WorldWideScience

Sample records for tidal wind oscillations

  1. Tidal analysis of Met rocket wind data

    Science.gov (United States)

    Bedinger, J. F.; Constantinides, E.

    1976-01-01

    A method of analyzing Met Rocket wind data is described. Modern tidal theory and specialized analytical techniques were used to resolve specific tidal modes and prevailing components in observed wind data. A representation of the wind which is continuous in both space and time was formulated. Such a representation allows direct comparison with theory, allows the derivation of other quantities such as temperature and pressure which in turn may be compared with observed values, and allows the formation of a wind model which extends over a broader range of space and time. Significant diurnal tidal modes with wavelengths of 10 and 7 km were present in the data and were resolved by the analytical technique.

  2. CFD for wind and tidal offshore turbines

    CERN Document Server

    Montlaur, Adeline

    2015-01-01

    The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

  3. The influence of tidal straining and wind on suspended matter and phytoplankton distribution in the Rhine outflow region

    DEFF Research Database (Denmark)

    Joordens, J.C.A.; Souza, A.J.; Visser, Andre

    2001-01-01

    kinetic energy, TKE), the system was dominated by tidal straining that resulted in semi-diurnal oscillations in stratification. Phytoplankton was kept in resuspension at about 10-15 m depth. Subsequent strong wind and tidal mixing (high TKE) broke down stratification, enhanced horizontal gradients...

  4. Wind, Wave, and Tidal Energy Without Power Conditioning

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  5. Vertical propagation characteristics and seasonal variability of tidal wind oscillations in the MLT region over Trivandrum (8.5° N, 77° E: first results from SKiYMET Meteor Radar

    Directory of Open Access Journals (Sweden)

    M. N. Sasi

    2006-11-01

    Full Text Available Tidal activity in the Mesospheric Lower Thermosphere (MLT region over Trivandrum (8.5° N, 77° E is investigated using the observations from newly installed SKiYMET Meteor Radar. The seasonal variability and vertical propagation characteristics of atmospheric tides in the MLT region are addressed in the present communication. The observations revealed that the diurnal tide is more prominent than the semi/terdiurnal components over this latitude. It is also observed that the amplitudes of meridional components are stronger than that of zonal ones. The amplitude and phase structure shows the vertical propagation of diurnal tides with vertical wavelength of ~25 km. However, the vertical wavelength of the semidiurnal tide showed considerable variations. The vertical propagation characteristics of the terdiurnal tide showed some indications of their generating mechanisms. The observed features of tidal components are compared with Global Scale Wave Model (GSWM02 values and they showed a similar amplitude and phase structure for diurnal tides. Month-to-month variations in the tidal amplitudes have shown significant seasonal variation. The observed seasonal variation is discussed in light of the variation in tidal forcing and dissipation.

  6. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  7. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  8. Planetary and tidal wave-type oscillations in the ionospheric sporadic E layers over Tehran region

    Science.gov (United States)

    Karami, K.; Ghader, S.; Bidokhti, A. A.; Joghataei, M.; Neyestani, A.; Mohammadabadi, A.

    2012-04-01

    It is believed that in the lower ionosphere, particularly in the ionospheric sporadic E (Es) layers (90-130 km), the planetary and tidal wave-type oscillations in the ionized component indicate the planetary and tidal waves in the neutral atmosphere. In the present work, the presence of wave-type oscillations, including planetary and tidal waves in the ionospheric sporadic E layers over Tehran region is examined. Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran, from July 2006 to June 2007 are used to investigate seasonal variations of planetary and tidal waves activities. For the purpose of accurate comparison between different seasons, wavelet transform is applied to time series of foEs and h‧Es, namely, the critical frequency and virtual height of Es layers, respectively. The results show that the sporadic E layers over Tehran region are strongly under the influence of upward propagation of waves from below. More specifically, among diverse range of periodicities in the sporadic E layers, we found that diurnal (24 hours) and semidiurnal (12 hours) oscillations in all seasons for both parameters. Moreover, terdiurnal (8 hours) tide-like variation is observed during spring and summer for foEs parameter and summer and winter for h‧Es. Furthermore, the results show that diurnal tidal waves obtain their maximum activities during autumn and winter seasons, and their activities decrease during the late spring and summer. In addition, periods of about 2, 4, 6, 10, 14, and 16 days in our observation verifies the hypothesis of upward propagation of planetary waves from lower atmosphere to the ionosphere. Moreover, planetary waves have their maximum activities during equinox.

  9. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  10. U.S. Hail Frequency and the Global Wind Oscillation

    Science.gov (United States)

    Gensini, Vittorio A.; Allen, John T.

    2018-02-01

    Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.

  11. Use of Roche coordinates in the problems of small oscillations of tidally-distorted stellar models. II

    International Nuclear Information System (INIS)

    Mohan, C.; Singh, V.P.

    1979-01-01

    Kopal's method of Roche coordinates used by the authors in an earlier paper (Mohan and Singh, 1978) to study the problems of small oscillations of tidally-distorted stars has been extended further to take into account the effect of second-order terms in tidal distortion. The results show that the effect of including terms of second order of smallness in tidal distortion in the metric coefficients of the Roche coordinates of tidally distroted stars is quite significant, especially in case of stars with extended envelopes and (or) larger values of the companion star producing tidal distortion. Some of the models which were earlier found stable against small perturbations now become dynamically unstable with the inclusion of the terms of second order of smallness in tidal effects. (Auth.)

  12. Tidal signatures of the thermospheric mass density and zonal wind at midlatitude: CHAMP and GRACE observations

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2015-02-01

    Full Text Available By using the accelerometer measurements from CHAMP and GRACE satellites, the tidal signatures of the thermospheric mass density and zonal wind at midlatitudes have been analyzed in this study. The results show that the mass density and zonal wind at southern midlatitudes are dominated by a longitudinal wave-1 pattern. The most prominent tidal components in mass density and zonal wind are the diurnal tides D0 and DW2 and the semidiurnal tides SW1 and SW3. This is consistent with the tidal signatures in the F region electron density at midlatitudes as reported by Xiong and Lühr (2014. These same tidal components are observed both in the thermospheric and ionospheric quantities, supporting a mechanism that the non-migrating tides in the upper atmosphere are excited in situ by ion–neutral interactions at midlatitudes, consistent with the modeling results of Jones Jr. et al. (2013. We regard the thermospheric dynamics as the main driver for the electron density tidal structures. An example is the in-phase variation of D0 between electron density and mass density in both hemispheres. Further research including coupled atmospheric models is probably needed for explaining the similarities and differences between thermospheric and ionospheric tidal signals at midlatitudes.

  13. Enhanced winds and tidal streams in massive X-ray binaries

    International Nuclear Information System (INIS)

    Blondin, J.M.; Stevens, I.R.; Kallman, T.R.

    1991-01-01

    The tidal effects created by the presence of a compact companion are expected to induce a stream of enhanced wind from the early-type primary star in massive X-ray binary systems. In this paper, two-dimensional gasdynamical simulations of such streams are presented. It is found that the wind enhancement is a sensitive function of the binary separation, and develops into a tidal stream as the primary approaches its critical surface. For typical system parameters, the Coriolis force deflects the stream sufficiently that it does not impact directly on the compact companion but passes behind it. The density in the stream can reach values of 20-30 times the ambient wind density, leading to strong attenuation of the X-ray flux that passes through the tidal stream, providing a possible explanation of the enhanced absorption events seen at later phases in the X-ray observations of massive X-ray binary systems such as Vela X-1. In contrast to the time-variable accretion wake, the tidal stream is relatively stationary, producing absorption features that should remain fixed from orbit to orbit. For systems with a strong tidal stream, the large asymmetry in the accreting wind results in the accretion of angular momentum of constant sign, as opposed to systems without streams, where the sign of the accreted angular momentum can change. 39 refs

  14. Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    1997-09-01

    Full Text Available Latent heat release associated with tropical deep convective activity is investigated as a source for migrating (sun-synchronous diurnal and semidiurnal tidal oscillations in the 80–150-km height region. Satellite-based cloud brightness temperature measurements made between 1988 and 1994 and averaged into 3-h bins are used to determine the annual- and longitude-average local-time distribution of rainfall rate, and hence latent heating, between ±40° latitude. Regional average rainfall rates are shown to be in good agreement with climatological values derived from surface rain gauge data. A global linearized wave model is used to estimate the corresponding atmospheric perturbations in the mesosphere/lower thermosphere (80–150 km resulting from upward-propagating tidal components excited by the latent heating. The annual-average migrating diurnal and semidiurnal components achieve velocity and temperature amplitudes of order 10–20 m s–1 and 5–10 K, respectively, which represent substantial contributions to the dynamics of the region. The latent heat forcing also shifts the phase (local solar time of maximum of the semidiurnal surface pressure oscillation from 0912 to 0936 h, much closer to the observed value of 0944 h.

  15. Advantages on monitoring wind turbine nacelle oscillation

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun Saptohartyadi; Hilmisson, Reynir

    2015-01-01

    and vibrations on blades, tower and drive train components, which may jeopardize their working condition. The present paper deals with the comparison and analysis of vibration signals from wind turbines subjected to various failure modes and operating conditions, such as blade misalignment, pitch malfunction...

  16. Power Oscillation Damping Controller for Wind Power Plant Utilizing Wind Turbine Inertia as Energy Storage

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj

    2011-01-01

    For a wind power plant (WPP) the upper limit for active power output is bounded by the instantaneous wind conditions and therefore a WPP must curtail its power output when system services with active power are delivered. Here, a power oscillation damping controller (POD) for WPPs is presented...... that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....

  17. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  18. Analysis of Oscillations in a Cableway: Wind Load Effects

    Directory of Open Access Journals (Sweden)

    Jan Gustincic

    2013-06-01

    Full Text Available The purpose of this paper is to develop and investigate a non-linear model for analysing the reaction of a self-detachable cabin monocable ropeway exposed to a sudden deceleration and wind forces. The First and Second Newton's Law and Differential Equations are the basic tools for building the model. Furthermore a few basic considerations have been made about the air “dragging and lifting" forces that induce oscillations and vibrations in mechanical systems alike. All the numerical data used for the simulation was taken from a ropeway in the skiing site of Ravascletto-Zoncolan in the North- East of Italy.

  19. Analysis of Disturbance Source Inducing by The Variable Speed Wind Turbine System Forced Power Oscillations

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2015-01-01

    The main focus of forced low frequency oscillations is to analyze the disturbance source and the origin of forced oscillations. In this paper, the origin of low-frequency periodical oscillations induced by wind turbines’ mechanical power is investigated and the mechanism is studied of fluctuating...... power transfer through permanent magnet generator wind turbine system. Considering the tower shadow and the wind shear effect, the mechanical and generator coupling model is developed by PSCAD. Simulation is done to analyze the impacts on output power of operation points and mechanical fluctuation...... components. It is shown that when the oscillation frequency of tower shadow coincides with the system natural frequency, it may cause forced oscillations, whereas, the wind shear and natural wind speed fluctuation are not likely to induce forced oscillations....

  20. On Using Wind Speed Preview to Reduce Wind Turbine Tower Oscillations

    DEFF Research Database (Denmark)

    Kristalny, Maxim; Madjidian, Daria; Knudsen, Torben

    2013-01-01

    We investigate the potential of using previewed wind speed measurements for damping wind turbine fore-aft tower oscillations. Using recent results on continuous-time H 2 preview control, we develop a numerically efficient framework for the feedforward controller synthesis. One of the major benefits...... characteristics on the achievable performance and on the required length of preview. We demonstrate the importance of accounting for the distortion in the controller synthesis and quantify the potential benefits of using previewed information by means of simulations based on real-world turbine data....

  1. Drive-train condition monitoring for offshore wind and tidal turbines

    DEFF Research Database (Denmark)

    Roshanmanesh, Sanaz; Hayati, Farzad; Kappatos, Vassilios

    are subject to several damage mechanisms which may lead to various failure modes including gear teeth damage, cracking of the gearbox case, shaft misalignment, wear or looseness of torque arm, loss of lubricant in lubrication system, bearing damage and shaft failure. This paper presents an experimental...... investigation assessing the effectiveness of Acoustic Emission (AE) and vibration analysis (VA) in identifying different types of faults in wind and tidal turbine drive-trains. Additionally the application of advanced signal processing techniques, such as Spectral Kurtosis (SK) and wavelet analysis have been...

  2. Cyclic PaO2 oscillations assessed in the renal microcirculation: correlation with tidal volume in a porcine model of lung lavage.

    Science.gov (United States)

    Thomas, Rainer; Möllmann, Christian; Ziebart, Alexander; Liu, Tanghua; David, Matthias; Hartmann, Erik K

    2017-07-11

    Oscillations of the arterial partial pressure of oxygen induced by varying shunt fractions occur during cyclic alveolar recruitment within the injured lung. Recently, these were proposed as a pathomechanism that may be relevant for remote organ injury following acute respiratory distress syndrome. This study examines the transmission of oxygen oscillations to the renal tissue and their tidal volume dependency. Lung injury was induced by repetitive bronchoalveolar lavage in eight anaesthetized pigs. Cyclic alveolar recruitment was provoked by high tidal volume ventilation. Oscillations of the arterial partial pressure of oxygen were measured in real-time in the macrocirculation by multi-frequency phase fluorimetry and in the renal microcirculation by combined white-light spectrometry and laser-Doppler flowmetry during tidal volume down-titration. Significant respiratory-dependent oxygen oscillations were detected in the macrocirculation and transmitted to the renal microcirculation in a substantial extent. The amplitudes of these oscillations significantly correlate to the applied tidal volume and are minimized during down-titration. In a porcine model oscillations of the arterial partial pressure of oxygen are induced by cyclic alveolar recruitment and transmitted to the renal microcirculation in a tidal volume-dependent fashion. They might play a role in organ crosstalk and remote organ damage following lung injury.

  3. A review of recent studies on the mechanisms and analysis methods of sub-synchronous oscillation in wind farms

    Science.gov (United States)

    Wang, Chenggen; Zhou, Qian; Gao, Shuning; Luo, Jia; Diao, Junchao; Zhao, Haoran; Bu, Jing

    2018-04-01

    This paper reviews the recent studies of Sub-Synchronous Oscillation(SSO) in wind farms. Mechanisms and analysis methods are the main concerns of this article. A classification method including new types of oscillation occurred between wind farms and HVDC systems and oscillation caused by Permanent Magnet Synchronous Generators(PMSG) is proposed. Characteristics of oscillation analysis techniques are summarized.

  4. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    Science.gov (United States)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  5. TIDALLY ENHANCED STELLAR WIND: A WAY TO MAKE THE SYMBIOTIC CHANNEL TO TYPE Ia SUPERNOVA VIABLE

    International Nuclear Information System (INIS)

    Chen, X.; Han, Z.; Tout, C. A.

    2011-01-01

    In the symbiotic (or WD+RG) channel of the single-degenerate scenario for type Ia supernovae (SNe Ia), the explosions occur a relatively long time after star formation. The birthrate from this channel would be too low to account for all observed SNe Ia were it not for some mechanism to enhance the rate of accretion on to the white dwarf. A tidally enhanced stellar wind, of the type which has been postulated to explain many phenomena related to giant star evolution in binary systems, can do this. Compared to mass stripping, this model extends the space of SNe Ia progenitors to longer orbital periods and hence increases the birthrate to about 0.0069 yr -1 for the symbiotic channel. Two symbiotic stars, T CrB and RS Oph, considered to be the most likely progenitors of SNe Ia through the symbiotic channel, are well inside the period-companion mass space predicted by our models.

  6. A spectral study of the mid-latitude sporadic E layer characteristic oscillations comparable to those of the tidal and the planetary waves

    Science.gov (United States)

    Pignalberi, A.; Pezzopane, M.; Zuccheretti, E.

    2015-01-01

    In this paper different spectral analyses are employed to investigate the tidal and planetary wave periodicities imprinted in the following two main characteristics of the sporadic E (Es) layer: the top frequency (ftEs) and the lowest virtual height (h‧Es). The study is based on ionograms recorded during the summertime of 2013, and precisely in June, July, August and September, by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. It was confirmed that the diurnal and semidiurnal atmospheric tides play a fundamental role in the formation of the mid-latitude Es layers, acting through their vertical wind-shear forcing of the long-living metallic ions in the lower thermosphere, and at the same time it was found that the planetary atmospheric waves might affect the Es layers acting through their horizontal wind-shear forcing with periods close to the normal Rossby modes, that is 2, 5, 10 and 16 days. The wavelet analysis shows also that the ftEs and h‧Es tidal oscillations undergo a strong amplitude modulation with periods of several days and with important differences between the two parameters. This amplitude modulation, characterizing markedly the first thirty days of the ftEs spectrogram, suggests that Es layers are affected indirectly by planetary waves through their nonlinear interaction with the atmospheric tides at lower altitudes. This study wants to be a continuation of the Haldoupis et al. (2004) work in order to verify their results for the foEs characteristic and on the other hand to extend the study also to the h‧Es characteristic not yet shown so far. Anyhow, the study confirms that ionosonde data, especially those registered in summertime, represent a powerful tool for studying tidal and planetary waves properties and their climatology in the mesosphere-low-thermosphere region.

  7. Effect of full converter wind turbines on inter-area oscillation of power systems

    DEFF Research Database (Denmark)

    Askari, Hanieh Hajizadeh; Hashemi Toghroljerdi, Seyedmostafa; Eriksson, Robert

    2015-01-01

    By increasing in the penetration level of wind turbines, the influence of these new added generation units on the power system oscillations specifically inter-area oscillations has to be thoroughly investigated. In this paper, the impact of increasing in the penetration of full rate converter wind...... turbines (FRC-WTs) on the inter-area oscillations of power system is examined. In order to have a comprehensive evaluation of the effects of FRC-WT on the inter-area oscillations, different scenarios associated with the wind power penetration levels, wind farm locations, strength of interconnection line......, and different operating conditions of synchronous generators are investigated. The synchronous generators, exciter systems and power system stabilizers (PSSs) as well as the FRC-WT grid-side converter and its related controllers are modelled in detail in Matlab in order to evaluate the effects of FRC...

  8. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  9. General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Ping Ju

    2016-07-01

    Full Text Available According to the monitoring of the wide area measurement system, inter-area oscillations happen more and more frequently in a real power grid of China, which are close to the forced oscillation. Applying the conventional forced oscillation theory, the mechanism of these oscillations cannot be explained well, because the oscillations vary with random amplitude and a narrow frequency band. To explain the mechanism of such oscillations, the general forced oscillation (GFO mechanism is taken into consideration. The GFO is the power system oscillation excited by the random excitations, such as power fluctuations from renewable power generation. Firstly, properties of the oscillations observed in the real power grid are analyzed. Using the GFO mechanism, the observed oscillations seem to be the GFO caused by some random excitation. Then the variation of the wind power measured in this power gird is found to be the random excitation which may cause the GFO phenomenon. Finally, simulations are carried out and the power spectral density of the simulated oscillation is compared to that of the observed oscillation, and they are similar with each other. The observed oscillation is thus explained well using the GFO mechanism and the GFO phenomenon has now been observed for the first time in real power grids.

  10. Peculiarities of the thermal regime of the Russian plain depending on tidal oscillation Earth rotation speed

    Science.gov (United States)

    Akimov, L. M.

    2018-01-01

    Typification of fields of anomaly of temperature in the central part of East European Plain depending on the main phases of the Moon taking into account these tidal fluctuations of speed of rotation of Earth is presented. The main regularities of spatial distribution of anomaly of temperature in December are revealed. The opposite dependence of distribution of anomaly of temperature on antiphases of the Moon is established.

  11. Tidal modulation of temperature oscillations monitored in borehole Yaxcopoil-1 (Yucatán, Mexico)

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Bodri, L.; Šafanda, Jan

    2009-01-01

    Roč. 282, č. 1-4 (2009), s. 131-139 ISSN 0012-821X R&D Projects: GA AV ČR(CZ) IAA300120603; GA ČR(CZ) GA205/06/1181 Institutional research plan: CEZ:AV0Z30120515 Keywords : temperature monitoring * borehole convection * tidal forcing * recurrence quantification interval * (RQI) analysis * histograms cumulation technique Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.062, year: 2009

  12. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  13. Metabolic regulatory oscillations in intertidal green seaweed Ulva lactuca against tidal cycles.

    Science.gov (United States)

    Gupta, Vishal; Kushwaha, Hemant R

    2017-11-27

    The survival of wetland plant species largely relies on physiological adaptations essential for submergence and desiccation. Intertidal seaweeds, unlike terrestrial plants, have unique adaptations to submergence and can also sustain desiccation arising from tidal rhythms. This study determined the differential metabolic regulations in the inter-tidal seaweed species Ulva lactuca against the submergence and desiccation. During desiccation, the relative water content of the algal thalli declined with concomitant increase in reactive oxygen species (ROS) and lipid peroxidation. Nevertheless, the trends reversed during recovery on re-submergence and attained homeostasis. Metabolite profiling of U. lactuca revealed desiccation induced balance in energy reserve utilization by adjusting carbohydrate metabolism and switch over to ammonia metabolism. Upon re-submergence, thalli showed an increase in fermentative metabolites, pyruvate-alanine conversion, and the GABA shunt. Prolonged submergence induced substrate level phosphorylation mediated sugar biosynthesis while continuing the alternative carbon flux through fermentative metabolism, an increase in osmoprotectants glycine and betaine, sulfur bearing compounds cysteine and hypotaurine, and phenolic compound coniferaldehyde. The determined metabolic regulations in U. lactuca for submergence tolerance provide insights into potential evolutionarily conserved protective mechanisms across the green lineage and also highlights the possible role of sulfur oxoforms as strong free radical scavengers.

  14. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    Science.gov (United States)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  15. Effects of discharge, wind, and tide on sedimentation in a recently restored tidal freshwater wetland

    NARCIS (Netherlands)

    Verschelling, Eelco; van der Deijl, Eveline; van der Perk, Marcel; Sloff, C.J.; Middelkoop, Hans

    2017-01-01

    Sediment deposition is one of the key mechanisms to counteract the impact of sea level rise in tidal freshwater wetlands (TFWs). However, information about sediment deposition rates in TFWs is limited, especially for those located in the transition zone between the fluvially dominated and tidally

  16. Effects of discharge, wind, and tide on sedimentation in a recently restored tidal freshwater wetland

    NARCIS (Netherlands)

    Verschelling, Eelco; van der Deijl, Eveline; van der Perk, Marcel; Sloff, Kees; Middelkoop, Hans

    2017-01-01

    Sediment deposition is one of the key mechanisms to counteract the impact of sea level rise in tidal freshwater wetlands (TFWs). However, information about sediment deposition rates in TFWs is limited, especially for those located in the transition zone between the fluvially dominated and tidally

  17. Detection of Excessive Wind Turbine Tower Oscillations Fore-Aft and Sideways

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas; Tabatabaeipour, Seyed Mojtaba

    2012-01-01

    Fatigue loads are important for the overall cost of energy from a wind turbine. Loading on the tower is one of the more important loads, as the tower is an expensive component. Consequently, it is important to detect tower loads, which are larger than necessary. This paper deals with both fore......-aft and sideways tower oscillations. Methods for estimation of the amplitude and detection of the cause for vibrations are developed. Good results are demonstrated for real data from modern multi mega watt turbines. It is shown that large oscillations can be detected and that the method can discriminate between...... wind turbulence and unbalanced rotor....

  18. The influence of tidal winds in the formation of blanketing sporadic e-layer over equatorial Brazilian region

    Science.gov (United States)

    Resende, Laysa Cristina Araujo; Batista, Inez Staciarini; Denardini, Clezio Marcos; Batista, Paulo Prado; Carrasco, Alexander José; Andrioli, Vânia Fátima; Moro, Juliano

    2018-06-01

    This work analysis the blanketing sporadic layers (Esb) behavior over São Luís, Brazil (2° 31‧ S, 44° 16‧ W, dip: -4.80) which is classified as a transition region between equatorial and low-latitude. Hence, some peculiarities can appear as Esb occurrence instead of the common Esq, which is a non-blanketing irregularity layer. The analysis presented here was obtained using a modified version of a theoretical model for the E region (MIRE), which computes the densities of the metallic ions (Fe+ and Mg+) and the densities of the main molecular ions (NO+, O2+, N2+) by solving the continuity and momentum equations for each one of them. In that model, the Es layer physics driven by both diurnal and semidiurnal tidal winds are taken into account and it was extended in height coverage by adding a novel neutral wind model derived from the all-sky meteor radar measurements. Thus, we provide more trustworthy results related to the Es layer formation in the equatorial region. We verified the contribution of each tidal wind component to the Esb layer formation in this equatorial region. Additionally, we compared the Es layer electron density computed by MIRE with the data obtained by using the blanketing frequency parameter (fbEs) deduced from ionograms. The results show that the diurnal component of the tidal wind is more important in the Esb layer formation whereas the semidiurnal component has a little contribution in our simulations. Finally, it was verified that the modified MIRE presented here can be used to study the Esb layers occurrence over the equatorial region in the Brazilian sector.

  19. An Analysis of Decentralized Demand Response as Frequency Control Support under CriticalWind Power Oscillations

    Directory of Open Access Journals (Sweden)

    Jorge Villena

    2015-11-01

    Full Text Available In power systems with high wind energy penetration, the conjunction of wind power fluctuations and power system inertia reduction can lead to large frequency excursions, where the operating reserves of conventional power generation may be insufficient to restore the power balance. With the aim of evaluating the demand-side contribution to frequency control, a complete process to determine critical wind oscillations in power systems with high wind penetration is discussed and described in this paper. This process implies thousands of wind power series simulations, which have been carried out through a validated offshore wind farm model. A large number of different conditions have been taken into account, such as frequency dead bands, the percentages of controllable demand and seasonal factor influence on controllable loads. Relevant results and statistics are also included in the paper.

  20. Solar wind oscillations with a 1.3 year period

    Science.gov (United States)

    Richardson, John D.; Paularena, Karolen I.; Belcher, John W.; Lazarus, Alan J.

    1994-01-01

    The Interplanetary Monitoring Platform 8 (IMP-8) and Voyager 2 spacecraft have recently detected a very strong modulation in the solar wind speed with an approximately 1.3 year period. Combined with evidence from long-term auroral and magnetometer studies, this suggests that fundamental changes in the Sun occur on a roughly 1.3 year time scale.

  1. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    Science.gov (United States)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  2. Tidal influence on offshore wind fields and resource predictions[Efficient Development of Offshore Windfarms

    Energy Technology Data Exchange (ETDEWEB)

    Khan, D. [Entec UK Ltd., Doherty Innovation Centre, Penicuik (United Kingdom); Infield, D. [Loughborough Univ., Centre for Renewable Energy Systems Tecnology, Loughborough (United Kingdom)

    2002-03-01

    The rise and fall of the sea surface due to tides effectively moves an offshore wind turbine hub through the wind shear profile. This effect is quantified using measured data from 3 offshore UK sites. Statistical evidence of the influence of tide on mean wind speed and turbulence is presented. The implications of this effect for predicting offshore wind resource are outlined. (au)

  3. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  4. Towards a Reactive Power Oscillation Damping Controller for Wind Power Plant Based on Full Converter Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Kumar, Sathess; Thuring, Patrik

    2012-01-01

    In this paper a power oscillation damping controller (POD) based on modulation of reactive power (Q POD) is analyzed where the modular and distributed characteristics of the wind power plant (WPP) are considered. For a Q POD it is essential that the phase of the modulated output is tightly...... contributes to a collective response. This ability is shown with a 150 wind turbine (WT) WPP with all WTs represented, and it is demonstrated that the WPP contributes to the inter-area damping. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power WT....... controlled to achieve a positive damping contribution. It is investigated how a park level voltage, reactive power, and power factor control at different grid strengths interact with the Q POD in terms of a resulting phase shift. A WPP is modular and distributed and a WPP Q POD necessitate that each WT...

  5. Power oscillation damping capabilities of wind power plant with full converter wind turbines considering its distributed and modular characteristics

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen N.; Jensen, Kim H.

    2013-01-01

    Wind power plants (WPP) are for power system stability studies often represented with aggregated models where several wind turbines (WT) are aggregated into a single up-scaled model. The advantage is a reduction in the model complexity and the computational time, and for a number of study types...... aggregation is investigated and it is shown that the level of WPP aggregation only has limited impact on the resulting modal damping. The study is based on a non-linear, dynamic model of the 3.6 MW Siemens Wind Power WT....... the accuracy of the results has been found acceptable. A large WPP is, however, both modular and distributed over a large geographical area, and feasibility of aggregating the WTs, thus, have to be reassessed when new applications are introduced for WPPs. Here, the power oscillation damping capabilities...

  6. Stochastic oscillations induced by vortex shedding in wind

    DEFF Research Database (Denmark)

    Christensen, Claus

    1997-01-01

    As a fluid flows past a circular cylinder,vortices are shed alternately from each side at most values of the Reynolds number. Over a certain range of windspeeds, the periodicity in the wake is synchronized or captured by the mechanical system. The shedding abruptly deviates from the linear Strouhal...... dependence and stays constant at the mechanical natural frequency. This coupling between the velocity field and the motion of the mechanical system is referred to as the lock-in phenomenon. The lock-in phenomenon has importance in structural engineering for slightly damped slender structures exposed to wind...... in the wake is synchronized or captured by the mechanical system. The shedding abruptly deviates from the linear Strouhal dependence and stays constant at the mechanical natural frequency. This coupling between the velocity field and the motion of the mechanical system is referred to as the lock-in phenomenon...

  7. Oscillation Performance and Wide‐area Coordination Control of Power System with Large‐scale Wind Farms

    DEFF Research Database (Denmark)

    Su, Chi

    and residue identification. Simulation results show the effectiveness of this damping controller under different operating conditions of the SSSC. Influence of a direct‐drive‐full‐convertor based wind farm ancillary frequency control and voltage control on power system oscillation performance is investigated...... oscillation mode damping ratio, respectively. The former controller is implemented in individual wind turbines; the latter controller is implemented in the wind farm level as a supplementary damping controller. Finally, the coordinating selection and parameter design strategy for PSS is extended for all types...... to this problem need to be implemented in the power systems. On the other hand, wind power especially largescale wind farms are increasingly integrated into modern power systems and bring new challenges to power system operation and control. The influence of wind power integration on system oscillation...

  8. Studies of Sub-Synchronous Oscillations in Large-Scale Wind Farm Integrated System

    Science.gov (United States)

    Yue, Liu; Hang, Mend

    2018-01-01

    With the rapid development and construction of large-scale wind farms and grid-connected operation, the series compensation wind power AC transmission is gradually becoming the main way of power usage and improvement of wind power availability and grid stability, but the integration of wind farm will change the SSO (Sub-Synchronous oscillation) damping characteristics of synchronous generator system. Regarding the above SSO problem caused by integration of large-scale wind farms, this paper focusing on doubly fed induction generator (DFIG) based wind farms, aim to summarize the SSO mechanism in large-scale wind power integrated system with series compensation, which can be classified as three types: sub-synchronous control interaction (SSCI), sub-synchronous torsional interaction (SSTI), sub-synchronous resonance (SSR). Then, SSO modelling and analysis methods are categorized and compared by its applicable areas. Furthermore, this paper summarizes the suppression measures of actual SSO projects based on different control objectives. Finally, the research prospect on this field is explored.

  9. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Science.gov (United States)

    Moore, Todd W.

    2017-08-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  10. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Science.gov (United States)

    Moore, Todd W.

    2018-06-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  11. Intra-seasonal Oscillations (ISO of zonal-mean meridional winds and temperatures as measured by UARS

    Directory of Open Access Journals (Sweden)

    F. T. Huang

    2005-06-01

    Full Text Available Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI on the UARS spacecraft in the upper mesosphere (95km, persistent and regular intra-seasonal oscillations (ISO with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here on an analysis of concurrent UARS temperature measurements, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55km, their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.

  12. Aerodynamic characteristics of an oscillating airfoil. [For Vertical Axis Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Wickens, R H

    1986-03-01

    Results are reported from wind tunnel tests to study the effects of dynamic aerodynamics on the efficiency of a NACA 0018 airfoil used on a Darreius vertical axis wind turbine (VAWT). The topic is of interest because of uncontrolled pitching which occurs during operation and which produces stall, turbulence and separation effects that reduce efficiency. Present stream-tube theory and axial momentum models are not applicable in the unstable regimes. The wind tunnel tests were conducted with a 45 m/sec flow with an Re of 1.5 million. The situation mimicked typical wind turbine operational conditions. The airfoil was mounted on a hydraulic actuator to allow it to rotate about its quarter-chord location and to control the extent and frequency of oscillations. Data were also gathered on the performance in a steady flow for comparative purposes. Summary data are provided on the static and total pressures over a complete cycle of oscillation, and related to the angles of attack, time of onset of stall, and the lift and drag coefficients. The limitations of the study with regard to the absence of consideration of the flow acceleration experienced by an advancing blade are noted. 13 references.

