan sanction. In addition to slow demand from the power sector, the state-owned coal companies have found the World Bank terms impossible to meet. The favourable debt market in India has come to their aid but even this will not enable the quality of coal to be improved for use in many power plants. The Maharashtra State Electricity Board has called for the formation of a joint venture with the private sector to explore for and supply quality coal. 1 photo.

  6. Imported coal remains flexible

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, F.

    1982-01-01

    The new law on coal tariff quotas is one year old. During this period hard coal imports increased by 1 million tons, in spite of the slowed down economic activities and the wait-and-see attitude of consumers. The author gives a first survey.

  7. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  8. Mechanochemical hydrogenation of coal

    Science.gov (United States)

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  9. COAL USE REPORT

    Science.gov (United States)

    The world's coal reserves have been estimated to be about one exagram accessible with current extraction technology. The energy content has been valued at 290 zettajourles. Using a value of 15 terawatt as the current global energy consumption, the coal supply could global needs f...

  10. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  11. The renaissance of coal

    International Nuclear Information System (INIS)

    Schernikau, Lars

    2013-01-01

    There is hardly another energy resource where public opinion and reality lie as far apart as they do for coal. Many think of coal as an inefficient relic from the era of industrialisation. However, such views underestimate the significance of this energy resource both nationally and globally. In terms of global primary energy consumption coal ranks second behind crude oil, which plays a central role in the energy sector. Since global electricity use is due to rise further, coal, being the only energy resource that can meet a growing electricity demand over decades, stands at the beginning of a renaissance, and does so also in the minds of the political leadership. Coal is indispensable as a bridging technology until the electricity demand of the world population can be met primarily through renewable resources.

  12. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  13. Bed bug deterrence

    Directory of Open Access Journals (Sweden)

    Haynes Kenneth F

    2010-09-01

    Full Text Available Abstract A recent study in BMC Biology has determined that the immature stage of the bed bug (the nymph signals its reproductive status to adult males using pheromones and thus avoids the trauma associated with copulation in this species. The success of this nymphal strategy of deterrence is instructive. Against the background of increasing problems with bed bugs, this research raises the question whether pheromones might be used to control them. See research article http://www.biomedcentral.com/1741-7007/8/121

  14. Coal technology program progress report for January 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-03-01

    Block pyrolysis experiments were begun utilizing eastern bituminous coal from the Pricetown, West Virginia area. Results are significantly different from those obtained in past experiments with western subbituminous coals. Studies of liquid mixing in coal-solvent hydrogenation reactors continued as part of the Coal-Solvent-Hydrogen Mixing project. A series of residence-time, liquid hold-up, and pressure drop measurements was completed for air and clean water flowing cocurrently upward through a bed packed with 4-mm-diam glass spheres. The piping and pressure vessel project has experimental work in progress to determine the effects of heat treatment of 2 1/4 Cr--1 Mo plate. A FY 1977 work statement for inspection techniques for wear- and process-resistant coatings was completed. Experimental deposition of Alloy 20 cladding on carbon and low-alloy steels, and testing for cracking and microfissuring is in progress. An eddy current inspection system has been designed and fabricated and will be used for the inspection of the surveillance test tubes previously subjected to a 500-hr exposure in a fluidized bed coal combustor environment. In the gas-fired potassium boiler work, the parametric cycle analysis of the plant and the analysis of the metal vapor turbine designs for the fluidized-bad, coal-fired, alkali-metal-vapor topping cycle project was completed. Engineering studies and technical support continued with work on process modeling, the process research digest, a survey of industrial equipment capabilities, and s study of large air separation plants. An information assessment on landfill storage of coal conversion solid wastes is complete and final editing is underway.

  15. Cleat development in coals of the Upper Cretaceous Mesaverde Formation, Pilot Butte area, Wind River Reservation, Wyoming

    Science.gov (United States)

    Johnson, R.C.; Clark, A.C.; Szmajter, R.J.

