WorldWideScience

Sample records for tidal power potential

  1. Regulatory, design and methodological impacts in determining tidal-in-stream power resource potential

    International Nuclear Information System (INIS)

    Atwater, Joel F.; Lawrence, Gregory A.

    2011-01-01

    Tidal-in-Stream energy has been heralded by many as a significant potential source for clean power, a scheme where kinetic energy is extracted from tidal currents. A number of estimates have suggested that tidal power may become a sizeable fraction of overall electricity generation, however these estimates have been largely based on a resource assessment methodology that dramatically oversimplifies the physical phenomenon at play. This paper develops a model that considers the effect of energy extraction on the bulk flow, showing that tidal energy inventories that assess solely kinetic energy flux may represent both an order-of-magnitude overestimation of the resource and a significant oversimplification of regulatory impacts. The interplay between the characteristics of a flow and the regulatory and economic issues will likely limit tidal power generation to levels significantly below the physical maximums. Permitted flow reduction, turbine design and staging of development all have significant and predictable impacts on the extractible resource. Energy planners must therefore understand these relationships in order to appropriately assess the magnitude of generation that can be realistically be produced from tidal energy. - Research highlights: → Inventorying kinetic energy is not appropriate for assessing the tidal energy potential and may overestimate the resource by orders of magnitude. → The physical maximum for tidal power extraction is 38% of the total fluid power of a channel and causes a flow reduction of 42%. → Any amount of tidal power generation will reduce the flow rate in a channel. → Limiting the permitted reduction in flow significantly reduces the available resource. → Turbine efficiency is important as extraneous resistance depletes the resource without providing power generation.

  2. Potential sites for tidal power in New Jersey.

    Science.gov (United States)

    2014-04-01

    High-resolution simulation is made to model tidal energy along the coastlines of New Jersey (NJ) and its neighbor states with an : unprecedentedly fine grid. On the basis of the simulation, a thorough search is made for sites for tidal power generati...

  3. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Michael Leroy [Univ. of Maine, Orono, ME; Zydlewski, Gayle Barbin [Univ. of Maine, Orono, ME; Xue, Huijie [Univ. of Maine, Orono, ME; Johnson, Teresa R. [Univ. of Maine, Orono, ME

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  4. Tidal current and tidal energy changes imposed by a dynamic tidal power system in the Taiwan Strait, China

    Science.gov (United States)

    Dai, Peng; Zhang, Jisheng; Zheng, Jinhai

    2017-12-01

    The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.

  5. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Conditions in Indonesia

    Science.gov (United States)

    Orhan, Kadir; Mayerle, Roberto

    2017-04-01

    Climate change is an urgent and potentially irreversible threat to human societies and the planet and thus requires an effective and appropriate response, with a view to accelerating the reduction of global greenhouse gas emissions. At this point, a worldwide shift to renewable energy is crucial. In this study, a methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteristics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verifications using tidal records show excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. Models with higher resolutions have been developed to assess the impacts of devices on flow conditions and to resolve near-field turbine wakes in greater detail. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines. An additional drag force resulting in dissipation of the pre-existing kinetic power from 10% to 60% within a flow cross-section is introduced to capture the impacts. k-ɛ model, which is a second order turbulence closure model is selected to involve the effects of the turbulent kinetic energy and turbulent

  6. Tidal power

    International Nuclear Information System (INIS)

    Baker, A.C.

    1991-01-01

    This book describes how large tides develop in particular places and how the energy could be extracted by building suitable barrages. The principal features of a barrage and possible methods of operation are described in detail. Although a tidal power barrage would be non-polluting, the resulting changes in the tidal regime would have important environmental effects. These are discussed together with the economics of tidal power. Methods of assessing the likely cost of electricity from any site are set out and applied to possible sites around the world. (author)

  7. Nova Scotia Power : in-stream tidal

    International Nuclear Information System (INIS)

    Meade, K.

    2007-01-01

    The Government of Nova Scotia, the Government of New Brunswick, Nova Scotia Power and others have funded a feasibility study of North American sites for commercial instream tidal power. In July 2007, Nova Scotia Power received partial funding for a demonstration project. This presentation provided information on a demonstration plant for tidal power run by Nova Scotia Power. It discussed the benefits of the Open Hydro technology for this plant. In this simple design, the generator is on the circumference of the turbine. The design does not involve any power transmission systems or any pitching of blades. In addition, the technology is environmentally sound as it is completely shrouded, has low rotational speed, and a large open centre allows fish to pass through, and it does not require lubricants. The last benefit that was presented was the scale up of 250 kW machine deployed in a European test facility. The presentation also discussed the advantages of developing tidal power at this time. It was concluded that tidal energy has significant potential. Although it is intermittent, it is predictable and bulk power system can be scheduled to accommodate it. figs

  8. Exploitation of tidal power in the Bay of Cadiz: ancient tidal mills

    Directory of Open Access Journals (Sweden)

    José J. Alonso del Rosario

    2006-03-01

    Full Text Available Tidal mills were the main industrial activity in the Bay of Cadiz for centuries. They were the last step in the production of salt and flour made by grinding grains. They were installed along the shallow channels, called “caños”, around the Bay, where the frictional and geometrical effects are very strong. The authors have analyzed the propagation of the semidiurnal tidal waves along the Caño de Sancti Petri and the available tidal power in the area. The ancient tidal mills were located where the available tidal potential energy is highest, which ensured productivity for grinding salt and wheat in ancient times. Some considerations about the possibility of installing tidal power plants in the Bay of Cadiz now are given, which show that it could be a real and renewal alternative source of energy for the area.

  9. Tidal power dams in the Bay of Fundy

    International Nuclear Information System (INIS)

    Walsun, W. van

    1998-01-01

    The challenges of harnessing tidal power and the construction of dams and tidal power plants in a tidal-ocean environment such as the Bay of Fundy in New Brunswick are discussed. In the 1966-1988 series of studies, three sites were chosen at the Bay of Fundy as being the most promising, namely (1) site B9 in Minas Basin at the entrance to Cobequid Bay, (2) site A8 at the narrow neck beyond the entrance to Cumberland Basin, and (3) site A6 at the entrance to Shepody Bay. All the sites are located at the head of the Bay of Fundy because that is where the maximum tidal ranges are found and a basin's tidal energy potential is proportional to the square of its tidal range. Site B9 was determined to have the greatest tidal power potential but no plant has ever been built because reports have stated that a solid conventional tidal power barrage at site B9 would increase the tidal range at Boston by as much as 30 cm. Rather than abandoning the site for this reason, an installation consisting of a series of piers from shore to shore with hydraulic turbines mounted in the spaces between piers, was suggested. A simple mathematical model has been developed for determining the operation of this tidal fence. The cost of energy, generated by the tidal fence at site B9 was also calculated. Further studies are suggested to determine the exact environmental effect of the tidal fence on the tidal regime. If environmental problems persist, machines with larger discharge capabilities could be considered to reduce the interference of the fence with natural tidal movements. 9 refs., 6 figs

  10. Ocean energy. Tide and tidal power

    Energy Technology Data Exchange (ETDEWEB)

    Finkl, Charles W. [Coastal Planning and Engineering, Inc., Boca Raton, FL (United States); Charlier, Roger H.

    2009-07-01

    Engineers' dreams and fossil energy replacement schemes can come true. Man has been tapping the energy of the sea to provide power for his industries for centuries. Tidal energy combined with that of waves and marine winds rank among those most successfully put the work. Large scale plants are capital intensive but smaller ones, particularly built in China, have proven profitable. Since the initiation of the St Malo project in France, similar projects have gone into active service where methods have been devised to cut down on costs, new types of turbines developed and cost competitiveness considerably improved. Tidal power has enormous potential. The book reviews recent progress in extracting power from the ocean, surveys the history of tidal power harnessing and updates a prior publication by the author. (orig.)

  11. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Speeds in Indonesia

    Science.gov (United States)

    Orhan, K.; Mayerle, R.

    2016-12-01

    A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.

  12. Turning the tide : tidal power in the UK

    OpenAIRE

    Sustainable Development Commission

    2007-01-01

    Contents: Turning the tide : tidal power in the UK -- Executive summary -- Tidal power in the UK : research report 1 : UK tidal resource assessment -- Tidal power in the UK : research report 2 : tidal technologies overview -- Tidal power in the UK : research report 3 : Severn barrage proposals -- Tidal power in the UK : research report 4 : Severn non-barrage options -- Tidal power in the UK : research report 5 : UK case studies. Summarised in the Welsh language version of the executive ...

  13. Tidal power development -- A realistic, justifiable and topical problem of today

    International Nuclear Information System (INIS)

    Bernshtein, L.B.

    1995-01-01

    Modern tidal power plant designs have shown that with the use of large single-basin schemes, tidal power can be integrated with other forms of power generation. Tidal power is an environmentally benign means of producing electricity, particularly during off-peak demand. A number of tidal power schemes have been evaluated. These include Cumberland (1.4 Gigawatts (GW)), Cobequid (4.4 GW) in Canada; Sevrn (8.6 GW), Mersey (0.7 GW), Wyre (0.06 GW) and Conwy (0.03 GW) in Great Britain; Tugur (6.8 GW) in Russia and Garolim (0.5 GW) in South Korea. These schemes ar opening up future prospects for very large scale opportunities which could have global importance, for example, the transmission of 24 GW of electricity from tidal power plants in Great Britain to Europe. Another example is the potential transmission of 87 GW from Penzhinsh tidal power plant in Russia

  14. Tidal power: trends and developments

    International Nuclear Information System (INIS)

    1992-01-01

    This volume covers works and studies on tidal power currently being undertaken, both nationally and internationally. The 20 papers included cover the proposed Mersey barrage, the Severn estuary and several papers on the Severn barrage. The Department of Energy's continued variety of generic work on tidal power and various overseas studies carried out by other experts are also detailed, giving the reader an up to date picture of developments in tidal power worldwide. Separate abstracts have been prepared for the individual papers. (author)

  15. Estimation of energy potential and power generation from tidal basin in coastal area of malaysia

    Directory of Open Access Journals (Sweden)

    Nazri Nazani

    2016-01-01

    Full Text Available This paper presents the potential of tidal energy in Malaysia. Malaysia is heavily depending on the fossil fuel to satisfy the energy demand. However, this reserve energy is reported will be depleted. The population growth also caused the demand on energy increase over the year. This situation can lead to the global warming and climate change that be a major concern around the world. As an alternative, renewable energy become a solution in order to reduce the usage of conventional energy such as fossil fuel, coal and gas. One of the renewable energy that can be used is from ocean energy. Since the tidal energy is not study thoroughly in Malaysia and Malaysia has a potential sites that can implement this tidal energy for electricity generation to meet the local demand. This tidal energy can be harnessed in several approach such as by using tidal barrage single basin with single mode generation consist ebb-mode and flood-mode of generation and the other approach of single mode is double-mode of generation. In order to meet the local demand, single-mode generation and double-mode generation was studied by getting the number of population at that area, the electricity demand then from that data the basin area is estimated for power generation. The result shows that double-mode generation is one of the approaches that meet the local demand for electricity.

  16. Preliminary investigation of the potential of harnessing tidal energy for electricity generation in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S.; Seng, L.Y. [Tunku Abdul Rahman Univ. (Malaysia). Dept. of Electrical and Electronic Engineering

    2008-07-01

    Malaysia relies heavily on fossil fuels to meet its energy demands. However, Malaysia has started to explore the use of other forms of renewable energy such as solar energy, biofuels and tidal power. This paper focused on the potential of harnessing tidal energy in Malaysia for electricity production. There are several sites with great potential for tidal energy conversion, which could supplement the energy needs of Malaysia while reducing greenhouse gas emissions. Illustrations were included to show the amplitude of the main harmonic component of the tidal range around Malaysia. The main harmonic component found in the region has a maximum amplitude of 1.4 m, confirming the potential of tidal energy in Malaysia's Ocean. Since the tidal cycle is highly predictable, it has the potential to be a very reliable renewable energy source. Two main approaches are being researched internationally to harness the energy from tides, notably the barrage approach and the tidal stream approach. For the barrage approach, a physical barrier is created within the sea, and a sluice gate controls the flow of sea water. In the tidal stream approach, horizontal axis turbines are placed in the path of tidal currents to generate electricity, similar to the operation of wind turbines. This paper described the flow velocity, power output, availability of power supply and monthly yield of turbines using both the barrage and tidal stream approaches. The study showed that for the barrage approach, there are 6 sites in Malaysia where 14,970 kWH of energy can be generated monthly with a single turbine with a 5 m long blade. The tidal stream approach showed equally promising results at 2 sites. It was concluded that tidal energy is a promising form of renewable energy because of its cyclic, reliable and predictable nature and the vast energy contained within it. According to United Kingdom Department of Trade and Industry, 10 per cent of the United Kingdom's electricity needs could be

  17. Tidal Power in the UK and Worldwide to Reduce Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    T. J. Hammons

    2011-05-01

    Full Text Available This paper discusses the role of Tidal Power in the UK in fulfilling the UK's requirements for reducing greenhouse gas emissions. Generating electricity from tidal range of the Severn Estuary has the potential to generate some 5% of UK electricity from a renewable indigenous resource. The paper focuses primarily on the proposed Severn Barrage considering potential benefits, conditions for sustainable development, energy policy context and compliance with environment legislation. UK tidal resource is reviewed: stream resource (that is KE contained in fast-flowing tidal currents, and tidal range resource (that refers to gravitation potential energy. The top tidal range and tidal stream sites in the UK with the resource (in TWh/year are indicated. A feasibility study for Tidal Range development in the Mersey Estuary is also summarised and other schemes including the Loughor Estuary (Wales, Duddon Estuary (located on the Cumbrian coast and the Thames Estuary proposals are reported. Also given is a strategic overview of the Severn Estuary resource, electric output and characteristics, carbon emissions (carbon payback and carbon reduction potential and physical implications of a barrage.

  18. Feasibility of tidal power development in the Bay of Fundy

    Energy Technology Data Exchange (ETDEWEB)

    1969-01-01

    A committee was formed to carry out technical studies on the feasibility of a tidal power plant in the Bay of Fundy. Basic information was collected on the physical, geological, climatic, and tidal characteristics of the area to determine areas for more intense investigation. Studies were conducted on the possible effects of the plant on navigation, ground transportation, fisheries, and area development. Electric power marketing and transmission were also examined, as well as the basic concepts for extracting tidal energy. A number of potential sites were examined, and the three most promising sites were selected for preliminary design and cost estimates. Computerized models were used at appropriate stages in order to evaluate various tidal power schemes. This report presents a summary of the committee's investigations. It was seen that a site at the entrance to Cobequid Bay would have an economic advantage over the other sites considered. From the results of the design studies, it was concluded that a long period of construction, plus extensive capital investment, would be required. However, the lowest unit cost of output was calculated at 5.6 mills/kWh, substantially above the incremental cost of energy available from existing sources. Under current economic conditions, the tidal power plant would not be feasible. 4 figs., 1 tab.

  19. The history of tidal power in France

    International Nuclear Information System (INIS)

    Banal, M.

    1997-01-01

    The first known use of tidal power in France concerns the tidal mills in general use during the Middle Age along the French coasts. The first research studies of tidal power plants started at the end of the first world war but it is only in 1940 with the stimulus of Robert Gibrat that was created the Research Society for the use of Tides and the Rance plant project. In 1946, Electricite de France (EdF) started again the studies of this company for a greater size project in the Chausey archipelago which was abandoned for the benefit of the Rance project in the 1960's. The start up of the plant took place in 1967 but the other projects were abandoned during the 1980's. This short paper recalls the historical aspects of the development of tidal power in France and focusses on the research and development studies and on the economical, political and legal factors that led to retain the Rance project among others proposed. (J.S.)

  20. Haida Gwaii / Queen Charlotte Islands demonstration tidal power plant feasibility study : summary results

    Energy Technology Data Exchange (ETDEWEB)

    Tu, A. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    Remote communities may benefit from using tidal energy in terms of reduced diesel fuel consumption and the associated greenhouse gas emissions. A study was conducted to assess the feasibility for a tidal demonstration project on the Haida Gwaii, Queen Charlotte Islands. Candidate communities were scanned for resource potential, load profile, infrastructure distribution and community interest. This presentation focused on choosing an appropriate site for a given tidal power technology. Three hotspots in Masset Sound were identified as well as one hotspot at Juskatla Narrows. Technology providers were solicited for information on unit performance, cost, and trials to date. The presentation noted that demonstration or future commercial deployment is limited by resource and by the ability of the grid to accommodate tidal power. The presentation concluded with next steps which include publishing the study. tabs., figs.

  1. Anticorrosion and halobios control for tidal power generating units

    International Nuclear Information System (INIS)

    Shen, J C; Ding, L X

    2012-01-01

    The anticorrosion and halobios control is the key techniquesrelated to the safety and durability of tidal power generating units. The technique of material application, antifouling coating and cathodic protection are often adopted. The technical research, application, updating and development are carried on Jiangxia Tidal Power Station, which is based on the old Unit 1-Unit 5 operated for nearly 30 years, and the new Unit 6 operated in 2007. It is found that stainless steeland the antifouling coating used in Unit 1- Unit 5 are very effective, but cathodic protection is often likely to fail because of the limitation of structure and installation. Analyses and studies for anticorrosion and halobios control techniques of tidal power generating units according to theory, experience and actual effects have been done, which can be for reference to the tidal power station designers and builders.

  2. NATURE OF WAVE PROCESSES AND THEIR INTERACTION WITH Tidal power PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ol'ga Aleksandrovna

    2012-07-01

    Full Text Available The author examines the nature of wave processes and their impact on the operation of tidal power plants. The article also has an overview of both operating and prospective tidal power plants in Russia and worldwide. Patterns of tidal fluctuations and the intensity of their driving forces are also considered in the article. The author discloses the origin of tides in terms of elementary physics and hydraulics. The author covers various aspects of formation of different types of inequality of tides caused by alterations in the mutual positions of the Sun and the Moon in relation to the Earth, variable declination of tide-generating luminaries (the Sun and the Moon in relation to the plane of the Earth equator, and variable distance between the luminaries and the Earth. The author analyzes wave-related phenomena, including refraction, diffraction and interference, their origin and influence onto the properties of waves. The author also covers the origin of advancing and standing waves, or waves of mixed origin, and the impact of the wind onto the characteristics of wave fluctuations. The author provides suggestions regarding potential methods of their control that can affect the essential concept of construction of tidal power plants.

  3. Prospects for Fundy tidal power

    International Nuclear Information System (INIS)

    Clark, R.H.

    1997-01-01

    The Bay of Fundy in Canada probably possesses the most favourable conditions in the world for the exploitation of tidal energy. The results of the comprehensive investigations carried out during the past quarter-century are reviewed together with operating and environmental aspects of the modest (20 MW) Annapolis Tidal Power Station, commissioned in 1984, the primary purpose of which was to evaluate the operation of a large (7.6 m) diameter Straflo turbine unit under low heads. The results of the operating and maintenance experience for the Annapolis Station are reviewed as well as the results of the environmental/ecological studies that have been on-going in the Annapolis Basin. The tidal power investigations have shown that a 1400 MW development at the mouth of the Cumberland Basin, at the head of the bay of Fundy, is technically and economically feasible and that its output would probably be competitive with fossil-fired plants, particularly if a 'green' accounting technique were applied to such energy sources. The importance of timing, if the exploitation of this non-polluting, renewable and completely predicable source is to be used to meet the future electrical energy needs of the maritime provinces, is discussed. (author)

  4. Tidal power - a major prospect for the 21st century

    International Nuclear Information System (INIS)

    Haws, E.T.

    1997-01-01

    Tidal power technology is reviewed and its prospects for the next century assessed. It is concluded that the technology is now in place and, given the political will to secure financing, tidal power offers a clean, renewable and sustainable source of power for the near future. (UK)

  5. Tidal Stream Generators, current state and potential opportunities for condition monitoring

    DEFF Research Database (Denmark)

    Kappatos, Vassilios; Georgoulas, George; Avdelidis, Nicolas

    2016-01-01

    Tidal power industry has made significant progress towards commercialization over the past decade. Significant investments from sector leaders, strong technical progress and positive media coverage have established the credibility of this specific renewable energy source. However, its progress...... is being retarded by operation and maintenance problems, which results in very low operational availability times, as low as 25 %. This paper presents a literature review of the current state of tidal device operators as well as some commercial tidal turbine condition monitoring solutions. Furthermore......, an overview is given of the global tidal activity status (tidal energy market size and geography), the key industry activity and the regulations-standards related with tidal energy industry. Therefore, the main goal of this paper is to provide a bird’s view of the current status of the tidal power industry...

  6. Environmental impact assessment of Kachchh tidal power project

    International Nuclear Information System (INIS)

    Yadav, Ramanand; Lal, B.B.

    1995-01-01

    The Kachchh tidal power development project is a single-basin, single -effect and ebb generation development by construction of a tidal power barrage of about 3.25 km length across Hansthal creek. The project may disturb the ecosystem of the region. The paper deals in detail the environmental impacts of the project on climate, water velocity, flow and sedimentation pattern, water quality, flora and fauna, fishery, tourism and recreation, wild life, public health and socio-economic conditions. (author). 4 refs., 1 fig., 2 tabs

  7. The internal flow pattern analysis of a tidal power turbine operating on bidirectional generation-pumping

    International Nuclear Information System (INIS)

    Luo, Y Y; Xiao, Y X; Wang, Z W

    2013-01-01

    Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit

  8. Electrical Power Conversion of River and Tidal Power Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-11-21

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  9. The Rance tidal power plant is thirty years old

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The 240 MW Rance tidal power plant is sited between Dinard and Saint-Malo (Brittany, France) and was inaugurated in November 26, 1966. Its availability reaches 90% and the plant has worked about 160000 hours without any major incident or failure. It has provided more than 16 TWh and it provides each year about 600 GWh to the national network. Because its functioning introduces some modifications of the natural tide conditions in the Rance estuary, EdF applies specific procedures to limit its environmental impact. The paper recalls the basic principles of the tidal power and the characteristics of the Rance plant which is the biggest in the world and which produces electric power during both the flood and the ebb. The economical aspects of the project are also described and replaced in their historical context. Other future projects of tidal plants in UK, Canada and Argentina are evoked. (J.S.)

  10. The influence of waves on the tidal kinetic energy resource at a tidal stream energy site

    International Nuclear Information System (INIS)

    Guillou, Nicolas; Chapalain, Georges; Neill, Simon P.

    2016-01-01

    Highlights: • We model the influence of waves on tidal kinetic energy in the Fromveur Strait. • Numerical results are compared with field data of waves and currents. • The introduction of waves improve predictions of tidal stream power during storm. • Mean spring tidal stream potential is reduced by 12% during extreme wave conditions. • Potential is reduced by 7.8% with waves forces and 5.3% with enhanced friction. - Abstract: Successful deployment of tidal energy converters relies on access to accurate and high resolution numerical assessments of available tidal stream power. However, since suitable tidal stream sites are located in relatively shallow waters of the continental shelf where tidal currents are enhanced, tidal energy converters may experience effects of wind-generated surface-gravity waves. Waves may thus influence tidal currents, and associated kinetic energy, through two non-linear processes: the interaction of wave and current bottom boundary layers, and the generation of wave-induced currents. Here, we develop a three-dimensional tidal circulation model coupled with a phase-averaged wave model to quantify the impact of the waves on the tidal kinetic energy resource of the Fromveur Strait (western Brittany) - a region that has been identified with strong potential for tidal array development. Numerical results are compared with in situ observations of wave parameters (significant wave height, peak period and mean wave direction) and current amplitude and direction 10 m above the seabed (the assumed technology hub height for this region). The introduction of waves is found to improve predictions of tidal stream power at 10 m above the seabed at the measurement site in the Strait, reducing kinetic energy by up to 9% during storm conditions. Synoptic effects of wave radiation stresses and enhanced bottom friction are more specifically identified at the scale of the Strait. Waves contribute to a slight increase in the spatial gradient of

  11. Tidal energy, a renewable energy within hand reach

    International Nuclear Information System (INIS)

    Danielo, O.

    2011-01-01

    Tide energy and oceanic current energy represent a strong potentiality for a few countries in the world including France. In the domain of tidal energy there are 2 strategies. The first one is based on the search for the lowest power production cost in order to contribute efficiently to the country's energy mix. Generally this strategy leads to the construction of tidal dams. The second strategy is based on the search for the lowest environmental impact. This strategy is economically competitive only in places where electrical power is expensive like isolated islands. This strategy is illustrated by the tidal power station of the Alderney island. In fact the amount of energy delivered by a tidal power station depends on the rise of the tide and on the surface of the dam. It appears that tidal dams require less surface that hydroelectric power plants. The energy of oceanic currents like Gulf Stream or the thermal energy of oceans or wave power are very little exploited now but represent a potentiality higher by several orders of magnitude than tidal energy. (A.C.)

  12. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  13. Tidal power plant energy estimation; Cuantificacion de energia de una planta mareomotriz

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Gonzalez, J.; Hiriart Le Bert, G.; Silva Casarin, R. [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico (mexico)]. E-mail: JlopezGo@iingen.unam.mx; gerardo367@yahoo.com.mx; RSilvaC@iingen.unam.mx

    2010-04-15

    In this paper a methodology is presented which allows a quick and simple means of estimating the potential energy that can be obtained from a tidal power plant. The evaluation is made using a normalised nomograph, which is a function of the area of the tidal basin against the electricity installed capacity to thus obtain the potential energy for any location. The results describe two means of operation, one of flow tide and the other flow-ebb tides, with two tidal basin systems operating: single and double reservoir systems. To obtain the normalised nomograph the numerical results for simulations of several tidal power plants under differing operational conditions over a period of one year. These conditions were established by varying the electricity installed capacity, the hydraulic conditions in flow tide, ebb tides or both and with single or double reservoir systems and using sea level information taken every 15 minutes. To validate the model information from the tidal power plant at Rance, France, was used, which includes data concerning production, electricity installed capacity, turbine characteristics and tidal ranges. A very good correlation was found between the results of the numerical model and those reported in various technical reports. [Spanish] Se presenta una metodologia que permite estimar de manera rapida y sencilla el potencial de energia que puede ser extraido a traves de una planta mareomotriz. La evaluacion se realiza utilizando un nomograma normalizado que es funcion del area del embalse versus la capacidad electrica instalada, para asi obtener el potencial energetico en una zona en particular. Los resultados contemplan dos formas de operacion, una llamada en flujo y otra en flujo-reflujo, dos esquemas de embalse (sencillo y doble embalse). Para la elaboracion del nomograma normalizado se utilizaron resultados numericos de la simulacion de multiples plantas mareomotrices bajo diferentes escenarios durante un ano de operacion. Los escenarios

  14. Environmental consequences of tidal power in a hyper-tidal muddy regime: the Severn estuary

    International Nuclear Information System (INIS)

    Kirby, R.

    1997-01-01

    Muddy hyper-tidal regimes, such as the Severn Estuary in the UK, are especially difficult for plants and animals. The difficulties stem from the semi-diurnal and semi-lunar energy fluctuations. On spring tides entrained fine sediment induces elevated suspended sediment concentrations such that photosynthesis is inhibited. On neap tides much of the entrained fine sediment is deposited on the sub-tidal bed over periods of several days to form ephemeral dense layers, which reach in excess of 100 G/l and rapidly become anaerobic on stagnation. Such occasional bed faunas as develop are characterised by very large numbers of immature individuals of a few species. One of the few organisms able to cope with the extreme conditions is the siliceous reef-building worn Sabellaria. Arising from the long term suppression in its calcareous fauna, erosion and winnowing of these Holocene clays fails to give rise to lag shell deposits, called chenier ridges, found elsewhere in eroding muddy inter-tidal systems. A tidal power barrage would shift the regime from hyper-tidal to macro-tidal decrease in turbidity would permit photosynthesis and phytoplankton growth, so stimulating the higher food chain. Ironically, perhaps, cleaning up the sewage discharges in the estuary, in the absence of barrage construction would lead to a wading bird crash whereas barrage construction would lead to an improved carrying capacity. (author)

  15. A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Yang, Zhaoqing

    2017-12-01

    Previous tidal energy projects in Puget Sound have focused on major deep channels such as Admiralty Inlet that have a larger power potential but pose greater technical challenges than minor tidal channels connecting to small sub-basins. This paper focuses on the possibility of extracting energy from minor tidal channels by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the study site and calibrated for tidal elevations and currents. We examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. The model suggests that with the proposed level of energy extraction, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.

  16. Wind, Wave, and Tidal Energy Without Power Conditioning

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  17. On effects produced by tidal power plants upon environmental conditions in adjacent sea areas

    International Nuclear Information System (INIS)

    Nekrasov, A.V.; Romanenkov, D.A.

    1997-01-01

    Consideration is given to the change in natural (oceanographic) environmental conditions due to the transformation of the tidal oscillations structure resulting from erection and operation of tidal power plants (TPP). The relevant transformation of tidal movements encompasses practically all its main characteristics: amplitudes, phases and spectral composition of sea level oscillations, as well as the similar parameters of tidal currents and also the intensity and positioning of extremes zones. The changes in positioning and width of the inter-tidal zone, the inter-tidal zone regime, mutual arrangement of mixed, stratified and transient frontal zones, transportation of suspended matter and bottom sedimentation, owing to residual tidal currents, sea ice characteristics, air these changes can be estimated on the basis of mathematical predictive modelling of tidal characteristics transformed by a contemplated tidal power plant. Some results are presented for the Russian large-scale TPP projects in the White and Okhotsk seas. (author)

  18. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  19. Assessment of Kinetic Tidal Energy Resources Using SELFE

    Directory of Open Access Journals (Sweden)

    Manasa Ranjan Behera

    2014-09-01

    Full Text Available An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s and suitable for Tidal Energy Converter (TEC array installation to generate sustainable energy, have been identified. Further, various operational factors for installation of Tidal Energy Converters are considered before computing the theoretical power output for a typical TEC array. An approximate estimation of the possible theoretical power extraction from a TEC array shows an energy potential of up to 4.36% of the total energy demand of Singapore in 2011. Thus, the study suggests a detailed investigation of potential sites to quantify the total tidal stream energy potential in the Singapore Strait.

  20. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-09-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  1. Large tidal plants may supply 1,000 TWh / year

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2006-10-01

    Many studies of tidal plants have been made fifty years ago: they were usually devoted to sites with average tidal head over 6 m and reduced works at sea: estuaries such as La Rance (France) or Severn (U.K.) were favoured: preferred corresponding operation was using flow from a high basin to low sea level, supplying power 4 hours from 12. Such solutions had 2 drawbacks: power supply poorly adapted to needs and modified shore tidal ecosystems. Beyond that the power cost was usually higher than from thermal plants and very few plants were built, the main one being the Rance plant in France supplying 0,5 TWh/year with 240 MW. The world theoretical tidal potential is in the same range as the traditional hydropower potential. A new approach of tidal plants based upon solutions existing now and using new operating methods substantiates the possibility of over 1,000 TWh/year of cost efficient tidal energy with limited environmental impact and power supply well adapted to requirements. Over 15 countries may be involved. Tidal plants with heads as low as 4 m may be cost efficient. (author)

  2. 77 FR 58370 - Pennamaquan Tidal Power LLC; Notice of Intent To File License Application, Filing of Pre...

    Science.gov (United States)

    2012-09-20

    ... Tidal Power LLC; Notice of Intent To File License Application, Filing of Pre-Application Document (PAD... Filed: July 19, 2012. d. Submitted By: Pennamaquan Tidal Power LLC (Pennamaquan Power). e. Name of Project: Pennamaquan Tidal Power Plant Project. f. Location: On the Pennamaquan River at the entrance to...

  3. Potential of Tidal Plants and Offshore Energy Storage in India

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2008-01-01

    After a discussion of the future needs of electric power in India, the author discusses the perspectives offered by different possible sources of electric energy in this country: coal, hydro, nuclear, wind, solar. These two last ones seem very promising. In order to solve the intermittency problem raised by wind and solar energy, the author discusses and assesses the needs, potentials and costs of energy storage. Then, he evokes the opportunities and possible sites for the development of tidal energy, proposes a schedule of investments for energy

  4. Complementary Power Control for Doubly Fed Induction Generator-Based Tidal Stream Turbine Generation Plants

    Directory of Open Access Journals (Sweden)

    Khaoula Ghefiri

    2017-06-01

    Full Text Available The latest forecasts on the upcoming effects of climate change are leading to a change in the worldwide power production model, with governments promoting clean and renewable energies, as is the case of tidal energy. Nevertheless, it is still necessary to improve the efficiency and lower the costs of the involved processes in order to achieve a Levelized Cost of Energy (LCoE that allows these devices to be commercially competitive. In this context, this paper presents a novel complementary control strategy aimed to maximize the output power of a Tidal Stream Turbine (TST composed of a hydrodynamic turbine, a Doubly-Fed Induction Generator (DFIG and a back-to-back power converter. In particular, a global control scheme that supervises the switching between the two operation modes is developed and implemented. When the tidal speed is low enough, the plant operates in variable speed mode, where the system is regulated so that the turbo-generator module works in maximum power extraction mode for each given tidal velocity. For this purpose, the proposed back-to-back converter makes use of the field-oriented control in both the rotor side and grid side converters, so that a maximum power point tracking-based rotational speed control is applied in the Rotor Side Converter (RSC to obtain the maximum power output. Analogously, when the system operates in power limitation mode, a pitch angle control is used to limit the power captured in the case of high tidal speeds. Both control schemes are then coordinated within a novel complementary control strategy. The results show an excellent performance of the system, affording maximum power extraction regardless of the tidal stream input.

  5. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  6. 75 FR 78236 - Pennamaquan Tidal Power, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-12-15

    ... Tidal Power, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications December 8, 2010. On November 22, 2010, Pennamaquan Tidal... Act (FPA), proposing to study the feasibility of the Pennamaquan Tidal Power Plant Project to be...

  7. Women's tidal power plant Forty candles for Kislaya Guba TPP

    Energy Technology Data Exchange (ETDEWEB)

    Chaineux, Marie-Claire [IDRECS, Brussels (Belgium); Charlier, Roger H. [Vrije Universiteit Brussel, Brussels (Belgium)

    2008-12-15

    Tidal energy has been used for centuries. Tidal current and rise and fall of tides were both put to work. They provided power for flour mills, saw mills, breweries, etc. Tide mills dotted several regions of Europe from The Netherlands to Spain and from Wales to England. Immigrants brought the technique to the 'New World' to the United States and Canada. But they could not withstand the development of more efficient power production and faded away. Though some subsisted well into the 20th century, most of those still in existence offer mainly a tourist interest. However, they may well be considered the forerunners of the power-generating tidal power stations. These are not numerous - except mini plants in China - but with the price of oil soaring a renewed interest as developed. Of all existing stations, the Kislaya Guba station has not the largest; but the only one completely built by women, and it celebrates this year its 40th birthday. (author)

  8. Tidal Power Potential in the Submerged Channels of Dar es

    African Journals Online (AJOL)

    on the tidal plateau, shallow water area on the sand banks and in the submerged channels, using self—recording .... in a Cartesian frame where iz is directed towards the vertical, ix points ..... Bongoyo, there is a 15 m deep channel that passes.

  9. 75 FR 59256 - Eastport Tidal Power LLC; Notice of Competing Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2010-09-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13830-000] Eastport Tidal... Comments and Motions To Intervene September 17, 2010. On August 9, 2010, Eastport Tidal Power LLC filed an... study the feasibility of the Half Moon Cove Tidal Power Plant Project to be located in Half Moon Cove...

  10. Power Production and Economical Feasibility of Tideng Tidal Stream Power Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Frigaard, Peter; Kofoed, Jens Peter

    This report is a product of the contract between Aalborg University and TIDENG (by Bent Hilleke) on the evaluation and development of the TIDENG Tidal Energy Conversion System (TECS). The work has focused on the evaluation of the yearly power production of the device and its economical feasibility...

  11. Strategies for the Use of Tidal Stream Currents for Power Generation

    Science.gov (United States)

    Orhan, Kadir; Mayerle, Roberto

    2015-04-01

    Indonesia is one of the priority countries in Southeast Asia for the development of ocean renewable energy facilities and The National Energy Council intends to increase the role of ocean energy significantly in the energy mix for 2010-2050. To this end, the joint German-Indonesian project "Ocean Renewable Energy ORE-12" aims at the identification of marine environments in the Indonesian Archipelago, which are suitable for the efficient generation of electric power by converter facilities. This study, within the ORE-12 project, is focused on the tidal stream currents on the straits between the Indian Ocean and Flores Sea to estimate the energy potentials and to develop strategies for producing renewable energy. FLOW module of Delft3D has been used to run hydrodynamic models for site assessment and design development. In site assessment phase, 2D models have been operated for a-month long periods and with a resolution of 500 m. Later on, in design development phase, detailed 3D models have been developed and operated for three-month long periods and with a resolution of 50 m. Bathymetric data for models have been obtained from the GEBCO_08 Grid and wind data from the Global Forecast System of NOAA's National Climatic Data Center. To set the boundary conditions of models, tidal forcing with 11 harmonic constituents was supplied from TPXO Indian Ocean Atlas (1/12° regional model) and data from HYCOM+NCODA Global 1/12° Analysis have been used to determine salinity and temperature on open boundaries. After the field survey is complete, water level time-series supplied from a tidal gauge located in the domain of interest (8° 20΄ 9.7" S, 122° 54΄ 51.9" E) have been used to verify the models and then energy potentials of the straits have been estimated. As a next step, correspondence between model outputs and measurements taken by the radar system of TerraSAR-X satellite (DLR) will be analysed. Also for the assessment of environmental impacts caused by tidal stream

  12. The environmental aspects of a tidal power project in the upper reaches of the Bay Fundy

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, D.C.; Longhurst, A.R.

    1979-02-01

    A recommendation for pre-investment design studies for a tidal power development in the Cumberland Basin region of the Bay of Fundy has been made by the Bay of Fundy Tidal Power Review Board and is backed by Canadian provincial and federal governments. A brief history of regional tidal power proposals is presented, and procedures for determining the environmental impacts of the project are outlined. Possible environmental consequences of tidal power development can be hypothesized, but the existing environmental data base is sparse. Investigations are presently being expanded by university and governmental scientists, and specific impact assessment studies will be commissioned if the project is authorized to proceed. (1 map, 11 references)

  13. Characterising the spatial variability of the tidal stream energy resource from floating turbines

    Science.gov (United States)

    Ward, Sophie; Neill, Simon; Robins, Peter

    2017-04-01

    The shelf seas, in particular the northwest European shelf seas surrounding the UK, contain significant tidal power potential. Tidal stream energy is both predictable and reliable providing that sites are well-selected based upon the hydrodynamic regime and the device specifics. In this high resolution three-dimensional tidal modelling study, we investigate how the tidal stream resource around the Welsh coast (UK) varies with water depth and location, with particular focus on the Pembrokeshire region. The potential extractable energy for a floating tidal stream energy converter is compared with that for a bottom-fixed device, highlighting the need to vary the resource characterisation criteria based on device specifics. We demonstrate how small variations in the tidal current speeds - with hub depth or due to tidal asymmetry - can lead to substantial variations in potential power output. Further, the results indicate that power generation from floating tidal energy converters will be more significantly influenced by tidal elevations in regions characterised by a lower tidal range (more progressive waves) than regions that experience a high tidal range (standing waves). As numerical modelling capacity improves and tidal stream energy converter technologies develop, ongoing improved quantification of the tidal resource is needed, as well as consideration of the possible feedbacks of the devices and energy extraction on the hydrodynamic regime and the surrounding area.

  14. Lightweight steel tidal power barrages with minimal environmental impact: application to the Severn Barrage

    Science.gov (United States)

    Rainey, R. C. T.

    2018-01-01

    For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr-1), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.

  15. Lightweight steel tidal power barrages with minimal environmental impact: application to the Severn Barrage.

    Science.gov (United States)

    Rainey, R C T

    2018-01-01

    For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr -1 ), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.

  16. Tidal power from the River Mersey

    International Nuclear Information System (INIS)

    1991-01-01

    The studies described in this report relate to work carried out since those reported upon in the stage I Mersey Barrage Report on the possible construction of a tidal power barrage on the Mersey Estuary. The objectives of the work were to review basic engineering, re-assess cost and energy output, improve engineering configuration, quantify social, industrial and regional effects, determine preferred alignment, review the main environmental impacts, assess economic viability and financing and identify further study requirements. (UK)

  17. Understanding the potential risk to marine mammals from collision with tidal turbines

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea; Grear, Molly; Jepsen, Richard; Chartrand, Chris; Gorton, Alicia

    2017-09-01

    The advent of the marine renewable energy industry has raised questions, particularly for tidal turbines, about potential threats to populations of marine mammals. This research examines the sequence of behavioral events that lead up to a potential collision of a marine mammal with a tidal turbine, within the context of the physical environment, the attributes of the tidal device, and the biomechanical properties of a marine mammal that may resist injury from a tidal blade collision. There are currently no data available to determine the risk of collision to a marine mammal, and obtaining those data would be extremely difficult. The surrogate data examined in this research (likelihood of a marine mammal being in close proximity to a tidal turbine, biomechanics of marine mammal tissues, and engineering models) provide insight into the interaction.

  18. The distribution and tapping tidal energy

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2004-09-01

    Full Text Available Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the construction of small, efficient and inexpensive underwater turbines admit the possibility of small scale operations that will use local tidal currents to bring electricity to remote locations. Since the generation of such electricity is concerned with the tidal energy in local water bodies, it is important to understand the site-specific energy balance, i.e., the energy flowing in through open boundaries, and the energy generated and dissipated within the local domain. The question is how to tap the tidal energy while keeping possible changes in the present tidal regimes to a minimum. The older approach of constructing barrages may still be quite useful in some locations. The basics of such tidal power plants constructed in a small bay are analyzed in order to understand the principal parameter for tidal plant evaluation, i.e., the power produced.     The new approach is to place turbines - devices similar to windmills - in the pathway of tidal currents. Theoretically, the amount of power available by such turbines for electricity generation is proportional to the water density and velocity cubed of the tidal flow. The naturally dissipated tidal power due to bottom friction forces is also proportional to the cube of the velocity. Because of this similarity, the exploitation of tidal energy can be directed to reinvesting the naturally dissipated power into tidal power for the generation of electricity. This approach to tidal power exploitation is better tuned

  19. Tidal Energy System for On-Shore Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for

  20. Tidal Turbines’ Layout in a Stream with Asymmetry and Misalignment

    Directory of Open Access Journals (Sweden)

    Nicolas Guillou

    2017-11-01

    Full Text Available A refined assessment of tidal currents variability is a prerequisite for successful turbine deployment in the marine environment. However, the numerical evaluation of the tidal kinetic energy resource relies, most of the time, on integrated parameters, such as the averaged or maximum stream powers. Predictions from a high resolution three-dimensional model are exploited here to characterize the asymmetry and misalignment between the flood and ebb tidal currents in the “Raz de Sein”, a strait off western Brittany (France with strong potential for array development. A series of parameters is considered to assess resource variability and refine the cartography of local potential tidal stream energy sites. The strait is characterized by strong tidal flow divergence with currents’ asymmetry liable to vary output power by 60% over a tidal cycle. Pronounced misalignments over 20 ∘ are furthermore identified in a great part of energetic locations, and this may account for a deficit of the monthly averaged extractable energy by more than 12%. As sea space is limited for turbines, it is finally suggested to aggregate flood and ebb-dominant stream powers on both parts of the strait to output energy with reduced asymmetry.

  1. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  2. Assessment of Energy Production Potential from Tidal Streams in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin A. [Georgia Inst. of Technology, Savannah, GA (United States); Fritz, Hermann M. [Georgia Inst. of Technology, Savannah, GA (United States); French, Steven P. [Georgia Inst. of Technology, Atlanta, GA (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Neary, Vincent [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  3. Renewable Energy Potentials along the Bay of Bengal due to Tidal Water Level Variation

    Directory of Open Access Journals (Sweden)

    Ahmad Myisha

    2018-01-01

    Full Text Available The projected increase in energy demand coupled with concerns regarding present reliance on fossil fuel and associated environmental concerns had led to increased interest in exploiting renewable energy sources. Among different renewable energy sources, tidal energy is unique and most suitable because of its predictable nature and capability to ensure supply security. Tide consists of both kinetic and potential energy which can be converted to electricity using well-proven technology. The potential energy of tides - the principal focus of the study, is stored due to rise and fall of the sea level. Head difference created due to tidal variation between basin side and sea side of a barrage stores potential energy which is converted into fast-moving water that rotates turbine and generates electricity. Bangladesh with its long coastline has promising prospects of tidal energy resource development. The study focuses on tidal energy resource exploration and exploitation along several competent locations of the Bengal coastline. Tidal records of flood and ebb tide of these locations are analyzed to calculate the potential energy. Finally, available potential techniques of energy extraction are evaluated for annually generated energy estimation. This study investigates the prospect and utilization of tidal energy concept and reviews the possibilities and opportunities of employment of the technology for sustainable development and climate change mitigation in context of Bangladesh.