  13. Compton-heated winds and coronae above accretion disks. II. Instability and oscillations

    International Nuclear Information System (INIS)

    Shields, G.A.; Mckee, C.F.; Lin, D.N.C.; Begelman, M.C.; California Univ., Berkeley; California Univ., Santa Cruz; Colorado Univ., Boulder)

    1986-01-01

    The stability and evolution of windy accretion disks is investigated in detail. The basic disk evolution equations are briefly recapitulated, and an idealized analytic treatment of the wind and viscosity is used to show that steady disk flow is indeed unstable for sufficiently large ratio of the mass loss rate in the wind to the central accretion rate. Numerical solutions for a more realistic and appropriate expression for the mass loss rate and the standard ad hoc alpha model prescription for the viscosity are presented. The application of these results to real systems with Compton-heated winds is discussed, and a general formula for the oscillation period is given. The prediction is compared with observed periodic behavior of Galactic X-ray sources and AGNs. 17 references

  14. Effect of Tower Shadow and Wind Shear in a Wind Farm on AC Tie-Line Power Oscillations of Interconnected Power Systems

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2013-01-01

    This paper describes a frequency domain approach for evaluating the impact of tower shadow and wind shear effects (TSWS) on tie-line power oscillations. A simplified frequency domain model of an interconnected power system with a wind farm is developed. The transfer function, which relates the tie......-line power variation to the mechanical power variation of a wind turbine, and the expression of the maximum magnitude of tie-line power oscillations are derived to identify the resonant condition and evaluate the potential risk. The effects of the parameters on the resonant magnitude of the tie-line power...... are also discussed. The frequency domain analysis reveals that TSWS can excite large tie-line power oscillations if the frequency of TSWS approaches the tie-line resonant frequency, especially in the case that the wind farm is integrated into a relatively small grid and the tie-line of the interconnected...

  15. Control of Full-Scale Converter based Wind Power Plants for damping of low frequency system oscillations

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability...

  16. Analysis of the Contribution of Wind Drift Factor to Oil Slick Movement under Strong Tidal Condition: Hebei Spirit Oil Spill Case

    OpenAIRE

    Kim, Tae-Ho; Yang, Chan-Su; Oh, Jeong-Hwan; Ouchi, Kazuo

    2014-01-01

    The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC) model and Automatic Wea...

  17. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  18. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  19. Tidal winds from the mesosphere, lower thermosphere global radar network during the second LTCS campaign: December 1988

    International Nuclear Information System (INIS)

    Manson, A.H.; Meek, C.E.; Avery, S.K.; Fraser, G.J.; Vincent, R.A.; Phillips, A.; Clark, R.R.; Schminder, R.; Kurschner, D.; Kazimirovsky, E.S.

    1991-01-01

    Winds and tides were measured by nine MLT (mesophere, lower thermosphere) radars with locations between 70 degree N and 78 degree S, including an equatorial station at Christmas Island, 2 degree N (Avery et al., 1990). The mean winds were eastward (westward) in the northern (southern) hemisphere mesophere, consistent with midwinter circulations. For the 12-hour (semidiurnal) tide, observations and the model of Forbes and Vial (1989) were in generally good agreement: in both cases northward components were closer to being in phase in the two hemispheres, and winter wavelengths were shorter than those of the midlatitude summer. Major differences were large (small) amplitudes at 70 degree N for model(observations); and poor agreement of equatorial tidal profiles. For the 24-hour (diurnal tide), the radar observations and model of Forbes and Hagan (1988) were in useful agreement in the summer hemisphere. However, the short (long) wavelengths at mid (high) latitudes of the model's winter hemisphere were not observed during LTCS (lower Thermosphere Coupling Study) 2, nor in climatologies for December. Suggestions as to the reason for this disparity are presented

  20. Short-term variability on mesozooplankton community in a shallow mixed estuary (Bahía Blanca, Argentina): Influence of tidal cycles and local winds

    Science.gov (United States)

    Menéndez, María C.; Piccolo, María C.; Hoffmeyer, Mónica S.

    2012-10-01

    The short-term dynamics of zooplankton in coastal ecosystems are strongly influenced by physical processes such as tides, riverine runoff and winds. In this study, we investigated the short-term changes of the representative taxa within mesozooplankton in relation to the semidiurnal tidal cycles. Also, we evaluated the influence of local winds on this short-term variability. Sampling was carried out bimonthly from December 2004 to April 2006 in a fixed point located in the inner zone of the Bahía Blanca Estuary, Argentina. Mesozooplankton samples were taken by pumps during 14-h tidal cycles at 3-h intervals, from surface and bottom. Vertical profiles of temperature and salinity as well as water samples to determine suspended particulate matter were acquired at each sampling date. All data concerning winds were obtained from a meteorological station and water level was recorded with a tide gauge. Holoplankton dominated numerically on meroplankton and adventitious fraction. Concerning holoplanktonic abundance, the highest values were attained by the calanoid copepods Acartia tonsa and Eurytemora americana. Meroplankton occurred mainly as barnacle larvae while benthic harpacticoids and Corophium sp. dominated the adventitious component. Semidiurnal tide was the main influence on the A. tonsa variability. However, noticeable differences in the abundance pattern as function of wind intensity were detected. Meroplankton abundance did not show a clear variation along the tidal cycle. Distributional pattern of harpacticoids seemed to be mainly modulated by velocity asymmetries in the tidal currents, in the same way as suspended particulate matter. However, the Corophium sp. distribution indicated probable behavioural responses associated with tides. The obtained results show how variable the mesozooplankton community structure can be over short-term time scales in mesotidal temperate estuaries. This variability should be taken into account for any zooplankton monitoring

  1. Analysis of the Contribution of Wind Drift Factor to Oil Slick Movement under Strong Tidal Condition: Hebei Spirit Oil Spill Case

    Science.gov (United States)

    Kim, Tae-Ho; Yang, Chan-Su; Oh, Jeong-Hwan; Ouchi, Kazuo

    2014-01-01

    The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC) model and Automatic Weather System (AWS) were used to generate tidal and wind fields respectively. Simulation results were then compared with 5 sets of spaceborne optical and synthetic aperture radar (SAR) data. From the present study, it was found that highest matching rate between the simulation results and satellite imagery was obtained with different values of the wind drift factor, and to first order, this factor was linearly proportional to the wind speed. Based on the results, a new modified empirical formula was proposed for forecasting the movement of oil slicks on the coastal area. PMID:24498094

  2. Analysis of the contribution of wind drift factor to oil slick movement under strong tidal condition: Hebei Spirit oil spill case.

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    Full Text Available The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC model and Automatic Weather System (AWS were used to generate tidal and wind fields respectively. Simulation results were then compared with 5 sets of spaceborne optical and synthetic aperture radar (SAR data. From the present study, it was found that highest matching rate between the simulation results and satellite imagery was obtained with different values of the wind drift factor, and to first order, this factor was linearly proportional to the wind speed. Based on the results, a new modified empirical formula was proposed for forecasting the movement of oil slicks on the coastal area.

  3. Assessment of propeller and off-road vehicle scarring in seagrass beds and wind-tidal flats of the southwestern Gulf of Mexico

    Science.gov (United States)

    Martin, S.R.; Onuf, C.P.; Dunton, K.H.

    2008-01-01

    We used aerial photography and GIS to establish a quantitative baseline of propeller and off-road vehicle (ORV) scarring in seagrass and wind-tidal flats of the upper Laguna Madre in the Padre Island National Seashore (Texas, USA). We also examined scar recovery through comparison of recent (2002, 2005) and historical (1967) aerial photographs of the study area. Scarring intensity was calculated using two different methods. In the first, polygons were visually drawn around groups of scars on digital images. Scarring intensity was estimated as light (20%), based on the total coverage of scars within each polygon (taking into account the length, width, and density of scars). We developed a more objective method that employed creation of vector grid cells and buffers that incorporated the localized ecological impact of scars. Results of spatial and temporal analysis revealed that the polygon approach greatly underestimated the magnitude of scarring. For example, in a single photograph, 7% of seagrass area was lightly scarred according to the polygon method; but light scarring increased to 51% according to grid analysis of the same image. Our results also indicated that propeller scars in Halodule wrightii beds appear to recover in less than three years and ORV tracks have persisted in the wind-tidal flats for at least 38 years. Our approach provides resource managers with procedures for a more objective and efficient assessment of physical disturbances to seagrass and wind-tidal flats caused by boats and ORVs. ?? 2008 by Walter de Gruyter.

  4. General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power

    OpenAIRE

    Ping Ju; Yongfei Liu; Feng Wu; Fei Dai; Yiping Yu

    2016-01-01

    According to the monitoring of the wide area measurement system, inter-area oscillations happen more and more frequently in a real power grid of China, which are close to the forced oscillation. Applying the conventional forced oscillation theory, the mechanism of these oscillations cannot be explained well, because the oscillations vary with random amplitude and a narrow frequency band. To explain the mechanism of such oscillations, the general forced oscillation (GFO) mechanism is taken int...

  5. Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova

    NARCIS (Netherlands)

    Pllumbi, E.; Tamborra, I.; Wanajo, S.; Janka, H.-T.; Hüdepohl, L.

    2015-01-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of

  6. A numerical study of self-sustained oscillations in wind instruments

    Science.gov (United States)

    Rendon, Pablo L.; Velasco-Segura, Roberto

    2017-11-01

    The study of sustained notes in wind musical instruments in realistic conditions requires consideration of both excitation and propagation mechanisms, and the manner in which these two interact. Further, to model adequately acoustic propagation inside the instrument, a variety of competing effects must be taken into account, such as nonlinearity, thermoviscous attenuation and radiation at the open end. Physical solutions also involve some degree of feedback at the excitation end, and here we propose the simplest boundary conditions possible at this end, given by a simple harmonic oscillator with fixed stiffness. By feeding single-frequency acoustic waves into the system we are able to study the formation of self-sustained oscillations, which are stationary states associated with resonance frequencies, and also to observe transitory states. Visualizations are presented of waves traveling in both directions. As expected, resonance frequencies are dependent on the stiffness parameter, and this dependence is examined. The full-wave simulation is performed in the time domain over a 2D spatial domain assuming axial symmetry, and it is based on a previously validated open source code, using a finite volume method (FiVoNAGI) implemented in a GPU [Velasco-Segura & Rendn, 2015]. The authors acknowledge the financial support of DGAPA-UNAM through project PAPIIT IG100717.

  7. Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations

    Science.gov (United States)

    Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.

    2017-09-01

    Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.

  8. PENGEMBANGAN MODEL PREDIKSI MADDEN-JULIAN OSCILLATION (MJO BERBASIS HASIL ANALISIS DATA WIND PROFILER RADAR (WPR

    Directory of Open Access Journals (Sweden)

    Naziah Madani

    2014-07-01

    Full Text Available Latar belakang penelitian ini adalah pentingnya kajian mengenai MJO sebagai salah satu osilasi dominan di kawasan ekuator. Penelitian ini bertujuan untuk membuat model prediksi MJO berdasarkan analisis data WPR. Pada penelitian ini kejadian MJO diidentifikasi dari data kecepatan angin zonal pada lapisan 850 mb di kawasan Pontianak, Manado, dan Biak. Sebelum data angin zonal ini dimanfaatkan untuk melihat perilaku MJO, maka data angin tersebut  terlebih dahulu dibandingkan dengan data indeks MJO yaitu RMM1 dan RMM2. RMM1 dan RMM2 merupakan sepasang indeks untuk memonitor kejadian MJO secara realtime. Hasil analisis Power Spectral Density (PSD data kecepatan angin zonal lapisan 850 mb menunjukkan adanya sinyal MJO kuat yang dicirikan dengan adanya osilasi sekitar 45 harian. Hasil korelasi dan regresi juga menunjukkan bahwa terdapat keterkaitan yang signifikan antara kedua data tersebut. Hal tersebut mengindikasikan bahwa data kecepatan angin zonal lapisan 850 mb dapat digunakan untuk analisis MJO. Pada penelitian ini, prediksi MJO didasarkan pada data kecepatan angin zonal menggunakan metode ARIMA Box-Jenkins. Melalui metode ini, model yang mendekati data deret waktu kecepatan angin zonal pada lapisan 850 mb di Pontianak adalah ARIMA(2,0,0, model prediksi untuk Manado adalah ARIMA(2,1,2, sedangkan untuk Biak adalah ARIMA(0,1,3. Model-model tersebut bermanfaat untuk melihat perilaku sinyal MJO pada data angin zonal berkaitan dengan pola curah hujan di wilayah kajian.   Background of this research is to study the importance of MJO as one of the predominant peak oscillation in the equator area. This study aims to make prediction models of MJO based on the analysis of zonal wind speed data observed by WPR that compared by the MJO index data, namely RMM1 and RMM2. The results of PSD show strong MJO signal of 45 day periods oscillations. The result of corrrelation and regression analyses also show significant relationship between both data. Therefore

  9. Tidal flushing and wind driven circulation of Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia) from in situ observations and numerical modelling

    International Nuclear Information System (INIS)

    Dumas, F.; Le Gendre, R.; Thomas, Y.; Andréfouët, S.

    2012-01-01

    Hydrodynamic functioning and water circulation of the semi-closed deep lagoon of Ahe atoll (Tuamotu Archipelago, French Polynesia) were investigated using 1 year of field data and a 3D hydrodynamical model. Tidal amplitude averaged less than 30 cm, but tide generated very strong currents (2 m s −1 ) in the pass, creating a jet-like circulation that partitioned the lagoon into three residual circulation cells. The pass entirely flushed excess water brought by waves-induced radiation stress. Circulation patterns were computed for climatological meteorological conditions and summarized with stream function and flushing time. Lagoon hydrodynamics and general overturning circulation was driven by wind. Renewal time was 250 days, whereas the e-flushing time yielded a lagoon-wide 80-days average. Tide-driven flush through the pass and wind-driven overturning circulation designate Ahe as a wind-driven, tidally and weakly wave-flushed deep lagoon. The 3D model allows studying pearl oyster larvae dispersal in both realistic and climatological conditions for aquaculture applications.

  10. Residue-based evaluation of the use of wind power plants with full converter wind turbines for power oscillation damping control

    DEFF Research Database (Denmark)

    Morato, Josep; Knüppel, Thyge; Østergaard, Jacob

    2013-01-01

    As wind power plants (WPPs) gradually replace the power production of the conventional generators, many aspects of the power system may be affected, in which the small signal stability is included. Additional control may be needed for wind turbine generators (WTGs) to participate in the power...... oscillation damping. The feasibility of implementing this control needs to be assessed. This paper studies how the damping contribution of a WPP is affected by different operating conditions and its dependence to selected feedback signals. The WPP model used includes individual WTGs to study how internal...

  11. The 4-5 day mode oscillation in zonal winds of Indian middle atmosphere during MONEX-79

    Science.gov (United States)

    Reddy, R. S.; Mukherjee, B. K.; Indira, K.; Murty, B. V. R.

    1985-12-01

    In the early studies based on time series of balloon observations, the existence of 4 to 5 day period waves and 10 to 20 day wind fluctuations were found in the tropical lower stratosphere, and they are identified theoretically as the mixed Rossby-gravity wave and the Kelvin wave, respectively. On the basis of these studies, it was established that the vertically propagating equatorial waves play an important role in producing the QBO (quasi-biennial oscillation) in the mean zonal wind through the mechanism of wave-zonal interaction. These studies are mainly concentrated over the equatorial Pacific and Atlantic Oceans. Similar prominent wave disturbances have been observed over the region east of the Indian Ocean during a quasi-biennial oscillation. Zonal winds in upper troposphere and lower stratosphere (10 to 20) km of the middle atmosphere over the Indian subcontinent may bear association with the activity of summer monsoon (June-September). Monsoon Experiment (MONEX-79) has provided upper air observations at Balasore (21 deg. 30 min.N; 85 deg. 56 min.E), during the peak of monsoon months July and August. A unique opportunity has, therefore, been provided to study the normal oscillations present in the zonal winds of lower middle atmosphere over India, which may have implication on large scale wave dynamics. This aspect is examined in the present study.

  12. Novel STATCOM Controller for Mitigating SSR and Damping Power System Oscillations in a Series Compensated Wind Parks

    DEFF Research Database (Denmark)

    Bak-Jensen, Birgitte; El-Moursi, M. S.; Abdel-Rahman, Mansour Hassan

    2010-01-01

    This paper addresses implementation issues associated with a novel damping control algorithm for a STATCOM in a series compensated wind park for mitigating SSR (subsynchronous resonance) and damping power system oscillations. The IEEE first benchmark model on subsynchronous resonance is adopted...... the SSR, damping the power system oscillation and enhancing the transient stability margin in response to different SCRs....... in the STATCOM control structure. The performances of the controllers are tested in steady state operation and in response to system contingencies, taking into account the impact of short circuit ratios (SCRs). Simulation results are presented to demonstrate the capability of the controllers for mitigating...

  13. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  14. Effects of the North Atlantic Oscillation and wind waves on salt marsh dynamics in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Kim, Daehyun; Grant, William E.; Cairns, David M.

    2013-01-01

    Long-term eustatic sea-level variation has been recognized as a primary factor affecting the hydrological and geomorphic dynamics of salt marshes. However, recent studies suggest that wind waves influenced by atmospheric oscillations also may play an important role in many coastal areas. Although...... this notion has been conceptually introduced for the Wadden Sea, no modeling attempts have been made yet. As a proof of concept, this study developed a simulation model using the commercially available STELLAA (R) software, based on long-term data on water level and sedimentation collected at a back......-barrier marsh on the Skallingen peninsula in Denmark. In the model, the frequency (number year(-1)) of wind-driven extreme high water level (HWL) events (> 130 cm Danish Ordnance Zero) was simulated in terms of the North Atlantic Oscillation (NAO) index. Then, surface accretion (cm year(-1)) and submergence...

  15. Impact of Neutrino Flavor Oscillations on the Neutrino-driven Wind Nucleosynthesis of an Electron-capture Supernova

    Science.gov (United States)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  16. Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    Science.gov (United States)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.

    2011-01-01

    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".

  17. The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals

    International Nuclear Information System (INIS)

    Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone; Dotti, Massimo; Moustakas, Leonidas A.

    2017-01-01

    A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N -body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f _g_a_s, in the disk of the progenitor dwarf. Our numerical experiments incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs ( f _g_a_s ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless ( f _g_a_s = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f _g_a_s ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.

  18. The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals

    Science.gov (United States)

    Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone; Dotti, Massimo; Moustakas, Leonidas A.

    2017-02-01

    A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N-body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f gas, in the disk of the progenitor dwarf. Our numerical experiments incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs (f gas ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless (f gas = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f gas ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.

  19. The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals

    Energy Technology Data Exchange (ETDEWEB)

    Kazantzidis, Stelios [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, National and Kapodistrian University of Athens, 15784 Zografos, Athens (Greece); Mayer, Lucio [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, CH-8057 Zürich (Switzerland); Callegari, Simone [Anthropology Institute and Museum, University of Zürich, CH-8057 Zürich (Switzerland); Dotti, Massimo [Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Moustakas, Leonidas A., E-mail: skazantzidis@phys.uoa.gr [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2017-02-10

    A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N -body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f {sub gas}, in the disk of the progenitor dwarf. Our numerical experiments incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs ( f {sub gas} ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless ( f {sub gas} = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f {sub gas} ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.

  20. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  1. DC-link voltage oscillations reduction during unbalanced grid faults for high power wind turbines

    DEFF Research Database (Denmark)

    Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    During unbalanced grid voltage faults the Power injected to the grid experiences 100Hz oscillations as a result of interactions between positive and negative sequence components of three-phase voltages and currents. These oscillations can become as high as %50 percent of the rated power....... In this article an improved controller is proposed which present different behavior during normal operation and faults to keep track of non-sinusoidal current reference signals. The reference signals are calculated to obtain zero power oscillations. Reconfigurable resonant controllers are used for this purpose...

  2. Dynamical relationship between wind speed magnitude and meridional temperature contrast: Application to an interannual oscillation in Venusian middle atmosphere GCM

    Science.gov (United States)

    Yamamoto, Masaru; Takahashi, Masaaki

    2018-03-01

    We derive simple dynamical relationships between wind speed magnitude and meridional temperature contrast. The relationship explains scatter plot distributions of time series of three variables (maximum zonal wind speed UMAX, meridional wind speed VMAX, and equator-pole temperature contrast dTMAX), which are obtained from a Venus general circulation model with equatorial Kelvin-wave forcing. Along with VMAX and dTMAX, UMAX likely increases with the phase velocity and amplitude of a forced wave. In the scatter diagram of UMAX versus dTMAX, points are plotted along a linear equation obtained from a thermal-wind relationship in the cloud layer. In the scatter diagram of VMAX versus UMAX, the apparent slope is somewhat steep in the high UMAX regime, compared with the low UMAX regime. The scatter plot distributions are qualitatively consistent with a quadratic equation obtained from a diagnostic equation of the stream function above the cloud top. The plotted points in the scatter diagrams form a linear cluster for weak wave forcing, whereas they form a small cluster for strong wave forcing. An interannual oscillation of the general circulation forming the linear cluster in the scatter diagram is apparent in the experiment of weak 5.5-day wave forcing. Although a pair of equatorial Kelvin and high-latitude Rossby waves with a same period (Kelvin-Rossby wave) produces equatorward heat and momentum fluxes in the region below 60 km, the equatorial wave does not contribute to the long-period oscillation. The interannual fluctuation of the high-latitude jet core leading to the time variation of UMAX is produced by growth and decay of a polar mixed Rossby-gravity wave with a 14-day period.

  3. Tidal and sub-tidal sea level variability at the northern shelf of the Brazilian Northeast Region.

    Science.gov (United States)

    Frota, Felipe F; Truccolo, Eliane C; Schettini, Carlos A F

    2016-09-01

    A characterization of the sea level variability at tidal and sub-tidal frequencies at the northern shore of the Brazilian Northeast shelf for the period 2009-2011 is presented. The sea level data used was obtained from the Permanent Geodetic Tide Network from the Brazilian Institute of Geography and Statistics for the Fortaleza gauge station. Local wind data was also used to assess its effects on the low-frequency sea level variability. The variability of the sea level was investigated by classical harmonic analysis and by morphology assessment over the tidal signal. The low frequencies were obtained by low-pass filtering. The tidal range oscillated with the highest value of 3.3 m during the equinox and the lowest value of 0.7 m during the solstice. Differences between the spring and neap tides were as high as 1 m. A total of 59 tidal constituents were obtained from harmonic analysis, and the regional tide was classified as semi-diurnal pure with a form number of 0.11. An assessment of the monthly variability of the main tidal constituents (M2, S2, N2, O1, and K1) indicated that the main semi-diurnal solar S2 presented the highest variability, ranging from 0.21 to 0.41 m; it was the main element altering the form number through the years. The low frequency sea-level variability is negligible, although there is a persistent signal with an energy peak in the 10-15 day period, and it cannot be explained by the effects of local winds.

  4. Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system

    DEFF Research Database (Denmark)

    Li, Hui; Liu, Shengquan; Ji, Haiting

    2014-01-01

    on the power system stabilizer (PSS) control method. Transient simulation on different damping gain coefficients are conducted for justification. Following the OTEF mechanism analysis, an additional fuzzy damping control strategy with the active/reactive power loop is proposed by identifying the oscillation......This study investigates the inter-area low-frequency damping control strategies of a doubly fed induction generator (DFIG)-based wind farm through oscillation transient energy function (OTEF) analysis. Based on the OTEF descent expressions, the feasibility of damping the inter-area low...... oscillation of the wind turbine shaft. The proposed additional fuzzy control strategy with the active/reactive power loop has better damping performance than the presented PSS control, especially for damping the inter-area low-frequency oscillation....

  5. Monsoon oscillations of the Findlater Jet and coastal winds of India

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Zhao, C.; Muraleedharan, P.M.; Rao, G.S.P.; Sugimori, Y.

    Intraseasonal variability (ISV) of the Low Level Jet (LLJ) and its effects on coastal winds during the Indian summer monsoon are examined using National Centre for Environmental Prediction / National Centre for Atmospheric Research (NCEP) reanalyses...

  6. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  7. On the wave forcing of the semi-annual zonal wind oscillation

    Science.gov (United States)

    Nagpal, O. P.; Raghavarao, R.

    1991-01-01

    Observational evidence of rather large period waves (23-60 d) in the troposphere/stratosphere, particularly during the winter months, is presented. Wind data collected on a regular basis employing high-altitude balloons and meteorological rockets over the past few years are used. Maximum entropy methods applied to the time series of zonal wind data indicate the presence of 23-60-waves more prominently than shorter-period waves. The waves have substantial amplitudes in the stratosphere and lower mesosphere, often larger than those noted in the troposphere. The mean zonal wind in the troposphere (5-15 km altitude) during December, January, and February exhibits the presence of strong westerlies at latitudes between 8 and 21 deg N.

  8. An optimal reactive power control strategy for a DFIG-based wind farm to damp the sub-synchronous oscillation of a power system

    DEFF Research Database (Denmark)

    Zhao, Bin; Li, Hui; Wang, Mingyu

    2014-01-01

    This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG)-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capaciti...

  9. Tidal mixing in the Indonesian Seas and its effect on the tropical climate system

    Energy Technology Data Exchange (ETDEWEB)

    Koch-Larrouy, Ariane; Lengaigne, Matthieu; Terray, Pascal; Masson, Sebastien [Universite Pierre et Marie Curie, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (CNRS/IRD/UPMC/MNHN), Paris (France); Madec, Gurvan [Universite Pierre et Marie Curie, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (CNRS/IRD/UPMC/MNHN), Paris (France); National Oceanographic Centre, Southampton (United Kingdom)

    2010-05-15

    The sensitivity of the tropical climate to tidal mixing in the Indonesian Archipelago (IA) is investigated using a coupled general circulation model. It is shown that the introduction of tidal mixing considerably improves water masses properties in the IA, generating fresh and cold anomalies in the thermocline and salty and cold anomalies at the surface. The subsurface fresh anomalies are advected in the Indian Ocean thermocline and ultimately surface to freshen the western part of the basin whereas surface salty anomalies are advected in the Leuwin current to salt waters along the Australian coast. The {proportional_to}0.5 C surface cooling in the IA reduces by 20% the overlying deep convection. This improves both the amount and structure of the rainfall and weakens the wind convergence over the IA, relaxes the equatorial Pacific trade winds and strengthens the winds along Java coast. These wind changes causes the thermocline to be deeper in the eastern equatorial Pacific and shallower in the eastern Indian Ocean. The El Nino Southern Oscillation (ENSO) amplitude is therefore slightly reduced while the Indian Ocean Dipole/Zonal Mode (IODZM) variability increases. IODZM precursors, related to ENSO events the preceding winter in this model, are also shown to be more efficient in promoting an IODZM thanks to an enhanced wind/thermocline coupling. Changes in the coupled system in response tidal mixing are as large as those found when closing the Indonesian Throughflow, emphasizing the key role of IA on the Indo-Pacific climate. (orig.)

  10. Tidal power

    International Nuclear Information System (INIS)

    Baker, A.C.

    1991-01-01

    This book describes how large tides develop in particular places and how the energy could be extracted by building suitable barrages. The principal features of a barrage and possible methods of operation are described in detail. Although a tidal power barrage would be non-polluting, the resulting changes in the tidal regime would have important environmental effects. These are discussed together with the economics of tidal power. Methods of assessing the likely cost of electricity from any site are set out and applied to possible sites around the world. (author)

  11. Suspended-sediment flux and retention in a backwater tidal slough complex near the landward boundary of an estuary

    Science.gov (United States)

    Morgan-King, Tara L.; Schoellhamer, David H.

    2013-01-01

    Backwater tidal sloughs are commonly found at the landward boundary of estuaries. The Cache Slough complex is a backwater tidal region within the Upper Sacramento–San Joaquin Delta that includes two features that are relevant for resource managers: (1) relatively high abundance of the endangered fish, delta smelt (Hypomesus transpacificus), which prefers turbid water and (2) a recently flooded shallow island, Liberty Island, that is a prototype for habitat restoration. We characterized the turbidity around Liberty Island by measuring suspended-sediment flux at four locations from July 2008 through December 2010. An estuarine turbidity maximum in the backwater Cache Slough complex is created by tidal asymmetry, a limited tidal excursion, and wind-wave resuspension. During the study, there was a net export of sediment, though sediment accumulates within the region from landward tidal transport during the dry season. Sediment is continually resuspended by both wind waves and flood tide currents. The suspended-sediment mass oscillates within the region until winter freshwater flow pulses flush it seaward. The hydrodynamic characteristics within the backwater region such as low freshwater flow during the dry season, flood tide dominance, and a limited tidal excursion favor sediment retention.

  12. Wave and tidal generation devices reliability and availability

    CERN Document Server

    Tavner, Peter John

    2017-01-01

    To some extent the wave and tidal generation industry is following in the wake of the wind industry, learning from the growing experience of offshore wind farm deployment. This book combines wind industry lessons with wave and tidal field knowledge to explore the main reliability and availability issues facing this growing industry.

  13. Tidal radiation

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1977-01-01

    The general theory of tides is developed within the framework of Einstein's theory of gravitation. It is based on the concept of Fermi frame and the associated notion of tidal frame along an open curve in spacetime. Following the previous work of the author an approximate scheme for the evaluation of tidal gravitational radiation is presented which is valid for weak gravitational fields. The emission of gravitational radiation from a body in the field of a black hole is discussed, and for some cases of astrophysical interest estimates are given for the contributions of radiation due to center-of-mass motion, purely tidal deformation, and the interference between the center of mass and tidal motions

  14. Tidal energy

    International Nuclear Information System (INIS)

    Lochte, H.G.

    1995-01-01

    Together with wave energy, ocean thermal energy, and the often overlooked energy from ocean curents tidal energy belongs to those renewable energy sources that can be subsumed under the generic term of ocean energy. All that these energy sources have in common, however, is that they are found in the ocean. The present article discusses tidal energy with respect to the four principal factors determining the scope of a renewable energy source, namely global, technical, and economic availability and ecological acceptability. (orig.) [de

  15. Summer planetary-scale oscillations: aura MLS temperature compared with ground-based radar wind

    Directory of Open Access Journals (Sweden)

    C. E. Meek

    2009-04-01

    Full Text Available The advent of satellite based sampling brings with it the opportunity to examine virtually any part of the globe. Aura MLS mesospheric temperature data are analysed in a wavelet format for easy identification of possible planetary waves (PW and aliases masquerading as PW. A calendar year, 2005, of eastward, stationary, and westward waves at a selected latitude is shown in separate panels for wave number range −3 to +3 for period range 8 h to 30 days (d. Such a wavelet analysis is made possible by Aura's continuous sampling at all latitudes 82° S–82° N. The data presentation is suitable for examination of years of data. However this paper focuses on the striking feature of a "dish-shaped" upper limit to periods near 2 d in mid-summer, with longer periods appearing towards spring and fall, a feature also commonly seen in radar winds. The most probable cause is suggested to be filtering by the summer jet at 70–80 km, the latter being available from ground based medium frequency radar (MFR. Classically, the phase velocity of a wave must be greater than that of the jet in order to propagate through it. As an attempt to directly relate satellite and ground based sampling, a PW event of period 8d and wave number 2, which appears to be the original rather than an alias, is compared with ground based radar wind data. An appendix discusses characteristics of satellite data aliases with regard to their periods and amplitudes.

  16. Numerical modeling of a pitch oscillating S809 airfoil dynamic stall in 2D with application to a horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Gharali, K.; Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering, Wind Energy Group

    2010-07-01

    Natural wind can sometimes have a strong wind shear that causes the Dynamic Stall (DS) phenomena which may result in dynamic loads and varying lift coefficients. The DS phenomena cannot be prevented in horizontal axis wind turbines (HAWTs). Therefore, it is necessary to study the unsteady aerodynamics in order to modify common wind turbine rotor designs. This paper reported on a study that investigated the dynamic flow fields around an oscillating 2D S809 airfoil, representing the aerodynamic characteristics of HAWT airfoils for dynamic stall conditions. A computational fluid dynamic (CFD) flow solver package with Fluent was used with different turbulence models, notably the Spalart-Allmaras and Detached Eddy Simulation (DES) methods. A sliding mesh is commonly used in numerical methods for simulating an oscillating foil, but sliding meshes suffer from mesh generation complexity and increased computational time. In this study, instead of a sinusoidally pitching airfoil, the direction of the far-field flow was changed according to a user-defined function in the software to simulate a proper angle of attack for the boundary conditions in each time step. This strategy helped to decrease processing time. The simulation results were in good agreement with experimental data and the Beddoes-Leishman model results. The DES method for unsteady 2D flow was not recommended. It was concluded that the Fluent package is time efficient, reliable and economic for the wind turbine industry. 17 refs., 3 figs.