    1993-01-01

    The cleat system developed in low-rank (mean viltrinite reflectance of 0.43 to 0.5 percent) coal beds in the Upper Cretaceous Mesaverde Formation was studied in outcrop and in coreholes drilled for coalbed methane evaluation near Pilot Butte in the central part of the Wind River Reservation. Cleats are the principal permeability pathway for fluids in coal beds. As a result, coalbed gas cannot be economically produced without significant cleat development. Two drillholes about 800 ft (244 m) apart encountered Mesaverde coal beds at depths ranging from 307 to 818 ft (93.6 to 249.3 m). One of the coal beds penetrated while drilling, the lowest coal in the Mesaverde coaly interval, is well exposed about a mile south of the two drillholes and the cleat development in this coal bed on outcrop was compared with that of the same coal in the drillholes.The 3 in (7.62 cm) diameter core is less than ideal for this study because cleat spacing in low-rank coals such as these typically averages greater than 7.62 cm. Nonetheless, face cleats at spacing of from 0.25 to 2.5 cm was observed in many of the coal beds. Cleats were less well-developed in other coal beds and no cleats were observed in a few beds. As expected, butt cleats were somewhat less well-developed than the face cleats. Attempts to relate cleat spacing to gas content, bed thickness, and ash content were not successful. A 3.0 m by 1.8 m area of the upper surface of the coal bed exposed a mile south of the drillsites was cleaned off and studied in detail. Cleat development in this limited study area varied from well-developed face and butt cleats in some places to few or no cleats in others. Face cleats trended roughly perpendicular to the fold axis of the nearby Pilot Butte anticline. Cleats did not penetrate a 2.5 cm thick carbonaceous shale bed about 20 cm above the base of the coal bed indicating that thin carbonaceous shale beds will act a permeability barriers. Two types of face cleats were observed on outcrop

  16. The Safety of Hospital Beds

    Science.gov (United States)

    Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K.; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients’ ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients’ use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated. PMID:28462302

  17. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    Science.gov (United States)

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  18. Bioenergy originating from biomass combustion in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Crujeira, T.; Gulyurtlu, I.; Lopes, H.; Abelha, P.; Cabrita, I. [INETI/DEECA, Lisboa (Portugal)

    2008-07-01

    Bioenergy could significantly contribute to reducing and controlling greenhouse emissions (GHG) and to replace fossil fuels in large power plants. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply chain of biomass in most European countries. In addition, there are also technical barriers as requirements of biomass combustion may differ from those of coal, which could mean significant retrofitting of existing installations. The combustion behaviour of different biomass materials were studied on a pilot fluidised bed combustor, equipped with two cyclones for particulate matter removal. The gaseous pollutants leaving the stack were sampled under isokinetic conditions for particulate matter, chlorine compounds, heavy metals and dioxins and furans (PCDD/F). The results obtained indicated that the combustion of these materials did not present any operational problem, although for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass materials studied. Most of the combustion of biomass, contrary to what is observed for coal, takes place in the riser where the temperature was as much as 150{sup o}C above that of the bed. Stable combustion conditions were achieved as well as high combustion efficiency. When compared with the emissions of bituminous coal, the most used fossil fuel, the emissions of CO and SO2 were found to be lower and NOx emissions were similar to those of coal. HCl and PCDD/F could be considerable with biomasses containing high chlorine levels, as in the case of straw. It was observed that the nature of ash could give rise serious operating problems.

  19. ONCE GRAND, NOW FORGOTTEN: WHAT DO WE KNOW ABOUT THE SUPERHIGH-ORGANIC-SULPHUR RAŠA COAL?

    Directory of Open Access Journals (Sweden)

    Gordana Medunić

    2016-10-01

    Full Text Available The Istrian coal mines, located in the eastern part of the Istrian Peninsula (Northern Adriatic Sea, Croatia had by far the most important and economically the most valuable deposits of the anthracite coal reserves in Croatia since the 18th century until the year 1999, when their excavation and use in the coal-fired power plant Plomin ceased. The coal is found within the Palaeocene Kozina limestone beds. Four coal basins, Karojba, Sveti Martin, Pićan, and the Labin basin, hosted seven coal mines, e.g. Tupljak, Potpićan, Kozljak, Štrmac, Raša, Ripenda, and Krapan. The coal has been generally known under the name of Raša coal. It is exceptional in world terms due to its high content of organic sulphur, which can be up to 14%. Herewithin, this paper reviews Croatian scientific publications devoted to various aspects of Raša coal, along with the most important publications on either similar coals or relevant subjects worldwide. A brief introduction deals with the role of coal in electricity production, and the history of coal mining in Istria. The following chapter summarises current knowledge of the coal sulphur geochemistry, with several examples of high-sulphur coals from India and China. It is followed by the geological, geochemical, and physical characterisation of Raša coal. Since perturbations to ecosystems caused by coal combustion have been documented in numerous papers from a number of countries, Croatian studies carried out to determine the impact of Raša coal combustion on the local environment are also presented.