  4. Tidal energy, a renewable energy within hand reach; Les marees, une energie renouvelable a portee de lune

    Energy Technology Data Exchange (ETDEWEB)

    Danielo, O.

    2011-06-15

    Tide energy and oceanic current energy represent a strong potentiality for a few countries in the world including France. In the domain of tidal energy there are 2 strategies. The first one is based on the search for the lowest power production cost in order to contribute efficiently to the country's energy mix. Generally this strategy leads to the construction of tidal dams. The second strategy is based on the search for the lowest environmental impact. This strategy is economically competitive only in places where electrical power is expensive like isolated islands. This strategy is illustrated by the tidal power station of the Alderney island. In fact the amount of energy delivered by a tidal power station depends on the rise of the tide and on the surface of the dam. It appears that tidal dams require less surface that hydroelectric power plants. The energy of oceanic currents like Gulf Stream or the thermal energy of oceans or wave power are very little exploited now but represent a potentiality higher by several orders of magnitude than tidal energy. (A.C.)

  5. Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics

    International Nuclear Information System (INIS)

    Obara, Shin’ya; Kawai, Masahito; Kawae, Osamu; Morizane, Yuta

    2013-01-01

    Highlights: ► The characteristics of a microgrid composed of SOFCs and tidal power generators were investigated. ► The CO 2 emissions of this microgrid were calculated based on an oceanographic investigation. ► The frequency and wave form quality of the electric power system were investigated. ► The voltage regulation and reactive power control of the electric power system need to be improved. -- Abstract: The development of local energy systems is important to curtailing global warming and improving public safety. Therefore, in this work, the basic performance of an independent microgrid consisting of tidal power generators, photovoltaics, fuel cells, and heat pumps to locally produce energy for local consumption was analyzed. Fast tidal currents near inlets that join lakes to the sea were converted into electrical energy via a three-phase synchronized generator connected to Darius water turbines. On the basis of the results of an oceanographic survey, the production of electricity and the CO 2 emissions of each generator were calculated using balanced equations for electricity and heat. The calculations indicated that 33% of the CO 2 emissions were associated with the energy supplied through conventional methods during the summer season. Although the frequency and waveform of the electricity of the microgrid were high quality, improvement in the voltage regulation was still required.

  6. Tidal power: will it bring 40 years of virtually free power, or is it still no more than a dream

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C

    1978-04-01

    First proposed in Canada in 1919, the use of tidal power to generate electricity remains a well-studied but unproved option. The Cumberland Basin has been recommended for research and engineering studies as a possible site. A single-effect system is preferred over a double-effect system for the Bay of Fundy area because of construction costs. Although major problems arise because the lunar cycle and solar cycles do not coincide, tidal power could provide utility base loads. No significant dampening of the tidal effect was seen to be caused by a dam across open water, but other complications remain to be solved. System stability, the effect of dredging and sedimentation, social and ecological impacts will be examined in the next phase of assessment. A coalition of conservationists will monitor the environmental study. (DCK)

  7. Counter rotating type hydroelectric unit suitable for tidal power station

    International Nuclear Information System (INIS)

    Kanemoto, T; Suzuki, T

    2010-01-01

    The counter rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures,was proposed to utilize effectively the tidal power. In the unit, the front and the rear runners counter drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the flow direction at the front runner inlet, because the angular momentum through the rear runner must coincides with that through the front runner. That is, the flow runs in the axial direction at the rear runner outlet while the axial inflow at the front runner inlet. Such operations are suitable for working at the seashore with rising and falling tidal flows, and the unit may be able to take place of the traditional bulb type turbines. The tandem runners were operated at the on-cam conditions, in keeping the induced frequency constant. The output and the hydraulic efficiency are affected by the adjustment of the front and the blade setting angles. The both optimum angles giving the maximum output and/or efficiency were presented at the various discharges/heads. To promote more the tidal power generation by this type unit, the runners were also modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable while the output is determined mainly by the trailing edge profiles of the runner blades.

  8. Assessment of tidal range energy resources based on flux conservation in Jiantiao Bay, China

    Science.gov (United States)

    Du, Min; Wu, He; Yu, Huaming; Lv, Ting; Li, Jiangyu; Yu, Yujun

    2017-12-01

    La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.

  9. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    Science.gov (United States)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  10. Impact of the tidal power dam in the Rance estuary: geomorphological changes, hydrosedimentary processes and reconstructions plans

    Science.gov (United States)

    Susperregui, A.

    2010-12-01

    The Rance basin (France) offers potential to make a full-scale assessment of the environmental impact of a tidal power station after 50 years of operation. Consequences on biology, hydrodynamics and sedimentology were observed and nowadays, some of these changes are still acting on the natural system. The tidal dynamic was completely artificialised by the dam construction. The two main consequences are the reduction of exundation area and the extension of slack duration. Sedimentary dynamic depending on hydrodynamics conditions, changes in sediment distribution were also observed. Before the tidal power station construction, sands lined the gravel bed channel, recovered the bottom and formed beaches and banks. Coves and the upstream part of the estuary were dominated by a fine sedimentation, forming mudflats in a classical configuration slikke/schorre. Nowadays, mudflats extended to the center of the basin and all coves are occupied. The important inertia induced by the slack extension caused a slowing down on currents velocities, making easier the fine suspension deposit. The siltation is most important upstream, were the turbidity maximum was shifted, generating problems for navigation and banks access. A solution of sediment management was envisaged from 2001, by the digging of a sediments trap of 91 000 m3, near the Châtelier Lock. Sedimentation monitoring in this trap shows an intense filling over the first two years of functioning, then a slowing down leading to a complete filling from 2005. This trap also showed a beneficial interest on the sedimentation rates of the mudflats closed to it, which decreased. To understand how fine sediment is eroded and transported into this maritime area, an optical backscatter sensor was installed 1.5 km upstream of the tidal power station. During spring tides, the tidal power station functions in a “double-acting” cycle. This particular working leads to an important increase of turbidity during the artificial tidal

  11. An assessment of tidal energy potential. The Lima estuary

    Energy Technology Data Exchange (ETDEWEB)

    Trigo-Teixeira, A. [Department of Civil Engineering and Architecture, Instituto Superior Tecnico, Lisbon Technical University, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Rebordao, I. [WW Consulting Engineers, Laveiras, Caxias 2760-032 (Portugal)

    2009-07-01

    A hydrodynamic model was set up for the Lima estuary (Portugal) and a preliminary assessment of the strength of tidal currents to produce tidal energy was made. To calibrate the model results were compared with measured data, and the model tuned to reproduce water levels and currents in several locations within the estuary. The data was acquired with ADCPs, during a field campaign that was planed to cover a spring-neap tide cycle, in October 2006. The Advanced Circulation Model - ADCIRC was forced with the most important harmonic constituents present in the ocean tide signal. Upstream, in the river boundary, the discharge was taken from hydrographs. The wetting and drying tool was also applied and a detailed bathymetry was considered, since there are areas in the domain where salt marshes occur, drying out at low tide. The tidal currents potential were assessed for a scenario of tidal forcing only, without any river discharge. The lower estuary is occupied by the port infrastructure and navigation channels which conflicts with any kind of equipment installation. Values of the currents and water depths given by the model indicate that some places in the main channel of the middle estuary, might be interesting to install micro turbines in the future, depending on the evolution of the requirements of this technology.

  12. Estimating effects of tidal power projects and climate change on threatened and endangered marine species and their food web.

    Science.gov (United States)

    Busch, D Shallin; Greene, Correigh M; Good, Thomas P

    2013-12-01

    Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria. © 2013 Society for Conservation Biology No claim to original US government works.

  13. Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils.

    Science.gov (United States)

    Li, Hui; Lu, Jun; Li, Qu-Sheng; He, Bao-Yan; Mei, Xiu-Qin; Yu, Dan-Ping; Xu, Zhi-Min; Guo, Shi-Hong; Chen, Hui-Jun

    2016-02-01

    Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p soil depths (p toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.

  14. The Tidal Power Station on the Rance | Gabre - Amlak | Zede Journal

    African Journals Online (AJOL)

    The Tidal Power Station on the Rance. A Gabre - Amlak. Abstract. No Abstract. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for ...

  15. Energy supply technologies. Hydro, ocean, wave and tidal

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.; Larsen, Hans [Risoe National Lab. - DTU (Denmark)

    2007-11-15

    This chapter presents an overview of current hydro, ocean, wave and tidal initiatives. Large hydro remains one of the lowest-cost generating technologies, although environmental constraints, resettlement impacts and the limited availability of sites have restricted further growth in many countries. Large hydro supplied 16 % of global electricity in 2004, down from 19 % a decade ago. Large hydro capacity totalled about 720 GW worldwide in 2004 and has grown historically at slightly more than 2 % annually. China installed nearly 8 GW of large hydro in 2004, taking the country to number one in terms of installed capacity (74 GW). With the completion of the Three Gorges Dam, China will add some 18.2 GW of hydro capacity in 2009. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic cost of hydro includes displacements and submergence. Further hydro can improve peak-capacity management. Ocean currents, some of which runs close to European coasts, carry a lot of kinetic energy. Part of this energy can be captured by sub-marine windmills and converted into electricity. These are more compact than the wind turbines used on land, simply because water is much denser than air. The main European countries with useful current power potential are France and the UK. Ocean tides are driven by the gravitational pull of the moon. With one high tide every 12 hours, a tidal power plant can operate for only four or five hours per cycle, so power from a single plant is intermittent. A suitably-designed tidal plant can, however, operate as a pimped storage system, using electricity during periods of low demand to store energy that can be recovered later. The only large, modern example of a tidal power plant is the 240 MW La Rance plant, built in France in the 1960s, which represents 91 % of the world tidal power capacity. Wave energy can be seen as

  16. Assessment of tidal circulation and tidal current asymmetry in the Iroise sea with specific emphasis on characterization of tidal energy resources around the Ushant Island.

    Science.gov (United States)

    Thiébaut, Maxime; Sentchev, Alexei

    2015-04-01

    We use the current velocity time series recorded by High Frequency Radars (HFR) to study circulation in highly energetic tidal basin - the Iroise sea. We focus on the analysis of tidal current pattern around the Ushant Island which is a promising site of tidal energy. The analysis reveals surface current speeds reaching 4 m/s in the North of Ushant Island and in the Fromveur Strait. In these regions 1 m/s is exceeded 60% of time and up to 70% of time in center of Fromveur. This velocity value is particularly interesting because it represents the cut-in-speed of the most of marine turbine devices. Tidal current asymmetry is not always considered in tidal energy site selection. However, this quantity plays an important role in the quantification of hydrokinetic resources. Current velocity times series recorded by HFR highlights the existence of a pronounced asymmetry in current magnitude between the flood and ebb tide ranging from -0.5 to more 2.5. Power output of free-stream devices depends to velocity cubed. Thus a small current asymmetry can generate a significant power output asymmetry. Spatial distribution of asymmetry coefficient shows persistent pattern and fine scale structure which were quantified with high degree of accuracy. The particular asymmetry evolution on both side of Fromveur strait is related to the spatial distribution of the phase lag of the principal semi-diurnal tidal constituent M2 and its higher order harmonics. In Fromveur, the asymmetry is reinforced due to the high velocity magnitude of the sixth-diurnal tidal harmonics. HF radar provides surface velocity speed, however the quantification of hydrokinetic resources has to take into account the decreasing of velocity with depth. In order to highlight this phenomenon, we plot several velocity profiles given by an ADCP which was installed in the HFR study area during the same period. The mean velocity in the water column calculated by using the ADCP data show that it is about 80% of the

  17. Tidal dissipation in the subsurface ocean of Enceladus

    Science.gov (United States)

    Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.

    2017-12-01

    Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power

  18. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    Science.gov (United States)

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with massesplanet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.

  19. The development and application practice of neglected tidal energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li-qun; Liu, Chun-xia; Sun, Zhi-yi; Han, Ru-cheng [Department of Electronic and Information, Taiyuan University of Science and Technology, 030024 Taiyuan, Shanxi Province (China)

    2011-02-15

    Along the eastcoasts of China are large bodies of water, China has abundant ocean energy resource, such as the theory reserves of tidal resource is about 0.2 billion kW, as early as 1958, Jizhou tidal power station is the first tidal power station in China, which built in Shunde, Guangdong province, and more than 40 small tidal power stations are built in east coastal region in 1960s, and the total installed capacity is about 0.5 MW. But it is a pity, the application and development of tidal energy has not been regarded by the government and ordinary people due to the investment of power plant is big and the technology is not mature, so there are only several small tidal power stations in China, and Jiangxia tidal power station with an installed capacity of 3.2 MW is the most famous. Fortunately, with the rapid development of Chinese economic and society, the renewable and sustainable energy have been regarded by Chinese government, and the application and development of wind energy and solar energy is increasing in an incredible speed, and more and more specialists began to regard the application of tidal energy, and they thought that tidal energy can relieve the energy stress of east coastal region, and many layout of tidal energy exploitation is unfold in recently. This paper discusses the distribution zone and current developmental situation of tidal energy in China. Then, some application practice is described, such as tidal power station and tidal stream turbine. The policies and law of China central government and local governments are described in the following paragraph. At the end, the developmental prospect of tidal energy in future China and the development barriers and recommendations are introduced, respectively. (author)

  20. Tidal locking of habitable exoplanets

    Science.gov (United States)

    Barnes, Rory

    2017-12-01

    Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can produce an elongated shape. Frictional forces inside the planet prevent the bulges from aligning perfectly with the host star and result in torques that alter the planet's rotational angular momentum. Eventually the tidal torques fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Although these features of tidal theory are well known, a systematic survey of the rotational evolution of potentially habitable exoplanets using classic equilibrium tide theories has not been undertaken. I calculate how habitable planets evolve under two commonly used models and find, for example, that one model predicts that the Earth's rotation rate would have synchronized after 4.5 Gyr if its initial rotation period was 3 days, it had no satellites, and it always maintained the modern Earth's tidal properties. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. For fast-rotating planets, both models predict eccentricity growth and that circularization can only occur once the rotational frequency is similar to the orbital frequency. The orbits of potentially habitable planets of very late M dwarfs ([InlineEquation not available: see fulltext.]) are very likely to be circularized within 1 Gyr, and hence, those planets will be synchronous rotators. Proxima b is almost assuredly tidally locked, but its orbit may not have circularized yet, so the planet could be rotating super-synchronously today. The evolution of the isolated and potentially habitable Kepler planet candidates is computed and about half could be tidally locked. Finally, projected TESS planets

  1. Utilization of tidal power in Russia in overcoming the global energy and ecological crisis

    International Nuclear Information System (INIS)

    Bernshtein, L.B.; Usachev, I.N.

    1997-01-01

    The 30 years of the exploitation of the TPP Rance in France and Kyslogubskaya TPP in Russia had proved the energy expedience economical and ecological effectiveness and a high performance of the tidal energy. The possibility of such utilizing could be proved thanks to the application of the theoretical cycles of Gibrat, of the bulb units and the russian model of the tidal utilizing and application of the floating methods of creating the TPP. The investigations at TPP Kislaya Guba helped to solve the row of problems of marine power building with the high exploitation performance and ecological safety. Thus the TPP of Mezen with a capacity of 17 million kW can transfer to the united power system of Europe 50 TWh/year and the Tugur TPP with a capacity 8 million kW can produce 20 TWh/year of energy for the power system of seaside of Russian and Japan. Penzinskaya TPP with the capacity of 87 million kW can be promoted in 21. century in connection to the advanced in USA proposition of construction of the combining transport-power tunnel across the Bering Strait. (authors)

  2. Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    Science.gov (United States)

    Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S.; Kasting, James F.; Heller, René

    2013-01-01

    Abstract Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with massestidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone

  3. Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yun Seng; Koh, Siong Lee [Department of Physical Science, Electrical and Electronic Engineering, Tunku Abdul Rahman University (Malaysia)

    2010-05-15

    Malaysia is heavily dependent on fossil fuel for electricity generation. With the rapidly diminishing of its fuel reserve and the increasingly negative effects of fossil fuels to the environment, the government has begun to utilise bio-fuel and solar radiation for electricity generation. However, the potential of harnessing other renewable sources, particular ocean energy, in Malaysia has not been fully realised. Therefore, studies were carried out to identify the potential of harnessing ocean energy for electricity generation. The Princeton Ocean Model was used to create a three-dimensional numerical ocean model for Malaysia which was calibrated against measurement by a means of adjoint data assimilation approach. A set of reliable tidal speed and tidal elevation data was therefore generated to determine the types of tides available in Malaysia, the potential areas of installing marine current turbines (MCTs), the total amount of electricity to be generated by MCT, the economical viability and the environmental benefits of using MCT in Malaysia. This paper presents the findings on the studies, encompassing the technical, economical and environmental aspects of installing MCT in Malaysia. The results are critical to policy makers and the potential investors on tidal energy in Malaysia for decision making. It may also help the neighboring countries to realize the possible potential of their ocean energy for electricity generation. (author)

  4. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  5. An optimal tuning strategy for tidal turbines

    Science.gov (United States)

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  6. An optimal tuning strategy for tidal turbines.

    Science.gov (United States)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  7. Hourly and daily variation of sediment redox potential in tidal wetland sediments

    Science.gov (United States)

    Catallo, W. James

    1999-01-01

    Variation of electrochemical oxidation-reduction (redox) potential was examined in surface salt march sediments under conditions of flooding and tidal simulation in mesocosms and field sites. Time series were generated of redox potential measured in sediment profiles at 2-10 cm depth using combination Pt-Ag/AgCl (ORP) electrodes. Redox potential data were acquired at rapid rates (1-55 samples/h) over extended periods (3-104 days) along with similar times series of temperature (water, air, soil) and pH. It was found that redox potential vaired as a result of water level changes and was unrelated to diurnal changes in temperature or pH, the latter of which changed by 370 mV redox potential decrease in under 48 hours). Attenuatoin of microbial activity by [gamma] y-radiation and toxic chemicals elimintated this response. In tidal salt marsh mesocosms where the sediment-plant assemblages were exposed to a simulated diurnal tide, redox potenial oscillations of 40-300 mV amplitude were recoded that has the same periodicity as the flood-drain cycle. Periodic redoc potential time series were observed repeatedly in sediments receiving tidal pulsing but not in those sediments exposed to static hydrological conditions. Data collected over 12 days from a coastal marsh site experiencing diurnal tides showed similar fluctuations in redox potential. Data from the experimentents indicated that (a) redox potential can be a dynamic, nonlinear variable in coastal and estuarine wetland sediments over hourly and daily scales, and the designs of biogeochemical experiments should reflect this, (b) redox potential can change rapidly and signigicantly in coastal wetland sediments in response of flooding and draining, (c) microbial community processes are primarily determinants of the time course of redox potential in wetland sediments, and elimination of inhibition of microbial activity (e.g. by pollutants) can significantly alter that behavior, and (d) fast redox potential dynamics appear

  8. Turbine Siting Metrics for Simulated Tidal Flow in a Double-Silled Channel

    Science.gov (United States)

    Thyng, K. M.; Kawase, M.; Riley, J. J.; Northwest National Marine Renewable Energy Center

    2010-12-01

    An important component of site and resource characterization for marine renewable energy projects is to identify areas with large potential resource but also with easy extractability of the available resource for commercial develop- ment. Metrics that characterize potential resource include mean kinetic power density and speed over a tidal cycle, while important metrics for extractability include measures of the bidirectionality of the tidal flow (asymmetry, directional deviation, and power bias of ebb versus flood tide) as well as percentage of time spent by the device producing power at the particular site. This study examines the character of a tidal flow over an idealized two- dimensional (x-z) double sill in a rectangular channel in terms of these resource characterization metrics. This domain is meant to capture the bulk features of Admiralty Inlet, the main entrance to the Puget Sound, a fjord-like estuary in western Washington State. Admiralty Inlet is an area of interest for build- ing a commercial-scale tidal turbine array, and is currently the location of two potential pilot-scale tidal hydrokinetic projects. Initial results point to the speed up of the incoming flow due to the shallowest sill as an area of strong resource. The presence of the deeper sill affects the character of this strong resource in a way that the metrics can help quantify in terms of extractability of the resource and vertical structure. Together, these metrics will give a clear understanding of the tidal turbine siting characteristics of the domain. In the case of the idealized double sill simulation, the mean speed is increased by a factor of more than 2 over the mean incoming speed at the entrance of the channel due to the shallower, more prominent sill, while the deeper sill sees a multiplication factor of close to 1.5. This is a modest increase in mean speed, but translates to a multiplication factor of over 8 from the nominal far field value near the shallow sill in the mean

  9. Potential applications for Flettner rotors and Turbosails in tidal stream turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Oreada reports on its studies of two novel lifting devices, namely Flettner Rotors and Turbosails, for application in powering tidal stream generators. Through computer modelling, the power generated by the lift devices has been compared with that of a conventional hydrofoil. The mathematical model assumes the base-case configuration for the turbine to be four parallel lift devices at a constant radius from the centre of the turbine and simulates a vertical axis turbine. Adjacent lift devices subtend an angle of ninety degrees at the centre of the turbine. The theoretical study indicated that the planned second part of the project involving bench tests should not go ahead. The study was largely funded by the DTI.

  10. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, Monty [ORPC Alaska, LLC, Anchorage, AK (United States)

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the

  11. Half Moon Cove Tidal Project. Feasibility report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  12. ENHANCED OFF-CENTER STELLAR TIDAL DISRUPTIONS BY SUPERMASSIVE BLACK HOLES IN MERGING GALAXIES

    International Nuclear Information System (INIS)

    Liu, F. K.; Chen, Xian

    2013-01-01

    Off-center stellar tidal disruption flares have been suggested to be a powerful probe of recoiling supermassive black holes (SMBHs) out of galactic centers due to anisotropic gravitational wave radiations. However, off-center tidal flares can also be produced by SMBHs in merging galaxies. In this paper, we computed the tidal flare rates by dual SMBHs in two merging galaxies before the SMBHs become self-gravitationally bounded. We employ an analytical model to calculate the tidal loss-cone feeding rates for both SMBHs, taking into account two-body relaxation of stars, tidal perturbations by the companion galaxy, and chaotic stellar orbits in triaxial gravitational potential. We show that for typical SMBHs with masses 10 7 M ☉ , the loss-cone feeding rates are enhanced by mergers up to Γ ∼ 10 –2 yr –1 , about two orders of magnitude higher than those by single SMBHs in isolated galaxies and about four orders of magnitude higher than those by recoiling SMBHs. The enhancements are mainly due to tidal perturbations by the companion galaxy. We suggest that off-center tidal flares are overwhelmed by those from merging galaxies, making the identification of recoiling SMBHs challenging. Based on the calculated rates, we estimate the relative contributions of tidal flare events by single, binary, and dual SMBH systems during cosmic time. Our calculations show that the off-center tidal disruption flares by un-bound SMBHs in merging galaxies contribute a fraction comparable to that by single SMBHs in isolated galaxies. We conclude that off-center tidal disruptions are powerful tracers of the merging history of galaxies and SMBHs.

  13. Atmospheric noise of a breaking tidal bore.

    Science.gov (United States)

    Chanson, Hubert

    2016-01-01

    A tidal bore is a surge of waters propagating upstream in an estuary as the tidal flow turns to rising and the flood tide propagates into a funnel-shaped system. Large tidal bores have a marked breaking roller. The sounds generated by breaking tidal bores were herein investigated in the field (Qiantang River) and in laboratory. The sound pressure record showed two dominant periods, with some similarity with an earlier study [Chanson (2009). J. Acoust. Soc. Am. 125(6), 3561-3568]. The two distinct phases were the incoming tidal bore when the sound amplitude increased with the approaching bore, and the passage of the tidal bore in front of the microphone when loud and powerful noises were heard. The dominant frequency ranged from 57 to 131 Hz in the Qiantang River bore. A comparison between laboratory and prototype tidal bores illustrated both common features and differences. The low pitch sound of the breaking bore had a dominant frequency close to the collective oscillations of bubble clouds, which could be modeled with a bubble cloud model using a transverse dimension of the bore roller. The findings suggest that this model might be over simplistic in the case of a powerful breaking bore, like that of the Qiantang River.

  14. High-resolution modeling assessment of tidal stream resource in Western Passage of Maine, USA

    Science.gov (United States)

    Yang, Zhaoqing; Wang, Taiping; Feng, Xi; Xue, Huijie; Kilcher, Levi

    2017-04-01

    Although significant efforts have been taken to assess the maximum potential of tidal stream energy at system-wide scale, accurate assessment of tidal stream energy resource at project design scale requires detailed hydrodynamic simulations using high-resolution three-dimensional (3-D) numerical models. Extended model validation against high quality measured data is essential to minimize the uncertainties of the resource assessment. Western Passage in the State of Maine in U.S. has been identified as one of the top ranking sites for tidal stream energy development in U.S. coastal waters, based on a number of criteria including tidal power density, market value and transmission distance. This study presents an on-going modeling effort for simulating the tidal hydrodynamics in Western Passage using the 3-D unstructured-grid Finite Volume Community Ocean Model (FVCOM). The model domain covers a large region including the entire the Bay of Fundy with grid resolution varies from 20 m in the Western Passage to approximately 1000 m along the open boundary near the mouth of Bay of Fundy. Preliminary model validation was conducted using existing NOAA measurements within the model domain. Spatial distributions of tidal power density were calculated and extractable tidal energy was estimated using a tidal turbine module embedded in FVCOM under different tidal farm scenarios. Additional field measurements to characterize resource and support model validation were discussed. This study provides an example of high resolution resource assessment based on the guidance recommended by the International Electrotechnical Commission Technical Specification.

  15. Turbine Control of a Tidal and River Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. The input variations to these types of resources are slower but also steadier than wind or solar generation. The level of water turbulent flow may vary from one place to another, however, the control algorithm can be adjusted to local environment. This paper describes the hydrokinetic aspects of river and tidal generation based on a river and tidal generator. Although the information given in this paper is not that of an exact generator deployed on site, the data used is representative of a typical river or tidal generator. In this paper, the hydrokinetic and associated electrical controller of the system were not included; however, the focus of this paper is on the hydrodynamic control.

  16. The Power Coefficient in the Theory of Energy Extraction from Tidal Channels

    Science.gov (United States)

    Cummins, P. F.

    2014-12-01

    The maximum average power available from a fence of turbines deployed in a tidal channel is given by the simple formula, Ρ=γρgaQmax, where ρga is the amplitude of pressure difference across ends of the channel, Qmax is the maximum volume flux through the channel in the undisturbed state (i.e., before turbines are deployed), and γ is a numerical coefficient. The latter depends only weakly on the underlying dynamical balance of the channel. This is shown to be consequence of quadratic drag and changes to the natural impedance of the channel as deployment of turbines impedes the flow. Additionally, it is shown that the power coefficient γ is relatively insensitive to the form of the turbine drag.

  17. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  18. Tidal flow separation at protruding beach nourishments

    NARCIS (Netherlands)

    Radermacher, M.; de Schipper, M.A.; Swinkels, Cilia M.; MacMahan, Jamie; Reniers, A.J.H.M.

    2016-01-01

    In recent years, the application of large-scale beach nourishments has been discussed, with the Sand Motor in the Netherlands as the first real-world example. Such protruding beach nourishments have an impact on tidal currents, potentially leading to tidal flow separation and the generation of tidal

  19. Virtual Seafloor Reduces Internal Wave Generation by Tidal Flow

    Science.gov (United States)

    Zhang, Likun; Swinney, Harry L.

    2014-03-01

    Our numerical simulations of tidal flow of a stratified fluid over periodic knife-edge ridges and random topography reveal that the time-averaged tidal energy converted into internal gravity wave radiation arises only from the section of a ridge above a virtual seafloor. The average radiated power is approximated by the power predicted by linear theory if the height of the ridge is measured relative to the virtual floor. The concept of a virtual floor can extend the applicability of linear theory to global predictions of the conversion of tidal energy into internal wave energy in the oceans.

  20. Tidal Current Energy Resource Assessment Around Buton Island, Southeast Sulawesi, Indonesia

    OpenAIRE

    Ribal, Agustinus; Amir, Amir Kamal; Toaha, Syamsuddin; Kusuma, Jeffry; Khaeruddin

    2017-01-01

    International Journal bereputasi An early stage of assessing tidal current energy resources is carried out in this present work. Tidal current power is estimated around Buton Island, Southeast Sulawesi province, Indonesia. Two-dimensional, depth-integrated of Advanced Circulation (ADCIRC) model has been used to simulate tidal elevation and barotropic tidal current around the island. Green???s function approach has been used to improve eight tidal constituents on the open boundary condition...

  1. Monitoring Tidal Currents with a Towed ADCP System

    Science.gov (United States)

    2015-12-22

    dynamical properties of the upper ocean. Geophys Res Abstr 16. EGU2014- 13078, EGU General Assembly Barth A, Alvera-Azcárate A, Beckers J-M, Weisberg...energy conversion in a future energy generation mix is under evaluation in different countries (e.g., Weisberg et al. 2012; Quirapas et al. 2015). In...vehicle. It is well established now that, at pilot sites, the power generating potential of the tidal stream is characterized by significant

  2. A Framework for Optimizing the Placement of Tidal Turbines

    Science.gov (United States)

    Nelson, K. S.; Roberts, J.; Jones, C.; James, S. C.

    2013-12-01

    Power generation with marine hydrokinetic (MHK) current energy converters (CECs), often in the form of underwater turbines, is receiving growing global interest. Because of reasonable investment, maintenance, reliability, and environmental friendliness, this technology can contribute to national (and global) energy markets and is worthy of research investment. Furthermore, in remote areas, small-scale MHK energy from river, tidal, or ocean currents can provide a local power supply. However, little is known about the potential environmental effects of CEC operation in coastal embayments, estuaries, or rivers, or of the cumulative impacts of these devices on aquatic ecosystems over years or decades of operation. There is an urgent need for practical, accessible tools and peer-reviewed publications to help industry and regulators evaluate environmental impacts and mitigation measures, while establishing best sitting and design practices. Sandia National Laboratories (SNL) and Sea Engineering, Inc. (SEI) have investigated the potential environmental impacts and performance of individual tidal energy converters (TECs) in Cobscook Bay, ME; TECs are a subset of CECs that are specifically deployed in tidal channels. Cobscook Bay is the first deployment location of Ocean Renewable Power Company's (ORPC) TidGenTM unit. One unit is currently in place with four more to follow. Together, SNL and SEI built a coarse-grid, regional-scale model that included Cobscook Bay and all other landward embayments using the modeling platform SNL-EFDC. Within SNL-EFDC tidal turbines are represented using a unique set of momentum extraction, turbulence generation, and turbulence dissipation equations at TEC locations. The global model was then coupled to a local-scale model that was centered on the proposed TEC deployment locations. An optimization frame work was developed that used the refined model to determine optimal device placement locations that maximized array performance. Within the

  3. Tidal mixing in Dahej creek waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Mixing characteristics of a tidal inlet near Dahej at the mouth of Narmada River, Gujarat, India are examined in terms of tides, currents and bathymetry. The dilution potential of the Dahej Creek waters during a tidal march for a given rate...

  4. Tidal energy conversion. Renewable energy; 3-3 choseki / choryu hatsuden. II. saisei kano energy ni yoru hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    Makino, T. [Tobishima Corp., Tokyo (Japan)

    1998-10-15

    There are not much examples applying tidal energy conversion, but tide and tidal current phenomena can be forecasted so correctly regardless of weather that the applying tidal energy is to be expected in the future. The largest tidal power plant is at Reims in France and install 24 Kaplan turbines each of which outlet power is 10,000kW (rotational direction is reversible) on the breakwater (750m is length). Tidal range at this place being 8.5m on an average, during the period of flowing seawater into the reservoir and on the contrary during the period of discharging seawater to the sea generation is both performed. Though there is no actual result of tidal power plant in Japan, in tidal current power system experimental generators have been installed at Kurushima channel and Naruto channel. Nihon University carried out various kinds of experiment using a Darius turbine (1.6m in dia.) at Kurushima channel and got outlet power of 3kW at the maximum (1983-`88). There are few coasts which have sufficient tide range in Japan, but there are so good many applicable coasts in China and Southeast Asia that the tidal power generation is to be expectatively. 12 refs., 5 figs., 1 tab.

  5. Fundamental investigations for a OWC-tidal power plant with a conventional hydraulic turbine; Basisuntersuchungen fuer ein OWC-Wellenenergiekraftwerk mit konventioneller Hydroturbine. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Graw, K.U.; Lengricht, J.; Schimmels, S.

    2001-07-01

    At the present the OWC-tidal power plant is the most forward-looking way of converting tidal energy into usable electric power. Current research works focus on the dimensions of the structures in terms of occurring loads, the minimisation of hydraulic losses and the development of new turbine-generator types. The development of all air-turbine systems, which have been investigated so far, is considered as problematic and the commercialisation is likely to be a hindrance. Based on international research results an inventory tata of available hydraulic turbines is supposed to be gathered and fundamental investigations are supposed to check, if the application of conventional hydraulic turbines are an energetic progress in the OWC-tidal power plant. In order to considerably increase the efficiency compared to current developments, small-scale investigations at a physical model are supposed to show if and how a hydraulic turbine can be realised in a OWC-tidal power plant and how a concept of flow rectification as well as a flow-optimised form of inflow and outflow chambers can be achieved. (orig.) [German] Das OWC-Wellenenergiekraftwerk ist der zur Zeit zukunftstraechtigste Typ zur Umwandlung von Wellenenergie in nutzbaren Strom. Die laufenden Forschungsarbeiten beschaeftigen sich insbesondere mit der Dimensionierung der Strukturen hinsichtlich auftretender Belastungen, der Minimierung der hydraulischen Verluste und der Entwicklung von neuartigen Turbinen-Generatoren-Typen. Die Entwicklung aller bisher untersuchten Luftturbinensysteme wird jedoch als problematisch und die Kommerzialisierung hindernd angesehen. Aufbauend auf den internationalen Forschungsergebnissen sollen eine Bestandaufnahme der verfuegbaren Hydroturbinen durchgefuehrt und mit Baisuntersuchungen geprueft werden, ob ein Einsatz konventionaller Hydroturbinen im OWC-Wellenenergiekraftwerk eine energetische Weiterentwicklung darstellen kann. Um den Wirkungsgrad gegenueber derzeitigen Entwicklungen

  6. Measuring the environmental costs of tidal power plant construction: A choice experiment study

    International Nuclear Information System (INIS)

    Lee, Joo-Suk; Yoo, Seung-Hoon

    2009-01-01

    Korea is considering the construction of a tidal power plant (TPP) at Garolim Bay. However, as the construction of the Garolim TPP (GTPP) is expected to entail some environmental damage, it has become an increasingly important topic for public debate. Using a choice experiment (CE) approach, this study attempts to measure the economic cost that results from the environmental damage caused by the construction of GTPP. The CE is used to measure the environmental costs of individual attributes, including the reduction in the area of the tidal flat, the degradation of seawater quality, and the destruction of marine life. The results indicate that the annual willingness to pay (WTP) per household for mitigating the environmental damage that results from the worst-possible situation in relation to the present situation is about 96,042 Korean won (USD 101.1) in the seven biggest cities (off-site regions) and 18,584 Korean won (USD 19.6) in Seosan and Taean (on-site regions). This study is expected to provide policy-makers with quantitative information that will be useful to decide whether or not GTPP should be constructed.

  7. The prediction of the hydrodynamic performance of tidal current turbines

    International Nuclear Information System (INIS)

    Xiao, B Y; Zhou, L J; Xiao, Y X; Wang, Z W

    2013-01-01

    Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future

  8. Resource Assessment of Tidal Current Energy in Hangzhou Bay Based on Long Term Measurement

    Science.gov (United States)

    Zhang, Feng; Dai, Chun-Ni; Xu, Xue-Feng; Wang, Chuan-Kun; Ye, Qin

    2017-05-01

    Compared with other marine renewable energy, tidal current energy benefits a lot in high energy density and good predictability. Based on the measured tidal current data in Hangzhou Bay from Nov 2012 to Oct 2012, this paper analysed temporal and spatial changes of tidal current energy in the site. It is the first time measured data of such long time been taken in tidal current energy analysis. Occurrence frequency and duration of the current of different speed are given out in the paper. According to the analysis results, monthly average power density changed a lot in different month, and installation orientation of tidal current turbine significantly affected energy acquisition. Finally, the annual average power density of tidal current energy with coefficient Cp in the site was calculated, and final output of a tidal current plant was also estimated.

  9. Tidal energy UK Government R and D programme. Final report

    International Nuclear Information System (INIS)

    Craig, J.W.; Davies, L.M.; Allington, M.A.

    1996-05-01

    The United Kingdom Government's research programme into the feasibility of exploiting tidal power for electricity generation in Britain's estuaries is described in this document. The history of the research is included from the Severn Barrage Committee in 1978 to the conclusion of the tidal energy barrages programme in 1994. The programme sought to reduce uncertainty on costs, technical performance and environmental and regional effects, in order to firm up on decisions on whether to construct certain specific barrages. It was concluded that, while technically feasible, tidal power from barrages, was and will continue to be uneconomic compared with other energy sources. Other renewable technologies would receive further research. (UK)

  10. Bay of Fundy tidal energy : a response to the strategic environmental assessment

    International Nuclear Information System (INIS)

    2008-06-01

    Tidal in-stream energy conversion is an emerging technology to harness sea power. These energy conversion devices are similar to underwater windmills. The government of Nova Scotia is interested in understanding the potential effects of these devices on the Bay of Fundy. As a result, it commissioned a strategic environmental assessment (SEA) that was completed in the spring of 2008. This document presented a response to the SEA. It discussed Nova Scotia's specific approach to tidal energy as well as the province's broader approach to marine renewable energy in the Bay of Fundy, with specific responses to each recommendation in the SEA. The energy context was presented, with particular reference to energy strategy; emissions; legal requirements; production costs; and carbon costs. The report also discussed tidal lagoon technology as well as a demonstration facility called the Fundy Tidal Energy Centre. The objectives of the SEA were also described and recommendations were presented. Recommendations were grouped under several key themes such as sustainability principles; allowing the demonstration of tidal in-stream energy conversion (TISEC) technologies; marine renewable energy legislation; research program; Mi'kmaq ecological knowledge study; provincial standard for ecological data; Bay of Fundy socioeconomic background study; marine renewable energy demonstration program; siting demonstration projects; and environmental assessment of the demonstration facility. figs

  11. Optimization Study of Shaft Tubular Turbine in a Bidirectional Tidal Power Station

    Directory of Open Access Journals (Sweden)

    Xinfeng Ge

    2013-01-01

    Full Text Available The shaft tubular turbine is a form of tidal power station which can provide bidirectional power. Efficiency is an important turbine performance indicator. To study the influence of runner design parameters on efficiency, a complete 3D flow-channel model of a shaft tubular turbine was developed, which contains the turbine runner, guide vanes, and flow passage and was integrated with hybrid grids calculated by steady-state calculation methods. Three aspects of the core component (turbine runner were optimized by numerical simulation. All the results were then verified by experiments. It was shown that curved-edge blades are much better than straight-edge blades; the optimal blade twist angle is 7°, and the optimal distance between the runner and the blades is 0.75–1.25 times the diameter of the runner. Moreover, the numerical simulation results matched the experimental data very well, which also verified the correctness of the optimal results.

  12. Investigating the Trade-Off Between Power Generation and Environmental Impact of Tidal-Turbine Arrays Using Array Layout Optimisation and Habitat Sustainability Modelling.

    Science.gov (United States)

    du Feu, R. J.; Funke, S. W.; Kramer, S. C.; Hill, J.; Piggott, M. D.

    2016-12-01

    The installation of tidal turbines into the ocean will inevitably affect the environment around them. However, due to the relative infancy of this sector the extent and severity of such effects is unknown. The layout of an array of turbines is an important factor in determining not only the array's final yield but also how it will influence regional hydrodynamics. This in turn could affect, for example, sediment transportation or habitat suitability. The two potentially competing objectives of extracting energy from the tidal current, and of limiting any environmental impact consequent to influencing that current, are investigated here. This relationship is posed as a multi-objective optimisation problem. OpenTidalFarm, an array layout optimisation tool, and MaxEnt, habitat sustainability modelling software, are used to evaluate scenarios off the coast of the UK. MaxEnt is used to estimate the likelihood of finding a species in a given location based upon environmental input data and presence data of the species. Environmental features which are known to impact habitat, specifically those affected by the presence of an array, such as bed shear stress, are chosen as inputs. MaxEnt then uses a maximum-entropy modelling approach to estimate population distribution across the modelled area. OpenTidalFarm is used to maximise the power generated by an array, or multiple arrays, through adjusting the position and number of turbines within them. It uses a 2D shallow water model with turbine arrays represented as adjustable friction fields. It has the capability to also optimise for user created functionals that can be expressed mathematically. This work uses two functionals; power extracted by the array, and the suitability of habitat as predicted by MaxEnt. A gradient-based local optimisation is used to adjust the array layout at each iteration. This work presents arrays that are optimised for both yield and the viability of habitat for chosen species. In each scenario

  13. The effects of tidal range on saltmarsh morphology

    Science.gov (United States)

    Goodwin, Guillaume; Mudd, Simon

    2017-04-01

    Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.

  14. Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress

    Directory of Open Access Journals (Sweden)

    Philip A. Gillibrand

    2016-10-01

    Full Text Available We apply a three-dimensional hydrodynamic model to consider the potential effects of energy extraction by an array of tidal turbines on the ambient near-bed velocity field and local bed shear stress in a coastal channel with strong tidal currents. Local bed shear stress plays a key role in local sediment dynamics. The model solves the Reynold-averaged Navier-Stokes (RANS equations on an unstructured mesh using mixed finite element and finite volume techniques. Tidal turbines are represented through an additional form drag in the momentum balance equation, with the thrust imparted and power generated by the turbines being velocity dependent with appropriate cut-in and cut-out velocities. Arrays of 1, 4 and 57 tidal turbines, each of 1.5 MW capacity, were simulated. Effects due to a single turbine and an array of four turbines were negligible. The main effect of the array of 57 turbines was to cause a shift in position of the jet through the tidal channel, as the flow was diverted around the tidal array. The net effect of this shift was to increase near-bed velocities and bed shear stress along the northern perimeter of the array by up to 0.8 m·s−1 and 5 Pa respectively. Within the array and directly downstream, near-bed velocities and bed shear stress were reduced by similar amounts. Changes of this magnitude have the potential to modify the known sand and shell banks in the region. Continued monitoring of the sediment distributions in the region will provide a valuable dataset on the impacts of tidal energy extraction on local sediment dynamics. Finally, the mean power generated per turbine is shown to decrease as the turbine array increased in size.

  15. Comprehensive Characterization a Tidal Energy Site (Invited)

    Science.gov (United States)

    Polagye, B. L.; Thomson, J. M.; Bassett, C. S.; Epler, J.; Northwest National Marine Renewable Energy Center

    2010-12-01

    Northern Admiralty Inlet, Puget Sound, Washington is the proposed location of a pilot tidal energy project. Site-specific characterization of the physical and biological environment is required for device engineering and environmental analysis. However, the deep water and strong currents which make the site attractive for tidal energy development also pose unique challenges to collecting comprehensive information. This talk focuses on efforts to optimally site hydrokinetic turbines and estimate their acoustic impact, based on 18 months of field data collected to date. Additional characterization efforts being undertaken by the University of Washington branch of the Northwest National Marine Renewable Energy Center and its partners include marine mammal presence and behavior, water quality, seabed geology, and biofouling potential. Because kinetic power density varies with the cube of horizontal current velocity, an accurate map of spatial current variations is required to optimally site hydrokinetic turbines. Acoustic Doppler profilers deployed on the seabed show operationally meaningful variations in flow characteristics (e.g., power density, directionality, vertical shear) and tidal harmonic constituents over length scales of less than 100m. This is, in part, attributed to the proximity of this site to a headland. Because of these variations, interpolation between stationary measurement locations introduces potentially high uncertainty. The use of shipboard acoustic Doppler profilers is shown to be an effective tool for mapping peak currents and, combined with information from seabed profilers, may be able to resolve power density variations in the project area. Because noise levels from operating turbines are expected to exceed regulatory thresholds for incidental harassment of marine mammals known to be present in the project area, an estimate of the acoustic footprint is required to permit the pilot project. This requires site-specific descriptions of pre

  16. Tidal conversion by a knife-edge

    Science.gov (United States)

    Llewellyn Smith, S. G.; Young, W. R.