  17. Computation of aerodynamic interference effects on oscillating airfoils with controls in ventilated subsonic wind tunnels

    Science.gov (United States)

    Fromme, J. A.; Golberg, M. A.

    1979-01-01

    Lift interference effects are discussed based on Bland's (1968) integral equation. A mathematical existence theory is utilized for which convergence of the numerical method has been proved for general (square-integrable) downwashes. Airloads are computed using orthogonal airfoil polynomial pairs in conjunction with a collocation method which is numerically equivalent to Galerkin's method and complex least squares. Convergence exhibits exponentially decreasing error with the number n of collocation points for smooth downwashes, whereas errors are proportional to 1/n for discontinuous downwashes. The latter can be reduced to 1/n to the m+1 power with mth-order Richardson extrapolation (by using m = 2, hundredfold error reductions were obtained with only a 13% increase of computer time). Numerical results are presented showing acoustic resonance, as well as the effect of Mach number, ventilation, height-to-chord ratio, and mode shape on wind-tunnel interference. Excellent agreement with experiment is obtained in steady flow, and good agreement is obtained for unsteady flow.

  18. Tides and tidal currents

    NARCIS (Netherlands)

    Roos, A.

    1997-01-01

    Basic phenomena, origin and generation of tides, analysis and prediction of tides, basic equation and types of long waves in one dimension, tidal propagation in one dimension, tidal propagation in two directions, analytical tidal computation, numerical tidal computation.

  19. An Optimal Reactive Power Control Strategy for a DFIG-Based Wind Farm to Damp the Sub-Synchronous Oscillation of a Power System

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    2014-05-01

    Full Text Available This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capacitive compensation transmission system. First, the damping effect of the reactive power control of the DFIG-based wind farms was theoretically analyzed, and a transfer function between turbogenerator speed and the output reactive power of the wind farms was introduced to derive the analytical expression of the damping coefficient. The phase range to obtain positive damping was determined. Second, the PID phase compensation parameters of the auxiliary damping controller were optimized by a genetic algorithm to obtain the optimum damping in the entire subsynchronous frequency band. Finally, the validity and effectiveness of the proposed auxiliary damping control were demonstrated on a modified version of the IEEE first benchmark model by time domain simulation analysis with the use of DigSILENT/PowerFactory. Theoretical analysis and simulation results show that this derived damping factor expression and the condition of the positive damping can effectively analyze their impact on the system sub-synchronous oscillations, the proposed wind farms reactive power additional damping control strategy can provide the optimal damping effect over the whole sub-synchronous frequency band, and the control effect is better than the active power additional damping control strategy based on the power system stabilizator.

  20. The economics of tidal energy

    International Nuclear Information System (INIS)

    Denny, Eleanor

    2009-01-01

    Concern over global climate change has led policy makers to accept the importance of reducing greenhouse gas emissions. This in turn has led to a large growth in clean renewable generation for electricity production. Much emphasis has been on wind generation as it is among the most advanced forms of renewable generation, however, its variable and relatively unpredictable nature result in increased challenges for electricity system operators. Tidal generation on the other hand is almost perfectly forecastable and as such may be a viable alternative to wind generation. This paper calculates the break-even capital cost for tidal generation on a real electricity system. An electricity market model is used to determine the impact of tidal generation on the operating schedules of the conventional units on the system and on the resulting cycling costs, emissions and fuel savings. It is found that for tidal generation to produce positive net benefits for the case study, the capital costs would have to be less than Euro 510,000 per MW installed which is currently an unrealistically low capital cost. Thus, it is concluded that tidal generation is not a viable option for the case system at the present time.

  1. Anomaly Detection Techniques for the Condition Monitoring of Tidal Turbines

    Science.gov (United States)

    2014-09-29

    turbine design includes many horizontal and vertical axis solutions, some with major structural and operational variations (Aly & El-Hawary, 2011...However, a common focus is the horizontal axis design, holding many similarities with a standard wind turbine . Maintenance on tidal turbines ...However, despite similarities between tidal and wind power turbine design, the operating environment is vastly different. Water is over 800 times

  2. A boundary-value inverse model and its application to the calculation of tidal oscillation systems in the Western South Atlantic Ocean

    International Nuclear Information System (INIS)

    Miranda-Alonso, S.

    1991-01-01

    A Cauchy-Riemann problem is solved for the case of the linearized equations for long waves. The initial-values are amplitudes and phases measured at the coast. No boundary values are made use of. This inverse-problem is solved by starting the calculations at the coast and continuing outwards to the open ocean in a rectangular areas with one side at the coast and the other three at the open ocean. The initial values were expanded into the complex plane to get a platform to perform with the calculations. This non-well-posed problem was solved by means of two different mathematical techniques for comparison. The results produced with the inverse model were compared with those produced with a 'classical' model initialized at the three open boundaries with the results of the inverse model. The oscillating systems produced by both models were quite similar, giving validity to this invese modeling approach which should be a useful technique to solve problems when only initial values are known. (orig.)

  3. On effects produced by tidal power plants upon environmental conditions in adjacent sea areas

    International Nuclear Information System (INIS)

    Nekrasov, A.V.; Romanenkov, D.A.

    1997-01-01

    Consideration is given to the change in natural (oceanographic) environmental conditions due to the transformation of the tidal oscillations structure resulting from erection and operation of tidal power plants (TPP). The relevant transformation of tidal movements encompasses practically all its main characteristics: amplitudes, phases and spectral composition of sea level oscillations, as well as the similar parameters of tidal currents and also the intensity and positioning of extremes zones. The changes in positioning and width of the inter-tidal zone, the inter-tidal zone regime, mutual arrangement of mixed, stratified and transient frontal zones, transportation of suspended matter and bottom sedimentation, owing to residual tidal currents, sea ice characteristics, air these changes can be estimated on the basis of mathematical predictive modelling of tidal characteristics transformed by a contemplated tidal power plant. Some results are presented for the Russian large-scale TPP projects in the White and Okhotsk seas. (author)

  4. Tidal and gravity waves study from the airglow measurements at ...

    Indian Academy of Sciences (India)

    The other waves may be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application ...

  5. Tidal sampler

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1978-01-01

    An apparatus is described for pumping a sample of water or other liquid that uses the energy generated from the rise and fall of the liquid level to force a sample of the liquid into a collection vessel. A suction vessel and booster vessel with interconnecting tubing and check valves are responsive to an oscillating liquid level to pump a portion of said liquid into a collection vessel

  6. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  7. Dissipation of Tidal Energy

    Science.gov (United States)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  8. The influence of waves on the tidal kinetic energy resource at a tidal stream energy site

    International Nuclear Information System (INIS)

    Guillou, Nicolas; Chapalain, Georges; Neill, Simon P.

    2016-01-01

    Highlights: • We model the influence of waves on tidal kinetic energy in the Fromveur Strait. • Numerical results are compared with field data of waves and currents. • The introduction of waves improve predictions of tidal stream power during storm. • Mean spring tidal stream potential is reduced by 12% during extreme wave conditions. • Potential is reduced by 7.8% with waves forces and 5.3% with enhanced friction. - Abstract: Successful deployment of tidal energy converters relies on access to accurate and high resolution numerical assessments of available tidal stream power. However, since suitable tidal stream sites are located in relatively shallow waters of the continental shelf where tidal currents are enhanced, tidal energy converters may experience effects of wind-generated surface-gravity waves. Waves may thus influence tidal currents, and associated kinetic energy, through two non-linear processes: the interaction of wave and current bottom boundary layers, and the generation of wave-induced currents. Here, we develop a three-dimensional tidal circulation model coupled with a phase-averaged wave model to quantify the impact of the waves on the tidal kinetic energy resource of the Fromveur Strait (western Brittany) - a region that has been identified with strong potential for tidal array development. Numerical results are compared with in situ observations of wave parameters (significant wave height, peak period and mean wave direction) and current amplitude and direction 10 m above the seabed (the assumed technology hub height for this region). The introduction of waves is found to improve predictions of tidal stream power at 10 m above the seabed at the measurement site in the Strait, reducing kinetic energy by up to 9% during storm conditions. Synoptic effects of wave radiation stresses and enhanced bottom friction are more specifically identified at the scale of the Strait. Waves contribute to a slight increase in the spatial gradient of

  9. Respuesta barotrópica de los golfos norpatagónicos argentinos forzados por mareas y vientos Barotropic response of north Patagonian gulfs in Argentina to tidal and wind forcing

    Directory of Open Access Journals (Sweden)

    Mariano H Tonini

    2011-11-01

    three gulfs consists of two independent gyres: one anticyclonic gyre in the west with an intense southward coastal flow and weaker return flow in the middle of the gulfs and one cyclonic gyre in the east that, in the SMG's case, connects with the shelf. The other two gulfs (NG and SJG have much more restricted connections with the exterior. The inclusion of tidal dissipation effects reduces the intensity of the gyres, but the general spatial pattern of the circulation remains. Increasing the wind magnitude mainly intensifies the anticyclonic gyre and the cross-shelf transport through the SMG mouth and deepens the surface Ekman layer. If the gulfs are forced with meridional winds, the circulation splits into two gyres whose sense of circulation depends on the wind direction: a northern cyclonic (anticyclonic gyre and a southern anticyclonic (cyclonic gyre for Southerly (Northerly winds. When the gulfs are forced simultaneously by tides and winds, the residual tidal currents dominates the general circulation and contributes to a greater dynamical isolation of the gulfs from the exterior shelf.

  10. Atmospheric noise of a breaking tidal bore.

    Science.gov (United States)

    Chanson, Hubert

    2016-01-01

    A tidal bore is a surge of waters propagating upstream in an estuary as the tidal flow turns to rising and the flood tide propagates into a funnel-shaped system. Large tidal bores have a marked breaking roller. The sounds generated by breaking tidal bores were herein investigated in the field (Qiantang River) and in laboratory. The sound pressure record showed two dominant periods, with some similarity with an earlier study [Chanson (2009). J. Acoust. Soc. Am. 125(6), 3561-3568]. The two distinct phases were the incoming tidal bore when the sound amplitude increased with the approaching bore, and the passage of the tidal bore in front of the microphone when loud and powerful noises were heard. The dominant frequency ranged from 57 to 131 Hz in the Qiantang River bore. A comparison between laboratory and prototype tidal bores illustrated both common features and differences. The low pitch sound of the breaking bore had a dominant frequency close to the collective oscillations of bubble clouds, which could be modeled with a bubble cloud model using a transverse dimension of the bore roller. The findings suggest that this model might be over simplistic in the case of a powerful breaking bore, like that of the Qiantang River.

  11. Transient Oscillations Analysis and Modified Control Strategy for Seamless Mode Transfer in Micro-Grids: A Wind-PV-ES Hybrid System Case Study

    Directory of Open Access Journals (Sweden)

    Tengfei Zhang

    2015-12-01

    Full Text Available With the rapid development of the micro-grid associated with new and clean energies, the smooth switching between grid-connected and islanded operation modes of the micro-grid is a key issue that needs to be addressed urgently. In traditional solutions, V/f (Voltage/frequency control is adopted for the master micro sources when the micro-grid works in islanded mode, while PQ (real and reactive power control is adopted when in grid-connected mode. However, when the two controllers switch when mode transfer occurs, transient oscillations usually occur and thereafter the dynamic response will be degraded. This paper considers an archetypical micro-grid with Wind-PV-ES (Wind, Photovoltaic and Energy Storage hybrid system, which forms the basis of our case study. The underlying reason for such transient oscillation is analyzed in this paper. Thereafter a modified control strategy for seamless mode transfer is designed and implemented. An improved PQ control method is designed by which the output of the PQ controller always synchronously tracks the output of the V/f controller for micro-grid switches from islanded mode to grid-connected; furthermore, a dq rotating coordinate synchronization based V/f control method is proposed for transition from grid-connected mode to islanded mode. Finally, experiments and analysis are undertaken on some basic and important operating cases; the results in our case study indicate that the modified control strategy is effective in dominating the micro-grid during mode transfer and thus yielding significantly better performances.

  12. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    Science.gov (United States)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  13. Tidal influence on subtropical estuarine methane emissions

    Science.gov (United States)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period

  14. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  15. Short period tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.; Dickey, J. O.

    1981-01-01

    It is explained that the tidal deformation of the earth's polar moment of inertia by the moon and sun cause periodic variations in rotation. The short period oscillations give rise to a meter-sized, diurnal signature in the lunar laser ranging data obtained at McDonald Observatory. A solution is given for the scale parameter k/C at fortnightly and monthly tidal frequencies. The results are compared with those obtained by other investigators and with a theoretical estimate which includes the effect of oceans and a decoupled fluid core.

  16. Light rays and the tidal gravitational pendulum

    Science.gov (United States)

    Farley, A. N. St J.

    2018-05-01

    Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null

  17. Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment

    NARCIS (Netherlands)

    Van Maren, D.S.; Gerritsen, H.

    2012-01-01

    The Singapore Strait connects the South China Sea, where tides are dominantly diurnal, to the dominantly semidiurnal Indian Ocean. At this transition, the tidal water level oscillations are observed to be semidiurnal while the tidal current oscillations are mixed, diurnal to fully diurnal. Due to

  18. Tidal analysis of surface currents in the Porsanger fjord in northern Norway

    Science.gov (United States)

    Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata

    2016-04-01

    In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  19. Adélie penguin foraging location predicted by tidal regime switching.

    Science.gov (United States)

    Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh

    2013-01-01

    Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

  20. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  1. Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers.

    Science.gov (United States)

    Briciu, Andrei-Emil

    2018-02-22

    The orthotidal rivers are a new concept referring to inland rivers influenced by gravitational tides through the groundwater tides. "Orthotidal signals" is intended to describe tidal signals found in inland streamwaters (with no oceanic input); these tidal signals were locally generated and then exported into streamwaters. Here, we show that orthotidal signals can be found in proglacial rivers due to the gravitational tides affecting the glaciers and their surrounding areas. The gravitational tides act on glacier through earth and atmospheric tides, while the subglacial water is affected in a manner similar to the groundwater tides. We used the wavelet analysis in order to find tidally affected streamwaters. T_TIDE analyses were performed for discovering the tidal constituents. Tidal components with 0.95 confidence level are as follows: O1, PI1, P1, S1, K1, PSI1, M2, T2, S2, K2, and MSf. The amplitude of the diurnal tidal constituents is strongly influenced by the daily thermal cycle. The average amplitude of the semidiurnal tidal constituents is less altered and ranges from 0.0007 to 0.0969 m. The lunisolar synodic fortnightly oscillation, found in the time series of the studied river gauges, is a useful signal for detecting orthotidal rivers when using noisier data. The knowledge of the orthotidal oscillations is useful for modeling fine resolution changes in rivers.

  2. Ocean energy. Tide and tidal power

    Energy Technology Data Exchange (ETDEWEB)

    Finkl, Charles W. [Coastal Planning and Engineering, Inc., Boca Raton, FL (United States); Charlier, Roger H.

    2009-07-01

    Engineers' dreams and fossil energy replacement schemes can come true. Man has been tapping the energy of the sea to provide power for his industries for centuries. Tidal energy combined with that of waves and marine winds rank among those most successfully put the work. Large scale plants are capital intensive but smaller ones, particularly built in China, have proven profitable. Since the initiation of the St Malo project in France, similar projects have gone into active service where methods have been devised to cut down on costs, new types of turbines developed and cost competitiveness considerably improved. Tidal power has enormous potential. The book reviews recent progress in extracting power from the ocean, surveys the history of tidal power harnessing and updates a prior publication by the author. (orig.)

  3. An optimal tuning strategy for tidal turbines

    Science.gov (United States)

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  4. An optimal tuning strategy for tidal turbines.

    Science.gov (United States)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  5. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  6. Wavelet analysis on transient behaviour of tidal amplitude fluctuations observed by meteor radar in the lower thermosphere above Bulgaria

    Directory of Open Access Journals (Sweden)

    D. Pancheva

    Full Text Available On the basis of bispectral analysis applied to the hourly data set of neutral wind measured by meteor radar in the MLT region above Bulgaria it was demonstrated that nonlinear processes are frequently and regularly acting in the mesopause region. They contribute significantly to the short-term tidal variability and are apparently responsible for the observed complicated behavior of the tidal characteristics. A Morlet wavelet transform is proposed as a technique for studying nonstationary signals. By simulated data it was revealed that the Morlet wavelet transform is especially convenient for analyzing signals with: (1 a wide range of dominant frequencies which are localized in different time intervals; (2 amplitude and frequency modulated spectral components, and (3 singular, wave-like events, observed in the neutral wind of the MLT region and connected mainly with large-scale disturbances propagated from below. By applying a Morlet wavelet transform to the hourly values of the amplitudes of diurnal and semidiurnal tides the basic oscillations with periods of planetary waves (1.5-20 days, as well as their development in time, are obtained. A cross-wavelet analysis is used to clarify the relation between the tidal and mean neutral wind variability. The results of bispectral analysis indicate which planetary waves participated in the nonlinear coupling with the atmospheric tides, while the results of cross-wavelet analysis outline their time intervals if these interactions are local.

    Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides - Radio science (nonlinear phenomena

  7. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  8. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  9. Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory

    NARCIS (Netherlands)

    Hu, Z.; Wang, Z.B.; Zitman, T.J.; Stive, M.J.F.; Bouma, T.J.

    2015-01-01

    Dynamic equilibrium theory is a fruitful concept, which we use to systematically explain the tidal flat morphodynamic response to tidal currents, wind waves, sediment supply, and other sedimentological drivers. This theory stems from a simple analytical model that derives the tide- or wave-dominated

  10. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  11. Modeling study of the ionospheric responses to the quasi-biennial oscillations of the sun and stratosphere

    Science.gov (United States)

    Wang, Jack C.; Tsai-Lin, Rong; Chang, Loren C.; Wu, Qian; Lin, Charles C. H.; Yue, Jia

    2018-06-01

    The Quasi-biennial Oscillation (QBO) is a persistent oscillation in the zonal mean zonal winds of the low latitude middle atmosphere that is driven by breaking planetary and gravity waves with a period near two years. The atmospheric tides that dominate the dynamics of the mesosphere and lower thermosphere region (MLT, between heights of 70-120 km) are excited in the troposphere and stratosphere, and propagate through QBO-modulated zonal mean zonal wind fields. This allows the MLT tidal response to also be modulated by the QBO, with implications for ionospheric/thermospheric variability. Interannual oscillations in solar radiation can also directly drive the variations in the ionosphere with similar periodicities through the photoionization. Many studies have observed the connection between the solar activity and QBO signal in ionospheric features such as total electron content (TEC). In this research, we develop an empirical model to isolate stratospheric QBO-related tidal variability in the MLT diurnal and semidiurnal tides using values from assimilated TIMED satellite data. Migrating tidal fields corresponding to stratospheric QBO eastward and westward phases, as well as with the quasi-biennial variations in solar activity isolated by the Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) analysis from Hilbert-Huang Transform (HHT), are then used to drive the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). The numerical experiment results indicate that the ionospheric QBO is mainly driven by the solar quasi-biennial variations during the solar maximum, since the solar quasi-biennial variation amplitude is directly proportionate to the solar cycle. The ionospheric QBO in the model is sensitive to both the stratospheric QBO and solar quasi-biennial variations during the solar minimum, with solar effects still playing a stronger role.

  12. Turbine Control of a Tidal and River Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. The input variations to these types of resources are slower but also steadier than wind or solar generation. The level of water turbulent flow may vary from one place to another, however, the control algorithm can be adjusted to local environment. This paper describes the hydrokinetic aspects of river and tidal generation based on a river and tidal generator. Although the information given in this paper is not that of an exact generator deployed on site, the data used is representative of a typical river or tidal generator. In this paper, the hydrokinetic and associated electrical controller of the system were not included; however, the focus of this paper is on the hydrodynamic control.

  13. Tidally Heated Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  14. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal

  15. Effect of sea level rise and tidal current variation on the long-term evolution of offshore tidal sand ridges

    NARCIS (Netherlands)

    Yuan, Bing; de Swart, Huib E.

    2017-01-01

    Tidal sand ridges are large-scale bedforms that occur in the offshore area of shelf seas. They evolve on a time scale of centuries due to tide-topography interactions while being further shaped by wind waves. During their evolution, ridges are also affected by changes in sea level, strength and

  16. Which future for the tidal sector in France? Towards a new model of territorial development

    International Nuclear Information System (INIS)

    Aelbrecht, Denis; Deroo, Luc; Le Visage, Christophe; Rabain, Antoine

    2017-01-01

    This document proposes a brief overview of works by a French national work-group of the SHF (French Hydro-technical Society) on the new tidal sector. It indicates recent and current development in the renewable marine energy sector: offshore wind farms along the French coasts, floating wind energy demonstrators, several tidal stream demonstrators, and other projects. British projects are also evoked. Then various aspects which could be success factors, are briefly discussed: the tidal potential, project configuration types (dams in estuary, coastal lagoons, offshore lagoons), interactions with the environment (sea and coastal ecosystems, sediments), opportunities of technological innovation (belt of the tidal basin, machine technology, exploitation mode), the concept of tidal garden, economic performance and viability (orientations for cost reduction and income increase). The issue of feasibility with respect with the NIMBY syndrome is finally addressed, and orientations and principles are briefly defined to evolve towards a YINBY (Yes in my back yard) syndrome

  17. Determining the Effect of the Lunar Nodal Cycle on Tidal Mixing and North Pacific Climate Variability

    Science.gov (United States)

    Ullman, D. J.; Schmittner, A.; Danabasoglu, G.; Norton, N. J.; Müller, M.

    2016-02-01

    Oscillations in the moon's orbit around the earth modulate regional tidal dissipation with a periodicity of 18.6 years. In regions where the diurnal tidal constituents dominate diapycnal mixing, this Lunar Nodal Cycle (LNC) may be significant enough to influence ocean circulation, sea surface temperature, and climate variability. Such periodicity in the LNC as an external forcing may provide a mechanistic source for Pacific decadal variability (i.e. Pacific Decadal Oscillation, PDO) where diurnal tidal constituents are strong. We have introduced three enhancements to the latest version of the Community Earth System Model (CESM) to better simulate tidal-forced mixing. First, we have produced a sub-grid scale bathymetry scheme that better resolves the vertical distribution of the barotropic energy flux in regions where the native CESM grid does not resolve high spatial-scale bathymetric features. Second, we test a number of alternative barotropic tidal constituent energy flux fields that are derived from various satellite altimeter observations and tidal models. Third, we introduce modulations of the individual diurnal and semi-diurnal tidal constituents, ranging from monthly to decadal periods, as derived from the full lunisolar tidal potential. Using both ocean-only and fully-coupled configurations, we test the influence of these enhancements, particularly the LNC modulations, on ocean mixing and bidecadal climate variability in CESM.

  18. Tidal Friction in the Earth and Ocean

    Science.gov (United States)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work

  19. The development and application practice of neglected tidal energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li-qun; Liu, Chun-xia; Sun, Zhi-yi; Han, Ru-cheng [Department of Electronic and Information, Taiyuan University of Science and Technology, 030024 Taiyuan, Shanxi Province (China)

    2011-02-15

    Along the eastcoasts of China are large bodies of water, China has abundant ocean energy resource, such as the theory reserves of tidal resource is about 0.2 billion kW, as early as 1958, Jizhou tidal power station is the first tidal power station in China, which built in Shunde, Guangdong province, and more than 40 small tidal power stations are built in east coastal region in 1960s, and the total installed capacity is about 0.5 MW. But it is a pity, the application and development of tidal energy has not been regarded by the government and ordinary people due to the investment of power plant is big and the technology is not mature, so there are only several small tidal power stations in China, and Jiangxia tidal power station with an installed capacity of 3.2 MW is the most famous. Fortunately, with the rapid development of Chinese economic and society, the renewable and sustainable energy have been regarded by Chinese government, and the application and development of wind energy and solar energy is increasing in an incredible speed, and more and more specialists began to regard the application of tidal energy, and they thought that tidal energy can relieve the energy stress of east coastal region, and many layout of tidal energy exploitation is unfold in recently. This paper discusses the distribution zone and current developmental situation of tidal energy in China. Then, some application practice is described, such as tidal power station and tidal stream turbine. The policies and law of China central government and local governments are described in the following paragraph. At the end, the developmental prospect of tidal energy in future China and the development barriers and recommendations are introduced, respectively. (author)

  20. The environmental interactions of tidal and wave energy generation devices

    International Nuclear Information System (INIS)

    Frid, Chris; Andonegi, Eider; Depestele, Jochen; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: ► We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. ► Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. ► Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. ► Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  1. Organic geochemistry in Pennsylvanian tidally influenced sediments from SW Indiana

    Science.gov (United States)

    Mastalerz, Maria; Kvale, E.P.; Stankiewicz, B.A.; Portle, K.

    1999-01-01

    Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter (TOC) ranges from traces to 6.9% and sulfur rarely exceeds 0.1% in individual laminae. Angular vitrinite is the major organic matter type, accounting for 50-90% of total OM. The C/S ratio decreases as the verfical distance from the underlying coal increases. A decreasing C/S ratio coupled with decreases in Pr/Ph, Pr/n-C17, Ph/n-C18 ratios and a shift of carbon isotopic composition towards less negative values suggest an increase in salinity from freshwater in the mudflat tidal rhythmite facies close to the coal to brackish/marine in the sandflat tidal rhythmite facies further above from the coal. Within an interval spanning one year of deposition, TOC and S values show monthly variability. On a daily scale, TOC and S oscillations are still detectable but they are of lower magnitude than on a monthly scale. These small-scale variations are believed to reflect oscillations in water salinity related to tidal cycles.Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter

  2. Review of Tidal Lagoon Technology and Opportunities for Integration within the UK Energy System

    Directory of Open Access Journals (Sweden)

    Grazia Todeschini

    2017-07-01

    Full Text Available The number of distributed resources for renewable energy installed worldwide has been increasing rapidly in the last decade, and the great majority of these installations consist of solar panels and wind turbines. Other renewable sources of energy are not exploited to the same level: for instance, tidal energy is still a minute portion of the global energy capacity, in spite of the large amount of potential energy stored in tidal waves, and of the successful experience of the few existing plants. The world’s second largest tidal range occurs in the UK but at the moment tidal installations in this country are limited to a few prototypes. More recently, there has been a renewed interest in harnessing tidal energy in the UK, and a few tidal lagoon projects have been evaluated by the UK government. This paper provides an overview of the historical and current developments of tidal plants, a description of operation of tidal lagoons, challenges and opportunities for their integration within the UK energy systems and solutions to improve the dispatchability of tidal energy. The concepts described in the paper are applied to a tidal project proposed for South Wales.

  3. Prehospital tidal volume influences hospital tidal volume: A cohort study.

    Science.gov (United States)

    Stoltze, Andrew J; Wong, Terrence S; Harland, Karisa K; Ahmed, Azeemuddin; Fuller, Brian M; Mohr, Nicholas M

    2015-06-01

    The purposes of the study are to describe current practice of ventilation in a modern air medical system and to measure the association of ventilation strategy with subsequent ventilator care and acute respiratory distress syndrome (ARDS). Retrospective observational cohort study of intubated adult patients (n = 235) transported by a university-affiliated air medical transport service to a 711-bed tertiary academic center between July 2011 and May 2013. Low tidal volume ventilation was defined as tidal volumes less than or equal to 8 mL/kg predicted body weight. Multivariable regression was used to measure the association between prehospital tidal volume, hospital ventilation strategy, and ARDS. Most patients (57%) were ventilated solely with bag valve ventilation during transport. Mean tidal volume of mechanically ventilated patients was 8.6 mL/kg predicted body weight (SD, 0.2 mL/kg). Low tidal volume ventilation was used in 13% of patients. Patients receiving low tidal volume ventilation during air medical transport were more likely to receive low tidal volume ventilation in the emergency department (P tidal volume (P = .840). Low tidal volume ventilation was rare during air medical transport. Air transport ventilation strategy influenced subsequent ventilation but was not associated with ARDS. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Prediction and Analysis of the Nonsteady Transition and Separation Processes on an Oscillating Wind Turbine Airfoil using the \\gamma-Re_\\theta Transition Model.

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh

    2016-01-04

    This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.

  5. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  6. Tidal power: trends and developments

    International Nuclear Information System (INIS)

    1992-01-01

    This volume covers works and studies on tidal power currently being undertaken, both nationally and internationally. The 20 papers included cover the proposed Mersey barrage, the Severn estuary and several papers on the Severn barrage. The Department of Energy's continued variety of generic work on tidal power and various overseas studies carried out by other experts are also detailed, giving the reader an up to date picture of developments in tidal power worldwide. Separate abstracts have been prepared for the individual papers. (author)

  7. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    Science.gov (United States)

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with massesplanet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.

  8. Variability of residual fluxes of suspended sediment in a multiple tidal-inlet system : the Dutch Wadden Sea

    NARCIS (Netherlands)

    Sassi, M.; Duran-Matute, M.; van Kessel, Th.; Gerkema, Th.

    2015-01-01

    In multiple tidal-inlet systems such as the Dutch Wadden Sea, the exchange of sediments between the coastal lagoon and the adjacent sea is controlled by the combined effect of the tides, wind-driven flows, and density-driven flows. We investigate the variability of residual (tidally averaged) fluxes

  9. Interaction of Accretion Shocks with Winds Kinsuk Acharya , Sandip ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Accretion shocks are known to oscillate in presence of cool- ing processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well. We show examples of shock oscillations under the influence of ...

  10. Tidal Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  11. Chromospheric oscillations

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Thomas, J.H.

    1995-01-01

    We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.

  12. Inverted oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)

    2006-07-15

    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.

  13. Tidal and longshore sediment transport associated to a coastal structure

    Science.gov (United States)

    Cuadrado, Diana G.; Gómez, Eduardo A.; Ginsberg, S. Susana

    2005-01-01

    In order to understand the subtidal marine dynamics relative to the coastal engineering works in the Bahía Blanca Estuary (Argentina), the balance of sediment transport caused by tidal currents was estimated in the Puerto Rosales area and compared with the predicted potential littoral transport. The breaking wave height used in the littoral drift calculation was estimated after applying different wave transforming procedures over the deepwater wave which was predicted by the occurrence of predominant wind, blowing long enough in an essentially constant direction over a fetch. The effect of a breakwater on currents and circulation was studied by bathymetric and side-scan sonar records, sedimentology, and tidal current measurements. Different modes of transport occur on either sides of the breakwater. On the east side, longshore transport is the principal mode, and on the west side, tidal transport is predominant.

  14. Sedimentary structures of tidal flats

    Indian Academy of Sciences (India)

    Sedimentary structures of some coastal tropical tidal flats of the east coast of India, and inner estuarine tidal point bars located at 30 to 50 kilometers inland from the coast, have been extensively studied under varying seasonal conditions. The results reveal that physical features such as flaser bedding, herringbone ...

  15. Chemical Oscillations

    Indian Academy of Sciences (India)

    IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.

  16. Chemical Oscillations

    Indian Academy of Sciences (India)

    the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.

  17. The environmental interactions of tidal and wave energy generation devices

    OpenAIRE

    Frid, C.; Andonegi, E.; Depestele, J.; Judd, A.; Rihan, D.; Rogers, S.I.; Kenchington, E.

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other...