  20. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Science.gov (United States)

    Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O'Keefe, J.M.K.

    2009-01-01

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1??wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.

  1. Research, development, demonstration, and early deployment policies for advanced-coal technology in China

    International Nuclear Information System (INIS)

    Zhao Lifeng; Gallagher, Kelly Sims

    2007-01-01

    Advanced-coal technologies will increasingly play a significant role in addressing China's multiple energy challenges. This paper introduces the current status of energy in China, evaluates the research, development, and demonstration policies for advanced-coal technologies during the Tenth Five-Year Plan, and gives policy prospects for advanced-coal technologies in the Eleventh Five-Year Plan. Early deployment policies for advanced-coal technologies are discussed and some recommendations are put forward. China has made great progress in the development of advanced-coal technologies. In terms of research, development, and demonstration of advanced-coal technologies, China has achieved breakthroughs in developing and demonstrating advanced-coal gasification, direct and indirect coal liquefaction, and key technologies of Integrated Gasification Combined Cycle (IGCC) and co-production systems. Progress on actual deployment of advanced-coal technologies has been more limited, in part due to insufficient supporting policies. Recently, industry chose Ultra Super Critical (USC) Pulverized Coal (PC) and Super Critical (SC) PC for new capacity coupled with pollution-control technology, and 300 MW Circulating Fluidized Bed (CFB) as a supplement

  2. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    International Nuclear Information System (INIS)

    Belkin, Harvey E.; Tewalt, Susan J.; Hower, James C.; Stucker, J.D.; O'Keefe, J.M.K.

    2009-01-01

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1 wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential. (author)

  3. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  4. Development of economical and high efficient desulfurization process using low rank coal; Teitankadotan wo mochiita ankana kokoritsu datsuryuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takarada, Y.; Kato, K.; Kuroda, M.; Nakagawa, N. [Gunma University, Gunma (Japan). Faculty of Engineering; Roman, M. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    Experiment reveals the characteristics of low rank coal serving as a desulfurizing material in fluidized coal bed reactor with oxygen-containing functional groups exchanged with Ca ions. This effort aims at identifying inexpensive Ca materials and determining the desulfurizing characteristics of Ca-carrying brown coal. A slurry of cement sludge serving as a Ca source and low rank coal is agitated for the exchange of functional groups and Ca ions, and the desulfurizing characteristics of the Ca-carrying brown coal is determined. The Ca-carrying brown coal and high-sulfur coal char is mixed and incinerated in a fluidized bed reactor, and it is found that a desulfurization rate of 75% is achieved when the Ca/S ratio is 1 in the desulfurization of SO2. This rate is far higher than the rate obtained when limestone or cement sludge without preliminary treatment is used as a desulfurizer. Next, Ca-carrying brown coal and H2S are caused to react upon each other in a fixed bed reactor, and then it is found that desulfurization characteristics are not dependent on the diameter of the Ca-carrying brown coal grain, that the coal is different from limestone in that it stays quite active against H2S for long 40 minutes after the start of the reaction, and that CaO small in crystal diameter is dispersed in quantities into the char upon thermal disintegration of Ca-carrying brown coal to cause the coal to say quite active. 5 figs.

  5. Bed Prism Spectacles

    Science.gov (United States)

    Ribeiro, Jair Lúcio Prados

    2018-01-01

    We only became aware of the existence of bed prism spectacles when a student brought them to the classroom and asked us about how they work. The device proved to be a fertile source of curiosity among the students, and, to be properly understood, it required us to develop a comparison between reflection in a typical mirror and total internal…

  6. Practice Hospital Bed Safety

    Science.gov (United States)

    ... the mattress end Subscribe: FDA Consumer Health Information "Hospital beds are found in nearly all patient care settings or environments," says Joan Ferlo Todd, RN, a senior nurse-consultant at the Food and Drug Administration’s (FDA) Center for Devices and Radiological Health (CDRH). " ...

  7. Evaluation of coal bed methane potential of coal seams of Sawang ...

    Indian Academy of Sciences (India)

    Journal of Earth System Science. Current Issue : Vol. 126, Issue 8 · Current Issue Volume 126 | Issue 8. December 2017. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  8. Minimum rate of spouting and peak pressure-drop in a spouted bed