    2003-04-01

    We obtain an analytic solution for the generation of internal gravity waves by tidal flow past a vertical barrier of height b in a uniformly stratified ocean of depth h>b and buoyancy frequency N. If b/h is small and N is constant, the radiated power (watts per metre of barrier) is (pi/4) ρ_0 b^2 U^2 N sqrt{1-(f/ω)^2} where ρ_0 is the mean density of seawater, U \\cos (ω t) the incident tidal velocity, and f the Coriolis frequency. The radiated power increases rapidly with b/h; as b/h to 1 the radiated power diverges as ln[(h-b)/b]. By solving an integral equation numerically, we calculate the conversion in a realistically stratified ocean in which the buoyancy frequency increases by a factor of fifty between the abyss and the thermocline. The radiated power is greater by a factor of about three than that of a uniformly stratified ocean with N equal to the vertically averaged buoyancy frequency.

  17. The commercial prospects for tidal stream power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The prospects for obtaining energy from tidal currents were examined in 1993 when it was concluded that, although the UK resource is large, the unit cost of energy would be relatively high. Interest has continued, however, and in December 2000 the Energy Technology Support Unit (ETSU), on behalf of the Department of Trade and Industry (DTI), commissioned Binnie Black and Veatch (BBV) to re-examine these prospects from a commercial point of view. (author)

  18. Carbon sequestration by Australian tidal marshes

    KAUST Repository

    Macreadie, Peter I.

    2017-03-10

    Australia\\'s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia\\'s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia\\'s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  19. Tidally Heated Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  20. Tidal Friction in the Earth and Ocean

    Science.gov (United States)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work

  1. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Bruce Albert [Aleutian Pribilof Islands Association, Inc., Anchorage, AK (United States)

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data

  2. An innovative and very promising use of tidal turbines. Tidal turbines can produce twenty per cent of the French electricity. An economic solution can produce 500 GW of tide energy. An innovative use of tidal turbines can produce 10 per cent of the World energy

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2013-01-01

    A set of articles outlines and describes the opportunities of energy production associated with the use of tidal turbines. Such a technological principle is very efficient in terms of costs but very few natural sea or river sites present favourable conditions, notably in terms of current speed. A first article addresses the peculiarities of sea tide energy, presents the different concepts and components of a sea tide power plant (tanks or basins, plants), describes the present use of tidal turbines, proposes a new solution (the 'Marelienne'), describes and assesses the integration into the grid and the energy storage, evokes the production gain obtained by pumping and the association with wind turbines, describes the construction mode, discusses the various impacts (visual impact, impacts on the environment, direct and indirect socio-economic impacts), discusses issues related to navigation, presents an example of production, costs and impacts (case of the Bay of Somme), evokes other potential areas in France (about the Chausey island and about the Re island), discusses the world potential, evokes other examples in Europe, in Asia, in America, Africa and Australia), indicates the global cost for the main sites, outlines technical and economic uncertainties. The same aspects and issues can be found in the other articles which outline that tidal turbines can produce twenty per cent of the French electricity, that an economic solution can produce 500 GW of tide energy, and that an innovative use of tidal turbines can produce 10 per cent of the World energy

  3. Tidal regimes and salt marshes - the River Hamble analogue

    International Nuclear Information System (INIS)

    Gray, A.J.; Moy, I.L.; Warman, E.A.; Dawson, F.H.; Henville, P.

    1993-01-01

    Construction of estuarine tidal-energy barrages has a potentially major effect on the tidal regime of the estuary, particularly upstream of a barrage. Because tidal regime largely controls the distribution and species composition of intertidal plant and animal communities, it is important to understand how barrages may affect such communities. The main objectives of the research described in this report were to relate recent changes in tidal regime within an embanked area of salt marsh and mudflat to changes in the distribution of plant species. This was to test predictions about tidal control of species' range and to assess the site's suitability as an analogue of post-barrage conditions. (author)

  4. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig W

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy's Wind and Hydropower Technologies Program's goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and

  5. Prehospital tidal volume influences hospital tidal volume: A cohort study.

    Science.gov (United States)

    Stoltze, Andrew J; Wong, Terrence S; Harland, Karisa K; Ahmed, Azeemuddin; Fuller, Brian M; Mohr, Nicholas M

    2015-06-01

    The purposes of the study are to describe current practice of ventilation in a modern air medical system and to measure the association of ventilation strategy with subsequent ventilator care and acute respiratory distress syndrome (ARDS). Retrospective observational cohort study of intubated adult patients (n = 235) transported by a university-affiliated air medical transport service to a 711-bed tertiary academic center between July 2011 and May 2013. Low tidal volume ventilation was defined as tidal volumes less than or equal to 8 mL/kg predicted body weight. Multivariable regression was used to measure the association between prehospital tidal volume, hospital ventilation strategy, and ARDS. Most patients (57%) were ventilated solely with bag valve ventilation during transport. Mean tidal volume of mechanically ventilated patients was 8.6 mL/kg predicted body weight (SD, 0.2 mL/kg). Low tidal volume ventilation was used in 13% of patients. Patients receiving low tidal volume ventilation during air medical transport were more likely to receive low tidal volume ventilation in the emergency department (P tidal volume (P = .840). Low tidal volume ventilation was rare during air medical transport. Air transport ventilation strategy influenced subsequent ventilation but was not associated with ARDS. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Assessment of Kinetic Tidal Energy Resources Using SELFE

    OpenAIRE

    Manasa Ranjan Behera; Pavel Tkalich

    2014-01-01

    An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE) model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s) and suitable fo...

  7. 78 FR 44557 - Turnagain Arm Tidal Energy Corporation; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2013-07-24

    ... Tidal Energy Corporation; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On February 1, 2013, the Turnagain Arm Tidal... Federal Power Act (FPA), proposing to study the feasibility of the Turnagain Arm Tidal Electric Generation...

  8. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    International Nuclear Information System (INIS)

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.

  9. CFD for wind and tidal offshore turbines

    CERN Document Server

    Montlaur, Adeline

    2015-01-01

    The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

  10. Think global, act local—a power generation case study

    Science.gov (United States)

    Dugdale, Pam

    2012-01-01

    This paper describes an exercise completed by sixth form college students to compare the power output from a local coal fired power station with the potential power output from renewable sources including wind farms, solar farms, and the proposed Mersey Tidal Barrage scheme.

  11. On the sedimentation problems in water abstraction channels at power plant sites at tidal estuaries

    International Nuclear Information System (INIS)

    Jensen, J.; Arns, A.; Frank, T.; Meiswinkel, R.; Richei, A.

    2010-01-01

    The required cooling water supply of a nuclear power plant the required flow deepness in the water abstraction channels has to be provided. Since the abstraction channels are usually in main stream orientation of the river periodic sedimentation occur, that have to be removed by dredging techniques. Especially in tidal estuaries the complex flow situation induces transport mechanisms that have to be studied in order to develop cost saving and effective measures and procedures to reduce the sedimentation and pollutants deposition. The authors recommend experimental determinations of the sold material transport and numerical hydrodynamic transport modeling to identify the transport pathways.

  12. Facies architecture of heterolithic tidal deposits : The Holocene Holland Tidal Basin

    NARCIS (Netherlands)

    Donselaar, M.E.; Geel, C.R.

    2007-01-01

    The size, shape and spatial position of lithofacies types (or facies architecture) in a tidal estuarine basin are complex and therefore difficult to model. The tidal currents in the basin concentrate sand-sized sediment in a branching pattern of tidal channels and fringing tidal flats. Away from the

  13. 2008 NWFSC Tidal Freshwater Genetics Results

    Energy Technology Data Exchange (ETDEWEB)

    David Teel

    2009-05-01

    Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

  14. Anomaly Detection Techniques for the Condition Monitoring of Tidal Turbines

    Science.gov (United States)

    2014-09-29

    turbine design includes many horizontal and vertical axis solutions, some with major structural and operational variations (Aly & El-Hawary, 2011...However, a common focus is the horizontal axis design, holding many similarities with a standard wind turbine . Maintenance on tidal turbines ...However, despite similarities between tidal and wind power turbine design, the operating environment is vastly different. Water is over 800 times

  15. Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator

    Directory of Open Access Journals (Sweden)

    Khaoula Ghefiri

    2018-04-01

    Full Text Available Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.

  16. TIDAL LIMITS TO PLANETARY HABITABILITY

    International Nuclear Information System (INIS)

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-01-01

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO 2 may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  17. Solar tidal variations of coefficients of second harmonic of gravitational potential of Mercury

    Science.gov (United States)

    Ferrandiz, Jose; Barkin, Yury

    2010-05-01

    Variations of coefficients of the second harmonic of Mercury potential caused by the solar tides have been studied. In the paper we use analytical expressions for tidal variations of Stoks coefficients obtained for model of the elastic celestial body with concentric distributions of masses and elastic parameters (Love numbers) and their reduced form with using fundamental elastic parameter k2 of the Mercury. Taking into account the resonant properties of the Mercury motion variations of the Mercury potential coefficients we present in the form of Fourier series on the multiple of corresponding arguments of the Mercury orbital theory. Evaluations of the amplitudes and periods of observed variations of Mercury potential have been tabulated for base elastic model of the Mercury characterized by hypothetic elastic parameter (Love number) k2=0.37 (Dehant et al., 2005). Tidal variations of polar moment of inertia of the Mercury (due to tidal deformations) lead to remarkable variations of the Mercury rotation. Tidal variations of the Mercury axial rotation also have been determined and tabulated. From our results it follows that the tide periodic variations of gravitational coefficients of the Mercury in a few orders bigger then corresponding tidal variations of Earth's geopotential coefficients (Ferrandiz, Getino, 1993). Variations coefficients of the second harmonic of Mercury potential. These variations are determined by the known formulae for variations of coefficients of the second harmonic of geopotential (Ferrandiz, Getino, 1993). Here we present these formulae in some special form as applied to the considered problem about the Mercury tidal deformations: ( ) δJ2 = - 3Tα23-2, δC22 = T α21 - α22 -4, δS22 = T α1α2-2, δC21 = Tα1α3, δS21 = T α2α3. Here T = k2(M R3 -ma3 ) = 1.667 × 10-7 is a estimation of some conditional coefficient of tidal deformation of Mercury. m and Rare the mass and the mean radius of Mercury. Here we have used standard values of

  18. Tidal Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  19. 75 FR 61479 - Kendall Head Tidal Energy Project; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2010-10-05

    ... Tidal Energy Project; Notice of Preliminary Permit Application Accepted for Filing and Soliciting... Federal Power Act, proposing to study the feasibility of the Kendall Head Tidal Energy Project, located in.... The proposed project would consist of: (1) 4 OCGen\\TM\\ hydrokinetic tidal devices each consisting of...

  20. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects

    Directory of Open Access Journals (Sweden)

    Eva Segura

    2017-11-01

    Full Text Available The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. The methodology has been applied (together with a sensibility analysis to the particular case of a farm composed of first generation tidal energy converters in one of the Channel Island Races, the Alderney Race, in the U.K., and the results have been attained by means of the computation of engineering indexes, such as the net present value, the internal rate of return, the discounted payback period and the levelized cost of energy, which indicate that the proposed project is economically viable for all the case studies.

  1. Study of tidal power projects in the UK, with the exception of the Severn barrage

    International Nuclear Information System (INIS)

    Shaw, T.L.

    1997-01-01

    Several estuaries in the UK could be equipped with barrages and tidal power plants and several projects were proposed and studied from the end of the 1960's and 1989, until the electric power industry was privatized. Five projects revealed to be more promising than others: the Conwy estuary in the north of Wales, for which the feasibility study concluded that there was no serious environmental constraints on the project; Duddon, a little bit more in the north, which appears to be not economically interesting; Loughor, in the south of Wales, a small size project for which no advanced ecological consequences studies were carried out; Mersey, near Liverpool, the most important project (700 MW) which stands a good chance of being realized; the Wyre estuary, between Duddon and Mersey, for which the cost seems to be prohibitive. The economical conditions which started in the 1980's are largely responsible for the stand-by of any of these projects. The tide power kWh production cost continues to be viewed as two times more expensive than it would be with a classical power plant. Of course, this cost takes into account the actions for environmental protection. (J.S.)

  2. Tidal power harnessing energy from water currents

    CERN Document Server

    Lyatkher, Victor

    2014-01-01

    As the global supply of conventional energy sources, such as fossil fuels, dwindles and becomes more and more expensive, unconventional and renewable sources of energy, such as power generation from water sources, is becoming more and more important.  Hydropower has been around for decades, but this book suggests new methods that are more cost-effective and less intrusive to the environment for creating power sources from rivers, the tides, and other sources of water.   The energy available from water currents is potentially much greater than society's needs.  Presenting a detailed discussi

  3. The origin of neap-spring tidal cycles

    Science.gov (United States)

    Kvale, E.P.

    2006-01-01

    The origin of oceanic tides is a basic concept taught in most introductory college-level sedimentology/geology, oceanography, and astronomy courses. Tides are typically explained in the context of the equilibrium tidal theory model. Yet this model does not take into account real tides in many parts of the world. Not only does the equilibrium tidal model fail to explicate amphidromic circulation, it also does not explain diurnal tides in low latitude positions. It likewise fails to explain the existence of tide-dominated areas where neap-spring cycles are synchronized with the 27.32-day orbital cycle of the Moon (tropical month), rather than with the more familiar 29.52-day cycle of lunar phases (synodic month). Both types of neap-spring cycles can be recognized in the rock record. A complete explanation of the origin of tides should include a discussion of dynamic tidal theory. In the dynamic tidal model, tides resulting from the motions of the Moon in its orbit around the Earth and the Earth in its orbit around the Sun are modeled as products of the combined effects of a series of phantom satellites. The movement of each of these satellites, relative to the Earth's equator, creates its own tidal wave that moves around an amphidromic point. Each of these waves is referred to as a tidal constituent. The geometries of the ocean basins determine which of these constituents are amplified. Thus, the tide-raising potential for any locality on Earth can be conceptualized as the result of a series of tidal constituents specific to that region. A better understanding of tidal cycles opens up remarkable opportunities for research on tidal deposits with implications for, among other things, a more complete understanding of the tidal dynamics responsible for sediment transport and deposition, changes in Earth-Moon distance through time, and the possible influences tidal cycles may exert on organisms. ?? 2006 Elsevier B.V. All rights reserved.

  4. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  5. Tidal radiation

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1977-01-01

    The general theory of tides is developed within the framework of Einstein's theory of gravitation. It is based on the concept of Fermi frame and the associated notion of tidal frame along an open curve in spacetime. Following the previous work of the author an approximate scheme for the evaluation of tidal gravitational radiation is presented which is valid for weak gravitational fields. The emission of gravitational radiation from a body in the field of a black hole is discussed, and for some cases of astrophysical interest estimates are given for the contributions of radiation due to center-of-mass motion, purely tidal deformation, and the interference between the center of mass and tidal motions

  6. Tides and tidal currents

    NARCIS (Netherlands)

    Roos, A.

    1997-01-01

    Basic phenomena, origin and generation of tides, analysis and prediction of tides, basic equation and types of long waves in one dimension, tidal propagation in one dimension, tidal propagation in two directions, analytical tidal computation, numerical tidal computation.

  7. Relevance of tidal heating on large TNOs

    Science.gov (United States)

    Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry

    2018-03-01

    We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100‧s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.

  8. No Snowball on Habitable Tidally Locked Planets

    Science.gov (United States)

    Checlair, Jade; Menou, Kristen; Abbot, Dorian S.

    2017-08-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  9. No Snowball on Habitable Tidally Locked Planets

    International Nuclear Information System (INIS)

    Checlair, Jade; Abbot, Dorian S.; Menou, Kristen

    2017-01-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO 2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  10. Think Global, Act Local--A Power Generation Case Study

    Science.gov (United States)

    Dugdale, Pam

    2012-01-01

    This paper describes an exercise completed by sixth form college students to compare the power output from a local coal fired power station with the potential power output from renewable sources including wind farms, solar farms, and the proposed Mersey Tidal Barrage scheme. (Contains 1 figure, 1 table, and 3 photos.)

  11. The physical characteristics of the French MRE zones. Focus on the tidal turbine sites. PP presentations

    International Nuclear Information System (INIS)

    Jambu, Emilie; Laporte, Patrice; Garlan, Thierry; Le Boulluec, Marc; Germain, Gregory; Michel, Sylvain; Belan, Pierre-Yves

    2014-04-01

    This document gathers Power Point presentations which were contributions to a workshop on French sites of marine renewable energies (MRE). A first one presents the production potential of tidal energy sites in Basse-Normandie, and how favourable areas are defined. The second one reports works performed by the SHOM to characterize the physical marine environment of French MRE sites (SHOM missions, objectives, knowledge on tidal currents, 3D current models, location of current meters offshore Cotentin and the Iroise Sea). The next contribution discusses the relationship between MREs and sedimentology in the case of different offshore wind farms and tidal energy sites. A contribution addresses modelling based on the HOMERE database (Hydrodynamics Ocean-Meteorology and Marine Renewable Energies). The next one presents programmes undertaken by the French Agency of Protected Marine Areas for a better knowledge of the natural patrimony of MRE sites. The last contribution presents the CEREMA, the development of a geographical information system to plan MRE sites, and information activities

  12. The environmental interactions of tidal and wave energy generation devices

    International Nuclear Information System (INIS)

    Frid, Chris; Andonegi, Eider; Depestele, Jochen; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: ► We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. ► Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. ► Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. ► Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  13. The environmental interactions of tidal and wave energy generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  14. A holistic method for selecting tidal stream energy hotspots under technical, economic and functional constraints

    International Nuclear Information System (INIS)

    Vazquez, A.; Iglesias, G.

    2016-01-01

    Highlights: • A method for selecting the most suitable sites for tidal stream farms was presented. • The selection was based on relevant technical, economic and functional aspects. • As a case study, a model of the Bristol Channel was implemented and validated. - Abstract: Although a number of prospective locations for tidal stream farms have been identified, the development of a unified approach for selecting the optimum site in a region remains a current research topic. The objective of this work is to develop and apply a methodology for determining the most suitable sites for tidal stream farms, i.e. sites whose characteristics maximise power performance, minimise cost and avoid conflicts with competing uses of the marine space. Illustrated through a case study in the Bristol Channel, the method uses a validated hydrodynamics model to identify highly energetic areas and a geospatial Matlab-based program (designed ad hoc) to estimate the energy output that a tidal farm at the site with a given technology would have. This output is then used to obtain the spatial distribution of the levelised cost of energy and, on this basis, to preselect certain areas. Subsequently, potential conflicts with other functions of the marine space (e.g. fishing, shipping) are considered. The result is a selection of areas for tidal stream energy development based on a holistic approach, encompassing the relevant technical, economic and functional aspects. This methodology can lead to a significant improvement in the selection of tidal sites, thereby increasing the possibilities of project acceptance and development.

  15. No Snowball on Habitable Tidally Locked Planets

    Energy Technology Data Exchange (ETDEWEB)

    Checlair, Jade; Abbot, Dorian S. [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Menou, Kristen, E-mail: jadecheclair@uchicago.edu [Centre for Planetary Sciences, Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4 (Canada)

    2017-08-20

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO{sub 2} outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  16. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  17. Clustering and estimating fish fingerling abundance in a tidal river in close ploximity to a thermal power plant in Southern Thailand

    Science.gov (United States)

    Chesoh, S.; Lim, A.; Luangthuvapranit, C.

    2018-04-01

    This study aimed to cluster and to quantify the wild-caught fingerlings nearby thermal power plant. Samples were monthly collected by bongo nets from four upstream sites of the Na Thap tidal river in Thailand from 2008 to 2013. Each caught species was identified, counted and calculated density in term of individuals per 1,000 cubic meters. A total of 45 aquatic animal fingerlings was commonly trapped in the average density of 2,652 individuals per 1,000 cubic meters of water volume (1,235–4,570). The results of factor analysis revealed that factor 1 was represented by the largest group of freshwater fish species, factors 2 represented a medium-sized group of mesohaline species, factor 3 represented several brackish species and factor 4 was a few euryhaline species. All four factor reached maximum levels during May to October. Total average numbers of fish fingerling caught at the outflow showed greater than those of other sampling sites. The impact of heated pollution from power plant effluents did not clearly detected. Overall water quality according the Thailand Surface Water Quality Standards Coastal tidal periodic and seasonal runoff phenomena exhibit influentially factors. Continuous ecological monitoring is strongly recommended.

  18. ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, Robyn E.; Helmi, Amina [Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen (Netherlands); Hogg, David W., E-mail: robyn@astro.columbia.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2015-03-10

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like data in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.

  19. Homogeneous wave turbulence driven by tidal flows

    Science.gov (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  20. Observed tidal braking in the earth/moon/sun system

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  1. Tidal generation of gravitational waves from orbiting Newtonian stars. I. General formalism

    International Nuclear Information System (INIS)

    Turner, M.

    1977-01-01

    A linearized formalism is presented for the calculation of the tidally produced gravitational radiation potential h/sup TT/ from binary systems with arbitrary orbits. The stars are Newtonian, isentropic, and nonrotating. Normal-mode analysis is used to calculate the tidally generated internal motions; the resulting radiation potential h/sup TT/ and its Fourier decomposition are calculated in the Newtonian limit of the multipole formalism. The tidal radiation potential is weaker than that produced by the orbital motion by a factor of order [(stellar radius)/(periastron distance)] 5 . If we assume that the time scale of the tidal perturbation is always much less than the damping time of the star, then if in addition the damping time is much less than the time between periastron passages, the radiation spectrum consists of the l=2 eigenfrequencies of the star near the fundamental l=2 eigenfrequency; if the reverse is true (damping time >> time between periastrons), the spectrum is similar to the orbital gravitational radiation specturm

  2. New Concept for Assessment of Tidal Current Energy in Jiangsu Coast, China

    Directory of Open Access Journals (Sweden)

    Ji-Sheng Zhang

    2013-01-01

    Full Text Available Tidal current energy has attracted more and more attentions of coastal engineers in recent years, mainly due to its advantages of low environmental impact, long-term predictability, and large energy potential. In this study, a two-dimensional hydrodynamic model is applied to predict the distribution of mean density of tidal current energy and to determine a suitable site for energy exploitation in Jiangsu Coast. The simulation results including water elevation and tidal current (speed and direction were validated with measured data, showing a reasonable agreement. Then, the model was used to evaluate the distribution of mean density of tidal current energy during springtide and neap tide in Jiangsu Coast. Considering the discontinuous performance of tidal current turbine, a new concept for assessing tidal current energy is introduced with three parameters: total operating time, dispersion of operating time, and mean operating time of tidal current turbine. The operating efficiency of tidal current turbine at three locations around radial submarine sand ridges was taken as examples for comparison, determining suitable sites for development of tidal current farm.

  3. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  4. Policy for tidal energy

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, T L

    1977-01-01

    The potential of tidal energy for the United Kingdom should be reassessed, it is argued, and some of its advantages are cited. The technology for its development is available and proven; experience suggests that the capital works will have an indefinite life, with only the turbine blades needing to be replaced occasionally. It is a source of water power, and can be regulated to generate when required, on a flexible basis and only by day if so desired; this compares favorably with the relatively unpredictable nature of the other sources. It can be made to complement directly, and so to improve the performance of the coal and nuclear sources at a scale readily possible from a proportionately small installed capacity. The fuel is free. Present indications unquestionably suggest that it will be timely to reassess this source as part of the present energy review, so that its potential may be realized when needed after 1990. It is especially significant that the environmental effects of the necessary works appear to be comparatively small whereas the industrial and social rewards, so far not financially quantified, could be appreciable. The disadvantages that have been expressed are cited, but the author counters the attack on them. (MCW)

  5. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    Science.gov (United States)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  6. Development of a model counter-rotating type horizontal-axis tidal turbine

    Science.gov (United States)

    Huang, B.; Yoshida, K.; Kanemoto, T.

    2016-05-01

    In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable renewable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis tidal turbine (HATT). A unique counter-rotating type HATT was proposed in the present work. The original blade profiles were designed according to the developed blade element momentum theory (BEMT). CFD simulations and experimental tests were adopted to the performance of the model counter-rotating type HATT. The experimental data provides an evidence of validation of the CFD model. Further optimization of the blade profiles was also carried out based on the CFD results.

  7. Towing Tank and Flume Testing of Passively Adaptive Composite Tidal Turbine Blades: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ordonez-Sanchez, Stephanie [University of Strathclyde; Porter, Kate E. [University of Strathclyde; Johnstone, Cameron M. [University of Strathclyde; Doman, Darrel A. [Dalhousie University; Pegg, Michael J. [Dalhousie University

    2017-09-28

    Composite tidal turbine blades with bend-twist (BT) coupled layups allow the blade to self-adapt to local site conditions by passively twisting. Passive feathering has the potential to increase annual energy production and shed thrust loads and power under extreme tidal flows. Decreased hydrodynamic thrust and power during extreme conditions meann that the turbine support structure, generator, and other components can be sized more appropriately, resulting in a higher utilization factor and increased cost effectiveness. This paper presents new experimental data for a small-scale turbine with BT composite blades. The research team tested the turbine in the Kelvin Hydrodynamics Laboratory towing tank at the University of Strathclyde in Glasgow, United Kingdom, and in the recirculating current flume at the l Institut Francais de Recherche pour l Exploitation de la Mer Centre in Boulogne-sur-Mer, France. Tests were also performed on rigid aluminum blades with identical geometry, which yielded baseline test sets for comparison. The results from both facilities agreed closely, supporting the hypothesis that increased blade flexibility can induce load reductions. Under the most extreme conditions tested the turbine with BT blades had up to 11 percent lower peak thrust loads and a 15 percent reduction in peak power compared to the turbine with rigid blades. The load reductions varied as a function of turbine rotational velocity and ambient flow velocity.

  8. Dynamical friction for dark halo satellites: effects of tidal massloss and growing host potential

    OpenAIRE

    Zhao, HongSheng

    2004-01-01

    How fast a satellite decays its orbit depends on how slowly its mass is lost by tide. Motivated by inner halo satellite remnants like the Sgr and Omega Cen, we develop fully analytical models to study the orbital decay and tidal massloss of satellites. The orbital decay rate is often severely overestimated if applying the ChandraSekhar's formula without correcting for (a) the evaporation and tidal loss of the satellite and (b) the contraction of satellite orbits due to adiabatic growth of the...

  9. Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model

    Science.gov (United States)

    van der Molen, Johan; Ruardij, Piet; Greenwood, Naomi

    2016-05-01

    A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics-biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and a high-impact scenario with massive expansion of tidal energy extraction to 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The massive-expansion 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of the Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher-resolution model and (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned.

  10. Variability of stratification according to operation of the tidal power plant in Lake Sihwa, South Korea.

    Science.gov (United States)

    Woo, S. B.; Song, J. I.; Jang, T. H.; Park, C. J.; Kwon, H. K.

    2017-12-01

    Artificial forcing according to operation of the tidal power plant (TPP) affects the physical environmental changes near the power plant. Strong turbulence by generation is expected to change the stratification structure of the Lake Sihwa inside. In order to examine the stratification changes by the power plant operation, ship bottom mounted observation were performed for 13 hours using an acoustic Doppler current profiler (ADCP) and Conductivity-Temperature-Depth (CTD) in Lake Sihwa at near TPP. The strong stratification in Sihwa Lake is maintained before TPP operation. The absence of external forces and freshwater inflow from the land forms the stratification in the Lake. Strong winds in a stratification statement lead to two-layer circulation. After wind event, multi-layer velocity structure is formed which lasted for approximately 4 h. After TPP operation, the jet flow was observed in entire water column at the beginning of the power generation. Vortex is formed by strong jet flow and maintained throughout during power generation period. Strong turbulence flow is generated by the turbine blades, enhancing vertical mixing. External forces, which dominantly affect Lake Sihwa, have changed from the wind to the turbulent flow. The stratification was extinguished by strong turbulent flow and becomes fully-mixed state. Changes in stratification structure are expected to affect material transport and ecological environment change continuously.

  11. Survey on utility technology of a tidal and ocean current energy

    Science.gov (United States)

    Hirose, Manabu; Kadoyu, Masataka; Tanaka, Hiroyoshi

    1987-06-01

    A study is made to show the current technological levels in Japan and other nations regarding the conversion of tidal current or ocean current energy to electric power and to determine the latent energy quantities and energy-related characteristics of tidal and ocean currents. In Japan, relatively large-scale experiments made so far mostly used one of the following three types of devices: Savonius-wheel type, Darrieus-wheel type, and cross-flow-wheel type. Field experiments of tidal energy conversion have been performed at the Naruto and Kurushima Straits. The energy in the Kuroshio current is estimated at about 170 billion kWh per year. Ocean current energy does not undergo large seasonal variations. The total energy in major straits and channels in the Inland Sea and other sea areas to the west is estimated at about 124 billion kWh per year. Tidal current energy shows large seasonal variations, but it is possible to predict the changes. A survey is made to determine energy-related characteristics of a tidal current at Chichino-seto, Kagoshima Prefecture. At Chichino-seto, the flow velocity ranges from 0 to 2.2m/s, with a latent tidal current energy of about 70 kW, of which about 20 kW can actually be utilized.

  12. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    Science.gov (United States)

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.

  13. Development and the environmental impact analysis of tidal current energy turbines in China

    Science.gov (United States)

    Liu, Yuxin; Ma, Changlei; Jiang, Bo

    2018-02-01

    Chinese government pays more attentions to renewable energies (RE) in the context of increasing energy demand and climate change problems. As a promising RE, the utilization of marine renewable energy (MRE) is engaging in the world, including the wave energy and tidal current energy mainly. At the same time, the tidal current energy resources in China are abundant. Thus, the utilization of tidal current energy becomes an inevitable choice for China to meet the challenge of global climate change. The Renewable Energy Law (amendment) and “Twelfth Five-Year” Plan of Renewable Energy Development (2011-2015) were released in recent years in China, the tidal current energy are successfully implemented in China, including the R&D and pilot projects. After the summary of the status of tidal current energy converters in recent years in China, especially the devices being in the open sea test. The environmental impact study in China is also introduced in order to offer reference for the environmental impact assessment of tidal current power generation.

  14. Tidal energy - a technology review

    International Nuclear Information System (INIS)

    Price, R.

    1991-01-01

    The tides are caused by gravitational attraction of the sun and the moon acting upon the world's oceans. This creates a clean renewable form of energy which can in principle be tapped for the benefit of mankind. This paper reviews the status of tidal energy, including the magnitude of the resource, the technology which is available for its extraction, the economics, possible environmental effects and non-technical barriers to its implementation. Although the total energy flux of the tides is large, at about 2 TW, in practice only a very small fraction of this total potential can be utilised in the foreseeable future. This is because the energy is spread diffusely over a wide area, requiring large and expensive plant for its collection, and is often available remote from centres of consumption. The best mechanism for exploiting tidal energy is to employ estuarine barrages at suitable sites with high tidal ranges. The technology is relatively mature and components are commercially available now. Also, many of the best sites for implementation have been identified. However, the pace and extent of commercial exploitation of tidal energy is likely to be significantly influenced, both by the treatment of environmental costs of competing fossil fuels, and by the availability of construction capital at modest real interest rates. The largest projects could require the involvement of national governments if they are to succeed. (author) 8 figs., 2 tabs., 19 refs

  15. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Stephen B; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy,; Roland, I; and Terray, E, Ph.D.

    2012-12-29

    anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habitat, and

  16. The Integration of Environmental Constraints into Tidal Array Optimisation

    Science.gov (United States)

    du Feu, Roan; de Trafford, Sebastian; Culley, Dave; Hill, Jon; Funke, Simon W.; Kramer, Stephan C.; Piggott, Matthew D.

    2015-04-01

    It has been estimated by The Carbon Trust that the marine renewable energy sector, of which tidal stream turbines are projected to play a large part, could produce 20% of the UK's present electricity requirements. This has lead to the important question of how this technology can be deployed in an economically and environmentally friendly manner. Work is currently under way to understand how the tidal turbines that constitute an array can be arranged to maximise the total power generated by that array. The work presented here continues this through the inclusion of environmental constraints. The benefits of the renewable energy sector to our environment at large are not in question. However, the question remains as to the effects this burgeoning sector will have on local environments, and how to mitigate these effects if they are detrimental. For example, the presence of tidal arrays can, through altering current velocity, drastically change the sediment transport into and out of an area along with re-suspending existing sediment. This can have the effects of scouring or submerging habitat, mobilising contaminants within the existing sediment, reducing food supply and altering the turbidity of the water. All of which greatly impact upon any fauna in the affected region. This work pays particular attention to the destruction of habitat of benthic fauna, as this is quantifiable as a direct result of change in the current speed; a primary factor in determining sediment accumulation on the sea floor. OpenTidalFarm is an open source tool that maximises the power generated by an array through repositioning the turbines within it. It currently uses a 2D shallow water model with turbines represented as bump functions of increased friction. The functional of interest, power extracted by the array, is evaluated from the flow field which is calculated at each iteration using a finite element method. A gradient-based local optimisation is then used through solving the

  17. Image formation in weak gravitational lensing by tidal charged black holes

    International Nuclear Information System (INIS)

    Horvath, Zsolt; Gergely, Laszlo Arpad; Hobill, David

    2010-01-01

    We derive a generic weak lensing equation and apply it for the study of images produced by tidal charged brane black holes. We discuss the similarities and point out the differences with respect to the Schwarzschild black hole weak lensing, to both first- and second-order accuracy, when either the mass or the tidal charge dominates. In the case of mass-dominated weak lensing, we analyze the position of the images, the magnification factors and the flux ratio, as compared to the Schwarzschild lensing. The most striking modification appears in the flux ratio. When the tidal charge represents the dominating lensing effect, the number and orientation of the images with respect to the optical axis resembles the lensing properties of a Schwarzschild geometry, where the sign associated with the mass is opposite to that for the tidal charge. Finally it is found that the ratio of the brightness of the images as a function of image separation in the case of tidal charged black holes obeys a power-law relation significantly different from that of Schwarzschild black holes. This might provide a means for determining the underlying spacetime structure.

  18. Empirical Tidal Dissipation in Exoplanet Hosts From Tidal Spin-up

    Science.gov (United States)

    Penev, Kaloyan; Bouma, L. G.; Winn, Joshua N.; Hartman, Joel D.

    2018-04-01

    Stars with hot Jupiters (HJs) tend to rotate faster than other stars of the same age and mass. This trend has been attributed to tidal interactions between the star and planet. A constraint on the dissipation parameter {Q}\\star {\\prime } follows from the assumption that tides have managed to spin up the star to the observed rate within the age of the system. This technique was applied previously to HATS-18 and WASP-19. Here, we analyze the sample of all 188 known HJs with an orbital period tidal dissipation parameter ({Q}\\star {\\prime }) increases sharply with forcing frequency, from 105 at 0.5 day‑1 to 107 at 2 day‑1. This helps to resolve a number of apparent discrepancies between studies of tidal dissipation in binary stars, HJs, and warm Jupiters. It may also allow for a HJ to damp the obliquity of its host star prior to being destroyed by tidal decay.

  19. Dynamic Braking System of a Tidal Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    Renewable energy generation has experienced significant cost reductions during the past decades, and it has become more accepted by the global population. In the beginning, wind generation dominated the development and deployment of renewable energy; however, during recent decades, photovoltaic (PV) generation has grown at a very significant pace due to the tremendous decrease in the cost of PV modules. The focus on renewable energy generation has now expanded to include new types with promising future applications, such as river and tidal generation. The input water flow to these types of resources is more predictable than wind or solar generation. The data used in this paper is representative of a typical river or tidal generator. The analysis is based on a generator with a power rating of 40 kW. The tidal generator under consideration is driven by two sets of helical turbines connected to each side of the generator located in between the turbines. The generator is operated in variable speed, and it is controlled to maximize the energy harvested as well as the operation of the turbine generator. The electrical system consists of a three-phase permanent magnet generator connected to a three-phase passive rectifier. The output of the rectifier is connected to a DC-DC converter to match the rectifier output to the DC bus voltage of the DC-AC inverter. The three-phase inverter is connected to the grid, and it is controlled to provide a good interface with the grid. One important aspect of river and tidal generation is the braking mechanism. In a tidal generator, the braking mechanism is important to avoid a runaway condition in case the connection to the grid is lost when there is a fault in the lines. A runaway condition may lead to an overspeed condition and cause extreme stresses on the turbine blade structure and eventual disintegration of the mechanical structure. In this paper, the concept of the dynamic braking system is developed and investigated for normal

  20. Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets

    Science.gov (United States)

    Renaud, Joe P.; Henning, Wade G.

    2018-04-01

    The advanced rheological models of Andrade and Sundberg & Cooper are compared to the traditional Maxwell model to understand how each affects the tidal dissipation of heat within rocky bodies. We find both Andrade and Sundberg–Cooper rheologies can produce at least 10× the tidal heating compared to a traditional Maxwell model for a warm (1400–1600 K) Io-like satellite. Sundberg–Cooper can cause even larger dissipation around a critical temperature and frequency. These models allow cooler planets to stay tidally active in the face of orbital perturbations—a condition we term “tidal resilience.” This has implications for the time evolution of tidally active worlds and the long-term equilibria they fall into. For instance, if Io’s interior is better modeled by the Andrade or Sundberg–Cooper rheologies, the number of possible resonance-forming scenarios that still produce a hot, modern Io is expanded, and these scenarios do not require an early formation of the Laplace resonance. The two primary empirical parameters that define the Andrade anelasticity are examined in several phase spaces to provide guidance on how their uncertainties impact tidal outcomes, as laboratory studies continue to constrain their real values. We provide detailed reference tables on the fully general equations required for others to insert the models of Andrade and Sundberg–Cooper into standard tidal formulae. Lastly, we show that advanced rheologies can greatly impact the heating of short-period exoplanets and exomoons, while the properties of tidal resilience could mean a greater number of tidally active worlds among all extrasolar systems.

  1. A proof of the cancellation of the redistribution tidal potential effects on the rotation of an elastic Earth model

    Science.gov (United States)

    Baenas, Tomás; Escapa, Alberto; Ferrándiz, Jose Manuel

    2014-05-01

    The gravitational action of the Moon and the Sun on the elastic Earth originates a redistribution of its mass. In turn, this redistribution is responsible of an additional term in the gravitational potential energy of the system, commonly referred to as tidal potential of redistribution. Its effects on the Earth rotation were previously discussed in Escapa et al. (2004) and Lambert & Mathews (2006). A numerical approach was followed in those works to show that for an elastic Earth model, assumed to be spherical and non-rotating in the undeformed state, there is no net contribution to the motion of the figure axis. This result is consistent with the corresponding one deduced from the torque approach, where one can derive analytically that the redistribution torque for that elastic Earth model vanishes (e.g., Krasinsky 1999). However, it is far from being a trivial question to recover the same result when working directly with the tidal potential of redistribution, as in Escapa et al. (2004) or Lambert & Mathews (2006). In this investigation we revisit the issue, enhancing and completing former results by Escapa et al. (2004). In particular, we aim at proving, by analytical means, that the redistribution tidal potential of the former elastic Earth model does not affect its rotational motion. To this end we expand that potential in terms of an Andoyer-like set of canonical variables, and then compute the torque associated to it. This choice was motivated by the suitability of this set of variables to extend our calculations to the nutations of other different elastic or anelastic Earth models, through the Hamiltonian framework (e.g., Ferrándiz et al. 2012). We show the exact cancellation of the derived expressions as a consequence of certain properties fulfilled by the expansions of the orbital motion of the perturbing bodies. Acknowledgement. - This work has been partially supported by the Spanish government trhough the MINECO projects I+D+I AYA201022039-C02-01, AYA

  2. The Effects of Surface Waves and Submergence on the Performance and Loading of a Tidal Turbine

    OpenAIRE

    Guo, Xiaoxian; Gao, Zhen; Yang, Jianmin; Moan, Torgeir; Lu, Haining; Li, Xin; Lu, Wenyue

    2017-01-01

    Tidal energy has the advantages of high predictability, high energy density, and limited environmental impacts. As tidal turbines are expected to be used in the most energetic waters where there might be significant waves, the assessment of unsteady hydrodynamic load due to surface waves is of great concern. The objective of this paper is to assess the effects of surface waves and submergence of the turbine on the power performance and loads of a tidal turbine by experimental approach. The ex...

  3. The wave and tidal resource of Scotland

    Science.gov (United States)

    Neill, Simon; Vogler, Arne; Lewis, Matt; Goward-Brown, Alice

    2017-04-01

    As the marine renewable energy industry evolves, in parallel with an increase in the quantity of available data and improvements in validated numerical simulations, it is occasionally appropriate to re-assess the wave and tidal resource of a region. This is particularly true for Scotland - a leading nation that the international community monitors for developments in the marine renewable energy industry, and which has witnessed much progress in the sector over the last decade. With 7 leased wave and 17 leased tidal sites, Scotland is well poised to generate significant levels of electricity from its abundant natural marine resources. In this review of Scotland's wave and tidal resource, I present the theoretical and technical resource, and provide an overview of commercial progress. I also discuss issues that affect future development of the marine energy seascape in Scotland, applicable to other regions of the world, including the potential for developing lower energy sites, and grid connectivity.

  4. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    Science.gov (United States)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin

  5. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    Science.gov (United States)

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  6. Review of Tidal Lagoon Technology and Opportunities for Integration within the UK Energy System

    Directory of Open Access Journals (Sweden)

    Grazia Todeschini

    2017-07-01

    Full Text Available The number of distributed resources for renewable energy installed worldwide has been increasing rapidly in the last decade, and the great majority of these installations consist of solar panels and wind turbines. Other renewable sources of energy are not exploited to the same level: for instance, tidal energy is still a minute portion of the global energy capacity, in spite of the large amount of potential energy stored in tidal waves, and of the successful experience of the few existing plants. The world’s second largest tidal range occurs in the UK but at the moment tidal installations in this country are limited to a few prototypes. More recently, there has been a renewed interest in harnessing tidal energy in the UK, and a few tidal lagoon projects have been evaluated by the UK government. This paper provides an overview of the historical and current developments of tidal plants, a description of operation of tidal lagoons, challenges and opportunities for their integration within the UK energy systems and solutions to improve the dispatchability of tidal energy. The concepts described in the paper are applied to a tidal project proposed for South Wales.

  7. Microbial quality of a marine tidal pool

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1995-01-01

    Full Text Available In this study the source of microbial pollution to a tidal pool was investigated. Both adjacent seawater which could contribute to possible faecal pollution and potential direct bather pollution were studied. The microbial quality of the marine...

  8. Experimental and numerical study of a flapping tidal stream generator

    Science.gov (United States)

    Kim, Jihoon; Le, Tuyen Quang; Ko, Jin Hwan; Sitorus, Patar Ebenezer; Tambunan, Indra Hartarto; Kang, Taesam

    2017-11-01

    The tidal stream turbine is one of the systems that extract kinetic energy from tidal stream, and there are several types of the tidal stream turbine depending on its operating motion. In this research, we conduct experimental and consecutive numerical analyses of a flapping tidal stream generator with a dual configuration flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted using two-dimensional computational fluid dynamics simulations with an in-house code. Through an experimental analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90-degree phase difference between the two. This research was a part of the project titled `R&D center for underwater construction robotics', funded by the Ministry of Oceans and Fisheries(MOF), Korea Institute of Marine Science & Technology Promotion(KIMST,PJT200539), and Pohang City in Korea.

  9. On luminescence bleaching of tidal channel sediments

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Pejrup, Morten; Murray, Andrew S.

    2015-01-01

    We investigate the processes responsible for bleaching of the quartz OSL signal from tidal channel sediment. Tidal dynamics are expected to play an important role for complete bleaching of tidal sediments. However, no studies have examined the amount of reworking occurring in tidal channels...... and on tidal flats due to the mixing caused by currents and waves. We apply bed level data to evaluate the amount of vertical sediment reworking in modern tidal channels and at a tidal flat. Cycles of deposition and erosion are measured with a bed level sensor, and the results show that gross sedimentation...... was several times higher than net sedimentation. We propose that tidal channel sediment is bleached either on the tidal flat before it is transported to the tidal channels and incorporated in channel-fill successions or, alternatively, on the shallow intertidal part of the channel banks. Based...

  10. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17

    ) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

  11. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    Science.gov (United States)

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  12. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal

  13. Device interactions in reducing the cost of tidal stream energy

    International Nuclear Information System (INIS)

    Vazquez, A.; Iglesias, G.