  18. Tidal energy in France

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2010-01-01

    The author first discusses the potential theoretical production of tidal energy in the world and more particularly in France, and compares this potential production with that of hydroelectric energy. He discusses the existence of potentially interesting sites in France in terms of sizing and exploitation modes. He describes the main associated works for turbines and sea walls, impacts on the environment, on the economy and on employment. He discusses the production possibilities and their cost, and the issue of energy storage. He indicates sites which could be built before 2025: Saint-Brieuc, Portbail-Coutainville or Granville, Mers or Cayeux, Penly or Saint-Valery en Caux. For each of this site, the author describes the project implantation, gives an gross assessment of the construction cost, and therefore of the kWh cost

  19. Tidal and meteorological forcing of sediment transport in tributary mudflat channels.

    Science.gov (United States)

    Ralston, David K; Stacey, Mark T

    2007-06-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

  20. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... reversal, depicting a new form of 22-year periodicity. The annual variation results from a small north-south asymmetry in SW speed distribution where the minimum speed region is shifted toward the northern magnetic hemisphere. Here we study the very long-term evolution of the annual variation using early...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  1. Potential of Tidal Plants and Offshore Energy Storage in India

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2008-01-01

    After a discussion of the future needs of electric power in India, the author discusses the perspectives offered by different possible sources of electric energy in this country: coal, hydro, nuclear, wind, solar. These two last ones seem very promising. In order to solve the intermittency problem raised by wind and solar energy, the author discusses and assesses the needs, potentials and costs of energy storage. Then, he evokes the opportunities and possible sites for the development of tidal energy, proposes a schedule of investments for energy

  2. Dynamic and photometric evolutionary models of tidal tails and ripples

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1989-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broad-band photometric evolutionary code. In these models, regions of compression form inside the disk and along the tidal tail and tidal bridge. The effects these density changes have on the colors of the tidal features are examined with a broad-band photometric evolutionary code. A spiral galaxy population is synthesized and the effects of modest changes in the star formation rate are explored. Limits on the density changes needed to make detectable changes in the colors are calculated using a Schmidt (1959) law. These models suggest that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. The Lynds and Toomre (1976) interpretation of ring galaxies as the natural result of a nearly head-on collision between a disk galaxy and a companion galaxy has become widely accepted. Similarly, Quinn's (1984) interpretation of the shells in elliptical galaxies as the aftermath of the cannibalization of a low-mass companion has been quite successful in accounting for the observations. Restricted three-body calculations of high inclination, low impact parameter encounters demonstrate that the shell-like ripples observed in a number of disk galaxies can also be produced as collisional artifacts from internal oscillations much as in ring galaxies

  3. Tidal energy site - Tidal energy site mammal/bird survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A vessel-based line visual transect survey was conducted for birds and marine mammals near the proposed Snohomish County PUD Admiralty Inlet tidal energy site...

  4. Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    Science.gov (United States)

    Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S.; Kasting, James F.; Heller, René

    2013-01-01

    Abstract Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with massestidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone

  5. Design and optimization of tidal turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2011-07-15

    In order to increase the ratio of energy capture to the loading and thereby to reduce cost of energy, the use of specially tailored airfoils is needed. This work is focused on the design of an airfoil for marine application. Firstly, the requirements for this class of airfoils are illustrated and discussed with reference to the requirements for wind turbine airfoils. Then, the design approach is presented. This is a numerical optimization scheme in which a gradient based algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; in order to formalize in the most complete and effective way the design requirements, the effects of activating specific constraints are discussed. Particularly importance is given to the cavitation phenomenon. Finally, a numerical example regarding the design of a high efficiency, tidal turbine airfoil is illustrated and the results are compared with existing turbine airfoils.

  6. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chang

    2015-02-01

    Full Text Available It is of great importance and urgency for Taiwan to develop offshore wind power. However, relevant data on offshore wind energy resources are limited. This study imported wind speeds measured by a tidal station and a buoy into the software WAsP to estimate the high-altitude wind speeds in the two areas. A light detection and ranging (Lidar system was set up near the tidal station and buoy. High-altitude wind speeds measured by the Lidar system were compared with the WAsP-estimated values, and it was discovered that the two data sets were consistent. Then, long-term wind speed data observed by buoys and tidal stations at various locations were imported into WAsP to forecast wind speeds at heights of 55–200 m on the west coast of Taiwan. The software WAsP Engineering was used to analyze the extreme wind speeds in the same areas. The results show that wind speeds at 100 m are approximately 9.32–11.24 m/s, which means that the coastal areas of west Taiwan are rich in wind energy resources. When a long-term 10-min average wind speed is used, the extreme wind speed on the west coast is estimated to be between 36.4 and 55.3 m/s.

  7. Thermal tides and studies to tune the mechanistic tidal model using UARS observations

    Directory of Open Access Journals (Sweden)

    V. A. Yudin

    1997-09-01

    Full Text Available Monthly simulations of the thermal diurnal and semidiurnal tides are compared to High-Resolution Doppler Imager (HRDI and Wind Imaging Interferometer (WINDII wind and temperature measurements on the Upper-Atmosphere Research Satellite (UARS. There is encouraging agreement between the observations and the linear global mechanistic tidal model results both for the diurnal and semidiurnal components in the equatorial and mid-latitude regions. This gives us the confidence to outline the first steps of an assimilative analysis/interpretation for tides, dissipation, and mean flow using a combination of model results and the global measurements from HRDI and WINDII. The sensitivity of the proposed technique to the initial guess employed to obtain a best fit to the data by tuning model parameters is discussed for the January and March 1993 cases, when the WINDII day and night measurements of the meridional winds between 90 and 110 km are used along with the daytime HRDI measurements. Several examples for the derivation of the tidal variables and decomposition of the measured winds into tidal and mean flow components using this approach are compared with previous tidal estimates and modeling results for the migrating tides. The seasonal cycle of the derived diurnal tidal amplitudes are discussed and compared with radar observation between 80 and 100 km and 40°S and 40°N.

  8. Thermal tides and studies to tune the mechanistic tidal model using UARS observations

    Directory of Open Access Journals (Sweden)

    V. A. Yudin

    Full Text Available Monthly simulations of the thermal diurnal and semidiurnal tides are compared to High-Resolution Doppler Imager (HRDI and Wind Imaging Interferometer (WINDII wind and temperature measurements on the Upper-Atmosphere Research Satellite (UARS. There is encouraging agreement between the observations and the linear global mechanistic tidal model results both for the diurnal and semidiurnal components in the equatorial and mid-latitude regions. This gives us the confidence to outline the first steps of an assimilative analysis/interpretation for tides, dissipation, and mean flow using a combination of model results and the global measurements from HRDI and WINDII. The sensitivity of the proposed technique to the initial guess employed to obtain a best fit to the data by tuning model parameters is discussed for the January and March 1993 cases, when the WINDII day and night measurements of the meridional winds between 90 and 110 km are used along with the daytime HRDI measurements. Several examples for the derivation of the tidal variables and decomposition of the measured winds into tidal and mean flow components using this approach are compared with previous tidal estimates and modeling results for the migrating tides. The seasonal cycle of the derived diurnal tidal amplitudes are discussed and compared with radar observation between 80 and 100 km and 40°S and 40°N.

  9. On luminescence bleaching of tidal channel sediments

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Pejrup, Morten; Murray, Andrew S.

    2015-01-01

    We investigate the processes responsible for bleaching of the quartz OSL signal from tidal channel sediment. Tidal dynamics are expected to play an important role for complete bleaching of tidal sediments. However, no studies have examined the amount of reworking occurring in tidal channels...... and on tidal flats due to the mixing caused by currents and waves. We apply bed level data to evaluate the amount of vertical sediment reworking in modern tidal channels and at a tidal flat. Cycles of deposition and erosion are measured with a bed level sensor, and the results show that gross sedimentation...... was several times higher than net sedimentation. We propose that tidal channel sediment is bleached either on the tidal flat before it is transported to the tidal channels and incorporated in channel-fill successions or, alternatively, on the shallow intertidal part of the channel banks. Based...

  10. Introduction to classical and quantum harmonic oscillators

    CERN Document Server

    Bloch, Sylvan C

    2013-01-01

    From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con

  11. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  12. Tidal locking of habitable exoplanets

    Science.gov (United States)

    Barnes, Rory

    2017-12-01

    Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can produce an elongated shape. Frictional forces inside the planet prevent the bulges from aligning perfectly with the host star and result in torques that alter the planet's rotational angular momentum. Eventually the tidal torques fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Although these features of tidal theory are well known, a systematic survey of the rotational evolution of potentially habitable exoplanets using classic equilibrium tide theories has not been undertaken. I calculate how habitable planets evolve under two commonly used models and find, for example, that one model predicts that the Earth's rotation rate would have synchronized after 4.5 Gyr if its initial rotation period was 3 days, it had no satellites, and it always maintained the modern Earth's tidal properties. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. For fast-rotating planets, both models predict eccentricity growth and that circularization can only occur once the rotational frequency is similar to the orbital frequency. The orbits of potentially habitable planets of very late M dwarfs ([InlineEquation not available: see fulltext.]) are very likely to be circularized within 1 Gyr, and hence, those planets will be synchronous rotators. Proxima b is almost assuredly tidally locked, but its orbit may not have circularized yet, so the planet could be rotating super-synchronously today. The evolution of the isolated and potentially habitable Kepler planet candidates is computed and about half could be tidally locked. Finally, projected TESS planets

  13. Simple Tidal Prism Models Revisited

    Science.gov (United States)

    Luketina, D.

    1998-01-01

    Simple tidal prism models for well-mixed estuaries have been in use for some time and are discussed in most text books on estuaries. The appeal of this model is its simplicity. However, there are several flaws in the logic behind the model. These flaws are pointed out and a more theoretically correct simple tidal prism model is derived. In doing so, it is made clear which effects can, in theory, be neglected and which can not.

  14. Resonance properties of tidal channels with multiple retention basisn: role of adjacent sea

    NARCIS (Netherlands)

    Roos, Pieter C.; Schuttelaars, H.M.

    2015-01-01

    We present an idealised model of the tidal response in a main channel with multiple secondary basins, co-oscillating with an adjacent sea. The sea is represented as a semi-infinite strip of finite width, anywhere between the limits of a channel extension (narrow) and a half-plane (wide). The sea

  15. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    Science.gov (United States)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  16. Policy for tidal energy

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, T L

    1977-01-01

    The potential of tidal energy for the United Kingdom should be reassessed, it is argued, and some of its advantages are cited. The technology for its development is available and proven; experience suggests that the capital works will have an indefinite life, with only the turbine blades needing to be replaced occasionally. It is a source of water power, and can be regulated to generate when required, on a flexible basis and only by day if so desired; this compares favorably with the relatively unpredictable nature of the other sources. It can be made to complement directly, and so to improve the performance of the coal and nuclear sources at a scale readily possible from a proportionately small installed capacity. The fuel is free. Present indications unquestionably suggest that it will be timely to reassess this source as part of the present energy review, so that its potential may be realized when needed after 1990. It is especially significant that the environmental effects of the necessary works appear to be comparatively small whereas the industrial and social rewards, so far not financially quantified, could be appreciable. The disadvantages that have been expressed are cited, but the author counters the attack on them. (MCW)

  17. Tidal interaction of galaxies

    International Nuclear Information System (INIS)

    Kozlov, N.N.; Syunyaev, R.A.; Ehneev, T.M.

    1974-01-01

    One of the hypotheses explaining the occurrence of anomalous details in interacting galaxies has been investigated. Pairs of galaxies with 'tails' oppositely directed or neighbouring galaxies with cofferdams 'bridges', as if connecting the galaxies, are called interacting galaxies. The hypothesis connects the origin of cofferdams and 'tails' of interacting galaxies with tidal effects ; the action of power gravitational forces in the intergalactic space. A source of such forces may be neighbouring stellar systems or invisible bodies, for instance, 'dead' quasars after a gravitational collapse. The effect of large masses of matter on the galaxy evolution has been investigated in the Institute of Applied Mathematics of the Academy of Sciences of the USSSR in 1971-1972 by numerical simulation of the process on a digital computer with the subsequent data transmission on a display. Different versions of a massive body flight relative to a galaxy disk are considered. Photographs of a display screen at different moments of time are presented. As a result of mathematical simulation of galaxies gravitational interactions effects are discovered which resemble real structures in photographs of galaxies. It seems to be premature to state that namely these mechanisms cause the formation of 'tails' and cofferdams between galaxies. However, even now it is clear that the gravitational interaction strongly affects the dynamics of the stellar system evolution. Further studies should ascertain a true scale of this effect and its genuine role in galaxy evolution

  18. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  19. The environmental interactions of tidal and wave energy generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  20. Modulation of Tidal Channel Signatures on SAR Images Over Gyeonggi Bay in Relation to Environmental Factors

    Directory of Open Access Journals (Sweden)

    Tae-Sung Kim

    2018-04-01

    Full Text Available In this study, variations of radar backscatter features of the tidal channel in Gyeonggi Bay in the Eastern Yellow Sea were investigated using spaceborne synthetic aperture radar (SAR images. Consistent quasi-linear bright features appeared on the SAR images. Examining the detailed local bathymetry chart, we found that the features were co-located with the major axis of the tidal channel in the region. It was also shown that modulation of the radar backscatter features changed according to the environmental conditions at the time of imaging. For the statistical analysis, the bathymetric features over the tidal channel were extracted by an objective method. In terms of shape, the extracted features had higher variability in width than in length. The analysis of the variation in intensity with the coinciding bathymetric distribution confirmed that the quasi-linear bright features on the SAR images are fundamentally imprinted due to the surface current convergence and divergence caused by the bathymetry-induced tidal current variation. Furthermore, the contribution of environmental factors to the intensity modulation was quantitatively analyzed. A comparison of the variation in normalized radar cross section (NRCS with tidal current showed a positive correlation only with the perpendicular component of tidal current (r= 0.47. This implies that the modulation in intensity of the tidal channel signatures is mainly affected by the interaction with cross-current flow. On the other hand, the modulation of the NRCS over the tidal channel tended to be degraded as wind speed increased (r= −0.65. Considering the environmental circumstances in the study area, it can be inferred that the imaging capability of SAR for the detection of tidal channel signatures mainly relies on wind speed.

  1. An integrated model for estimating energy cost of a tidal current turbine farm

    International Nuclear Information System (INIS)

    Li, Ye; Lence, Barbara J.; Calisal, Sander M.

    2011-01-01

    A tidal current turbine is a device for harnessing energy from tidal currents and functions in a manner similar to a wind turbine. A tidal current turbine farm consists of a group of tidal current turbines distributed in a site where high-speed current is available. The accurate prediction of energy cost of a tidal current turbine farm is important to the justification of planning and constructing such a farm. However, the existing approaches used to predict energy cost of tidal current turbine farms oversimplify the hydrodynamic interactions between turbines in energy prediction and oversimplify the operation and maintenance strategies involved in cost estimation as well as related fees. In this paper, we develop a model, which integrates a marine hydrodynamic model with high accuracy for predicting energy output and a comprehensive cost-effective operation and maintenance model for estimating the cost that may be incurred in producing the energy, to predict energy cost from a tidal current turbine farm. This model is expected to be able to simulate more complicated cases and generate more accurate results than existing models. As there is no real tidal current turbine farm, we validate this model with offshore wind studies. Finally, case studies about Vancouver are conducted with a scenario-based analysis. We minimize the energy cost by minimizing the total cost and maximizing the total power output under constraints related to the local conditions (e.g., geological and labor information) and the turbine specifications. The results suggest that tidal current energy is about ready to penetrate the electricity market in some major cities in North America if learning curve for the operational and maintenance is minimum. (author)

  2. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  3. Preliminary investigation of the potential of harnessing tidal energy for electricity generation in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S.; Seng, L.Y. [Tunku Abdul Rahman Univ. (Malaysia). Dept. of Electrical and Electronic Engineering

    2008-07-01

    Malaysia relies heavily on fossil fuels to meet its energy demands. However, Malaysia has started to explore the use of other forms of renewable energy such as solar energy, biofuels and tidal power. This paper focused on the potential of harnessing tidal energy in Malaysia for electricity production. There are several sites with great potential for tidal energy conversion, which could supplement the energy needs of Malaysia while reducing greenhouse gas emissions. Illustrations were included to show the amplitude of the main harmonic component of the tidal range around Malaysia. The main harmonic component found in the region has a maximum amplitude of 1.4 m, confirming the potential of tidal energy in Malaysia's Ocean. Since the tidal cycle is highly predictable, it has the potential to be a very reliable renewable energy source. Two main approaches are being researched internationally to harness the energy from tides, notably the barrage approach and the tidal stream approach. For the barrage approach, a physical barrier is created within the sea, and a sluice gate controls the flow of sea water. In the tidal stream approach, horizontal axis turbines are placed in the path of tidal currents to generate electricity, similar to the operation of wind turbines. This paper described the flow velocity, power output, availability of power supply and monthly yield of turbines using both the barrage and tidal stream approaches. The study showed that for the barrage approach, there are 6 sites in Malaysia where 14,970 kWH of energy can be generated monthly with a single turbine with a 5 m long blade. The tidal stream approach showed equally promising results at 2 sites. It was concluded that tidal energy is a promising form of renewable energy because of its cyclic, reliable and predictable nature and the vast energy contained within it. According to United Kingdom Department of Trade and Industry, 10 per cent of the United Kingdom's electricity needs could be

  4. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  5. TIDAL LIMITS TO PLANETARY HABITABILITY

    International Nuclear Information System (INIS)

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-01-01

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO 2 may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  6. Tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  7. Lightweight steel tidal power barrages with minimal environmental impact: application to the Severn Barrage.

    Science.gov (United States)

    Rainey, R C T

    2018-01-01

    For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr -1 ), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.

  8. Lightweight steel tidal power barrages with minimal environmental impact: application to the Severn Barrage

    Science.gov (United States)

    Rainey, R. C. T.

    2018-01-01

    For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr-1), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.

  9. Calculating residual flows through a multiple-inlet system: the conundrum of the tidal period

    Science.gov (United States)

    Duran-Matute, Matias; Gerkema, Theo

    2015-11-01

    The concept of residual, i.e., tidally-averaged, flows through a multiple inlet system is reappraised. The evaluation of the residual through-flow depends on the time interval over which is integrated, in other words, on how one defines the tidal period. It is demonstrated that this definition is ambiguous and that different definitions (based on, e.g., high waters, slack tides, etc.) yield very different results for the residual, also in terms of their long-term statistical properties (median and standard deviation). A basin-wide applicable method of defining the tidal period, in terms of enclosed water volume, is analyzed. We compare the different methods on the basis of high-resolution model results for the Western Dutch Wadden Sea. The multitude of tidal constituents together with wind variability creates broad distributions for the residuals, with standard deviations much larger than the mean or median residual flows.

  10. The dynamic tidal response of a subsurface ocean on Titan and the associated dissipative heat generated

    Science.gov (United States)

    Tyler, Robert

    2012-04-01

    The tidal flow response and associated dissipative heat generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing strong tidal flow and appreciable dissipative heat. Of primary interest in this study are the ocean parameters that can be expected to evolve (notably, the ocean depth in an ocean attempting to freeze, and the stratification in an ocean attempting to cool) because this evolution can cause an ocean to be pushed into a resonant configuration where the increased dissipative heat of the resonant response halts further evolution and a liquid ocean can be maintained by ocean tidal heat. In this case the resonant ocean tidal response is not only allowed but may be inevitable. Previous work on this topic is extended to describe the resonant configurations in both unstratified and stratified cases for an assumed global ocean on Titan subject to both obliquity and eccentricity tidal forces. Results indicate first that the assumption of an equilibrium tidal response is not justified and the correct dynamical response must be considered. Second, the ocean tidal dissipation will be appreciable if the ocean configuration is near that producing a resonant state. The parameters values required for this resonance are provided in this study, and examples/movies of calculated ocean tidal flow are also presented.

  11. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  12. The distribution and tapping tidal energy

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2004-09-01

    Full Text Available Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the construction of small, efficient and inexpensive underwater turbines admit the possibility of small scale operations that will use local tidal currents to bring electricity to remote locations. Since the generation of such electricity is concerned with the tidal energy in local water bodies, it is important to understand the site-specific energy balance, i.e., the energy flowing in through open boundaries, and the energy generated and dissipated within the local domain. The question is how to tap the tidal energy while keeping possible changes in the present tidal regimes to a minimum. The older approach of constructing barrages may still be quite useful in some locations. The basics of such tidal power plants constructed in a small bay are analyzed in order to understand the principal parameter for tidal plant evaluation, i.e., the power produced.     The new approach is to place turbines - devices similar to windmills - in the pathway of tidal currents. Theoretically, the amount of power available by such turbines for electricity generation is proportional to the water density and velocity cubed of the tidal flow. The naturally dissipated tidal power due to bottom friction forces is also proportional to the cube of the velocity. Because of this similarity, the exploitation of tidal energy can be directed to reinvesting the naturally dissipated power into tidal power for the generation of electricity. This approach to tidal power exploitation is better tuned

  13. Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres

    Science.gov (United States)

    Tan, Xianyu; Showman, Adam P.

    2017-10-01

    Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.

  14. Turning the tide : tidal power in the UK

    OpenAIRE

    Sustainable Development Commission

    2007-01-01

    Contents: Turning the tide : tidal power in the UK -- Executive summary -- Tidal power in the UK : research report 1 : UK tidal resource assessment -- Tidal power in the UK : research report 2 : tidal technologies overview -- Tidal power in the UK : research report 3 : Severn barrage proposals -- Tidal power in the UK : research report 4 : Severn non-barrage options -- Tidal power in the UK : research report 5 : UK case studies. Summarised in the Welsh language version of the executive ...

  15. Facies architecture of heterolithic tidal deposits : The Holocene Holland Tidal Basin

    NARCIS (Netherlands)

    Donselaar, M.E.; Geel, C.R.

    2007-01-01

    The size, shape and spatial position of lithofacies types (or facies architecture) in a tidal estuarine basin are complex and therefore difficult to model. The tidal currents in the basin concentrate sand-sized sediment in a branching pattern of tidal channels and fringing tidal flats. Away from the

  16. Gamma-ray bursts from tidally spun-up Wolf-Rayet stars?

    NARCIS (Netherlands)

    Detmers, R.G.; Langer, N.; Podsiadlowski, Ph.; Izzard, R.G.

    2008-01-01

    Context. The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. Aims. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact

  17. Tidal flow separation at protruding beach nourishments

    NARCIS (Netherlands)

    Radermacher, M.; de Schipper, M.A.; Swinkels, Cilia M.; MacMahan, Jamie; Reniers, A.J.H.M.

    2016-01-01

    In recent years, the application of large-scale beach nourishments has been discussed, with the Sand Motor in the Netherlands as the first real-world example. Such protruding beach nourishments have an impact on tidal currents, potentially leading to tidal flow separation and the generation of tidal

  18. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  19. Tidal energy - a technology review

    International Nuclear Information System (INIS)

    Price, R.

    1991-01-01

    The tides are caused by gravitational attraction of the sun and the moon acting upon the world's oceans. This creates a clean renewable form of energy which can in principle be tapped for the benefit of mankind. This paper reviews the status of tidal energy, including the magnitude of the resource, the technology which is available for its extraction, the economics, possible environmental effects and non-technical barriers to its implementation. Although the total energy flux of the tides is large, at about 2 TW, in practice only a very small fraction of this total potential can be utilised in the foreseeable future. This is because the energy is spread diffusely over a wide area, requiring large and expensive plant for its collection, and is often available remote from centres of consumption. The best mechanism for exploiting tidal energy is to employ estuarine barrages at suitable sites with high tidal ranges. The technology is relatively mature and components are commercially available now. Also, many of the best sites for implementation have been identified. However, the pace and extent of commercial exploitation of tidal energy is likely to be significantly influenced, both by the treatment of environmental costs of competing fossil fuels, and by the availability of construction capital at modest real interest rates. The largest projects could require the involvement of national governments if they are to succeed. (author) 8 figs., 2 tabs., 19 refs

  20. Properties of active tidal bedforms

    DEFF Research Database (Denmark)

    Winter, Christian; Lefebvre, Alice; Becker, Marius

    2016-01-01

    Bedforms of various shapes and sizes are ubiquitous in tidal channels, inlets and estuaries. They constitute a form roughness which has a large scale effect on the hydrodynamics and sediment transport of coastal environments. It has been shown that this form roughness can be expressed in terms...

  1. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  2. Forced pitch motion of wind turbines

    Science.gov (United States)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  3. Forced pitch motion of wind turbines

    International Nuclear Information System (INIS)

    Leble, V; Barakos, G

    2016-01-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance. (paper)

  4. High tidal volume ventilation in infant mice.

    Science.gov (United States)

    Cannizzaro, Vincenzo; Zosky, Graeme R; Hantos, Zoltán; Turner, Debra J; Sly, Peter D

    2008-06-30

    Infant mice were ventilated with either high tidal volume (V(T)) with zero end-expiratory pressure (HVZ), high V(T) with positive end-expiratory pressure (PEEP) (HVP), or low V(T) with PEEP. Thoracic gas volume (TGV) was determined plethysmographically and low-frequency forced oscillations were used to measure the input impedance of the respiratory system. Inflammatory cells, total protein, and cytokines in bronchoalveolar lavage fluid (BALF) and interleukin-6 (IL-6) in serum were measured as markers of pulmonary and systemic inflammatory response, respectively. Coefficients of tissue damping and tissue elastance increased in all ventilated mice, with the largest rise seen in the HVZ group where TGV rapidly decreased. BALF protein levels increased in the HVP group, whereas serum IL-6 rose in the HVZ group. PEEP keeps the lungs open, but provides high volumes to the entire lungs and induces lung injury. Compared to studies in adult and non-neonatal rodents, infant mice demonstrate a different response to similar ventilation strategies underscoring the need for age-specific animal models.

  5. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  6. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Michael Leroy [Univ. of Maine, Orono, ME; Zydlewski, Gayle Barbin [Univ. of Maine, Orono, ME; Xue, Huijie [Univ. of Maine, Orono, ME; Johnson, Teresa R. [Univ. of Maine, Orono, ME

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  7. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  8. Numerical Simulation of an Oscillatory-Type Tidal Current Powered Generator Based on Robotic Fish Technology

    Directory of Open Access Journals (Sweden)

    Ikuo Yamamoto

    2017-10-01

    Full Text Available The generation of clean renewable energy is becoming increasingly critical, as pollution and global warming threaten the environment in which we live. While there are many different kinds of natural energy that can be harnessed, marine tidal energy offers reliability and predictability. However, harnessing energy from tidal flows is inherently difficult, due to the harsh environment. Current mechanisms used to harness tidal flows center around propeller-based solutions but are particularly prone to failure due to marine fouling from such as encrustations and seaweed entanglement and the corrosion that naturally occurs in sea water. In order to efficiently harness tidal flow energy in a cost-efficient manner, development of a mechanism that is inherently resistant to these harsh conditions is required. One such mechanism is a simple oscillatory-type mechanism based on robotic fish tail fin technology. This uses the physical phenomenon of vortex-induced oscillation, in which water currents flowing around an object induce transverse motion. We consider two specific types of oscillators, firstly a wing-type oscillator, in which the optimal elastic modulus is being sort. Secondly, the optimal selection of shape from 6 basic shapes for a reciprocating oscillating head-type oscillator. A numerical analysis tool for fluid structure-coupled problems—ANSYS—was used to select the optimum softness of material for the first type of oscillator and the best shape for the second type of oscillator, based on the exhibition of high lift coefficients. For a wing-type oscillator, an optimum elastic modulus for an air-foil was found. For a self-induced vibration-type mechanism, based on analysis of vorticity and velocity distribution, a square-shaped head exhibited a lift coefficient of more than two times that of a cylindrically shaped head. Analysis of the flow field clearly showed that the discontinuous flow caused by a square-headed oscillator results in

  9. Orbital tidal variability in the eccentric early type binary Iota Orionis

    International Nuclear Information System (INIS)

    Stevens, I.R.

    1988-01-01

    Iota Orionis is a bright, highly eccentric, massive early type binary, which has been studied recently in UV wavelengths, for evidence of stellar wind variability caused by tidal interactions between the two stars. No gross variability was found, but small scale perturbations in the UV resonance line profiles were noted. Here, using a radiatively driven stellar wind model for eccentric binaries, the results of numerical modelling of the stellar wind of Iota Orionis are presented. These calculations suggest that increased mass-loss from the primary star will occur close to the periastron passage, but that the enhancements will be short lived, and observed probably as redshifted emission features. (author)

  10. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  11. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  12. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  13. Wind effect on currents in a thin surface layer of coastal waters faced open-sea

    International Nuclear Information System (INIS)

    Nakano, Masanao; Isozaki, Hisaaki; Isozaki, Tokuju; Nemoto, Masashi; Hasunuma, Keiichi; Kitamura, Takashi

    2009-01-01

    Two-years of continuous observation of wind and current were carried out to investigate the relationship between them in the coastal waters off Tokai-mura, Ibaraki prefecture. Three instruments to measure the current were set in a thin surface layer of 3 m above the strong pycnocline, which is a common feature in coastal waters. Both of the power spectra of wind and currents showed very similar features, an outstanding high peak at 24-hour period and a range of high peaks longer than several-days period. The long term variation of the wind field always contained north-wind component, which contributed to forming the southward current along the shore throughout the year. A high correlation coefficient (0.64) was obtained between the wind and the current at a depth of 0.5 m on the basis of the two-year observation. Harmonic analysis revealed that an outstanding current with 24-hour period was the S 1 component (meteorological tide), and was driven by land and sea breezes. These breezes also contained solar tidal components such as K 1 , P 1 and S 2 . These wind components added their own wind driven currents on the original tidal currents. This meant that land and sea breezes generated wind driven currents with solar tidal periods which behaved like astronomical tidal currents. As result, coastal currents contained pseudo tidal currents which behaved like astronomical tidal currents. (author)

  14. Prospects for Fundy tidal power

    International Nuclear Information System (INIS)

    Clark, R.H.

    1997-01-01

    The Bay of Fundy in Canada probably possesses the most favourable conditions in the world for the exploitation of tidal energy. The results of the comprehensive investigations carried out during the past quarter-century are reviewed together with operating and environmental aspects of the modest (20 MW) Annapolis Tidal Power Station, commissioned in 1984, the primary purpose of which was to evaluate the operation of a large (7.6 m) diameter Straflo turbine unit under low heads. The results of the operating and maintenance experience for the Annapolis Station are reviewed as well as the results of the environmental/ecological studies that have been on-going in the Annapolis Basin. The tidal power investigations have shown that a 1400 MW development at the mouth of the Cumberland Basin, at the head of the bay of Fundy, is technically and economically feasible and that its output would probably be competitive with fossil-fired plants, particularly if a 'green' accounting technique were applied to such energy sources. The importance of timing, if the exploitation of this non-polluting, renewable and completely predicable source is to be used to meet the future electrical energy needs of the maritime provinces, is discussed. (author)

  15. Dynamic Braking System of a Tidal Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    Renewable energy generation has experienced significant cost reductions during the past decades, and it has become more accepted by the global population. In the beginning, wind generation dominated the development and deployment of renewable energy; however, during recent decades, photovoltaic (PV) generation has grown at a very significant pace due to the tremendous decrease in the cost of PV modules. The focus on renewable energy generation has now expanded to include new types with promising future applications, such as river and tidal generation. The input water flow to these types of resources is more predictable than wind or solar generation. The data used in this paper is representative of a typical river or tidal generator. The analysis is based on a generator with a power rating of 40 kW. The tidal generator under consideration is driven by two sets of helical turbines connected to each side of the generator located in between the turbines. The generator is operated in variable speed, and it is controlled to maximize the energy harvested as well as the operation of the turbine generator. The electrical system consists of a three-phase permanent magnet generator connected to a three-phase passive rectifier. The output of the rectifier is connected to a DC-DC converter to match the rectifier output to the DC bus voltage of the DC-AC inverter. The three-phase inverter is connected to the grid, and it is controlled to provide a good interface with the grid. One important aspect of river and tidal generation is the braking mechanism. In a tidal generator, the braking mechanism is important to avoid a runaway condition in case the connection to the grid is lost when there is a fault in the lines. A runaway condition may lead to an overspeed condition and cause extreme stresses on the turbine blade structure and eventual disintegration of the mechanical structure. In this paper, the concept of the dynamic braking system is developed and investigated for normal

  16. Gamma-Ray Bursts from tidally spun-up Wolf-Rayet stars?

    OpenAIRE

    Detmers, R. G.; Langer, N.; Podsiadlowski, Ph.; Izzard, R. G.

    2008-01-01

    Context. The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. Aims. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact object in a binary system can spin up the Wolf-Rayet star enough to produce a collapsar. Methods. We compute the evolution of close Wolf-Rayet binaries, including tidal angular momentum exchange, ...

  17. Wind Patterns of Coastal Tanzania: Their Variability and Trends ...

    African Journals Online (AJOL)

    Generally, the wind speeds were significantly correlated with the El-Niño Southern Oscillation and the Pacific Decadal Oscillation, while at Mtwara the winds were also correlated with the Indian Ocean Dipole. These correlations were higher during the SE Monsoon than during the NE Monsoon. Trends in the monthly mean ...

  18. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  19. Assessing the vertical structure of baroclinic tidal currents in a global model

    Science.gov (United States)

    Timko, Patrick; Arbic, Brian; Scott, Robert

    2010-05-01

    Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.

  20. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    International Nuclear Information System (INIS)

    Efroimsky, Michael; Makarov, Valeri V.

    2013-01-01

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  1. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    Energy Technology Data Exchange (ETDEWEB)

    Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)

    2013-02-10

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  2. Filtering methods in tidal-affected groundwater head measurements: Application of harmonic analysis and continuous wavelet transform

    Science.gov (United States)

    Sánchez-Úbeda, Juan Pedro; Calvache, María Luisa; Duque, Carlos; López-Chicano, Manuel

    2016-11-01

    A new methodology has been developed to obtain tidal-filtered time series of groundwater levels in coastal aquifers. Two methods used for oceanography processing and forecasting of sea level data were adapted for this purpose and compared: HA (Harmonic Analysis) and CWT (Continuous Wavelet Transform). The filtering process is generally comprised of two main steps: the detection and fitting of the major tide constituents through the decomposition of the original signal and the subsequent extraction of the complete tidal oscillations. The abilities of the optional HA and CWT methods to decompose and extract the tidal oscillations were assessed by applying them to the data from two piezometers at different depths close to the shoreline of a Mediterranean coastal aquifer (Motril-Salobreña, SE Spain). These methods were applied to three time series of different lengths (one month, one year, and 3.7 years of hourly data) to determine the range of detected frequencies. The different lengths of time series were also used to determine the fit accuracies of the tidal constituents for both the sea level and groundwater heads measurements. The detected tidal constituents were better resolved with increasing depth in the aquifer. The application of these methods yielded a detailed resolution of the tidal components, which enabled the extraction of the major tidal constituents of the sea level measurements from the groundwater heads (e.g., semi-diurnal, diurnal, fortnightly, monthly, semi-annual and annual). In the two wells studied, the CWT method was shown to be a more effective method than HA for extracting the tidal constituents of highest and lowest frequencies from groundwater head measurements.

  3. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    International Nuclear Information System (INIS)

    Fuller, Jim; Lai Dong

    2012-01-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10 5 -10 6 years.

  4. Seasonal variability of tidal and non-tidal currents off Beypore, SW coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Srinivas, K.; AnilKumar, N.

    and summer monsoon seasons of year 2000. Information on tidal signals contained in the currents were extracted using harmonic analysis - Least Squares Method and non-tidal component were analyzed using the Chi sub(o) filter. The study established...

  5. Computational Actuator Disc Models for Wind and Tidal Applications

    Directory of Open Access Journals (Sweden)

    B. Johnson

    2014-01-01

    Full Text Available This paper details a computational fluid dynamic (CFD study of a constantly loaded actuator disc model featuring different boundary conditions; these boundary conditions were defined to represent a channel and a duct flow. The simulations were carried out using the commercially available CFD software ANSYS-CFX. The data produced were compared to the one-dimensional (1D momentum equation as well as previous numerical and experimental studies featuring porous discs in a channel flow. The actuator disc was modelled as a momentum loss using a resistance coefficient related to the thrust coefficient (CT. The model showed good agreement with the 1D momentum theory in terms of the velocity and pressure profiles. Less agreement was demonstrated when compared to previous numerical and empirical data in terms of velocity and turbulence characteristics in the far field. These models predicted a far larger velocity deficit and a turbulence peak further downstream. This study therefore demonstrates the usefulness of the duct boundary condition (for computational ease for representing open channel flow when simulating far field effects as well as the importance of turbulence definition at the inlet.

  6. Energy supply technologies. Hydro, ocean, wave and tidal

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.; Larsen, Hans [Risoe National Lab. - DTU (Denmark)

    2007-11-15

    This chapter presents an overview of current hydro, ocean, wave and tidal initiatives. Large hydro remains one of the lowest-cost generating technologies, although environmental constraints, resettlement impacts and the limited availability of sites have restricted further growth in many countries. Large hydro supplied 16 % of global electricity in 2004, down from 19 % a decade ago. Large hydro capacity totalled about 720 GW worldwide in 2004 and has grown historically at slightly more than 2 % annually. China installed nearly 8 GW of large hydro in 2004, taking the country to number one in terms of installed capacity (74 GW). With the completion of the Three Gorges Dam, China will add some 18.2 GW of hydro capacity in 2009. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic cost of hydro includes displacements and submergence. Further hydro can improve peak-capacity management. Ocean currents, some of which runs close to European coasts, carry a lot of kinetic energy. Part of this energy can be captured by sub-marine windmills and converted into electricity. These are more compact than the wind turbines used on land, simply because water is much denser than air. The main European countries with useful current power potential are France and the UK. Ocean tides are driven by the gravitational pull of the moon. With one high tide every 12 hours, a tidal power plant can operate for only four or five hours per cycle, so power from a single plant is intermittent. A suitably-designed tidal plant can, however, operate as a pimped storage system, using electricity during periods of low demand to store energy that can be recovered later. The only large, modern example of a tidal power plant is the 240 MW La Rance plant, built in France in the 1960s, which represents 91 % of the world tidal power capacity. Wave energy can be seen as

  7. Interactions Between Wetlands and Tidal Inlets

    National Research Council Canada - National Science Library

    Sanchez, Alejandro

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note (CHETN) presents numerical simulations investigating how the loss of wetlands in estuaries modifies tidal processes in inlet navigation channels...

  8. Formation of double galaxies by tidal capture

    International Nuclear Information System (INIS)

    Alladin, S.M.; Potdar, A.; Sastry, K.S.

    1975-01-01

    The conditions under which double galaxies may be formed by tidal capture are considered. Estimates for the increase in the internal energy of colliding galaxies due to tidal effects are used to determine the magnitudes Vsub(cap) and Vsub(dis) of the maximum relative velocities at infinite separation required for tidal capture and tidal disruption respectively. A double galaxy will be formed by tidal capture without tidal disruption of a component if Vsub(cap)>Vsub(i) and Vsub(cap)>Vsub(dis) where Vsub(i) is the initial relative speed of the two galaxies at infinite separation. If the two galaxies are of the same dimension, formulation of double galaxies by tidal capture is possible in a close collision either if the two galaxies do not differ much in mass and density distribution or if the more massive galaxy is less centrally concentrated than the other. If it is assumed as statistics suggest, that the mass of a galaxy is proportional to the square of its radius, it follows that the probability of the formation of double galaxies by tidal capture increases with the increase in mass of the galaxies and tidal distribution does not occur in a single collision for any distance of closest approach of the two galaxies. (Auth.)

  9. Observations of the atmospheric tide, mean wind, and sodium nightglow near the mesopause with the magneto- optic Doppler analyzer

    Science.gov (United States)

    Williams, Bifford Preston

    1997-09-01

    In this thesis, I (1) demonstrate a new instrument design that is capable of measuring winds and nightglow; (2) present measurements of the mean winds, tides, and sodium nightglow near the mesopause (ca. 90 km); (3) compare these wind results with those measured by other instruments and results of numerical and empirical models; and (4) compare the nightglow intensity measurements with the predictions of a comprehensive numerical model, to better understand the interaction of the tides with the mesopause-region chemistry. I designed, constructed and operated the Magneto-Optic Doppler Analyzer (MODA). For 1.5 years, Moda observed the sodium nightglow intensity variation and the horizontal wind integrated from ~86-96 km altitude at Niwot Ridge, Colorado (40.0o N, 105.5o W). The observed nightglow intensity showed a significant semidiurnal oscillation, with a 5 hr phase shift in the fall. The mean zonal wind peaked in the summer and winter with a minimum at the equinoxes. The meridional wind was slightly southward or near zero. The semidiurnal tide amplitude peaked in the early summer with a minimum in February. The phases were roughly in quadrature. The measured phase difference between the intensity and zonal wind indicated a seasonal variation of the tide-nightglow interaction. MODA wind results were compared with results from the Urbana Medium-Frequency (MF) Radar, the High Resolution Doppler Imager (HRDI), the empirical Horizontal Wind Model 1993 (HWM93), and the theoretical Global Scale Wave Model (GSWM). The annual variation of the mean winds showed the same pattern amongst the instruments and models. MODA measured the smallest tidal amplitudes, possibly due to longitudinal differences. MODA semidiurnal phases agreed better with HRDI and HWM93 (1-2 hr difference), than with GSWM (~6 hr difference). The calculated semidiurnal sodium nightglow variation from the Thermosphere-Ionosphere-Mesosphere- Electrodynamics General Circulation Model for March shows a

  10. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    Science.gov (United States)

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring

  11. Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-01-01

    Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and

  12. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-12-01

    and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.

  13. Habitability from Tidally Induced Tectonics

    Science.gov (United States)

    Valencia, Diana; Tan, Vivian Yun Yan; Zajac, Zachary

    2018-04-01

    The stability of Earth’s climate on geological timescales is enabled by the carbon–silicate cycle that acts as a negative feedback mechanism stabilizing surface temperatures via the intake and outgassing of atmospheric carbon. On Earth, this thermostat is enabled by plate tectonics that sequesters outgassed CO2 back into the mantle via weathering and subduction at convergent margins. Here we propose a separate tectonic mechanism—vertical recycling—that can serve as the vehicle for CO2 outgassing and sequestration over long timescales. The mechanism requires continuous tidal heating, which makes it particularly relevant to planets in the habitable zone of M stars. Dynamical models of this vertical recycling scenario and stability analysis show that temperate climates stable over timescales of billions of years are realized for a variety of initial conditions, even as the M star dims over time. The magnitude of equilibrium surface temperatures depends on the interplay of sea weathering and outgassing, which in turn depends on planetary carbon content, so that planets with lower carbon budgets are favored for temperate conditions. The habitability of planets such as found in the Trappist-1 system may be rooted in tidally driven tectonics.

  14. Atmospheric dynamics of Earth-like tidally locked aquaplanets

    Directory of Open Access Journals (Sweden)

    Tapio Schneider

    2010-12-01

    Full Text Available We present simulations of atmospheres of Earth-like aquaplanets that are tidally locked to their star, that is, planets whose orbital period is equal to the rotation period about their spin axis, so that one side always faces the star and the other side is always dark. Such simulations are of interest in the study of tidally locked terrestrial exoplanets and as illustrations of how planetary rotation and the insolation distribution shape climate. As extreme cases illustrating the effects of slow and rapid rotation, we consider planets with rotation periods equal to one current Earth year and one current Earth day. The dynamics responsible for the surface climate (e.g., winds, temperature, precipitation and the general circulation of the atmosphere are discussed in light of existing theories of atmospheric circulations. For example, as expected from the increasing importance of Coriolis accelerations relative to inertial accelerations as the rotation rate increases, the winds are approximately isotropic and divergent at leading order in the slowly rotating atmosphere but are predominantly zonal and rotational in the rapidly rotating atmosphere. Free-atmospheric horizontal temperature variations in the slowly rotating atmosphere are generally weaker than in the rapidly rotating atmosphere. Interestingly, the surface temperature on the night side of the planets does not fall below ~240 K in either the rapidly or slowly rotating atmosphere; that is, heat transport from the day side to the night side of the planets efficiently reduces temperature contrasts in either case. Rotational waves and eddies shape the distribution of winds, temperature, and precipitation in the rapidly rotating atmosphere; in the slowly rotating atmosphere, these distributions are controlled by simpler divergent circulations. Both the slowly and rapidly rotating atmospheres exhibit equatorial superrotation. Systematic variation of the planetary rotation rate shows that the

  15. Hydrologically mediated iron reduction/oxidation fluctuations and dissolved organic carbon exports in tidal wetlands

    Science.gov (United States)

    Guimond, J. A.; Seyfferth, A.; Michael, H. A.

    2017-12-01

    Salt marshes are biogeochemical hotspots where large quantities of carbon are processed and stored. High primary productivity and deposition of carbon-laden sediment enable salt marsh soils to accumulate and store organic carbon. Conversely, salt marshes can laterally export carbon from the marsh platform to the tidal channel and eventually the ocean via tidal pumping. However, carbon export studies largely focus on tidal channels, missing key physical and biogeochemical mechanisms driving the mobilization of dissolved organic carbon (DOC) within the marsh platform and limiting our understanding of and ability to predict coastal carbon dynamics. We hypothesize that iron redox dynamics mediate the mobilization/immobilization of DOC in the top 30 cm of salt marsh sediment near tidal channels. The mobilized DOC can then diffuse into the flooded surface water or be advected to tidal channels. To elucidate DOC dynamics driven by iron redox cycles, we measured porewater DOC, Fe(II), total iron, total sulfate, pH, redox potential, and electrical conductivity (EC) beside the creek, at the marsh levee, and in the marsh interior in a mid-latitude tidal salt marsh in Dover, Delaware. Samples were collected at multiple tide stages during a spring and neap tide at depths of 5-75cm. Samples were also collected from the tidal channel. Continuous Eh measurements were made using in-situ electrodes. A prior study shows that DOC and Fe(II) concentrations vary spatially across the marsh. Redox conditions near the creek are affected by tidal oscillations. High tides saturate the soil and decrease redox potential, whereas at low tide, oxygen enters the sediment and increases the Eh. This pattern is always seen in the top 7-10cm of sediment, with more constant low Eh at depth. However, during neap tides, this signal penetrates deeper. Thus, between the creek and marsh levee, hydrology mediates redox conditions. Based on porewater chemistry, if DOC mobilization can be linked to redox

  16. Tidal mixing in Dahej creek waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Mixing characteristics of a tidal inlet near Dahej at the mouth of Narmada River, Gujarat, India are examined in terms of tides, currents and bathymetry. The dilution potential of the Dahej Creek waters during a tidal march for a given rate...

  17. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    International Nuclear Information System (INIS)

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.

  18. Visibility graph approach to the analysis of ocean tidal records

    International Nuclear Information System (INIS)

    Telesca, Luciano; Lovallo, Michele; Pierini, Jorge O.

    2012-01-01

    By using the recent method of the visibility graph, three time series of oceanic tide level in central Argentina were investigated. The degree distributions show a rich structure; in particular the maximum is due to the main periodic oscillations at 24 hours and 12 hours and higher harmonics. The degree distributions of the residuals (obtained removing from the original signals the cyclic components) suggest that the local effects, linked with the particular coastal conditions of the sites, are discernible for the degree k 100. Although a relationship between the spectral exponent α and the exponent of the degree distribution γ of tidal signals can be recognized, this cannot be simply stated due to the very rich and complex structure of time dynamics of tides. The present study, even if still preliminary, show the importance of the visibility graph method in investigating the complex time dynamics of observational and experimental signals.

  19. The westward drift of the lithosphere: A tidal ratchet?

    Directory of Open Access Journals (Sweden)

    A. Carcaterra

    2018-03-01

    Full Text Available Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the ‘westerly’ decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer (LVZ atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.

  20. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  1. Mastering the power of wind

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    In this paper the author deals with environmental aspects use of fossil fuels for the energy production. As a way for our planet to get back to a normal and ecologically balanced system the fossil fuels reduction and their replacement by renewable racecourses is recommended. Energetic potential of flowing sun, wind and tidal waves as power resources is discussed. The natural ecological resources are best utilised in the United States where the installed wind power output is 1600 MW. With 360 MW installed output in 1991 the Denmark took lead among European countries in utilising the wind power. The most dynamic power plant development among the European Union countries was recorded in Germany, where the installed power output of the wind power plants is 632 MW, i.e. i.e. 11.5 times higher compared to 55 MW in 1991. The economy of wind power in Germany and in Slovakia is compared. In Slovakia with annual 200 000 kWh power generation annually and the present kWh purchase price guarantee the rate of return of 10 million slovak crowns investment into a wind power plant project is in 100 years. Although the first wind power plants have already been built in the Zahorie, Kremnicke Bane, and Secovce regions, the wind exploitation status in Slovakia is still limping. According to professionals, the wind conditions in Slovakia are not ideal, but sufficient for a supplementary wind power plant system, that can be quite motivating especially for villages. Mount Chopok or mount Krizna are ideal sites to erect the three-blade tower with respect to wind speed. And also the anticipated Kremnicke vrchy site is worth considering. (author)

  2. Relativistic theory of tidal Love numbers

    International Nuclear Information System (INIS)

    Binnington, Taylor; Poisson, Eric

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  3. Tidal current energy resource assessment in Ireland: Current status and future update

    International Nuclear Information System (INIS)

    O'Rourke, Fergal; Boyle, Fergal; Reynolds, Anthony

    2010-01-01

    Interest in renewable energy in Ireland has increased continually over the past decade. This interest is due primarily to security of supply issues and the effects of climate change. Ireland imports over 90% of its primary energy consumption, mostly in the form of fossil fuels. The exploitation of Ireland's vast indigenous renewable energy resources is required in order to reduce this over-dependence on fossil fuel imports to meet energy demand. Various targets have been set by the Irish government to incorporate renewable energy technologies into Ireland's energy market. As a result of these targets, the development in wind energy has increased substantially over the past decade; however this method of energy extraction is intermittent and unpredictable. Ireland has an excellent tidal current energy resource and the use of this resource will assist in the development of a sustainable energy future. Energy extraction using tidal current energy technologies offers a vast and predictable energy resource. This paper reviews the currently accepted tidal current energy resource assessment for Ireland. This assessment was compiled by Sustainable Energy Ireland in a report in 2004. The assessment employed a 2-dimensional numerical model of the tidal current velocities around Ireland, and from this numerical model the theoretical tidal current energy resource was identified. With the introduction of constraints and limitations, the technical, practical, accessible and viable tidal current energy resources were obtained. The paper discusses why the assessment needs updating including the effect on the assessment of the current stage of development of tidal current turbines and their deployment technology. (author)

  4. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    Science.gov (United States)

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  5. Oblique second-order sand transport pathways on an intertidal sand flat in a natural tidal inlet system

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Kroon, Aart

    2013-01-01

    tide, sand is transported along ESE-oriented pathways across the intertidal flat towards the inner tidal basin. During the late stages of ebb tide, sand is transported in drainage channels (WSWoriented) from the intertidal flat towards the inlet channel. During storm events with winds from SW, wave...

  6. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  7. Tidal current and tidal energy changes imposed by a dynamic tidal power system in the Taiwan Strait, China

    Science.gov (United States)

    Dai, Peng; Zhang, Jisheng; Zheng, Jinhai

    2017-12-01

    The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.

  8. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  9. Inertial Oscillations and the Galilean Transformation

    Science.gov (United States)

    Korotaev, G. K.

    2018-03-01

    This paper presents a general solution of shallow-water equations on the f-plane. The solution describes the generation of inertial oscillations by wind-pulse forcing over the background of currents arbitrarily changing in time and space in a homogeneous fluid. It is shown that the existence of such a complete solution of shallow-water equations on the f-plane is related to their invariance with respect to the generalized Galilean transformations. Examples of velocity hodographs of inertial oscillations developing over the background of a narrow jet are presented which explain the diversity in their forms.

  10. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  11. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    Science.gov (United States)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  12. Flume experiments on wind induced flow in static water bodies in the presence of protruding vegetation

    Science.gov (United States)

    Banerjee, Tirtha; Muste, Marian; Katul, Gabriel

    2015-02-01

    The problem of wind-induced flow in inland waters is drawing significant research attention given its relevance to a plethora of applications in wetlands including treatment designs, pollution reduction, and biogeochemical cycling. The present work addresses the role of wind induced turbulence and waves within an otherwise static water body in the presence of rigid and flexible emergent vegetation through flume experimentation and time series analysis. Because no prior example of Particle Imaging Velocimetry (PIV) experiments involving air-water and flexible oscillating components have been found in the literature, a spectral analysis framework is needed and proposed here to guide the analysis involving noise, wave and turbulence separation. The experiments reveal that wave and turbulence effects are simultaneously produced at the air-water interface and the nature of their coexistence is found to vary with different flow parameters including water level, mean wind speed, vegetation density and its flexibility. For deep water levels, signature of fine-scaled inertial turbulence is found at deeper layers of the water system. The wave action appears stronger close to the air-water interface and damped by the turbulence deeper inside the water system. As expected, wave action is found to be dominated in a certain frequency range driven by the wind forcing, while it is also diffused to lower frequencies by means of (wind-induced) oscillations in vegetation. Regarding the mean water velocity, existence of a counter-current flow and its switching to fully forward flow in the direction of the wind under certain combinations of flow parameters were studied. The relative importance of wave and turbulence to the overall energy, degree of anisotropy in the turbulent energy components, and turbulent momentum transport at different depths from the air-water interface and flow combinations were then quantified. The flume experiments reported here differ from previous laboratory

  13. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  14. Relevance of tidal heating on large TNOs

    Science.gov (United States)

    Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry

    2018-03-01

    We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100‧s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.

  15. No Snowball on Habitable Tidally Locked Planets

    Science.gov (United States)

    Checlair, Jade; Menou, Kristen; Abbot, Dorian S.

    2017-08-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  16. No Snowball on Habitable Tidally Locked Planets

    Energy Technology Data Exchange (ETDEWEB)

    Checlair, Jade; Abbot, Dorian S. [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Menou, Kristen, E-mail: jadecheclair@uchicago.edu [Centre for Planetary Sciences, Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4 (Canada)

    2017-08-20

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO{sub 2} outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  17. No Snowball on Habitable Tidally Locked Planets

    International Nuclear Information System (INIS)

    Checlair, Jade; Abbot, Dorian S.; Menou, Kristen

    2017-01-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO 2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  18. Bars and spirals in tidal interactions with an ensemble of galaxy mass models

    Science.gov (United States)

    Pettitt, Alex R.; Wadsley, J. W.

    2018-03-01

    We present simulations of the gaseous and stellar material in several different galaxy mass models under the influence of different tidal fly-bys to assess the changes in their bar and spiral morphology. Five different mass models are chosen to represent the variety of rotation curves seen in nature. We find a multitude of different spiral and bar structures can be created, with their properties dependent on the strength of the interaction. We calculate pattern speeds, spiral wind-up rates, bar lengths, and angular momentum exchange to quantify the changes in disc morphology in each scenario. The wind-up rates of the tidal spirals follow the 2:1 resonance very closely for the flat and dark matter-dominated rotation curves, whereas the more baryon-dominated curves tend to wind-up faster, influenced by their inner bars. Clear spurs are seen in most of the tidal spirals, most noticeable in the flat rotation curve models. Bars formed both in isolation and interactions agree well with those seen in real galaxies, with a mixture of `fast' and `slow' rotators. We find no strong correlation between bar length or pattern speed and the interaction strength. Bar formation is, however, accelerated/induced in four out of five of our models. We close by briefly comparing the morphology of our models to real galaxies, easily finding analogues for nearly all simulations presenter here, showing passages of small companions can easily reproduce an ensemble of observed morphologies.

  19. Downshift of electron plasma oscillations in the electron foreshock region

    International Nuclear Information System (INIS)

    Fuselier, S.A.; Gurnett, D.A.; Fitzenreiter, R.J.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1985-01-01

    Electron plasma oscillations in the earth's electron foreshock region are observed to shift above and below the local electron plasma frequency. As plasma oscillations shift downward from the plasma frequency, their bandwidth increases and their wavelength decreases. Observations of plasma oscillations well below the plasma frequency are correlated with times when ISEE 1 is far downstream of the electron foreshock boundary. Although wavelengths of plasma oscillations below the plasma frequency satisfy k x lambda-De approximately 1 the Doppler shift due to the motion of the solar wind is not sufficient to produce the observed frequency shifts. A beam-plasma interaction with beam velocities on the order of the electron thermal velocity is suggested as an explanation for plasma oscillations above and below the plasma frequency. Frequency, bandwidth, and wavelength changes predicted from the beam-plasma interaction are in good agreement with the observed characteristics of plasma oscillations in the foreshock region. 28 references

  20. Downshift of electron plasma oscillations in the electron foreshock region

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1984-01-01

    Electron plasma oscillations in the Earth's electron foreshock region are observed to shift above and below the local electron plasma frequency. As plasma oscillations shift from the plasma frequency, their bandwidth increases and their wavelength decreases. Observations of plasma oscillations well below the plasma frequency are correlated with times when ISEE-I is far downstream of the electron foreshock boundary. Although wavelengths of plasma oscillations below the plasma frequency satisfy klambda/sub De/ approx. = 1, the Doppler shift due to the motion of the solar wind is not sufficient to produce the observed frequency shifts. A beam-plasma interaction with beam velocities on the order of the electron thermal velocity is suggested as an explanation for plasma oscillations above and below the plasma frequency. Frequency, bandwidth, and wavelength changes predicted from the beam-plasma interaction are in good agreement with the observed characteristics of plasma oscillations in the foreshock region

  1. Automatic Oscillating Turret.

    Science.gov (United States)

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  2. Neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Mikheyev, S.P.; Smirnov, A.Yu.

    1986-01-01

    In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)

  3. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  4. Tidal interactions with Kerr black holes

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1977-01-01

    The tidal deformation of an extended test body falling with zero angular momentum into a Kerr black hole is calculated. Numerical results for infall along the symmetry axis and in the equatorial plane of the black hole are presented for a range of values of a, the specific angular momentum of the black hole. Estimates of the tidal contribution to the gravitational radiation are also given. The tidal contribution in equatorial infall into a maximally rotating Kerr black hole may be of the same order as the center-of-mass contribution to the gravitational radiation

  5. Wind response in the lower thermosphere to the geomagnetic storm on March, 1989

    International Nuclear Information System (INIS)

    Kazimirovskij, Eh.S.; Vergasova, G.V.

    1991-01-01

    The horizontal wind response in the ionospheric D region above Irkutsk to the geomagnetic storm on March 13, 1989 is studied. The geomagnetic storm response is expressed through a stability loss of the wind system, a great speed increase of the meridional and zonal wind, in particular, and their dispersions, respectively, as well as changes in the semidaily tidal phase. The proof of the fact that the Earth magnetic field disturbances destabilize the system of horizontal winds in the lower ionosphere is given

  6. Exploitation of tidal power in the Bay of Cadiz: ancient tidal mills

    Directory of Open Access Journals (Sweden)

    José J. Alonso del Rosario

    2006-03-01

    Full Text Available Tidal mills were the main industrial activity in the Bay of Cadiz for centuries. They were the last step in the production of salt and flour made by grinding grains. They were installed along the shallow channels, called “caños”, around the Bay, where the frictional and geometrical effects are very strong. The authors have analyzed the propagation of the semidiurnal tidal waves along the Caño de Sancti Petri and the available tidal power in the area. The ancient tidal mills were located where the available tidal potential energy is highest, which ensured productivity for grinding salt and wheat in ancient times. Some considerations about the possibility of installing tidal power plants in the Bay of Cadiz now are given, which show that it could be a real and renewal alternative source of energy for the area.

  7. Downstream hydraulic geometry of a tidally influenced river delta

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Brye, de B.; Deleersnijder, E.

    2012-01-01

    Channel geometry in tidally influenced river deltas can show a mixed scaling behavior between that of river and tidal channel networks, as the channel forming discharge is both of river and tidal origin. We present a method of analysis to quantify the tidal signature on delta morphology, by

  8. Development of tidal watersheds in the Wadden Sea

    NARCIS (Netherlands)

    Wang, Z.B.; Vroom, J.; van Prooijen, B.C.; Labeur, R.J.; Stive, M.J.F.; Hansen, M.H.P.

    2011-01-01

    The Wadden Sea consists of a series of tidal lagoons which are connected to the North Sea by tidal inlets. Boundaries to each lagoon are the mainland coast, the barrier islands on both sides of the tidal inlet, and the tidal watersheds behind the two barrier islands. Behind each Wadden Island there

  9. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking

    Science.gov (United States)

    Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D. W.; Shporer, A.; Isaacson, H.; Howard, A. W.; Endl, M.; Cochran, W.; Murphy, S. J.

    2018-02-01

    We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.

  10. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  11. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  12. Tidal Mixing at the Shelf Break

    National Research Council Canada - National Science Library

    Hogg, Nelson; Legg, Sonya

    2005-01-01

    ...; the second a set of simulations of flow over the Hawaiian ridge. The most exciting scientific result is the importance of internal hydraulic jumps in generating tidal mixing at large amplitude, steep topography...

  13. Tidal Mixing at the Shelf Break

    National Research Council Canada - National Science Library

    Hogg, Nelson; Legg, Sonya

    2005-01-01

    The aim of this project was to study mixing forced by tidal flow over sudden changes in topographic slope such as near the shelf-break, using high-resolution nonhydrostatic numerical simulations employing the MIT gem...

  14. Microbial quality of a marine tidal pool

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1995-01-01

    Full Text Available In this study the source of microbial pollution to a tidal pool was investigated. Both adjacent seawater which could contribute to possible faecal pollution and potential direct bather pollution were studied. The microbial quality of the marine...

  15. Tides and tidal harmonics at Umbharat, Gujarat

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Swamy, G.N.

    A part of the data on tides recorded at Machiwada near Umbharat, Gulf of Cambay during April 1978 was subjected to harmonic analysis following the Admiralty procedure. The general tidal characteristics and the value of four major harmonic...

  16. Mercury dynamics in a San Francisco estuary tidal wetland: assessing dynamics using in situ measurements

    Science.gov (United States)

    Bergamaschi, Brian A.; Fleck, Jacob A.; Downing, Bryan D.; Boss, Emmanuel; Pellerin, Brian A.; Ganju, Neil K.; Schoellhamer, David H.; Byington, Amy A.; Heim, Wesley A.; Stephenson, Mark; Fujii, Roger

    2012-01-01

    We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.

  17. Resonant Tidal Disruption in Galactic Nuclei

    OpenAIRE

    Rauch, Kevin P.; Ingalls, Brian

    1997-01-01

    It has recently been shown that the rate of angular momentum relaxation in nearly-Keplerian star clusters is greatly increased by a process termed resonant relaxation (Rauch & Tremaine 1996), who also argued that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch & Tremaine. The simulat...

  18. On the ambiguity in relativistic tidal deformability

    Science.gov (United States)

    Gralla, Samuel E.

    2018-04-01

    The LIGO collaboration recently reported the first gravitational-wave constraints on the tidal deformability of neutron stars. I discuss an inherent ambiguity in the notion of relativistic tidal deformability that, while too small to affect the present measurement, may become important in the future. I propose a new way to understand the ambiguity and discuss future prospects for reliably linking observed gravitational waveforms to compact object microphysics.

  19. WIYN Open Cluster Study: Tidal Interactions in Solar type Binaries

    OpenAIRE

    Meibom, S.; Mathieu, R. D.

    2003-01-01

    We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~1 Gyr. Binary populations older than ~1 G...

  20. Half Moon Cove Tidal Project. Feasibility report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  1. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  2. TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2011-01-01

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q 1 ∼ 7 x 10 10 and Q 2 ∼ 2 x 10 7 , for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q 1 for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

  3. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    International Nuclear Information System (INIS)

    Dobos, Vera; Turner, Edwin L.

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat

  4. Spatial patterns in salt marsh porewater dissolved organic matter over a spring-neap tidal cycle: insight to the impact of hydrodynamics on lateral carbon fluxes

    Science.gov (United States)

    Guimond, J. A.; Yu, X.; Duque, C.; Michael, H. A.

    2016-12-01

    Salt marshes are a hydrologically complex ecosystem. Tides deliver saline surface water to salt marshes via tidal creeks, and freshwater is introduced through lateral groundwater flow and vertical infiltration from precipitation. Locally, sediment heterogeneity, tides, weather, and topography introduce spatial and temporal complexities in groundwater-surface water interactions, which, in turn, can have a large impact on salt marsh biogeochemistry and the lateral fluxes of nutrients and carbon between the marsh platform and tidal creek. In this study, we investigate spatial patterns of porewater fluorescent dissolved organic matter (fDOM) and redox potential over a spring-neap tidal cycle in a mid-latitude tidal salt marsh in Dover, Delaware. Porewater samplers were used in conjunction with a peristaltic pump and YSI EXO Sonde to measure porewater fDOM, electrical conductivity, redox potential and pH from 0.5, 1.0, 1.5, 2.0, and 2.3 meters deep, as well as surface water from the creek and marsh platform. Eh was also measured continuously every 15 minutes with multi-level in-situ redox sensors at 0, 3, and 5m from the tidal creek, and water level and salinity were measured every 15 minutes continuously in 6 wells equipped with data loggers. Preliminary analyses indicate porewater salinity is dependent on the slope of the marsh platform, the elevation of the sample location, and the distance from a tidal creek. Near-creek redox analyses show tidal oscillations up to 300 mV; redox oscillations in the marsh interior show longer timescale changes. The observed redox oscillations coincide with the water level fluctuations at these locations. Therefore, lateral transport of carbon is determined by both hydrologic flow and biogeochemical processes. Results from this study provide insight into the timescales over which salt marsh hydrology impacts porewater biogeochemistry and the mechanisms controlling regional carbon cycling.

  5. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  6. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  7. Natural bioventing remediation from tidal wave action at a field site

    International Nuclear Information System (INIS)

    Kampbell, D.H.; Kittel, J.A.