    2015-01-01

    Highlights: • Numerical modelling is used to estimate the levelised cost of tidal stream energy. • As a case study, a model of Lynmouth (UK) is implemented and successfully validated. • The resolution of the model allows the demarcation of individual devices on the model grid. • Device interactions reduce the available tidal resource and the cost increases significantly. - Abstract: The levelised cost of energy takes into account the lifetime generated energy and the costs associated with a project. The objective of this work is to investigate the effects of device interactions on the energy output and, therefore, on the levelised cost of energy of a tidal stream project, by means of numerical modelling. For this purpose, a case study is considered: Lynmouth (North Devon, UK), an area in the Bristol Channel in which the first tidal stream turbine was installed − a testimony of its potential as a tidal energy site. A state-of-the-art hydrodynamics model is implemented on a high-resolution computational grid, which allows the demarcation of the individual devices. The modification to the energy output resulting from interaction between turbines within the tidal farm is thus resolved for each individual turbine. The results indicate that significant changes in the levelised cost of energy values, of up to £0.221 kW h −1 , occur due to the aforementioned modifications, which should not be disregarded if the cost of tidal stream energy is to be minimised

  14. Topics in LIGO-related physics: Interferometric speed meters and tidal work

    Science.gov (United States)

    Purdue, Patricia Marie

    In the quest to develop viable designs for third-generation interferometric gravitational-wave detectors (such as the Laser Interferometer Gravitational-Wave Observatory, LIGO), one strategy is monitoring the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is analyzed in Chapter 2. It is shown that in principle this design can beat the standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies. However, in practice, this specific speed meter requires exorbitantly high input light power. Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires modest input power and appears to be a fully practical candidate for third-generation detectors. It can beat the SQL over a broad range of frequencies (˜10 to 100 Hz in practice) by a factor h/hSQL ˜ WSQLcirc/Wc irc . Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz. If squeezed vacuum (with a power-squeeze factor e-2 R) is injected into the interferometer's output port, the SQL can be beat with less laser power: h/h SQL ˜ WSQLcirc/Wc irce2R . For realistic parameters (e2 R ≃ 10 and Wcirc ≃ 800 kW), the SQL can be beat by a factor ˜3 from 10 to 100 Hz. By performing frequency-dependent homodyne detection on the output (using two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz. Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves. Specifically, it presents an analysis of the tidal work done on a self-gravitating body in an external tidal field. By examining the change in the mass-energy of the body as a result of the tidal field, it is shown that the work done is gauge invariant, while the body-tidal

  15. Evaluation of a Model for Predicting the Tidal Velocity in Fjord Entrances

    Energy Technology Data Exchange (ETDEWEB)

    Lalander, Emilia [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden); Thomassen, Paul [Team Ashes, Trondheim (Norway); Leijon, Mats [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden)

    2013-04-15

    Sufficiently accurate and low-cost estimation of tidal velocities is of importance when evaluating a potential site for a tidal energy farm. Here we suggest and evaluate a model to calculate the tidal velocity in fjord entrances. The model is compared with tidal velocities from Acoustic Doppler Current Profiler (ADCP) measurements in the tidal channel Skarpsundet in Norway. The calculated velocity value from the model corresponded well with the measured cross-sectional average velocity, but was shown to underestimate the velocity in the centre of the channel. The effect of this was quantified by calculating the kinetic energy of the flow for a 14-day period. A numerical simulation using TELEMAC-2D was performed and validated with ADCP measurements. Velocity data from the simulation was used as input for calculating the kinetic energy at various locations in the channel. It was concluded that the model presented here is not accurate enough for assessing the tidal energy resource. However, the simplicity of the model was considered promising in the use of finding sites where further analyses can be made.

  16. An integrated model for estimating energy cost of a tidal current turbine farm

    International Nuclear Information System (INIS)

    Li, Ye; Lence, Barbara J.; Calisal, Sander M.

    2011-01-01

    A tidal current turbine is a device for harnessing energy from tidal currents and functions in a manner similar to a wind turbine. A tidal current turbine farm consists of a group of tidal current turbines distributed in a site where high-speed current is available. The accurate prediction of energy cost of a tidal current turbine farm is important to the justification of planning and constructing such a farm. However, the existing approaches used to predict energy cost of tidal current turbine farms oversimplify the hydrodynamic interactions between turbines in energy prediction and oversimplify the operation and maintenance strategies involved in cost estimation as well as related fees. In this paper, we develop a model, which integrates a marine hydrodynamic model with high accuracy for predicting energy output and a comprehensive cost-effective operation and maintenance model for estimating the cost that may be incurred in producing the energy, to predict energy cost from a tidal current turbine farm. This model is expected to be able to simulate more complicated cases and generate more accurate results than existing models. As there is no real tidal current turbine farm, we validate this model with offshore wind studies. Finally, case studies about Vancouver are conducted with a scenario-based analysis. We minimize the energy cost by minimizing the total cost and maximizing the total power output under constraints related to the local conditions (e.g., geological and labor information) and the turbine specifications. The results suggest that tidal current energy is about ready to penetrate the electricity market in some major cities in North America if learning curve for the operational and maintenance is minimum. (author)

  17. Morphological effect of a scallop shell on a flapping-type tidal stream generator

    International Nuclear Information System (INIS)

    Le, Tuyen Quang; Ko, Jin Hwan; Byun, Doyoung

    2013-01-01

    Inspired by nature, flapping-type tidal stream generators have been introduced in recent years. The improvement in their power generation ability is known to be a critical factor in the success of these generators. So far, corrugation and camber observed in flying insects and swimming animals are known to enhance the performance of a flapping-type propulsive system. In this study, we explore the effect of corrugation and camber in a system that mimics a scallop shell in terms of its ability to extract flow energy through a two-dimensional Navier–Stokes simulation. The simulations show that the size and the activity of the leading edge vortex are strongly affected by the morphological factors of the mimicked foils, the effects of which are then advantageous in terms of the power efficiency of the flapping-type tidal stream generator. Eventually, an optimal mimicked foil, as suggested based on the morphological effects, would be a good alternative type of foil with a typical section with regard to the hydrodynamic performance and structural properties of tidal stream generators. (paper)

  18. A potential flow 2-D vortex panel model: Applications to vertical axis straight blade tidal turbine

    International Nuclear Information System (INIS)

    Wang, L.B.; Zhang, L.; Zeng, N.D.

    2007-01-01

    A potential flow 2-D vortex panel model (VPM2D) for unsteady hydrodynamics calculation of the vertical axis straight blade variable pitch turbine was given for tidal streams energy conversion. Numerical results of predicted instantaneous blade forces and wake flow of the rotor showed good agreement with the test data. The model was also compared with the previous classic free vortex model (V-DART) and vortex method combined with finite element analysis (FEVDTM). It showed that the present model was much better than the former, less complex than the latter and suitable for designing and optimization of the vertical axis straight blade turbine

  19. Tidal energy

    International Nuclear Information System (INIS)

    Lochte, H.G.

    1995-01-01

    Together with wave energy, ocean thermal energy, and the often overlooked energy from ocean curents tidal energy belongs to those renewable energy sources that can be subsumed under the generic term of ocean energy. All that these energy sources have in common, however, is that they are found in the ocean. The present article discusses tidal energy with respect to the four principal factors determining the scope of a renewable energy source, namely global, technical, and economic availability and ecological acceptability. (orig.) [de

  20. Ireland’s tidal energy resource; An assessment of a site in the Bulls Mouth and the Shannon Estuary using measured data

    International Nuclear Information System (INIS)

    O’Rourke, Fergal; Boyle, Fergal; Reynolds, Anthony

    2014-01-01

    Highlights: • This study is concentrated on tidal current energy assessment at two sites in Ireland. • Tidal–current-speed and direction data was measured at a range of depths using ADCPs. • A best-fit power law exponent is proposed based on the measured data from both sites. • Mean power densities, annual energy output and capacity factors at both sites were calculated. - Abstract: The issues associated with Ireland’s over reliance on fossil fuels to meet energy demands have sparked an interest in renewable energy. Renewable energy resources typically are intermittent and vary significantly in energy intensity. Tidal energy however has the advantage of predictability over large time scales and high power densities. A study of Ireland’s tidal–current-energy resource has identified several viable sites. As part of this resource assessment, Acoustic Doppler Current Profilers were installed at two locations along Ireland’s west coast, at a site in the Bulls Mouth and the Shannon Estuary. The Acoustic Doppler Current Profilers measured tidal current speed and direction at 30 min intervals over a 30 day period at a range of depths through the water column. This is the first time the measured data appears in the literature as it has only recently been made public. This paper presents tidal current speed and direction, frequency of occurrence of speed, tidal roses at several depths through the water column, and a comparison of theoretical tidal–current-speed profiles with measured data for a site in the Bulls Mouth and in the Shannon Estuary. The paper compares power density at both sites over a lunar month and also proposes a best fit power law exponent with the measured data through the water column. Finally, the paper presents an energetic performance comparison for a tidal current turbine operating at both sites. The data presented in this paper can be used in the design process to estimate the hydrodynamic and structural performance of a tidal

  1. Stingray tidal stream energy device - phase 3

    International Nuclear Information System (INIS)

    2005-01-01

    The 150 kW Stingray demonstrator was designed, built and installed by The Engineering Business (EB) in 2002, becoming the world's first full-scale tidal stream generator. The concept and technology are described in the reports from Phases 1 and 2 of the project. This report provides an overview of Phase 3 - the re-installation of Stingray in Yell Sound in the Shetland Isles between July and September 2003 for further testing at slack water and on the flood tide to confirm basic machine characteristics, develop the control strategy and to demonstrate performance and power collection through periods of continuous operation. The overall aim was to demonstrate that electricity could be generated at a potentially commercially viable unit energy cost; cost modelling indicated a future unit energy cost of 6.7 pence/kWh when 100 MW capacity had been installed. The report describes: project objectives, targets and activities; design and production; marine operations including installation and demobilisation; environmental monitoring and impact, including pre-installation and post-decommissioning surveys; stakeholder involvement; test results on machine characteristics, sensor performance, power cycle analysis, power collection, transmission performance and efficiency, current data analysis; validation of the mathematical model; the background to the economic model; cost modelling; and compliance with targets set by the Department of Trade and Industry (DTI)

  2. Stingray tidal stream energy device - phase 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The 150 kW Stingray demonstrator was designed, built and installed by The Engineering Business (EB) in 2002, becoming the world's first full-scale tidal stream generator. The concept and technology are described in the reports from Phases 1 and 2 of the project. This report provides an overview of Phase 3 - the re-installation of Stingray in Yell Sound in the Shetland Isles between July and September 2003 for further testing at slack water and on the flood tide to confirm basic machine characteristics, develop the control strategy and to demonstrate performance and power collection through periods of continuous operation. The overall aim was to demonstrate that electricity could be generated at a potentially commercially viable unit energy cost; cost modelling indicated a future unit energy cost of 6.7 pence/kWh when 100 MW capacity had been installed. The report describes: project objectives, targets and activities; design and production; marine operations including installation and demobilisation; environmental monitoring and impact, including pre-installation and post-decommissioning surveys; stakeholder involvement; test results on machine characteristics, sensor performance, power cycle analysis, power collection, transmission performance and efficiency, current data analysis; validation of the mathematical model; the background to the economic model; cost modelling; and compliance with targets set by the Department of Trade and Industry (DTI).

  3. Phase lag control of tidally reversing mega-ripple geometry and bed stress in tidal inlets

    Science.gov (United States)

    Traykovski, P.

    2016-02-01

    Recent observations in the Columbia River Mouth, New River Inlet, and Wasque Shoals have shown that tidally reversing mega-ripples are an ubiquitous bedform morphology in energetic tidal inlets. As the name implies, these bedforms reverse asymmetry and migration direction in each half tidal cycle. With wavelengths of 2 to 5 m and heights of 0.2 to 0.5 m, these bedforms are larger than current formed ripples, but smaller than dunes. Unlike dunes which have a depth dependent geometry, observations indicate the tidally reversing mega-ripples geometry is related to the time dependent tidal flow and independent of depth. Previous empirical relations for predicting the geometry of ripples or dunes do not successfully predict the geometry of these features. A time dependent geometric model was developed that accounts for the reversal of migration and asymmetry to successfully predict bedform geometry. The model requires sufficient sediment transport in each half tidal cycle to reverse the asymmetry before the bedforms begin to grow. Both the observations and model indicate that the complete reversal of asymmetry and development of a steep lee face occurs near or after maximum flow in each half tidal cycle. This phase lag in bedform response to tidal forcing also has important implications for bed stress in tidal inlets. Observations of frictional drag in the Columbia River mouth based on a tidal momentum balance of surface slope over 10 km regressed against quadratic near bed velocity show drag coefficients that fall off as CD U-1.4. Reynolds stress measurements performed using the dual ADV differencing technique show similar relations. The Reynolds stress measurements also show a dramatic asymmetry between accelerating flows and decelerating flows with a factor of 5 increase during deceleration. Pulse coherent Doppler profiles of near bed turbulence indicate that the turbulence is dominated by energetic fluctuations in separation zones downstream of steep lee faces. The

  4. Evaluation of streambed scour at bridges over tidal waterways in Alaska

    Science.gov (United States)

    Conaway, Jeffrey S.; Schauer, Paul V.

    2012-01-01

    The potential for streambed scour was evaluated at 41 bridges that cross tidal waterways in Alaska. These bridges are subject to several coastal and riverine processes that have the potential, individually or in combination, to induce streambed scour or to damage the structure or adjacent channel. The proximity of a bridge to the ocean and water-surface elevation and velocity data collected over a tidal cycle were criteria used to identify the flow regime at each bridge, whether tidal, riverine, or mixed, that had the greatest potential to induce streambed scour. Water-surface elevations measured through at least one tide cycle at 32 bridges were correlated to water levels at the nearest tide station. Asymmetry of the tidal portion of the hydrograph during the outgoing tide at 12 bridges indicated that riverine flows were stored upstream of the bridge during the tidal exchange. This scenario results in greater discharges and velocities during the outgoing tide compared to those on the incoming tide. Velocity data were collected during outgoing tides at 10 bridges that experienced complete flow reversals, and measured velocities during the outgoing tide exceeded the critical velocity required to initiate sediment transport at three sites. The primary risk for streambed scour at most of the sites considered in this study is from riverine flows rather than tidal fluctuations. A scour evaluation for riverine flow was completed at 35 bridges. Scour from riverine flow was not the primary risk for six tidally-controlled bridges and therefore not evaluated at those sites. Field data including channel cross sections, a discharge measurement, and a water-surface slope were collected at the 35 bridges. Channel instability was identified at 14 bridges where measurable scour and or fill were noted in repeated surveys of channel cross sections at the bridge. Water-surface profiles for the 1-percent annual exceedance probability discharge were calculated by using the Hydrologic

  5. Tidal day organic and inorganic material flux of ponds in the Liberty Island freshwater tidal wetland.

    Science.gov (United States)

    Lehman, Peggy W; Mayr, Shawn; Liu, Leji; Tang, Alison

    2015-01-01

    The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72-87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29-96% of the inorganic and 4-81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the

  6. Tidal Heating in Multilayered Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  7. Tidal heating in multilayered terrestrial exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Wade G.; Hurford, Terry, E-mail: wade.g.henning@nasa.gov [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2014-07-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  8. Tidal heating in multilayered terrestrial exoplanets

    International Nuclear Information System (INIS)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R E is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  9. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  10. Tidal flow in the Escravos Bar, Warri, Nigeria | Oghre | Journal of the ...

    African Journals Online (AJOL)

    Nature has placed a lot of resources at the disposal of mankind to annex for his uses. Day by day man is grasping the enormity of the potential at his disposal. It is now possible to use tidal flows in the generation of electricity. Escravos Bar, Warri is one of many estuaries in the Nigeria coastline where tidal flows occur.

  11. An Introduction to the San Francisco Estuary Tidal Wetlands Restoration Series

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands may provide an important tool for improving ecological health and water management for beneficial uses of the San Francisco Estuary (hereafter “Estuary”. Given the large losses of tidal wetlands from San Francisco Bay and the Sacramento-San Joaquin Delta in the last 150 years, it seems logical to assume that restoring tidal wetlands will have benefits for a variety of aquatic and terrestrial native species that have declined during the same time period. However, many other changes have also occurred in the Estuary concurrent with the declines of native species. Other factors that might be important in species declines include the effects of construction of upstream dams, large and small water diversions within the Sacramento-San Joaquin Delta, agricultural pesticides, trace elements from industrial and agricultural activities, and invasions of alien species. Discussions among researchers, managers, and stakeholders have identified a number of uncertainties regarding the potential benefits of tidal wetland restoration. The articles of the Tidal Wetlands Restoration Series address four major issues of concern. Stated as questions, these are: 1. Will tidal wetland restoration enhance populations of native fishes? 2. Will wetland restoration increase rates of methylation of mercury? 3. Will primary production and other ecological processes in restored tidal wetlands result in net export of organic carbon to adjacent habitats, resulting in enhancement of the food web? Will the carbon produced contribute to the formation of disinfection byproducts when disinfected for use as drinking water? 4. Will restored tidal wetlands provide long-term ecosystem benefits that can be sustained in response to ongoing physical processes, including sedimentation and hydrodynamics? Reducing the uncertainty surrounding these issues is of critical importance because tidal wetland restoration is assumed to be a critical tool for

  12. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    International Nuclear Information System (INIS)

    Efroimsky, Michael; Makarov, Valeri V.

    2013-01-01

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  13. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    Energy Technology Data Exchange (ETDEWEB)

    Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)

    2013-02-10

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  14. Earth Tidal Controls on Basal Dynamics and Hydrology

    Science.gov (United States)

    Kulessa, B.; Hubbard, B. P.; Brown, G. H.; Becker, J.

    2001-12-01

    We appraise earth tidal forcing of coupled mechanical and hydrological processes beneath warm-based ice masses, which have to date been poorly documented but represent exciting phenomena that have important implications for future studies of glacier dynamics. Regular cycles in winter and early spring electrical self-potential (SP), water pressure (PW) and electrical conductivity (EC) were recorded at the bases of several boreholes drilled through Haut Glacier d'Arolla, Switzerland. Fourier power spectra of these data reflect the presence of diurnal and semi-diurnal cycles, and comparison with the earth tidal spectrum indicates that at least four components of the latter are visible in the borehole spectra: the luni-solar diurnal, the principal lunar diurnal, the principal solar semi-diurnal, and the principal lunar semi-diurnal. This correspondence suggests that earth tides exert a strong control over water flow at the bed of the glacier, at least during winter and early spring. We envisage a mechanism that involves earth-tide induced deformation of the bedrock and the unconsolidated sediments beneath the glacier, and to a certain extent probably also the overlying ice body. Basal water pockets, including those containing our sensors, located within these media are in turn also likely to be deformed periodically. We believe that PW gradients induced by such deformation may result in transient water flow and SPs in the pockets. Since PW and EC are typically out-of-phase, injection of waters of lower EC into the pockets during times of peak water flow is likely. Several lines of evidence suggest that such injection was caused by melting of the ice wall due to frictional heating, balancing creep closure which sustained some pockets through the winter. Further, the first annually-repeated post-winter reorganization event, termed the May event, may well be triggered by tidally-induced releases of waters from storage. This implies that the May event marks the opening of

  15. Evaluation of tidal stream energy and its impacts on surrounding dynamics in the Eastern Region of Pingtan Island, China

    Science.gov (United States)

    Wu, He; Wang, Xin; Wang, Bingzhen; Bai, Yang; Wang, Peitao

    2017-11-01

    Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southern cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.

  16. Light rays and the tidal gravitational pendulum

    Science.gov (United States)

    Farley, A. N. St J.

    2018-05-01

    Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null

  17. ON THE DIRECT IMAGING OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Mary Anne; Turner, Edwin L., E-mail: mapeters@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-06-01

    We demonstrate the ability of existing and planned telescopes, on the ground and in space, to directly image tidally heated exomoons orbiting gas-giant exoplanets. Tidally heated exomoons can plausibly be far more luminous than their host exoplanet and as much as 0.1% as bright as the system's stellar primary if it is a low mass star. Because emission from exomoons can be powered by tidal forces, they can shine brightly at arbitrarily large separations from the system's stellar primary with temperatures of several hundreds degrees Kelvin or even higher in extreme cases. Furthermore, these high temperatures can occur in systems that are billions of years old. Tidally heated exomoons may thus be far easier targets for direct imaging studies than giant exoplanets which must be both young and at a large projected separation (typically at least tens of AU) from their primary to be accessible to current generation direct imaging studies. For example, the (warm) Spitzer Space Telescope and the next generation of ground based instruments could detect an exomoon roughly the size of the Earth at a temperature Almost-Equal-To 600 K and a distance Almost-Equal-To 5 pc in the K, L, and M bands at the 5{sigma} confidence level with a one hour exposure; in more favorable but still plausible cases, detection at distances of tens of parsecs is feasible. Future mid-infrared space telescopes, such as James Webb Space Telescope and SPICA, will be capable of directly imaging tidally heated exomoons around the nearest two dozen stars with a brightness temperature {>=}300 K and R {>=} 1 R{sub Circled-Plus} orbiting at {>=}12 AU from the primary star at a 5{sigma} confidence level in a 10{sup 4} s integration. In addition it is possible that some of the exoplanets which have already been directly imaged are actually tidally heated exomoons or blends of such objects with hot young planets. If such exomoons exist and are sufficiently common (i.e., nearby), it may well be far

  18. Tidal energy in France

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2010-01-01

    The author first discusses the potential theoretical production of tidal energy in the world and more particularly in France, and compares this potential production with that of hydroelectric energy. He discusses the existence of potentially interesting sites in France in terms of sizing and exploitation modes. He describes the main associated works for turbines and sea walls, impacts on the environment, on the economy and on employment. He discusses the production possibilities and their cost, and the issue of energy storage. He indicates sites which could be built before 2025: Saint-Brieuc, Portbail-Coutainville or Granville, Mers or Cayeux, Penly or Saint-Valery en Caux. For each of this site, the author describes the project implantation, gives an gross assessment of the construction cost, and therefore of the kWh cost

  19. Tidal triggering of earthquakes in the Ning'er area of Yunnan Province, China

    Science.gov (United States)

    Xie, Chaodi; Lei, Xinglin; Zhao, Xiaoyan; Ma, Qingbo; Yang, Simeng; Wang, Yingnan

    2017-05-01

    To investigate the potential effect of tidal modulation on the seismicity in the Ning'er area, a seismically and geothermally active zone in Yunnan Province, China, we studied the correlation between Earth tides and the occurrence of M ≥ 6.0 earthquakes dating back to 1970, as well as their aftershock sequences, using theoretically calculated tidal stresses and a statistical test. The results show a significant correlation between Earth tides and the occurrence of earthquakes. Six of seven main events occurred when the Earth tide increased the Coulomb failure stress on the source fault. Four main events occurred in a narrow range of phase angle corresponding to the maximum loading rate of tidal stress. Furthermore, the histories of the aftershock sequence as a function of the tidal phases demonstrate clear tidal modulation with a high significance. Thus, we conclude that Earth tides have a clear role in triggering (or modulating) the rupture of the fault systems in the Ning'er area.

  20. Potentiality Prediction of Electric Power Replacement Based on Power Market Development Strategy

    Science.gov (United States)

    Miao, Bo; Yang, Shuo; Liu, Qiang; Lin, Jingyi; Zhao, Le; Liu, Chang; Li, Bin

    2017-05-01

    The application of electric power replacement plays an important role in promoting the development of energy conservation and emission reduction in our country. To exploit the potentiality of regional electric power replacement, the regional GDP (gross domestic product) and energy consumption are taken as potentiality evaluation indicators. The principal component factors are extracted with PCA (principal component analysis), and the integral potentiality analysis is made to the potentiality of electric power replacement in the national various regions; a region is taken as a research object, and the potentiality of electric power replacement is defined and quantified. The analytical model for the potentiality of multi-scenario electric power replacement is developed, and prediction is made to the energy consumption with the grey prediction model. The relevant theoretical research is utilized to realize prediction analysis on the potentiality amount of multi-scenario electric power replacement.

  1. Formation of double galaxies by tidal capture

    International Nuclear Information System (INIS)

    Alladin, S.M.; Potdar, A.; Sastry, K.S.

    1975-01-01

    The conditions under which double galaxies may be formed by tidal capture are considered. Estimates for the increase in the internal energy of colliding galaxies due to tidal effects are used to determine the magnitudes Vsub(cap) and Vsub(dis) of the maximum relative velocities at infinite separation required for tidal capture and tidal disruption respectively. A double galaxy will be formed by tidal capture without tidal disruption of a component if Vsub(cap)>Vsub(i) and Vsub(cap)>Vsub(dis) where Vsub(i) is the initial relative speed of the two galaxies at infinite separation. If the two galaxies are of the same dimension, formulation of double galaxies by tidal capture is possible in a close collision either if the two galaxies do not differ much in mass and density distribution or if the more massive galaxy is less centrally concentrated than the other. If it is assumed as statistics suggest, that the mass of a galaxy is proportional to the square of its radius, it follows that the probability of the formation of double galaxies by tidal capture increases with the increase in mass of the galaxies and tidal distribution does not occur in a single collision for any distance of closest approach of the two galaxies. (Auth.)

  2. Tidal controls on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  3. Microphytobenthos potential productivity estimated in three tidal embayments of the San Francisco Bay system

    Science.gov (United States)

    Guarini, Jean-Marc; Cloern, James E.; Edmunds, Jody L.; Gros, Philippe

    2002-01-01

    In this paper we describe a three-step procedure to infer the spatial heterogeneity in microphytobenthos primary productivity at the scale of tidal estuaries and embayments. The first step involves local measurement of the carbon assimilation rate of benthic microalgae to determine the parameters of the photosynthesis-irradiance (P-E) curves (using non-linear optimization methods). In the next step, a resampling technique is used to rebuild pseudo-sampling distributions of the local productivity estimates; these provide error estimates for determining the significance level of differences between sites. The third step combines the previous results with deterministic models of tidal elevation and solar irradiance to compute mean and variance of the daily areal primary productivity over an entire intertidal mudflat area within each embayment. This scheme was applied on three different intertidal mudflat regions of the San Francisco Bay estuary during autumn 1998. Microphytobenthos productivity exhibits strong (ca. 3-fold) significant differences among the major sub-basins of San Francisco Bay. This spatial heterogeneity is attributed to two main causes: significant differences in the photosynthetic competence (P-E parameters) of the microphytobenthos in the different sub-basins, and spatial differences in the phase shifts between the tidal and solar cycles controlling the exposure of intertidal areas to sunlight. The procedure is general and can be used in other estuaries to assess the magnitude and patterns of spatial variability of microphytobenthos productivity at the level of the ecosystems.

  4. Field migration rates of tidal meanders recapitulate fluvial morphodynamics

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-01

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

  5. Seasonal variability of tidal and non-tidal currents off Beypore, SW coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Srinivas, K.; AnilKumar, N.

    and summer monsoon seasons of year 2000. Information on tidal signals contained in the currents were extracted using harmonic analysis - Least Squares Method and non-tidal component were analyzed using the Chi sub(o) filter. The study established...

  6. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  7. Dynamics of tidal and non-tidal currents along the southwest continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Aruna, C.; Ravichandran, C.; Srinivas, K.; Rasheed, P.A.A.; Lekshmi, S.

    are predominantly mixed, semidiurnal in nature. Motion over any continental shelf is governed by the tide-driven oscillatory flow. In this paper, tidal and non-tidal characteristics of the waters of Southwest continental shelf of India are assessed using...

  8. Tidal and longshore sediment transport associated to a coastal structure

    Science.gov (United States)

    Cuadrado, Diana G.; Gómez, Eduardo A.; Ginsberg, S. Susana

    2005-01-01

    In order to understand the subtidal marine dynamics relative to the coastal engineering works in the Bahía Blanca Estuary (Argentina), the balance of sediment transport caused by tidal currents was estimated in the Puerto Rosales area and compared with the predicted potential littoral transport. The breaking wave height used in the littoral drift calculation was estimated after applying different wave transforming procedures over the deepwater wave which was predicted by the occurrence of predominant wind, blowing long enough in an essentially constant direction over a fetch. The effect of a breakwater on currents and circulation was studied by bathymetric and side-scan sonar records, sedimentology, and tidal current measurements. Different modes of transport occur on either sides of the breakwater. On the east side, longshore transport is the principal mode, and on the west side, tidal transport is predominant.

  9. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum

    Science.gov (United States)

    Bovy, Jo; Erkal, Denis; Sanders, Jason L.

    2017-04-01

    Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r matter is clumpy on the smallest scales relevant for galaxy formation.

  10. Field migration rates of tidal meanders recapitulate fluvial morphodynamics.

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-13

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths. Copyright © 2018 the Author(s). Published by PNAS.

  11. Effects of causeway construction on vegetation and sedimentation in North Carolina tidal marshes

    Science.gov (United States)

    Knowlton, A.; Leonard, L.; Pricope, N. G.; Eulie, D.

    2017-12-01

    Causeways, especially those constructed to facilitate transportation across low lying tidal marshes, are known to affect tidal exchanges and thereby potentially influence geological and biological processes in these ecosystems. While these impacts have been documented in several expansive marsh systems with large tidal ranges, the extent of these impacts in smaller tidal creek watersheds is less understood. This study examined how the presence, absence, and removal of small causeways affected sedimentological processes and vegetation characteristics in two small tidal creek watersheds in Wilmington, NC. Surficial deposition rates, determined using petri-dish sediment traps, indicate that mean deposition landward of a small causeway (1.64 mg cm-2day-1) is significantly lower (pchanges adjacent to the causeway. Partial causeway removal in one of these systems in 2006 also provided the opportunity to evaluate how the marsh canopy responded to causeway removal. Using Juncus roemerianus and Spartina alterniflora as a proxy for changes in tidal exchange, spectroradiometer data and aerial imagery available in 2006 and 2016 will be used to quantify changes in canopy coverage subsequent to causeway removal. Although this study is ongoing, the preliminary results indicate that small causeways, similar to their larger counterparts, significantly affect the rate and characteristics of sediment delivered to landward marshes and also affect tidal exchanges that lead to changes in vegetation characteristics.

  12. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

    2012-06-05

    Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

  13. The economics of tidal energy

    International Nuclear Information System (INIS)

    Denny, Eleanor

    2009-01-01

    Concern over global climate change has led policy makers to accept the importance of reducing greenhouse gas emissions. This in turn has led to a large growth in clean renewable generation for electricity production. Much emphasis has been on wind generation as it is among the most advanced forms of renewable generation, however, its variable and relatively unpredictable nature result in increased challenges for electricity system operators. Tidal generation on the other hand is almost perfectly forecastable and as such may be a viable alternative to wind generation. This paper calculates the break-even capital cost for tidal generation on a real electricity system. An electricity market model is used to determine the impact of tidal generation on the operating schedules of the conventional units on the system and on the resulting cycling costs, emissions and fuel savings. It is found that for tidal generation to produce positive net benefits for the case study, the capital costs would have to be less than Euro 510,000 per MW installed which is currently an unrealistically low capital cost. Thus, it is concluded that tidal generation is not a viable option for the case system at the present time.

  14. Tidal volume in acute respiratory distress syndrome: how best to select it.

    Science.gov (United States)

    Umbrello, Michele; Marino, Antonella; Chiumello, Davide

    2017-07-01

    Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO 2 R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented.

  15. Tidal sails : an alternative to turbines for harvesting tidal current energy

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, J.E. [Tidal Sails, Haugesund (Norway)

    2008-07-01

    Tidal sail technology harnesses the energy of tidal streams in order to produce electricity. Tidal currents move the sails that are attached to wires that rotate generator wheels to produce electricity. The technology has a low impact on the surrounding environment and is simple to install. This presentation discussed the methods used to determine the influence of relative sail velocity and measure estimated energy output levels. The sails were recently tested at an on-grid tidal stream pilot in the Norwegian Arctic. A 300 kW turbine installed at the site demonstrated that the site was suitable for a full-scale development of 20 tripod-mounted 600 kW turbines placed at 50 m depth. It was estimated that the 10 strings of 1000 m length provided between 200 and 250 GWh per year. The sails have also been used at a high speed site in Washington state in the United States. The 25 m pilot plant was installed to verify site suitability and examine sail behaviour in real, high-flow currents. It is expected that the technology will be fully commercialized by 2011. Other pilot tests are being conducted to examine flow behaviour; mooring and flotation functionality; and launch and lift capabilities. Engineering work is ongoing to examine plant designs, variable sail spacing, and collaborations with key component suppliers. tabs., figs.

  16. Homogeneous internal wave turbulence driven by tidal flows

    Science.gov (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team

    2017-11-01

    We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).

  17. Relativistic theory of tidal Love numbers

    International Nuclear Information System (INIS)

    Binnington, Taylor; Poisson, Eric

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  18. Effect of seabed roughness on tidal current turbines

    Science.gov (United States)

    Gupta, Vikrant; Wan, Minping

    2017-11-01

    Tidal current turbines are shown to have potential to generate clean energy for a negligible environmental impact. These devices, however, operate in high to moderate current regions where the flow is highly turbulent. It has been shown in flume tank experiments at IFREMER in Boulogne-Sur-Mer (France) and NAFL in the University of Minnesota (US) that the level of turbulence and boundary layer profile affect a turbine's power output and wake characteristics. A major factor that determines these marine flow characteristics is the seabed roughness. Experiments, however, cannot simulate the high Reynolds number conditions of real marine flows. For that, we rely on numerical simulations. High accuracy numerical methods, such as DNS, of wall-bounded flows are very expensive, where the number of grid-points needed to resolve the flow varies as (Re) 9 / 4 (where Re is the flow Reynolds number). While numerically affordable RANS methods compromise on accuracy. Wall-modelled LES methods, which provide both accuracy and affordability, have been improved tremendously in the recent years. We discuss the application of such numerical methods for studying the effect of seabed roughness on marine flow features and their impact on turbine power output and wake characteristics. NSFC, Project Number 11672123.

  19. Numerical Simulation of an Oscillatory-Type Tidal Current Powered Generator Based on Robotic Fish Technology

    Directory of Open Access Journals (Sweden)

    Ikuo Yamamoto

    2017-10-01

    Full Text Available The generation of clean renewable energy is becoming increasingly critical, as pollution and global warming threaten the environment in which we live. While there are many different kinds of natural energy that can be harnessed, marine tidal energy offers reliability and predictability. However, harnessing energy from tidal flows is inherently difficult, due to the harsh environment. Current mechanisms used to harness tidal flows center around propeller-based solutions but are particularly prone to failure due to marine fouling from such as encrustations and seaweed entanglement and the corrosion that naturally occurs in sea water. In order to efficiently harness tidal flow energy in a cost-efficient manner, development of a mechanism that is inherently resistant to these harsh conditions is required. One such mechanism is a simple oscillatory-type mechanism based on robotic fish tail fin technology. This uses the physical phenomenon of vortex-induced oscillation, in which water currents flowing around an object induce transverse motion. We consider two specific types of oscillators, firstly a wing-type oscillator, in which the optimal elastic modulus is being sort. Secondly, the optimal selection of shape from 6 basic shapes for a reciprocating oscillating head-type oscillator. A numerical analysis tool for fluid structure-coupled problems—ANSYS—was used to select the optimum softness of material for the first type of oscillator and the best shape for the second type of oscillator, based on the exhibition of high lift coefficients. For a wing-type oscillator, an optimum elastic modulus for an air-foil was found. For a self-induced vibration-type mechanism, based on analysis of vorticity and velocity distribution, a square-shaped head exhibited a lift coefficient of more than two times that of a cylindrically shaped head. Analysis of the flow field clearly showed that the discontinuous flow caused by a square-headed oscillator results in

  20. Development of tidal watersheds in the Wadden Sea

    NARCIS (Netherlands)

    Wang, Z.B.; Vroom, J.; van Prooijen, B.C.; Labeur, R.J.; Stive, M.J.F.; Hansen, M.H.P.

    2011-01-01

    The Wadden Sea consists of a series of tidal lagoons which are connected to the North Sea by tidal inlets. Boundaries to each lagoon are the mainland coast, the barrier islands on both sides of the tidal inlet, and the tidal watersheds behind the two barrier islands. Behind each Wadden Island there

  1. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    International Nuclear Information System (INIS)

    Fuller, Jim; Lai Dong

    2012-01-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10 5 -10 6 years.

  2. Assessing the potential for measuring Europa's tidal Love number h2 using radar sounder and topographic imager data

    Science.gov (United States)

    Steinbrügge, G.; Schroeder, D. M.; Haynes, M. S.; Hussmann, H.; Grima, C.; Blankenship, D. D.

    2018-01-01

    The tidal Love number h2 is a key geophysical measurement for the characterization of Europa's interior, especially of its outer ice shell if a subsurface ocean is present. We performed numerical simulations to assess the potential for estimating h2 using altimetric measurements with a combination of radar sounding and stereo imaging data. The measurement principle exploits both delay and Doppler information in the radar surface return in combination with topography from a digital terrain model (DTM). The resulting radar range measurements at cross-over locations can be used in combination with radio science Doppler data for an improved trajectory solution and for estimating the h2 Love number. Our simulation results suggest that the absolute accuracy of h2 from the joint analysis of REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) surface return and EIS (Europa Imaging System) DTM data will be in the range of 0.04-0.17 assuming full radio link coverage. The error is controlled by the SNR budget and DTM quality, both dependent on the surface properties of Europa. We estimate that this would unambiguously confirm (or reject) the global ocean hypothesis and, in combination with a nominal radio-science based measurement of the tidal Love number k2, constrain the thickness of Europa's outer ice shell to up to ±15 km.

  3. Assessment of tidal and wave energy conversion technologies in Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This paper presented an attractive option to help meet Canada's future energy needs, notably the vast and energetic Atlantic, Pacific and Arctic coastal waters which make ocean renewable energy, particularly tidal in-stream energy conversion (TISEC) and wave energy conversion (WEC). There is much uncertainty regarding the possible environmental impacts associated with their deployment and operation. In support of commercial development of the industry, a review of scientific knowledge was needed for the development of policy and regulations consistent with Canada's conservation and sustainability priorities. In April 2009, Fisheries and Oceans Canada (DFO) hosted a two-day national science advisory process meeting in order to determine the current state of knowledge on the environmental impacts of tidal and wave energy conversion technologies and their application in the Canadian context based on published reports. Potential mitigation measures were identified and the feasibility of developing a relevant Canadian statement of practice was determined. This report presented an assessment and analysis of wave power, including the impacts on physical processes; impacts on habitat characteristics; impacts on water quality; impacts of noise and vibrations; impacts of electromagnetic fields; impacts of physical encounters; cumulative impacts; and mitigation measures. It was concluded that there is a recognized need to develop and maintain national and regional georeferenced, interoperable, standards-based databases that enable access by governments, developers, academics, non-governmental organizations and the general public. 1 ref., 1 fig.

  4. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    Science.gov (United States)

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  5. Tidal influence on subtropical estuarine methane emissions

    Science.gov (United States)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period

  6. Counter-rotating type tidal stream power unit boarded on pillar (performances and flow conditions of tandem propellers)

    Science.gov (United States)

    Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju

    2013-12-01

    The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.

  7. Multi-criteria decision-making on assessment of proposed tidal barrage schemes in terms of environmental impacts.

    Science.gov (United States)

    Wu, Yunna; Xu, Chuanbo; Ke, Yiming; Chen, Kaifeng; Xu, Hu

    2017-12-15

    For tidal range power plants to be sustainable, the environmental impacts caused by the implement of various tidal barrage schemes must be assessed before construction. However, several problems exist in the current researches: firstly, evaluation criteria of the tidal barrage schemes environmental impact assessment (EIA) are not adequate; secondly, uncertainty of criteria information fails to be processed properly; thirdly, correlation among criteria is unreasonably measured. Hence the contributions of this paper are as follows: firstly, an evaluation criteria system is established from three dimensions of hydrodynamic, biological and morphological aspects. Secondly, cloud model is applied to describe the uncertainty of criteria information. Thirdly, Choquet integral with respect to λ-fuzzy measure is introduced to measure the correlation among criteria. On the above bases, a multi-criteria decision-making decision framework for tidal barrage scheme EIA is established to select the optimal scheme. Finally, a case study demonstrates the effectiveness of the proposed framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Tidal Dwarf Galaxies: Disc Formation at \\(z\\simeq0\\

    Directory of Open Access Journals (Sweden)

    Federico Lelli

    2015-11-01

    Full Text Available Collisional debris around interacting and post-interacting galaxies often display condensations of gas and young stars that can potentially form gravitationally bound objects: Tidal Dwarf Galaxies (TDGs. We summarise recent results on TDGs, which are originally published in Lelli et al. (2015, A&A.We study a sample of six TDGs around three different interacting systems, using high-resolution HI observations from the Very Large Array. We find that the HI emission associated to TDGs can be described by rotating disc models. These discs, however, would have undergone less than one orbit since the time of the TDG formation, raising the question of whether they are in dynamical equilibrium. Assuming that TDGs are in dynamical equilibrium, we find that the ratio of dynamical mass to baryonic mass is consistent with one, implying that TDGs are devoid of dark matter. This is in line with the results of numerical simulations where tidal forces effectively segregate dark matter in the halo from baryonic matter in the disc, which ends up forming tidal tails and TDGs.

  9. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  10. Tidal disruption of fuzzy dark matter subhalo cores

    Science.gov (United States)

    Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David

    2018-03-01

    We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.

  11. Determining the Effect of the Lunar Nodal Cycle on Tidal Mixing and North Pacific Climate Variability

    Science.gov (United States)

    Ullman, D. J.; Schmittner, A.; Danabasoglu, G.; Norton, N. J.; Müller, M.

    2016-02-01

    Oscillations in the moon's orbit around the earth modulate regional tidal dissipation with a periodicity of 18.6 years. In regions where the diurnal tidal constituents dominate diapycnal mixing, this Lunar Nodal Cycle (LNC) may be significant enough to influence ocean circulation, sea surface temperature, and climate variability. Such periodicity in the LNC as an external forcing may provide a mechanistic source for Pacific decadal variability (i.e. Pacific Decadal Oscillation, PDO) where diurnal tidal constituents are strong. We have introduced three enhancements to the latest version of the Community Earth System Model (CESM) to better simulate tidal-forced mixing. First, we have produced a sub-grid scale bathymetry scheme that better resolves the vertical distribution of the barotropic energy flux in regions where the native CESM grid does not resolve high spatial-scale bathymetric features. Second, we test a number of alternative barotropic tidal constituent energy flux fields that are derived from various satellite altimeter observations and tidal models. Third, we introduce modulations of the individual diurnal and semi-diurnal tidal constituents, ranging from monthly to decadal periods, as derived from the full lunisolar tidal potential. Using both ocean-only and fully-coupled configurations, we test the influence of these enhancements, particularly the LNC modulations, on ocean mixing and bidecadal climate variability in CESM.

  12. Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium

    NARCIS (Netherlands)

    van Damme, S.; Dehairs, F.; Tackx, M.; Beauchard, O.; Struyf, E.; Gribsholt, B.; van Cleemput, O.; Meire, P.

    2009-01-01

    Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a

  13. Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; Govers, G.; Lauwaet, D.

    2005-01-01

    This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export

  14. Which future for the tidal sector in France? Towards a new model of territorial development

    International Nuclear Information System (INIS)

    Aelbrecht, Denis; Deroo, Luc; Le Visage, Christophe; Rabain, Antoine

    2017-01-01

    This document proposes a brief overview of works by a French national work-group of the SHF (French Hydro-technical Society) on the new tidal sector. It indicates recent and current development in the renewable marine energy sector: offshore wind farms along the French coasts, floating wind energy demonstrators, several tidal stream demonstrators, and other projects. British projects are also evoked. Then various aspects which could be success factors, are briefly discussed: the tidal potential, project configuration types (dams in estuary, coastal lagoons, offshore lagoons), interactions with the environment (sea and coastal ecosystems, sediments), opportunities of technological innovation (belt of the tidal basin, machine technology, exploitation mode), the concept of tidal garden, economic performance and viability (orientations for cost reduction and income increase). The issue of feasibility with respect with the NIMBY syndrome is finally addressed, and orientations and principles are briefly defined to evolve towards a YINBY (Yes in my back yard) syndrome

  15. Widespread infilling of tidal channels and navigable waterways in human-modified tidal deltaplain of southwest Bangladesh

    Directory of Open Access Journals (Sweden)

    Carol Wilson

    2017-12-01

    Full Text Available Since the 1960s, ~5000 km2 of tidal deltaplain in southwest Bangladesh has been embanked and converted to densely inhabited, agricultural islands (i.e., polders. This landscape is juxtaposed to the adjacent Sundarbans, a pristine mangrove forest, both well connected by a dense network of tidal channels that effectively convey water and sediment throughout the region. The extensive embanking in poldered areas, however, has greatly reduced the tidal prism (i.e., volume of water transported through local channels. We reveal that >600 km of these major waterways have infilled in recent decades, converting to land through enhanced sedimentation and the direct blocking of waterways by embankments and sluice gates. Nearly all of the observed closures (~98% have occurred along the embanked polder systems, with no comparable changes occurring in channels of the Sundarbans (<2% change. We attribute most of the channel infilling to the local reduction of tidal prism in poldered areas and the associated decline in current velocities. The infilled channels account for ~90 km2 of new land in the last 40–50 years, the rate of which, ~2 km2/yr, offsets the 4 km2/yr that is eroded at the coast, and is equivalent to ~20% of the new land produced naturally at the Ganges-Brahmaputra tidal rivermouth. Most of this new land, called ‘khas’ in Bengali, has been reclaimed for agriculture or aquaculture, contributing to the local economy. However, benefits are tempered by the loss of navigable waterways for commerce, transportation, and fishing, as well as the forced rerouting of tidal waters and sediments necessary to sustain this low-lying landscape against rising sea level. A more sustainable delta will require detailed knowledge of the consequences of these hydrodynamic changes to support more scientifically-grounded management of water, sediment, and tidal energy distribution.