    1996-01-01

    A remediation research study has been implemented at a jet fuel spill site on an island airport. A buried pipeline fracture several years ago resulted in a fuel spill exceeding 160,000 gallons. The site hydrogeology is a fragmented coral matrix with fresh water overlying more dense salt water. Water table fluctuations of about two feet occur once every twelve hours from tidal action. The research approach being pursued is to recover free-phase floating petroleum liquid using vacuum-mediated subsurface skimming wells. The vacuum will create an active vadose zone aeration to enhance aerobic biodegradation processes and vaporization of fuel. Once the floating fuel is removed, a natural bioventing action caused by tidal oscillations will complete remediation of the spill site

  8. Diagnostics of Electric Equipment Windings

    Directory of Open Access Journals (Sweden)

    I. I. Branovitsky

    2007-01-01

    Full Text Available The paper presents methodology and results of the investigations pertaining to study of influence of short-circuited turns on transient electrical processes in electric motor windings. Dependence of their damped speed and value of the difference signal, obtained at reciprocal subtraction of damped oscillation curves in absence and in presence of short-circuited turns, on number of turns in the tested windings. It has been determined that damped oscillation curves, immediately attributed to short-circuited turns, have peak values along temporary axis which are areas of the largest transient process sensitivity to КЗ turns.Methodology for diagnostics of single- and three-phase electric motor windings and also other electric equipment, being realized in DO-1 device, has been developed in the paper. The men­tioned device makes it possible to carry out visual comparison and quantitative analysis of damped oscillation curves in the tested windings with standard ones which are set in the device memory and their difference signals.

  9. Tropospheric - Stratospheric Tidal Investigations. Part 2. The Vertical Structure of Atmospheric Oscillations Formulated by Classical Tidal Theory

    Science.gov (United States)

    1981-02-28

    in a form that may be applied to a numerical integracion scheme (Lindzen, 1968). It is now possible to express the upward energy flux at x >X L in...from tre setting up of a dependence on multiple reflexions between tiorizontal surfaces at different heights which are critically dependent on basic...longer horizontal and by integratJiw of the non-classical equations multiple reflexions and resuLtinr sensitivities are found to oe largely removed

  10. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  11. The Mechanical Transient Process at Asynchronous Motor Oscillating Mode

    Science.gov (United States)

    Antonovičs, Uldis; Bražis, Viesturs; Greivulis, Jānis

    2009-01-01

    The research object is squirrel-cage asynchronous motor connected to single-phase sinusoidal. There are shown, that by connecting to the stator windings a certain sequence of half-period positive and negative voltage, a motor rotor is rotated, but three times slower than in the three-phase mode. Changing the connecting sequence of positive and negative half-period voltage to stator windings, motor can work in various oscillating modes. It is tested experimentally. The mechanical transient processes had been researched in rotation and oscillating modes.

  12. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    Science.gov (United States)

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  13. Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium

    NARCIS (Netherlands)

    van Damme, S.; Dehairs, F.; Tackx, M.; Beauchard, O.; Struyf, E.; Gribsholt, B.; van Cleemput, O.; Meire, P.

    2009-01-01

    Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a

  14. Geometry of tidal inlet systems : A key factor for the net sediment transport in tidal inlets

    NARCIS (Netherlands)

    Ridderinkhof, W.; de Swart, H. E.; van der Vegt, M.; Alebregtse, N. C.; Hoekstra, P.

    2014-01-01

    The net transport of sediment between the back-barrier basin and the sea is an important process for determining the stability of tidal inlet systems. Earlier studies showed that in a short basin, tidal flats favor peak ebb-currents stronger than peak flood currents, implying export of coarse

  15. Dynamics of tidal and non-tidal currents along the southwest continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Aruna, C.; Ravichandran, C.; Srinivas, K.; Rasheed, P.A.A.; Lekshmi, S.

    are predominantly mixed, semidiurnal in nature. Motion over any continental shelf is governed by the tide-driven oscillatory flow. In this paper, tidal and non-tidal characteristics of the waters of Southwest continental shelf of India are assessed using...

  16. Tidal influence on the sea-to-air transfer of CH4 in the coastal ocean

    International Nuclear Information System (INIS)

    Hahm, Doshik; Kim, Guebuem; Lee, Yong-Woo; Nam, Sungh-Yun; Kim, Kyung-Ryul; Kim, Kuh

    2006-01-01

    We obtained real-time monitoring data of water temperature, salinity, wind, current, CH 4 and other oceanographic parameters in a coastal bay in the southern sea of Korea from July 8 to August 15, 2003, using an environmental monitoring buoy. In general, the transfer velocity of environmental gases across the air-sea interface is obtained exclusively from empirical relationships with wind speeds. However, our monitoring data demonstrate that the agitation of the aqueous boundary layer is controlled significantly by tidal turbulence, similar to the control exercised by wind stress in the coastal ocean. The sea-to-air transfer of CH 4 is enhanced significantly during spring tide due to an increase in the gas transfer velocity and vertical CH 4 transport from bottom water to the surface layer. Thus, our unique time-series results imply that the sea-to-air transfer of gases, such as CH 4 , DMS, DMHg, N 2 O, CO 2 and 222 Rn, from highly enriched coastal bottom waters, is controlled not only by episodic wind events but also by regular tidal turbulence in the coastal ocean

  17. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  18. Seasonal variations of the semi-diurnal and diurnal tides in the MLT: multi-year MF radar observations from 2 to 70°N, and the GSWM tidal model

    Science.gov (United States)

    Manson, A.; Meek, C.; Hagan, M.; Hall, C.; Hocking, W.; MacDougall, J.; Franke, S.; Riggin, D.; Fritts, D.; Vincent, R.; Burrage, M.

    1999-07-01

    Continuous observations of the wind field have been made by six Medium Frequency Radars (MFRs), located between the equator and high northern latitudes: Christmas Islands (2°N), Hawaii (22°N), Urbana (40°N), London (43°N), Saskatoon (52°N) and Tromsø (70°N). Data have been sought for the time interval 1990-1997, and typically 5 years of data have become available from each station, to demonstrate the level of annual consistency and variability. Common harmonic analysis is applied so that the monthly amplitudes and phases of the semi-diurnal (SD) and diurnal (D) wind oscillations are available in the height range of (typically) 75-95 km in the upper Middle Atmosphere. Comparisons are made with tides from the Global Scale Wave Model (GSWM), which are available for 3-month seasons. The emphasis is upon the monthly climatologies at each location based upon comparisons of profiles, and also latitudinal plots of amplitudes and phases at particular heights. For the diurnal tide, the agreement between observations and model is now quite excellent with modelled values frequently lying within the range of yearly values. Both observations and model demonstrate strong seasonal changes. This result is a striking improvement over the comparisons of 1989 (JATP, Special issue). In particular, the phases and phase-gradients for the non-winter months at mid- to high-latitudes are now in excellent agreement. Some of the low latitude discrepancies are attributed to the existence of non-migrating tidal components associated with tropospheric latent heat release. For the semi-diurnal tide, the observed strong transitions between clear solstitial states are less well captured by the model. There is little evidence for improvement over the promising comparisons of 1989. In particular, the late-summer/autumnal tidal maximum of mid-latitudes is observed to be larger, and with strong monthly variability. Also the summer modelled tide has unobserved short (20 km) wavelengths at high

  19. NATURE OF WAVE PROCESSES AND THEIR INTERACTION WITH Tidal power PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ol'ga Aleksandrovna

    2012-07-01

    Full Text Available The author examines the nature of wave processes and their impact on the operation of tidal power plants. The article also has an overview of both operating and prospective tidal power plants in Russia and worldwide. Patterns of tidal fluctuations and the intensity of their driving forces are also considered in the article. The author discloses the origin of tides in terms of elementary physics and hydraulics. The author covers various aspects of formation of different types of inequality of tides caused by alterations in the mutual positions of the Sun and the Moon in relation to the Earth, variable declination of tide-generating luminaries (the Sun and the Moon in relation to the plane of the Earth equator, and variable distance between the luminaries and the Earth. The author analyzes wave-related phenomena, including refraction, diffraction and interference, their origin and influence onto the properties of waves. The author also covers the origin of advancing and standing waves, or waves of mixed origin, and the impact of the wind onto the characteristics of wave fluctuations. The author provides suggestions regarding potential methods of their control that can affect the essential concept of construction of tidal power plants.

  20. Tidal and residual currents across the northern Ryukyu Island chain observed by ferryboat ADCP

    Science.gov (United States)

    Liu, Zhao-Jun; Nakamura, Hirohiko; Zhu, Xiao-Hua; Nishina, Ayako; Dong, Menghong

    2017-09-01

    Ferryboat Acoustic Doppler Current Profiler (ADCP) data from 2003 to 2012 are used to estimate the tidal and residual currents across the northern Ryukyu Island chain (RIC) between the islands of Okinawa and Amamioshima. In this region, the M2 tide current is the strongest tidal component, and the K1 tide current is the strongest diurnal tidal component. The corresponding maximum amplitudes are 40 and 34 cm s-1, respectively. After removal of the tidal currents, the mean volume transport, 1.5 ± 2.7 Sv, flows into the East China Sea (ECS) from the western North Pacific through four channels in this area. In an empirical orthogonal function (EOF) analysis performed to clarify the temporal and spatial variability of currents through the four channels, the first two EOF modes account for 71% and 18% of the total variance, respectively. The EOF1 mode shows a clear bottom-intensified mode through the deep channel, which is likely to be formed by the propagation of bottom-trapped long topographic Rossby wave caused by the impingement of westward-propagating mesoscale eddies upon the eastern slope of the northern RIC. The EOF2 mode has significant seasonal variability and may be driven by the wind stress prevailing over the Kuroshio flow region around the northern RIC in October-November. This study provides observational evidence of the water exchanges across the northern RIC, which is essential for constructing a circulation scheme in the North Pacific subtropical western boundary region.

  1. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig W

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy's Wind and Hydropower Technologies Program's goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and

  2. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  3. Carbon sequestration by Australian tidal marshes

    KAUST Repository

    Macreadie, Peter I.

    2017-03-10

    Australia\\'s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia\\'s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia\\'s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  4. Tidal Energy System for On-Shore Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, Allan J

    2012-06-26

    immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m

  5. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  6. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  7. Wind turbine model and loop shaping controller design

    Science.gov (United States)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  8. Tidal Control of Jet Eruptions Observed by Cassini ISS

    Science.gov (United States)

    Hurford, T. A.; Helfenstein, P.; Spitale, J. N.

    2012-01-01

    Observations by Cassini's Imaging Science Subsystem (ISS) of Enceladus' south polar region at high phase angles has revealed jets of material venting into space. Observations by Cassini's Composite Infrared Spectrometer (CIRS) have also shown that the south polar region is anomalously warm with hotspots associated with geological features called the Tiger Stripes. The Tiger Stripes are large rifts near the south pole of Enceladus, which are typically about 130 km in length, 2 km wide, with a trough 500 m deep, and are l1anked on each side by 100m tall ridges. Preliminary triangulation of jets as viewed at different times and with different viewing geometries in Cassini ISS images taken between 2005 and 2007 have constrained the locations of eight major eruptions of material and found all of them associated with the south polar fractures unofficially the 'Tiger Stripes', and found four of them coincident with the hotspots reported in 2006 by CIRS. While published ISS observations of jet activity suggest that individual eruption sites stay active on the timescale of years, any shorter temporal variability (on timescales of an orbital period, or 1.3 Earth days, for example) is more difficult to establish because of the spotty temporal coverage and the difficulty of visually isolating one jet from the forest of many seen in a typical image. Consequently, it is not known whether individual jets are continuously active, randomly active, or if they erupt on a predictable, periodic schedule. One mechanism that may control the timing of eruptions is diurnal tidal stress, which oscillates between compression/tension as well as right and left lateral shear at any given location throughout Enceladus' orbit and may allow the cracks to open and close regularly. We examine the stresses on the Tiger Stripe regions to see how well diurnal tidal stress caused by Enceladus' orbital eccentricity may possibly correlate with and thus control the observed eruptions. We then identify

  9. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  10. A Conspiracy of Oscillators

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2008-01-01

    We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...... actions. The phenomenon is illustrated, and calculations of the small change of the adiabatic invariant is outlined....

  11. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  12. Tidal effects in twin-degenerate binaries

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1984-01-01

    The tidal velocity field is calculated for an initially non-rotating low mass white dwarf secondary in a twin-degenerate binary. These motions are used to find the tidal torque on the secondary, to first order in the orbital frequency, and an expression is derived for the synchronization time. For a lobe-filling secondary the synchronization time has a weak dependence on the mass and luminosity of the star, and for the binary G61-29 is found to be of the same order as the estimated lifetime of the system. It is emphasized, however, that tidal excitation of non-radial oscillatory modes in the secondary may significantly shorten the synchronization time. (author)

  13. The wave and tidal resource of Scotland

    Science.gov (United States)

    Neill, Simon; Vogler, Arne; Lewis, Matt; Goward-Brown, Alice

    2017-04-01

    As the marine renewable energy industry evolves, in parallel with an increase in the quantity of available data and improvements in validated numerical simulations, it is occasionally appropriate to re-assess the wave and tidal resource of a region. This is particularly true for Scotland - a leading nation that the international community monitors for developments in the marine renewable energy industry, and which has witnessed much progress in the sector over the last decade. With 7 leased wave and 17 leased tidal sites, Scotland is well poised to generate significant levels of electricity from its abundant natural marine resources. In this review of Scotland's wave and tidal resource, I present the theoretical and technical resource, and provide an overview of commercial progress. I also discuss issues that affect future development of the marine energy seascape in Scotland, applicable to other regions of the world, including the potential for developing lower energy sites, and grid connectivity.

  14. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  15. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    presents a simulation model of a variable speed wind farm with permanent magnet synchronous generators (PMSGs) and fullscale back-to-back converters in the simulation tool of DIgSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power......Grid connected wind turbines are fluctuating power sources due to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be able to excite the power system oscillation at a frequency close to the natural oscillation frequency of a power system. This paper...... systems with large scale wind power penetrations are investigated during continuous operation based on the wind turbine model and the power system model....

  16. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    Science.gov (United States)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  17. Homogeneous wave turbulence driven by tidal flows

    Science.gov (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  18. Lagoon Sediment Dynamics: A Coupled Model to Study a Medium-Term Silting of Tidal Channels

    Directory of Open Access Journals (Sweden)

    Marco Petti

    2018-04-01

    Full Text Available The silting of tidal channels is a natural process that affects several shallow lagoons and makes it difficult to navigate, requiring regular maintenance interventions. This phenomenon is the result of the complex non-linear interaction between tidal currents and wave motion. In this work, the morphodynamic evolution of the Marano and Grado lagoon is investigated by means of a two-dimensional horizontal (2DH morphological-hydrodynamic and a spectral coupled model. An innovative procedure to reproduce the overall bathymetric changes in the medium term and, in particular, the volumes deposited inside channels, is presented. An average year with a sequence of winds and tides acting over that time was reconstructed, carrying out cross correlation techniques and spectral analyses of measured data. The predicted morphological evolution matches the annual dredged volumes in the lagoon critical branches and shows the distribution of erosion and deposition of cohesive sediments according to spatially variable values of critical shear stress.

  19. Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets

    Science.gov (United States)

    Renaud, Joe P.; Henning, Wade G.

    2018-04-01

    The advanced rheological models of Andrade and Sundberg & Cooper are compared to the traditional Maxwell model to understand how each affects the tidal dissipation of heat within rocky bodies. We find both Andrade and Sundberg–Cooper rheologies can produce at least 10× the tidal heating compared to a traditional Maxwell model for a warm (1400–1600 K) Io-like satellite. Sundberg–Cooper can cause even larger dissipation around a critical temperature and frequency. These models allow cooler planets to stay tidally active in the face of orbital perturbations—a condition we term “tidal resilience.” This has implications for the time evolution of tidally active worlds and the long-term equilibria they fall into. For instance, if Io’s interior is better modeled by the Andrade or Sundberg–Cooper rheologies, the number of possible resonance-forming scenarios that still produce a hot, modern Io is expanded, and these scenarios do not require an early formation of the Laplace resonance. The two primary empirical parameters that define the Andrade anelasticity are examined in several phase spaces to provide guidance on how their uncertainties impact tidal outcomes, as laboratory studies continue to constrain their real values. We provide detailed reference tables on the fully general equations required for others to insert the models of Andrade and Sundberg–Cooper into standard tidal formulae. Lastly, we show that advanced rheologies can greatly impact the heating of short-period exoplanets and exomoons, while the properties of tidal resilience could mean a greater number of tidally active worlds among all extrasolar systems.

  20. Tidal forces in Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, M.U. [University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan); Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2017-06-15

    The aim of this paper is to examine the tidal forces occurring in a Kiselev black hole surrounded by radiation and dust fluids. It is noted that the radial and angular components of the tidal force change the sign between event and Cauchy horizons. We solve the geodesic deviation equation for radially free-falling bodies toward Kiselev black holes. We explain the geodesic deviation vector graphically and point out the location of the event and Cauchy horizons for specific values of the radiation and dust parameters. (orig.)

  1. Residual currents in a multiple-inlet system and the conundrum of the tidal period

    Science.gov (United States)

    Duran-Matute, Matias; Gerkema, Theo

    2015-04-01

    In multiple-inlet systems, one may find that, on average, flood dominates in some inlets, while ebb dominates in others. In that case, there is a residual flow through the system, i.e. there is a net flow if one integrates over a tidal period. Conceptually, this seems straightforward. However, to measure such a residual flow presents several difficulties. First, one needs to cover the entire cross-sections of all the inlets over a year or longer to take into account the variability due to wind. Second, the residual flow is usually much smaller than the tidal prisms and hence more uncertain in view of error bars. Third, the duration of 'the' tidal period when calculating a tidally averaged flow is not well defined. Should one take the time between alternate slack tides, or between consecutive high (or low) waters, or other options? There appears to be a fundamental ambiguity in the duration of the tidal period; here we discuss its origins. The problem of defining the tidal period seems to have received little attention in the literature, or perhaps it has not been perceived as a problem at all. One reason for this neglect may be that the focus in tidal analysis is often on the (main) individual tidal constituents, whose periods are well-defined. Indeed, the harmonic method developed by Kelvin exploits this fact, making it possible to predict high and low waters precisely by adding up the different constituents after their amplitudes and phases have been determined empirically for the location in question. The period between subsequent high (or low) waters is then simply an outcome of this method. Another reason for neglecting this problem may be that the main interest was in computing a representative quantity such as the yearly average residual flow through the inlets. For such quantities, the definition of the tidal period is not as relevant since one integrates over a much longer period. Recently, however, it has been shown, for the Western Dutch Wadden Sea, that

  2. NOAA Historical Tidal Current Data for the Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Knowledge of the timing and strength of tidal currents is extremely important for safe navigation in coastal waters. Tidal currents are almost always the strongest...

  3. Tidal flow characteristics at Kasheli (Kalwa/ Bassein creek), Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.

    Tidal flow characteristics of waters at Kasheli, connected to the sea through Thane and Bassein Creeks in Bombay, Maharashtra, India are investigated based on tide and current observations carried out in 1980-81. The results establish that the tidal...

  4. Spatial tidal asymmetry of Cochin estuary, West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Vinita, J.; Shivaprasad, A.; Manoj, N.T.; Revichandran, C.; Naveenkumar, K.R.; Jineesh, V.K.

    tidal amplitude and currents get attenuated towards upstream through frictional dissipation The results showed that the tidal momentum balance along the main axis of the channel was dominated by pressure gradient and friction The influence of advection...

  5. Turbulent oscillating channel flow subjected to a free-surface stress.

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.

    2010-01-01

    The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number

  6. Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001)

    Science.gov (United States)

    Wang, Y. H.; Jan, S.; Wang, D. P.

    2003-05-01

    Tidal and mean flows in the Taiwan Strait are obtained from analysis of 2.5 years (1999-2001) of shipboard ADCP data using a spatial least-squares technique. The average tidal current amplitude is 0.46 ms -1, the maximum amplitude is 0.80 ms -1 at the northeast and southeast entrances and the minimum amplitude is 0.20 ms -1 in the middle of the Strait. The tidal current ellipses derived from the shipboard ADCP data compare well with the predictions of a high-resolution regional tidal model. For the mean currents, the average velocity is about 0.40 ms -1. The mean transport through the Strait is northward (into the East China Sea) at 1.8 Sv. The transport is related to the along Strait wind by a simple regression, transport (Sv)=2.42+0.12×wind (ms -1). Using this empirical formula, the maximum seasonal transport is in summer, about 2.7 Sv, the minimum transport is in winter, at 0.9 Sv, and the mean transport is 1.8 Sv. For comparison, this result indicates that the seasonal amplitude is almost identical to the classical estimate by Wyrtki (Physical oceanography of the southeast Asian waters, scientific results of marine investigations of the South China Sea and Gulf of Thailand, 1959-1961. Naga Report 2, Scripps Institute of Oceanography, 195 pp.) based on the mass balance in the South China Sea, while the mean is close to the recent estimate by Isobe [Continental Shelf Research 19 (1999) 195] based on the mass balance in the East China Sea.

  7. Study of Pressure Oscillations in Supersonic Parachute

    Science.gov (United States)

    Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke

    2018-04-01

    Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.

  8. Tidal propagation off the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    . [Keywords: Tidal propagation, Mumbai high, Global tidal model, Shelf model, Central west coast of India] Introduction In coastal regions, tides play an important role in determining circulation and hydrography. Barotropic tides coming from the open... with increase in the width of the shelf. Materials and Methods Global tidal models Schwiderski5 used a hydrodynamic interpolation technique to determine the amplitude and phase of tidal constituents of global ocean. Since the availability of satellite...

  9. Physical processes affecting turbidity in a tidal marsh across a range of time scales

    Science.gov (United States)

    Arnold, W.; Poindexter, C.

    2016-12-01

    The direction of net suspended sediment flux, whether into or out of a tidal marsh, can determine whether a marsh is aggrading or eroding. Measuring net suspended sediment fluxes or attributing trends in these fluxes to a particular physical processes is challenging because suspended sediment concentrations are highly variable in time. We used singular spectrum analysis for time series with missing data (SSAM) to observe the relative effects on turbidity of physical processes occurring on different time scales at the Rush Ranch Open Space Preserve. This Preserve covers the largest contiguous area of full-tidal marsh remaining within Suisun Bay, the eastern most subembayment of San Francisco Bay. A long-term monitoring station at First Mallard Slough within the Preserve measures turbidity. Our analysis of of this turbidity record isolated the contribution to total variance from different tides and from annual cycles of San Francisco Bay freshwater inflow, sediment deposition and wind-driven sediment resuspension. Surprisingly, the contribution from diurnal and semidiurnal tidal constituents (30%) was smaller than the contribution from annual cycles of freshwater inflow, sediment deposition and resuspension (38%). This result contrasts with the original implementation of SSAM to suspended sediment concentration, which was conducted in the central San Francisco Bay. This previous work indicated a significant yet smaller contribution (13%) to total suspended sediment concentration variance from annual cycles (Schoellhamer, D. H., 2002, Continental Shelf Research., 22, 1857-1866). The reason for the contrast relates in part to the location of the First Mallard Slough more than 10 km along the tidal channel network from Suisun Bay. At this location, the lowest frequency variation in suspended sediment is accentuated. Annual peaks in turbidity at First Mallard depend not only on spring and summer wind-driven resuspension of sediment in San Pablo Bay but also its co

  10. Decision support tools for collaborative marine spatial planning: identifying potential sites for tidal energy devices around the Mull of Kintyre, Scotland

    NARCIS (Netherlands)

    Janssen, R.; Arciniegas, G.A.; Alexander, K.A.

    2015-01-01

    The expansion of offshore renewable energy production, such as wind, wave and tidal energy, is likely to lead to conflict between different users of the sea. Two types of spatial decision support tools were developed to support stakeholder workshops. A value mapping tool combines regional attributes

  11. Aleutian Pribilof Islands Wind Energy Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski

  12. Morphodynamics of the Manyema Tidal Delta at Kunduchi, Tanzania

    African Journals Online (AJOL)

    Keywords: Morphodynamics, Kunduchi, Manyema, shoreline change, tidal creek, tidal delta. Abstract—The prevailing northward longshore drift of beach sand on the northern part of Msasani Bay, north of Dar es Salaam, is interrupted at Kunduchi by the tidal flushing of ... Western Indian Ocean J. Mar. Sci. Vol. 11, No. 2, pp.

  13. Field migration rates of tidal meanders recapitulate fluvial morphodynamics

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-01

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

  14. How Tidal Forces Cause Ocean Tides in the Equilibrium Theory

    Science.gov (United States)

    Ng, Chiu-king

    2015-01-01

    We analyse why it is erroneous to think that a tidal bulge is formed by pulling the water surface directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of the horizontal components of the tidal forces.

  15. Tidal exchange of larvae of Sesarma catenata (Decapoda, Brachyura)

    African Journals Online (AJOL)

    The tidal exchange of larvae of the salt-marsh grapsid crab Sesarma catenata was studied in the Swartkops estuary, a tidally driven, shallow estuary in Algoa Bay, South Africa. Plankton samples were collected bimonlhly during spring and neap tides from October to March at the tidal inlet. Samples were collected hourly for ...

  16. Tidal Marshes: The Boundary between Land and Ocean.

    Science.gov (United States)

    Gosselink, James

    An overview of the ecology of the tidal marshes along the gulf coast of the United States is presented. The following topics are included: (1) the human impact on tidal marshes; (2) the geologic origins of tidal marshes; (3) a description of the physical characteristics and ecosystem of the marshlands; (4) a description of the marshland food chain…

  17. Field migration rates of tidal meanders recapitulate fluvial morphodynamics.

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-13

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths. Copyright © 2018 the Author(s). Published by PNAS.

  18. Wind Energy Conference, Boulder, Colo., April 9-11, 1980, Technical Papers

    Science.gov (United States)

    1980-03-01

    Papers are presented concerning the technology, and economics of wind energy conversion systems. Specific topics include the aerodynamic analysis of the Darrieus rotor, the numerical calculation of the flow near horizontal-axis wind turbine rotors, the calculation of dynamic wind turbine rotor loads, markets for wind energy systems, an oscillating-wing windmill, wind tunnel tests of wind rotors, wind turbine generator wakes, the application of a multi-speed electrical generator to wind turbines, the feasibility of wind-powered systems for dairy farms, and wind characteristics over uniform and complex terrain. Attention is also given to performance tests of the DOE/NASA MOD-1 2000-kW wind turbine generator, the assessment of utility-related test data, offshore wind energy conversion systems, and the optimization of wind energy utilization economics through load management.

  19. Observation of Quasichanneling Oscillations

    International Nuclear Information System (INIS)

    Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.

    2017-01-01

    Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.

  20. LSND neutrino oscillation results

    International Nuclear Information System (INIS)

    Louis, W.C.

    1996-01-01

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations

  1. Neutrino Oscillation Physics

    International Nuclear Information System (INIS)

    Kayser, Boris

    2014-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures

  2. Neutrino Oscillation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris [Fermilab (United States)

    2014-07-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  3. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  4. Salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  5. Empirical Tidal Dissipation in Exoplanet Hosts From Tidal Spin-up

    Science.gov (United States)

    Penev, Kaloyan; Bouma, L. G.; Winn, Joshua N.; Hartman, Joel D.

    2018-04-01

    Stars with hot Jupiters (HJs) tend to rotate faster than other stars of the same age and mass. This trend has been attributed to tidal interactions between the star and planet. A constraint on the dissipation parameter {Q}\\star {\\prime } follows from the assumption that tides have managed to spin up the star to the observed rate within the age of the system. This technique was applied previously to HATS-18 and WASP-19. Here, we analyze the sample of all 188 known HJs with an orbital period tidal dissipation parameter ({Q}\\star {\\prime }) increases sharply with forcing frequency, from 105 at 0.5 day‑1 to 107 at 2 day‑1. This helps to resolve a number of apparent discrepancies between studies of tidal dissipation in binary stars, HJs, and warm Jupiters. It may also allow for a HJ to damp the obliquity of its host star prior to being destroyed by tidal decay.

  6. 2008 NWFSC Tidal Freshwater Genetics Results

    Energy Technology Data Exchange (ETDEWEB)

    David Teel

    2009-05-01

    Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

  7. Methane emission from tidal freshwater marshes

    NARCIS (Netherlands)

    Van der Nat, F.J.; Middelburg, J.J.

    2000-01-01

    In two tidal freshwater marshes, methane emission, production and accumulation in the pore-water have been studied. The two sites differ in their dominant vegetation, i.e., reed and bulrush, and in their heights above sea level. The reed site was elevated in relation to the bulrush site and had

  8. Estuaries and Tidal Marshes. Habitat Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  9. Life on the Tidal Mudflats: Elkhorn Slough.

    Science.gov (United States)

    Andresen, Ruth

    Life in an estuarine environment is studied in this set of audio-visual materials prepared for grades 6-12. A 71-frame colored filmstrip, cassette tape narration, and teacher's guide focus upon Elkhorn Slough, a tidal mudflat in the Monterey Bay area, California. Topics examined range from river drainage and the effects of pollution on living…

  10. Palaemon pacijicus (Stimpson) in eastern Cape tidal

    African Journals Online (AJOL)

    1984-09-25

    Sep 25, 1984 ... seasonally with peak numbers and biomass found in summer ... One part of the programme dealt with the tidal pool ... pools sampled. Unicam spectrophotometer at 458 run. A dilution series was made for each batch of concentrate used. A domestic water meter was coupled to the outlet of a portable pump ...

  11. Nova Scotia Power : in-stream tidal

    International Nuclear Information System (INIS)

    Meade, K.

    2007-01-01

    The Government of Nova Scotia, the Government of New Brunswick, Nova Scotia Power and others have funded a feasibility study of North American sites for commercial instream tidal power. In July 2007, Nova Scotia Power received partial funding for a demonstration project. This presentation provided information on a demonstration plant for tidal power run by Nova Scotia Power. It discussed the benefits of the Open Hydro technology for this plant. In this simple design, the generator is on the circumference of the turbine. The design does not involve any power transmission systems or any pitching of blades. In addition, the technology is environmentally sound as it is completely shrouded, has low rotational speed, and a large open centre allows fish to pass through, and it does not require lubricants. The last benefit that was presented was the scale up of 250 kW machine deployed in a European test facility. The presentation also discussed the advantages of developing tidal power at this time. It was concluded that tidal energy has significant potential. Although it is intermittent, it is predictable and bulk power system can be scheduled to accommodate it. figs

  12. The history of tidal power in France

    International Nuclear Information System (INIS)

    Banal, M.

    1997-01-01

    The first known use of tidal power in France concerns the tidal mills in general use during the Middle Age along the French coasts. The first research studies of tidal power plants started at the end of the first world war but it is only in 1940 with the stimulus of Robert Gibrat that was created the Research Society for the use of Tides and the Rance plant project. In 1946, Electricite de France (EdF) started again the studies of this company for a greater size project in the Chausey archipelago which was abandoned for the benefit of the Rance project in the 1960's. The start up of the plant took place in 1967 but the other projects were abandoned during the 1980's. This short paper recalls the historical aspects of the development of tidal power in France and focusses on the research and development studies and on the economical, political and legal factors that led to retain the Rance project among others proposed. (J.S.)

  13. Carbon sequestration by Australian tidal marshes

    KAUST Repository

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Lewis, C. J. Ewers; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, Carlos M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    ) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor

  14. Phase lag control of tidally reversing mega-ripple geometry and bed stress in tidal inlets

    Science.gov (United States)

    Traykovski, P.

    2016-02-01

    Recent observations in the Columbia River Mouth, New River Inlet, and Wasque Shoals have shown that tidally reversing mega-ripples are an ubiquitous bedform morphology in energetic tidal inlets. As the name implies, these bedforms reverse asymmetry and migration direction in each half tidal cycle. With wavelengths of 2 to 5 m and heights of 0.2 to 0.5 m, these bedforms are larger than current formed ripples, but smaller than dunes. Unlike dunes which have a depth dependent geometry, observations indicate the tidally reversing mega-ripples geometry is related to the time dependent tidal flow and independent of depth. Previous empirical relations for predicting the geometry of ripples or dunes do not successfully predict the geometry of these features. A time dependent geometric model was developed that accounts for the reversal of migration and asymmetry to successfully predict bedform geometry. The model requires sufficient sediment transport in each half tidal cycle to reverse the asymmetry before the bedforms begin to grow. Both the observations and model indicate that the complete reversal of asymmetry and development of a steep lee face occurs near or after maximum flow in each half tidal cycle. This phase lag in bedform response to tidal forcing also has important implications for bed stress in tidal inlets. Observations of frictional drag in the Columbia River mouth based on a tidal momentum balance of surface slope over 10 km regressed against quadratic near bed velocity show drag coefficients that fall off as CD U-1.4. Reynolds stress measurements performed using the dual ADV differencing technique show similar relations. The Reynolds stress measurements also show a dramatic asymmetry between accelerating flows and decelerating flows with a factor of 5 increase during deceleration. Pulse coherent Doppler profiles of near bed turbulence indicate that the turbulence is dominated by energetic fluctuations in separation zones downstream of steep lee faces. The

  15. TIDAL EVOLUTION OF CLOSE-IN PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Rasio, Frederic A.; Peale, Stanton J.

    2010-01-01

    Recent discoveries of several transiting planets with clearly non-zero eccentricities and some large obliquities started changing the simple picture of close-in planets having circular and well-aligned orbits. The two major scenarios that form such close-in planets are planet migration in a disk and planet-planet interactions combined with tidal dissipation. The former scenario can naturally produce a circular and low-obliquity orbit, while the latter implicitly assumes an initially highly eccentric and possibly high-obliquity orbit, which are then circularized and aligned via tidal dissipation. Most of these close-in planets experience orbital decay all the way to the Roche limit as previous studies showed. We investigate the tidal evolution of transiting planets on eccentric orbits, and find that there are two characteristic evolution paths for them, depending on the relative efficiency of tidal dissipation inside the star and the planet. Our study shows that each of these paths may correspond to migration and scattering scenarios. We further point out that the current observations may be consistent with the scattering scenario, where the circularization of an initially eccentric orbit occurs before the orbital decay primarily due to tidal dissipation in the planet, while the alignment of the stellar spin and orbit normal occurs on a similar timescale to the orbital decay largely due to dissipation in the star. We also find that even when the stellar spin-orbit misalignment is observed to be small at present, some systems could have had a highly misaligned orbit in the past, if their evolution is dominated by tidal dissipation in the star. Finally, we also re-examine the recent claim by Levrard et al. that all orbital and spin parameters, including eccentricity and stellar obliquity, evolve on a similar timescale to orbital decay. This counterintuitive result turns out to have been caused by a typo in their numerical code. Solving the correct set of tidal

  16. Relativistic tidal properties of neutron stars

    International Nuclear Information System (INIS)

    Damour, Thibault; Nagar, Alessandro

    2009-01-01

    We study the various linear responses of neutron stars to external relativistic tidal fields. We focus on three different tidal responses, associated to three different tidal coefficients: (i) a gravito-electric-type coefficient Gμ l =[length] 2l+1 measuring the lth-order mass multipolar moment GM a 1 ...a l induced in a star by an external lth-order gravito-electric tidal field G a 1 ...a l ; (ii) a gravito-magnetic-type coefficient Gσ l =[length] 2l+1 measuring the lth spin multipole moment GS a 1 ...a l induced in a star by an external lth-order gravito-magnetic tidal field H a 1 ...a l ; and (iii) a dimensionless 'shape' Love number h l measuring the distortion of the shape of the surface of a star by an external lth-order gravito-electric tidal field. All the dimensionless tidal coefficients Gμ l /R 2l+1 , Gσ l /R 2l+1 , and h l (where R is the radius of the star) are found to have a strong sensitivity to the value of the star's 'compactness'c≡GM/(c 0 2 R) (where we indicate by c 0 the speed of light). In particular, Gμ l /R 2l+1 ∼k l is found to strongly decrease, as c increases, down to a zero value as c is formally extended to the 'black hole (BH) limit'c BH =1/2. The shape Love number h l is also found to significantly decrease as c increases, though it does not vanish in the formal limit c→c BH , but is rather found to agree with the recently determined shape Love numbers of black holes. The formal vanishing of μ l and σ l as c→c BH is a consequence of the no-hair properties of black holes. This vanishing suggests, but in no way proves, that the effective action describing the gravitational interactions of black holes may not need to be augmented by nonminimal worldline couplings.

  17. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    KAUST Repository

    Ryu, Seol

    2010-01-01

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. © 2009 The Combustion Institute.

  18. Ventilatory effects of hypercapnic end-tidal PCO2 clamps during aerobic exercise of varying intensity.

    Science.gov (United States)

    Essfeld, D; Hoffmann, U; Stegemann, J

    1990-01-01

    Nine subjects performed a sequence of sustained and randomised changes between 40 W and 100 W on a cycle ergometer while the end-tidal PO2 was kept close to 17.3 kPa (130 mm Hg) by means of a dynamic forcing technique (reference experiment). In a second series inspiratory CO2 was additionally manipulated so as to hold end-tidal PCO2 (PETCO2) near 6.5 kPa (49 mm Hg; 'CO2-clamp' experiment). By this forcing PETCO2 oscillations were attenuated and more evenly distributed over the frequency range. Ventilation (VT) responded to this manoeuvre with an upward trend that could not be ascribed to a slow CO2-response component, changes in metabolic rate or a dissociation of end-tidal and arterial PCO2. VT differences between reference and CO2-clamp experiments were abolished within a 3-min period following the termination of the external CO2 control. The present results suggest that the CO2-H+ stimulus plays a major role in adjusting ventilation when exercise intensity is decreased. The underlying CO2 effect appears to be neither additive nor bi-directionally symmetrical.

  19. Environmental consequences of tidal power in a hyper-tidal muddy regime: the Severn estuary

    International Nuclear Information System (INIS)

    Kirby, R.

    1997-01-01

    Muddy hyper-tidal regimes, such as the Severn Estuary in the UK, are especially difficult for plants and animals. The difficulties stem from the semi-diurnal and semi-lunar energy fluctuations. On spring tides entrained fine sediment induces elevated suspended sediment concentrations such that photosynthesis is inhibited. On neap tides much of the entrained fine sediment is deposited on the sub-tidal bed over periods of several days to form ephemeral dense layers, which reach in excess of 100 G/l and rapidly become anaerobic on stagnation. Such occasional bed faunas as develop are characterised by very large numbers of immature individuals of a few species. One of the few organisms able to cope with the extreme conditions is the siliceous reef-building worn Sabellaria. Arising from the long term suppression in its calcareous fauna, erosion and winnowing of these Holocene clays fails to give rise to lag shell deposits, called chenier ridges, found elsewhere in eroding muddy inter-tidal systems. A tidal power barrage would shift the regime from hyper-tidal to macro-tidal decrease in turbidity would permit photosynthesis and phytoplankton growth, so stimulating the higher food chain. Ironically, perhaps, cleaning up the sewage discharges in the estuary, in the absence of barrage construction would lead to a wading bird crash whereas barrage construction would lead to an improved carrying capacity. (author)

  20. Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; Govers, G.; Lauwaet, D.

    2005-01-01

    This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export

  1. Winter Counter-Wind Transport in the Inner Southwestern Yellow Sea

    Science.gov (United States)

    Wu, Hui; Gu, Jinghua; Zhu, Ping

    2018-01-01

    Coastal currents generally flow downshelf with land on the right side (Northern Hemisphere) under the geostrophic balance, and are often strengthened by downwelling-favorable winds. However, the recent mooring observation in the inner southwestern Yellow Sea showed that coastal transport direction can be substantially changed by tidal forcing. In the survey, the tidal-averaged transports at two out of three sites remained northward (i.e., in the upshelf direction) and opposite the downwelling-favorable northerly wind, except during a brief neap tide period. Numerical experiments showed that the incoming Poincaré wave tide from the East China Sea plays a key role in forming this counter-wind transport system. This tidal wave produces a shoreward tidal stress south of 33.5°N in the inner southwestern Yellow Sea, driving an upshelf transport under the Earth's rotation. Counterpropagating tidal waves from the East China Sea and the northern Yellow Sea collide in coastal water in 32.5-34°N, which produce a standing tidal wave and therefore a mean sea-surface setup with alongshore and cross-shelf scales of both >100 km. This sea-surface setup causes an alongshore sea surface gradient, which veers the upshelf transport to the offshore direction under geostrophic balance. The strong tidal current increases the tidal-mean bottom resistance in the SCW, thus reduces the wind-driven current to a magnitude smaller than the tide-induced residual transport velocity. Therefore, upshelf transport persists in the inner southwestern Yellow Sea, and the Changjiang River Estuary becomes a major source area for the inner southwestern Yellow Sea.

  2. Composite wind turbine towers

    Energy Technology Data Exchange (ETDEWEB)

    Polyzois, D. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2008-07-01

    This paper discussed experiments conducted to optimized the advanced composite materials such as fiberglass reinforced plastics (FRP) used to fabricate wind turbine towers. FRP materials are used in tubular steel, lattice, guyed, and reinforced concrete towers. The towers and turbine blades are transported in segments and assembled on-site, sometimes in offshore or remote locations.The FRP composites are used to build towers with a high strength-to-weight ratio as well as to provide resistance to chemical attacks and corrosion. Use of the materials has resulted in towers that do not require heavy installation equipment. Experimental programs were conducted to verify the structural behaviour of the tower structure's individual-scaled cells as well as to evaluate the performance of multi-cell assemblies. Joint assembly designs were optimized, and a filament winding machine was used to conduct the experimental study and to test individual cells. Failure mode analyses were conducted to determine local buckling and shear rupture. Tension, compression, and shear properties of the FRP materials were tested experimentally, and data from the test were then used to develop finite element models of the composite towers as well as to obtain load deflection curves and tip oscillation data. A case study of a 750 kW wind turbine in Churchill, Manitoba was used to test the design. tabs., figs.

  3. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  4. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  5. On the tidal interaction of massive extrasolar planets on highly eccentric orbits

    Science.gov (United States)

    Ivanov, P. B.; Papaloizou, J. C. B.

    2004-01-01

    In this paper we develop a theory of disturbances induced by the stellar tidal field in a fully convective slowly rotating planet orbiting on a highly eccentric orbit around a central star. In this case it is appropriate to treat the tidal influence as a succession of impulsive tidal interactions occurring at periastron passage. For a fully convective planet mainly the l= 2 fundamental mode of oscillation is excited. We show that there are two contributions to the mode energy and angular momentum gain due to impulsive tidal interaction: (i) `the quasi-static' contribution, which requires dissipative processes operating in the planet, and (ii) the dynamical contribution associated with excitation of modes of oscillation. These contributions are obtained self-consistently from a single set of the governing equations. We calculate a critical `equilibrium' value of angular velocity of the planet Ωcrit determined by the condition that action of the dynamic tides does not alter the angular velocity at this rotation rate. We show that this can be much larger than the corresponding rate associated with quasi-static tides and that at this angular velocity, the rate of energy exchange is minimized. We also investigate the conditions for the stochastic increase in oscillation energy that may occur if many periastron passages are considered and dissipation is not important. We provide a simple criterion for this instability to occur. Finally, we make some simple estimates of the time-scale of evolution of the orbital semimajor axis and circularization of the initially eccentric orbit due to tides, using a realistic model of the planet and its cooling history, for orbits with periods after circularization typical of those observed for extrasolar planets Pobs>~ 3 d. Quasi-static tides are found to be ineffective for semimajor axes >~0.1 au. On the other hand, dynamic tides could have produced a very large decrease of the semimajor axis of a planet with mass of the order of the

  6. Subsurface oscillations at an oceanic station in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Sarma, M.S.S.; Charyulu, R.J.K.; Rao, D.P.

    . For this purpose a 7 day time series data on water temperature, surface wind and atmospheric pressure have been taken. Spectral analysis of the data shows that the fluctuations of pressure and wind have varied influence on the subsurface oscillations. However...

  7. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  8. Density-wave oscillations

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Bratianu, C.

    1979-01-01

    Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)

  9. Oscillators and operational amplifiers

    OpenAIRE

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.

  10. Chaotic solar oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)

    1981-09-01

    A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.

  11. Tidal regimes and salt marshes - the River Hamble analogue

    International Nuclear Information System (INIS)

    Gray, A.J.; Moy, I.L.; Warman, E.A.; Dawson, F.H.; Henville, P.

    1993-01-01

    Construction of estuarine tidal-energy barrages has a potentially major effect on the tidal regime of the estuary, particularly upstream of a barrage. Because tidal regime largely controls the distribution and species composition of intertidal plant and animal communities, it is important to understand how barrages may affect such communities. The main objectives of the research described in this report were to relate recent changes in tidal regime within an embanked area of salt marsh and mudflat to changes in the distribution of plant species. This was to test predictions about tidal control of species' range and to assess the site's suitability as an analogue of post-barrage conditions. (author)

  12. The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators

    Science.gov (United States)

    Salter, S.

    2011-12-01

    The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations

  13. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  14. On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale

    Science.gov (United States)

    Amorisco, N. C.

    2015-06-01

    I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent

  15. Stability and control of wind farms in power systems

    DEFF Research Database (Denmark)

    Jauch, Clemens

    is part of the project. The mostextensive modelling work deals with the design of the electrical part of the variable speed turbine and its controls. To simulate realistic grid operation the wind turbine models are connected to an aggregated model of the Nordic power system. For thatpurpose the Nordic...... through transient faults. With these transient fault controllers the wind turbines can stay connected to the grid, such that their generation capacity is sustained, and normal gridoperation can resume, after the fault is cleared. Transient faults in the transmission system often cause power system...... oscillations. To further support the grid, a situation is assumed, where in future, wind turbines will be required to contribute to thedamping of these power system oscillations. Power system oscillations are counteracted with a controlled injection of oscillating active power. With an active-stall turbine...

  16. Superconducting generators for wind turbines: design considerations

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Abrahamsen, Asger Bech; Træholt, Chresten

    2010-01-01

    The harmonic content of high temperature superconductors (HTS) field winding in air-core high temperature superconducting synchronous machine (HTS SM) has been addressed in order to investigate tendency of HTS SM towards mechanical oscillation and additional loss caused by higher flux harmonic...

  17. Tidal disruption of fuzzy dark matter subhalo cores

    Science.gov (United States)

    Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David

    2018-03-01

    We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.

  18. Evolution and Reduction of Scour around Offshore Wind Turbines

    Science.gov (United States)

    McGovern, David; Ilic, Suzana

    2010-05-01

    Evolution and Reduction of Scour around Offshore Wind Turbines In response to growing socio-economic and environmental demands, electricity generation through offshore wind turbine farms is a fast growing sector of the renewable energy market. Considerable numbers of offshore wind farms exist in the shallow continental shelf seas of the North-West Europe, with many more in the planning stages. Wind energy is harnessed by large rotating blades that drive an electricity generating turbine placed on top of a long cylindrical monopile that are driven into the sea-bed, well into the bed rock below the sediment. Offshore wind turbines are popular due to consistently higher wind speeds and lower visual impact than their onshore counter parts, but their construction and maintenance is not without its difficulties. The alteration of flow by the presence of the wind turbine monopile results in changes in sedimentary processes and morphology at its base. The increase in flow velocity and turbulence causes an amplification of bed shear stress and this can result in the creation of a large scour hole at the monopile base. Such a scour hole can adversely affect the structural integrity and hence longevity of the monopile. Changes to the sea bed caused by this may also locally affect the benthic habitat. We conducted an extensive series of rigid and mobile bed experiments to examine the process of scour under tidal currents. We also test the effectiveness of a flow-altering collared monopile in reducing scour. Firstly, we used Particle Image Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) to visualise and analyse the flow and turbulence properties in the local flow around the monopile and collared monopile over a smooth rigid bed under tidal flow. The measured flow, turbulence and shear stress properties are related to mobile bed tests where a Seatek 5 MHz Ultrasonic Ranging system is used to identify the evolution of scour under reversing tidal currents. The tidal

  19. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  20. Resonant Tidal Excitation of Internal Waves in the Earth's Fluid Core

    Science.gov (United States)

    Tyler, Robert H.; Kuang, Weijia

    2014-01-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  1. Tidal power dams in the Bay of Fundy

    International Nuclear Information System (INIS)

    Walsun, W. van

    1998-01-01

    The challenges of harnessing tidal power and the construction of dams and tidal power plants in a tidal-ocean environment such as the Bay of Fundy in New Brunswick are discussed. In the 1966-1988 series of studies, three sites were chosen at the Bay of Fundy as being the most promising, namely (1) site B9 in Minas Basin at the entrance to Cobequid Bay, (2) site A8 at the narrow neck beyond the entrance to Cumberland Basin, and (3) site A6 at the entrance to Shepody Bay. All the sites are located at the head of the Bay of Fundy because that is where the maximum tidal ranges are found and a basin's tidal energy potential is proportional to the square of its tidal range. Site B9 was determined to have the greatest tidal power potential but no plant has ever been built because reports have stated that a solid conventional tidal power barrage at site B9 would increase the tidal range at Boston by as much as 30 cm. Rather than abandoning the site for this reason, an installation consisting of a series of piers from shore to shore with hydraulic turbines mounted in the spaces between piers, was suggested. A simple mathematical model has been developed for determining the operation of this tidal fence. The cost of energy, generated by the tidal fence at site B9 was also calculated. Further studies are suggested to determine the exact environmental effect of the tidal fence on the tidal regime. If environmental problems persist, machines with larger discharge capabilities could be considered to reduce the interference of the fence with natural tidal movements. 9 refs., 6 figs

  2. Study on transient stability of wind turbine with induction generator based on variable pitch control strategy

    DEFF Research Database (Denmark)

    Zhao, B.; Li, H.; Han, L.

    2011-01-01

    In order to enhance and improve the transient stability of a grid-connected wind turbine generator system under the power grid fault, based on typical pitch control strategy of wind turbine, considering the wind turbine system oscillation caused by the drive-train shaft flexibility, Based on Matl...

  3. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  4. Evolution of accretion disks in tidal disruption events

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Rong-Feng [Current address: Racah Institute of Physics, Hebrew University of Jerusalem, Israel. (Israel); Matzner, Christopher D., E-mail: rf.shen@mail.huji.ac.il, E-mail: matzner@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, M5S 3H4 (Canada)

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  5. Modelling of wind power plant controller, wind speed time series, aggregation and sample results

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit; Cutululis, Nicolaos Antonio

    This report describes the modelling of a wind power plant (WPP) including its controller. Several ancillary services like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) are implemented. The focus in this document is on the performance of the WPP output...... and not the impact of the WPP on the power system. By means of simulation tests, the capability of the implemented wind power plant model to deliver ancillary services is investigated....

  6. Modelling, simulation and measurements of fast transients in transformer windings with consideration of frequency-dependent losses

    NARCIS (Netherlands)

    Popov, M.; Sluis, van der L.; Smeets, R.P.P.; Lopez Roldan, J.; Terzija, V.V.

    2007-01-01

    For the specification of winding insulation of transformers, it is important to know the electrical stresses to which the winding can be exposed during fast transient oscillations. These oscillations occur during switching operations performed by circuit breakers, or when gas-insulated substations

  7. Experiments on topographies lacking tidal conversion

    Science.gov (United States)

    Maas, Leo; Paci, Alexandre; Yuan, Bing

    2015-11-01

    In a stratified sea, internal tides are supposedly generated when the tide passes over irregular topography. It has been shown that for any given frequency in the internal wave band there are an infinite number of exceptions to this rule of thumb. This ``stealth-like'' property of the topography is due to a subtle annihilation of the internal waves generated during the surface tide's passage over the irregular bottom. We here demonstrate this in a lab-experiment. However, for any such topography, subsequently changing the surface tide's frequency does lead to tidal conversion. The upshot of this is that a tidal wave passing over an irregular bottom is for a substantial part trapped to this irregularity, and only partly converted into freely propagating internal tides. Financially supported by the European Community's 7th Framework Programme HYDRALAB IV.

  8. Tidal Disruption Events from Eccentric Nuclear Disks

    Science.gov (United States)

    Wernke, Heather N.; Madigan, Ann-Marie

    2018-04-01

    Stars that get too close to a supermassive black hole are in danger of being tidally disrupted. Stellar two-body relaxation is commonly assumed to be the main driver of these events. Recent work has shown, however, that secular gravitational torques from eccentric nuclear disks can push stars to extreme eccentricities at much higher rates than predicted by two-body relaxation. This work did not include the effects of general relativity, however, which could quench secular torques via rapid apsidal precession. Here we show that, for a star in danger of disruption, general relativity acts on a timescale of less than an orbital period. This short timescale means that general relativity does not have enough time to have a major effect on the orbit. When driven by secular torques from eccentric nuclear disks, tidal disruption event rates are not affected by general relativity.

  9. The physical characteristics of the French MRE zones. Focus on the tidal turbine sites. PP presentations

    International Nuclear Information System (INIS)

    Jambu, Emilie; Laporte, Patrice; Garlan, Thierry; Le Boulluec, Marc; Germain, Gregory; Michel, Sylvain; Belan, Pierre-Yves

    2014-04-01

    This document gathers Power Point presentations which were contributions to a workshop on French sites of marine renewable energies (MRE). A first one presents the production potential of tidal energy sites in Basse-Normandie, and how favourable areas are defined. The second one reports works performed by the SHOM to characterize the physical marine environment of French MRE sites (SHOM missions, objectives, knowledge on tidal currents, 3D current models, location of current meters offshore Cotentin and the Iroise Sea). The next contribution discusses the relationship between MREs and sedimentology in the case of different offshore wind farms and tidal energy sites. A contribution addresses modelling based on the HOMERE database (Hydrodynamics Ocean-Meteorology and Marine Renewable Energies). The next one presents programmes undertaken by the French Agency of Protected Marine Areas for a better knowledge of the natural patrimony of MRE sites. The last contribution presents the CEREMA, the development of a geographical information system to plan MRE sites, and information activities

  10. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    Science.gov (United States)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  11. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  12. Wind power

    International Nuclear Information System (INIS)

    2009-01-01

    At the end of 2008,the European wind power capacity had risen to 65,247 MW which is a 15,1% increase on 2007. The financial crisis does not appear to have any real consequences of the wind power sector's activity in 2008. At the end of 2008 the European Union accommodated 53,9% of the world's wind power capacity. The top ten countries in terms of installed wind capacities are: 1) Usa with 25,388 MW, 2) Germany with 23,903 MW, 3) Spain with 16,740 MW, 4) China with 12,200 MW, 5) India with 9,645 MW, 6) Italy with 3,736 MW, 7) France with 3,542 MW, 8) U.K. with 3,406 MW, 9) Denmark with 3,166 MW and 10) Portugal with 2,862 MW. (A.C.)

  13. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    Science.gov (United States)

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  14. Integrating tidal and nontidal ecological assessments

    Science.gov (United States)

    Mark Southerland; Roberto Llanso

    2016-01-01

    The Maryland Department of Natural Resources (DNR) has a long history of conducting rigorous assessments of ecological conditions in both tidal and nontidal waters. The Long-Term Benthic (LTB) Monitoring Program and the Maryland Biological Stream Survey (MBSS) both use reference-based indicators of benthic invertebrate communities to provide areawide estimates of ...

  15. Tidal heating in multilayered terrestrial exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Wade G.; Hurford, Terry, E-mail: wade.g.henning@nasa.gov [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2014-07-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  16. Tidal Heating in Multilayered Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  17. The commercial prospects for tidal stream power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The prospects for obtaining energy from tidal currents were examined in 1993 when it was concluded that, although the UK resource is large, the unit cost of energy would be relatively high. Interest has continued, however, and in December 2000 the Energy Technology Support Unit (ETSU), on behalf of the Department of Trade and Industry (DTI), commissioned Binnie Black and Veatch (BBV) to re-examine these prospects from a commercial point of view. (author)

  18. Effect of tidal fields on star clusters

    Science.gov (United States)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  19. Tidal power from the River Mersey

    International Nuclear Information System (INIS)

    1991-01-01

    The studies described in this report relate to work carried out since those reported upon in the stage I Mersey Barrage Report on the possible construction of a tidal power barrage on the Mersey Estuary. The objectives of the work were to review basic engineering, re-assess cost and energy output, improve engineering configuration, quantify social, industrial and regional effects, determine preferred alignment, review the main environmental impacts, assess economic viability and financing and identify further study requirements. (UK)

  20. Tidal heating in multilayered terrestrial exoplanets

    International Nuclear Information System (INIS)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R E is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  1. WATER TRAPPING ON TIDALLY LOCKED TERRESTRIAL PLANETS REQUIRES SPECIAL CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Abbot, Dorian S. [Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Liu, Yonggang [Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544 (United States); Hu, Yongyun, E-mail: junyang28@uchicago.edu [Laboratory for Climate and Atmosphere-Ocean Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing (China)

    2014-12-01

    Surface liquid water is essential for standard planetary habitability. Calculations of atmospheric circulation on tidally locked planets around M stars suggest that this peculiar orbital configuration lends itself to the trapping of large amounts of water in kilometers-thick ice on the night side, potentially removing all liquid water from the day side where photosynthesis is possible. We study this problem using a global climate model including coupled atmosphere, ocean, land, and sea ice components as well as a continental ice sheet model driven by the climate model output. For a waterworld, we find that surface winds transport sea ice toward the day side and the ocean carries heat toward the night side. As a result, nightside sea ice remains O(10 m) thick and nightside water trapping is insignificant. If a planet has large continents on its night side, they can grow ice sheets O(1000 m) thick if the geothermal heat flux is similar to Earth's or smaller. Planets with a water complement similar to Earth's would therefore experience a large decrease in sea level when plate tectonics drives their continents onto the night side, but would not experience complete dayside dessiccation. Only planets with a geothermal heat flux lower than Earth's, much of their surface covered by continents, and a surface water reservoir O(10%) of Earth's would be susceptible to complete water trapping.

  2. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  3. Tidal controls on river delta morphology

    Science.gov (United States)

    Hoitink, A. J. F.; Wang, Z. B.; Vermeulen, B.; Huismans, Y.; Kästner, K.

    2017-09-01

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and land reclamation emerge as key contemporary factors that exert an impact on delta morphology. Tides interacting with river discharge can play a crucial role in the morphodynamic development of deltas under pressure. Emerging insights into tidal controls on river delta morphology suggest that--despite the active morphodynamics in tidal channels and mouth bar regions--tidal motion acts to stabilize delta morphology at the landscape scale under the condition that sediment import during low flows largely balances sediment export during high flows. Distributary channels subject to tides show lower migration rates and are less easily flooded by the river because of opposing non-linear interactions between river discharge and the tide. These interactions lead to flow changes within channels, and a more uniform distribution of discharge across channels. Sediment depletion and rigorous human interventions in deltas, including storm surge defence works, disrupt the dynamic morphological equilibrium and can lead to erosion and severe scour at the channel bed, even decades after an intervention.

  4. Tidally Driven Failure Along Europa's Rhadamanthys Linea

    Science.gov (United States)

    Cameron, M.; Konter, B.; Pappalardo, R. T.

    2013-12-01

    The surface of Europa is crosscut by a dense network of fractures and there are many candidate faults for studying past tectonic activity. To better understand the role of tidal stress sources and implications for faulting on Europa, we investigate the relationship between shear and normal stresses at Rhadamanthys Linea, a northwest oriented fracture in the northern hemisphere. Previous work on Agenor Linea, a right-lateral strike-slip fracture in the southern hemisphere, suggests that both tidal diurnal and non-synchronous rotation (NSR) stresses play a critical role in the mechanics of Coulomb shear failure on Europa. At Agenor Linea, shear failure from diurnal tidal stress mechanisms is difficult to achieve because the relatively large over¬burden stress (ie., 1.2 MPa at 1 km depth) dominates the stress field; however, MPa order stresses from NSR permit right-lateral shear failure along the west side of the fault at shallow depths (Astypalea Linea and Conamara Chaos will also be investigated, offering a unique comparison of geologic activity of fractures residing in geographically diverse locations of Europa.

  5. Tidal controls on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  6. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    Science.gov (United States)

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  7. The effects of tidal range on saltmarsh morphology

    Science.gov (United States)

    Goodwin, Guillaume; Mudd, Simon

    2017-04-01

    Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.

  8. Effect of waveforms of inspired gas tension on the respiratory oscillations of carotid body discharge.

    Science.gov (United States)

    Kumar, P; Nye, P C; Torrance, R W

    1991-07-01

    The responses of carotid body chemoreceptor discharge to repeated ramps (20- to 60-s forcing cycle durations) of inspired gas tensions were studied in spontaneously breathing and in artificially ventilated pentobarbitone-anesthetized cats. In all animals the mean intensity of chemoreceptor discharge followed the frequency of the forcing cycle, and superimposed on this were oscillations at the frequency of ventilation (breath-by-breath oscillations). The amplitude of the breath-by-breath oscillations in discharge was often large, and it waxed and waned with the forcing cycle. It was greatest when the mean level of discharge was falling and smallest near the peak of mean discharge. No qualitative differences were observed between PO2-alone forcing in constant normocapnia and PCO2-alone forcing in constant hypoxia. The variation in the amplitudes of breath-by-breath oscillations was shown to be due primarily to variations in the amplitudes of the downslope component of the discharge oscillation. Variations in the upslope component of individual oscillations were small. The factors responsible for the breath-by-breath oscillations are discussed, and it is concluded that the shape of the waveform of arterial gas tensions that stimulate the peripheral chemoreceptors departs markedly from that of a line joining end-tidal gas tensions. This causes breath-by-breath oscillations of discharge to be very large after an "off" stimulus. Reflex studies involving the forcing of respiratory gases should therefore include consideration of these effects.

  9. Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh

    Science.gov (United States)

    Neff, K.P.; Baldwin, A.H.

    2005-01-01

    Although seed dispersal is assumed to be a major factor determining plant community development in restored wetlands, little research exists on density and species richness of seed available through dispersal in these systems. We measured composition and seed dispersal rates at a restored tidal freshwater marsh in Washington, DC, USA by collecting seed dispersing through water and wind. Seed dispersal by water was measured using two methods of seed collection: (1) stationary traps composed of coconut fiber mat along an elevation gradient bracketing the tidal range and (2) a floating surface trawl net attached to a boat. To estimate wind dispersal rates, we collected seed from stationary traps composed of coconut fiber mat positioned above marsh vegetation. We also collected a small number of samples of debris deposited along high tide lines (drift lines) and feces of Canada Goose to explore their seed content. We used the seedling emergence method to determine seed density in all samples, which involved placing the fiber mats or sample material on top of potting soil in a greenhouse misting room and enumerating emerging seedlings. Seedlings from a total of 125 plant species emerged during this study (including 82 in river trawls, 89 in stationary water traps, 21 in drift lines, 39 in wind traps, and 10 in goose feces). The most abundant taxa included Bidens frondosa, Boehmeria cylindrica, Cyperus spp., Eclipta prostrata, and Ludwigia palustris. Total seedling density was significantly greater for the stationary water traps (212 + 30.6 seeds/m2/month) than the equal-sized stationary wind traps (18 + 6.0 seeds/m(2)/month). Lower-bound estimates of total species richness based on the non-parametric Chao 2 asymptotic estimators were greater for seeds in water (106 + 1.4 for stationary water traps and 104 + 5.5 for trawl samples) than for wind (54 + 6.4). Our results indicate that water is the primary source of seeds dispersing to the site and that a species-rich pool

  10. Do muons oscillate?

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.

    1997-01-01

    We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)

  11. Oscillations in neutron stars

    International Nuclear Information System (INIS)

    Hoeye, Gudrun Kristine

    1999-01-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  12. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  13. A Tidally Averaged Sediment-Transport Model for San Francisco Bay, California

    Science.gov (United States)

    Lionberger, Megan A.; Schoellhamer, David H.

    2009-01-01

    A tidally averaged sediment-transport model of San Francisco Bay was incorporated into a tidally averaged salinity box model previously developed and calibrated using salinity, a conservative tracer (Uncles and Peterson, 1995; Knowles, 1996). The Bay is represented in the model by 50 segments composed of two layers: one representing the channel (>5-meter depth) and the other the shallows (0- to 5-meter depth). Calculations are made using a daily time step and simulations can be made on the decadal time scale. The sediment-transport model includes an erosion-deposition algorithm, a bed-sediment algorithm, and sediment boundary conditions. Erosion and deposition of bed sediments are calculated explicitly, and suspended sediment is transported by implicitly solving the advection-dispersion equation. The bed-sediment model simulates the increase in bed strength with depth, owing to consolidation of fine sediments that make up San Francisco Bay mud. The model is calibrated to either net sedimentation calculated from bathymetric-change data or measured suspended-sediment concentration. Specified boundary conditions are the tributary fluxes of suspended sediment and suspended-sediment concentration in the Pacific Ocean. Results of model calibration and validation show that the model simulates the trends in suspended-sediment concentration associated with tidal fluctuations, residual velocity, and wind stress well, although the spring neap tidal suspended-sediment concentration variability was consistently underestimated. Model validation also showed poor simulation of seasonal sediment pulses from the Sacramento-San Joaquin River Delta at Point San Pablo because the pulses enter the Bay over only a few days and the fate of the pulses is determined by intra-tidal deposition and resuspension that are not included in this tidally averaged model. The model was calibrated to net-basin sedimentation to calculate budgets of sediment and sediment-associated contaminants. While

  14. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2008-06-01

    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  15. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  16. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  17. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  18. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  19. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  20. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  1. Oscillators from nonlinear realizations

    Science.gov (United States)

    Kozyrev, N.; Krivonos, S.