  16. Modeling Evaluation of Tidal Stream Energy and the Impacts of Energy Extraction on Hydrodynamics in the Taiwan Strait

    Directory of Open Access Journals (Sweden)

    Ming-Hsi Hsu

    2013-04-01

    Full Text Available Tidal stream speeds in straits are accelerated because of geographic and bathymetric features. For instance, narrow channels and shallows can cause high tidal stream energy. In this study, water level and tidal current were simulated using a three-dimensional semi-implicit Eulerian-Lagrangian finite-element model to investigate the complex tidal characteristics in the Taiwan Strait and to determine potential locations for harnessing tidal stream energy. The model was driven by nine tidal components (M2, S2, N2, K2, K1, O1, P1, Q1, and M4 at open boundaries. The modeling results were validated with the measured data, including water level and tidal current. Through the model simulations, we found that the highest tidal currents occurred at the Penghu Channel in the Taiwan Strait. The Penghu Channel is an appropriate location for the deployment of a tidal turbine array because of its deep and flat bathymetry. The impacts of energy extraction on hydrodynamics were assessed by considering the momentum sink approach. The simulated results indicate that only minimal impacts would occur on water level and tidal current in the Taiwan Strait if a turbine array (55 turbines was installed in the Penghu Channel.

  17. Differential growth of larval sprat Sprattus sprattus across a tidal front in the eastern North Sea

    DEFF Research Database (Denmark)

    Munk, Peter

    1993-01-01

    Spatial variations in abundance and growth of larval sprat Sprattus sprattus L. were examined across a tidal front in the eastern North Sea, off the west coast of Denmark. The aim of the study was to evaluate the potential advantage for sprat larvae of residing in the vicinity of a tidal front...

  18. Sedimentary structures of tidal flats

    Indian Academy of Sciences (India)

    Sedimentary structures of some coastal tropical tidal flats of the east coast of India, and inner estuarine tidal point bars located at 30 to 50 kilometers inland from the coast, have been extensively studied under varying seasonal conditions. The results reveal that physical features such as flaser bedding, herringbone ...

  19. Analysis of Tidal Data for Dagang Tidal Gauge and Study of the Changes for the National Height Datum

    Directory of Open Access Journals (Sweden)

    WU Fumei

    2015-07-01

    Full Text Available The main tides affecting Dagang sea level are analyzed and the national height datum is studied by analyzing 1980—2011 hourly tidal data and 1952—2007 monthly mean tidal data. Firstly, the frequencies and amplitudes of main tides including 180 short-period tides and 6 long-period tides are gained by the Fouirer transform. Then the actual amplitudes and their variations of main tides are obtained by the harmonic analysis of the 1980—2011 hourly tidal data, and the changes with about 19 year period can easily be found in the amplitudes of Q1、O1、M2、K1、K2. And then the changes of the mean sea level at Dagang tidal gauge defining national height datum during the period of 1952—2011 are studied by the harmonic analysis and the shifting average of 18.61 year tidal heights. The results of these methods show that the mean sea level at Dagang tidal gauge descended with the speed of 1.07 mm/a and 0.76 mm/a respectively during 1952—1980, and that it ascended with the speed of 1.59 mm/a and 1.62 mm/a respectively during 1980—2011. And finally the difference of 0.14 cm is achieved by the shifting average of 18.61 year tidal heights for 1985 National Height Datum.

  20. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    Science.gov (United States)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  1. Hydrologically mediated iron reduction/oxidation fluctuations and dissolved organic carbon exports in tidal wetlands

    Science.gov (United States)

    Guimond, J. A.; Seyfferth, A.; Michael, H. A.

    2017-12-01

    Salt marshes are biogeochemical hotspots where large quantities of carbon are processed and stored. High primary productivity and deposition of carbon-laden sediment enable salt marsh soils to accumulate and store organic carbon. Conversely, salt marshes can laterally export carbon from the marsh platform to the tidal channel and eventually the ocean via tidal pumping. However, carbon export studies largely focus on tidal channels, missing key physical and biogeochemical mechanisms driving the mobilization of dissolved organic carbon (DOC) within the marsh platform and limiting our understanding of and ability to predict coastal carbon dynamics. We hypothesize that iron redox dynamics mediate the mobilization/immobilization of DOC in the top 30 cm of salt marsh sediment near tidal channels. The mobilized DOC can then diffuse into the flooded surface water or be advected to tidal channels. To elucidate DOC dynamics driven by iron redox cycles, we measured porewater DOC, Fe(II), total iron, total sulfate, pH, redox potential, and electrical conductivity (EC) beside the creek, at the marsh levee, and in the marsh interior in a mid-latitude tidal salt marsh in Dover, Delaware. Samples were collected at multiple tide stages during a spring and neap tide at depths of 5-75cm. Samples were also collected from the tidal channel. Continuous Eh measurements were made using in-situ electrodes. A prior study shows that DOC and Fe(II) concentrations vary spatially across the marsh. Redox conditions near the creek are affected by tidal oscillations. High tides saturate the soil and decrease redox potential, whereas at low tide, oxygen enters the sediment and increases the Eh. This pattern is always seen in the top 7-10cm of sediment, with more constant low Eh at depth. However, during neap tides, this signal penetrates deeper. Thus, between the creek and marsh levee, hydrology mediates redox conditions. Based on porewater chemistry, if DOC mobilization can be linked to redox

  2. Challenges in the modeling of tidal disruption events lightcurves

    Directory of Open Access Journals (Sweden)

    Lodato G.

    2012-12-01

    Full Text Available In this contribution, I review the recent developments on the modeling of the lightcurve of tidal disruption events. Our understanding has evolved significantly from the earlier seminal results that imply a simple power-law decay of the bolometric light curve as t−5/3. We now know that the details of the rise to the peak of the lightcurve is determined mainly by the internal structure of the disrupted star. We also have improved models for the disc thermal emission, showing that in this case the decline of the luminosity with time should be much flatter than the standard t−5/3 law, especially in optical and UV wavelengths, while the X-ray lightcurve is generally best suited to track the bolometric one. Finally, we are just starting to explore the interesting general relativistic effects that might arise for such events, for which the tidal radius lies very close to the black hole event horizon.

  3. Downstream hydraulic geometry of a tidally influenced river delta

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Brye, de B.; Deleersnijder, E.

    2012-01-01

    Channel geometry in tidally influenced river deltas can show a mixed scaling behavior between that of river and tidal channel networks, as the channel forming discharge is both of river and tidal origin. We present a method of analysis to quantify the tidal signature on delta morphology, by

  4. Conditions for tidal bore formation in convergent alluvial estuaries

    Science.gov (United States)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater

  5. Tidal energy site - Tidal energy site mammal/bird survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A vessel-based line visual transect survey was conducted for birds and marine mammals near the proposed Snohomish County PUD Admiralty Inlet tidal energy site...

  6. Tidal and sub-tidal sea level variability at the northern shelf of the Brazilian Northeast Region.

    Science.gov (United States)

    Frota, Felipe F; Truccolo, Eliane C; Schettini, Carlos A F

    2016-09-01

    A characterization of the sea level variability at tidal and sub-tidal frequencies at the northern shore of the Brazilian Northeast shelf for the period 2009-2011 is presented. The sea level data used was obtained from the Permanent Geodetic Tide Network from the Brazilian Institute of Geography and Statistics for the Fortaleza gauge station. Local wind data was also used to assess its effects on the low-frequency sea level variability. The variability of the sea level was investigated by classical harmonic analysis and by morphology assessment over the tidal signal. The low frequencies were obtained by low-pass filtering. The tidal range oscillated with the highest value of 3.3 m during the equinox and the lowest value of 0.7 m during the solstice. Differences between the spring and neap tides were as high as 1 m. A total of 59 tidal constituents were obtained from harmonic analysis, and the regional tide was classified as semi-diurnal pure with a form number of 0.11. An assessment of the monthly variability of the main tidal constituents (M2, S2, N2, O1, and K1) indicated that the main semi-diurnal solar S2 presented the highest variability, ranging from 0.21 to 0.41 m; it was the main element altering the form number through the years. The low frequency sea-level variability is negligible, although there is a persistent signal with an energy peak in the 10-15 day period, and it cannot be explained by the effects of local winds.

  7. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Jed Lipes

    2012-01-01

    Full Text Available Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI and acute respiratory distress syndrome (ARDS. Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges.

  8. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    Science.gov (United States)

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499

  9. Global wind power potential: Physical and technological limits

    International Nuclear Information System (INIS)

    Castro, Carlos de; Mediavilla, Margarita; Miguel, Luis Javier; Frechoso, Fernando

    2011-01-01

    This paper is focused on a new methodology for the global assessment of wind power potential. Most of the previous works on the global assessment of the technological potential of wind power have used bottom-up methodologies (e.g. ). Economic, ecological and other assessments have been developed, based on these technological capacities. However, this paper tries to show that the reported regional and global technological potential are flawed because they do not conserve the energetic balance on Earth, violating the first principle of energy conservation (). We propose a top-down approach, such as that in , to evaluate the physical-geographical potential and, for the first time, to evaluate the global technological wind power potential, while acknowledging energy conservation. The results give roughly 1 TW for the top limit of the future electrical potential of wind energy. This value is much lower than previous estimates and even lower than economic and realizable potentials published for the mid-century (e.g. ). - Highlights: → Reported wind power potentials are flawed because they violate energy conservation. → For the first time, it is evaluated the technological wind power potential with a top-down approach. → Our results show 1 TWe for the limit of wind power energy, which is much lower than previous estimates.

  10. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    International Nuclear Information System (INIS)

    Dobos, Vera; Turner, Edwin L.

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat

  11. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  12. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    Science.gov (United States)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  13. Tidal interactions with Kerr black holes

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1977-01-01

    The tidal deformation of an extended test body falling with zero angular momentum into a Kerr black hole is calculated. Numerical results for infall along the symmetry axis and in the equatorial plane of the black hole are presented for a range of values of a, the specific angular momentum of the black hole. Estimates of the tidal contribution to the gravitational radiation are also given. The tidal contribution in equatorial infall into a maximally rotating Kerr black hole may be of the same order as the center-of-mass contribution to the gravitational radiation

  14. Small-scale power plant potential in Finland

    International Nuclear Information System (INIS)

    Helynen, S.

    1993-01-01

    The presentation discusses the small-scale power plant potential in Finland. The study of the potential is limited to W-scale power plants producing both electric power and heat using solid fuels. The basic power plant dimensioning and electric power load determination is based on traditional boiler and gas turbine technology. The possible sites for power plants are communities using district heating, and industrialized sites needing process steam or heat. In 1990 70 % (17 TWh) of district heat was produced by gas turbines. Ten communities have an own back-pressure power plant, and 40 communities buy heat from industrial plants, owing back-pressure power generation. Additionally about 40 communes buy district heat from companies, owned by power companies and industry. Estimates of small-scale power plant potential has been made plant wise on the basis of district heat loads and industrial heat needs. The scale of the plants has been limited to scale 3 MWe or more. The choosing of the fuel depends on the local conditions. The cheapest indigenous fuels in many communes are industrial wood wastes, and both milled and sod peat. The potential of steam technology based small-scale power plants has been estimated to be about 50 plants in 1992/1993, the total power of which is 220-260 MW. The largest estimate is base situation, in which there would be energy cooperation between the communes and industry. The fuel used by the power plants would be about 5.4-6.6 TWh/a corresponding to 270-330 million FIM/a. The total investment costs of the plants would be about 2.0 billion FIM. The plants would employ about 250 persons, and the fuel supply (wood or peat) about 100 persons

  15. An assessment of fish mortality at the Rance tidal power barrage, Brittany, France

    International Nuclear Information System (INIS)

    Lockwood, S.J.; Baynes, S.M.

    1992-01-01

    This report describes the results of three weeks field work carried out on the Rance Estuary in August 1991. The objectives were to make a preliminary assessment of the relative frequency with which dead fish accumulate in the Rance barrage lock pit; to assess the likely cause of mortality; and to assess the success with which marine fish migrate across a tidal barrage by tagging a variety of species within the barrage basin. (author)

  16. Geometry of tidal inlet systems : A key factor for the net sediment transport in tidal inlets

    NARCIS (Netherlands)

    Ridderinkhof, W.; de Swart, H. E.; van der Vegt, M.; Alebregtse, N. C.; Hoekstra, P.

    2014-01-01

    The net transport of sediment between the back-barrier basin and the sea is an important process for determining the stability of tidal inlet systems. Earlier studies showed that in a short basin, tidal flats favor peak ebb-currents stronger than peak flood currents, implying export of coarse

  17. High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon

    Science.gov (United States)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Ferrarin, Christian; Pizzeghello, Nicola Marco; Murri, Chiara; Rossi, Monica; Bajo, Marco; Bellafiore, Debora; Campiani, Elisabetta; Fogarin, Stefano; Grande, Valentina; Janowski, Lukasz; Keppel, Erica; Leidi, Elisa; Lorenzetti, Giuliano; Maicu, Francesco; Maselli, Vittorio; Mercorella, Alessandra; Montereale Gavazzi, Giacomo; Minuzzo, Tiziano; Pellegrini, Claudio; Petrizzo, Antonio; Prampolini, Mariacristina; Remia, Alessandro; Rizzetto, Federica; Rovere, Marzia; Sarretta, Alessandro; Sigovini, Marco; Sinapi, Luigi; Umgiesser, Georg; Trincardi, Fabio

    2017-09-01

    Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.

  18. Tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  19. Microphytobenthic potential productivity estimated in three tidal embayments of the San Francisco Bay: A comparative study

    Science.gov (United States)

    Guarini, J.-M.; Cloern, James E.; Edmunds, J.

    2002-01-01

    In this paper we describe a three-step procedure to infer the spatial heterogeneity in microphytobenthos primary productivity at the scale of tidal estuaries and embayments. The first step involves local measurement of the carbon assimilation rate of benthic microalgae to determine the parameters of the photosynthesis-irradiance (P-E) curves (using non-linear optimization methods). In the next step, a resampling technique is used to rebuild pseudo-sampling distributions of the local productivity estimates; these provide error estimates for determining the significance level of differences between sites. The third step combines the previous results with deterministic models of tidal elevation and solar irradiance to compute mean and variance of the daily areal primary productivity over an entire intertidal mudflat area within each embayment. This scheme was applied on three different intertidal mudflat regions of the San Francisco Bay estuary during autumn 1998. Microphytobenthos productivity exhibits strong (ca. 3-fold) significant differences among the major sub-basins of San Francisco Bay. This spatial heterogeneity is attributed to two main causes: significant differences in the photosynthetic competence (P-E parameters) of the microphytobenthos in the different sub-basins, and spatial differences in the phase shifts between the tidal and solar cycles controlling the exposure of intertidal areas to sunlight. The procedure is general and can be used in other estuaries to assess the magnitude and patterns of spatial variability of microphytobenthos productivity at the level of the ecosystems.

  20. TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2011-01-01

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q 1 ∼ 7 x 10 10 and Q 2 ∼ 2 x 10 7 , for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q 1 for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

  1. Temporal variation of aerobic methane oxidation over a tidal cycle in a wetland of northern Taiwan.

    Science.gov (United States)

    Lee, T. Y.; Wang, P. L.; Lin, L. H.

    2017-12-01

    Aerobic methanotrophy plays an important role in controlling methane emitted from wetlands. However, the activity of aerobic methanotrophy regulated by temporal fluctuation of oxygen and methane supply in tidal wetlands is not well known. This study aims to examine the dynamics of methane fluxes and potential aerobic methane consumption rates in a tidal wetland of northern Taiwan, where the variation of environmental characteristics, such as sulfate and methane concentration in pore water has been demonstrated during a tidal cycle. Two field campaigns were carried out in December of 2016 and March of 2017. Fluxes of methane emission, methane concentrations in surface sediments and oxygen profiles were measured at different tidal phases. Besides, batch incubations were conducted on surface sediments in order to quantify potential microbial methane consumption rates and to derive the kinetic parameters for aerobic methanotrophy. Our results demonstrated temporal changes of the surface methane concentration and the methane emission flux during a tidal cycle, while the oxygen flux into the sediment was kept at a similar magnitude. The methane flux was low when the surface was exposed for both shortest and longest periods of time. The potential aerobic methane oxidation rate was high for sample collected from the surface sediments exposed the longest. No correlation could be found between the potential aerobic methane oxidation rate and either the oxygen downward flux or methane emission flux. The decoupled relationships between these observed rates and fluxes suggest that, rather than aerobic methanotrophy, heterotrophic respirations exert a profound control on oxygen flux, and the methane emission is not only been affected by methane consumption but also methane production at depths. The maximum potential rate and the half saturation concentration determined from the batch incubations were high for the surface sediments collected in low tide, suggesting that aerobic

  2. TIDAL EVOLUTION OF CLOSE-IN PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Rasio, Frederic A.; Peale, Stanton J.

    2010-01-01

    Recent discoveries of several transiting planets with clearly non-zero eccentricities and some large obliquities started changing the simple picture of close-in planets having circular and well-aligned orbits. The two major scenarios that form such close-in planets are planet migration in a disk and planet-planet interactions combined with tidal dissipation. The former scenario can naturally produce a circular and low-obliquity orbit, while the latter implicitly assumes an initially highly eccentric and possibly high-obliquity orbit, which are then circularized and aligned via tidal dissipation. Most of these close-in planets experience orbital decay all the way to the Roche limit as previous studies showed. We investigate the tidal evolution of transiting planets on eccentric orbits, and find that there are two characteristic evolution paths for them, depending on the relative efficiency of tidal dissipation inside the star and the planet. Our study shows that each of these paths may correspond to migration and scattering scenarios. We further point out that the current observations may be consistent with the scattering scenario, where the circularization of an initially eccentric orbit occurs before the orbital decay primarily due to tidal dissipation in the planet, while the alignment of the stellar spin and orbit normal occurs on a similar timescale to the orbital decay largely due to dissipation in the star. We also find that even when the stellar spin-orbit misalignment is observed to be small at present, some systems could have had a highly misaligned orbit in the past, if their evolution is dominated by tidal dissipation in the star. Finally, we also re-examine the recent claim by Levrard et al. that all orbital and spin parameters, including eccentricity and stellar obliquity, evolve on a similar timescale to orbital decay. This counterintuitive result turns out to have been caused by a typo in their numerical code. Solving the correct set of tidal

  3. Relativistic tidal properties of neutron stars

    International Nuclear Information System (INIS)

    Damour, Thibault; Nagar, Alessandro

    2009-01-01

    We study the various linear responses of neutron stars to external relativistic tidal fields. We focus on three different tidal responses, associated to three different tidal coefficients: (i) a gravito-electric-type coefficient Gμ l =[length] 2l+1 measuring the lth-order mass multipolar moment GM a 1 ...a l induced in a star by an external lth-order gravito-electric tidal field G a 1 ...a l ; (ii) a gravito-magnetic-type coefficient Gσ l =[length] 2l+1 measuring the lth spin multipole moment GS a 1 ...a l induced in a star by an external lth-order gravito-magnetic tidal field H a 1 ...a l ; and (iii) a dimensionless 'shape' Love number h l measuring the distortion of the shape of the surface of a star by an external lth-order gravito-electric tidal field. All the dimensionless tidal coefficients Gμ l /R 2l+1 , Gσ l /R 2l+1 , and h l (where R is the radius of the star) are found to have a strong sensitivity to the value of the star's 'compactness'c≡GM/(c 0 2 R) (where we indicate by c 0 the speed of light). In particular, Gμ l /R 2l+1 ∼k l is found to strongly decrease, as c increases, down to a zero value as c is formally extended to the 'black hole (BH) limit'c BH =1/2. The shape Love number h l is also found to significantly decrease as c increases, though it does not vanish in the formal limit c→c BH , but is rather found to agree with the recently determined shape Love numbers of black holes. The formal vanishing of μ l and σ l as c→c BH is a consequence of the no-hair properties of black holes. This vanishing suggests, but in no way proves, that the effective action describing the gravitational interactions of black holes may not need to be augmented by nonminimal worldline couplings.

  4. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

    2008-03-18

    This document is the first annual report for the study titled “Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River.” Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program.

  5. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    Science.gov (United States)

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring

  6. Parametric instability and wave turbulence driven by tidal excitation of internal waves

    Science.gov (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael

    2018-04-01

    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.

  7. Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of 'banded' Renewables Obligation Certificates

    International Nuclear Information System (INIS)

    Allan, Grant; Gilmartin, Michelle; McGregor, Peter; Swales, Kim

    2011-01-01

    In this paper, publicly available cost data are used to calculate the private levelised costs of two marine energy technologies for UK electricity generation: Wave and Tidal Stream power. These estimates are compared to those for ten other electricity generation technologies whose costs were identified by the UK Government (). Under plausible assumptions for costs and performance, point estimates of the levelised costs of Wave and Tidal Stream generation are Pounds 190 and Pounds 81/MWh, respectively. Sensitivity analysis shows how these relative private levelised costs calculations are affected by variation in key parameters, specifically the assumed capital costs, fuel costs and the discount rate. We also consider the impact of the introduction of technology-differentiated financial support for renewable energy on the cost competitiveness of Wave and Tidal Stream power. Further, we compare the impact of the current UK government support level to the more generous degree of assistance for marine technologies that is proposed by the Scottish government. - Research highlights: → Levelised costs of electricity generation from wave and tidal stream in UK calculated. → Comparison to ten renewable and non-renewable technologies demonstrated. → Sensitivity of levelised costs to key assumptions is demonstrated. → Technology-specific financial support revealed to be insufficient at current costs.

  8. Illuminating massive black holes with white dwarfs: orbital dynamics and high-energy transients from tidal interactions

    International Nuclear Information System (INIS)

    MacLeod, Morgan; Goldstein, Jacqueline; Ramirez-Ruiz, Enrico; Guillochon, James; Samsing, Johan

    2014-01-01

    White dwarfs (WDs) can be tidally disrupted only by massive black holes (MBHs) with masses less than ∼10 5 M ☉ . These tidal interactions feed material to the MBH well above its Eddington limit, with the potential to launch a relativistic jet. The corresponding beamed emission is a promising indication of an otherwise quiescent MBH of relatively low mass. We show that the mass transfer history, and thus the light curve, is quite different when the disruptive orbit is parabolic, eccentric, or circular. The mass lost each orbit exponentiates in the eccentric-orbit case, leading to the destruction of the WD after several tens of orbits. We examine the stellar dynamics of clusters surrounding MBHs to show that single-passage WD disruptions are substantially more common than repeating encounters. The 10 49 erg s –1 peak luminosity of these events makes them visible to cosmological distances. They may be detectible at rates of as many as tens per year by instruments like Swift. In fact, WD-disruption transients significantly outshine their main-sequence star counterparts and are the tidal interaction most likely to be detected arising from MBHs with masses less than 10 5 M ☉ . The detection or nondetection of such WD-disruption transients by Swift is, therefore, a powerful tool to constrain the lower end of the MBH mass function. The emerging ultralong gamma-ray burst class of events all have peak luminosities and durations reminiscent of WD disruptions, offering a hint that WD-disruption transients may already be present in existing data sets.

  9. Geometro-thermodynamics of tidal charged black holes

    International Nuclear Information System (INIS)

    Gergely, Laszlo Arpad; Pidokrajt, Narit; Winitzki, Sergei

    2011-01-01

    Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstroem black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstroe m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers. (orig.)

  10. Tidal Marshes: The Boundary between Land and Ocean.

    Science.gov (United States)

    Gosselink, James

    An overview of the ecology of the tidal marshes along the gulf coast of the United States is presented. The following topics are included: (1) the human impact on tidal marshes; (2) the geologic origins of tidal marshes; (3) a description of the physical characteristics and ecosystem of the marshlands; (4) a description of the marshland food chain…

  11. Satellite Tidal Magnetic Signals Constrain Oceanic Lithosphere-Asthenosphere Boundary Earth Tomography with Tidal Magnetic Signals

    Science.gov (United States)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  12. Ecological state of the Rance marine basin after 30 years of functioning of the tidal power plant

    International Nuclear Information System (INIS)

    Retiere, Ch.; Desroy, N.; Bonnot-Courtois, C.; Le Mao, P.

    1997-01-01

    The Rance basin on the Brittany coast (France) is the unique site in the world where the long term ecological impacts of the functioning of a tidal power plant can be evaluated. Two aspects are distinguished: the consequences due to the building the plant and those due to the functioning of the plant. During the building of the barrage which lasted 3 years, the estuary was isolated from the sea and led to an increase of sedimentation and organic matter and to important variations of the water salinity. Thus the whole marine flora and fauna disappeared. Today, the operation of the plant has changed the rhythm and amplitude of the tide inside the basin. Ten to fifteen years were necessary for the marine fauna and flora to recover a new equilibrium inside the basin after the plant was built. The functioning of the new ecosystem is governed by the relationship between species independently of the initial perturbation and its equilibrium is based on the regular functioning of the plant. (J.S.)

  13. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    Science.gov (United States)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  14. THE OBSERVATIONAL AND THEORETICAL TIDAL RADII OF GLOBULAR CLUSTERS IN M87

    International Nuclear Information System (INIS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-01-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  15. Effect of tidal fields on star clusters

    Science.gov (United States)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  16. WIYN Open Cluster Study: Tidal Interactions in Solar type Binaries

    OpenAIRE

    Meibom, S.; Mathieu, R. D.

    2003-01-01

    We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~1 Gyr. Binary populations older than ~1 G...

  17. Tidal propagation off the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    . [Keywords: Tidal propagation, Mumbai high, Global tidal model, Shelf model, Central west coast of India] Introduction In coastal regions, tides play an important role in determining circulation and hydrography. Barotropic tides coming from the open... with increase in the width of the shelf. Materials and Methods Global tidal models Schwiderski5 used a hydrodynamic interpolation technique to determine the amplitude and phase of tidal constituents of global ocean. Since the availability of satellite...

  18. Gravitational waves from the collision of tidally disrupted stars with massive black holes

    International Nuclear Information System (INIS)

    East, William E.

    2014-01-01

    We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.

  19. Migration Rate Of Tidal Meanders: Inferences From The Venice Lagoon

    Science.gov (United States)

    Finotello, A.; D'Alpaos, A.; Ghinassi, M.; Lanzoni, S.; Marani, M.; Rinaldo, A.

    2015-12-01

    Meandering channels are ubiquitous features of tidal landscapes. However, despite their fundamental role on the eco-morphodynamic evolution of these landscapes, tidal meanders have received less attention when compared to their fluvial counterparts. Improving current understanding of tidal meander migration, a largely-examined topic in fluvial landscapes, is a key step to highlight analogies and differences between tidal and fluvial cases. The migration of about 400 meander bends, belonging to 40 salt-marsh channels in the Northern Venice Lagoon (Italy), from 1968 to nowadays, has been investigated by means of both a classical method in fluvial frameworks and new procedure. Similarities with fluvial meanders occur, although important difference also emerge. Meanders cutting through the San Felice marsh follow the relationship between cartesian length and channel width, typical of meanders developed within different settings. However, meander migration rates proved to be smaller than those characterizing fluvial meanders. Indeed, the analysis of meander migration suggests a mean migration rate of about 0.10 m/year, consistent with the few data available in the literature. As for the fluvial case, the maximum-potential migration rate (i.e. the envelope curve of the relationship between migration rate and bend radius, both divided by channel width) reaches a maximum for radius-over-width ratio included between 2 and 3, regardless of the considered method. Nevertheless, the new-proposed method allows us to provide a more objective and continuous characterization. By using this new procedure, the channel curvature has finally been Fourier-analyzed, confirming the importance of even harmonics along the curvature spectrum. A correlation between migration rates and dominant harmonics seems to drive the evolution of tidal meanders and might represent a key-feature to distinguish them from their fluvial counterparts.

  20. Dissipation of Tidal Energy

    Science.gov (United States)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  1. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    Science.gov (United States)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  2. 3-D modelling the electric field due to ocean tidal flow and comparison with observations

    DEFF Research Database (Denmark)

    Kuvshinov, A.; Junge, A.; Utada, H.

    2006-01-01

    The tidal motion of the ocean water through the ambient magnetic field, generates secondary electric field. This motionally induced electric field can be detected in the sea or inland and has a potential for electrical soundings of the Earth. A first goal of the paper is to gain an understanding...... that in some coastal regions the amplitudes of the electric field can reach 100 mV/km and 10 mV/km for M2 and O1 tides respectively. The changes of lithosphere resistance produce detectable changes in the tidal electric signals. We show that our predictions are in a good agreement with observations....... of the global distribution of the electric signal due to tidal ocean flow. We simulate the electric signals for two tidal constituents - lunar semidiurnal (M2) and diurnal (O1) tides. We assume a realistic Earth's conductivity model with a surface thin shell and 1-D mantle underneath. Simulations demonstrate...

  3. Marine Hydrokinetic (MHK) Systems: A Systems Engineering Approach to Select Locations for the Practical Harvest of Electricity from Shallow Water Tidal Currents

    Science.gov (United States)

    Domenech, John

    Due to increasing atmospheric CO2 concentration and its effect on global climates, the United States Environmental Protection Agency (EPA) proposes a Clean Power Plan (CPP) mandating CO2 reductions which will likely force the early retirement of inefficient, aging power plants. Consequentially, removing these plants equates to a shortfall of approximately 66 GW of electricity. These factors add to the looming resource problems of choosing whether to build large replacement power plants or consider alternative energy sources as a means to help close the gap between electricity supply and demand in a given region. One energy source, shallow water tidal currents, represents opportunities to convert kinetic energy to mechanical forms and provide electricity to homes and businesses. Nearly 2,000 National Oceanic Atmospheric Administration (NOAA) tidal current data points from Maine to Texas are considered. This paper, based on systems engineering thinking, provides key attributes (e.g. turbine efficiency, array size, transmission losses) for consideration as decision makers seek to identify where to site Marine Hydrokinetic (MHK) systems and the number of homes powered by the practical harvest of electricity from tidal currents at those locations with given attributes. A systems engineering process model is proposed for consideration as is a regression based equation to estimate MHK machine parameters needed for power a given number of homes.

  4. Sub-Saharan hydroelectric power development potential

    International Nuclear Information System (INIS)

    Lazenby, J.B.C.

    1991-01-01

    Though evidencing a power demand which is amongst the lowest in the world, the sub-Saharan regions of Africa are blessed with an enormous hydroelectric power resource potential, which, if suitably developed and tapped, may become a source of economic electric energy for Europe. With the aid of numerous statistical supply and demand data, this paper surveys the marketing potential of this energy source in Africa. The analysis of future development prospects is carried out with reference to the local socio-economic framework

  5. Observations of ebb flows on tidal flats: Evidence of dewatering?

    Science.gov (United States)

    Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.

    2010-12-01

    Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures

  6. Formation and evolution of substructures in tidal tails: spherical dark matter haloes

    Science.gov (United States)

    Reinoso, B.; Fellhauer, M.; Véjar, R.

    2018-05-01

    Recently a theory about the formation of overdensities of stars along tidal tails of globular clusters has been presented. This theory predicts the position and the time of the formation of such overdensities and was successfully tested with N-body simulations of globular clusters in a point-mass galactic potential. In this work, we present a comparison between this theory and our simulations using a dwarf galaxy orbiting two differently shaped dark matter haloes to study the effects of a cored and a cuspy halo on the formation and the evolution of tidal tails. We find no difference using a cuspy or a cored halo, however, we find an intriguing asymmetry between the leading arm and the trailing arm of the tidal tails. The trailing arm grows faster than the leading arm. This asymmetry is seen in the distance to the first overdensity and its size as well. We establish a relation between the distance to the first overdensity and the size of this overdensity.

  7. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    Science.gov (United States)

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  8. Remotely sensed evidence of the rapid loss of tidal flats in the Yellow Sea

    Science.gov (United States)

    Murray, N. J.; Phinn, S. R.; Clemens, R. S.; Possingham, H.; Fuller, R. A.

    2013-12-01

    In East Asia's Yellow Sea, intertidal wetlands are the frontline ecosystem protecting a coastal population of more than 150 million people from storms and sea-level rise. Despite widespread coastal change and severe modification of the region's major river systems, the magnitude and distribution of coastal wetland loss remains unquantified. We developed a novel remote sensing method to solve the difficult problem of mapping intertidal wetlands over large areas and mapped the extent of tidal flats, the region's primary coastal ecosystem, over 4000kms of coastline at two time periods: the 1980s and late 2000s. We used a regionally validated tide model to identify Landsat images acquired at high and low tides, allowing the area between the high and low tide waterlines to be mapped by differencing classified land-water images between the two tidal stages. Our analysis of the change in areal extent of tidal flats in the Yellow Sea indicates that of the 545,000 ha present in the 1980s, only 389,000 ha remained three decades later, equating to a net loss of 28% at a mean rate of 1.2 % yr-1. ). Comparing the three countries in our analysis, China lost more tidal flat and at a faster rate (39.8%, 1.8% yr-1) than South Korea (32.2%, 1.6% yr-1), and in North Korea minor gains of tidal flat were recorded at (8.5%, 0.3 yr-1). For the same mapped area, historical maps suggest that tidal flats occupied up to 1.14 million ha in the mid-1950s, equating to a potential net loss of up to 65% over ~50 years. Coastal land reclamation for agriculture, aquaculture and urban development is a major driver of tidal flat loss, particularly in China and South Korea, although region-wide declines in sediment replenishment from rivers is also occurring. To conserve the ecosystem services provided by tidal flats and ensure protection of the region's coastal biodiversity, conservation actions should target protection of tidal flats and encourage collaborative and properly planned development

  9. Tidal effects in twin-degenerate binaries

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1984-01-01

    The tidal velocity field is calculated for an initially non-rotating low mass white dwarf secondary in a twin-degenerate binary. These motions are used to find the tidal torque on the secondary, to first order in the orbital frequency, and an expression is derived for the synchronization time. For a lobe-filling secondary the synchronization time has a weak dependence on the mass and luminosity of the star, and for the binary G61-29 is found to be of the same order as the estimated lifetime of the system. It is emphasized, however, that tidal excitation of non-radial oscillatory modes in the secondary may significantly shorten the synchronization time. (author)

  10. Spin-orbital Tidal Dynamics and Tidal Heating in the TRAPPIST-1 Multiplanet System

    Science.gov (United States)

    Makarov, Valeri V.; Berghea, Ciprian T.; Efroimsky, Michael

    2018-04-01

    We perform numerical simulations of the TRAPPIST-1 system of seven exoplanets orbiting a nearby M dwarf, starting with a previously suggested stable configuration. The long-term stability of this configuration is confirmed, but the motion of planets is found to be chaotic. The eccentricity values are found to vary within finite ranges. The rates of tidal dissipation and tidal evolution of orbits are estimated, assuming an Earth-like rheology for the planets. We find that under this assumption, the planets b, d, and e were captured in the 3:2 or higher spin–orbit resonances during the initial spin-down, but slipped further down into the 1:1 resonance. Depending on its rheology, the innermost planet b may be captured in a stable pseudosynchronous rotation. Nonsynchronous rotation ensures higher levels of tidal dissipation and internal heating. The positive feedback between the viscosity and the dissipation rate—and the ensuing runaway heating—are terminated by a few self-regulation processes. When the temperature is high and the viscosity is low enough, the planet spontaneously leaves the 3:2 resonance. Further heating is stopped either by passing the peak dissipation or by the emergence of partial melt in the mantle. In the post-solidus state, the tidal dissipation is limited to the levels supported by the heat transfer efficiency. The tides on the host star are unlikely to have had a significant dynamical impact. The tides on the synchronized inner planets tend to reduce these planets’ orbital eccentricity, possibly contributing thereby to the system’s stability.

  11. Understanding the Influence of Retention Basin on Tidal Dynamics in Tidal Estuaries

    Science.gov (United States)

    Kumar, Mohit; Schuttelaars, Henk; Roos, Pieter

    2014-05-01

    Both the tidal motion and suspended sediment concentration (SSC) in tidal embayments and estuaries are influenced by anthropogenic (e.g. deepening ) and natural changes. An example of such an estuary is the Ems estuary, situated on the border of the Netherlands and Germany. The mean tidal range towards the end of the Ems estuary has increased from 1.5m in the 1950s to more than 3m in the 1990s while the suspended concentration has increased by a factor 10. To possibly reduce these negative effects, the construction of retention basin(s) (RB) is considered. In this contribution, the influence of location and geometry of RBs on tidal dynamics and SSC is investigated. For this purpose, a three-dimensional semi-analytic idealized model is developed. This model is an extension of the model proposed by Winant (2007) to arbitrary domain and realistic bathymetry with partial slip boundary condition at the bottom. The sea surface elevation (SSE) is calculated numerically using a finite element method. Next, the three-dimensional velocities are calculated by combining the analytically calculated vertical profiles and the gradients of the SSE which are obtained numerically. Firstly, the influence of a RB on the tidal dynamics in an infinitely long, rectangular, frictionless estuary is considered. The SSE decreases when the RB is located between a node and a landward antinode, consistent with the work of Alebregtse et al. (2013). Secondly, an estuary of finite length is connected to a sea. By varying the width of the sea, not only the effect of the distance of the RB to the landward end plays a role, but also the distance to the open sea becomes important. Finally, we discuss the influence of a RB on the tidal motion and initial sediment transport, considering the Ems estuary with realistic bathymetry. Results show that the SSE at the landward end of the Ems estuary decreases for all locations of the RBs. This decrease is most pronounced for the RB which is closest to the end

  12. Tidal tails test the equivalence principle in the dark-matter sector

    International Nuclear Information System (INIS)

    Kesden, Michael; Kamionkowski, Marc

    2006-01-01

    Satellite galaxies currently undergoing tidal disruption offer a unique opportunity to constrain an effective violation of the equivalence principle in the dark sector. While dark matter in the standard scenario interacts solely through gravity on large scales, a new long-range force between dark-matter particles may naturally arise in theories in which the dark matter couples to a light scalar field. An inverse-square-law force of this kind would manifest itself as a violation of the equivalence principle in the dynamics of dark matter compared to baryons in the form of gas or stars. In a previous paper, we showed that an attractive force would displace stars outwards from the bottom of the satellite's gravitational potential well, leading to a higher fraction of stars being disrupted from the tidal bulge further from the Galactic center. Since stars disrupted from the far (near) side of the satellite go on to form the trailing (leading) tidal stream, an attractive dark-matter force will produce a relative enhancement of the trailing stream compared to the leading stream. This distinctive signature of a dark-matter force might be detected through detailed observations of the tidal tails of a disrupting satellite, such as those recently performed by the Two-Micron All-Sky Survey (2MASS) and Sloan Digital Sky Survey (SDSS) on the Sagittarius (Sgr) dwarf galaxy. Here we show that this signature is robust to changes in our models for both the satellite and Milky Way, suggesting that we might hope to search for a dark-matter force in the tidal features of other recently discovered satellite galaxies in addition to the Sgr dwarf

  13. Black guillemot ecology in relation to tidal stream energy generation: An evaluation of current knowledge and information gaps.

    Science.gov (United States)

    Johnston, Daniel T; Furness, Robert W; Robbins, Alexandra M C; Tyler, Glen; Taggart, Mark A; Masden, Elizabeth A

    2018-03-01

    The black guillemot Cepphus grylle has been identified as a species likely to interact with marine renewable energy devices, specifically tidal turbines, with the potential to experience negative impacts. This likelihood is primarily based on the species being a diving seabird, and an inshore, benthic forager often associating with tidal streams. These behavioural properties may bring them into contact with turbine blades, or make them susceptible to alterations to tidal current speed, and/or changes in benthic habitat structure. We examine the knowledge currently available to assess the potential impacts of tidal stream turbines on black guillemot ecology, highlight knowledge gaps and make recommendations for future research. The key ecological aspects investigated include: foraging movements, diving behaviour, seasonal distribution, other sources of disturbance and colony recovery. Relating to foraging behaviour, between studies there is heterogeneity in black guillemot habitat use in relation to season, tide, diurnal cycles, and bathymetry. Currently, there is also little knowledge regarding the benthic habitats associated with foraging. With respect to diving behaviour, there is currently no available research regarding how black guillemots orientate and manoeuvre within the water column. Black guillemots are considered to be a non-migratory species, however little is known about their winter foraging range and habitat. The effect of human disturbance on breeding habitat and the metapopulation responses to potential mortalities are unknown. It is clear further understanding of black guillemot foraging habitat and behaviour is needed to provide renewable energy developers with the knowledge to sustainably locate tidal turbines and mitigate their impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Simple Tidal Prism Models Revisited

    Science.gov (United States)

    Luketina, D.

    1998-01-01

    Simple tidal prism models for well-mixed estuaries have been in use for some time and are discussed in most text books on estuaries. The appeal of this model is its simplicity. However, there are several flaws in the logic behind the model. These flaws are pointed out and a more theoretically correct simple tidal prism model is derived. In doing so, it is made clear which effects can, in theory, be neglected and which can not.

  15. SNL-EFDC Simulations of Tidal Turbine-Related Changes to Hydrodynamics and Flushing

    Science.gov (United States)

    Roberts, J. D.; Johnson, E.; James, S. C.; Barco, J.; Jones, C.

    2012-12-01

    The marine and hydrokinetic (MHK) industry in the United States faces challenges associated with siting, permitting, construction, and operation of pilot- and full-scale facilities that must be addressed to accelerate environmentally sound deployment of these renewable energy technologies. Little is known about the potential effects of MHK device operation in coastal areas, estuaries, or rivers, or of the cumulative impacts of these devices on aquatic ecosystems. This lack of knowledge affects the actions of regulatory agencies, the opinions of stakeholder groups, and the commitment of energy project developers and investors. Two particularly important factors that can be used as a precursor for MHK-driven environmental changes in estuaries are the effect of decreased tidal range and flushing. For example, tidal-range changes could affect wetland systems that are only wetted under the highest of tides. Significant changes in tidal range could completely change the character of the wetlands through long-term drying. Changes to flushing must also be understood, especially when municipal wastewater and other pollutant sources are discharged into a bay. When MHK operation alters flow rates, decreased flushing of an embayment could yield increased residence times, decreased nutrient and contaminant dispersion, and even the possibility of algal blooms. Small changes to the flow could manifest as noticeable changes to sediment transport and water quality. This work provides example assessments of changes to the physical environment (i.e. currents, tidal ranges, water age, and e-folding time) potentially imposed by the operation of MHK turbine arrays in marine estuary environments using the modeling platform SNL-EFDC. Comparing model results with and without an MHK array facilitates an understanding of how an array of turbines might alter the environment. By using models to simulate water circulation, commensurate changes in water quality, benthic habitat quality, and

  16. Contaminant transport modelling in tidal influenced water body for low level liquid waste discharge out

    International Nuclear Information System (INIS)

    Singh, Sanjay; Naidu, Velamala Simhadri

    2018-01-01

    Low level liquid waste is generated from nuclear reactor operation and reprocessing of spent fuel. This waste is discharged into the water body after removing bulk of its radioactivity. Dispersion of contaminant mainly depends on location of outfall and hydrodynamics of water body. For radiological impact assessment, in most of the analytical formulations, source term is taken as continuous release. However, this may not be always true as the water level is influenced by tidal movement and the selected outfall may come under intertidal zone in due course of the tidal cycle. To understand these phenomena, a case study has been carried out to evaluate hydrodynamic characteristics and dilution potential of outfall located in inter-tidal zone using numerical modelling

  17. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  18. Tidal Forces in Dyonic Reissner-Nördstrom Black Hole

    Science.gov (United States)

    Sharif, M.; Kousar, Lubna

    2018-03-01

    This paper investigates the tidal as well as magnetic charge effects produced in dyonic Reissner-Nordström black hole. We evaluate Newtonian radial acceleration using radial geodesics for freely falling test particles. We establish system of equations governing radial and angular tidal forces using geodesic deviation equation and discuss their solutions for bodies falling freely towards this black hole. The radial tidal force turns out to be compressing outside the event horizon whereas the angular tidal force changes sign between event and Cauchy horizons unlike Schwarzschild black hole. The radial geodesic component starts decreasing in dyonic Reissner-Nordström black hole unlike Schwarzschild case. We conclude that magnetic charge strongly affects the radial as well as angular components of tidal force.