    2018-02-01

    We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.

  2. Impacts of Traffic Tidal Flow on Pollutant Dispersion in a Non-Uniform Urban Street Canyon

    Directory of Open Access Journals (Sweden)

    Tingzhen Ming

    2018-02-01

    Full Text Available A three-dimensional geometrical model was established based on a section of street canyons in the 2nd Ring Road of Wuhan, China, and a mathematical model describing the fluid flow and pollutant dispersion characteristics in the street canyon was developed. The effect of traffic tidal flow was investigated based on the measurement results of the passing vehicles as the pollution source of the CFD method and on the spatial distribution of pollutants under various ambient crosswinds. Numerical investigation results indicated that: (i in this three-dimensional asymmetrical shallow street canyon, if the pollution source followed a non-uniform distribution due to the traffic tidal flow and the wind flow was perpendicular to the street, a leeward side source intensity stronger than the windward side intensity would cause an expansion of the pollution space even if the total source in the street is equal. When the ambient wind speed is 3 m/s, the pollutant source intensity near the leeward side that is stronger than that near the windward side (R = 2, R = 3, and R = 5 leads to an increased average concentration of CO at pedestrian breathing height by 26%, 37%, and 41%, respectively. (R is the ratio parameter of the left side pollution source and the right side pollution source; (ii However, this feature will become less significant with increasing wind speeds and changes of wind direction; (iii the pollution source intensity exerted a decisive influence on the pollutant level in the street canyon. With the decrease of the pollution source intensity, the pollutant concentration decreased proportionally.

  3. Satellite Tidal Magnetic Signals Constrain Oceanic Lithosphere-Asthenosphere Boundary Earth Tomography with Tidal Magnetic Signals

    Science.gov (United States)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  4. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements

    Science.gov (United States)

    Bergamaschi, B.A.; Fleck, J.A.; Downing, B.D.; Boss, E.; Pellerin, B.; Ganju, N.K.; Schoellhamer, D.H.; Byington, A.A.; Heim, W.A.; Stephenson, M.; Fujii, R.

    2011-01-01

    We assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 μg m−2 yr−1—4–40 times previously published yields—representing a potential loading to the estuary of 80 g yr−1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.

  5. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  6. Characteristics of low-frequency oscillation intensity of airsea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient ( Δ q), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), Δ q and mean wind speed (U ), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and U . 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa′ (Ta′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs′ (Ts′) also greatly influences the low-frequency oscillation of LHF (SHF).

  7. Observational evidence of quasi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20° N

    Directory of Open Access Journals (Sweden)

    K. M. Huang

    2015-10-01

    Full Text Available By using meteor radar, radiosonde and satellite observations over 20° N and NCEP/NCAR reanalysis data during 81 days from 22 December 2004 to 12 March 2005, a quasi-27-day oscillation propagating from the troposphere to the mesosphere is reported. A pronounced 27-day periodicity is observed in the raw zonal wind from meteor radar. Spectral analysis shows that the oscillation also occurs in the meridional wind and temperature and propagates westward with wavenumber s = 1; thus the oscillation is of Rossby wave type. The oscillation attains a large amplitude of about 12 m s−1 in the eastward wind shear region of the troposphere. When the wind shear reverses, its amplitude rapidly decays, and the background wind gradually evolves to be westward. However, the oscillation can penetrate through the weak westward wind field due to its relatively large phase speed. After this, the oscillation restrengthens with its upward propagation and reaches about 20 m s−1 in the mesosphere. Reanalysis data show that the oscillation can propagate to the mid and high latitudes from the low latitudes and has large amplitudes over there. There is another interesting phenomenon that a quasi-46-day oscillation appears simultaneously in the troposphere, but it cannot penetrate through the westward wind field because of its smaller phase speed. In the observational interval, a quasi-27-day periodicity in outgoing long-wave radiation (OLR and specific humidity is found in a latitudinal zone of 5–20° N. Thus the quasi-27-day oscillation may be an atmospheric response to forcing due to the convective activity with a period of about 27 days in the tropical region.

  8. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    Science.gov (United States)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  9. High-energy cosmic ray nuclei from tidal disruption events: Origin, survival, and implications

    Science.gov (United States)

    Zhang, B. Theodore; Murase, Kohta; Oikonomou, Foteini; Li, Zhuo

    2017-09-01

    Tidal disruption events (TDEs) by supermassive or intermediate mass black holes have been suggested as candidate sources of ultrahigh-energy cosmic rays (UHECRs) and high-energy neutrinos. Motivated by the recent measurements from the Pierre Auger Observatory, which indicates a metal-rich cosmic-ray composition at ultrahigh energies, we investigate the fate of UHECR nuclei loaded in TDE jets. First, we consider the production and survival of UHECR nuclei at internal shocks, external forward and reverse shocks, and nonrelativistic winds. Based on the observations of Swift J 1644 +57 , we show that the UHECRs can survive for external reverse and forward shocks, and disk winds. On the other hand, UHECR nuclei are significantly disintegrated in internal shocks, although they could survive for low-luminosity TDE jets. Assuming that UHECR nuclei can survive, we consider implications of different composition models of TDEs. We find that the tidal disruption of main sequence stars or carbon-oxygen white dwarfs does not successfully reproduce UHECR observations, namely the observed composition or spectrum. The observed mean depth of the shower maximum and its deviation could be explained by oxygen-neon-magnesium white dwarfs, although they may be too rare to be the sources of UHECRs.

  10. Nitrogen and organic carbon cycling processes in tidal marshes and shallow estuarine habitats

    Science.gov (United States)

    Bergamaschi, B. A.; Downing, B. D.; Pellerin, B. A.; Kraus, T. E. C.; Fleck, J.; Fujii, R.

    2016-02-01

    Tidal wetlands and shallow water habitats can be sites of high aquatic productivity, and they have the potential of exchanging this newly produced organic carbon with adjacent deeper habitats. Indeed, export of organic carbon from wetlands and shallow water habitats to pelagic food webs is one of the primary ecosystem functions targeted in tidal wetland restorations. Alternatively, wetlands and shallow water habitats can function as retention areas for nutrients due to the nutrient demand of emergent macrophytes and denitrification in anoxic zones. They can also remove phytoplankton and non-algal particles from the aquatic food webs because the shallower waters can result in higher rates of benthic grazing and higher settling due to lower water velocities. We conducted studies in wetland and channel sites in the San Francisco estuary (USA) to investigate the dynamics of nutrients and carbon production at a variety of temporal scales. We collected continuous time series of nutrients, oxygen, chlorophyll and pH in conjunction with continuous acoustic measurement of water velocity and discharge to provide mass controls and used simple biogeochemical models to assess rates. We found a high degree of temporal variability in individual systems, corresponding to, for example, changes in nutrient supply, water level, light level, wind, wind direction, and other physical factors. There was also large variability among the different systems, probably due to differences in flows and geomorphic features. We compare the aquatic productivity of theses environments and speculate as to the formative elements of each. Our findings demonstrate the complex interaction between physical, chemical, and biological factors that determine the type of production and degree of export from tidal wetlands and shallow water habitats, suggesting that a clearer picture of these processes is important for guiding future large scale restoration efforts.

  11. Prediction of unsteady separated flows on oscillating airfoils

    Science.gov (United States)

    Mccroskey, W. J.

    1978-01-01

    Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.

  12. Security region-based small signal stability analysis of power systems with FSIG based wind farm

    Science.gov (United States)

    Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong

    2018-02-01

    Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.

  13. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow dif...

  14. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  15. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  16. Nonlinearity in oscillating bridges

    Directory of Open Access Journals (Sweden)

    Filippo Gazzola

    2013-09-01

    Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.

  17. Integrated optoelectronic oscillator.

    Science.gov (United States)

    Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming

    2018-04-30

    With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.

  18. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  19. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  20. Inspiratory time and tidal volume during intermittent positive pressure ventilation.

    OpenAIRE

    Field, D; Milner, A D; Hopkin, I E

    1985-01-01

    We measured the tidal volume achieved during intermittent positive pressure ventilation using various inspiratory times with a minimum of 0.2 seconds. Results indicate that tidal volume shows no reduction with inspiratory times down to 0.4 seconds. An inspiratory time of 0.3 seconds, however, is likely to reduce tidal volume by 8%, and at 0.2 seconds a 22% fall may be anticipated.

  1. Tidal effects on groundwater contamination at Pekan, Pahang

    International Nuclear Information System (INIS)

    Nor Dalila Desa; Dominic, J.A.; Mohd Muzamil Mohd Hashim; Kamarudin Samuding; Mohd Faizun Khalid; Mod Omar Hassan; Kamaruzaman Mohamad

    2014-01-01

    The meeting of coastal ground water and the sea is a unique and dynamic hydro geologic boundary phenomenon that has fascinated groundwater engineers and scientists for the past century. The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. In this study the effects of seawater tidal on groundwater are investigated using geophysical together with conventional method. Comparative result between these two methods shown how tidal fluctuations effects groundwater in study area. (author)

  2. Seasonal predictability of the North Atlantic Oscillation

    Science.gov (United States)

    Vellinga, Michael; Scaife, Adam

    2015-04-01

    Until recently, long-range forecast systems showed only modest levels of skill in predicting surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of winter North Atlantic climate. We demonstrate that key aspects of European and North American winter climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter storminess, near-surface temperature, and wind speed, all of which have high value for planning and adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels of seasonal forecast skill have now been achieved, key sources of predictability are still only partially represented and there is further untapped predictability. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.

  3. On Orientation Control of Suspended Blade During Installation in Wind Turbines

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen

    2015-01-01

    This paper discusses problems involved in the procedure for offshore installation of blades in wind turbines, due to wind loads. In general the high winds at sea provides for nearly optimal conditions for harvesting energy via wind turbines due to the often high wind speeds and low turbulence...... intensity. However, the very same features also call for great difficulties during installation of the wind turbine blades, making this process extremely difficult, expensive and time consuming. Often the blades are hoisted to the wind turbine hub via cranes and sought held in appropriate positions by so......-called taglines/wires, but still significant motion oscillations of blade root ends are experienced, even at rather low wind speeds. The paper considers the possibility to dampen the oscillating motions via control of the tagline lengths. The main control strategy considered, is the possibility to control...

  4. Tidal variations of flow convergence, shear, and stratification at the Rio de la Plata estuary turbidity front

    Science.gov (United States)

    FramiñAn, Mariana B.; Valle-Levinson, Arnoldo; Sepúlveda, HéCtor H.; Brown, Otis B.

    2008-08-01

    Intratidal variability of density and velocity fields is investigated at the turbidity front of the Río de la Plata Estuary, South America. Current velocity and temperature-salinity profiles collected in August 1999 along a repeated transect crossing the front are analyzed. Horizontal and vertical gradients, stability of the front, convergence zones, and transverse flow associated to the frontal boundary are described. Strong horizontal convergence of the across-front velocity and build up of along-front velocity shear were observed at the front. In the proximity of the front, enhanced transverse (or along-front) flow created jet-like structures at the surface and near the bottom flowing in opposite directions. These structures persisted throughout the tidal cycle and were advected upstream (downstream) by the flood (ebb) current through a distance of ˜10 km. During peak flood, the upper layer flow reversed from its predominant downstream direction and upstreamflow occupied the entire water column; outside the peak flood, two-layer estuarine circulation dominated. Changes in density field were observed in response to tidal straining, tidal advection, and wind-induced mixing, but stratification remained throughout the tidal cycle. This work demonstrates the large spatial variability of the velocity field at the turbidity front; it provides evidence of enhanced transverse circulation along the frontal boundary; and reveals the importance of advective and frictional intratidal processes in the dynamics of the central part of the estuary.

  5. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  6. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  7. Sub-tidal water-level oscillations in the Mandovi estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Vijith, V.

    of rainfall associated with the ISM and its interannual and intraseasonal variability. With most of the rainfall occurring during the wet ISM, most of the runoff into the estuaries is also during the same season. There is virtually no runoff... water level computed using the pressure sensor versus that using the tide pole shows that the high-frequency scatter is larger for the tide-pole measurements. However, the low-pass filtered variability is virtually identical in the tide...

  8. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-55-005, QF07-56-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains...

  9. An innovative and very promising use of tidal turbines. Tidal turbines can produce twenty per cent of the French electricity. An economic solution can produce 500 GW of tide energy. An innovative use of tidal turbines can produce 10 per cent of the World energy

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2013-01-01

    A set of articles outlines and describes the opportunities of energy production associated with the use of tidal turbines. Such a technological principle is very efficient in terms of costs but very few natural sea or river sites present favourable conditions, notably in terms of current speed. A first article addresses the peculiarities of sea tide energy, presents the different concepts and components of a sea tide power plant (tanks or basins, plants), describes the present use of tidal turbines, proposes a new solution (the 'Marelienne'), describes and assesses the integration into the grid and the energy storage, evokes the production gain obtained by pumping and the association with wind turbines, describes the construction mode, discusses the various impacts (visual impact, impacts on the environment, direct and indirect socio-economic impacts), discusses issues related to navigation, presents an example of production, costs and impacts (case of the Bay of Somme), evokes other potential areas in France (about the Chausey island and about the Re island), discusses the world potential, evokes other examples in Europe, in Asia, in America, Africa and Australia), indicates the global cost for the main sites, outlines technical and economic uncertainties. The same aspects and issues can be found in the other articles which outline that tidal turbines can produce twenty per cent of the French electricity, that an economic solution can produce 500 GW of tide energy, and that an innovative use of tidal turbines can produce 10 per cent of the World energy

  10. Tidal effects on ichthyoplankton aggregation and dispersion in the Southern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    María Adela Monreal Gómez

    2013-12-01

    Full Text Available The role of vertical barotropic and baroclinic tidal forcing in the aggregation and dispersion of ichthyoplankton in the Southern Gulf of Mexico was analyzed in this study. Samplings of ichthyoplankton and the determination of hydrographic parameters were performed during September 1992 at a single point of 180 m depth, near the shelf break (19º32'N - 92º38.5'W. A 24 h CTD yo-yoing casting and biological samples were taken every 2 h and these measurements were combined with water velocity and density simulations from the Regional Ocean Model System (ROMS. One thermocline and two haloclines were depicted. The Froude number increased with a 2 h lag with respect to the maximal barotropic tide, suggesting the existence of a baroclinic tide. Aggregation and dispersion of the ichthyoplankton showed vertical oscillations in the abundance and the numbers of taxa and larvae with a 5 h lag with respect to the maximal barotropic tide and were in phase with the thermocline oscillation. The vertical oscillation was attributed to a hydraulic control forced by the internal tide.

  11. Is there an endogenous tidal foraging rhythm in marine iguanas?

    Science.gov (United States)

    Wikelski, M; Hau, M

    1995-12-01

    As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related

  12. Tidal sails : an alternative to turbines for harvesting tidal current energy

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, J.E. [Tidal Sails, Haugesund (Norway)

    2008-07-01

    Tidal sail technology harnesses the energy of tidal streams in order to produce electricity. Tidal currents move the sails that are attached to wires that rotate generator wheels to produce electricity. The technology has a low impact on the surrounding environment and is simple to install. This presentation discussed the methods used to determine the influence of relative sail velocity and measure estimated energy output levels. The sails were recently tested at an on-grid tidal stream pilot in the Norwegian Arctic. A 300 kW turbine installed at the site demonstrated that the site was suitable for a full-scale development of 20 tripod-mounted 600 kW turbines placed at 50 m depth. It was estimated that the 10 strings of 1000 m length provided between 200 and 250 GWh per year. The sails have also been used at a high speed site in Washington state in the United States. The 25 m pilot plant was installed to verify site suitability and examine sail behaviour in real, high-flow currents. It is expected that the technology will be fully commercialized by 2011. Other pilot tests are being conducted to examine flow behaviour; mooring and flotation functionality; and launch and lift capabilities. Engineering work is ongoing to examine plant designs, variable sail spacing, and collaborations with key component suppliers. tabs., figs.

  13. Waddenfonds Tidal Texel Demonstration project. BlueTEC Texel Tidal Project: Environmental measurement and performance analysis

    NARCIS (Netherlands)

    Ponsoni, L.; Nauw, J.J.; Smit, M.; Ober, S.; Nichols, C.; Kenkhuis, J.; Schmidt, C.; Buatois, A.; de Haas, P.

    2016-01-01

    In the context of the BlueTEC project, this report starts by introducing theBlueTEC tidal energy platform and reviewing the patterns of circulation of theMarsdiep inlet. The energy resource assessment and the site selection for theplatform's deployment are reported. This document analyses di?erent

  14. Anharmonic oscillator and Bogoliubov transformation

    International Nuclear Information System (INIS)

    Pattnayak, G.C.; Torasia, S.; Rath, B.

    1990-01-01

    The anharmonic oscillator occupies a cornerstone in many problems in physics. It was observed that none of the authors have tested Bogoliubov transformation to study anharmonic oscillator. The groundstate energy of the anharmonic oscillator is studied using Bogoliubov transformation and the results presented. (author)

  15. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  16. Atmospheric dynamics of tidally synchronized extrasolar planets.

    Science.gov (United States)

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  17. Physics and observations of tidal disruption events

    Science.gov (United States)

    Mangalam, Arun; Mageshwaran, Tamilan

    2018-04-01

    We describe a model of tidal disruption events (TDEs) with input physical parameters that include the black hole (BH) mass M•, the specific orbital energy E, the angular momentum J, the star mass M⊙ and radius R⊙. We calculate the rise time of the TDEs, the peak bolometric luminosity in terms of these physical parameters and a typical light curve of TDEs for various All Sky Survey (ASS) and Deep Sky Survey (DSS) missions. We then derive the expected detection rates and discuss the follow up of TDEs through observations in various spectral bands from X-rays to radio wavelengths.

  18. Comprehensive Characterization a Tidal Energy Site (Invited)

    Science.gov (United States)

    Polagye, B. L.; Thomson, J. M.; Bassett, C. S.; Epler, J.; Northwest National Marine Renewable Energy Center

    2010-12-01

    Northern Admiralty Inlet, Puget Sound, Washington is the proposed location of a pilot tidal energy project. Site-specific characterization of the physical and biological environment is required for device engineering and environmental analysis. However, the deep water and strong currents which make the site attractive for tidal energy development also pose unique challenges to collecting comprehensive information. This talk focuses on efforts to optimally site hydrokinetic turbines and estimate their acoustic impact, based on 18 months of field data collected to date. Additional characterization efforts being undertaken by the University of Washington branch of the Northwest National Marine Renewable Energy Center and its partners include marine mammal presence and behavior, water quality, seabed geology, and biofouling potential. Because kinetic power density varies with the cube of horizontal current velocity, an accurate map of spatial current variations is required to optimally site hydrokinetic turbines. Acoustic Doppler profilers deployed on the seabed show operationally meaningful variations in flow characteristics (e.g., power density, directionality, vertical shear) and tidal harmonic constituents over length scales of less than 100m. This is, in part, attributed to the proximity of this site to a headland. Because of these variations, interpolation between stationary measurement locations introduces potentially high uncertainty. The use of shipboard acoustic Doppler profilers is shown to be an effective tool for mapping peak currents and, combined with information from seabed profilers, may be able to resolve power density variations in the project area. Because noise levels from operating turbines are expected to exceed regulatory thresholds for incidental harassment of marine mammals known to be present in the project area, an estimate of the acoustic footprint is required to permit the pilot project. This requires site-specific descriptions of pre

  19. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  20. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  1. Reactor oscillator - Proposal of the organisation for oscillator operation; Reaktorski oscilator - Predlog organizacije rada na oscilatoru

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.

  2. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  3. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    Chemical oscillators; phase flip; oscillation death. PACS No. 05.45 .... array oscillate (with varying amplitudes and frequencies), while the others experience oscillation death .... Barring the boundary cells, one observes near phase flip and near ...

  4. On deriving transport pathways and morphodynamics in a tidal inlet from high-resolution MBES and LiDAR surveys: the Knudedyb tidal inlet in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Fraccascia, Serena

    and topobathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR), respectively. Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically. The analyses reveal a main ebb-directed net sand transport in the main channel......; however, due to the geometry of the main channel, displaying a confluent meander bend, confined areas in the main channel are characterised by an opposite-directed net sand transport. In the inter-tidal areas the main net sand transport is flood-directed. However, also here the analyses reveal...... that during storm events with winds from SW, sand is transported from the inlet channel to the intertidal flat. Hence, in addition to the typical main sand transport directions with net export in the inlet channel and net import over the adjacent inter-tidal flats, these investigations suggest an exchange...

  5. Sensitivity of growth characteristics of tidal sand ridges and long bed waves to formulations of bed shear stress, sand transport and tidal forcing : A numerical model study

    NARCIS (Netherlands)

    Yuan, Bing; de Swart, Huib E.; Panadès, Carles

    2016-01-01

    Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal

  6. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  7. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  8. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study....... The WT is, furthermore, equipped with a park level WPP voltage controller and comparisons are presented. The WT model for this work is a validated dynamic model of the 3.6 MW Siemens Wind Power WT. The study is based on modal analysis which is complemented with time domain simulations on the nonlinear...

  9. Conditions for tidal bore formation in convergent alluvial estuaries

    Science.gov (United States)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater

  10. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  11. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  12. The origin of neap-spring tidal cycles

    Science.gov (United States)

    Kvale, E.P.

    2006-01-01

    The origin of oceanic tides is a basic concept taught in most introductory college-level sedimentology/geology, oceanography, and astronomy courses. Tides are typically explained in the context of the equilibrium tidal theory model. Yet this model does not take into account real tides in many parts of the world. Not only does the equilibrium tidal model fail to explicate amphidromic circulation, it also does not explain diurnal tides in low latitude positions. It likewise fails to explain the existence of tide-dominated areas where neap-spring cycles are synchronized with the 27.32-day orbital cycle of the Moon (tropical month), rather than with the more familiar 29.52-day cycle of lunar phases (synodic month). Both types of neap-spring cycles can be recognized in the rock record. A complete explanation of the origin of tides should include a discussion of dynamic tidal theory. In the dynamic tidal model, tides resulting from the motions of the Moon in its orbit around the Earth and the Earth in its orbit around the Sun are modeled as products of the combined effects of a series of phantom satellites. The movement of each of these satellites, relative to the Earth's equator, creates its own tidal wave that moves around an amphidromic point. Each of these waves is referred to as a tidal constituent. The geometries of the ocean basins determine which of these constituents are amplified. Thus, the tide-raising potential for any locality on Earth can be conceptualized as the result of a series of tidal constituents specific to that region. A better understanding of tidal cycles opens up remarkable opportunities for research on tidal deposits with implications for, among other things, a more complete understanding of the tidal dynamics responsible for sediment transport and deposition, changes in Earth-Moon distance through time, and the possible influences tidal cycles may exert on organisms. ?? 2006 Elsevier B.V. All rights reserved.

  13. Classification of tidal inlets along the Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.A.; Vikas, M.; Rao, S.; JayaKumar S.

    ) as long as the alongshore sediment bypasses the tidal inlet. Classification of coastal systems in a broader view is necessary for the management of tidal inlets. There are several methods to classify tidal inlets based on different perspectives namely geo...

  14. Extended onshore control of a floating wind turbine with wave disturbance reduction

    DEFF Research Database (Denmark)

    Christiansen, S.; Knudsen, T.; Bak, Thomas

    2014-01-01

    Reaching for higher wind resources floating wind turbines are being investigated. Wave induced loads significantly increase for floating wind turbines, and applying conventional onshore control strategies to floating wind turbines has been shown to impose negative damped oscillations in fore......-aft due to the low natural frequency of the floating structure. We suggest a control loop extension of the onshore controller which stabilizes the system and reduces the wave disturbance. The result is improved performance in power fluctuations, blade pitch activity, and platform oscillations...

  15. On Small-Signal Stability of Wind Power System with Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2010-01-01

    the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine model with all grid relevant control functions is used in the study. Furthermore is the wind power plant......Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants. In this paper an analysis is presented which assess...... (WPP) equipped with a WPP voltage controller and comparisons are presented. The models of wind turbine and WPP voltage controller are kindly provided by Siemens Wind Power A/S for this work. The study is based on modal analysis which are complemented with simulations on the nonlinear system....

  16. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  17. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  18. Entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.

    2009-01-01

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  19. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  20. Discrete repulsive oscillator wavefunctions

    International Nuclear Information System (INIS)

    Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo

    2009-01-01

    For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.

  1. Tidal constraints on the interior of Venus

    Science.gov (United States)

    Dumoulin, C.; Tobie, G.; Verhoeven, O.; Rosenblatt, P.; Rambaux, N.

    2017-12-01

    As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers, and tide-induced phase lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. Viscoelasticity of the mantle strongly increases the potential Love number relative to previously published elastic models. Due to the anelasticity effects, we show that the possibility of a completely solid metal core inside Venus cannot be ruled out based on the available estimate of k2 from the Magellan mission (Konopliv and Yoder, 1996). A Love number k2 lower than 0.27 would indicate the presence of a fully solid iron core, while for larger values, solutions with an entirely or partially liquid core are possible. Precise determination of the Love numbers, k2 and h2, together with an estimate of the tidal phase lag, are required to determine the state and size of the core, as well as the composition and viscosity of the mantle.

  2. Time scales in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Krolik J.

    2012-12-01

    Full Text Available We explore the temporal structure of tidal disruption events pointing out the corresponding transitions in the lightcurves of the thermal accretion disk and of the jet emerging from such events. The hydrodynamic time scale of the disrupted star is the minimal time scale of building up the accretion disk and the jet and it sets a limit on the rise time. This suggest that Swift J1644+57, that shows several flares with a rise time as short as a few hundred seconds could not have arisen from a tidal disruption of a main sequence star whose hydrodynamic time is a few hours. The disrupted object must have been a white dwarf. A second important time scale is the Eddington time in which the accretion rate changes form super to sub Eddington. It is possible that such a transition was observed in the light curve of Swift J2058+05. If correct this provides interesting constraints on the parameters of the system.

  3. Tidal instability in exoplanetary systems evolution

    Directory of Open Access Journals (Sweden)

    Le Gal P.

    2011-02-01

    Full Text Available A new element is proposed to play a role in the evolution of extrasolar planetary systems: the tidal (or elliptical instability. It comes from a parametric resonance and takes place in any rotating fluid whose streamlines are (even slightly elliptically deformed. Based on theoretical, experimental and numerical works, we estimate the growth rate of the instability for hot-jupiter systems, when the rotation period of the star is known. We present the physical process, its application to stars, and preliminary results obtained on a few dozen systems, summarized in the form of a stability diagram. Most of the systems are trapped in the so-called "forbidden zone", where the instability cannot grow. In some systems, the tidal instability is able to grow, at short timescales compared to the system evolution. Implications are discussed in the framework of misaligned transiting systems, as the rotational axis of the star would be unstable in systems where this elliptical instability grows.

  4. Tidal conversion by a knife-edge

    Science.gov (United States)

    Llewellyn Smith, S. G.; Young, W. R.

    2003-04-01

    We obtain an analytic solution for the generation of internal gravity waves by tidal flow past a vertical barrier of height b in a uniformly stratified ocean of depth h>b and buoyancy frequency N. If b/h is small and N is constant, the radiated power (watts per metre of barrier) is (pi/4) ρ_0 b^2 U^2 N sqrt{1-(f/ω)^2} where ρ_0 is the mean density of seawater, U \\cos (ω t) the incident tidal velocity, and f the Coriolis frequency. The radiated power increases rapidly with b/h; as b/h to 1 the radiated power diverges as ln[(h-b)/b]. By solving an integral equation numerically, we calculate the conversion in a realistically stratified ocean in which the buoyancy frequency increases by a factor of fifty between the abyss and the thermocline. The radiated power is greater by a factor of about three than that of a uniformly stratified ocean with N equal to the vertically averaged buoyancy frequency.

  5. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  6. Angular momentum transport by tidal acoustic wave

    International Nuclear Information System (INIS)

    Sakurai, T.

    1976-01-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed. (Auth.)

  7. Angular momentum transport by tidal acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Kyoto Univ. (Japan). Faculty of Engineering

    1976-05-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed.

  8. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  9. Oscillations in quasineutral plasmas

    International Nuclear Information System (INIS)

    Grenier, E.

    1996-01-01

    The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called open-quotes quasineutral regimeclose quotes of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs

  10. Density oscillations within hadrons

    International Nuclear Information System (INIS)

    Arnold, R.; Barshay, S.

    1976-01-01

    In models of extended hadrons, in which small bits of matter carrying charge and effective mass exist confined within a medium, oscillations in the matter density may occur. A way of investigating this possibility experimentally in high-energy hadron-hadron elastic diffraction scattering is suggested, and the effect is illustrated by examining some existing data which might be relevant to the question [fr

  11. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  12. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    Science.gov (United States)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  13. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    Science.gov (United States)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (features. The observational data sets of the Southern Oscillation Index (SOI), North Pacific Index Anomaly, and ENSO Sea Surface Temperature Anomaly, as well as a theoretical model all confirm the existence of long-term and short-term climatic cycles of the ENSO process with resonance frequencies of {2.5, 3.8, 5, 12-14, 61-75, 180} years. This fundamental result shows long-term and short-term signal coupling with mode locking across the dominant ENSO dynamics. These dominant oscillation frequency dynamics, defined as ENSO frequency states, contain a stable attractor with three frequencies in resonance allowing us to coin the term Heartbeat of the Southern Oscillation due to its characteristic shape. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.Plain Language SummaryThe Pacific El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future ENSO events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the ENSO climate breaking? We update the current theory of the ENSO process with a sophisticated analysis approach (Dominant Frequency State Analysis) to include long-term oscillations (up to 200 years) as well as tropical and extratropical interaction dynamics. The analysis uses instrumental and paleoproxy data

  14. Morphodynamics of the Manyema tidal delta 1 LIST OF TABLES ...

    African Journals Online (AJOL)

    Kheira Kortenbout

    Morphodynamics of the Manyema tidal delta. 1. LIST OF ... Location of Manyema Creek and its associated tidal delta platform at Kunduchi. Fig. 2. ... platform. Beachcomber. Hotel. Whitesands. Hotel. Kunduchi. Beach Hotel. Giraffe. Hotel. INDIAN. OCEAN. Mombasa. Dar es. Salaam. KUNDUCHI. KENYA. TANZANIA.

  15. Tidal bending of glaciers: a linear viscoelastic approach

    DEFF Research Database (Denmark)

    Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph

    2003-01-01

    In theoretical treatments of tidal bending of floating glaciers, the glacier is usually modelled as an elastic beam with uniform thickness, resting on an elastic foundation. With a few exceptions, values of the elastic (Young's) modulus E of ice derived from tidal deflection records of floating...

  16. Flow and sediment transport in an Indonesian tidal network

    NARCIS (Netherlands)

    Buschman, F.A.

    2011-01-01

    The Berau river, situated in east Kalimantan (Indonesia), drains a relatively small catchment area and splits into several interconnected tidal channels. This tidal network connects to the sea. The sea is host to extremely diverse coral reef communities. Also the land side of the region is

  17. Water and suspended sediment division at a stratified tidal junction

    NARCIS (Netherlands)

    Buschman, F.A.; Vegt, van der M.; Hoitink, A.J.F.; Hoekstra, P.

    2013-01-01

    [1] Tidal junctions play a crucial role in the transport of water, salt, and sediment through a delta distributary network. Water, salt and sediment are exchanged at tidal junctions, thereby influencing the transports in the connecting branches and the overall dynamics of the system. This paper

  18. Water and suspended sediment division at a stratified tidal junction

    NARCIS (Netherlands)

    Buschman, F.A.; Vegt, M. van der; Hoitink, A.J.F.; Hoekstra, P.

    2013-01-01

    Tidal junctions play a crucial role in the transport of water, salt, and sediment through a delta distributary network. Water, salt and sediment are exchanged at tidal junctions, thereby influencing the transports in the connecting branches and the overall dynamics of the system. This paper

  19. Detecting areal changes in tidal flats after sea dike construction ...

    Indian Academy of Sciences (India)

    The main objective of this study was to estimate changes in the area of tidal flats that occurred after sea dike construction on the western coast of South Korea using Landsat-TM images. Applying the ISODATA method of unsupervised classification for Landsat-TM images, the tidal flats were identified, and the resulting areas ...

  20. 33 CFR 117.181 - Oakland Inner Harbor Tidal Canal.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oakland Inner Harbor Tidal Canal. 117.181 Section 117.181 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Tidal Canal. The draws of the Alameda County highway drawbridges at Park Street, mile 5.2; Fruitvale...