  19. Short-term effects of tidal flooding on soil nitrogen mineralization in a Chinese tidal salt marsh

    Science.gov (United States)

    Gao, Haifeng; Bai, Junhong; Deng, Xiaoya; Lu, Qiongqiong; Ye, Xiaofei

    2018-02-01

    Tidal flooding is an important control of nitrogen biogeochemistry in wetland ecosystems of Yellow River Delta, China. Variations in hydrology could change soil redox dynamics and conditions for microorganisms living. A tidal simulation experiment was designed to extract tidal flooding effect on nitrogen mineralization of salt marsh soil. Inorganic nitrogen and relevant enzyme were measured during the 20-day incubation period. Considering the variation of both inorganic N and enzymes, nitrogen mineralization process in tidal salt marsh could be divided into 2 phases of short term response and longtime adaption by around 12th incubation day as the inflection point. Soil ammonium nitrogen (NH4+-N) and volatilized ammonia (NH3) occupied the mineralization process since nitrate nitrogen (NO3--N) was not detected over whole incubation period. NH4+-N varied fluctuant and increased significantly after 12 day's incubation. Released NH3 reached to peak value of 14.24 mg m-2 d-1 at the inflection point and declined thereafter. Inorganic nitrogen released according to net nitrogen mineralization rate (RM) under the tidal flooding condition without plant uptake except first 2 days. However, during the transitional period of 6-12 days, RM decreased notably to almost 0 and increased again after inflection point with the value of 0.182 mg kg-1 d-1. It might be due to the change of microbial composition and function when soil shifted from oxic to anoxic, which were reflected by arylamidase, urease and fluorescein diacetate. Fluorescein diacetate hydrolysis and arylamidase had the similar variation of U style with decreasing activities before 12 days' incubation. All the enzymes measured in this experiment increased after inflection point. Whereas, urease activity kept constant from 2 to 12 days. Alternant oxidation reduction condition would increase N loss through denitrification and ammonia volatilization during the transitional period, while more inorganic nitrogen would be

  20. Stirring up a storm: convective climate variability on tidally locked exoplanets

    Science.gov (United States)

    Koll, D. D. B.; Cronin, T.

    2017-12-01

    Earth-sized exoplanets are extremely common in the galaxy and many of them are likely tidally locked, such that they have permanent day- and nightsides. Astronomers have started to probe the atmospheres of such planets, which raises the question: can tidally locked planets support habitable climates and life?Several studies have explored this question using global circulation models (GCMs). Not only did these studies find that tidally locked Earth analogs can indeed sustain habitable climates, their large day-night contrast should also create a distinct cloud structure that could help astronomers identify such planets. These studies, however, relied on GCMs which do not explicitly resolve convection, raising the question of how robust their results are.Here we consider the dynamics of clouds and convection on a tidally locked planet using the System for Atmospheric Modeling (SAM) cloud-resolving model. We simulate a 3d `channel', representing an equatorial strip that covers both day- and nightside of a tidally locked planet. We use interactive radiation and an interactive slab ocean surface and investigate the response to changes in the stellar constant. We find mean climates that are broadly comparable to those produced by a GCM. However, when the slab ocean is shallow, we also find internal variability that is far bigger than in a GCM. Convection in a tidally locked domain can self-organize in a dramatic fashion, with large outbursts of convection followed by periods of relative calm. We show that one of the timescales for this behavior is set by the time it takes for a dry gravity wave to travel between day- and nightside. The quasi-periodic self-organization of clouds can vary the planetary albedo by up to 50%. Changes this large are potentially detectable with future space telescopes, which raises the prospect of using convectively driven variability to identify high priority targets in the search for life around other stars.

  1. Groundwater Waves in a Coastal Fractured Aquifer of the Third Phase Qinshan Nuclear Power Engineering Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nian-qing; TANG Yi-qun; TANG He-ping

    2005-01-01

    Tidal fluctuations of Hangzhou Bay produce progressive pressure waves in adjacent field fractured aquifers, as the pressure waves propagate, groundwater levels and hydraulic gradients continuously fluctuate. The effect of tidal fluctuations on groundwater flow can be determined using the mean hydraulic gradient that can be calculated by comparing mean ground and surface water elevations. Tidal fluctuation is shown to affect the piezometer readings taken in a nearshore fractured aquifer around the nuclear power engineering field. Continuous monitoring of a network of seven piezometers provided relations between the tidal cycle and the piezometer readings. The relations can be expressed in times of a time and amplitude scaling factor. The time lag and the tidal effi ciency factor and wavelength are calculated using these parameters. It provides significant scientific basis to prevent tide and groundwater for the nuclear power engineering construction and safety run of nuclear power station in the future.

  2. Morphodynamics of the Manyema Tidal Delta at Kunduchi, Tanzania

    African Journals Online (AJOL)

    Keywords: Morphodynamics, Kunduchi, Manyema, shoreline change, tidal creek, tidal delta. Abstract—The prevailing northward longshore drift of beach sand on the northern part of Msasani Bay, north of Dar es Salaam, is interrupted at Kunduchi by the tidal flushing of ... Western Indian Ocean J. Mar. Sci. Vol. 11, No. 2, pp.

  3. Tidal extension and sea-level rise: recommendations for a research agenda

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory

    2018-01-01

    Sea-level rise is pushing freshwater tides upstream into formerly non-tidal rivers. This tidal extension may increase the area of tidal freshwater ecosystems and offset loss of ecosystem functions due to salinization downstream. Without considering how gains in ecosystem functions could offset losses, landscape-scale assessments of ecosystem functions may be biased toward worst-case scenarios of loss. To stimulate research on this concept, we address three fundamental questions about tidal extension: Where will tidal extension be most evident, and can we measure it? What ecosystem functions are influenced by tidal extension, and how can we measure them? How do watershed processes, climate change, and tidal extension interact to affect ecosystem functions? Our preliminary answers lead to recommendations that will advance tidal extension research, enable better predictions of the impacts of sea-level rise, and help balance the landscape-scale benefits of ecosystem function with costs of response.

  4. Adélie penguin foraging location predicted by tidal regime switching.

    Science.gov (United States)

    Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh

    2013-01-01

    Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

  5. [Evaluation of tidal volume delivered by ventilators during volume-controlled ventilation].

    Science.gov (United States)

    Zhou, Juan; Yan, Yong; Cao, Desen

    2014-12-01

    To study the ways which ensure the delivery of enough tidal volume to patients under various conditions close to the demand of the physician. The volume control ventilation model was chosen, and the simulation lung type was active servo lung ASL 5000 or Michigan lung 1601. The air resistance, air compliance and lung type in simulation lungs were set. The tidal volume was obtained from flow analyzer PF 300. At the same tidal volume, the displaying values of tidal volume of E5, Servo i, Evital 4, and Evital XL ventilators with different lung types of patient, compliance of gas piping, leakage, gas types, etc. were evaluated. With the same setting tidal volume of a same ventilator, the tidal volume delivered to patients was different with different lung types of patient, compliance of gas piping, leakage, gas types, etc. Reducing compliance and increasing resistance of the patient lungs caused high peak airway pressure, the tidal volume was lost in gas piping, and the tidal volume be delivered to the patient lungs was decreased. If the ventilator did not compensate to leakage, the tidal volume delivered to the patient lungs was decreased. When the setting gas type of ventilator did not coincide with that applying to the patient, the tidal volume be delivered to the patient lungs might be different with the setting tidal volume of ventilator. To ensure the delivery of enough tidal volume to patients close to the demand of the physician, containable factors such as the compliance of gas piping, leakage, and gas types should be controlled.

  6. Tidal exchange of larvae of Sesarma catenata (Decapoda, Brachyura)

    African Journals Online (AJOL)

    The tidal exchange of larvae of the salt-marsh grapsid crab Sesarma catenata was studied in the Swartkops estuary, a tidally driven, shallow estuary in Algoa Bay, South Africa. Plankton samples were collected bimonlhly during spring and neap tides from October to March at the tidal inlet. Samples were collected hourly for ...

  7. The Ultrasonic Directional Tidal Breathing Pattern Sensor: Equitable Design Realization Based on Phase Information.

    Science.gov (United States)

    Sinharay, Arijit; Rakshit, Raj; Khasnobish, Anwesha; Chakravarty, Tapas; Ghosh, Deb; Pal, Arpan

    2017-08-11

    Pulmonary ailments are conventionally diagnosed by spirometry. The complex forceful breathing maneuver as well as the extreme cost of spirometry renders it unsuitable in many situations. This work is aimed to facilitate an emerging direction of tidal breathing-based pulmonary evaluation by designing a novel, equitable, precise and portable device for acquisition and analysis of directional tidal breathing patterns, in real time. The proposed system primarily uses an in-house designed blow pipe, 40-kHz air-coupled ultrasound transreceivers, and a radio frequency (RF) phase-gain integrated circuit (IC). Moreover, in order to achieve high sensitivity in a cost-effective design philosophy, we have exploited the phase measurement technique, instead of selecting the contemporary time-of-flight (TOF) measurement; since application of the TOF principle in tidal breathing assessments requires sub-micro to nanosecond time resolution. This approach, which depends on accurate phase measurement, contributed to enhanced sensitivity using a simple electronics design. The developed system has been calibrated using a standard 3-L calibration syringe. The parameters of this system are validated against a standard spirometer, with maximum percentage error below 16%. Further, the extracted respiratory parameters related to tidal breathing have been found to be comparable with relevant prior works. The error in detecting respiration rate only is 3.9% compared to manual evaluation. These encouraging insights reveal the definite potential of our tidal breathing pattern (TBP) prototype for measuring tidal breathing parameters in order to extend the reach of affordable healthcare in rural regions and developing areas.

  8. Salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  9. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Liu, Zhanfei; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Yu, Chendi; Wang, Rong; Jiang, Xiaofen

    2016-01-01

    Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium, remains unexplored in these habitats. Here, we use isotope-tracing and molecular approaches simultaneously to show that both nitrate-reduction activities and associated functional bacterial abundances are enhanced at the sediment-tidal water interface and at the tide-induced groundwater fluctuating layer. This pattern suggests that tidal pumping may sustain dissimilatory nitrate reduction in intertidal zones. The tidal effect is supported further by nutrient profiles, fluctuations in nitrogen components over flood-ebb tidal cycles, and tidal simulation experiments. This study demonstrates the importance of tides in regulating the dynamics of dissimilatory nitrate-reducing pathways and thus provides new insights into the biogeochemical cycles of nitrogen and other elements in intertidal marshes. PMID:26883983

  10. On tidal radius determination for a globular cluster

    International Nuclear Information System (INIS)

    Ninkovic, S.

    1985-01-01

    A tidal radius determination for a globular cluster based on its density minimum, which is caused by the galactic tidal forces and derivable from a model of the Galaxy, is proposed. Results obtained on the basis of the Schmidt model for two clusters are in a satisfactory agreement with those obtained earlier by means of other methods. A mass determination for the clusters through the tidal radius, when the latter one is identified with the cluster perigalactic distance, yields unusually large mass values. Probably, the tidal radius should be identified with the instantaneous galactocentric distance. Use of models more recent than the Schmidt one indicates that a globular cluster may contain a significant portion of an invisible interstellar matter. (author)

  11. Sensitivity of growth characteristics of tidal sand ridges and long bed waves to formulations of bed shear stress, sand transport and tidal forcing : A numerical model study

    NARCIS (Netherlands)

    Yuan, Bing; de Swart, Huib E.; Panadès, Carles

    2016-01-01

    Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal

  12. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    OpenAIRE

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung inj...

  13. Impact of Different Tidal Volume Levels at Low Mechanical Power on Ventilator-Induced Lung Injury in Rats

    Directory of Open Access Journals (Sweden)

    Lillian Moraes

    2018-04-01

    Full Text Available Tidal volume (VT has been considered the main determinant of ventilator-induced lung injury (VILI. Recently, experimental studies have suggested that mechanical power transferred from the ventilator to the lungs is the promoter of VILI. We hypothesized that, as long as mechanical power is kept below a safe threshold, high VT should not be injurious. The present study aimed to investigate the impact of different VT levels and respiratory rates (RR on lung function, diffuse alveolar damage (DAD, alveolar ultrastructure, and expression of genes related to inflammation [interleukin (IL-6], alveolar stretch (amphiregulin, epithelial [club cell secretory protein (CC16] and endothelial [intercellular adhesion molecule (ICAM-1] cell injury, and extracellular matrix damage [syndecan-1, decorin, and metalloproteinase (MMP-9] in experimental acute respiratory distress syndrome (ARDS under low-power mechanical ventilation. Twenty-eight Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, 21 animals were randomly assigned to ventilation (2 h with low mechanical power at three different VT levels (n = 7/group: (1 VT = 6 mL/kg and RR adjusted to normocapnia; (2 VT = 13 mL/kg; and 3 VT = 22 mL/kg. In the second and third groups, RR was adjusted to yield low mechanical power comparable to that of the first group. Mechanical power was calculated as [(ΔP,L2/Est,L/2]× RR (ΔP,L = transpulmonary driving pressure, Est,L = static lung elastance. Seven rats were not mechanically ventilated (NV and were used for molecular biology analysis. Mechanical power was comparable among groups, while VT gradually increased. ΔP,L and mechanical energy were higher in VT = 22 mL/kg than VT = 6 mL/kg and VT = 13 mL/kg (p < 0.001 for both. Accordingly, DAD score increased in VT = 22 mL/kg compared to VT = 6 mL/kg and VT = 13 mL/kg [23(18.5–24.75 vs. 16(12–17.75 and 16(13.25–18, p < 0.05, respectively]. VT = 22 mL/kg was associated with higher

  14. Acoustic observations of internal tides and tidal currents in shallow water.

    Science.gov (United States)

    Turgut, Altan; Mignerey, Peter C; Goldstein, David J; Schindall, Jeffrey A

    2013-04-01

    Significant acoustic travel-time variability and frequency shifts of acoustic intensity level curves in broadband signal spectrograms were measured in the East China Sea during the summer of 2008. The broadband pulses (270-330 Hz) were transmitted from a fixed source and received at a bottomed horizontal array, located at the 33 km range. The acoustic intensity level curves of the received signals indicate regular frequency shifts that are well correlated with the measured internal tides. Similarly, regular travel-time shifts of the acoustic mode arrivals correlate well with the barotropic tides and can be explained by tidal currents along the acoustic propagation track. These observations indicate the potential of monitoring internal tides and tidal currents using low-frequency acoustic signals propagating at long ranges.

  15. Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea

    Institute of Scientific and Technical Information of China (English)

    SONG Zhi-yao; NI Zhi-hui; LU Guo-nian

    2009-01-01

    Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.

  16. Infrared emission and tidal interactions of spiral galaxies

    International Nuclear Information System (INIS)

    Byrd, G.G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small

  17. On the Formation of Ultra-Difuse Galaxies as Tidally-Stripped Systems

    Science.gov (United States)

    Carleton, Timothy; Cooper, Michael; Kaplinghat, Manoj; Errani, Raphael; Penarrubia, Jorge

    2018-01-01

    The recent identification of a large population of so-called 'Ultra-Diffuse' Galaxies (UDGs), with stellar masses ~108 M⊙, but half light radii over 1.5 kpc, has challenged our understanding of galaxy evolution. Motivated by the environmental dependence of UDG properties and abundance, I present a model for the formation of UDGs through tidal-stripping of dwarf galaxies in cored dark matter halos. To test this scenario, I utilize results from simulations of tidal stripping, which demonstrate that changes in the stellar profile of a tidally stripped galaxy can be written as a function of the amount of tidal stripping experienced by the halo (tidal tracks). These tracks, however, are different for cored and cuspy halos. Additional simulations show how the halo responds to tidal interactions given the halo orbit within a cluster.In particular, dwarf elliptical galaxies, born in 1010-10.5 M⊙ halos, expand significantly as a result of tidal stripping and produce UDGs. Applying these models to the population of halos in the Bolshoi simulation, I am able to follow the effects of tidal stripping on the dwarf galaxy population in clusters. Using tidal tracks for cuspy halos does not reproduce the observed properties of UDGs. However, using the tidal tracks for cored halos, I reproduce the distribution of sizes, stellar masses, and abundance of UDGs in clusters remarkably well.

  18. Quantitative prediction of respiratory tidal volume based on the external torso volume change: a potential volumetric surrogate

    International Nuclear Information System (INIS)

    Li Guang; Arora, Naveen C; Xie Huchen; Ning, Holly; Citrin, Deborah; Kaushal, Aradhana; Zach, Leor; Camphausen, Kevin; Miller, Robert W; Lu Wei; Low, Daniel

    2009-01-01

    An external respiratory surrogate that not only highly correlates with but also quantitatively predicts internal tidal volume should be useful in guiding four-dimensional computed tomography (4DCT), as well as 4D radiation therapy (4DRT). A volumetric surrogate should have advantages over external fiducial point(s) for monitoring respiration-induced motion of the torso, which deforms in synchronization with a patient-specific breathing pattern. This study establishes a linear relationship between the external torso volume change (TVC) and lung air volume change (AVC) by validating a proposed volume conservation hypothesis (TVC = AVC) throughout the respiratory cycle using 4DCT and spirometry. Fourteen patients' torso 4DCT images and corresponding spirometric tidal volumes were acquired to examine this hypothesis. The 4DCT images were acquired using dual surrogates in cine mode and amplitude-based binning in 12 respiratory stages, minimizing residual motion artifacts. Torso and lung volumes were calculated using threshold-based segmentation algorithms and volume changes were calculated relative to the full-exhalation stage. The TVC and AVC, as functions of respiratory stages, were compared, showing a high correlation (r = 0.992 ± 0.005, p 2 = 0.980) without phase shift. The AVC was also compared to the spirometric tidal volumes, showing a similar linearity (slope = 1.030 ± 0.092, R 2 = 0.947). In contrast, the thoracic and abdominal heights measured from 4DCT showed relatively low correlation (0.28 ± 0.44 and 0.82 ± 0.30, respectively) and location-dependent phase shifts. This novel approach establishes the foundation for developing an external volumetric respiratory surrogate.

  19. End-Tidal CO2-Guided Chest Compression Delivery Improves Survival in a Neonatal Asphyxial Cardiac Arrest Model.

    Science.gov (United States)

    Hamrick, Justin T; Hamrick, Jennifer L; Bhalala, Utpal; Armstrong, Jillian S; Lee, Jeong-Hoo; Kulikowicz, Ewa; Lee, Jennifer K; Kudchadkar, Sapna R; Koehler, Raymond C; Hunt, Elizabeth A; Shaffner, Donald H

    2017-11-01

    To determine whether end-tidal CO2-guided chest compression delivery improves survival over standard cardiopulmonary resuscitation after prolonged asphyxial arrest. Preclinical randomized controlled study. University animal research laboratory. 1-2-week-old swine. After undergoing a 20-minute asphyxial arrest, animals received either standard or end-tidal CO2-guided cardiopulmonary resuscitation. In the standard group, chest compression delivery was optimized by video and verbal feedback to maintain the rate, depth, and release within published guidelines. In the end-tidal CO2-guided group, chest compression rate and depth were adjusted to obtain a maximal end-tidal CO2 level without other feedback. Cardiopulmonary resuscitation included 10 minutes of basic life support followed by advanced life support for 10 minutes or until return of spontaneous circulation. Mean end-tidal CO2 at 10 minutes of cardiopulmonary resuscitation was 34 ± 8 torr in the end-tidal CO2 group (n = 14) and 19 ± 9 torr in the standard group (n = 14; p = 0.0001). The return of spontaneous circulation rate was 7 of 14 (50%) in the end-tidal CO2 group and 2 of 14 (14%) in the standard group (p = 0.04). The chest compression rate averaged 143 ± 10/min in the end-tidal CO2 group and 102 ± 2/min in the standard group (p tidal CO2-guided chest compression delivery. The response of the relaxation arterial pressure and cerebral perfusion pressure to the initial epinephrine administration was greater in the end-tidal CO2 group than in the standard group (p = 0.01 and p = 0.03, respectively). The prevalence of resuscitation-related injuries was similar between groups. End-tidal CO2-guided chest compression delivery is an effective resuscitation method that improves early survival after prolonged asphyxial arrest in this neonatal piglet model. Optimizing end-tidal CO2 levels during cardiopulmonary resuscitation required that chest compression delivery rate exceed current guidelines

  20. Ambient Noise in an Urbanized Tidal Channel

    Science.gov (United States)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  1. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-12-01

    and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.

  2. Tidal effects on groundwater contamination at Pekan, Pahang

    International Nuclear Information System (INIS)

    Nor Dalila Desa; Dominic, J.A.; Mohd Muzamil Mohd Hashim; Kamarudin Samuding; Mohd Faizun Khalid; Mod Omar Hassan; Kamaruzaman Mohamad

    2014-01-01

    The meeting of coastal ground water and the sea is a unique and dynamic hydro geologic boundary phenomenon that has fascinated groundwater engineers and scientists for the past century. The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. In this study the effects of seawater tidal on groundwater are investigated using geophysical together with conventional method. Comparative result between these two methods shown how tidal fluctuations effects groundwater in study area. (author)

  3. Tidal Control of Jet Eruptions on Enceladus as Observed by Cassini ISS between 2005 and 2007

    Science.gov (United States)

    Hurford, T. A.; Helfenstein, P.; Spitale, J. N.

    2012-01-01

    Observations of Enceladus have revealed active jets of material erupting from cracks on its south polar surface. It has previously been proposed that diurnal tidal stress, driven by Enceladus' orbital eccentricity, may actively produce surface movement along these cracks daily and thus may regulate when eruptions occur. Our analysis of the stress on jet source regions identified in Cassini ISS images reveals tidal stress as a plausible controlling mechanism of jet activity. However, the evidence available in the published and preliminary observations of jet activity between 2005 and 2007 may not be able to solidify the link between tidal stress and eruptions from fissures. Ongoing, far more comprehensive analyses based on recent, much higher resolution jetting observations have the potential to prove otherwise.

  4. Greenland Tidal Pools as Hot Spots for Ecosystem Metabolism and Calcification

    KAUST Repository

    Duarte, Carlos M.; Krause-Jensen, Dorte

    2018-01-01

    The hypothesis that Arctic tidal pools provide environmental conditions suitable for calcifiers during summer, thereby potentially providing refugia for calcifiers in an acidifying Arctic Ocean, was tested on the basis of measurements conducted during two midsummers (2014 and 2016) in tidal pools colonised by a community composed of macroalgae and calcifiers in Disko Bay, Greenland (69° N). The tidal pools exhibited steep diurnal variations in temperature from a minimum of about 6 °C during the night to a maximum of almost 18 °C in the afternoon, while the temperature of the surrounding shore water was much lower, typically in the range 3 to 8 °C. O2 concentrations in the tidal pools were elevated relative to those in the adjacent open waters, by up to 11 mg O2 L−1, and exhibited heavy super-saturation (up to > 240%) during daytime emersion, reflecting intense and sustained photosynthetic rates of the tidal macroalgae. The intense photosynthetic activity of the seaweeds resulted in the drawdown of pCO2 concentrations in the pools during the day to levels down to average (±SE) values of 66 ± 18 ppm, and a minimum recorded value of 14.7 ppm, corresponding to pH levels as high as 8.69 ± 0.08, as compared to CO2 levels of 256 ± 4 and pH levels of 8.14 ± 0.01 in the water flooding the pools during high tide. The corresponding Ωarag reached 5.04 ± 0.49 in the pools as compared to 1.55 ± 0.02 in the coastal waters flooding the pools. Net calcification averaged 9.6 ± 5.6 μmol C kg−1 h−1 and was strongly and positively correlated with calculated net ecosystem production rates, which averaged 27.5 ± 8.6 μmol C kg−1 h−1. Arctic tidal pools promote intense metabolism, creating conditions suitable for calcification during the Arctic summer, and can, therefore, provide refugia from ocean acidification to vulnerable calcifiers as extended periods of continuous light during summer are conducive to suitable conditions

  5. Greenland Tidal Pools as Hot Spots for Ecosystem Metabolism and Calcification

    KAUST Repository

    Duarte, Carlos M.

    2018-01-18

    The hypothesis that Arctic tidal pools provide environmental conditions suitable for calcifiers during summer, thereby potentially providing refugia for calcifiers in an acidifying Arctic Ocean, was tested on the basis of measurements conducted during two midsummers (2014 and 2016) in tidal pools colonised by a community composed of macroalgae and calcifiers in Disko Bay, Greenland (69° N). The tidal pools exhibited steep diurnal variations in temperature from a minimum of about 6 °C during the night to a maximum of almost 18 °C in the afternoon, while the temperature of the surrounding shore water was much lower, typically in the range 3 to 8 °C. O2 concentrations in the tidal pools were elevated relative to those in the adjacent open waters, by up to 11 mg O2 L−1, and exhibited heavy super-saturation (up to > 240%) during daytime emersion, reflecting intense and sustained photosynthetic rates of the tidal macroalgae. The intense photosynthetic activity of the seaweeds resulted in the drawdown of pCO2 concentrations in the pools during the day to levels down to average (±SE) values of 66 ± 18 ppm, and a minimum recorded value of 14.7 ppm, corresponding to pH levels as high as 8.69 ± 0.08, as compared to CO2 levels of 256 ± 4 and pH levels of 8.14 ± 0.01 in the water flooding the pools during high tide. The corresponding Ωarag reached 5.04 ± 0.49 in the pools as compared to 1.55 ± 0.02 in the coastal waters flooding the pools. Net calcification averaged 9.6 ± 5.6 μmol C kg−1 h−1 and was strongly and positively correlated with calculated net ecosystem production rates, which averaged 27.5 ± 8.6 μmol C kg−1 h−1. Arctic tidal pools promote intense metabolism, creating conditions suitable for calcification during the Arctic summer, and can, therefore, provide refugia from ocean acidification to vulnerable calcifiers as extended periods of continuous light during summer are conducive to suitable conditions

  6. Geometric properties of hydraulic-relevant tidal bedforms

    DEFF Research Database (Denmark)

    Winter, Christian; Ferret, Yann; Lefebvre, Alice

    2013-01-01

    of bedform genesis and dynamics is not yet available, various empirical descriptors have been formulated based on extensive data compilations (e.g. Allen, 1968; Flemming, 1988; Francken, 2004). Mean bedform heights H and lengths L were found to scale, e.g H = a * L b in which a=0.03-0.07 and b=0.7-0.9. Due...... on the tidal stage: Whereas the secondary bedforms act as roughness elements throughout the tidal cycle, the large primary bedforms dominate the hydraulics when the tidal flow is in the (dominant) direction of the bedform orientation (e.g. ebb-directed primary bedforms act during ebb currents) when...

  7. How Tidal Forces Cause Ocean Tides in the Equilibrium Theory

    Science.gov (United States)

    Ng, Chiu-king

    2015-01-01

    We analyse why it is erroneous to think that a tidal bulge is formed by pulling the water surface directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of the horizontal components of the tidal forces.

  8. Land Use in Korean Tidal Wetlands: Impacts and Management Strategies

    Science.gov (United States)

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R.; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  9. Archimedes in Cephalonia and in Euripus Strait: Modern Horizontal Archimedean Screw Turbines for Recovering Marine Power

    Directory of Open Access Journals (Sweden)

    A. Stergiopoulou

    2013-01-01

    Full Text Available The possibility of exploiting sea and tidal currents for power generation has given little attention in Mediterranean countries despite the fact that these currents representing a large renewable energy resource could be exploited by “modern old technologies” to provide important levels of electric power. It is also well known that one of the oldest machines still in use is the Archimedes screw, a device for lifting water for irrigation and drainage, invention credited to Archimedes. The main aim of this paper is to present a new small hydro philosophy of recovering the unexploited coastal and tidal hydraulic potential by following an efficient “Archimedean philosophy” and by using modern horizontal-axis unconventional cochlear turbines. Our work proposes “the presence of Archimedes in Cephalonia and in Euripus Strait” and the optimal “Archimedean” exploitation of the Euripus tidal current and of the Cephalonia coastal paradox cross flowing continuously from Livadi Gulf to the Gulf of Sami. The present paper intends to prove the useful modern rediscovering of some old Archimedean ideas concerning spiral water wheel technologies under the form of new and efficient horizontal-axis Archimedean hydropower turbines.

  10. [Characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia].

    Science.gov (United States)

    Li, Lan; Chen, Qaing; Zhang, Fan; Zhu, Shuang-Gui; Hu, Ci-Lang; Wu, Ai-Min

    2017-12-01

    To investigate the characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia (TBM). In this study, 30 children who were diagnosed with TBM using electronic bronchoscopy were enrolled in the observation group; 30 healthy children were recruited in the normal control group. For individuals in each group, the assessment of tidal breath pulmonary function was performed at diagnosis and 3, 6, 9, and 12 months after diagnosis. There were no significant differences in tidal volume, inspiratory time, expiratory time, and inspiratory to expiratory ratio between the two groups (P>0.05). Compared with the control group, the observation group had a significantly higher respiratory rate and significantly lower ratio of time to peak tidal expiratory flow to total expiratory time (TPTEF/TE) and ratio of volume to peak tidal expiratory flow to total expiratory volume (VPTEF/VE). There was a time-dependent increase in TPTEF/TE and VPTEF/VE for TBM children from the time of initial diagnosis to 12 months after diagnosis. Tidal breathing pulmonary function has characteristic changes in children with TBM. Tidal breathing pulmonary function tends to be recovered with increased age in children with TBM.

  11. Derivation of Delaware Bay tidal parameters from space shuttle photography

    International Nuclear Information System (INIS)

    Zheng, Quanan; Yan, Xiaohai; Klemas, V.

    1993-01-01

    The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O 9 m 3 . Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts

  12. High tidal volume decreases adult respiratory distress syndrome, atelectasis, and ventilator days compared with low tidal volume in pediatric burned patients with inhalation injury.

    Science.gov (United States)

    Sousse, Linda E; Herndon, David N; Andersen, Clark R; Ali, Arham; Benjamin, Nicole C; Granchi, Thomas; Suman, Oscar E; Mlcak, Ronald P

    2015-04-01

    Inhalation injury, which is among the causes of acute lung injury and acute respiratory distress syndrome (ARDS), continues to represent a significant source of mortality in burned patients. Inhalation injury often requires mechanical ventilation, but the ideal tidal volume strategy is not clearly defined in burned pediatric patients. The aim of this study was to determine the effects of low and high tidal volume on the number of ventilator days, ventilation pressures, and incidence of atelectasis, pneumonia, and ARDS in pediatric burned patients with inhalation injury within 1 year post burn injury. From 1986 to 2014, inhalation injury was diagnosed by bronchoscopy in pediatric burned patients (n = 932). Patients were divided into 3 groups: unventilated (n = 241), high tidal volume (HTV, 15 ± 3 mL/kg, n = 190), and low tidal volume (LTV, 9 ± 3 mL/kg, n = 501). High tidal volume was associated with significantly decreased ventilator days (p tidal volume significantly decreases ventilator days and the incidence of both atelectasis and ARDS compared with low tidal volume in pediatric burned patients with inhalation injury. Therefore, the use of HTV may interrupt sequences leading to lung injury in our patient population. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Blade design and performance analysis on the horizontal axis tidal current turbine for low water level channel

    International Nuclear Information System (INIS)

    Chen, C C; Choi, Y D; Yoon, H Y

    2013-01-01

    Most tidal current turbine design are focused on middle and large scale for deep sea, less attention was paid in low water level channel, such as the region around the islands, coastal seas and rivers. This study aims to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest of Korea. The blade design is made by using BEMT(blade element momentum theory). The section airfoil profile of NACA63-415 is used, which shows good performance of lift coefficient and drag coefficient. Power coefficient, pressure and velocity distributions are investigated according to TSR by CFD analysis

  14. Linking freshwater tidal hydrology to carbon cycling in bottomland hardwood wetlands

    Science.gov (United States)

    Carl C. Trettin; Brooke J. Czwartacki; Craig J. Allan; Devendra M. Amatya

    2016-01-01

    Hydrology is recognized as one of the principal factors regulating soil biogeochemical processes in forested wetlands. However, the consequences of tidally mediated hydrology are seldom considered within forested wetlands that occur along tidal water bodies. These tidal water bodies may be either fresh or brackish, and the tidal streams function as a reservoir to...

  15. Effects of inhalational anaesthesia with low tidal volume ventilation on end-tidal sevoflurane and carbon dioxide concentrations: prospective randomized study.

    Science.gov (United States)

    de la Matta-Martín, M; López-Herrera, D; Luis-Navarro, J C; López-Romero, J L

    2014-02-01

    We investigated how ventilation with low tidal volumes affects the pharmacokinetics of sevoflurane uptake during the first minutes of inhaled anaesthesia. Forty-eight patients scheduled for lung resection were randomly assigned to three groups. Patients in group 1, 2 and 3 received 3% sevoflurane for 3 min via face mask and controlled ventilation with a tidal volume of 2.2, 8 and 12 ml kg(-1), respectively (Phase 1). After tracheal intubation (Phase 2), 3% sevoflurane was supplied for 2 min using a tidal volume of 8 ml kg(-1) (Phase 3). End-tidal sevoflurane concentrations were significantly higher in group 1 at the end of phase 1 and lower at the end of phase 2 than in the other groups as follows: median of 2.5%, 2.2% and 2.3% in phase 1 for groups 1, 2 and 3, respectively (Ptidal carbon dioxide values in group 1 were significantly lower at the end of phase 1 and higher at the end of phase 2 than in the other groups as follows: median of 16.5, 31 and 29.5 mm Hg in phase 1 for groups 1, 2 and 3, respectively (Ptidal volume approximating the airway dead space volume, end-tidal sevoflurane and end-tidal carbon dioxide may not correctly reflect the concentration of these gases in the alveoli, leading to misinterpretation of expired gas data. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  16. Magnetic fields driven by tidal mixing in radiative stars

    Science.gov (United States)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  17. Resonant Tidal Disruption in Galactic Nuclei

    OpenAIRE

    Rauch, Kevin P.; Ingalls, Brian

    1997-01-01

    It has recently been shown that the rate of angular momentum relaxation in nearly-Keplerian star clusters is greatly increased by a process termed resonant relaxation (Rauch & Tremaine 1996), who also argued that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch & Tremaine. The simulat...

  18. Modelling the impacts of sea level rise on tidal basin ecomorphodynamics and mangrove habitat evolution

    Science.gov (United States)

    van Maanen, Barend; Coco, Giovanni; Bryan, Karin

    2016-04-01

    The evolution of tidal basins and estuaries in tropical and subtropical regions is often influenced by the presence of mangrove forests. These forests are amongst the most productive environments in the world and provide important ecosystem services. However, these intertidal habitats are also extremely vulnerable and are threatened by climate change impacts such as sea level rise. It is therefore of key importance to improve our understanding of how tidal systems occupied by mangrove vegetation respond to rising water levels. An ecomorphodynamic model was developed that simulates morphological change and mangrove forest evolution as a result of mutual feedbacks between physical and biological processes. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. Under stable water levels, model results indicate that mangrove trees enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The landward expansion of the channels, on the other hand, is reduced. Model simulations including sea level rise suggest that mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone. While the sea level is rising, mangroves are migrating landward and the channel network tends to expand landward too. The presence of mangrove trees, however, was found to hinder both the branching and headward erosion of the landward expanding channels. Simulations are performed according to different sea level rise scenarios and with different tidal range conditions to assess which tidal environments are most vulnerable. Changes in the properties of the tidal channel networks are being examined as well. Overall, model results highlight the role of mangroves in driving the

  19. Tidal tilts observations in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Iafolla, V.; Nozzoli, S.; Milyukov, V.

    2001-01-01

    A new tilt meter, based on the technology for building a space-borne high-sensitivity accelerometer and manufactured at IFSI/CNR, has a been operating during several years in the INFN Gran Sasso underground laboratory. The results of the analysis of a three-year data set, processed with the program package ETERNA, to estimate earth tidal parameters are reported. For the best series of data (1998) tide measurement accuracies are: 0.5-1% for the M 2 (lunar principal) amplitude and 3-4% for the O 1 (lunar declination) amplitude. The tilt meter installed at a depth of 1400 m shows no clear evidence of meteorological effects. Observed tidal parameters are compared with theoretical tidal parameters predicted for a non-hydrostatic inelastic Earth model and demonstrate good agreement for the M 2 component. Due to the high accuracy of the tidal components prediction (better than 1%) tidal measurements were used to estimate the long-term stability of the instrument response

  20. Tidal analysis of Met rocket wind data

    Science.gov (United States)

    Bedinger, J. F.; Constantinides, E.

    1976-01-01

    A method of analyzing Met Rocket wind data is described. Modern tidal theory and specialized analytical techniques were used to resolve specific tidal modes and prevailing components in observed wind data. A representation of the wind which is continuous in both space and time was formulated. Such a representation allows direct comparison with theory, allows the derivation of other quantities such as temperature and pressure which in turn may be compared with observed values, and allows the formation of a wind model which extends over a broader range of space and time. Significant diurnal tidal modes with wavelengths of 10 and 7 km were present in the data and were resolved by the analytical technique.

  1. Tidal River Management (TRM and Tidal Basin Management (TBM: A case study on Bangladesh

    Directory of Open Access Journals (Sweden)

    Talchabhadel Rocky

    2016-01-01

    Full Text Available Bangladesh is the biggest delta of the world. Construction of numbers of polders is one of the flood resilient approach. But the presence of coastal polders de-linked the flood plain. The siltation in river causes riverbeds to become higher than the adjacent crop lands, and vast area under the polders became permanently water logged rendering large tract of land uncultivable. The current practice is temporarily de-poldering by cutting embankment. This is a natural water management process with very little human interventions but it needs strong participation and consensus with a great deal of sacrifice by the stakeholders for a specific period (3 to 5 years or even more[1]. An attempt has been made to study the phenomena of tidal basin management reviewing some secondary data and processes involved in successfully operated tidal basins of Bangladesh. And preliminary laboratory experiments are carried out to precisely look into the suspended sediment transport. With varying outflow discharge and sediment supply, the transport processes are investigated. 3D sediment transport model developed using openFOAM has good agreement with experimental result and can be used to better understand effectiveness of tidal basin management.

  2. Quantitative prediction of respiratory tidal volume based on the external torso volume change: a potential volumetric surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Li Guang; Arora, Naveen C; Xie Huchen; Ning, Holly; Citrin, Deborah; Kaushal, Aradhana; Zach, Leor; Camphausen, Kevin; Miller, Robert W [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Lu Wei; Low, Daniel [Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO 63110 (United States)], E-mail: ligeorge@mail.nih.gov

    2009-04-07

    An external respiratory surrogate that not only highly correlates with but also quantitatively predicts internal tidal volume should be useful in guiding four-dimensional computed tomography (4DCT), as well as 4D radiation therapy (4DRT). A volumetric surrogate should have advantages over external fiducial point(s) for monitoring respiration-induced motion of the torso, which deforms in synchronization with a patient-specific breathing pattern. This study establishes a linear relationship between the external torso volume change (TVC) and lung air volume change (AVC) by validating a proposed volume conservation hypothesis (TVC = AVC) throughout the respiratory cycle using 4DCT and spirometry. Fourteen patients' torso 4DCT images and corresponding spirometric tidal volumes were acquired to examine this hypothesis. The 4DCT images were acquired using dual surrogates in cine mode and amplitude-based binning in 12 respiratory stages, minimizing residual motion artifacts. Torso and lung volumes were calculated using threshold-based segmentation algorithms and volume changes were calculated relative to the full-exhalation stage. The TVC and AVC, as functions of respiratory stages, were compared, showing a high correlation (r = 0.992 {+-} 0.005, p < 0.0001) as well as a linear relationship (slope = 1.027 {+-} 0.061, R{sup 2} = 0.980) without phase shift. The AVC was also compared to the spirometric tidal volumes, showing a similar linearity (slope = 1.030 {+-} 0.092, R{sup 2} = 0.947). In contrast, the thoracic and abdominal heights measured from 4DCT showed relatively low correlation (0.28 {+-} 0.44 and 0.82 {+-} 0.30, respectively) and location-dependent phase shifts. This novel approach establishes the foundation for developing an external volumetric respiratory surrogate.

  3. Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity.

    Science.gov (United States)

    Efroimsky, Michael

    2015-10-01

    This is a pilot paper serving as a launching pad for study of orbital and spin evolution of binary asteroids. The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers kl divided by quality factors Q. Common in the literature is the (oftentimes illegitimate) approximation of the dynamical Love numbers with their static counterparts. Since the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: {k}l/Q\\propto 1/(μ Q). In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that overwhelmingly determines the tidal evolution is a product of the effective viscosity η by the tidal frequency χ . The functional form of the torque’s dependence on this product depends on who wins in the competition between viscosity and self-gravitation. Hence a quantitative criterion, to distinguish between two regimes. For higher values of η χ , we get {k}l/Q\\propto 1/(η χ ), {while} for lower values we obtain {k}l/Q\\propto η χ . Our study rests on an assumption that asteroids can be treated as Maxwell bodies. Applicable to rigid rocks at low frequencies, this approximation is used here also for rubble piles, due to the lack of a better model. In the future, as we learn more about mechanics of granular mixtures in a weak gravity field, we may have to amend the tidal theory with other rheological parameters, ones that do not show up in the description of viscoelastic bodies. This line of study provides

  4. Recent scientific advances and their implications for sand management near San Francisco, California: the influences of the ebb tidal delta

    Science.gov (United States)

    Hanes, Daniel M.; Barnard, Patrick L.; Dallas, Kate; Elias, Edwin; Erikson, Li H.; Eshleman, Jodi; Hansen, Jeff; Hsu, Tian Jian; Shi, Fengyan

    2011-01-01

    Recent research in the San Francisco, California, U.S.A., coastal region has identified the importance of the ebb tidal delta to coastal processes. A process-based numerical model is found to qualitatively reproduce the equilibrium size and shape of the delta. The ebb tidal delta itself has been contracting over the past century, and the numerical model is applied to investigate the sensitivity of the delta to changes in forcing conditions. The large ebb tidal delta has a strong influence upon regional coastal processes. The prominent bathymetry of the ebb tidal delta protects some of the coast from extreme storm waves, but the delta also focuses wave energy toward the central and southern portions of Ocean Beach. Wave focusing likely contributes to a chronic erosion problem at the southern end of Ocean Beach. The ebb tidal delta in combination with non-linear waves provides a potential cross-shore sediment transport pathway that probably supplies sediment to Ocean Beach.

  5. Will Tidal Wetland Restoration Enhance Populations of Native Fishes?

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands might enhance populations of native fishes in the San Francisco Estuary of California. The purpose of this paper is to: (1 review the currently available information regarding the importance of tidal wetlands to native fishes in the San Francisco Estuary, (2 construct conceptual models on the basis of available information, (3 identify key areas of scientific uncertainty, and (4 identify methods to improve conceptual models and reduce uncertainty. There are few quantitative data to suggest that restoration of tidal wetlands will substantially increase populations of native fishes. On a qualitative basis, there is some support for the idea that tidal wetland restoration will increase populations of some native fishes; however, the species deriving the most benefit from restoration might not be of great management concern at present. Invasion of the San Francisco Estuary by alien plants and animals appears to be a major factor in obscuring the expected link between tidal wetlands and native fishes. Large-scale adaptive management experiments (>100 hectares appear to be the best available option for determining whether tidal wetlands will provide significant benefit to native fishes. Even if these experiments are unsuccessful at increasing native fish populations, the restored wetlands should benefit native birds, plants, and other organisms.

  6. Tidal interaction of black holes and Newtonian viscous bodies

    International Nuclear Information System (INIS)

    Poisson, Eric

    2009-01-01

    The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations are strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k 2 τ of 'Love quantities' that incorporate the details of the body's internal structure; k 2 is the tidal Love number, and τ is the viscosity-produced delay between the action of the tidal forces and the body's reaction. The combination k 2 τ is of order GM/c 3 for a black hole of mass M; it does not vanish, in spite of the fact that k 2 is known to vanish individually for a nonrotating black hole.

  7. The potential of tidal barrages and lagoons to manage future coastal flood risk

    Science.gov (United States)

    Prime, Thomas; Wolf, Judith; Lyddon, Charlotte; Plater, Andrew; Brown, Jennifer

    2017-04-01

    Wirral peninsula will still be present in 2100. It is therefore important to consider long time horizons and the associated climate change. Both business as usual i.e. no adaptation measures and the presence of a tidal barrage or lagoon at two locations were simulated. Three different representative concentration pathways were used to derive an increase of mean sea-level by 2100. To accurately assess the economic impact, a number of different extreme events with varying annual probabilities of occurrence were simulated, these range from 1 in 1 year to 1 in 1000 years probability of exceedance. The flood inundation model LISFLOOD-FP was used to simulate these extreme events and the economic impact resulting from any inundation in the flood plain was calculated and compared alongside the cost and revenue from projected electricity generation to see if the flood protection benefits would contribute positively to a cost benefit analysis, assessing the building of the barrage. This preliminary study shows that tidal lagoons and barrages do have the potential to offer flood risk benefit and become part of integrated strategies to minimise flood risk in coastal areas, but this is site specific and detailed modelling studies are required. The benefits of these structures are dependent on their shape, size and location, and feasibility studies should consider impacts in the near and far-field.

  8. A numerical study of local variations in tidal regime of Tagus estuary, Portugal.

    Science.gov (United States)

    Dias, João Miguel; Valentim, Juliana Marques; Sousa, Magda Catarina

    2013-01-01

    Tidal dynamics of shallow estuaries and lagoons is a complex matter that has attracted the attention of a large number of researchers over the last few decades. The main purpose of the present work is to study the intricate tidal dynamics of the Tagus estuary, which states as the largest estuary of the Iberian Peninsula and one of the most important wetlands in Portugal and Europe. Tagus has large areas of low depth and a remarkable geomorphology, both determining the complex propagation of tidal waves along the estuary of unknown manner. A non-linear two-dimensional vertically integrated hydrodynamic model was considered to be adequate to simulate its hydrodynamics and an application developed from the SIMSYS2D model was applied to study the tidal propagation along the estuary. The implementation and calibration of this model revealed its accuracy to predict tidal properties along the entire system. Several model runs enabled the analysis of the local variations in tidal dynamics, through the interpretation of amplitude and phase patterns of the main tidal constituents, tidal asymmetry, tidal ellipses, form factor and tidal dissipation. Results show that Tagus estuary tidal dynamics is extremely dependent on an estuarine resonance mode for the semi-diurnal constituents that induce important tidal characteristics. Besides, the estuarine coastline features and topography determines the changes in tidal propagation along the estuary, which therefore result essentially from a balance between convergence/divergence and friction and advection effects, besides the resonance effects.

  9. Expansion potential for existing nuclear power station sites

    Energy Technology Data Exchange (ETDEWEB)

    Cope, D. F.; Bauman, H. F.

    1977-09-26

    This report is a preliminary analysis of the expansion potential of the existing nuclear power sites, in particular their potential for development into nuclear energy centers (NECs) of 10 (GW(e) or greater. The analysis is based primarily on matching the most important physical characteristics of a site against the dominating site criteria. Sites reviewed consist mainly of those in the 1974 through 1976 ERDA Nuclear Power Stations listings without regard to the present status of reactor construction plans. Also a small number of potential NEC sites that are not associated with existing power stations were reviewed. Each site was categorized in terms of its potential as: a dispersed site of 5 GW(e) or less; a mini-NEC of 5 to 10 GW(e); NECs of 10 to 20 GW(e); and large NECs of more than 20 GW(e). The sites were categorized on their ultimate potential without regard to political considerations that might restrain their development. The analysis indicates that nearly 40 percent of existing sites have potential for expansion to nuclear energy centers.

  10. Expansion potential for existing nuclear power station sites

    International Nuclear Information System (INIS)

    Cope, D.F.; Bauman, H.F.

    1977-01-01

    This report is a preliminary analysis of the expansion potential of the existing nuclear power sites, in particular their potential for development into nuclear energy centers (NECs) of 10 (GW(e) or greater. The analysis is based primarily on matching the most important physical characteristics of a site against the dominating site criteria. Sites reviewed consist mainly of those in the 1974 through 1976 ERDA Nuclear Power Stations listings without regard to the present status of reactor construction plans. Also a small number of potential NEC sites that are not associated with existing power stations were reviewed. Each site was categorized in terms of its potential as: a dispersed site of 5 GW(e) or less; a mini-NEC of 5 to 10 GW(e); NECs of 10 to 20 GW(e); and large NECs of more than 20 GW(e). The sites were categorized on their ultimate potential without regard to political considerations that might restrain their development. The analysis indicates that nearly 40 percent of existing sites have potential for expansion to nuclear energy centers

  11. Tidally induced lateral dispersion of the Storfjorden overflow plume

    Directory of Open Access Journals (Sweden)

    F. Wobus

    2013-10-01

    Full Text Available We investigate the flow of brine-enriched shelf water from Storfjorden (Svalbard into Fram Strait and onto the western Svalbard Shelf using a regional set-up of NEMO-SHELF, a 3-D numerical ocean circulation model. The model is set up with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. In a series of modelling experiments we focus on the influence of tides on the propagation of the dense water plume by comparing results from tidal and non-tidal model runs. Comparisons of non-tidal to tidal simulations reveal a hotspot of tidally induced horizontal diffusion leading to the lateral dispersion of the plume at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into the deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography.

  12. A Summary of the San Francisco Tidal Wetlands Restoration Series

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available The four topical articles of the Tidal Wetlands Restoration Series summarized and synthesized much of what is known about tidal wetlands and tidal wetland restoration in the San Francisco Estuary (hereafter “Estuary”. Despite a substantial amount of available information, major uncertainties remain. A major uncertainty with regard to fishes is the net benefit of restored tidal wetlands relative to other habitats for native fishes in different regions of the Estuary given the presence of numerous invasive alien species. With regard to organic carbon, a major uncertainty is the net benefit of land use change given uncertainty about the quantity and quality of different forms of organic carbon resulting from different land uses. A major challenge is determining the flux of organic carbon from open systems like tidal wetlands. Converting present land uses to tidal wetlands will almost certainly result in increased methylation of mercury at the local scale with associated accumulation of mercury within local food webs. However, it is unclear if such local accumulation is of concern for fish, wildlife or humans at the local scale or if cumulative effects at the regional scale will emerge. Based on available information it is expected that restored tidal wetlands will remain stable once constructed; however, there is uncertainty associated with the available data regarding the balance of sediment accretion, sea-level rise, and sediment erosion. There is also uncertainty regarding the cumulative effect of many tidal restoration projects on sediment supply. The conclusions of the articles highlight the need to adopt a regional and multidisciplinary approach to tidal wetland restoration in the Estuary. The Science Program of the CALFED effort provides an appropriate venue for addressing these issues.

  13. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    Science.gov (United States)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  14. Wind power potential and integration in Africa

    Directory of Open Access Journals (Sweden)

    Agbetuyi, A.F.

    2013-03-01

    Full Text Available Wind energy penetration into power networks is increasing very rapidly all over the world. The great concern about global warming and continued apprehensions about nuclear power around the world should drive most countries in Africa into strong demand for wind generation because of its advantages which include the absence of harmful emissions, very clean and almost infinite availability of wind that is converted into electricity. This paper shows the power available in the wind. It also gives an overview of the wind power potential and integration in some selected Africa countries like Egypt, Morocco, South Africa and Nigeria and the challenges of wind power integration in Africa’s continent are also discussed. The Northern part of Africa is known to be Africa’s Wind pioneers having installed and connected the Wind Energy Converters (WEC to the grid. About 97% of the continent’s total wind installations are located in Egypt, Morocco and Tunisia. Research work should commence on the identified sites with high wind speeds in those selected Africa countries, so that those potential sites can be connected to the grid. This is because the ability of a site to sufficiently accommodate wind generation not only depends on wind speeds but on its ability to interconnect to the existing grid. If these wind energy potentials are tapped and connected to the grid, the erratic and epileptic power supply facing most countries in Africa will be reduced; thereby reducing rural-urban migration and more jobs will be created.

  15. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part I hydrodynamics

    Science.gov (United States)

    Li, Li; Guan, Weibing; Hu, Jianyu; Cheng, Peng; Wang, Xiao Hua

    2018-06-01

    Xiangshan Bay consists of a deep tidal channel and three shallow inlets. A large-scale tidal flat has been utilized through coastal construction. To ascertain the accumulate influences of these engineering projects upon the tidal dynamics of the channel-inlets system, this study uses FVCOM to investigate the tides and flow asymmetries of the bay, and numerically simulate the long-term variations of tidal dynamics caused by the loss of tidal flats. It was found that the reduction of tidal flat areas from 1963 to 2010 slightly dampened M2 tidal amplitudes (0.1 m, ∼6%) and advanced its phases by reducing shoaling effects, while amplified M4 tidal amplitudes (0.09 m, ∼27%) and advanced its phases by reducing bottom friction, in the inner bay. Consequently, the ebb dominance was dampened indicated by reduced absolute value of elevation skewness (∼20%) in the bay. The tides and tidal asymmetry were impacted by the locations, areas and slopes of the tidal flats through changing tidal prism, shoaling effect and bottom friction, and consequently impacted tidal duration asymmetry in the bay. Tides and tidal asymmetry were more sensitive to the tidal flat at the head of the bay than the side bank. Reduced/increased tidal flat slopes around the Tie inlet dampened the ebb dominance. Tidal flat had a role in dissipating the M4 tide rather than generating it, while the advection only play a secondary role in generating the M4 tide. The full-length tidal flats reclamation would trigger the reverse of ebb to flood dominance in the bay. This study would be applicable for similar narrow bays worldwide.

  16. An analytic approach to optimize tidal turbine fields

    Science.gov (United States)

    Pelz, P.; Metzler, M.

    2013-12-01

    Motivated by global warming due to CO2-emission various technologies for harvesting of energy from renewable sources are developed. Hydrokinetic turbines get applied to surface watercourse or tidal flow to gain electrical energy. Since the available power for hydrokinetic turbines is proportional to the projected cross section area, fields of turbines are installed to scale shaft power. Each hydrokinetic turbine of a field can be considered as a disk actuator. In [1], the first author derives the optimal operation point for hydropower in an open-channel. The present paper concerns about a 0-dimensional model of a disk-actuator in an open-channel flow with bypass, as a special case of [1]. Based on the energy equation, the continuity equation and the momentum balance an analytical approach is made to calculate the coefficient of performance for hydrokinetic turbines with bypass flow as function of the turbine head and the ratio of turbine width to channel width.

  17. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  18. Geometry and dynamics of a tidally deformed black hole

    International Nuclear Information System (INIS)

    Poisson, Eric; Vlasov, Igor

    2010-01-01

    The metric of a nonrotating black hole deformed by a tidal interaction is calculated and expressed as an expansion in the strength of the tidal coupling. The expansion parameter is the inverse length scale R -1 , where R is the radius of curvature of the external spacetime in which the black hole moves. The expansion begins at order R -2 , and it is carried out through order R -4 . The metric is parametrized by a number of tidal multipole moments, which specify the black hole's tidal environment. The tidal moments are freely-specifiable functions of time that are related to the Weyl tensor of the external spacetime. At order R -2 the metric involves the tidal quadrupole moments E ab and B ab . At order R -3 it involves the time derivative of the quadrupole moments and the tidal octupole moments E abc and B abc . At order R -4 the metric involves the second time derivative of the quadrupole moments, the first time derivative of the octupole moments, the tidal hexadecapole moments E abcd and B abcd , and bilinear combinations of the quadrupole moments. The metric is presented in a light-cone coordinate system that possesses a clear geometrical meaning: The advanced-time coordinate v is constant on past light cones that converge toward the black hole; the angles θ and φ are constant on the null generators of each light cone; and the radial coordinate r is an affine parameter on each generator, which decreases as the light cones converge toward the black hole. The coordinates are well-behaved on the black-hole horizon, and they are adjusted so that the coordinate description of the horizon is the same as in the Schwarzschild geometry: r=2M+O(R -5 ). At the order of accuracy maintained in this work, the horizon is a stationary null hypersurface foliated by apparent horizons; it is an isolated horizon in the sense of Ashtekar and Krishnan. As an application of our results we examine the induced geometry and dynamics of the horizon, and calculate the rate at which the

  19. Classification of tidal inlets along the Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.A.; Vikas, M.; Rao, S.; JayaKumar S.

    ) as long as the alongshore sediment bypasses the tidal inlet. Classification of coastal systems in a broader view is necessary for the management of tidal inlets. There are several methods to classify tidal inlets based on different perspectives namely geo...

  20. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy

  1. Wind Power Potential at Abandoned Mines in Korea

    Science.gov (United States)

    jang, M.; Choi, Y.; Park, H.; Go, W.

    2013-12-01

    This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.

  2. Potential role of power authorities in offshore wind power development in the US

    International Nuclear Information System (INIS)

    Dhanju, Amardeep; Firestone, Jeremy; Kempton, Willett

    2011-01-01

    This article examines how power authorities could facilitate and manage offshore wind power development in US coastal waters. The power authority structure is an American 20th century institution for managing energy resources-a form of a public authority or public corporation dedicated to creating, operating and maintaining electric generation and transmission infrastructure. Offshore wind power is characterized by high capital costs but no fuel costs and thus low operating costs. Therefore a power authority, by virtue of its access to low-cost capital and managerial flexibility, could facilitate offshore wind power development by reducing financial risk of developing and lowering debt payments, thus improving the risk profile and lowering the cost of electricity production. Additionally, power authorities can be made up of multiple states, thus opening the possibility for joint action by neighboring coastal states. Using primary and secondary data, we undertake an in-depth analysis of the potential benefits and shortcomings of a power authority approach. - Highlights: → Proposes an institutional solution in the form of power authority for offshore wind power. → Power authority structure can significantly lower the cost of capital. → Tax-free bond financing available to power authority can significantly reduce the cost of energy. → It can enhance regional collaboration among coastal states to harness the offshore wind potential.

  3. Novel approach to the exploitation of the tidal energy. Volume 1: Summary and discussion

    Science.gov (United States)

    Gorlov, A. M.

    1981-12-01

    The hydropneumatic concept in the approach to harnessing low tidal hydropower is discussed. The energy of water flow is converted into the energy of an air jet by a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. It is possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). It is confirmed that the concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach.

  4. Real-time images of tidal recruitment using lung ultrasound.

    Science.gov (United States)

    Tusman, Gerardo; Acosta, Cecilia M; Nicola, Marco; Esperatti, Mariano; Bohm, Stephan H; Suarez-Sipmann, Fernando

    2015-12-01

    Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas-a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like CT scan. The purpose of this article is to give evidence of tidal recruitment by lung ultrasound. A standard lung ultrasound inspection detected lung zones of atelectasis in mechanically ventilated patients. With a linear probe placed in the intercostal oblique position. We observed tidal recruitment within atelectasis as an improvement in aeration at the end of inspiration followed by the re-collapse at the end of expiration. This mechanism disappeared after the performance of a lung recruitment maneuver. Lung ultrasound was helpful in detecting the presence of atelectasis and tidal recruitment and in confirming their resolution after a lung recruitment maneuver.

  5. Short-term tidal asymmetry inversion in a macrotidal estuary (Beira, Mozambique)

    Science.gov (United States)

    Nzualo, Teodósio N. M.; Gallo, Marcos N.; Vinzon, Susana B.

    2018-05-01

    The distortion of the tide in estuaries, bays and coastal areas is the result of the generation of overtides due to the non-linear effects associated with friction, advection, and the finite effects of the tidal amplitude in shallow waters. The Beira estuary is classified as macrotidal, with a large ratio of S2/M2. Typical tides ranges from 6 m and 0.8 m, during springs and neaps tides, respectively. As a consequence of this large fortnightly tidal amplitude difference and the estuarine morphology, asymmetry inversions occur. Two types of tidal asymmetries were investigated in this paper, one considering tidal duration asymmetry (time difference between rising and falling tide) and the other, related to tidal velocity asymmetry (unequal magnitudes of flood and ebb peaks currents). In the Beira estuary when we examine the tidal duration asymmetry, flood dominance is observed during spring tide periods (negative time difference between rising and falling tide), while ebb dominance appears during neap tides (positive time difference between rising and falling tide). A 2DH hydrodynamic model was implemented to analyze this asymmetry inversion. The model was calibrated with water-level data measured at the Port of Beira and current data measured along the estuary. The model was run for different scenarios considering tidal constituents at the ocean boundary, river discharge and the morphology of the estuary. River discharge did not show significant effects on the tidal duration asymmetry. Through comparison of the scenarios, it was shown that the incoming ocean tide at the boundary has an ebb-dominant asymmetry, changing to flood-dominant only during spring tides due to the effect of shoaling and friction within the estuary. During neap tides, the propagation occurs mainly in the channels, and ebb dominance remains. The interplay between the estuary morphodynamics was thus identified and the relation between tidal duration asymmetry and tidal velocity asymmetry was

  6. Tidal bending of glaciers: a linear viscoelastic approach

    DEFF Research Database (Denmark)

    Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph

    2003-01-01

    In theoretical treatments of tidal bending of floating glaciers, the glacier is usually modelled as an elastic beam with uniform thickness, resting on an elastic foundation. With a few exceptions, values of the elastic (Young's) modulus E of ice derived from tidal deflection records of floating...

  7. Experimental investigation on the relationship between sluice caisson shape of tidal power plant and the water discharge capability

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dal Soo; Oh, Sang-Ho; Yi, Jin-Hak; Park, Woo-Sun [Coastal Engineering and Ocean Energy Research Department, Korea Ocean Research and Development Institute, Ansan 426-744 (Korea); Cho, Hyu-Sang; Kim, Duk-Gu; Ahn, Suk-Jin [Technology Research and Development Institute, Hyein E and C Co. Ltd., Seoul 157-861 (Korea); Eom, Hyun-Min [Global Environment System Research Laboratory, National Institute of Meteorological Research/KMA, Seoul 156-720 (Korea)

    2010-10-15

    The change of water discharge capability of the sluice caisson of tidal power plant according to the change of geometrical shape of the sluice caisson was investigated by performing laboratory experiments. The major design parameters that constitute general shape of the sluice caisson were deduced and a total of 32 different shapes of sluice caisson models were subjected to the hydraulic experiments. For every sluice caisson model, the water discharge capability was estimated with five different flow rates and three different water level conditions. The experiments were carried out in an open channel flume with a great care to measure flow rate and water level accurately, which are key physical quantities in estimating the water discharge capability of the sluice caisson models. By analyzing the experimental results, influence of the respective design parameters on the performance of the sluice caisson was examined and the general guidelines to enhance the water discharge capability were suggested. The discharge coefficient of the best sluice caisson model ranged from 2.3 to 3.1 depending on the experimental conditions, which is far higher than the values that were adopted in the past feasibility studies in Korea. (author)

  8. Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers.

    Science.gov (United States)

    Briciu, Andrei-Emil

    2018-02-22

    The orthotidal rivers are a new concept referring to inland rivers influenced by gravitational tides through the groundwater tides. "Orthotidal signals" is intended to describe tidal signals found in inland streamwaters (with no oceanic input); these tidal signals were locally generated and then exported into streamwaters. Here, we show that orthotidal signals can be found in proglacial rivers due to the gravitational tides affecting the glaciers and their surrounding areas. The gravitational tides act on glacier through earth and atmospheric tides, while the subglacial water is affected in a manner similar to the groundwater tides. We used the wavelet analysis in order to find tidally affected streamwaters. T_TIDE analyses were performed for discovering the tidal constituents. Tidal components with 0.95 confidence level are as follows: O1, PI1, P1, S1, K1, PSI1, M2, T2, S2, K2, and MSf. The amplitude of the diurnal tidal constituents is strongly influenced by the daily thermal cycle. The average amplitude of the semidiurnal tidal constituents is less altered and ranges from 0.0007 to 0.0969 m. The lunisolar synodic fortnightly oscillation, found in the time series of the studied river gauges, is a useful signal for detecting orthotidal rivers when using noisier data. The knowledge of the orthotidal oscillations is useful for modeling fine resolution changes in rivers.

  9. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    Science.gov (United States)

    Vandenbruwaene, W.; Maris, T.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced tide (CRT) into a constructed basin, through a culvert in the embankment. In this way tidal water levels are significantly lowered (ca. 3 m) so that a CRT marsh can develop on formerly embanked land with a ca. 3 m lower elevation than the natural tidal marshes. In this study we compared the long-term change in elevation (ΔE) within a CRT marsh and adjacent natural tidal marsh. Over a period of 4 years, the observed spatio-temporal variations in ΔE rate were related to variations in inundation depth, and this relationship was not significantly different for the CRT marsh and natural tidal marsh. A model was developed to simulate the ΔE over the next century. (1) Under a scenario without mean high water level (MHWL) rise in the estuary, the model shows that the marsh elevation-ΔE feedback that is typical for a natural tidal marsh (i.e. rising marsh elevation results in decreasing inundation depth and therefore a decreasing increase in elevation) is absent in the basin of the CRT marsh. This is because tidal exchange of water volumes between the estuary and CRT marsh are independent from the CRT marsh elevation but dependent on the culvert dimensions. Thus the volume of water entering the CRT remains constant regardless of the marsh elevation. Consequently the CRT MHWL follows the increase in CRT surface elevation, resulting after 75 years in a 2–2.5 times larger elevation gain in the CRT marsh, and a faster reduction of spatial elevation differences. (2) Under a scenario of constant MHWL rise (historical rate of 1.5 cm a-1), the equilibrium elevation (relative to MHWL) is 0.13 m lower in the CRT marsh and is reached almost 2 times faster. (3) Under a scenario of

  10. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira Santillá n, Marí a José ; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  11. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-04-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  12. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-03-20

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  13. TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io

    International Nuclear Information System (INIS)

    Tyler, Robert H.; Henning, Wade G.; Hamilton, Christopher W.

    2015-01-01

    Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection of Jupiter's gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as a global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid can match that of the average observed heat flux (nominally 2.25 W m −2 ), though only over a very restricted range of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration under tidal dissipation is addressed

  14. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    Science.gov (United States)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  15. On the ambiguity in relativistic tidal deformability

    Science.gov (United States)

    Gralla, Samuel E.

    2018-04-01

    The LIGO collaboration recently reported the first gravitational-wave constraints on the tidal deformability of neutron stars. I discuss an inherent ambiguity in the notion of relativistic tidal deformability that, while too small to affect the present measurement, may become important in the future. I propose a new way to understand the ambiguity and discuss future prospects for reliably linking observed gravitational waveforms to compact object microphysics.

  16. CORRELATION ANALYSIS OF AGRONOMIC CHARACTERS AND GRAIN YIELD OF RICE FOR TIDAL SWAMP AREAS

    Directory of Open Access Journals (Sweden)

    Aris Hairmansis

    2013-05-01

    Full Text Available Development of rice varieties for tidal swamp areas is emphasized on the improvement of rice yield potential in specific environment. However, grain yield is a complex trait and highly dependent on the other agronomic characters; while information related to the relationship between agronomic characters and grain yield in the breeding program particularly for tidal swamp areas is very limited. The objective of this study was to investigate relationship between agronomic characters and grain yield of rice as a basis for selection of high yielding rice varieties for tidal swamp areas. Agronomic characters and grain yield of nine advanced rice breeding lines and two rice varieties were evaluated in a series of experiments in tidal swamp areas, Karang Agung Ulu Village, Banyuasin, South Sumatra, for four cropping seasons in dry season (DS 2005, wet season (WS 2005/2006, DS 2006, and DS 2007. Result from path analysis revealed that the following characters had positive direct effect on grain yield, i.e. number of productive tillers per hill (p = 0.356, number of filled grains per panicle (p = 0.544, and spikelet fertility (p = 0.215. Plant height had negative direct effect (p = -0.332 on grain yield, while maturity, number of spikelets per panicle, and 1000-grain weight showed negligible effect on rice grain yield. Present study suggests that indirect selection of high yielding tidal swamp rice can be done by selecting breeding lines which have many product tive tillers, dense filled grains, and high spikelet fertility.

  17. Analytic models of plausible gravitational lens potentials

    International Nuclear Information System (INIS)

    Baltz, Edward A.; Marshall, Phil; Oguri, Masamune

    2009-01-01

    Gravitational lenses on galaxy scales are plausibly modelled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sérsic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasising that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential. We also provide analytic formulae for the lens potentials of Sérsic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modelled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses

  18. Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-01-01

    Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and

  19. Angular momentum transport by tidal acoustic wave

    International Nuclear Information System (INIS)

    Sakurai, T.

    1976-01-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed. (Auth.)

  20. Angular momentum transport by tidal acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Kyoto Univ. (Japan). Faculty of Engineering

    1976-05-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed.

  1. Tidal Love numbers of neutron and self-bound quark stars

    International Nuclear Information System (INIS)

    Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.

    2010-01-01

    Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shift due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M · are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M · are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M · , the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.

  2. Tidal forces in Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, M.U. [University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan); Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2017-06-15

    The aim of this paper is to examine the tidal forces occurring in a Kiselev black hole surrounded by radiation and dust fluids. It is noted that the radial and angular components of the tidal force change the sign between event and Cauchy horizons. We solve the geodesic deviation equation for radially free-falling bodies toward Kiselev black holes. We explain the geodesic deviation vector graphically and point out the location of the event and Cauchy horizons for specific values of the radiation and dust parameters. (orig.)

  3. Role of tidal flat in material cycling in the coastal sea

    OpenAIRE

    Yara, Yumiko; Yanagi, Tetsuo; Montani, Shigeru; Kuninao, Tada

    2007-01-01

    A simple tidal flat model with pelagic and benthic ecosystems was developed in order to analyze the nitrogen cycling in an inter-tidal flat of the Seto Inland Sea, Japan. After the verification of calculation results with the observed results in water quality and benthic biomasses, the role of this tidal flat in nitrogen cycling was evaluated from the viewpoint of water quality purification capability. When there is no suspension feeder in the tidal flat, the water quality purification capab...

  4. Preliminary evaluation of wind power potential in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, M.M.; Azam, M.M.; Choudhury, M.G.M.

    1998-01-01

    Available wind speed data for six locations of Bangladesh have been analyzed with a view to assess the wind power potential of these locations. Regions having high wind potential are identified for the generation of electric energy by wind energy conversion systems (WECS). The wind power density varies from 12 to 650 W/m/sup 2/ in Bangladesh depending on the location and time of year. Among the six locations, Chittagang, a coastal station in the southeastern region of the country, possesses the maximum wind power density (1670650 W/m/sup 2/) and seems to be the most suitable location for establishing WECS. This study could be considered as the basis for further research and development effort on wind power application in Bangladesh. (authors)

  5. Experimental Studies of Turbulent Intensity around a Tidal Turbine Support Structure

    Directory of Open Access Journals (Sweden)

    Stuart Walker

    2017-04-01

    Full Text Available Tidal stream energy is a low-carbon energy source. Tidal stream turbines operate in a turbulent environment, and the effect of the structure between the turbine and seabed on this environment is not fully understood. An experimental study using 1:72 scale models based on a commercial turbine design was carried out to study the support structure influence on turbulent intensity around the turbine blades. The study was conducted using the wave-current tank at the Laboratory of Maritime Engineering (LABIMA, University of Florence. A realistic flow environment (ambient turbulent intensity = 11% was established. Turbulent intensity was measured upstream and downstream of a turbine mounted on two different support structures (one resembling a commercial design, the other the same with an additional vertical element, in order to quantify any variation in turbulence and performance between the support structures. Turbine drive power was used to calculate power generation. Acoustic Doppler velocimetry (ADV was used to record and calculate upstream and downstream turbulent intensity. In otherwise identical conditions, performance variation of only 4% was observed between two support structures. Turbulent intensity at 1, 3 and 5 blade diameters, both upstream and downstream, showed variation up to 21% between the two cases. The additional turbulent structures generated by the additional element of the second support structure appears to cause this effect, and the upstream propagation of turbulent intensity is believed to be permitted by surface waves. This result is significant for the prediction of turbine array performance.

  6. Tidal dissipation in the Moon. Learning from the "incorrect" frequency dependence measured by the LLR

    Science.gov (United States)

    Efroimsky, M.

    2012-09-01

    It was demonstrated back in 2001 that fitting of the LLR data results in the quality factor Q of the Moon scaling as the frequency ξ to a negative power [8]: Q ˜ ξp , where p = -0.19 . (1) At the same time, numerous measurements by various seismological teams agree on the exponent being positive, not negative [4]. The positive sign of the exponent stems also from geodetic measurements [1], and it finds its explanation within the theory of friction in minerals [5]. On all these grounds, the aforementioned finding by the LLR team appears to be implausible and to disagree with the conventional wisdom of solid state mechanics and seismology. A later reexamination in [9] rendered a less upsetting value, p = -0.09 , which was still negative and still seemed to contradict our knowledge of microphysical processes in solids. The authors later wrote [10]: "There is a weak dependence of tidal specific dissipation Q on period. The Q increases from ˜ 30 at a month to ˜ 35 at one year. Q for rock is expected to have a weak dependence on tidal period, but it is expected to decrease with period rather than increase. The frequency dependence of Q deserves further attention and should be improved." A possible explanation of this paradox comes from the observation that the LLR measurements provided information on the tidal and not seismic dissipation. The difference between these two processes comes from self-gravitation of the celestial body. To address the problem accurately, one has to calculate the tidal factors kl sin ɛl showing up in the Darwin-Kaula expansion for the tidal torque or force. Here kl is the degree-l Love number, while ɛl is the appropriate tidal lag. Sometimes sin ɛl is denoted with 1/Q , which is not recommended, because this notation does not distinguish between the tidal reaction appropriate to harmonics of different degree. This notation also puts one at risk of confusing the tidal damping with the seismic damping, two process that have much in common

  7. Epibenthic Assessment of a Renewable Tidal Energy Site

    Directory of Open Access Journals (Sweden)

    Emma V. Sheehan

    2013-01-01

    Full Text Available Concern over global climate change as a result of fossil fuel use has resulted in energy production from renewable sources. Marine renewable energy devices provide clean electricity but can also cause physical disturbance to the local environment. There is a considerable paucity of ecological data at potential marine renewable energy sites that is needed to assess potential future impacts and allow optimal siting of devices. Here, we provide a baseline benthic survey for the Big Russel in Guernsey, UK, a potential site for tidal energy development. To assess the suitability of proposed sites for marine renewable energy in the Big Russel and to identify potential control sites, we compared species assemblages and habitat types. This baseline survey can be used to select control habitats to compare and monitor the benthic communities after installation of the device and contribute towards the optimal siting of any future installation.

  8. Inspiratory time and tidal volume during intermittent positive pressure ventilation.

    OpenAIRE

    Field, D; Milner, A D; Hopkin, I E

    1985-01-01

    We measured the tidal volume achieved during intermittent positive pressure ventilation using various inspiratory times with a minimum of 0.2 seconds. Results indicate that tidal volume shows no reduction with inspiratory times down to 0.4 seconds. An inspiratory time of 0.3 seconds, however, is likely to reduce tidal volume by 8%, and at 0.2 seconds a 22% fall may be anticipated.

  9. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2012-08-01

    Full Text Available Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  10. Organic geochemistry in Pennsylvanian tidally influenced sediments from SW Indiana

    Science.gov (United States)

    Mastalerz, Maria; Kvale, E.P.; Stankiewicz, B.A.; Portle, K.

    1999-01-01

    Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter (TOC) ranges from traces to 6.9% and sulfur rarely exceeds 0.1% in individual laminae. Angular vitrinite is the major organic matter type, accounting for 50-90% of total OM. The C/S ratio decreases as the verfical distance from the underlying coal increases. A decreasing C/S ratio coupled with decreases in Pr/Ph, Pr/n-C17, Ph/n-C18 ratios and a shift of carbon isotopic composition towards less negative values suggest an increase in salinity from freshwater in the mudflat tidal rhythmite facies close to the coal to brackish/marine in the sandflat tidal rhythmite facies further above from the coal. Within an interval spanning one year of deposition, TOC and S values show monthly variability. On a daily scale, TOC and S oscillations are still detectable but they are of lower magnitude than on a monthly scale. These small-scale variations are believed to reflect oscillations in water salinity related to tidal cycles.Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter

  11. Spatial tidal asymmetry of Cochin estuary, West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Vinita, J.; Shivaprasad, A.; Manoj, N.T.; Revichandran, C.; Naveenkumar, K.R.; Jineesh, V.K.

    tidal amplitude and currents get attenuated towards upstream through frictional dissipation The results showed that the tidal momentum balance along the main axis of the channel was dominated by pressure gradient and friction The influence of advection...

  12. Comparison of Tidal Volumes at the Endotracheal Tube and at the Ventilator.

    Science.gov (United States)

    Kim, Paul; Salazar, Adler; Ross, Patrick A; Newth, Christopher J L; Khemani, Robinder G

    2015-11-01

    Lung protective ventilation for children with acute respiratory distress syndrome requires accurate assessment of tidal volume. Although modern ventilators compensate for ventilator tubing compliance, tidal volume measured at the ventilator may not be accurate, particularly in small children. Although ventilator-specific proximal flow sensors that measure tidal volume at the endotracheal tube have been developed, there is little information regarding their accuracy. We sought to test the accuracy of ventilator measured tidal volume with and without proximal flow sensors against a calibrated pneumotachometer in children. Prospective, observational. Tertiary care PICU. Fifty-one endotracheally intubated and mechanically ventilated children younger than 18 years. Tidal volumes were measured at the ventilator, using a ventilator-specific flow sensor, and a calibrated pneumotachometer connected to the SensorMedics 2600A Pediatric Pulmonary Function Cart. In a pressure control mode of ventilation: median tidal volume measured with the pneumotachometer (9.5 mL/kg [interquartile range, 8.2-11.7 mL/kg]) was significantly higher than tidal volume measured either at the ventilator (8.2 mL/kg [7.1-9.6 mL/kg]) or at the proximal flow sensor (8.1 mL/kg [7.2-10.0 mL/kg]) (p tidal volume measured with the pneumotachometer (10.2 mL/kg [8.8-12.4 mL/kg]) was significantly higher than tidal volume measured either at the ventilator (8.0 mL/kg [7.1-9.7 mL/kg]) or at the proximal flow sensor (8.5 mL/kg [7.3-10.4 mL/kg]) (p Tidal volume measured either at the endotracheal tube with a proximal flow sensor or at the ventilator with compensation for tubing compliance are both significantly lower than tidal volume measured with a calibrated pneumotachometer. This underestimation of delivered tidal volume may be particularly important when managing children with acute respiratory distress syndrome.

  13. Wave and tidal generation devices reliability and availability

    CERN Document Server

    Tavner, Peter John

    2017-01-01

    To some extent the wave and tidal generation industry is following in the wake of the wind industry, learning from the growing experience of offshore wind farm deployment. This book combines wind industry lessons with wave and tidal field knowledge to explore the main reliability and availability issues facing this growing industry.

  14. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    Science.gov (United States)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are

  15. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.

    2000-01-01

    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... on the centimeter level, station corrections regarding the Earth tides and the ocean tidal loading have to be applied. Models for global corrections esp. for the body tides are available and sufficient, but local corrections regarding the effect of the adjacent shelf area still have to be inferred from additional...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  16. The structure of turbulence in a rapid tidal flow.

    Science.gov (United States)

    Milne, I A; Sharma, R N; Flay, R G J

    2017-08-01

    The structure of turbulence in a rapid tidal flow is characterized through new observations of fundamental statistical properties at a site in the UK which has a simple geometry and sedate surface wave action. The mean flow at the Sound of Islay exceeded 2.5 m s -1 and the turbulent boundary layer occupied the majority of the water column, with an approximately logarithmic mean velocity profile identifiable close to the seabed. The anisotropic ratios, spectral scales and higher-order statistics of the turbulence generally agree well with values reported for two-dimensional open channels in the laboratory and other tidal channels, therefore providing further support for the application of universal models. The results of the study can assist in developing numerical models of turbulence in rapid tidal flows such as those proposed for tidal energy generation.

  17. Wave power potential in Malaysian territorial waters

    Science.gov (United States)

    Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul

    2016-06-01

    Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.

  18. Tidal flow characteristics at Kasheli (Kalwa/ Bassein creek), Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.

    Tidal flow characteristics of waters at Kasheli, connected to the sea through Thane and Bassein Creeks in Bombay, Maharashtra, India are investigated based on tide and current observations carried out in 1980-81. The results establish that the tidal...

  19. Tidal residual current and its role in the mean flow on the Changjiang Bank

    Science.gov (United States)

    Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji; Wang, Taiping; Zhou, Feng

    2016-02-01

    The tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model. The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and on the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.

  20. Tidal residual current and its role in the mean flow on the Changjiang Bank

    Energy Technology Data Exchange (ETDEWEB)

    Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji; Wang, Taiping; Zhou, Feng

    2016-02-01

    Tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model). The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and at the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.

  1. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea

    Science.gov (United States)

    Lee, Guan-hong; Kang, KiRyong

    2018-05-01

    A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.

  2. Land claim and loss of tidal flats in the Yangtze Estuary.

    Science.gov (United States)

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  3. Measuring and modeling exposure from environmental radiation on tidal flats

    International Nuclear Information System (INIS)

    Gould, T.J.; Hess, C.T.

    2005-01-01

    To examine the shielding effects of the tide cycle, a high pressure ion chamber was used to measure the exposure rate from environmental radiation on tidal flats. A theoretical model is derived to predict the behavior of exposure rate as a function of time for a detector placed one meter above ground on a tidal flat. The numerical integration involved in this derivation results in an empirical formula which implies exposure rate ∝tan-1(sint). We propose that calculating the total exposure incurred on a tidal flat requires measurements of only the slope of the tidal flat and the exposure rate when no shielding occurs. Experimental results are consistent with the model

  4. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements

    Science.gov (United States)

    Bergamaschi, B.A.; Fleck, J.A.; Downing, B.D.; Boss, E.; Pellerin, B.; Ganju, N.K.; Schoellhamer, D.H.; Byington, A.A.; Heim, W.A.; Stephenson, M.; Fujii, R.

    2011-01-01

    We assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 μg m−2 yr−1—4–40 times previously published yields—representing a potential loading to the estuary of 80 g yr−1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.

  5. Quantitative Analysis of the Waterline Method for Topographical Mapping of Tidal Flats: A Case Study in the Dongsha Sandbank, China

    Directory of Open Access Journals (Sweden)

    Yongxue Liu

    2013-11-01

    Full Text Available Although the topography of tidal flats is important for understanding their evolution, the spatial and temporal sampling frequency of such data remains limited. The waterline method has the potential to retrieve past tidal flat topography by utilizing large archives of satellite images. This study performs a quantitative analysis of the relationship between the accuracy of tidal flat digital elevation models (DEMs that are based on the waterline method and the factors that influence the DEMs. The three major conclusions of the study are as follows: (1 the coverage rate of the waterline points and the number of satellite images used to create the DEM are highly linearly correlated with the error of the resultant DEMs, and the former is more significant in indicating the accuracy of the resultant DEMs than the latter; (2 both the area and the slope of the tidal flats are linearly correlated with the error of the resultant DEMs; and (3 the availability analysis of the archived satellite images indicates that the waterline method can retrieve tidal flat terrains from the past forty years. The upper limit of the temporal resolution of the tidal flat DEM can be refined to within one year since 1993, to half a year since 2004 and to three months since 2009.

  6. Enhancing local distinctiveness fosters public acceptance of tidal energy: A UK case study

    International Nuclear Information System (INIS)

    Devine-Wright, Patrick

    2011-01-01

    Tidal energy has the technical potential to form part of a low carbon electricity sector, however, its 'social potential' is less clear, as few empirical studies of public beliefs and responses have been conducted to date. This research addressed this gap by investigating a tidal energy convertor in Northern Ireland, said to be the first grid-connected device of its kind in the world. Data was collected from 313 residents of two nearby villages using mixed methods, guided by a conceptual framework that avoided 'NIMBY' assumptions and instead drew on place theory. Findings indicated strong support for the project, arising from beliefs that the project enhanced local distinctiveness by 'putting the area on the map worldwide'; appeared visually familiar and helped tackle climate change. These positive beliefs outweighed concerns about outcome and process aspects, which were preponderant in one of the two villages. The project was interpreted to have few positive local economic outcomes, to potentially threaten local livelihoods and local ecology. Moreover, residents expressed cynicism about consultation procedures, and reported low levels of behavioural engagement. Implications of the findings for the literature on public acceptance of renewable energy, and for the emerging marine energy sector specifically, are discussed.

  7. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...

  8. Tidal and subtidal exchange flows at an inlet of the Wadden Sea

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Stanev, Emil; Badewien, Thomas H.

    2018-03-01

    Observations of underway velocity profiles during complete spring and neap tidal cycles were used to determine whether the spatial structures of tidal and subtidal flows at a tidal inlet in a multiple-inlet embayment are consistent with those observed at single-inlet embayments. Measurements were obtained at the Otzumer Balje, one of the multiple inlets among the East Frisian Islands of the Wadden Sea. The 1.5 km-wide inlet displayed a bathymetric profile consisting of a channel ∼15 m deep flanked by tide observations spanned 36 h in the period May 11-12, 2011, while spring tide measurements exceeded 48 h from May 17 to May 19, 2011. Analysis of observations indicate that frictional effects from bathymetry molded tidal flows. Spatial distributions of semidiurnal tidal current amplitude and phase conform to those predicted by an analytical model for a basin with one inlet. Maximum semidiurnal flows appear at the surface in the channel, furthest away from bottom friction effects. Therefore, Otzumer Balje displays tidal hydrodynamics that are independent of the other inlets of the embayment. Subtidal exchange flows are laterally sheared, with residual inflow in the channel combined with outflow over shoals. The spatial distribution of these residual flows follow theoretical expectations of tidally driven flows interacting with bathymetry. Such distribution is similar to the tidal residual circulation at other inlets with only one communication to the ocean, suggesting that at subtidal scales the Otzumer Balje responds to tidal forcing independently of the other inlets.

  9. Super massive black hole in galactic nuclei with tidal disruption of stars

    International Nuclear Information System (INIS)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-01-01

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  10. Super Massive Black Hole in Galactic Nuclei with Tidal Disruption of Stars

    Science.gov (United States)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-01

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank & Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  11. Prediction of Tidal Elevations and Barotropic Currents in the Gulf of Bone

    Science.gov (United States)

    Purnamasari, Rika; Ribal, Agustinus; Kusuma, Jeffry

    2018-03-01

    Tidal elevation and barotropic current predictions in the gulf of Bone have been carried out in this work based on a two-dimensional, depth-integrated Advanced Circulation (ADCIRC-2DDI) model for 2017. Eight tidal constituents which were obtained from FES2012 have been imposed along the open boundary conditions. However, even using these very high-resolution tidal constituents, the discrepancy between the model and the data from tide gauge is still very high. In order to overcome such issues, Green’s function approach has been applied which reduced the root-mean-square error (RMSE) significantly. Two different starting times are used for predictions, namely from 2015 and 2016. After improving the open boundary conditions, RMSE between observation and model decreased significantly. In fact, RMSEs for 2015 and 2016 decreased 75.30% and 88.65%, respectively. Furthermore, the prediction for tidal elevations as well as tidal current, which is barotropic current, is carried out. This prediction was compared with the prediction conducted by Geospatial Information Agency (GIA) of Indonesia and we found that our prediction is much better than one carried out by GIA. Finally, since there is no tidal current observation available in this area, we assume that, when tidal elevations have been fixed, then the tidal current will approach the actual current velocity.

  12. The Origin of Faint Tidal Features around Galaxies in the RESOLVE Survey

    Science.gov (United States)

    Hood, Callie E.; Kannappan, Sheila J.; Stark, David V.; Dell’Antonio, Ian P.; Moffett, Amanda J.; Eckert, Kathleen D.; Norris, Mark A.; Hendel, David

    2018-04-01

    We study tidal features around galaxies in the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey. Our sample consists of 1048 RESOLVE galaxies that overlap with the DECam Legacy Survey, which reaches an r-band 3σ depth of ∼27.9 mag arcsec‑2 for a 100 arcsec2 feature. Images were masked, smoothed, and inspected for tidal features such as streams, shells, or tails/arms. We find tidal features in 17±2% of our galaxies, setting a lower limit on the true frequency. The frequency of tidal features in the gas-poor (gas-to-stellar mass ratio arms from resonant interactions. Similar to tidal features in gas-poor galaxies, tidal features in gas-rich galaxies imply 1.7× closer nearest neighbors in the same group; however, they are associated with diskier morphologies, higher star formation rates, and higher gas content. In addition to interactions with known neighbors, we suggest that tidal features in gas-rich galaxies may arise from accretion of cosmic gas and/or gas-rich satellites below the survey limit.

  13. Salicornia strobilacea (synonym of Halocnemum strobilaceum Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2016-08-01

    Full Text Available Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  14. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    Science.gov (United States)

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  15. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J.; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  16. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-08-22

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  17. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary

    DEFF Research Database (Denmark)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation ofsecondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; howeve...

  18. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  19. A forward-looking, national-scale remote sensing-based model of tidal marsh aboveground carbon stocks

    Science.gov (United States)

    Holmquist, J. R.; Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Windham-Myers, L.; Thomas, N.

    2017-12-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our goal was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest algorithm we tested Sentinel-1 radar backscatter metrics and Landsat vegetation indices as predictors of biomass. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=310 g/m2, 10.3% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. Louisiana palustrine emergent marshes had the highest C density (2.67 ±0.08 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ±0.06 Mg/ha). This modeling and data synthesis effort will allow for aboveground

  20. Historical Transition of Eco-Structure in a Tidal Flat Caused by Expansion of Sewerage Treatment Area

    Directory of Open Access Journals (Sweden)

    Hideki Tatsumoto

    2004-01-01

    Full Text Available An artificial tidal flat was prepared for the mitigation tool on coastal environment. However, it is considered that most of the flat was not restored to the sufficient amenities for aquatic living things, migratory birds, etc. because none of the ecological mechanisms were understood or planned for. It is therefore investigated in this paper that historical transition factors in ecosystem structure are selected and traced with the diffusion of a public sewerage system, and with environmental factors such as water quality, sediment condition, and aquatic producers in the Yatsu Tidal Flat. As a result, it can be defined that the tidal flat, just like a lagoon, was formed artificially with reclamation and development of its circumference at the first step of transition; the water quality and sediment condition gradually became brackish water and muddy sediment conditions, interactively. The ecosystem pyramid forming orderly layers according to trophic level appeared as a high-bio-production potential in its tidal flat. In the second step, i.e., in recent years, the characteristics of water quality and sediment conditions evolved into a foreshore tidal flat, namely, conditions in the flat observed were that the progression of water included a high concentration of chloride ion as seawater and sediment conditions became sandy. Because of that, the inflowing fresh water and organic mater from the land area decreased with the improvement of the public sewerage system. The ecosystem pyramid was distorted into a chaos pyramid, with inversion of Ulva spp.

  1. Historical transition of eco-structure in a tidal flat caused by expansion of sewerage treatment area.

    Science.gov (United States)

    Tatsumoto, Hideki; Ishii, Yuichi; Machida, Motoi; Taki, Kazuo

    2004-05-11

    An artificial tidal flat was prepared for the mitigation tool on coastal environment. However, it is considered that most of the flat was not restored to the sufficient amenities for aquatic living things, migratory birds, etc. because none of the ecological mechanisms were understood or planned for. It is therefore investigated in this paper that historical transition factors in ecosystem structure are selected and traced with the diffusion of a public sewerage system, and with environmental factors such as water quality, sediment condition, and aquatic producers in the Yatsu Tidal Flat. As a result, it can be defined that the tidal flat, just like a lagoon, was formed artificially with reclamation and development of its circumference at the first step of transition; the water quality and sediment condition gradually became brackish water and muddy sediment conditions, interactively. The ecosystem pyramid forming orderly layers according to trophic level appeared as a high-bio-production potential in its tidal flat. In the second step, i.e., in recent years, the characteristics of water quality and sediment conditions evolved into a foreshore tidal flat, namely, conditions in the flat observed were that the progression of water included a high concentration of chloride ion as seawater and sediment conditions became sandy. Because of that, the inflowing fresh water and organic mater from the land area decreased with the improvement of the public sewerage system. The ecosystem pyramid was distorted into a chaos pyramid, with inversion of Ulva spp.

  2. Relation between tidal damping and wave celerity in estuaries

    NARCIS (Netherlands)

    Savenije, H.H.G.; Veling, E.J.M.

    2005-01-01

    Observations in estuaries indicate that an amplified tidal wave moves considerably faster than is indicated by the classical equation for wave propagation. Similarly, the celerity of propagation is lower if the tidal wave is damped. This phenomenon is clearly observed in the Schelde estuary (located

  3. TidGen Power System Commercialization Project

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Christopher R. [President & CEO; McEntee, Jarlath [VP Engineering & CTO

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric

  4. Tidal and meteorological forcing of sediment transport in tributary mudflat channels.

    Science.gov (United States)

    Ralston, David K; Stacey, Mark T

    2007-06-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

  5. Distribution of vascular plants and macroalgae along salinity and elevation gradients in Oregon tidal marshes

    Science.gov (United States)

    Sea level rise due to global climate change may affect the spatial distribution of plants and macroalgae within tidal estuaries. We present preliminary results from on-going research in Oregon to determine how these potential abiotic drives correlate with the presence or absence...

  6. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic

  7. Analysing how plants in coastal wetlands respond to varying tidal regimes throughout their life cycles.

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Li, Shanze

    2017-10-15

    Important to conserve plant species in coastal wetlands throughout their life cycle. All life stages in these habitats are exposed to varying tidal cycles. It is necessary to investigate all life stages as to how they respond to varying tidal regimes. We examine three wetlands containing populations of an endangered halophyte species, each subjected to different tidal regimes: (1). wetlands completely closed to tidal cycles; (2). wetlands directly exposed to tidal cycles (3). wetlands exposed to a partially closed tidal regime. Our results showed that the most threatened stage varied between wetlands subjected to these varying tidal regimes. We hypothesis that populations of this species have adapted to these different tidal regimes. Such information is useful in developing management options for coastal wetlands and modifying future barriers restricting tidal flushing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Flow and sediment transport in an Indonesian tidal network

    NARCIS (Netherlands)

    Buschman, F.A.

    2011-01-01

    The Berau river, situated in east Kalimantan (Indonesia), drains a relatively small catchment area and splits into several interconnected tidal channels. This tidal network connects to the sea. The sea is host to extremely diverse coral reef communities. Also the land side of the region is

  9. On the superposition of bedforms in a tidal channel

    DEFF Research Database (Denmark)

    Winter, C; Vittori, G.; Ernstsen, V.B.

    2008-01-01

    High resolution bathymetric measurements reveal the super-imposition of bedforms in the Grådyb tidal inlet in the Danish Wadden Sea. Preliminary results of numerical model simulations are discussed: A linear stability model was tested to explain the large bedforms as being caused by tidal system ...

  10. Bending the law: tidal bending and its effects on ice viscosity and flow

    Science.gov (United States)

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  11. A system shift in tidal choking due to the construction of Yangshan Harbour, Shanghai, China

    Science.gov (United States)

    Guo, Wenyun; Wang, Xiao Hua; Ding, Pingxing; Ge, Jianzhong; Song, Dehai

    2018-06-01

    Tidal choking is a geometric feature caused by a narrowed channel. Construction of the Yangshan Harbour, Shanghai, China obstructed three key channels and intensively changed the local geometry and topography. In this study nine numerical experiments based on the Finite-Volume Community Ocean Model are conducted to study the project's influence on tidal characteristics. Results show that stronger tidal choking happened at the East Entrance after project, mainly due to the jet induced water-level drop forced by Bernoulli law and the longer and narrower geometry. The stronger tidal choking forces a faster flow and larger tidal energy flux at the choked channel while reducing the tidal amplitude in the Inner Harbour Area (IHA). The scouring on this channel reduces the choking effect but further enlarges tidal energy flux. Moreover, damming the channels decrease the tidal amplitude at the lee side of tidal propagating direction while increasing the amplitude on the stoss side. The dams also decrease the tidal current on both sides, and meanwhile develop two patches with stronger current aside the dam. The project induced changes in tidal characteristics are complex in space, and perturbations in bathymetry increase this complexity. Yangshan Harbour's construction induces little changes in the total tidal energy density in the IHA, but induces obvious changes in the spatial distribution of tidal energy. Although this study is site-specific, the findings may be applicable to tidal dynamics in land reclamation close to open seas, such as the dramatic reclamation of islands in the South China Sea.

  12. Second order tidally induced flow in the inlet of a coastal lagoon

    Science.gov (United States)

    Eguiluz, Ana; Wong, Kuo-Chuin

    2005-08-01

    Current meter data obtained in Indian River Inlet and Indian River Bay, Delaware are analyzed to compute second order low-frequency tidal flow and tidally induced mean flow in the system. Results from least-squares harmonic analysis show that nonlinearly induced M4 currents in the inlet and bay occur at order 10 -1 of the M2 amplitudes, indicating weak nonlinearity in the system. Tidally rectified mean flow computed from Mm and Msf is ˜3 cm s -1, which is of the same order of magnitude as the observed mean current. The estimated low-frequency tidal flow and the tidally induced mean flow agree well with scalings computed for the inlet and with results found by Münchow et al. [Münchow, A., Masse, A.K., Garvine, R.W., 1992. Astronomical and nonlinear tidal currents in a coupled estuary shelf system. Continental Shelf Research 12, 471-498] in Delaware Bay.

  13. A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America

    Science.gov (United States)

    Seminack, Christopher T.; McBride, Randolph A.

    2018-03-01

    A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt

  14. The Algorithm Theoretical Basis Document for Tidal Corrections

    Science.gov (United States)

    Fricker, Helen A.; Ridgway, Jeff R.; Minster, Jean-Bernard; Yi, Donghui; Bentley, Charles R.`

    2012-01-01

    This Algorithm Theoretical Basis Document deals with the tidal corrections that need to be applied to range measurements made by the Geoscience Laser Altimeter System (GLAS). These corrections result from the action of ocean tides and Earth tides which lead to deviations from an equilibrium surface. Since the effect of tides is dependent of the time of measurement, it is necessary to remove the instantaneous tide components when processing altimeter data, so that all measurements are made to the equilibrium surface. The three main tide components to consider are the ocean tide, the solid-earth tide and the ocean loading tide. There are also long period ocean tides and the pole tide. The approximate magnitudes of these components are illustrated in Table 1, together with estimates of their uncertainties (i.e. the residual error after correction). All of these components are important for GLAS measurements over the ice sheets since centimeter-level accuracy for surface elevation change detection is required. The effect of each tidal component is to be removed by approximating their magnitude using tidal prediction models. Conversely, assimilation of GLAS measurements into tidal models will help to improve them, especially at high latitudes.

  15. An analytical solution for tidal propagation in the Yangtze Estuary, China

    Directory of Open Access Journals (Sweden)

    E. F. Zhang

    2012-09-01

    Full Text Available An analytical model for tidal dynamics has been applied to the Yangtze Estuary for the first time, to describe the tidal propagation in this large and typically branched estuary with three-order branches and four outlets to the sea. This study shows that the analytical model developed for a single-channel estuary can also accurately describe the tidal dynamics in a branched estuary, particularly in the downstream part. Within the same estuary system, the North Branch and the South Branches have a distinct tidal behaviour: the former being amplified demonstrating a marine character and the latter being damped with a riverine character. The satisfactory results for the South Channel and the South Branch using both separate and combined topographies confirm that the branched estuary system functions as an entity. To further test these results, it is suggested to collect more accurate and dense bathymetric and tidal information.

  16. NOAA Historical Tidal Current Data for the Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Knowledge of the timing and strength of tidal currents is extremely important for safe navigation in coastal waters. Tidal currents are almost always the strongest...

  17. Effect of subseabed salt domes on Tidal Residual currents in the Persian Gulf

    Science.gov (United States)

    Mashayekh Poul, Hossein; Backhaus, Jan; Dehghani, Ali; Huebner, Udo

    2016-05-01

    Geological studies in the Persian Gulf (PG) have revealed the existence of subseabed salt-domes. With suitable filtering of a high-resolution PG seabed topography, it is seen that the domes leave their signature in the seabed, i.e., numerous hills and valleys with amplitudes of several tens of meters and radii from a few up to tens of kilometers. It was suspected that the "shark skin" of the PG seabed may affect the tidal residual flow. The interaction of tidal dynamics and these obstacles was investigated in a nonlinear hydrodynamic numerical tidal model of the PG. The model was first used to characterize flow patterns of residual currents generated by a tidal wave passing over symmetric, elongated and tilted obstacles. Thereafter it was applied to the entire PG. The model was forced at its open boundary by the four dominant tidal constituents residing in the PG. Each tidal constituent was simulated separately. Results, i.e., tidal residual currents in the PG, as depicted by Lagrangian trajectories reveal a stationary flow that is very rich in eddies. Each eddy can be identified with a topographic obstacle. This confirms that the tidal residual flow field is strongly influenced by the nonlinear interaction of the tidal wave with the bottom relief which, in turn, is deformed by salt-domes beneath the seabed. Different areas of maximum residual current velocities are identified for major tidal constituents. The pattern of trajectories indicates the presence of two main cyclonic gyres and several adjacent gyres rotating in opposite directions and a strong coastal current in the northern PG.

  18. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.

    2000-01-01

    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  19. Diurnal and semi-diurnal tidal currents in the deep mid-Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Gouveia, A.D.; Shetye, S.R.

    Current meter records from two depths, approximately 1000 m, at three mooring in the deep mid-Arabian Sea were used to study tidal components. Tidal ellipses for the semi-diurnal (M2, S2 and K2) and the diurnal (K1 and P1) tidal constituents have...

  20. ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Chen Xian; Liu, F. K.; Madau, Piero; Sesana, Alberto

    2009-01-01

    'Hard' massive black hole (MBH) binaries embedded in steep stellar cusps can shrink via three-body slingshot interactions. We show that this process will inevitably be accompanied by a burst of stellar tidal disruptions, at a rate that can be several orders of magnitude larger than that appropriate for a single MBH. Our numerical scattering experiments reveal that (1) a significant fraction of stars initially bound to the primary hole are scattered into its tidal disruption loss cone by gravitational interactions with the secondary hole, an enhancement effect that is more pronounced for very unequal mass binaries; (2) about 25% (40%) of all strongly interacting stars are tidally disrupted by an MBH binary of mass ratio q = 1/81 (q = 1/243) and eccentricity 0.1; and (3) two mechanisms dominate the fueling of the tidal disruption loss cone, a Kozai nonresonant interaction that causes the secular evolution of the stellar angular momentum in the field of the binary, and the effect of close encounters with the secondary hole that change the stellar orbital parameters in a chaotic way. For a hard MBH binary of 10 7 M sun and mass ratio 10 -2 , embedded in an isothermal stellar cusp of velocity dispersion σ * = 100 km s -1 , the tidal disruption rate can be as large as N-dot * ∼1 yr -1 . This is 4 orders of magnitude higher than estimated for a single MBH fed by two-body relaxation. When applied to the case of a putative intermediate-mass black hole inspiraling onto Sgr A*, our results predict tidal disruption rates N-dot * ∼0.05-0.1 yr -1 .

  1. Influence of Tidal Forces on the Triggering of Seismic Events

    Science.gov (United States)

    Varga, Péter; Grafarend, Erik

    2018-05-01

    Tidal stresses are generated in any three-dimensional body influenced by an external inhomogeneous gravity field of rotating planets or moons. In this paper, as a special case, stresses caused within the solid Earth by the body tides are discussed from viewpoint of their influence on seismic activity. The earthquake triggering effects of the Moon and Sun are usually investigated by statistical comparison of tidal variations and temporal distribution of earthquake activity, or with the use of mathematical or experimental modelling of physical processes in earthquake prone structures. In this study, the magnitude of the lunisolar stress tensor in terms of its components along the latitude of the spherical surface of the Earth as well as inside the Earth (up to the core-mantle boundary) were calculated for the PREM (Dziewonski and Anderson in Phys Earth Planet Inter 25(4):297-356, 1981). Results of calculations prove that stress increases as a function of depth reaching a value around some kPa at the depth of 900-1500 km, well below the zone of deep earthquakes. At the depth of the overwhelming part of seismic energy accumulation (around 50 km) the stresses of lunisolar origin are only (0.0-1.0)·103 Pa. Despite the fact that these values are much smaller than the earthquake stress drops (1-30 MPa) (Kanamori in Annu Rev Earth Planet Sci 22:207-237, 1994) this does not exclude the possibility of an impact of tidal forces on outbreak of seismic events. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions from the surface down to the CMB, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. The influencing lunisolar effect of the solid earth tides on earthquake occurrences is connected first of all with stress components acting parallel to the surface of the Earth. The influence of load tides is limited to the loaded area and its

  2. Thermal impact assessment of multi power plant operations on estuaries

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Kim, K.H.; Harris, J.L.

    1977-01-01

    The assessment of the thermal impact of multi power plant operations on large estuaries requires careful consideration of the problems associated with: re-entrainment, re-circulation, thermal interaction, delay in the attainment of thermal equilibrium state, and uncertainty in specifying open boundaries and open boundary conditions of the regions, which are critically important in the analysis of the thermal conditions in receiving water bodies with tidal dominated, periodically reversing flow conditions. The results of an extensive study in the Hudson River at Indian Point, 42 miles upstream of the ocean end at the Battery, concluded that the tidal-transient, multi-dimensional discrete-element (UTA) thermal transport models (ESTONE, FLOTWO, TMPTWO computer codes) and the near-field far-field zone-matching methodology can be employed with a high degree of reliability in the assessment of the thermal impact of multi power plant operations on tidal dominated estuaries

  3. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting

    Science.gov (United States)

    van Maanen, B.; Coco, G.; Bryan, K. R.

    2015-01-01

    An ecomorphodynamic model was developed to study how Avicennia marina mangroves influence channel network evolution in sandy tidal embayments. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. The presence of mangroves was found to enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The enhanced branching of channels is also the result of a vegetation-induced increase in erosion threshold. On the other hand, this reduction in bed erodibility, together with the soil expansion driven by organic matter production, reduces the landward expansion of channels. The ongoing accretion in mangrove forests ultimately drives a reduction in tidal prism and an overall retreat of the channel network. During sea-level rise, mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone, while hindering both the branching and headward erosion of the landward expanding channels. The modelling results presented here indicate the critical control exerted by ecogeomorphological interactions in driving landscape evolution. PMID:26339195

  4. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    Science.gov (United States)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  5. Combined Heat and Power Market Potential for Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jones, David [Resource Dynamics Corporation, McLean, VA (United States); Lemar, Paul [Resource Dynamics Corporation, McLean, VA (United States

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  6. 33 CFR 117.181 - Oakland Inner Harbor Tidal Canal.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oakland Inner Harbor Tidal Canal. 117.181 Section 117.181 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Tidal Canal. The draws of the Alameda County highway drawbridges at Park Street, mile 5.2; Fruitvale...

  7. Intraoperative ventilation: incidence and risk factors for receiving large tidal volumes during general anesthesia

    Directory of Open Access Journals (Sweden)

    Fernandez-Bustamante Ana

    2011-11-01

    Full Text Available Abstract Background There is a growing concern of the potential injurious role of ventilatory over-distention in patients without lung injury. No formal guidelines exist for intraoperative ventilation settings, but the use of tidal volumes (VT under 10 mL/kg predicted body weight (PBW has been recommended in healthy patients. We explored the incidence and risk factors for receiving large tidal volumes (VT > 10 mL/kg PBW. Methods We performed a cross-sectional analysis of our prospectively collected perioperative electronic database for current intraoperative ventilation practices and risk factors for receiving large tidal volumes (VT > 10 mL/kg PBW. We included all adults undergoing prolonged (≥ 4 h elective abdominal surgery and collected demographic, preoperative (comorbidities, intraoperative (i.e. ventilatory settings, fluid administration and postoperative (outcomes information. We compared patients receiving exhaled tidal volumes > 10 mL/kg PBW with those that received 8-10 or Results Ventilatory settings were non-uniform in the 429 adults included in the analysis. 17.5% of all patients received VT > 10 mL/kg PBW. 34.0% of all obese patients (body mass index, BMI, ≥ 30, 51% of all patients with a height T > 10 mL/kg PBW. Conclusions Ventilation with VT > 10 mL/kg PBW is still common, although poor correlation with PBW suggests it may be unintentional. BMI ≥ 30, female gender and height

  8. A licence to discharge cooling waters in tidal rivers, examplified by the 'Nuclear Power Station Unterweser'

    International Nuclear Information System (INIS)

    Kunz, H.

    1976-01-01

    Illustrated by the example of the lower Weser, aspects for automatic control, supervision measurements, and measurements for the securing of evidence, all in connection with cooling water discharges, are presented. The particularities of tidal rivers and the conditions for measuring systems resulting therefrom are explained. The cooling water discharge of the Kernkraftwerk Unterweser has been assigned an extensive measurement system for the automatic compilation of hydrologic data. The measurement systems design, the measurement stations, and the central station are described. (orig.) [de

  9. Dynamical and photometric models of star formation in tidal tails

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1990-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broadband photometric evolutionary code. Test particles are initially placed in circular orbits around a softened point mass and then perturbed by a companion passing in a parabotic orbit. During the passage, the density evolution of the galaxy is examined both in regions within the disk and in selected comoving regions in the tidal features. Even without the inclusion of self-gravity and hydrodynamics, regions of compression form inside the disk, along the tidal tail, and in the tidal bridge causing local density increases of up to 500 percent. By assuming that the density changes relate to the star-formation rate via a Schmidt (1959) law, limits on the density changes needed to make detectable changes in the colors are calculated. A spiral galaxy population is synthesized and the effects of modest changes in the star-formation rate are explored using a broadband photometric evolutionary code. Density changes similar to those found in the dynamical models will cause detectable changes in the colors of a stellar population. From these models, it is determined that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. 52 refs

  10. Can barrier islands survive sea level rise? Tidal inlets versus storm overwash

    Science.gov (United States)

    Nienhuis, J.; Lorenzo-Trueba, J.

    2017-12-01

    Barrier island response to sea level rise depends on their ability to transgress and move sediment to the back barrier, either through flood-tidal delta deposition or via storm overwash. Our understanding of these processes over decadal to centennial timescales, however, is limited and poorly constrained. We have developed a new barrier inlet environment (BRIE) model to better understand the interplay between tidal dynamics, overwash fluxes, and sea-level rise on barrier evolution. The BRIE model combines existing overwash and shoreface formulations [Lorenzo-Trueba and Ashton, 2014] with alongshore sediment transport, inlet stability [Escoffier, 1940], inlet migration and flood-tidal delta deposition [Nienhuis and Ashton, 2016]. Within BRIE, inlets can open, close, migrate, merge with other inlets, and build flood-tidal delta deposits. The model accounts for feedbacks between overwash and inlets through their mutual dependence on barrier geometry. Model results suggest that when flood-tidal delta deposition is sufficiently large, barriers require less storm overwash to transgress and aggrade during sea level rise. In particular in micro-tidal environments with asymmetric wave climates and high alongshore sediment transport, tidal inlets are effective in depositing flood-tidal deltas and constitute the majority of the transgressive sediment flux. Additionally, we show that artificial inlet stabilization (via jetty construction or maintenance dredging) can make barrier islands more vulnerable to sea level rise. Escoffier, F. F. (1940), The Stability of Tidal Inlets, Shore and Beach, 8(4), 114-115. Lorenzo-Trueba, J., and A. D. Ashton (2014), Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model, J. Geophys. Res. Earth Surf., 119(4), 779-801, doi:10.1002/2013JF002941. Nienhuis, J. H., and A. D. Ashton (2016), Mechanics and rates of tidal inlet migration: Modeling and application to

  11. The Analytic Solution of Schroedinger Equation with Potential Function Superposed by Six Terms with Positive-power and Inverse-power Potentials

    International Nuclear Information System (INIS)

    Hu Xianquan; Luo Guang; Cui Lipeng; Niu Lianbin; Li Fangyu

    2009-01-01

    The analytic solution of the radial Schroedinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schroedinger equation is V(r) = α 1 r 8 + α 2 r 3 + α 3 r 2 + β 3 r -1 + β 2 r -3 + β 1 r -4 . Generally speaking, there is only an approximate solution, but not analytic solution for Schroedinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schroedinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → and r → 0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial Schroedinger equation; and lastly, they discuss the solutions and make conclusions. (general)

  12. Ammonium transformation in a nitrogen-rich tidal freshwater marsh

    DEFF Research Database (Denmark)

    Gribsholt, B.; Andersson, M.; Boschker, H.T.S.

    2006-01-01

    The fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient rich Scheldt River, Belgium, was quantified in a whole ecosystem 15N labeling experiment. In late summer (September) we added 15N-NH4+ to the flood water entering a 3477 m2 tidal freshwater marsh...

  13. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments.

    Science.gov (United States)

    Da Lio, Cristina; D'Alpaos, Andrea; Marani, Marco

    2013-01-01

    The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. Here, we review recent contributions to tidal biogeomorphology and identify the presence of multiple competing stable states arising from a two-way feedback between biomass productivity and topographic elevation. Hence, through the analysis of previous and new results on spatially extended biogeomorphological systems, we show that multiple stable states constitute a unifying framework explaining emerging patterns in tidal environments from the local to the system scale. Furthermore, in contrast with traditional views we propose that biota in tidal environments is not just passively adapting to morphological features prescribed by sediment transport, but rather it is 'The Secret Gardener', fundamentally constructing the tidal landscape. The proposed framework allows to identify the observable signature of the biogeomorphic feedbacks underlying tidal landscapes and to explore the response and resilience of tidal biogeomorphic patterns to variations in the forcings, such as the rate of relative sea-level rise.

  14. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, O. B.; Lyard, F.

    2018-01-01

    The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products. NOVELTIS, DTU Space...... and LEGOS have developed Arctide2017, a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite...... assimilation and validation. This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global and regional tidal models....

  15. Status of the Tidal Regenerator Engine for nuclear circulatory support systems

    International Nuclear Information System (INIS)

    Watelet, R.P.; Ruggles, A.E.; Torti, V.

    1976-01-01

    Based on the annular version of the Tidal Regenerator Engine, a packaged energy system for nuclear powered circulatory support systems was developed. Net power output of approximately 3 watts is delivered using a 33-watt heat source for an engine module volume of 0.7 liter and a weight of 1.6 kg. A higher efficiency dual cycle version of the annular engine using a Dowtherm A topping cycle on the basic steam cycle is also under development. Projected system output using this advanced engine is 5 watts for the same sized heat source. Life testing of critical components has demonstrated substantial reliability improvement over earlier designs. Of particular significance is the continuing operation of a complete implantable engine system after 1200 hours. Component life testing is continuing with over five thousand hours accumulated on two pump actuators employing welded metal bellows

  16. Estimating Coastal Lagoon Tidal Flooding and Repletion with Multidate ASTER Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Thomas R. Allen

    2012-10-01

    Full Text Available Coastal lagoons mix inflowing freshwater and tidal marine waters in complex spatial patterns. This project sought to detect and measure temperature and spatial variability of flood tides for a constricted coastal lagoon using multitemporal remote sensing. Advanced Spaceborne Thermal Emission Radiometer (ASTER thermal infrared data provided estimates of surface temperature for delineation of repletion zones in portions of Chincoteague Bay, Virginia. ASTER high spatial resolution sea-surface temperature imagery in conjunction with in situ observations and tidal predictions helped determine the optimal seasonal data for analyses. The selected time series ASTER satellite data sets were analyzed at different tidal phases and seasons in 2004–2006. Skin surface temperatures of ocean and estuarine waters were differentiated by flood tidal penetration and ebb flows. Spatially variable tidal flood penetration was evaluated using discrete seed-pixel area analysis and time series Principal Components Analysis. Results from these techniques provide spatial extent and variability dynamics of tidal repletion, flushing, and mixing, important factors in eutrophication assessment, water quality and resource monitoring, and application of hydrodynamic modeling for coastal estuary science and management.

  17. Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides

    Science.gov (United States)

    Gong, Wenping; Schuttelaars, Henk; Zhang, Heng

    2016-05-01

    Different types of tidal asymmetry (see review of de Swart and Zimmerman Annu Rev Fluid Mech 41: 203-229, 2009) are examined in this study. We distinguish three types of tidal asymmetry: duration and magnitude differences between flood and ebb tidal flow, duration difference between the rising and falling tides. For waterborne substance transport, the first two asymmetries are important while the last one is not. In this study, we take the Huangmaohai Estuary (HE), Pearl River Delta, China as an example to examine the spatio-temporal variations of the tidal asymmetry in a mixed semidiurnal tidal regime and to explain them by investigating the associated mechanisms. The methodology defining the tidal duration asymmetry and velocity skewness, proposed by Nidzieko (J Geophys Res 115: C08006. doi: 10.1029/2009JC005864 , 2010) and synthesized by Song et al. (J Geophys Res 116: C12007. doi: 10.1029/2011JC007270 , 2011), is utilized here and referred to as tidal duration asymmetry (TDA) and flow velocity asymmetry (FVA), respectively. The methodology is further used to quantify the flow duration asymmetry (FDA). A positive asymmetry means a shorter duration of low water slack for FDA, a shorter duration of the rising tide for TDA, and a flood dominance for FVA and vice versa. The Regional Ocean Modeling System (ROMS) model is used to provide relatively long-term water elevation and velocity data and to conduct diagnostic experiments. In the HE, the main tidal constituents are diurnal tides K 1, O 1 and semidiurnal tides M 2 and S 2. The interaction among the diurnal and semidiurnal tides generates a negative tidal asymmetry, while the interactions among semidiurnal tides and their overtides or compound tides result in a positive tidal asymmetry. The competition among the above interactions determines the FDA and TDA, whereas for the FVA, aside from the interaction among different tidal constituents, an extra component, the residual flow, plays an important role. The

  18. Nonrotating black hole in a post-Newtonian tidal environment

    International Nuclear Information System (INIS)

    Taylor, Stephanne; Poisson, Eric

    2008-01-01

    We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The black hole's gravity is described accurately to all orders in Gm/c 2 r, where m is the black-hole mass and r is the distance to the black hole. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces (i) a justification of the statement that a nonrotating black hole is a post-Newtonian monopole; (ii) a complete characterization of the coordinate transformation between the inertial, barycentric frame and the accelerated, black-hole frame; (iii) the equations of motion for the black hole; and (iv) the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter (so as to model a galactic core) or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

  19. Tidal phenomena in reservoirs; Fenomeno de mare em reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla Cortes, John Freddy

    1997-06-01

    This work models the oceanic tidal effect on reservoirs by coupling geomechanic principles with equations for fluid in a deformable porous media. The coupling revealed the importance of establishing properly the system compressibility under the various possible configurations of the loading system. The basic models for infinite reservoir, constant outer-pressure reservoir and closed reservoir were considered. It was verified that it was possible to apply the superposition of effects on the solution for the basic models by carrying a simple transformation on the solution variable. The problem was treated by in the context of test analysis, concerning dimensionless form of variables and the inclusion of well effects. The solution for the infinite reservoir including tidal effects. The solution for the infinite reservoir including tidal effects was obtained in the Laplace space and was inverted numerically by using Crump's routine. The results were incorporated to conventional type curves, and were validated by comparison with real and simulated pressure test data. Finally, alternate practices were suggested to integrate the well test analysis in reservoirs affected by the tidal effect. (author)

  20. Unconventional power - a factor of reducing the pollution in Romania

    International Nuclear Information System (INIS)

    Terzi, P.

    1996-01-01

    The unconventional power generation includes all the activities related to the utilization and management of energy sources, facilities and equipment used to produce and distribute the power obtained through systems other than those based on burning of classical fissile fuels. By its very nature it is not pollutant. The renewable energies as the solar, wind, geothermal, tidal energies, etc, enter this category. As in the same category it is included the energy recovered from different industrial processes, usually associated with the treatment of organic residues or of refuse waters, the unconventional power generation is an important factor in ecological and environmental policy. The paper stresses also the beneficial accompanying actions which are associated with exploiting other unconventional energy sources. For instance, the tidal power exploitation implies also measures of protection of see shore regions from erosion and other forms of decay

  1. Short period tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.; Dickey, J. O.

    1981-01-01

    It is explained that the tidal deformation of the earth's polar moment of inertia by the moon and sun cause periodic variations in rotation. The short period oscillations give rise to a meter-sized, diurnal signature in the lunar laser ranging data obtained at McDonald Observatory. A solution is given for the scale parameter k/C at fortnightly and monthly tidal frequencies. The results are compared with those obtained by other investigators and with a theoretical estimate which includes the effect of oceans and a decoupled fluid core.

  2. One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels

    Science.gov (United States)

    Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.

    2017-12-01

    Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.

  3. Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California

    Science.gov (United States)

    Xue, L.; Burgmann, R.; Shelly, D. R.

    2017-12-01

    The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.

  4. Paolo Sarpi and the first Copernican tidal theory.

    Science.gov (United States)

    Naylor, Ron

    2014-12-01

    Despite his demanding religious responsibilities, Paolo Sarpi maintained an active involvement in science between 1578 and 1598- as his Pensieri reveal. They show that from 1585 onwards he studied the Copernican theory and recorded arguments in its favour. The fact that for 1595 they include an outline of a Copernican tidal theory resembling Galileo's Dialogue theory is well known. But examined closely, Sarpi's theory is found to be different from that of the Dialogue in several important respects. That Sarpi was a Copernican by 1592 is revealed by other of his pensieri, whereas at that time we know that Galileo was not. The examination of Sarpi's tidal theory and of the work of Galileo in this period indicates that the theory Sarpi recorded in 1595 was of his own creation. The appreciation that the theory was Sarpi's and that Galileo subsequently came to change his views on the Copernican theory and adopted the tidal theory has major implications for our understanding of the significance of Sarpi's contribution to the Scientific Revolution. Moreover, it appears that several of the most significant theoretical features of the tidal theory published by Galileo in the Dialogue - and which proved of lasting value - were in reality Sarpi's.

  5. Modern sedimentary environments in a large tidal estuary, Delaware Bay

    Science.gov (United States)

    Knebel, H.J.

    1989-01-01

    Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current

  6. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    Directory of Open Access Journals (Sweden)

    Kimberly L Dibble

    Full Text Available Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water, recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1 while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological

  7. Morphodynamics of the Manyema tidal delta 1 LIST OF TABLES ...

    African Journals Online (AJOL)

    Kheira Kortenbout

    Morphodynamics of the Manyema tidal delta. 1. LIST OF ... Location of Manyema Creek and its associated tidal delta platform at Kunduchi. Fig. 2. ... platform. Beachcomber. Hotel. Whitesands. Hotel. Kunduchi. Beach Hotel. Giraffe. Hotel. INDIAN. OCEAN. Mombasa. Dar es. Salaam. KUNDUCHI. KENYA. TANZANIA.

  8. Characterizing Milky Way Tidal Streams and Dark Matter with MilkyWay@home

    Science.gov (United States)

    Newberg, Heidi Jo; Shelton, Siddhartha; Weiss, Jake

    2018-01-01

    MilkyWay@home is a 0.5 PetaFLOPS volunteer computing platform that is mapping out the density substructure of the Sagittarius Dwarf Tidal Stream, the so-called bifurcated portion of the Sagittarius Stream, and the Virgo Overdensity, using turnoff stars from the Sloan Digital Sky Survey. It is also using the density of stars along tidal streams such as the Orphan Stream to constrain properties of the dwarf galaxy progenitor of this stream, including the dark matter portion. Both of these programs are enabled by a specially-built optimization package that uses differential evolution or particle swarm methods to find the optimal model parameters to fit a set of data. To fit the density of tidal streams, 20 parameters are simultaneously fit to each 2.5-degree-wide stripe of SDSS data. Five parameters describing the stellar and dark matter profile of the Orphan Stream progenitor and the time that the dwarf galaxy has been evolved through the Galactic potential are used in an n-body simulation that is then fit to observations of the Orphan Stream. New results from MilkyWay@home will be presented. This project was supported by NSF grant AST 16-15688, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.

  9. Tidal and seasonal variation in particulate and dissolved organic carbon in the western dutch Wadden Sea and Marsdiep tidal inlet

    Science.gov (United States)

    Cadée, G. C.

    Seasonal variation in POC and DOC was measured in the Marsdiep tidal inlet of the Wadden Sea from March 1978 to June 1981, and compared with tidal variation. A POC peak was coincident with the phytoplankton peak (except for 1981), whereas a DOC peak occurred about one month later indicating autolysis and degradation of phytoplankton rather than excretion as the main source of this DOC. DOC production calculated from the spring increase amounted to 4.2 mg C·1 -1 or about 40% of the annual phytoplankton primary production in the area. This means that a large part of the phytoplankton production is not used directly by primary consumers but is converted into DOC. Tidal variation in DOC was correlated with salinity, pointing to a fresh water source for the bulk of it. POC was correlated with suspended matter content and phaeopigment, and slightly less with chlorophyll. Compared with the seasonal variation, tidal variation in chlorophyll and temperature was relatively small, but large in POC, DOC, suspended matter and salinity. Although import of POC and export of DOC through the Marsdiep inlet is large on an annual base, the transport cannot be measured directly because of the variability and precision limits of the measurements and as differences in content between ebb and flood current are only 15 and 5% of the POC and DOC content, respectively.

  10. Interactions Between Wetlands and Tidal Inlets

    National Research Council Canada - National Science Library

    Sanchez, Alejandro

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note (CHETN) presents numerical simulations investigating how the loss of wetlands in estuaries modifies tidal processes in inlet navigation channels...

  11. Dynamic and photometric evolutionary models of tidal tails and ripples

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1989-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broad-band photometric evolutionary code. In these models, regions of compression form inside the disk and along the tidal tail and tidal bridge. The effects these density changes have on the colors of the tidal features are examined with a broad-band photometric evolutionary code. A spiral galaxy population is synthesized and the effects of modest changes in the star formation rate are explored. Limits on the density changes needed to make detectable changes in the colors are calculated using a Schmidt (1959) law. These models suggest that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. The Lynds and Toomre (1976) interpretation of ring galaxies as the natural result of a nearly head-on collision between a disk galaxy and a companion galaxy has become widely accepted. Similarly, Quinn's (1984) interpretation of the shells in elliptical galaxies as the aftermath of the cannibalization of a low-mass companion has been quite successful in accounting for the observations. Restricted three-body calculations of high inclination, low impact parameter encounters demonstrate that the shell-like ripples observed in a number of disk galaxies can also be produced as collisional artifacts from internal oscillations much as in ring galaxies

  12. Water and suspended sediment division at a stratified tidal junction

    NARCIS (Netherlands)

    Buschman, F.A.; Vegt, M. van der; Hoitink, A.J.F.; Hoekstra, P.

    2013-01-01

    Tidal junctions play a crucial role in the transport of water, salt, and sediment through a delta distributary network. Water, salt and sediment are exchanged at tidal junctions, thereby influencing the transports in the connecting branches and the overall dynamics of the system. This paper

  13. Tidal deformations of spinning black holes in Bowen–York initial data

    International Nuclear Information System (INIS)

    Cabero, Miriam; Krishnan, Badri

    2015-01-01

    We study the tidal deformations of the shape of a spinning black hole horizon due to a binary companion in the Bowen–York initial data set. We use the framework of quasi-local horizons and identify a black hole by marginally outer trapped surfaces. The intrinsic horizon geometry is specified by a set of mass and angular-momentum multipole moments M n and J n , respectively. The tidal deformations are described by the change in these multipole moments caused by an external perturbation. This leads us to define two sets of dimensionless numbers, the tidal coefficients for M n and J n , which specify the deformations of a black hole with a binary companion. We compute these tidal coefficients in a specific model problem, namely the Bowen–York initial data set for binary black holes. We restrict ourselves to axisymmetric situations and to small spins. Within this approximation, we analytically compute the conformal factor, the location of the marginally trapped surfaces, and finally the multipole moments and the tidal coefficients. (paper)

  14. Three-dimensional Modeling of Tidal Hydrodynamics in the San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Edward S. Gross

    2010-01-01

    Full Text Available Simulations of circulation in the San Francisco Estuary were performed with the three-dimensional TRIM3D hydrodynamic model using a generic length scale turbulence closure. The model was calibrated to reproduce observed tidal elevations, tidal currents, and salinity observations in the San Francisco Estuary using data collected during 1996-1998, a period of high and variable freshwater flow. It was then validated for 1994-1995, with emphasis on spring of 1994, a period of intensive data collection in the northern estuary. The model predicts tidal elevations and tidal currents accurately, and realistically predicts salinity at both the seasonal and tidal time scales. The model represents salt intrusion into the estuary accurately, and therefore accurately represents the salt balance. The model’s accuracy is adequate for its intended purposes of predicting salinity, analyzing gravitational circulation, and driving a particle-tracking model. Two applications were used to demonstrate the utility of the model. We estimated the components of the longitudinal salt flux and examined their dependence on flow conditions, and compared predicted salt intrusion with estimates from two empirical models.

  15. Alliance created to study wind-generated power potential

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Wind-generated power may get a boost from a new consortium of companies that have joined together to expand the potential across the country for this cheap, renewable energy source. Niagara Mohawk Power Corporation has announced that it will join with the Pacific Gas and Electric Company (PG ampersand E), the Electric Power Research Institute (EPRI) and US Windpower, Inc., in developing an advanced, 33-meter, variable-speed wind turbine that reduced the cost and improves the power quality of wind energy. The majority of the estimated $20 million cost will be provided by US Windpower

  16. Tidal constraints on the interior of Venus

    Science.gov (United States)

    Dumoulin, C.; Tobie, G.; Verhoeven, O.; Rosenblatt, P.; Rambaux, N.

    2017-12-01

    As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers, and tide-induced phase lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. Viscoelasticity of the mantle strongly increases the potential Love number relative to previously published elastic models. Due to the anelasticity effects, we show that the possibility of a completely solid metal core inside Venus cannot be ruled out based on the available estimate of k2 from the Magellan mission (Konopliv and Yoder, 1996). A Love number k2 lower than 0.27 would indicate the presence of a fully solid iron core, while for larger values, solutions with an entirely or partially liquid core are possible. Precise determination of the Love numbers, k2 and h2, together with an estimate of the tidal phase lag, are required to determine the state and size of the core, as well as the composition and viscosity of the mantle.

  17. Tidally Driven Failure Along Europa's Rhadamanthys Linea

    Science.gov (United States)

    Cameron, M.; Konter, B.; Pappalardo, R. T.

    2013-12-01

    The surface of Europa is crosscut by a dense network of fractures and there are many candidate faults for studying past tectonic activity. To better understand the role of tidal stress sources and implications for faulting on Europa, we investigate the relationship between shear and normal stresses at Rhadamanthys Linea, a northwest oriented fracture in the northern hemisphere. Previous work on Agenor Linea, a right-lateral strike-slip fracture in the southern hemisphere, suggests that both tidal diurnal and non-synchronous rotation (NSR) stresses play a critical role in the mechanics of Coulomb shear failure on Europa. At Agenor Linea, shear failure from diurnal tidal stress mechanisms is difficult to achieve because the relatively large over¬burden stress (ie., 1.2 MPa at 1 km depth) dominates the stress field; however, MPa order stresses from NSR permit right-lateral shear failure along the west side of the fault at shallow depths (Astypalea Linea and Conamara Chaos will also be investigated, offering a unique comparison of geologic activity of fractures residing in geographically diverse locations of Europa.

  18. Consideration of tidal influences in determining measurement periods when monitoring built-environment radon levels

    International Nuclear Information System (INIS)

    Crockett, R.G.M.; Phillips, P.S.; Gillmore, G.K.; Denman, A.R.; Groves-Kirkby, C.J.

    2006-01-01

    -measurement period of 14-15 days is therefore recommended and, to minimise the potential distortions arising from the inclusion of unmatched partial tidal-periods in a radon measurement period, longer measurement periods should be integral multiples of this period. (authors)

  19. Tidal controls on river delta morphology

    Science.gov (United States)

    Hoitink, A. J. F.; Wang, Z. B.; Vermeulen, B.; Huismans, Y.; Kästner, K.

    2017-09-01

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and land reclamation emerge as key contemporary factors that exert an impact on delta morphology. Tides interacting with river discharge can play a crucial role in the morphodynamic development of deltas under pressure. Emerging insights into tidal controls on river delta morphology suggest that--despite the active morphodynamics in tidal channels and mouth bar regions--tidal motion acts to stabilize delta morphology at the landscape scale under the condition that sediment import during low flows largely balances sediment export during high flows. Distributary channels subject to tides show lower migration rates and are less easily flooded by the river because of opposing non-linear interactions between river discharge and the tide. These interactions lead to flow changes within channels, and a more uniform distribution of discharge across channels. Sediment depletion and rigorous human interventions in deltas, including storm surge defence works, disrupt the dynamic morphological equilibrium and can lead to erosion and severe scour at the channel bed, even decades after an intervention.

  20. Implications of tidally-varying bed stress and intermittent estuarine stratification on fine-sediment dynamics through the Mekong's tidal river to estuarine reach

    Science.gov (United States)

    McLachlan, R. L.; Ogston, A. S.; Allison, M. A.

    2017-09-01

    River gauging stations are often located upriver of tidal propagation where sediment transport processes and storage are impacted by widely varying ratios of marine to freshwater influence. These impacts are not yet thoroughly understood. Therefore, sediment fluxes measured at these stations may not be suitable for predicting changes to coastal morphology. To characterize sediment transport dynamics in this understudied zone, flow velocity, salinity, and suspended-sediment properties (concentration, size, and settling velocity) were measured within the tidal Sông Hậu distributary of the lower Mekong River, Vietnam. Fine-sediment aggregation, settling, and trapping rates were promoted by seasonal and tidal fluctuations in near-bed shear stress as well as the intermittent presence of a salt wedge and estuary turbidity maximum. Beginning in the tidal river, fine-grained particles were aggregated in freshwater. Then, in the interface zone between the tidal river and estuary, impeded near-bed shear stress and particle flux convergence promoted settling and trapping. Finally, in the estuary, sediment retention was further encouraged by stratification and estuarine circulation which protected the bed against particle resuspension and enhanced particle aggregation. These patterns promote mud export ( 1.7 t s-1) from the entire study area in the high-discharge season when fluvial processes dominate and mud import ( 0.25 t s-1) into the estuary and interface zone in the low-discharge season when estuarine processes dominate. Within the lower region of the distributaries, morphological change in the form of channel abandonment was found to be promoted within minor distributaries by feedbacks between channel depth, vertical mixing, and aggregate trapping. In effect, this field study sheds light on the sediment trapping capabilities of the tidal river - estuary interface zone, a relatively understudied region upstream of where traditional concepts place sites of deposition